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Embeddability and quasi-isometric classification of
partially commutative groups

MONTSERRAT CASALS-RUIZ

The main goal of this note is to suggest an algebraic approach to the quasi-isometric
classification of partially commutative groups (alias right-angled Artin groups). More
precisely, we conjecture that if the partially commutative groups G.�/ and G.�/
are quasi-isometric, then G.�/ is a (nice) subgroup of G.�/ and vice-versa. We
show that the conjecture holds for all known cases of quasi-isometric classification of
partially commutative groups, namely for the classes of n–trees and atomic graphs.
As in the classical Mostow rigidity theory for irreducible lattices, we relate the
quasi-isometric rigidity of the class of atomic partially commutative groups with the
algebraic rigidity, that is, with the co-Hopfian property of their Q–completions.

20A15, 20F36, 20F65, 20F69

1 Introduction

A finitely generated group can be considered as a geometric object when endowed with
a word metric. Gromov observed that this metric is, in fact, unique up to quasi-isometry
and suggested the study of the rigidity problem, that is, when a finitely generated group
is quasi-isometric to a given one, and of the classification problem, ie when two groups
(in a given class) are quasi-isometric.

In this paper, we focus on the question of quasi-isometric classification of partially
commutative groups (also known as right-angled Artin groups) and its connection
with the embeddability problem. Recall that a partially commutative group (or a pc
group, for short) is a finitely presented group G.�/ which can be described by a finite
simplicial graph � , the commutation graph, in the following way: the vertices of �
are in bijective correspondence with the generators of G.�/, and the set of defining
relations of G.�/ consists of commutation relations, one for each pair of generators
connected by an edge in � .

The quasi-isometric classification of pc groups has been previously considered by
Behrstock, Januszkiewic and Neumann, by Bestvina, Kleiner and Sageev, and, more
recently, by Huang. Although the results on classification are partial, they already
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exhibit a complex behaviour: on the one hand, some quasi-isometry classes contain
many pc groups, while others exhibit some type of rigidity. Furthermore, the techniques
used to approach the problem in these cases do not seem to be amenable to address the
general classification problem.

The main goal of this note is to suggest an algebraic approach towards the quasi-
isometric classification of pc groups. More precisely, we study (a stronger version of)
the following question.

Question 1 If the pc groups G.�/ and G.�/ are quasi-isometric, does this imply
that G.�/ <G.�/ and G.�/ <G.�/?

Note that Question 1 has a positive answer if one strengthens the relation to commen-
surability. That is, if G.�/ and G.�/ are commensurable, then G.�/ <G.�/ and
G.�/ <G.�/; see Lemma 26. Although this observation makes Question 1 natural,
we will refine the statement and require, not only embeddability between the groups, but
rather “nice” embeddability in terms of the extension graphs. The extension graph �e

of a graph � was introduced in [17] to study the Embeddability problem for pc groups,
that is, to determine when a pc group is a subgroup of another one. It is defined as
follows: vertices of �e are in one-to-one correspondence with conjugates of generators
of G.�/, that is,

V .�e/D fg�1xg 2G.�/ j x 2 V .�/;g 2G.�/g;

and there is an edge in �e whenever the elements associated to the corresponding
vertices commute in the group, ie

E.�e/D f.u; v/ j Œu; v�D 1 in G.�/g:

In [17], it is shown that if � is an induced subgraph of the extension graph �e , then
G.�/ embeds in G.�/ and that, under some additional conditions on the graphs,
the converse also holds. These results suggested that the extension graph could be
the graph-theoretical tool to determine when a pc group is a subgroup of another
one. However, we show in [10] that, in general, the extension graph is not enough
to characterise embeddability: there are pc groups G.�/ and G.�/ for which there
exists an embedding from G.�/ to G.�/, but � is not an induced subgraph of �e .
However, we believe that the extension graph may be helpful for the quasi-isometric
classification of pc groups. More formally, we suggest the following conjecture.

Conjecture 2 Let � and � be simplicial graphs. If G.�/ and G.�/ are quasi-
isometric, then �< �e and � <�e .
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If Conjecture 2 holds, then we would get some algebraic control on the quasi-isometry
classes of pc groups. For instance, it would follow that if G.�/ is a coherent pc group
and G.�/ is a pc group quasi-isometric to G.�/, then G.�/ is also coherent; see
Remark 28. Recall that a group is coherent if all its finitely generated subgroups are
finitely presentable. Furthermore, we would also gain an algorithmic understanding of
the quasi-isometry classes of pc groups. Indeed, it was proven in [8] that there is an
algorithm that, given two finite simplicial graphs � and � , decides whether or not �
is an induced subgraph of the extension graph �e .

In this note, we show that Conjecture 2 holds for all known cases of quasi-isometric
classification of pc groups. The two essential cases that need to be analysed are n–trees
and atomic graphs.

In [5], the authors studied the problem of classification of graph manifolds and proved
that a pc group G.�/ is quasi-isometric to G.�/, where � is a tree of diameter greater
than 2, if and only if � is a tree of diameter greater than 2.

This result was further generalised by Behrstock, Januszkiewic and Neumann for the
class of n–trees (see Definition 9). The authors prove that, given two n–trees � and
� , the corresponding pc groups G.�/ and G.�/ are quasi-isometric if and only if the
underlying trees associated to � and � satisfy a graph-theoretic relation, namely they
are bisimilar (see Definition 12).

In a different direction, Bestvina, Kleiner and Sageev (see [7]) introduced and studied
the problem of quasi-isometric classification of pc groups for atomic graphs, that is,
connected graphs with no valence 1 vertices, no cycles of length less than 5 and no
separating closed stars of vertices. They prove that the class of pc groups defined by
atomic graphs is quasi-isometrically rigid; that is, given two atomic graphs � and � ,
the corresponding pc groups G.�/ and G.�/ are quasi-isometric if and only if � and
� are isomorphic.

Our goal is to prove that Conjecture 2 holds in the aforementioned cases.

Theorem 3 Let C be one of the following classes of graphs:

� Triangle-built (ie graphs with no induced squares and no induced paths of length
more than 2).

� Atomic graphs.

� n–trees.

Let �;� 2 C . Then G.�/ is quasi-isometric to G.�/ if and only if � < �e and
� <�e .
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Remark 4 When this note was already written, Jingyin Huang published a new
preprint [15] where he describes pc groups quasi-isometric to pc groups with finite outer
automorphism group (a class that naturally extends atomic pc groups). More precisely,
Huang shows that if G.�/ is a pc group with finite outer automorphism group, then
G.�/ is quasi-isometric to G.�/ if and only if G.�/ and G.�/ are commensurable,
if and only if �e and �e are isomorphic. As a consequence, Conjecture 2 also holds
for pc groups with finite outer automorphism group.

