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The extended Goldman bracket determines
intersection numbers for surfaces and orbifolds

MOIRA CHAS

SIDDHARTHA GADGIL

In the mid eighties Goldman proved that an embedded closed curve could be isotoped
to not intersect a given closed geodesic if and only if their Lie bracket (as defined in
that work) vanished. Goldman asked for a topological proof and about extensions
of the conclusion to curves with self-intersection. Turaev, in the late eighties, asked
about characterizing simple closed curves algebraically, in terms of the same Lie
structure. We show how the Goldman bracket answers these questions for all finite
type surfaces. In fact we count self-intersection numbers and mutual intersection
numbers for all finite type orientable orbifolds in terms of a new Lie bracket operation,
extending Goldman’s. The arguments are purely topological, or based on elementary
ideas from hyperbolic geometry.

These results are intended to be used to recognize hyperbolic and Seifert vertices and
the gluing graph in the geometrization of three-manifolds. The recognition is based
on the structure of the string topology bracket of three-manifolds.

57M50

Dedicated with deep and grateful admiration to Bill Thurston (1946–2012)

1 Introduction

Goldman [10] discovered in the eighties an intriguing Lie algebra structure on the free
abelian group generated by the set of free homotopy classes of closed directed curves
on an oriented surface F . The definition of the Goldman bracket combines intersection
structure with the usual based loop product in the following way: given two closed
free homotopy classes a and b with representatives A and B respectively, intersecting
only in transversal double points,

(1) Œa; b�D
X

P2A\B

sign.P /BA �P B ;

where sign.p/ is the sign of the intersection between the curves A and B at P , A �p B

is the loop product of A and B both viewed as based at P , and eC is the free homotopy
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class of a curve C . This bracket is extended by linearity to the free module generated
by free homotopy classes of curves. Goldman showed that this bracket is well-defined,
skew-symmetric and satisfies the Jacobi identity.

Clearly, if a and b are free homotopy classes that have disjoint representatives, then
Œa; b� is zero. Goldman [10] also showed (using Thurston’s earthquakes) that this
bracket has the remarkable property that if one of the classes, a or b , has a simple
representative, then the bracket Œa; b� vanishes if and only if a and b can be represented
by disjoint curves. Goldman asked for a topological proof and about extensions of the
conclusion to curves with self-intersection. Turaev, in the late eighties, asked about
characterizing simple closed curves algebraically in terms of this Lie structure.

Later on Chas [7] proved that if either a or b has a simple representative then the
bracket of a and b counts the geometric intersection number between a and b (by
geometric intersection number we mean the minimum number of points, counted with
multiplicity, in which representatives of a and b intersect).

On the other hand, there are examples of classes a and b with no disjoint representatives
and such that Œa; b�D 0; see for instance [6, Example 9.1]. The bracket is a homotopy
invariant like the set of conjugacy classes in the fundamental group which is, in some
sense, simpler than the fundamental group itself. Since intersection and self-intersection
numbers of closed curves on surfaces play such a critical role in several areas of low-
dimensional topology, it is highly desirable to find characterizations of the intersection
numbers. A result of this nature, obtained by Chas and Krongold [8], was that for the
subset of compact orientable surfaces with non-empty boundary, the bracket Œa; a3�

determines the self-intersection number of a.

Finally, after twenty five years since Goldman’s paper [10] we show here how the
bracket answers the question about disjunction and simplicity of closed curves for all
finite type surfaces. We also count self-intersection numbers and mutual intersection
numbers for all finite type orientable orbifolds in terms of a new Lie bracket operation,
extending Goldman’s. Our results fill in most of the lacunae in partial results that have
resisted extension over the intervening years. The arguments are purely topological,
using group theory ideas of Freedman, Scott and Hass [17; 9], or they are based on
elementary geometrical ideas from hyperbolic geometry.

By a Fuchsian group we mean a discrete group of orientation-preserving isometries of
the hyperbolic plane. Below are the two main results of this paper.

Mutual Intersection Theorem Let x and y be non-conjugate hyperbolic elements
in a finitely generated Fuchsian group. Consider the generalized Goldman bracket
Œ � ; � � of the pth power of x with the qth power of y , where p and q are such that the
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ratio p=q is different from the ratio of the translation length of x and the translation
length of y . Then for all but finitely many values of p and q (which are explicit from
the proof), the geometric intersection number of x and y is given by the number of
terms in Œhxpi; hyqi�, counted with multiplicity, divided by p � q .

