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Algebraic degrees of stretch factors in mapping class groups

HYUNSHIK SHIN

We explicitly construct pseudo-Anosov maps on the closed surface of genus g

with orientable foliations whose stretch factor � is a Salem number with algebraic
degree 2g . Using this result, we show that there is a pseudo-Anosov map whose
stretch factor has algebraic degree d , for each positive even integer d such that d �g .

57M50, 57M15

1 Introduction

Let Sg be a closed surface of genus g � 2. The mapping class group of Sg , denoted
Mod.Sg/, is the group of isotopy classes of orientation-preserving homeomorphisms
of Sg . An element f 2Mod.Sg/ is called a pseudo-Anosov mapping class if there
are transverse measured foliations .Fu; �u/ and .Fs; �s/, a number �.f / > 1, and a
representative homeomorphism � such that

�.Fu; �u/D .Fu; �.f /�u/ and �.Fs; �s/D .Fs; �.f /�1�s/:

In other words, � stretches along one foliation by �.f / and the other by �.f /�1 . The
number �.f / is called the stretch factor (or dilatation) of f .

A pseudo-Anosov mapping class is said to be orientable if its invariant foliations are
orientable. Let �H .f / be the spectral radius of the action of f on H1.SgIR/. Then

�H .f /� �.f /;

and the equality holds if and only if the invariant foliations for f are orientable (see
Lanneau and Thiffeault [5]). The number �H .f / is called the homological stretch
factor of f .

Question Which real numbers can be stretch factors?

This is a long-standing open question. Fried [4] conjectured that � > 1 is a stretch
factor if and only if all conjugate roots of � and 1=� are strictly greater than 1=� and
strictly less than � in magnitude.
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Thurston [12] showed that a stretch factor � is an algebraic integer whose algebraic
degree has an upper bound 6g� 6. More specifically, � is the largest root in absolute
value of a monic palindromic polynomial. Thurston gave a construction of mapping
classes of Mod.Sg/ generated by two multitwists, and he mentioned that his con-
struction can make a pseudo-Anosov mapping class whose stretch factor has algebraic
degree 6g� 6. However, he did not give specific examples.

What happens if we fix the genus g? To simplify the question, we may ask which
algebraic degrees are possible on Sg .

Question What degrees of stretch factors can occur on Sg ?

Very little is known about this question. Using Thurston’s construction, it is easy
to find quadratic integers as stretch factors. Neuwirth and Patterson [10] found non-
quadratic examples, which are algebraic integers of degree 4 and 6 on surfaces of
genus 4 and 6, respectively. Using interval exchange maps, Arnoux and Yoccoz [1]
gave the first generic construction of pseudo-Anosov maps whose stretch factor has
algebraic degree g on Sg for each g � 2.

Main theorems

In this paper, we give a generic construction of pseudo-Anosov mapping classes with
stretch factor of algebraic degree 2g .

Let ci and dj be simple closed curves on Sg as in Figure 1. For k � 3, let us define

fg;k D TAg; k
TBg

;

where TAg; k
D .Tc1

Tc2
� � �Tcg�1

/.Tcg
/k and TBg

D Td1
� � �Tdg

. Here, T˛ is the
Dehn twist about ˛ . We will show that fg;k is a pseudo-Anosov mapping class and
its stretch factor �.fg;k/ is a special algebraic integer, called a Salem number. A
Salem number is an algebraic integer ˛ > 1 whose Galois conjugates other than ˛ have
absolute value less than or equal to 1, and at least one of which lies on the unit circle.

Theorem A For each g � 2 and k � 3, fg;k is a pseudo-Anosov mapping class and
satisfies the following properties:

(1) �.fg;k/D �H .fg;k/,

(2) �.fg;k/ is a Salem number, and

(3) lim
g!1

�.fg;k/D k � 1.

In particular, we will prove that for k D 4, the algebraic degree of the stretch factor
is 2g . It is known that the degree of the stretch factor of a pseudo-Anosov mapping
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...