In many cases, there is a close relation between the group being quasi-isometrically
and algebraically rigid, that is, being co-Hopfian. For instance, in the classical case
of irreducible lattices in semisimple Lie groups, this relation is a consequence of
Mostow rigidity.

As we mentioned above, the class of atomic pc groups is, in some sense, quasi-
isometrically rigid, so one can ask how far these groups are from being co-Hopfian.
Recall that a group is called co-Hopfian if every injective endomorphism is an automor-
phism. In this direction, we study the set of injective endomorphisms for the class of
atomic pc groups and show that, “up to taking roots,” they are automorphisms. More
precisely, we prove the following.

Corollary 5 Let � be an atomic graph and  W G.�/!G.�/ an injective endomor-
phism. Then there exist g 2 G.�/, � 2 Aut.�/ and kv 2 Z n 0, v 2 V .�/, such
that

 .v/D g�1�.v/kv g; v 2 V .�/:

In other words, up to conjugacy, graph automorphism and taking powers,  is the
identity endomorphism.

In the spirit of classical theorems for abelian and locally nilpotent groups, we show
in [9] that every pc group embeds into a divisible group, its Q–completion, which,
roughly speaking, is the smallest divisible group containing G.�/. In other words, the
Q–completion of G.�/ is an initial object in the category of divisible G.�/–groups
(ie divisible groups with a designated copy of G.�/). From the description of the set
of injective endomorphisms of an atomic pc group, one deduces that, although atomic
pc groups are not co-Hopfian, their Q–completions are.

Corollary 6 Let � be an atomic graph. Then the Q–completion G.�/Q of G.�/
is co-Hopfian.

In this context, it is natural to ask if the correspondence between quasi-isometric and
algebraic rigidities holds in general for the class of pc groups. More precisely, we
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call a pc group G.�/ weakly quasi-isometrically rigid if its quasi-isometry class is
determined by the isomorphism type of its extension graph, that is, G.�/ is quasi-
isometric to G.�/ if and only if the extension graph �e is isomorphic to �e . In this
terminology, we ask the following.

Question 7 Is it true that G.�/ is weakly quasi-isometrically rigid if and only if the
Q–completion G.�/Q of G.�/ is co-Hopfian?

We assume that the reader is familiar with basics of the theory of partially commutative
groups. We refer the reader to [8] and references there for preliminaries and notation.

2 Elementary cases

In this section we review some cases of quasi-isometric classification of pc groups,
namely three classical cases: free groups, free abelian groups and direct products of
two free groups; and the case of pc groups defined by trees and triangle-built graphs.

In the case of free and free abelian groups, we have a complete classification: a finitely
generated group G is quasi-isometric to the free abelian group Zn if and only if it
is virtually Zn (see [14]), and if G is quasi-isometric to a (nonabelian) free group,
then it is commensurable to it (and G acts geometrically on a tree). When we restrict
our consideration to the class of pc groups, we deduce that a pc group G.�/ is quasi-
isometric to Zn if and only if G.�/ is isomorphic to Zn , and a pc group G.�/ is
quasi-isometric to a nonabelian free group Fn if and only if G.�/ is a nonabelian free
group Fm .

In the free abelian case, Conjecture 2 holds trivially. Furthermore, the converse also
holds. Indeed, the graph associated to Zn is a clique � of dimension n. Hence, if � is
an induced subgraph of the extension graph �e D � , then � is a clique of dimension
less than or equal to n. Furthermore, if � <�e D�, then it follows that �D � .

If G.�/ is a nonabelian free group, then the extension graph associated to � is an
infinite edgeless graph, and so Conjecture 2 holds. In this case, the converse is also true:
if �< �e , then the graph of � is edgeless and so G.�/ is a free group. If � <�e ,
it follows that � has at least two vertices and so G.�/ is a nonabelian free group.

These results were generalised to groups acting on direct products of trees by several
authors (see [16; 20; 1]): if a group G is quasi-isometric to the direct product of two
nonabelian free groups Fn �Fm , then G acts geometrically on the direct product of
two trees. In particular, a pc group G.�/ is quasi-isometric to Fn �Fm if and only if
G.�/ is the direct product of two nonabelian free groups Fr �Fs .
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The extension graph �e associated to Fk �Fl is the join graph of two infinite edgeless
graphs, and so it is immediate to check that Conjecture 2 holds. The converse also
holds: any induced subgraph � of �e is either edgeless or a join. If � <�e , it follows
that �e is the join of two infinite edgeless graphs, and so G.�/ is isomorphic to
Fk0 �Fl 0 for k 0; l 0 > 1.

We now turn our attention to the class of pc groups whose finitely generated subgroups
are pc groups. In [13], Droms gives a graph-theoretic characterisation of this class:
every finitely generated subgroup of G.�/ is a pc group if and only if � is triangle-built,
that is, � contains no induced squares and no induced paths of diameter more than 2.
In this case, Droms shows that G.�/ is isomorphic to Zn �G.� 0/, where � 0 is the
disjoint union of triangle-built graphs or, equivalently, G.� 0/ is the free product of
triangle-built pc groups. By [16], we have that G.�/ is quasi-isometric to G.�/ if and
only if G.�/ is isomorphic to Zn�G.�0/ and G.� 0/ and G.�0/ are quasi-isometric.
Then, by [22] it follows that each (one-ended) factor in the Grushko decomposition of
G.� 0/ is equivalent to a (one-ended) factor in the Grushko decomposition of G.�/
and vice-versa. By induction on the number of vertices in G.� 0/, we conclude that
�0 < .� 0/

e and � 0 < .�0/e , and so Conjecture 2 also holds in this case.

Let T be a tree of diameter 2, ie G.T / is isomorphic to Z�Fk for k > 1. Then
G.�/ is quasi-isometric to G.T / if and only if G.�/ is isomorphic to Z�Fn for
n> 1. On the other hand, �< T e and T <�e if and only if G.�/ is isomorphic to
Z�Fn for n> 1.

The quasi-isometric classification for trees of diameter greater than or equal to 3 was
established by Behrstock and Neumann.

Theorem 8 [5, Theorem 5.3] Let T be a tree of diameter greater than or equal to 3.
Then G.�/ is quasi-isometric to G.T / if and only if � is a tree of diameter greater
than or equal to 3.

It is easy to see (for instance, see [17]) that any tree is an induced subgraph of the
extension graph T e of a tree T of diameter greater than or equal to 3.

On the other hand, since the extension graph of a tree is a tree, if � is connected,
it follows that � < T e if and only if � is a tree. If T < �e , then we have that the
diameter of � is greater than or equal to 3. In this case, we have shown that G.�/ is
quasi-isometric to G.T /, where T is a tree if and only if � < T e , T < �e , and �
is connected.
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3 n–trees

The class of n–trees was introduced and studied by Behrstock, Januszkiewic and
Neumann in [4]. We next recall some basic definitions and results and refer the reader
to [4] for further details.