Self-Intersection Theorem For x a hyperbolic element in a finitely generated Fuch-
sian group, which is not a proper power of another element, the geometric self-
intersection number of x is given by the number of terms (counted with multiplicity)
divided by p � q of Œhxpi; hxqi�, for all but finitely many pairs of distinct positive
integers p and q . (Once more, the excluded pairs are determined explicitly by the
proof.)

Our proof is based on the word hyperbolicity of Fuchsian groups rather than small-
cancellation theory as in [8]. By extending the result of [8] for surfaces with boundary
to closed surfaces we complete the answer to Goldman’s question [10, Subsection 5.17]
as to whether his topological result (that if a and b are two free homotopy classes
of curves on a surface such that a has a simple representative and Œa; b�D 0, then a

and b have disjoint representatives) has a topological proof.

The main lemma of this work states that if at least one of p and q is sufficiently large
and the lengths of xp and yq are different, then there is no cancellation of terms in
the bracket Œhxpi; hyqi�. In other words, if the representatives A and B intersect in
the minimum number of points, then two intersection points P and Q with different
sign do not give the same free homotopy class of curves, that is, BA �P B ¤BA �Q B .

We show this by constructing quasigeodesic representatives of a lift of a loop repre-
senting A �P B . These quasigeodesics are the concatenations of certain segments of
translates of the axis of x and the axis of y . As quasigeodesics are not too far from
geodesics, it follows that if two points of intersection give the same free homotopy
class, then there is a pair of corresponding quasigeodesics that are close, which then
implies that they are equal. We deduce that the two points correspond to terms with
the same sign in the Goldman bracket.

For the final step (deducing that two points correspond to terms with the same sign),
rather than using general ı–hyperbolicity arguments as sketched above, we use hyper-
bolic geometry and the fact that the quasigeodesic curves we construct are actually
piecewise geodesic and are explicitly described. This gives a sharper result than one
would get with general arguments: for our result, we only require that one of the
exponents p and q is large, while coarser geometric arguments would require both to
be large.
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These results are intended to be applied to recognize hyperbolic and Seifert vertices
and the gluing graph in the geometrization of three-manifolds. The recognition is based
on the structure of the string topology bracket of three-manifolds.

For a typical irreducible three-manifold, the cyclic homology of the group ring of the
fundamental group lives in two degrees: zero and one. Degree one is a Lie algebra and
degree zero is a Lie module for degree one. The Lie algebra breaks into a direct sum
corresponding to the pieces and the module structure tells how they are combined in
the graph.

One can show that the Goldman bracket on the linear space with basis the set of free
homotopy classes and the power operations on this basis determine the Fuchsian group
of an orbifold. Thus, the Goldman bracket solves the “recognition problem” for two-
dimensional orbifolds. More significantly, now that the proof of the Geometrization
conjecture has enabled a classification of three-manifolds, there arises the need to
calculate the geometrization in examples like knots, ie the “recognition problem for
three-manifolds”. Our work directly applies to that since the string topology bracket
in three-manifolds will be used to describe the canonical graph of the geometrization
picture as well as which vertices are hyperbolic and which are Seifert fibered spaces.
This bracket is largely concentrated on the Seifert pieces. On these pieces it depends
on the orbifold bracket defined here. The orbifold part of the story seemed sufficiently
interesting to present independently with the details of the application to three-manifolds
coming next.

We emphasize though that the above characterization is a new one for closed curves on
closed surfaces, and should be of interest even in this case.

Others have considered string topology operations for orbifolds and manifold stacks in
a more abstract setting, see for instance Ángel, Backelin and Uribe [1], Behrend, Ginot,
Noohi and Xu [3], and Lupercio, Uribe and Xicotencatl [15]. It would be interesting to
relate those results to the concrete results here.
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Outline In Section 2 we review the group theoretic definition of intersection number
from [9] and [17] as well as the definition of the geometric intersection number of
closed curves in a two-dimensional, orientable orbifold. Section 3 is devoted to the
extension of the Goldman bracket to oriented orbifolds (a crucial part of this definition
is the elementary geometric fact that if two hyperbolic transformations x and y have
intersecting axes, then x �y is hyperbolic). In Section 4 we prove the Jacobi identity for
the extension of the Goldman bracket (interestingly enough, this proof boils down to
the proposition of geometry that if a line intersects a side of a triangle, then it intersects
one of the other two sides). In Section 5 we give examples of the bracket in the modular
surface (a beautiful and computable example of orbifolds). In Section 6 we show that
geodesics are quantitatively separated for hyperbolic surfaces (and orbifolds): namely
if two closed geodesics are sufficiently close and parallel after lifting to the universal
cover, they must coincide. In Section 7 we prove the main non-cancellation lemma,
stating that if the conjugacy classes of the two terms of the bracket coincide, then the
two quasigeodesics associated to these two terms coincide. Finally in Section 8 we
give the proofs of the intersection theorem and the self-intersection theorem.

