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Quasiflats in CAT.0/ 2–complexes

MLADEN BESTVINA

BRUCE KLEINER
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We show that if X is a piecewise Euclidean 2–complex with a cocompact isometry
group, then every 2–quasiflat in X is at finite Hausdorff distance from a subset Q

which is locally flat outside a compact set, and asymptotically conical.
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1 Introduction

In a number of rigidity theorems for quasi-isometries, an important step is to determine
the structure of individual quasiflats; this is then used to restrict the behavior of quasi-
isometries, often by exploiting the pattern of asymptotic incidence of the quasiflats.
See Kleiner and Leeb [10; 9], Kapovich and Leeb [7], Eskin and Farb [5], Eskin [4],
and Behrstock, Kleiner, Minsky and Mosher [1]. In this paper, we study 2–quasiflats
in CAT.0/ 2–complexes, and show that they have a very simple asymptotic structure.

Theorem 1.1 Let X be a proper, piecewise Euclidean, CAT.0/ 2–complex with a
cocompact isometry group. Then every 2–quasiflat Q � X lies at finite Hausdorff
distance from a subset Q0 �X which is locally flat, ie locally isometric to R2 , outside
a compact set.

This result, and more refined statements appearing in later sections, are applied to 2–
dimensional right-angled Artin groups by the present authors [2]. The main application
is to show that if X;X 0 are the standard CAT.0/ complexes of 2–dimensional right-
angled Artin groups, then any quasi-isometry X !X 0 between them must map flats
to within finite Hausdorff distance of flats.

The strategy for proving Theorem 1.1 is to replace the quasiflat Q with a canonical
object that has more rigid structure. To that end, we first associate an element ŒQ�
of the locally finite homology group H lf

2
.X /, and then show that the support set

supp.ŒQ�/ of ŒQ� — the set of points x 2 X such that the induced homomorphism
H lf

2
.X /! H2.X;X nfxg/ is nontrivial on ŒQ� — is at bounded Hausdorff distance
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from Q. The support set Q0 WD supp.ŒQ�/ behaves much like a minimizing locally
finite cycle, and this leads to asymptotically rigid behavior, in particular asymptotic
flatness.

Remark 1.2 (1) Support sets were used implicitly in Kleiner and Leeb [9; 11].

(2) The paper Kleiner and Lang [8], which may be viewed as a more sophisti-
cated version of the results presented here, exploits similar geometric ideas
in asymptotic cones, to study k –quasiflats in CAT.0/ spaces which have no
.kC 1/–quasiflats.

(3) Many of the results of this paper (though not Theorem 1.1 itself) can be adapted
to n–quasiflats in n–dimensional CAT.0/ complexes.

(4) One may use the results in this paper to give a new proof that quasi-isometries
between Euclidean buildings map flats to within uniform Hausdorff distance of
flats [9]. This then leads to a (partly) different proof of rigidity of quasi-isometries
between Euclidean buildings.

Acknowledgments This research was supported by NSF grants DMS-1308178 and
DMS-1405899.

2 Preliminaries

CAT.�/ spaces

We recall some standard facts, and fix notation. We refer the reader to [3; 9] for more
detail. Our notation and conventions are consistent with [9].

Let X be a CAT.0/ space.

If x and y are in X , then xy �X denotes the geodesic segment with endpoints x;y .
If p is in X , we let †p.x;y/ denote the angle between x and y at p . This induces a
pseudodistance on X nfpg. By collapsing subsets of zero diameter and completing,
we obtain the space of directions †pX , which is a CAT.1/ space. The quotient map
yields the logarithm logpW X nfpg !†pX ; it associates to x 2X nfpg the direction
at p of the geodesic segment px . The tangent cone at p , denoted CpX , is a CAT.0/
space isometric to the cone over †pX .

Given two constant (not necessarily unit) speed rays 1; 2W Œ0;1/!X , their distance
is defined to be

lim
t!1

d.1.t/; 2.t//

t
:
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This defines a pseudodistance on the set of constant speed rays in X ; the metric space
obtained by collapsing zero diameter subsets is the Tits cone of X , denoted CT X . The
Tits cone is isometric to the Euclidean cone over the Tits boundary @T X . For every
p 2X , there are natural logarithm maps

logpW X ! CpX; logpW CT X !X;

logpW X nfpg !†pX; logpW @T X !†pX:

Definition 2.1 If Z is a CAT.1/ space, Y � Z and z 2 Z , then the antipodal set
of z in Y is

Ant.z;Y / WD fy 2 Y j d.z;y/D �g:

Recall that by our definition, every CAT.1/ space has diameter at most � .