Definition 9 We define the class of n–trees Tn to be the smallest class of n–dimen-
sional simplicial complexes satisfying:

� The n–simplex is in Tn .

� If K1 and K2 are complexes in Tn , then the union of K1 and K2 along any
.n� 1/–simplex is in Tn .

For nD 1 this is the class of finite trees. In this section, we consider pc groups defined
by n–trees. Although, formally, we should define these pc groups by the 1–skeleton
of the n–tree, we abuse the notation and write G.K/ where K 2 T .

Fix a complex K 2 Tn . We define a piece to be the star in K of an .n� 1/–simplex
of K which is the boundary of at least two n–simplices. Let P denote a piece of
K . Then P consists of a finite collection of n–simplices attached along the common
.n�1/–simplex, ie the join of the .n�1/–simplex with a finite set of points p1; : : : ;pk .

Definition 10 To each K 2 Tn , we associate a labelled bipartite tree gph.K/ as
follows. To each piece in K we assign a vertex labelled p (for piece). To each of the
n–simplices that is in more than one piece, we assign a vertex labelled f (for face).
Each f–vertex is connected by an edge to each of the p–vertices that corresponds to a
piece containing the n–simplex.

For any K 2 Tn , since there is a simplicial map to an n–dimensional simplex �, which
is unique up to permutation of �, it follows that a labelling on the vertices of � by
1 to nC 1 pulls back to a consistent labelling on all the vertices of K . Note that,
in any piece, all the vertices of their common .n � 1/–simplex (the “spine” of the
piece) are given the same label. We label each p–vertex by the index of the n–simplex
vertex which is not on the spine of the corresponding piece. Hence, the label set for
the p–vertices are the elements of the set f1; : : : ; nC 1g. The possible labels for
vertices are thus p1;p2; : : : ;p.nC 1/ and f , for a total of nC2 possible labels. The
p=f–distinction gives a bipartite structure on our tree gph.K/. The p–vertices to
which a given f–vertex is connected have distinct labels, so an f–vertex has valence at
most nC1 (and at least 2). A p–vertex can be connected to any number of f–vertices.
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Note that the graph gph.K/ associated to an n–tree corresponds to the graph of the
graph-of-groups decomposition of G.K/ where vertex groups are fundamental groups
of the pieces and edge groups are labelled by the fundamental group of an n–simplex
(ie edge groups are free abelian).

Definition 11 A coloured graph is a graph � , a set C , and a “vertex colouring”
cW V .�/!C . A weak covering of coloured graphs is a graph homomorphism f W �!

� 0 which respects colours and has the following property: for each v 2 V .�/ and for
each edge e0 2E.� 0/ at f .v/, there exists an e 2E.�/ at v with f .e/D e0 .

Henceforth, we assume that all graphs under consideration are connected. It is easy to
see that a weak covering is then surjective.

Definition 12 Coloured graphs �1 and �2 are bisimilar if �1 and �2 weakly cover
some common coloured graph.

The main result of [4] is the quasi-isometric classification of n–trees in terms of
bisimilarity of the defining graphs. More precisely, the authors prove:

Theorem 13 [4, Theorem 1.1] Let K;K0 2 Tn . The groups G.K/ and G.K0/
are quasi-isometric if and only if gph.K/ and gph.K0/ are bisimilar after possibly
reordering the p–colours by an element of the symmetric group on nC 1 elements.

The goal of this section is to show that the graphs associated to n–trees � and � are
bisimilar (after possibly reordering the p–colours) if and only if �< �e and � <�e .

Before we turn our attention to the proof, we recall an easy but very useful lemma that
describes the extension graph �e as a sequence of “doublings” over stars of vertices.

Lemma 14 [17, Lemma 22] Let � be a finite graph and � be a finite induced
subgraph of �e . Then there exists an l > 0, a sequence of vertices v1; v2; : : : ; vl of
�e , and a sequence of finite induced subgraphs � = �0 � �1 � � � � � �l of �e , where
�i is obtained by taking the double of �i�1 along Star�i�1

.vi/ for each i D 1; : : : ; l ,
such that �� �l .

Lemma 15 Assume that gph.�/ weakly covers gph.�/; then �< �e .

Proof Assume that f W gph.�/! gph.�/ is a weak covering. Since both graphs are
connected and without multiple edges, f is surjective, and so the graph gph.�/ is an
induced subgraph of gph.�/.
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We prove the statement by induction on the number mD jV .gph.�// nV .gph.�//j.

Induction base Let mD 0. In this case, the gph.�/ is an induced subgraph with the
same set of vertices, and so it coincides with gph.�/. It follows from the definition
of gph.�/ and gph.�/ that � and � only differ by their “leaves”; that is, they differ
by the set of n–simplices such that only one of the .n� 1/–faces of each is a face of
another n–simplex.

Define the core of an n–tree ƒ to be the n–subtree of ƒ that consists of n–simplices
that are not leaves of ƒ. In this terminology, if mD 0, then the cores of � and � are
isomorphic (possibly empty). We denote by '0 a colour preserving isomorphism from
the core of � to the core of � .

Our goal is to define an embedding ' from � to �e that extends the isomorphism
'0 . Without loss of generality, assume that � and � are different; that is, there exists
an .n� 1/–simplex F that is a face of at least two n–simplices where one of these
simplices is a leaf, and the pieces associated to F in � and in � differ in the number of
leaves. For the n–simplices that contain the face F in � (resp. in �) and which belong
to the core, we denote by x1; : : : ;xr (resp. x0

1
; : : : ;x0r ) the vertices of these simplices

that do not belong to the face F in � (resp. in �). For the other n–simplices, that is,
the leaves that contain F , we denote by y1; : : : ;yk (resp. y0

1
; : : : ;y0

l
, l > k > 0) the

vertices that do not belong to the face F in � (resp. in �). Note that r may be 0, in
which case k � 2, and gph.�/ is a vertex.

We define an embedding from the core of �, together with the piece associated to F ,
to �e as follows: ' on the core of � is defined as '0 (and so, in particular, '.x0i/D xi

for i D 1; : : : ; r ), and

'.y0i/D

(
y
.xi

1
/

1
for i D 1; : : : ; l if r ¤ 0;

y
.yi

2
/

1
otherwise.

It is easy to check that the map ' induces a graph embedding, since yi and xj do not
commute with each other for i D 1; : : : ; k and j D 1; : : : ; r , but they commute with
the vertices in the face F .