Sg

d1c1
d2c2

dgcg

Figure 1: Simple closed curves on Sg

class f 2 Mod.Sg/ with orientable foliations is bounded above by 2g (see [12]).
Therefore our examples give the maximum degrees of stretch factors for orientable
foliations in Mod.Sg/ for each g � 2.

Theorem B Let fg 2Mod.Sg/ be the mapping class given by

fg D fg;4 D TAg;4
TBg

:

Then the minimal polynomial of the stretch factor �.fg/ is

pg.x/D x2g
� 2

�2g�1X
jD1

xj

�
C 1:

This implies
deg�.fg/D 2g:

The hard part is to show the irreducibility of pg.x/, which is proved in Section 7.

In general, for each k � 3, the Salem stretch factor of fg;k is the root of the polynomial

pg;k.x/D x2g
� .k � 2/

�2g�1X
jD1

xj

�
C 1:

It can be shown that pg;k.x/ is irreducible for each k � 4, but since the main purpose
of this paper is degree realization, we will prove only for the k D 4 case that the
algebraic degree of the stretch factor is 2g .

Using a branched cover construction, we use Theorem B to deduce the following partial
answer to our question about algebraic degrees.

Corollary 5 For each positive integer h � g=2, there is a pseudo-Anosov mapping
class zfh 2Mod.Sg/ such that deg.�. zfh//D 2h and �. zfh/ is a Salem number.
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Obstructions

There are three known obstructions for the existence of algebraic degrees. For any
pseudo-Anosov f 2Mod.Sg/, we have:

(1) deg�.f /� 2,
(2) deg�.f /� 6g� 6, and
(3) if deg�.f / > 3g� 3, then deg�.f / is even.

The third obstruction is due to Long [8] and we have another proof in Section 5. It
turns out these are the only obstructions for g D 2. However it is not known whether
there are other obstructions of algebraic degrees for g � 3. By computer search, odd
degree stretch factors are rare compared to even degrees. We conjecture that every even
degree d � 6g� 6 can be realized as the algebraic degree of stretch factors.

Conjecture On Sg , there exists a pseudo-Anosov mapping class with a stretch factor
of algebraic degree d for each positive even integer d � 6g� 6.

In Section 6, we show that the conjecture is true for g D 2; 3; 4 and 5.

Outline In Section 2 we will give the basic definitions and results about Thurston’s
construction. We will prove Theorem A in Section 3 by the theory of Coxeter graphs.
In Section 4, we construct pseudo-Anosov mapping classes via branched covers. In
Section 5, we explain some properties of odd degree stretch factors. Section 6 contains
examples of even degree stretch factors for g D 2; 3; 4 and 5. Section 7 is where
we prove Theorem B, that is, we prove that the minimal polynomial of �.fg/ has
degree 2g .

Acknowledgements I am very grateful to my advisor Dan Margalit for his help and
numerous discussions. I would also like to thank Joan Birman, Benson Farb, Daniel
Groves, Chris Judge, and Balázs Strenner for helpful suggestions and comments. I wish
to thank an anonymous referee for very helpful comments. Lastly, I would like to thank
the School of Mathematics of Georgia Institute of Technology for their hospitality
during the time in which the major part of this paper was written.

This work was partially supported by the National Research Foundation of Korea (NRF)
grant funded by the Korean government (MSIP) (No. 2016R1C1B1006843).

2 Background

Thurston’s construction

We recall Thurston’s construction of mapping classes [12]. For more details on this
material, see [3] or [6].
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Suppose AD fa1; : : : ; ang is a set of pairwise disjoint simple closed curves, called a
multicurve. We denote the product of Dehn twists

Qn
iD1 Tai

by TA . This product is
called a multitwist.