If X is a CAT.0/ complex and p;x 2 X are distinct points, Y � †xX , then the
antipodal set Ant.logx p;Y / is the set of directions in Y which are tangent to extensions
of the geodesic segment px beyond x .

Locally finite homology

Let Z be a topological space. We recall that the k th locally finite (singular) chain group
C lf

k
.Z/ is the collection of (possibly infinite) formal sums of singular k –simplices,

such that for every compact subset Y � Z , only finitely many nonzero terms are
contributed by singular simplices whose image intersects Y . The usual boundary
operator yields a well-defined chain complex C lf

� .Z/; its homology is the locally finite
homology of Z .

Suppose K is a simplicial complex. Then there is a simplicial version of the locally
finite chain complex — the locally finite simplicial chain complex — defined by taking
(possibly infinite) formal linear combinations of oriented simplices of K , where every
simplex � of K touches only finitely many simplices with nonzero coefficients. The
usual proof that simplicial homology is isomorphic to singular homology gives an
isomorphism between the locally finite simplicial homology of K , and the locally
finite homology of its geometric realization jKj, when K is locally finite [6, 3.H,
Exercise 6].

The support set of � 2 H lf
k
.Z/ is the subset supp.�/ � Z consisting of the points

z 2Z for which the inclusion homomorphism

H lf
k .Z/!Hk.Z;Z nfzg/

is nonzero on � . This is a closed subset when Z is Hausdorff.
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Now suppose K is an n–dimensional locally finite simplicial complex, with poly-
hedron Z . Then the simplicial chain groups C lf

k
.K/ vanish for k > n, and hence

H lf
n .Z/ is isomorphic to the group of locally finite simplicial n–cycles Zlf

n.K/. The
support set of a locally finite simplicial n–cycle � 2Zlf

n.Z/ is the union of the closed
n–simplices with nonzero coefficient in � , as follows from excision.

3 Locally finite homology and support sets

The key results in this section are the geodesic extension property of Lemma 3.1,
and the asymptotic conicality result for support sets with quadratic area growth, in
Theorem 3.11. We remark that most of the statements (and proofs) in this section
extend with minor modifications to supports of n–dimensional locally finite homology
classes in n–dimensional CAT.0/ complexes.

In this section X will be a proper, piecewise Euclidean, CAT.0/ 2–complex.

The geodesic extension property and metric monotonicity

The fundamental property of support sets is the extendability of geodesics.

Lemma 3.1 Suppose � 2H lf
2
.X /, and let S WD supp.�/�X be the support of � . If

p is in X and x is in S , the geodesic segment px may be prolonged to a ray in S :
there is a ray x� � S which fits together with px to form a ray p� .

Proof Let  W Œ0;L�!X be the unit speed parametrization of px , and let O W I!X

be a maximal extension of  such that O .I n Œ0;L�/ � S , where I is an interval
contained in Œ0;1/. Since S is a closed subset of the complete space X , either
I D Œ0;R� for some R<1, or I D Œ0;1/.

Suppose I D Œ0;R� for R <1, and let y WD O .R/. Consider the closed ball B WD

B.y; r/, where r is small enough that B is isometric to the r –ball in the tangent
cone CyX . Note that this implies that S \B is also a cone. Let � D Œ�BC ��, where
�B 2 C lf

2
.X / is carried by B (and is therefore a finite 2–chain), � 2 C lf

2
.X / is carried

by X nB.y; r/, and @�B D�@� is carried by @B \S . Consider the singular chain �
obtained by coning off @�B at p . Then @�D @�B , so the contractibility of X implies
that � is homologous to �B relative to @�. Thus �C� belongs to the homology class
of � . Therefore y lies in the carrier of �, for otherwise �C � would be carried by
X nfyg, contradicting the fact that y 2 supp.�/. Thus there is a point z 2 @B\S such
that the segment pz passes through y . Since B \S is a cone, we have yz � S . This
implies that O is not a maximal extension, which is a contradiction.