Repeating the above argument for the pieces for which the number of leaves in �
is different than that of � , one obtains an embedding from � to �e . Note that, by
construction, vertices of a piece P (resp. face) in � that is identified to a vertex v
in gph.�/ are sent to conjugates of vertices of the piece P 0 (resp. face) in � that is
identified to the same vertex v in gph.�/. Furthermore, vertices of faces in � that
are identified with vertices of gph.�/ are sent to the same conjugate (in this case, the
conjugating element is trivial).
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Induction step Let v be a leaf of gph.�/ such that the weak covering f restricted
to gph.�/ n fvg is again a weak covering of graphs. Note that such a v exists because
gph.�/ and gph.�/ are trees and jV .�/j� jV .�/j. Assume by induction that there
is an embedding  from the n–tree �0 associated to gph.�/ n fvg into �e such that

� vertices of a piece P in �0 that is identified to a p–vertex v in gph.�0/ are
sent to conjugates of vertices of the piece P 0 in � that is identified to the vertex
f .v/ in gph.�/, and

� vertices of a face F in �0 that is identified to an f–vertex w in gph.�0/ are
sent to the same conjugate of vertices of the face F 0 in � that is identified to
the f–vertex f .w/ in gph.�/.

By Lemma 14, �0 embeds into �n�1 < �
e , where �n�1 is obtained from � by a

sequence of doublings.

Let w be the vertex of gph.�/ so that .v; w/ 2 E.gph.�//. Note that, from the
construction of gph.�/, it follows that v is a p–vertex and w is an f–vertex. By
induction, the embedding of �0 into �n�1 satisfies that the image under  of vertices
ai in � associated to the face identified with w is b

gn�1

ji
, where gn�1 2G.�/ and bji

is a vertex in the face identified with f .w/. Let hn 2G.�/ be so that the alphabet of
hn is exactly the alphabet that labels the face F 0 identified with f .w/. We can choose
hn so that the element gnD h

g�1
n�1

n has not appeared in the (finite) sequence of doubling
used to construct �n�1 . Indeed, there are at most n� 1 doublings, and the subgroup
associated to faces are free abelian groups of rank at least 2. Conjugating by gn , we
obtain a doubling of �n�1 along F 0gn�1 D F 0gn�1gn ; that is, �n D �n�1 tF 0gn �

gn

n�1
.

If the piece identified with v in gph.�/ is the same as the piece identified with f .v/
in � , then the embedding  of �0 into �e can be extended to an embedding of �.
Indeed, it suffices to send the vertices ai of the n–simplices of said piece that are not
in the face F to .bgn�1

i /gn , where bi are the corresponding vertices in the piece in �
that are not in the face identified with f .w/.

If the pieces have different numbers of leaves, we define the embedding  as in the
base of induction; that is,  sends the vertices ai of the n–simplices of said piece
that are not in the face F to .'.bi/

gn�1/gn , where bi are the corresponding vertices
in the piece in � that are not in the face identified with f .w/. By construction, the
embedding  satisfies the induction hypothesis.

Corollary 16 Let �;� 2 Tn . If gph.�/ and gph.�/ are bisimilar, then �< �e and
� <�e .
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Proof If gph.�/ and gph.�/ are bisimilar, it follows from the definition that they
weakly cover a graph gph.ƒ/. Since the graphs are assumed to be connected, it follows
that the weak covering is an epimorphism, and so, in particular, there are embeddings
of gph.ƒ/ into gph.�/ and into gph.�/. Hence, ƒ<� and ƒ<�, and so ƒe <�e

and ƒe <�e . It follows from Lemma 15 that �<ƒe < �e and � <ƒe <�e .

Lemma 17 Let �;� 2 Tn . Then if � < �e and � < �e , then gph.�/ and gph.�/
are bisimilar.

Proof Let us first show that one can assume � to be minimal, that is, for any proper
subgraph �0 of � such that �0 2 Tn , the graph gph.�/ is not bisimilar to gph.�0/.
Let �0 be a subgraph of � such that �0 2 Tn and the graphs gph.�0/ and gph.�/
are bisimilar. If �< �e and � <�e , then �0 < �e and � < .�0/e . Indeed, �0 <�
and, by assumption, � < �e ; hence, �0 < �e . On the other hand, by assumption,
� < �e , and since gph.�/ and gph.�0/ are bisimilar, by Lemma 15, we have that
�e < .�0/

e , and so � < .�0/e . Furthermore, if the statement holds for �0 and � ,
that is, if gph.�0/ and gph.�/ are bisimilar, then we conclude that the statement also
holds for � and � . Since gph.�/ is bisimilar to gph.�0/ and by transitivity of the
relation, gph.�/ and gph.�0/ are bisimilar.

We further assume that � is minimal. Observe that if � , � 0 and ƒ are n–trees, ƒ<�
and ƒ< � 0 , then � tƒ � 0 is also an n–tree. Furthermore,

gph
�
� tƒ �

0

�
D gph.�/tgph.ƒ/ gph.� 0/:

By Lemma 14, we have that if � is a finite induced subgraph of �e , then there exist
l > 0, a sequence of vertices v1; v2; : : : ; vl of �e , and a sequence of finite induced
subgraphs � = �0 � �1 � � � � � �l of �e , where �i is obtained by taking the double
of �i�1 along Star�i�1

.vi/ for each i D 1; : : : ; l , such that �� �l .

Note that the star of a vertex of an n–tree � is an n–tree. If we assume by induction
that �l�1 is an n–tree (and so is Star�l�1

.v/ for every vertex in �l�1 ), then it follows
from the above observation that the double �l over the n–tree Star�l�1

.vl�1/ is again
an n–tree. Furthermore, the double of a tree T over a subtree T 0 , ie T tT 0 T , is
bisimilar to T . Thus, by induction, gph.�l/ is bisimilar to gph.�/.

Since � < �l and � is an n–tree, it follows that gph.�/ is a subtree of gph.�l/.
Since gph.�l/ is bisimilar to gph.�/, it follows that gph.�/ is bisimilar to a subgraph
of gph.�/.

Since � <�e by assumption, it follows that either � <� (and so gph.�/ < gph.�/)
or the above argument applies, and so gph.�/ is bisimilar to a subgraph of gph.�/.
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Since gph.�/ is bisimilar to a subgraph of gph.�/, and gph.�/ is in turn bisimilar to
a subgraph of gph.�/, it follows that � is bisimilar to a subgraph of itself. Since �
is minimal (ie not bisimilar to any proper subgraph) by assumption, we conclude that
the subgraph is � and so �< � and � is bisimilar to �.

We summarise the results of this section in the following corollary.

Corollary 18 Let �;� 2 Tn . Then G.�/ and G.�/ are quasi-isometric if and only
if gph.�/ and gph.�/ are bisimilar, if and only if �< �e and � <�e .

4 Atomic graphs

In this section we study the class of atomic pc groups introduced by Bestvina, Kleiner
and Sageev in [7]. Recall that an atomic graph is a graph with no valence 1 vertices, no
cycles of length less than 5 and no separating closed stars of vertices. More precisely,
in this section, we focus on the algebraic rigidity of the class of atomic pc groups and
show that, if an atomic pc group G.�/ embeds into an atomic pc group G.�/ and
vice-versa, then the groups G.�/ and G.�/ are isomorphic.