Suppose AD fa1; : : : ; ang and B D fb1; : : : ; bmg are multicurves in a surface S so
that A [ B fills S , that is, the complement of A [ B is a disjoint union of disks
and once-punctured disks. Let N be the n �m matrix whose .j ; k/– entry is the
geometric intersection number i.aj ; bk/ of aj and bk . Let � D �.A [ B/ be the
largest eigenvalue in magnitude of the matrix NN t . If A[B is connected, then NN t

is primitive and by the Perron–Frobenius theorem � is a positive real number greater
than 1 (see [3, pages 392 - 395] for more detail).

Thurston constructed a singular Euclidean structure on S with respect to which
hTA;TBi acts by affine transformations given by the representation �W hTA;TBi !

PSL.2;R/,

�.TA/D

�
1 ��1=2

0 1

�
and �.TB/D

�
1 0

�1=2 1

�
:

In particular, an element f 2 hTA;TBi is pseudo-Anosov if and only if �.f / is a
hyperbolic element in PSL.2;R/ and then the stretch factor �.f / is equal to the bigger
eigenvalue of �.f /. For instance, for a mapping class f D TATB ,

�.TATB/D

�
1 ��1=2

0 1

��
1 0

�1=2 1

�
D

�
1� � ��1=2

�1=2 1

�
;

and the stretch factor �.TATB/ is the bigger root of the characteristic polynomial

�2
��.� � 2/C 1;

provided that � � 2> 2.

3 Proof by the theory of Coxeter graphs

We will prove Theorem A in this section.

For the set C of simple closed curves on the surface Sg , the configuration graph for C ,
denoted G.C /, is the graph with a vertex for each simple closed curve and an edge for
every point of intersection between simple closed curves.

Let fg;k be a mapping class on Sg defined by

fg;k D TAg; k
TBg

; k � 3;
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as in Theorem A. By regarding the multiple power of Tcg
as the product of Dehn

twists about parallel (isotopic) simple closed curves cg1
; : : : ; cgk

, let us define the
multicurves

Ag;k D fc1; : : : ; cg�1; cg1
; : : : ; cgk

g and Bg D fd1; : : : ; dgg:

Then the configuration graph G.Ag;k [Bg/ is a tree as in Figure 2.

...

Figure 2: Multicurves and configuration graph G.Ag;k [Bg/

3.1 Coxeter graphs and mapping class groups

We say that a finite graph G is a Coxeter graph if there are no self-loops or multiple
edges. For given multicurves A and B such that A[B fills the surface S , suppose
that the configuration graph G D G.A[B/ is a Coxeter graph. Leininger proved the
following theorem.

Theorem 1 [6, Theorem 8:1 and Theorem 8:4] Let G.A [ B/ be a noncritical
dominant Coxeter graph. Then TATB is a pseudo-Anosov mapping class with stretch
factor � such that

�2
C�.2��2/C 1D 0;

where � is the spectral radius of the graph G .

For the definitions and pictures of critical and dominant graphs, see [6, Section 1]

For the multicurves Ag;k and Bg in Theorem A, G.Ag;k [ Bg/ is a noncritical
dominant Coxeter graph for each k � 3. Therefore by Theorem 1 the mapping class
fg;k D TATB is pseudo-Anosov for each k � 3.

Algebraic & Geometric Topology, Volume 16 (2016)
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3.2 Orientability

Suppose that G is a connected Coxeter graph with the set † of vertices. There is an
associated quadratic form …G on R† and a faithful representation,

‚W C .G/!O.…G/;

where C .G/ is a Coxeter group with generating set †, O.…G/ is the orthogonal group
of the quadratic form …G , and each generator si 2 † is represented by a reflection.
Leininger also proved the following theorem.

Theorem 2 [6, Theorem 8:2] Let G.A[B/ be a Coxeter graph and suppose that A

and B can be oriented so that all intersections of A with B are positive. Then there
exists a homomorphism

�W R†!H1.S IR/

such that
.TATB/� ı �D�� ı‚.�A�B/;

where �A�B is an element in C .G/ corresponding to TATB . Moreover, we have
‚.�A�B/jker.�/ D�I and � preserves spectral radii.