2 The geometric intersection number and the group theoretic
intersection number

Let G be a discrete subgroup of orientation-preserving isometries of the hyperbolic
plane H . (The set of isometries of H , Isom.H/ has the compact-open topology.)

Each isometry g of the hyperbolic plane extends to the circle at infinity, where, if
g ¤ 1, it fixes at most 2 points. An isometry is called elliptic, parabolic or hyperbolic
according as it fixes 0, 1 or 2 points respectively in the circle at infinity. A hyperbolic
isometry g fixes the (hyperbolic) line joining its two fixed points at infinity. This line
is called the axis of g . Further, the sets of fixed points at infinity of two isometries
contained in a discrete subgroup G are either disjoint or coincide. If the sets of fixed
points at infinity of a pair of elements of G coincide and are non-empty, then the
isometries are both powers of the same element of G .

In this paper, an orbifold H=G is the quotient of the hyperbolic plane H by a discrete
group of orientation-preserving isometries G , provided with the induced metric. The
pertinent finer notion of free homotopy for orbifolds is described in Section 2.1. (Note
that we are using the word “orbifold” in a narrower sense than the usual.)

In this section we review the definition of closed curves, homotopy and geometric inter-
section number for curves for an orbifold (Section 2.1), the group theoretic definition
of intersection number in orbifolds (Section 2.2), and show these two definitions agree.
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(The reader is referred to [18, Chapter 13], [4, Chapter 2] and [13, Section 6.2] for a
more general definition of orbifolds and orbifold homotopy. See also [16, Section 13.3]
for a formidable discussion of based orbifold homotopy in terms of charts.)

2.1 Orbifold homotopy and the geometric intersection number

A cone point P in H=G is the projection of a point in H which is fixed by some
non-trivial element of G . The order of a cone point P is the cardinality of the maximal
cyclic subgroup of G fixing P .

Consider the projection map, …W H!H=G . A representative of a closed oriented
curve in an orbifold H=G is a continuous map ˛W S1!H=G (with H=G thought of
as a topological space), passing through at most finitely many cone points, together
with the choice of a full lift Ǫ W R!H , so that …ı Ǫ D ˛ı‚, where ‚W R!R=2�Z
is the usual projection. Two representatives of closed curves are equivalent if their full
lifts are related by an element of the group G . A closed curve on the orbifold H=G is
an equivalence class of representatives of closed curves.

Definition 2.1 Two closed oriented curves ˛ and ˛0 in H=G are H=G –homotopic if
they are related by a finite sequence of moves. Each of these moves is either a homotopy
in the complement of the cone points or is one of the skein relations or moves depicted
in Figures 1 and 2. There, the disk where the move happens contains exactly one cone
point P , and n denotes the order of P . An arc with no self-intersection in the disk
and passing through P is H=G–homotopic relative to endpoints to an arc spiraling
around P in either direction .n� 1/=2 times if n is odd (Figure 2), or n=2 times if n

is even (Figure 1). Also, if n is odd, the endpoints of the arc are antipodal and if n is
even, the endpoints coincide.

Remark 2.2 The skein relations depicted in Figures 1 and 2 imply that a loop going
n times in either direction around a point of order n can be “erased” from a closed
curve (Figure 3). However, note that the skein relation in Figure 3 is less precise than
Definition 2.1. Namely, this relation does not “tell” as Definition 2.1 does tell how to
homotope a curve passing through a cone point. Since some geodesics do pass through
cone points, we need the skein relation in Definition 2.1 that deals with those cases.

The proof of the next result is very similar to that of the (standard) proof of a bijection
between free (usual) homotopy classes of closed curves on a path-connected space
and conjugacy classes of the fundamental group of the space (see, for instance, [12,
Chapter 1, Exercise 6]).