In order to study the group embeddability into an atomic pc group G.�/, it suffices
to study the graph embeddability into the extension graph �e ; see [17]. We begin
by recalling the following technical lemma, which follows from the proof of [17,
Lemma 26(6)] and summarises the tree-like properties of the extension graph �e .

Lemma 19 (See [17, Lemma 26]) Let � be an atomic graph, and let �g and �h be
two subgraphs of the extension graph �e . Then:

(1) The intersection of �g and �h is either empty or is contained in the star
Star�e .v/ of some vertex v 2 �g \�h , and �g \�h D Star�g.v/D Star�h.v/.

(2) The star of any vertex disconnects the extension graph �e ; moreover, any two
vertices v and w that do not belong to the same conjugate of � in �e can be
separated by the star of some vertex of �e .

(3) If �g and �h are nontrivial and �g\�hDStar�g.v/DStar�h.v/, then �g\�h

disconnects the extension graph �e .

(4) If p D .v1; : : : ; vk ; w1; : : : ; wl ; vkC1; : : : ; vm/ is a simple path in �e so that
vi 2 � and wj 2 �

e n � for i D 1; : : : ;m and j D 1; : : : ; l , then there exists
u 2 � so that vk ; vkC1 2 Star�.u/.
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We next show that the embeddability of an atomic graph � into the corresponding
extension graph �e is rigid; that is, any embedding 'W �! �e is the identity up to an
automorphism.

Theorem 20 Let � be an atomic graph and 'W �! �e an embedding of � into the
extension graph �e (as a full subgraph). Then there exists g 2G.�/ and an automor-
phism ˛ of � so that '.˛.�//D�g , ie up to conjugacy and graph automorphism there
is only one way to embed � into �e .

Proof Let � be an atomic graph and let n be the rank of �1.�/ (�1.�/ is isomorphic
to the free group Fn of rank n). Recall that, since � is atomic, there are no vertices of
valence one. We mark n cycles in � as follows. If nD 1, then �1.�/ is isomorphic to
Z, and we mark the only cycle in � . Let T 0 be a maximal subtree of � and � nT 0 be
the set of edges fe1; : : : ; eng. By the length of a cycle c , denoted by jcj, we mean the
length of its core. As usual, if we fix a base point in T 0 , each edge ei defines a cycle
cT 0;ei

in � for i D 1; : : : ; n. Note that, by definition, the length of the cycle defined
by an edge ei is independent of the choice of the base point.

Re-enumerating if necessary, we shall assume that jcT 0;ei
j � jcT 0;ej

j for 1� i < j � n.
Every maximal subtree T 0 of � defines a tuple .jcT 0;e1

j; : : : ; jcT 0;en
j/ (independent

of the choice of the base point). The natural lexicographical order on the tuples
.jcT 0;e1

j; : : : ; jcT 0;en
j/, induces an order on the set of maximal subtrees of � , namely

T <T 0 if .jcT;e1
j; : : : ; jcT;en

j/ is less than .jcT 0;e1
j; : : : ; jcT 0;en

j/ in the lexicographical
order, that is, there is i 2 f1; : : : ; ng such that jcT;ek

j D jcT 0;ek
j for 1 � k < i and

jcT;ei
j < jcT 0;ei

j. Let T be a minimal (in the above order) maximal subtree of � ,
ie T � T 0 for all maximal subtrees T 0 of � . We mark the cores of the cycles
ce1;T ; : : : ; cen;T . Until the end of the proof of this lemma, unless stated otherwise, by
a cycle in � we mean the core of one of the cycles fce1;T ; : : : ; cen;T g. Note that since
the graph � has no vertices of valence one and since T is a maximal subtree of � ,
every edge of � belongs to the (core of at least one) cycle cei ;T .

Note that two different conjugates of � , say �g and �h , share at most the star of a
vertex ug;h . That is, ug;h 2V .�g/\V .�h/ and �g\�h�Star.ug;h/; see Lemma 19.

Claim 1 If the vertex ug;h belongs to '.�/, then either '.�/\ .�g n �h/ D ∅ or
'.�/\ .�h n�h/D∅.

Indeed, if '.�/ intersects �g and �h outside the star Star.ug;h/ then, by Lemma 19,
Star.ug;h/ separates the extension graph �e (and �g and �h belong to different
connected components), so Star.ug;h/ also separates the image '.�/' � . However,
we assume � to be atomic, and so, in particular, it does not contain vertices with closed
separating stars.
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Claim 2 Let c be a cycle in � , and assume that '.c/ < �e is not contained in one
conjugate of � , that is, '.c/\�g ¤ '.c/ for all g 2G.�/. Then '.c/ is contained in
the union of cycles c

gi

i < �gi for gi 2G.�/, and the length of each ci is strictly less
than the length of '.c/.

Indeed, since '.c/ is not contained in one conjugate of � , it follows that there exist
v;w 2 '.c/ and g; h 2G.�/ such that v 2 �g n�h , w 2 �h n�g and �g \�h ¤∅.
Since �g \�h ¤∅, it follows from Lemma 19 that there exists ug;h such that its star
Star.ug;h/ separates �g and �h and so separates '.c/. Furthermore, it follows from
Claim 1 that ug;h 62 '.c/. Let d1; : : : ; dk , for k � 2, be the connected components of
'.c/ nStar.ug;h/. For each di , there is a path pi in the star of ug;h of length at most
2 such that di [pi is a cycle ci in �e . Since � is atomic, it follows that there are
no squares or triangles in �e , and so we have that jci j D jdi [pi j � 5. Furthermore,
since jpi j � 2, it follows that jdi j � 3. We conclude that, since k � 2 and jdi j � 3,
jci j D jdi jC jpi j � jdi jC 2< jd1jC � � �C jdk j D j'.c/j D jcj.

Claim 3 If � 0 is a full subgraph of � , c is a cycle of minimal length in � , � 0 and
c intersect at least in an edge e and '.� 0/ is contained in a conjugate of � , say
'.� 0/ < �g , then '.c/ is also contained in �g , ie '.� 0[ c/ < �g .

Indeed, since c is of minimal length, it follows from Claim 2 that '.c/ is contained in
one conjugate of � . Assume towards contradiction that '.c/<�h and �h¤�g . Since
� 0 and c share at least the edge e , it follows that '.e/ 2 �g\�h . Since conjugates of
� share at most a star of a vertex, it follows that ug;h is a vertex of e and so belongs
to '.�/, contradicting Claim 1. Hence, '.� 0[ c/ < �g for some g 2G.�/.

Let c be a cycle in � . Define the neighbourhood N.c/ of the cycle c to be the
collection of all cycles in � that share at least one edge with c . Recall that by cycles in
� we mean marked cycles. We say that a connected subgraph S of � is a component if
it is a union of cycles and has no cut-points. The neighbourhood N.S/ of a component
S is the union of neighbourhoods of all the cycles which belong to S . Note that, by
definition, the neighbourhood of a component is itself a component.