...

Figure 3: Orientation of positive intersections

Theorem 2 implies that if A and B can be oriented as described, then the stretch
factor of a pseudo-Anosov mapping class is equal to the spectral radius of the action
on homology. For multicurves Ag;k and Bg in Theorem A, they can be oriented so
that all intersections are positive as in Figure 3. Therefore we have

�.fg;k/D �H .fg;k/;

and the invariant foliations for fg;k are orientable.

It is also possible to directly compute the action on the first homology. Consider the map-
ping class fg D TAg;4

TBg
as in Theorem B. Let us choose a basis fa1; b1; : : : ; ag; bgg

for H1.Sg/ as in Figure 4.
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...

Sg

a1b1a2b2a3agbg

Figure 4: A basis for H1.Sg/

By computing images of each basis element under fg , we can get the action on
H1.Sg/: 0BBBBB@

1 �1 0 0 � � � 0

1 0 �1 0 � � � 0
:::

:::
:::
:::
: : :

:::

1 0 0 0 � � � �1

4 0 0 0 � � � �3

1CCCCCA:
By induction, the characteristic polynomial hg.x/ of the homological action is

hg.x/D x2g
C 2

�2g�1X
jD1

.�1/j xj

�
C 1:

Since the largest root of hg.x/ in magnitude is a negative real number, we can deduce
that the stretch factor �.fg/ is the root of hg.�x/. Specifically, �.fg/ is the root of

pg.x/D x2g
� 2

�2g�1X
jD1

xj

�
C 1:

In a similar way, one can get the polynomial for �.fg;k/, which is

pg;k.x/D x2g
� .k � 2/

�2g�1X
jD1

xj

�
C 1:

3.3 Salem numbers and spectral properties of starlike trees

The configuration graph G.Ag;k [Bg/ for fg;k is a special type of graph, called a
starlike tree, and its relation to Salem numbers is studied in [9]. A starlike tree is a tree
with at most one vertex of degree > 2. Let T D T .n1; n2; : : : ; nk/ be the starlike tree
with k arms of n1; n2; : : : ; nk edges.
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Theorem 3 [9, Corollary 9] Let T D T .n1; n2; : : : ; nk/ be a starlike tree and let �
be the spectral radius of T . Suppose that � is not an integer and T is a noncritical
dominant graph. Then � > 1, defined by

p
�C 1=

p
�D �, is a Salem number.

The configuration graph G.Ag;k[Bg/ in Theorem A is a noncritical dominant starlike
tree

T .2g� 2; 1; 1; : : : ; 1„ ƒ‚ …
k times

/; k � 3

and we will denote it by T .2g � 2; k � 1). The fact that the spectral radius of
T .2g� 2; k � 1/ is not an integer follows from the following theorem.

Theorem 4 [11] If � is the spectral radius of the starlike tree T .n; k � 1/, thenp
kC 1< � <

k
p

k�1

for n� 1 and k � 3.

Thus for the starlike tree T .n; k � 1/, the spectral radius satisfies

kC 1< �2 <
k2

k�1
D kC 1C

1

k�1
:

Therefore � is not an integer and by Theorem 3, �.fg;k/ is a Salem number.

Moreover, the proof of Lepović and Gutman [7, Corollary 2.1] implies that

lim
g!1

�.fg;k/D k � 1:

For completeness, we reprove this here.

Recall that �.fg;k/ is the largest root of

pg;k.x/D x2g
� .k � 2/

�2g�1X
jD1

xj

�
C 1:

By multiplying pg;k.x/ by x � 1, the stretch factor �.fg;k/ is the largest root in
magnitude of

qg;k.x/D x2gC1
� .k � 1/x2g

C .k � 1/x� 1:

We have qg;k.k � 1/D .k � 1/2� 1> 0, and for any fixed positive integer m,

qg;k

�
k � 1�

1

10m

�
D

�
k � 1�

1

10m

�2g�
�

1

10m

�
C .k � 1/

�
k � 1�

1

10m

�
� 1:
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Hence qg;k.k�1�10�m/ < 0 for sufficiently large values of g and therefore pg;k.x/

has a root on the interval .k � 1� 10�m; k � 1/. This implies

lim
g!1

�.fg;k/D k � 1:

This completes the proof of Theorem A.