Algebraic & Geometric Topology, Volume 16 (2016)



Quasiflats in CAT.0/ 2–complexes 2667

Another way to argue the last part of the proof is to observe that �B projects under
logy W X nfyg ! †yX to a nontrivial 1–cycle � in †yX . Therefore, there must be
a direction v 2†yS making an angle � with logy p , since otherwise � would lie in
the open ball of radius � centered at logy p , which is contractible. Then O may be
extended in the direction v , which contradicts the maximality of O .

Remark 3.2 The geodesic extension property has a flavor similar to convexity, but
note that support sets need not be convex. To obtain an example, let Z be the union of
two disjoint circles Y1;Y2 of length 2� with a geodesic segment of length less than �
(so Z is a “pair of glasses”), and let X be the Euclidean cone over Z . Then the cone
over Y1[Y2 is a support set, but is not convex.

Corollary 3.3 (monotonicity and lower density bound) Suppose � 2 H lf
2
.X / and

S WD supp.�/. We have the following properties:

(1) Metric monotonicity For all 0 < r � R, p 2 X , if ˆW X ! X is the map
which contracts points toward p by the factor r=R, then

(3.4) B.p; r/\S �ˆ.B.p;R/\S/:

(2) Monotonicity of density For all 0� r �R,

(3.5)
Area.B.p; r/\S/

r2
�

Area.B.p;R/\S/

R2
:

(3) Lower density bound For all p 2 S , r > 0,

(3.6) Area.B.p; r/\S/� �r2;

with equality only if B.p; r/\S is isometric to an r –ball in R2 .

Here Area.Y / refers to 2–dimensional Hausdorff measure, which is the same as
Lebesgue measure (computed by summing over the intersections with 2–dimensional
faces).

Remark 3.7 Since the map ˆ in Corollary 3.3(1) has Lipschitz constant r=R, the in-
clusion (3.4) can be viewed as a much stronger version of the usual monotonicity formula
for minimal submanifolds in nonpositively curved spaces, which corresponds to (3.5).

Proof of Corollary 3.3 Equation (3.4) follows from Lemma 3.1.

Assertion (2) follows from assertion (1) and the fact that ˆ has Lipschitz constant r=R.

If p 2 S , then � determines a nonzero class †p� 2H1.†pX /, by the composition

H2.X;X nfpg/
@
�!H1.X nfpg/

log†pX

�! H1.†pX /:
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Since †pX is a CAT.1/ graph, supp.†p�/ contains a cycle of length at least 2� . If
r > 0 is small, then B.p; r/\S is isometric to a cone of radius r over supp.†p�/, and
therefore has area at least �r2 . Now (3.5) implies (3.6). Equality in (3.6) implies that
supp.†p�/ is a circle of length 2� , B.p; r0/\S is isometric to an r0 –ball in R2 for
small r0> 0, and that the contraction map ˆ is similarity. This implies assertion (3).

The corollary implies that the ratio

Area.B.p; r/\S/

r2

has a (possibly infinite) limit A as r!1 , which is clearly independent of the basepoint.
When it is finite we say that � has quadratic growth. In this case, Corollary 3.3 implies
that, for all p 2X and r > 0,

(3.8)
Area.B.p; r/\S/

r2
�A:

Asymptotic conicality

We will use Lemma 3.1 and Corollary 3.3 to see that quadratic growth support sets are
asymptotically conical, provided the CAT.0/ 2–complex X satisfies a mild additional
condition. To see why an additional assumption is needed, consider a piecewise
Euclidean CAT.0/ 2–complex X homeomorphic to R2 , whose singular set consists
of a sequence of cone points fpig tending to infinity, where †pi

X is a circle of length
2� C �i , and

P
i �i <1. Then X is the support set of the locally finite fundamental

class ŒX � of the 2–manifold X , but is not locally flat outside any compact subset of X .

To exclude this kind of behavior, one would like to know, for instance, that the cone
angle 2� is isolated among the set of cone angles of points in X . When dealing
with general CAT.0/ 2–complexes, one needs to know that if p 2 X and v 2†pX

is a direction whose antipodal set Ant.v; supp.�// in a 1–cycle � 2 Z1.†pX / has
small diameter, then v is close to a suspension point of � . This condition will hold
automatically if X admits a cocompact group of isometries. The precise condition we
need is the following.