Let S be a component. Given a cycle c in S , the complexity comp.c/ of c in S is

comp.c/D .r5; : : : ; rM / 2NM�4;

where rl is the number of cycles of length l that belong to N.c/\S for l D 5; : : : ;M

and M D jcT;en
j. Define the finite set of complexities of cycles in S as

K.S/D fcomp.c/ j c is a cycle in Sg
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and K to be the union of complexities K.S/ over all components S .

To a component S , we associate the tuple

.ml;compi
/S
5�l�M;compi2K

where ml;compi
is the number of cycles in S of length l and complexity compi (in

S ) ordered lexicographically from minimal to maximal length and from maximal to
minimal complexity. That is, the position .k; compi/ in the tuple is before the position
.k 0; comp0i/ if either k < k 0 or both k D k 0 and compi > comp0i . If no confusion
arises, we drop the subindices and denote the tuple simply by .ml;compi

/S .

The lexicographical order on the tuples .ml;compi
/S naturally defines an ordering

� on the components of � : S 0 � S if an only if .ml;compi
/S < .ml;compi

/S
0

in
the lexicographical order, that is, there exists .l; compj / such that mk;compi

.S/ D

mk;compi
.S 0/ for all .k; compi/ < .l; compj / and ml;compj

.S 0/ <ml;compj
.S/. In this

ordering, a component S is maximal if it contains the maximal number of cycles of
minimal length and maximal complexity.

Let c be a cycle of minimal length in � . Define the minimal component of c to be the
maximal connected subgraph C of � containing c so that C is a union of cycles of
minimal length in � without cut points. Let S1 be the set of minimal components of
cycles of minimal length in � which are maximal with respect to the order �.

We define the components Sq recursively as follows. Consider the set TqDfN.Sq�1/ j

Sq�1 2 Sq�1g of neighbourhoods of components of Sq�1 . Define Sq to be the set of
maximal components of Tq with respect to the order �. Note that, for q large enough,
we have that Sq D� for all Sq 2 Sq . We prove by induction on q that, for all Sq 2 Sq ,
'.Sq/ < �

g for some g 2G.�/.

Induction base Let S1 2 S1 . By definition of S1 and by recursively applying
Claim 3, it follows that '.S1/ is contained in �g for some g 2G.�/. Since ' is a
monomorphism of graphs, '.S1/ is a component of �g . Since S1 is maximal in the
sense of �, since '.S1/� �

g ' � and since ' is an embedding, it follows that the
complexity of the image comp.'.c// in '.S1/ is equal to the complexity comp.c/
in S1 and '.S1/ 2 S1.�

g/. In other words, ' induces a permutation on the set of
components in S1 that preserves the complexity of the cycles, ie �–maximal minimal
components in � are mapped by ' to �–maximal minimal components in �e , and
' preserves complexity of cycles from components in S1 . To simplify the notation,
without loss of generality, we shall assume that g D 1.

Induction step To prove the induction step, we proceed by induction on the complexity
of the cycles d that belong to Sq but not to Sq�1 , denoted d 2 Sq nSq�1 , to show
that the image of Sq under ' belongs to � .
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Let d be a cycle in Sq n Sq�1 of minimal length and maximal complexity. By the
induction hypothesis, we have that '.Sq�1/D S 0

q�1
2 Sq�1 where S 0

q�1
� � < �e .

Since ' is a graph monomorphism, '.d/\S 0
q�1
D '.d\Sq�1/, and so '.d/ belongs

to the neighbourhood of S 0
q�1

. Since d has minimal length in Sq , it follows from
Claim 3 that '.d/D d 0 belongs to � < �e , and so d 0 belongs N.S 0

q�1
/\� D S 0q .

Furthermore, since Sq is �–maximal in Tq , '.d/ � � , ' is an embedding and d

has maximal complexity in Sq n Sq�1 , it follows that d 0 has maximal complexity
in N.S 0

q�1
/\ � . We conclude that the bijection ' on Sq�1 extends to a bijection

between cycles of minimal length in Sq n Sq�1 and S 0q n S 0
q�1

, and that cycles of
maximal complexity in Sq n Sq�1 are mapped to cycles of maximal complexity in
S 0q n S 0

q�1
. Hence, all cycles of minimal length in the neighbourhood of '.Sq�1/

belong to the image of '.Sq/. This proves the base of induction.

Assume by induction that ' is a bijection between Sq�1 and S 0
q�1

, as well as between
the cycles in Sq n Sq�1 and S 0q n S 0

q�1
of length less than or equal to l � 1, and

between cycles of length l and complexity greater than K . Let c be a cycle in
Sq nSq�1 of length l and maximal complexity less than K . It follows from Claim 2
that either '.c/D c0 2 S 0q nS 0

q�1
and comp.c/D comp.c0/, or '.c/ is contained in

the image of shorter cycles and one of them belongs to the neighbourhood of S 0
q�1

.
However, by induction, all the cycles in S 0q nS 0

q�1
of length less than l , or of length l

and complexity greater than K , are in one-to-one correspondence with the cycles of
the same complexity in Sq nSq�1 . In particular, these cycles belong to the image of
'.Sq/. This implies that the '.c/ is not contained in the image of shorter cycles, and
so we deduce that '.c/D c0 2 S 0q nS 0

q�1
. Moreover, since Sq is �–maximal in Tq ,

'.c/2S 0q nS 0
q�1

, ' is an embedding, and c has maximal complexity (in Sq ) less than
K among all cycles in Sq nSq�1 , we conclude that comp.c0/D comp.c/. So, we get
a bijection between the cycles in Sq nSq�1 and S 0q nS 0

q�1
of length l and maximal

complexity less than K . This finishes the proof of the induction step.

The statement follows, since Sq D � for all large enough q .

Theorem 21 Let � and � be two atomic graphs. Then G.�/ and G.�/ embed into
each other if and only if �D � .

Proof Since atomic graphs are triangle-free, it follows from [17] that G.�/ <G.�/
(resp. G.�/ < G.�/) if and only if there is a graph embedding 'W � < �e (resp.
 W �< �e ).

Let V .�/D fa1; : : : ; alg and V .�/D fb1; : : : ; bng. Let

'W ai 7! b
wi .b1;:::;bn/

f .i/
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and
 W bj 7! a

vj .a1;:::;al /

g.j/
;

where wi 2G.�/ and vj 2G.�/ for i D 1; : : : ; l and j D 1; : : : ; n. We observe that
' and  induce homomorphisms x'W G.�/!G.�/ and x W G.�/!G.�/. By [17],
there exists N 2N depending only on � and � so that the homomorphisms '� and
 � induced by the maps

ai 7! .bN
f .i//

wi and bj 7! .aN
g.j//

vj
;

correspondingly, are group monomorphisms.