Remark A positive integer cannot be a stretch factor (which is an algebraic integer
of degree 1). However, Theorem A implies that for sufficiently large genus g there is a
stretch factor which is a Salem number arbitrarily close to a given integer k � 1 for
each k � 3.

4 Branched covers

Lifting a pseudo-Anosov mapping class via a covering map is one way to construct
another pseudo-Anosov mapping class. If there is a branched cover zS!S and a pseudo-
Anosov mapping class f 2Mod.S/, then there is some k 2N such that Mod. zS/ has
a pseudo-Anosov element zf which is a lift of f k and hence �. zf /D �.f /k .

Corollary 5 Let g � 2. For each positive integer h� g=2, there is a pseudo-Anosov
mapping class zfh 2Mod.Sg/ such that �. zfh/ is a Salem number and deg.�. zfh//D 2h.

Proof Let

hD

8<:
1
2
.g� 2m/ if g is even, mD 0; 1; : : : ; .g� 2/=2,

1
2
.g� 1� 2m/ if g is odd, mD 0; 1; : : : ; .g� 3/=2.

Then h is an integer such that 1� h� g=2.

Construct a branched cover Sg ! Sh as in Figure 5. For h � 2, Sh has a pseudo-
Anosov mapping class fh 2 Mod.Sh/ as in Theorem B whose stretch factor has
deg.�.fh//D 2h. For some k , fh

k lifts to Sg and the lift has stretch factor �.fh/
k .

We claim that deg.�.fh/
k/D 2h. To see this, let �i , 1� i � 2h, be the roots of the

minimal polynomial of �.fh/ and let us define a polynomial

p.x/D

2hY
iD1

.x��k
i /:

Then p.x/ is an integral polynomial because the elementary symmetric polynomialsX
�i ;

X
i<j

�i�j ;
X

i<j<l

�i�j�l ; : : : ; �1�2 � � ��2h

Algebraic & Geometric Topology, Volume 16 (2016)
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Sg Sg

Sh Sh

g even g odd

Figure 5: A branched cover

in �1; : : : ; �2h are all integers, and hence the coefficientsX
�k

i ;
X
i<j

�k
i �

k
j ;

X
i<j<l

�k
i �

k
j �

k
l ; : : : ; �k

1�
k
2 � � ��

k
2h

of p.x/ are integers as well. Therefore p.x/ is divided by the minimal polynomial of
�.fh/

k . Due to the proof of Theorem B in Section 7, �.fh/
k is also a Salem number

and p.x/ does not have a cyclotomic factor. This implies that p.x/ is irreducible and
deg.�.fh/

k/D 2h.

If hD 1, Sh is a torus and it admits an Anosov mapping class f whose stretch factor
�.f / has algebraic degree 2. Then similar arguments to those above tell us that there
is a lift of some power of f to Sg whose stretch factor has deg.�.f k//D 2.

Therefore there is a pseudo-Anosov map zfh 2Mod.Sg/ with deg.�. zfh// D 2h for
each h � g=2. In other words, every positive even degree d � g is realized as the
algebraic degree of a stretch factor on Sg .

5 Stretch factors of odd degrees

Long proved the following degree obstruction and McMullen communicated to us the
following proof. First we will give a definition of the reciprocal polynomial. Given a
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polynomial p.x/ of degree d , we define the reciprocal polynomial p�.x/ of p.x/ by
p�.x/D xdp.1=x/. It is a well-known property that p�.x/ is irreducible if and only
if p.x/ is irreducible.