Definition 3.9 A family F of CAT.1/ graphs has isolated suspensions if for every
˛ > 0 there is a ˇ > 0 such that if � is in F , � 2Z1.�/ is a 1–cycle, v is in � , and

diam.Ant.v; supp.�// < ˇ;

then supp.�/ is a metric suspension and v lies at distance less than ˛ from a pole
(ie suspension point) of supp.�//. A CAT.0/ 2–complex X has isolated suspensions
if the collection of spaces of directions f†xX gx2X has isolated suspensions.
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Remark 3.10 It follows from a compactness argument that any finite collection of
CAT.1/ graphs has the isolated suspensions property. In particular, any CAT.0/ 2–
complex with a cocompact isometry group has the isolated suspension property.

For the remainder of this section X will be a piecewise Euclidean, proper CAT.0/
2–complex with isolated suspensions.

Theorem 3.11 Suppose � 2 H lf
2
.X / has quadratic area growth, and S WD supp.�/.

Then for all p 2X there is an r0 <1 such that:

(1) If x is in S nB.p; r0/, then S is locally isometric to a product of the form
R�W near x , where W is an i –pod (ie a cone over a finite set). In particular,
S is locally convex near x .

(2) The map S nB.p; r0/! Œr0;1/ given by the distance function from p is a
fibration with fiber homeomorphic to a finite graph with all vertices of valence at
least 2.

(3) S is asymptotically conical in the following sense. For every p 2X and every
�>0, there is an r <1 such that if x2SnB.p; r/, then the angle (at x ) between
the geodesic segment xp and the R–factor of some local product splitting of S

is less than � .

(4) If the area growth of S is Euclidean, ie

Area.B.p; r/\S/

�r2
! 1 as r !1;

then S is a 2–flat.

Before entering into the proof of this theorem, we point out that the proof is driven
by the following observation. The locally finite cycle � is an area minimizing object
in the strongest possible sense: any compact piece � solves the Plateau problem with
boundary condition @� (ie filling @� with a least area chain); in fact, because of the
dimension assumption, there is only one way to fill @� with a chain. Then we adapt
the standard monotonicity formula from minimal surface theory to see that the support
set is asymptotically conical. Roughly speaking the idea is that the ratio

Area.B.p; r/\ supp.�//
r2

is nondecreasing and bounded above, and hence has limit as r !1. For large r ,
one concludes that the monotonicity inequality is nearly an equality, which leads to
Theorem 3.11(2).

Algebraic & Geometric Topology, Volume 16 (2016)
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Proof of Theorem 3.11 We begin with a packing estimate.

Lemma 3.12 For all � > 0 there is an N such that for all r � 0, the intersection
B.p; r/\S does not contain an �r –separated subset of cardinality greater than N .

Proof Take � < 1, and suppose the points

x1; : : : ;xk 2 B.p; r/\S

are �r –separated. Then the collection˚
B
�
xi ;

1
2
�r
�
\S

	
1�i�k

is disjoint, is contained in B.p; 2r/\S , and by Corollary 3.3(2) it has area at least
k�.1

2
�r/2 . Thus (3.8) implies the lemma.

Lemma 3.13 For all ˇ > 0 there is an r <1 such that if x 2 S nB.p; r/, then

(3.14) diam.Ant.logx p; †xS// < ˇ:

Proof The idea is that quadratic area growth bounds the complexity of the support
set from above, which implies that on sufficiently large scales, it looks very much like
a metric cone. On the other hand, failure of (3.14) implies that there is a pair of rays
leaving p which coincide until x , and then branch apart with an angle at least ˇ ;
when x is far enough from p , this will contradict the approximately conical structure
of S at large scales.

Pick ı; � > 0, to be determined later.

