Explicit Koszul-dualizing bimodules in bordered Heegaard Floer homology

BOHUA ZHAN

Supplement: Cancellation diagrams

In these diagrams, d-arrows are labeled d, ordinary H-arrows are labeled H, and special H-arrows are labeled $H_{s p}$.

Figure 1: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

Figure 2: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

Case 2.1
Figure 3: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

Figure 4: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

$\downarrow d$

$\downarrow d$

Case 2.5(a)
(20)

Figure 5: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

Figure 6: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

Figure 7: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$. Cases 2.7(a) and 2.8(a) are exactly the same as Cases 2.1 and 2.2.

Case 2.9(b)
Figure 8: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$. Case 2.9(a) is exactly the same as Case 2.3.

Case 3.3
Figure 10: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

Figure 11: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

Figure 12: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

Figure 13: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

Figure 14: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$. Cases 4.7(a) and 4.8(a) are similar to Cases 2.5(a) and 2.6(a).

Figure 15: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

Figure 16: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$. Case 4.10(a) is the same as Case 4.1.

Figure 17: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$. Case 4.11(a) is the same as Case 4.2.

Figure 18: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$. Case 4.12(a) is the same as Case 4.3.

Case 4.13(b)
Figure 19: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$. Case 4.13(a) is the same as Case 4.4. Case 4.13(c), with the second special case, cannot occur.

Case 6.1
Figure 20: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

Figure 21: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

Figure 22: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

Figure 23: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

Case 10.1
Figure 24: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

Figure 25: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

Case 11.3

Case 11.4

Figure 26: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

Case 11.5
Figure 27: Cancellations in $d \circ H+H \circ d=\mathbb{I}_{M}$.