Theorem 6 [8] Let f 2Mod.Sg/ be a pseudo-Anosov mapping class having stretch
factor �.f /. If deg.�.f // > 3g� 3, then deg.�.f // is even.

Proof Since f acts by a piecewise integral projective transformation on the 6g� 6

dimensional space PMF of projective measured foliations on Sg , and since �.f / is
an eigenvalue of this action, �.f / is an algebraic integer with deg.�.f // � 6g � 6.
Also, since f preserves the symplectic structure on PMF , it follows that �.f / is the
root of the palindromic polynomial p.x/ whose degree is bounded above by 6g� 6.

Let q.x/ be the minimal polynomial of �.f / and let q�.x/ be the reciprocal polynomial
of q.x/. Then either q.x/D q�.x/ or they have no common roots, because if there
is at least one common root � of q.x/ and q�.x/, then both q.x/ and q�.x/ are the
minimal polynomial of � and hence q.x/ D q�.x/. Suppose deg.q.x// > 3g � 3.
If q.x/ and q�.x/ have no common roots, then their product q.x/ q�.x/ is a factor
of p.x/ since q�.x/ is the minimal polynomial of 1=�.f /. This is a contradiction
because deg.p.x//� 6g� 6 but deg

�
q.x/ q�.x/

�
> 6g� 6. Therefore we must have

q.x/ D q�.x/ and this implies that q.x/ is an irreducible palindromic polynomial.
Hence deg.q.x// is even since roots of q.x/ come in pairs, �i and 1=�i .

It follows from the previous proof that if the minimal polynomial p.x/ of � has odd
degree, then p.x/ is not palindromic and in fact the minimal palindromic polynomial
containing � as a root is p.x/p�.x/.

We will now show that the stretch factors of degree 3 have an additional special property.
A Pisot number, also called a Pisot–Vijayaraghavan number or a PV number, is an
algebraic integer greater than 1 such that all its Galois conjugates are strictly less than
1 in absolute value.

Proposition 7 Let f 2Mod.Sg/. If deg.�.f //D 3, then �.f / is a Pisot number.

Proof Let �1 > 1 be the stretch factor of a pseudo-Anosov mapping class with
algebraic degree 3, and let p.x/ be the minimal polynomial of �1 . Let �1; �2 , and �3

be the roots of p.x/. Then the degree of p.x/p�.x/ is 6 and it has pairs of roots
.�1; 1=�1/, .�2; 1=�2/, .�3; 1=�3/, where �1 is the largest root in absolute value. We
claim that the absolute values of �2 and �3 are strictly less than 1.

Algebraic & Geometric Topology, Volume 16 (2016)
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Suppose one of them has absolute value greater than or equal to 1, say j�2j � 1. The
constant term �1�2�3 of p.x/ is ˙1 since it is the factor of a palindromic polynomial
with constant term 1. Hence j�1�2�3j D 1 and we have

1

j�3j
D j�1�2j � j�1j;

which is a contradiction to the fact that the stretch factor �1 is strictly greater than
all other roots of the palindromic polynomial p.x/p�.x/. This proves the claim and
hence the stretch factor of degree 3 is a Pisot number.

We now explain two constructions of mapping classes f 2Mod.Sg/ whose degree of
�.f / is odd.

(1) As we mentioned, Arnoux and Yoccoz [1] gave examples of a pseudo-Anosov
mapping class on Sg whose stretch factor has algebraic degree g . In particular,
for odd g , this gives examples of mapping classes with odd degree stretch factors.
They proved that these stretch factors are all Pisot numbers.

(2) For genus 2, there is a pseudo-Anosov mapping class f whose stretch factor has
algebraic degree 3 (see Section 6). This is the only possible odd degree on S2

by Long’s obstruction. It is also true that deg.�.f /k/D 3 for each k because
the stretch factor is a Pisot number (Proposition 7). There is a cover Sg! S2

for each g , so the lift of some power of f has a stretch factor with algebraic
degree 3 on Sg :

Proposition 8 For each genus g , the stretch factor with algebraic degree 3 can occur
on Sg .