By Lemma 3.12 there is finite upper bound on the cardinality of a ır –separated subset
sitting in B.p; r/ \ S , where r ranges over Œ1;1/. Let N be the maximal such
cardinality, which will be attained by some ır0 –separated subset fx1; : : : ;xN g �

B.p; r0/\ S , for some r0 . Applying Lemma 3.1, let 1; : : : ; N W Œ0;1/! X be
constant speed geodesics emanating from p , such that i.r0/D xi , and i.t/ 2 S for
all t 2 Œr0;1/, 1� i �N . The functions

(3.15) t 7!
d.i.t/; j .t//

t

are nondecreasing, and hence for all r 2 Œr0;1/ the collection

1.r/; : : : ; N .r/

is ır –separated, and by maximality, it is therefore a ır –net in B.p; r/\S as well.
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Using the monotonicity (3.15) again, we may find r1 2 Œr0;1/ such that for all
1� i; j �N , and every r 2 Œr1;1/,

(3.16)
d.i.r/; j .r//

r
C� > lim

t!1

d.i.t/; j .t//

t
:

Now suppose x 2SnB.p; r1/, and v1; v2 2Ant.logx p; †xS/ satisfy †x.v1; v2/�ˇ .
The idea of the rest of the proof is to invoke Lemma 3.1 to produce two rays emanating
from p which agree until they reach x , but then diverge at angle at least ˇ ; since
both rays will be well-approximated by one of the i , their separation behavior will
contradict (3.16).

Let r2 WD d.p;x/. By Lemma 3.1 we may prolong the segment px into two rays
p�1;p�2 , such that log†x

�i D vi , and p�i nB.p; r2/ � S . Let �1; �2 be the unit
speed parametrizations of p�1 and p�2 respectively. Applying triangle comparison,
we may choose an r3 � r2 such that

(3.17) d.�1.r3/; �2.r3// > r3 cos 1
2
ˇ:

Pick i; j such that

d.i.r3/; �1.r3// < ır3 and d.j .r3/; �2.r3// < ır3:

By triangle comparison, we have

d.i.r3/; j .r3//� d.�1.r3/; �2.r3//� 2ır3 > r3 cos 1
2
ˇ� 2ır3

while

d.i.r2/; j .r2//� d.i.r2/; �1.r2//C d.�1.r2/; �2.r2//C d.�2.r2/; j .r2//

� 2ır2;

since d.�1.r2/; �2.r2//D 0. On the other hand, by (3.16)

� >
d.i.r3/; j .r3//

r3

�
d.i.r2/; j .r2//

r2

� cos 1
2
ˇ� 4ı:

When �C 4ı < cos 1
2
ˇ this gives a contradiction.

The lemma together with the definition of isolated suspensions implies (1) and (3) of
Theorem 3.11. Part (4) follows from Corollary 3.3.

To prove Theorem 3.11(2), we apply the definition of isolated suspensions with ˛0D
�
4

and let ˇ0 > 0 be the corresponding constant; then we apply Lemma 3.13 with ˇD ˇ0 ,
and let r0 be the resulting radius. For each x 2X nB.p; r0/, the space of directions
†xS is a metric suspension, and the direction logx p 2†xX makes an angle at most
�
4

from a pole of †xS .
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We call a point x 2SnB.p; r0/ singular if its tangent cone is not isometric to R2 ; thus
singular points in S nB.p; r0/ have tangent cones of the form R�W , where W is an
i –pod with i > 2, and the set of regular points forms an open subset which carries the
structure of a flat Riemannian manifold. Using a partition of unity, we may construct a
smooth vector field � on the regular part of S nB.p; r0/ such that:
� �.x/ makes an angle at least 3�

4
with logx p at every regular point x .

� For each singular point x 2 S nB.p; r0/ whose space of directions is the metric
suspension of an i –pod, if we decompose a small neighborhood B.x; �/\S

into a union
C1[ � � � [Ci ;

where the Cj are Euclidean half-disks of radius � which intersect along a
segment � of length 2� , then the restriction of � to Cj extends to a smooth
vector field �j on the manifold with boundary Cj , and �j .y/ is a unit vector
tangent to �D @Cj for every y 2 �.

Now a standard Morse theory argument using a reparametrization of the flow of �
implies that

dpW S nB.p; r0/! Œr0;1/

is a fibration, and that the fiber is locally homeomorphic to an i –pod near each point
x 2 S nB.p; r0/ whose space of directions is the metric suspension of an i –pod. Here
i � 2.

Asymptotic branch points

The next result will be used when we consider support sets associated with quasiflats.