Furthermore, the maps x' and x naturally induce embeddings '0W �e ! �e and
 0W �e ! �e as follows. In order to define '0 and  0 , it suffices to determine the
images of the vertices of the extension graphs. By definition of the extension graph,
their vertices are labelled by a

ui

i and b
qj

j , correspondingly. Set

'0W a
ui

i 7! b
'�.ui /

f .i/
and  0W b

qj

j 7! a
 �.qj /

g.j/
:

Note that '0 and  0 are graph embeddings, since so are ' and  and since '� and
 � are group embeddings.

By Theorem 20, the embedding ' 0 of � into �e is unique up to conjugacy and
graph automorphism. It follows that if i1 ¤ i2 , then ag.f .i1// ¤ ag.f .i2// . Hence, we
have that f .i1/¤ f .i2/, and we conclude that jV .�/j � jV .�/j. Moreover, since '
is a graph embedding, it follows that if .ai1

; ai2
/ is an edge of �, then .bf .i1/; bf .i2//

is an edge of � . We conclude that � is a subgraph of � .

An analogous argument for  '0 shows that � is a subgraph of �. Therefore, � and
� are isomorphic graphs.

Often, the quasi-isometric rigidity of the group is closely related with the group being
co-Hopfian, a property which can be viewed as some type of algebraic rigidity. For
instance, one of the consequences of Mostow rigidity is that irreducible lattices in
semisimple Lie groups are co-Hopfian (with the exception of free groups). Recall that
a group is termed co-Hopfian if it satisfies the following equivalent conditions:

� It is not isomorphic to any proper subgroup.

� Every injective endomorphism of the group is an automorphism.

Besides this classical example, there are many other interesting co-Hopfian groups:
nonelementary freely indecomposable torsion-free word-hyperbolic groups; the fun-
damental groups of finite volume pinched negatively curved manifolds of dimension
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greater than 2; closed aspherical manifolds M with i.M /¤ 0, where i is a homotopy
invariant of closed manifolds which is multiplicative under finite covers (eg Euler
characteristic, signature, simplicial volume, or L2 –Betti number); finitely generated
torsion-free nilpotent groups with a specific automorphism group of their Lie algebra,
etc; see [6] and references there. Our next goal is to show that the quasi-isometric
rigidity of the class of atomic pc groups is also related to the co-Hopfian property of
the Q–completion of these groups.

Let us first show that injective endomorphisms of an atomic pc group are rigid; that is,
any embedding 'W G.�/!G.�/ is the identity up to an automorphism and taking
powers of the generators.

Corollary 22 Let � be an atomic graph and  W G.�/! G.�/ an injective endo-
morphism. Then there exist g 2G.�/, � 2 Aut.�/ and kv 2 Z n 0 such that, for all
v 2 V .�/, we have that

 .v/D g�1�.v/kv g; v 2 V .�/:

In other words,  is, up to conjugacy, graph automorphism and taking powers, the
identity endomorphism.

Proof Let v 2 V .�/. Since � is an atomic graph, it follows that the centraliser C.v/

of v is isomorphic to Z�F where F is a free group of rank greater than or equal to
2. On the other hand, it follows from the description of centralisers in pc groups that if
C.h/ is isomorphic to Z�F , where h 2G.�/ and F is a free group of rank greater
than or equal to 2, then h is conjugate of a power of a generator, that is, hD .vk/g for
k 2 Z and g 2 G.�/. Therefore, for all v 2 V .�/, we have that  .v/ D .wkv

v /
gv

where wv 2 V .�/, kv 2 Z and gv 2G.�/. Since  is an embedding, we have that
fw

gv
v j v 2 V .�/g, viewed as vertices of �e , spans an induced subgraph isomorphic to

� . Thus, the map v! w
gv
v induces a graph embedding ' from � to the extension

graph �e . By Theorem 20, up to conjugacy and graph automorphism, there is only
one graph embedding induced by the identity map. So, wgv

v D w
g
v for all v 2 V .�/,

and v! wv induces a graph automorphism � 2 Aut.�/. We conclude that

 .v/D g�1�.v/kv g; v 2 V .�/;

for some g 2G.�/, � 2 Aut.�/ and kv 2 Z n 0.

In the context of the curve complex of a surface, this type of rigidity for embeddings
from pc groups to modular groups was proven by Aramayona and Souto in [3]; see
also [2]. More precisely, the authors show that, for some rigid finite sets X of the
curve complex C.S/ of a surface S ¤ S1;2 , every injective homomorphism from the
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pc group G.X / into the modular group Mod˙.S/ is obtained, up to conjugation, by
taking powers of roots of Dehn twists in the vertices of X .

Corollary 22 shows that the only reason why atomic pc groups are not co-Hopfian is
that the injective endomorphisms induced by the maps v! vkv that send generators
to proper powers of themselves are not automorphisms. We now pass to a divisible
extension of the atomic pc group, its Q–completion, to assure that these injective
endomorphisms induce automorphisms there, and we show that the Q–completions of
atomic pc groups are co-Hopfian.

One of the classical theorems in the theory of abelian groups asserts that every abelian
group can be embedded into a divisible abelian group. An analogous result for torsion-
free locally nilpotent groups was proven by Mal’cev. Since then, many mathematicians,
such as Kontorivich, Hall and Baumslag, have studied the classes of groups for which
there always exists the nth root of an element as well as groups for which such an nth

root is unique. Further developing ideas of Lyndon in this context, Miasnikov and
Remeslennikov showed that free groups also embed into a divisible group, the free
Q–group, and they described its algebraic structure; see [21].

In the same spirit, we prove in [9] that every pc group G.�/ embeds into a divisible
group and that the category of divisible G.�/–groups has an initial object, the Q–
completion G.�/Q of G.�/. Furthermore, as in the case of free groups, the Q–
completion G.�/Q can be described algebraically as an iterated sequence of extensions
of centralisers of elements.

Since the construction of the Q–completion is technically involved, for readers not
familiar with this notion, we consider an intermediate group, denoted by G.�;Q/,
which is a subgroup of the Q–completion G.�/Q and the smallest extension of G.�/
which is co-Hopfian (when the graph � is atomic). Given a simplicial graph � , we
define the group G.�;Q/ as the graph product with underlying graph � and vertex
groups isomorphic to Q. Note that we view Q as a divisible abelian group; that is,
in exponential notation, we have that for all n 2 N and for all x 2 Q, there exists
y 2 Q such that yn D x . Moreover, we identify elements q from the vertex group
Q associated to v with vq . This way, the ring Q has a natural action on the vertex
groups: given p 2Q (viewed as a ring) and vq 2Q (an element of the vertex group),
we define the action of p on vq as vpq . The defined group is not divisible, as only
products of pairwise commuting elements of the vertex groups have nth roots for all
n 2N . It is not difficult to see that G.�/ < G.�;Q/ <G.�/Q .