Question Are there stretch factors with odd algebraic degree that are not Pisot num-
bers?

6 Examples of even degrees

Tables 1– 4 give explicit examples of pseudo-Anosov mapping classes whose stretch
factors realize various degrees. We will follow the notation of the software Xtrain by
Brinkmann. More specifically, ai ; bi ; ci and di are Dehn twists along standard curves
and Ai ;Bi ;Ci and Di are the inverse twists as in [2]. The only missing degree on S3

is degree 5. We do not know if there is a degree 5 example or there is another degree
obstruction.

Algebraic & Geometric Topology, Volume 16 (2016)



1580 Hyunshik Shin

deg f 2Mod.S2/ Minimal polynomial �.f /

2 a0a0d0C0D1C0 x2� 3xC 1 2:618

3 a0d0d0C0C0D1 x3� 3x2�x� 1 3:383

4 a0d0d0d1c0d0 x4�x3�x2�xC 1 1:722

6 a0a0d0A0C0D1 x6�x5� 4x3�xC 1 2:015

Table 1: Examples of genus 2

deg f 2Mod.S3/ Minimal polynomial �.f /

2 a1c0d0c0d2C1D1 x2� 4xC 1 3:732

3 a0c0d0C1D1D2 x3� 2x2Cx� 1 1:755

4 a1c0d0a1c1d1d2 x4�x3� 2x2�xC 1 1:722

6 a0c0d0d2C1D1 x6� 3x5C 3x4� 7x3C 3x2� 3xC 1 2:739

8 a0c0d0d1C1D2 x8�x7� 2x5� 2x3�xC 1 1:809

10 a1c0d0d1C1A2D2 x10�x9�2x8C2x7�2x5C2x3�2x2�xC1 1:697

12 a1c1c0d1d2A0D0 x12�x11�x9�x8Cx7Cx5�x4�x3�xC1 1:533

Table 2: Examples of genus 3

deg f 2Mod.S4/ deg f 2Mod.S4/

4 a0a0a1c0d0c1d1c2d2c3d3 12 a0B1d0c0d1c1d2c2d3c3

6 a0B2A3d0c0d1c1d2c2d3c3 14 a0d0B0d0c0d1c1d2c2d3c3

8 a0A1d0c0d1c1d2c2d3c3 16 A0d0c0d1c1d2c2d3c3

10 a0b1A2d0c0d1c1d2c2d3c3 18 a0B1A2d0c0d1c1d2c2d3c3

Table 3: Examples of genus 4

deg f 2Mod.S5/ deg f 2Mod.S5/

6 b3d0c0d1c1d2c2d3c3d4c4 16 a1B2d0c0d1c1d2c2d3c3d4c4

8 a0a1d0c0d1c1d2c2d3c3d4c4 18 a1B0d0c0d1c1d2c2d3c3d4c4

10 a1A4d0c0d1c1d2c2d3c3d4c4 20 a1A0d0c0d1c1d2c2d3c3d4c4

12 b2C2d0c0d1c1d2c2d3c3d4c4 22 a2A1d0c0d1c1d2c2d3c3d4c4

14 a1B1d0c0d1c1d2c2d3c3d4c4 24 c2A2d0c0d1c1d2c2d3c3d4c4

Table 4: Examples of genus 5
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7 Irreducibility of polynomials

In this section, we will prove Theorem B. It is enough to show that the polynomial

pn.x/D x2n
� 2

�2n�1X
jD1

xj

�
C 1

is irreducible for n�2. We will show that pn.x/ does not have a cyclotomic polynomial
factor. It then follows from Kronecker’s theorem that pn.x/ is irreducible.