Lemma 3.18 Let � 2H lf
2
.X / be a quadratic growth class with support S , pick p 2X ,

and let
dpW S nB.p; r0/! Œr0;1/

be the fibration as in Theorem 3.11(2). If the fiber has a branch point, then for all
R<1, the support set S contains an isometrically embedded copy of an R–ball

(3.19) BR WD B.z;R/�R�W;

where W is an infinite tripod, and z 2R�W lies on the singular line.

Proof Let � W Y ! S nB.p; r0/ be the universal covering map. Since S nB.p; r0/ is
homeomorphic to G � Œ0;1/, the covering map � is equivalent to the product of the
universal covering zG! G with the identity map Œ0;1/! Œ0;1/. Since G contains a
branch point, we may find a proper embedding �W V ! zG of a tripod V into zG .

Algebraic & Geometric Topology, Volume 16 (2016)
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Consider the map  given by the composition

V � Œ0;1/! zG � Œ0;1/! G � Œ0;1/' S nB.p; r0/:

We may put a locally CAT.0/ metric on V � .0;1/ by pulling back the metric from
S nB.p; r0/. For each of the three rays i � V whose union is V , the metric on
i � .0;1/ is locally isometric to a flat metric with geodesic boundary. It follows from
a standard argument that if y 2 V � .0;1/ lies on the singular locus and  .y/ lies
outside B.p; r0CR/, then the R–ball in V � .0;1/ is isometric to BR as in (3.19).
Since  is a locally isometric map of a CAT.0/ space into a CAT.0/ space, it is an
isometric embedding.

4 Quasiflats in 2–complexes

In this section, X is a piecewise flat proper CAT.0/ 2–complex with isolated suspen-
sions.

Theorem 4.1 Let Q�X be an .L;A/–quasiflat. Then there is a nontrivial quadratic
growth, locally finite homology class � 2 H lf

2
.X / whose support set S � X is at

Hausdorff distance at most D DD.L;A/ from Q, with the following properties:
(1) For every p 2 X , there is an r0 2 Œ0;1/ such that S nB.p; r0/ is locally

isometric to R2 .

(2) S is asymptotically conical, in the following sense. For every p 2 X and
every � > 0, there is an r1 2 Œr0;1/ such that if x 2 S nB.p; r1/, then the
angle at x between the geodesic segment xp and S is less than � , and the map
S nB.p; r1/! Œr0;1/ given by the distance function from p is a fibration with
circle fiber.

(3) If the area growth of S is Euclidean, ie

Area.B.p; r/\S/

�r2
! 1 as r !1;

then S is a 2–flat.

Proof Using a standard argument, we may assume without loss of generality (and at
the cost of some deterioration in quasi-isometry constants which will be suppressed),
that Q is the image of a C –Lipschitz .L;A/–quasi-isometric embedding f W R2!X ,
where C D C.L;A/. The mapping f is proper, and hence induces a homomorphism
f�W H

lf
2
.R2/! H lf

2
.X / of locally finite homology groups. We define S to be the

support set of the image of the fundamental class of R2 under f� :

(4.2) S WD supp.f�.ŒR2�//� Im.f /DQ:

Algebraic & Geometric Topology, Volume 16 (2016)
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Lemma 4.3 There are constants D DD.L;A/ and aD a.L;A/ such that:

(1) The Hausdorff distance between S and Q is at most D .

(2) For every p 2X , the area of B.p; r/\S is at most a.1C r/2 .

Proof Using the uniform contractibility of R2 , one may construct a proper map
gW Q!R2 such that d.g ıf; idR2/ is bounded by a function of .L;A/. In particular,
the composition of proper maps

R2 f
�!Q

g
�!R2

is properly homotopic to idR2 . Therefore .g ıf /�.ŒR2�/D ŒR2�, so

supp..g ıf /�.ŒR2�//DR2:

On the other hand
supp..g ıf /�.ŒR2�//� g.S/;

which implies that QD Im.f / is contained in a controlled neighborhood of S .

The last assertion follows from the fact that S �Q and Q has quadratic area growth,
being the image of a Lipschitz quasi-isometric embedding.