Corollary 23 Let � be an atomic graph. Then G.�;Q/ (resp. the Q–completion
G.�/Q of G.�/) is co-Hopfian.
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Proof It suffices to notice that if the centraliser C.h/ is nonabelian if and only if it is
isomorphic to Q�F , where F is the free product Q.1/ � � � � �Q.n/ for n� 2, if and
only if h is a conjugate of an element of a vertex group, that is, hD g�1vqg , where
vq belongs to the vertex group v , q 2Q and g 2 G.�;Q/.

For the Q–completion G.�/Q , we have that the centraliser C.h/ is nonabelian if and
only if C.h/'Q�FQ , where FQ is the Q–completion of a (nonabelian) free group,
if and only if h is a conjugate of a Q–power of a generator, that is, hD g�1.vq/g ,
where v 2 V .�/, q 2Q, and g 2G.�/Q .

The rest of the proof is analogous to the proof of Corollary 22.

Note that, for arbitrary graphs, the groups G.�;Q/ and G.�/Q are far from being
co-Hopfian. It suffices to take � to be the edgeless graph with more than one vertex;
for a connected example, take � to be a path of length greater than 2.

We can reformulate these observations in yet another way as follows.

Corollary 24 Let � be an atomic graph. Then each injective endomorphism

 W G.�/!G.�/

extends to automorphisms  0 of G.�;Q/ and  00 of G.�/Q , ie one has the following
commutative diagram:

G.�/ //

 

��

G.�;Q/ //

 0

��

G.�/Q

 00

��

G.�/ // G.�;Q/ // G.�/Q

5 Concluding remarks

The main motivation that brought us to formulate Conjecture 2 comes, in fact, from
a stronger statement about asymptotic cones of pc groups. The study of asymptotic
geometry of pc groups and, in particular, the structure of their asymptotic cones, led us to
believe that asymptotic cones of pc groups can be classified up to bilipschitz equivalence
in terms of their extension graphs. More precisely, we raise the following question.

Question 25 Given simplicial graphs � and �, is it true that the asymptotic cones of
G.�/ and G.�/ are bilipschitz equivalent if and only if � <�e and �< �e ?
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Since asymptotic cones of quasi-isometric pc groups are bilipschitz equivalent, beside
being extremely interesting on its own right, Conjecture 2 can be viewed as a weaker
formulation, and an ideal test case, of Question 25.

As we mentioned in the introduction, Question 1 has a positive answer when we
restrict to commensurable pc groups. Recall that two groups G and G0 are (abstractly)
commensurable if they have isomorphic finite index subgroups, that is, if there exist
H <f i G and H 0 <f i G0 such that H 'H 0 . In particular, groups that are commensu-
rable are quasi-isometric. Although the following result is easy to prove, it is worth
mentioning and we record it as a lemma.

Lemma 26 If the pc groups G.�/ and G.�/ are commensurable, then G.�/<G.�/
and G.�/ <G.�/.

Proof Assume that G.�/ and G.�/ are commensurable. By definition, there exist
finite index subgroups H <f i G.�/ and K <f i G.�/ such that H 'K . Since the
subgroups H and K are of finite index, there exists N 2 N so that the subgroup
generated by the N th powers of the generators of G.�/ (resp. of G.�/) is a subgroup
of H (resp. of K ):

hxN
1 ; : : : ;x

N
n j xi 2 V .�/i<H;

hyN
1 ; : : : ;y

N
m j yi 2 V .�/i<K:

By [19], the subgroup hxN
1
; : : : ;xN

n j xi 2 V .�/i is isomorphic to G.�/, and also
hyN

1
; : : : ;yN

m j yi 2V .�/i is isomorphic to G.�/. Using these isomorphisms we have
that G.�/ ,!H 'K <G.�/ and vice-versa. Therefore, if G.�/ is commensurable
to G.�/, then G.�/ <G.�/ and G.�/ <G.�/.

Since Question 1 has a positive answer for commensurable pc groups, one may wonder
why we state Conjecture 2 using embeddability in the extension graph, rather than
just embeddability of groups as in Question 1. The motivation comes from the study
of pc groups G.�/ and G.�/ for which there is an embedding of G.�/ to G.�/
but no graph embeddings of � to the extension graph �e ; see [10]. The nature of
such embeddings indicates that the corresponding groups G.�/ and G.�/ are not
commensurable (in fact, they seem to be not quasi-isometric). This brought us to
believe that if Question 1 has a positive answer, then so does Conjecture 2. Therefore,
a good starting point to check if Conjecture 2 is indeed a consequence of Question 1
would be to answer the following question, which is also of an independent interest.

Question 27 If G.�/ and G.�/ are commensurable (and so G.�/ < G.�/ and
G.�/ <G.�/), does it follow that �< �e and � <�e ?
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In some cases (for instance, if the graph � (or �) is triangle-free, triangle-built, a
tree or the complement of a tree), the embeddability between pc groups is equivalent
to the graph embeddability in to the extension graph. That is, G.�/ < G.�/ and
G.�/ <G.�/ if and only if �< �e and � <�e ; see [17], [10] and [8]. Therefore,
in these cases, Question 27 has a positive answer. Moreover, if one further assumes �
to be a triangle and square-free graph without any degree-one or degree-zero vertex,
then if G.�/ and G.�/ are commensurable, we have that the corresponding extension
graphs are isomorphic, ie �e ' �e ; see [18, Proposition 7].

In the cases of quasi-isometric classification of pc groups that we analyse, we show not
only that Conjecture 2 holds, but also so does its converse. However, we would like to
stress that graph embeddability into the extension graph is not a sufficient condition to
assure quasi-isometry of the corresponding groups. One obvious obstruction is that the
graphs � and � both need to be either connected or disconnected since the number of
ends is a quasi-isometry invariant; see [22]. Similarly, since the cyclic JSJ is also a
quasi-isometry invariant, one can find connected examples for which the converse of
Conjecture 2 does not hold: consider the connected union of two cycles C5 of length 5

where the cycles only share a vertex p , and denote this graph by C5_p C5 . It is easy to
show that C5 _p C5 embeds into the extension graph of C5 and vice-versa. However,
the corresponding pc groups are not quasi-isometric since C5 _p C5 has a nontrivial
JSJ-decomposition over the infinite cyclic group generated by p , while C5 does not;
see [11].

Finally, we also mentioned that a positive answer to Conjecture 2 would imply that
coherence is a quasi-isometric invariant in the class of pc groups: if the pc group G.�/
is coherent and the pc group G.�/ is quasi-isometric to G.�/, then G.�/ is coherent.
This is a consequence of the following remark.

Remark 28 In [12], Droms gives a graph theoretical characterisation of the class of
coherent pc groups: a pc group G.�/ is coherent if and only if � is chordal, ie � does
not contain cycles of length greater than or equal to 4. If � is chordal, then, as shown
in [17], the extension graph �e and any induced subgraph of �e are also chordal.
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