Suppose pn.x/ has the mth cyclotomic polynomial factor for some m 2 N . Then
e2� i=m is a root of pn.x/. Multiplying pn.x/ by x� 1 yields

x2nC1
� 3x2n

C 3x� 1;

and hence we have

(1) e2.2nC1/�i=m
� 3e4n�i=m

C 3e2�i=m
� 1D 0:

Consider the real part and the complex part of (1). Then we have the system of equations8̂<̂
:

cos 2.2nC1/�

m
� 3 cos 4n�

m
C 3 cos 2�

m
� 1D 0;

sin 2.2nC1/�

m
� 3 sin 4n�

m
C 3 sin 2�

m
D 0:

Using the double-angle formula for the first cosine and sum-to-product formula for the
last two cosines, the first equation gives

2 sin
�
.2nC1/�

m

�h
3 sin .2n�1/�

m
� sin .2nC1/�

m

i
D 0:

Similarly, the second equation gives

2 cos
�
.2nC1/�

m

�h
sin .2nC1/�

m
� 3 sin .2n�1/�

m

i
D 0:

Since sine and cosine have no common zeros, we must have

sin .2nC1/�

m
� 3 sin .2n�1/�

m
D 0:

For m� 5, by direct calculation we can see that pn.e
2�i=m/¤ 0. So we may assume

that m� 6. Let ' D .2n� 1/�=m. Then we can write the above equation as

(2) sin
�
'C

2�

m

�
� 3 sin' D 0:
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Since sin.'C 2�=m/ is a real number between �1 and 1, we have

(3) �
1
3
� sin' � 1

3
:

Let  D sin�1
�

1
3

�
. Then note that  < �=6. Equation (3) gives the restriction on ' ,

which is
� � ' �  or � � � ' � � C :

Another observation from (2) is that both sin.' C 2�=m/ and sin' must have the
same sign.

We claim that ' has to be in either the first or third quadrant. Suppose ' is in the
second quadrant, that is, � � < ' < � . Note that m � 6 implies 2�=m � �=3.
Since ' is above the x–axis, 'C 2�=m also has to be above the x–axis due to (2)
and hence the only possibility is that 'C 2�=m is between ' and � . Then

0< sin
�
'C

2�

m

�
< sin' D) sin

�
'C

2�

m

�
< 3 sin';

which is a contradiction to (2). Similar arguments hold if ' is in the fourth quadrant.
Therefore the possible range for ' is

0< ' �  or � < ' � � C :

Suppose ' is in the first quadrant. Then so is 'C 2�=m because

0< 'C
2�

m
�  C

�

3
<
�

2
:

We can write

' D
.2n� 1/�

m
�

j�

m
.mod 2�/

for some positive integer j , ie, 0< j�=m< �=2.

If j � 2, using the subadditivity of sin x in the first quadrant,

sin.xCy/� sin xC sin y;

we have

sin
�
'C

2�

m

�
� 3 sin' �

�
sin'C sin 2�

m

�
� 3 sin'

D sin 2�

m
� 2 sin'

D sin 2�

m
� 2 sin j�

m
< 0;

which contradicts (2).
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If j D 1, using the triple-angle formula, we obtain

sin
�
'C

2�

m

�
� 3 sin' D sin 3�

m
� 3 sin �

m

D

�
3 sin �

m
� 4 sin3 �

m

�
� 3 sin �

m

D�4 sin3 �

m
< 0;

which contradicts (2) again. Therefore there is no possible ' in the first quadrant. The
same argument gives a contradiction if ' is in the third quadrant. Therefore we can
conclude that p.x/ does not have a cyclotomic factor.

We now show that pn.x/ is irreducible over Z. Suppose pn.x/ is reducible and write
pn.x/D g.x/h.x/ with nonconstant functions g.x/ and h.x/. There is only one root
of pn.x/ whose absolute value is strictly greater than 1. Therefore one of g.x/ or
h.x/ has all roots inside the unit disk. By Kronecker’s theorem, this polynomial has to
be a product of cyclotomic polynomials, which is a contradiction because pn.x/ does
not have a cyclotomic polynomial factor. Therefore pn.x/ is irreducible.
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