Therefore Theorem 3.11 applies to S , and by part (2), we get a fibration

dpW S nB.p; r0/! Œr0;1/

whose fiber is homeomorphic to a finite graph G all of whose vertices have valence at
least 2. If G had a branch point, we could apply Lemma 3.18, contradicting the fact
that S is a quasiflat. Thus S is locally isometric to R2 outside B.p; r0/.

5 Square complexes

In this section, X is a locally finite CAT.0/ square complex with isolated suspensions.

Remark 5.1 It is not difficult to show that if F is the collection of CAT.1/ graphs �
all of whose edges have length �

2
, then F has isolated suspensions. In particular, any

CAT.0/ square complex has isolated suspensions. However, we will not need this fact
for our primary applications, so we omit the proof.

Theorem 5.2 Let � 2 H lf
2
.X / be a quadratic growth locally finite homology class

whose support set S is a quasiflat. Then there is a finite collection fH1; : : : ;Hkg of
half-plane subcomplexes contained in S , and a finite subcomplex W � S such that

S DW [
�S

i Hi

�
:
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Proof Pick p 2 X and � 2
�
0; �

2

�
. Let r1 be as in Theorem 4.1, and set Y1 WD

S nB.p; r1/: Then Y1 is a complete flat Riemann surface with concave boundary
@Y1 D S.p; r0/\Y1 . Now pick ˛ 2

�
0; �

8

�
, r2 2 Œr1;1/, and let Y2 WD S nB.p; r2/.

Lemma 5.3 Provided r2 is sufficiently large (depending on ˛), for every x 2 Y2 , and
every semicircle � �†xS such that

d.�; logx p/ > ˛;

there is a subset Z � S isometric to a Euclidean half-plane, such that †xZ D � .

Proof Let y be in Y2 and v 2†yS be a tangent vector such that †y.v; logy p/ > ˛ .
Provided r2 sin˛ > r1 , there will be a unique geodesic ray v � S starting at y with
direction v ; this follows from a continuity argument, since triangle comparison implies
that any geodesic segment with initial direction v remains outside B.p; r1/.

If � �†xS is a semicircle (ie a geodesic segment of length � ) and †x.�; logx p/ is
less than ˛ , then the union of the rays v , for v 2 � , will form a subset of S isometric
to a Euclidean half-plane.

Continuing the proof of Theorem 5.2, we now assume that r2 is large enough that
Lemma 5.3 applies.

Our next step is to construct a finite collection of half-planes in S . Consider the
boundary @Y2 . This is the frontier of the set K WD S \ B.p; r2/ in S . Since K

is locally convex near @K D @Y2 , it follows that for each x 2 @Y2 , there is a well-
defined space of directions †xK , which consists of the directions v 2 †xS such
that †x.v; logx p/� �

2
. Also, there is a normal space �xK �†xS consisting of the

directions v 2 †xS making an angle at least �
2

with †xK . When � is small, the
angle †x.logx p; †xS/ is small, and hence ��†x.v; logx p/ will be small for every
v 2 �xK . In particular, when � is small, for every v 2 �vK there will be a semicircle
�v �†xS such that:

(1) �v makes an angle at least �
8

with logx p .
(2) If Zv�S is the subset obtained by applying Lemma 5.3 to �v , then the boundary

of Zv is parallel to one of the sides of a square P � S which contains x .
(3) The angle between @Zv and v is at least �

8
.

We let Hv�Zv be the largest half-plane subcomplex of Zv . It follows from (2) that Hv

may be obtained from Zv by removing a strip of thickness less than 1 around @Zv .

Now let H be the collection of all half-planes obtained this way, where x ranges over
@Y2 , and v 2 �xK . Observe that this is a finite collection, since each H 2 H has
a boundary square lying in B.p; 1C r2/, and two half-planes H;H 0 2 H sharing a
boundary square must be the same.
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We now claim that Sn
S

H2H H is contained in B
�
p; r2C sec �

8

�
. To see this note that

if y 2 Y2 , then there is a shortest path in S from y to K . Since S is locally convex,
this path will be a geodesic segment yx in X , where x 2 @Y2 . Let v WD logx y 2†xS .
Then yx is contained in Zv , and in view of condition (3) above, all but an initial
segment of length at most sec �

8
will be contained in Hv �Zv . The claim follows.
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