Theorem 2.3 There is a natural bijection between the set of conjugacy classes of G

and the set of H=G –free homotopy classes of closed oriented curves in H=G .
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H=G

H � �

� �

b bb b

b b b

Figure 1: Skein relations for points of order nD 4 (bottom) and the corre-
sponding lifts (top)

H=G

H � �

� �

b b

b b b

Figure 2: Skein relations for points of order nD 5 (bottom) and the corre-
sponding lifts (top)

If a and b in are two elements of H=G , the intersection number of a and b is the
minimum number (counted with multiplicity) of transversal intersection points of pairs
of loops representing a and b not passing through cone points.

Remark 2.4 If at least one of the elements, a or b , belongs to the conjugacy class
of a non-hyperbolic element of G then the intersection number of a and b is zero.
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Case n D 3

Case n D 2 � �

� �

b b b

b b b

Figure 3: Consequence of skein relations for points of order nD 2 (top) and
nD 3 (bottom)

(Conjugacy classes of elements of G are identified with free homotopy classes of
curves on H=G via Theorem 2.3.)

2.2 Labeling intersection points: the group theoretic intersection number

A hyperbolic isometry x acts on its axis Ax by translation by a real number �x , the
translation length of x . We orient the axis Ax so that for each point P in Ax , the
direction from P to xP is positive.

Let x;y 2G . Denote by XnG=Y the space of double cosets XgY where g 2G , and
X and Y denote the cyclic subgroups generated by x and y respectively. If x or y is
not hyperbolic, set I.x;y/D∅, otherwise, set

I.x;y/D fXgY 2XnG=Y such that Ax \gAy ¤∅g:

Scott [17] discusses intersection numbers of closed curves on compact surfaces. The
next proposition can be proven by arguments completely analogous to those of Scott
[17, Section 1]. The point is that H=G–homotopy after lifting becomes exactly like
usual homotopy in the universal cover. Thus our discussion and Scott’s are the same,
mutatis mutandis, as far as the proposition below is concerned. (In the next proposition,
the identification of conjugacy classes in G and H=G –free homotopy classes of closed
curves in H=G given by Theorem 2.3 is used.)

Proposition 2.5 Let x and y be elements of G . Then the intersection number of the
conjugacy classes of x and y equals the cardinality of I.x;y/.
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3 The Goldman bracket for orbifolds

Recall that C denotes the set of conjugacy classes of elements in G . Consider ZŒC�,
the free module generated by C . For x 2G , let hxi denote the conjugacy class of x .
In particular, hxi 2 ZŒC�.

In this section we will define a linear map Œ � ; � �W ZŒC�˝ZŒC�! ZŒC� and show in
Section 4 that it is a Lie bracket. This bracket generalizes Goldman’s to orientable
two-dimensional orbifolds and will be defined (as Goldman’s) on two elements of the
basis of ZŒC� by considering the intersection points of a certain pair of representatives
(see Section 2.2), assigning a signed free homotopy class to each of these points (the
signed product at the intersection point) and adding up all those terms.

For elements a and x in G , let xa denote axa�1. If x is hyperbolic, the isometry xa

is also hyperbolic, has the same translation length as x , ie �xa D �x , and the axis of xa

is given by a �Ax . From now on, fix an orientation of H . Also, for x and y in G set
�.x;y/ to be zero if x or y are elliptic or parabolic or if the axes of x and y do not
cross, and to be the sign of the crossing, otherwise. Finally, set

(2) Œhxi; hyi�D
X

X bY 2I.x;y/

�.x;yb/hxyb
i:

Notation 3.1 Let P be a point in the axis Ax of a hyperbolic transformation x . If r

is a positive real number, S.x;P; r/ denotes the segment of Ax of length r starting
(and including) P , but not the other endpoint, in the positive direction of Ax . If r

is a negative number, S.x;P; r/ denotes the segment of Ax starting at a point Q at
distance r from P in the negative direction, containing Q but not P .

Remark 3.2 Fix a point P in Ax and let r be the translation length of x . Let

J.x;y;P /D fgY 2G=Y W S.x;P; r/\gAy ¤∅g:

Then there is a bijection between I.x;y/ and J.x;y;P /. Since G is a discrete group,
both sets have finite cardinality. Moreover,

(3) Œhxi; hyi�D
X

gY 2J .x;y;P/

�.x;yg/hxyg
i:

Remark 3.3 The conjugacy classes of elliptic and parabolic elements of G are in the
center of the Lie algebra; that is, the bracket between these classes and all other classes
is zero.
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Remark 3.4 By [2, Theorem 7.38.6], if x and y are hyperbolic isometries whose
axes intersect then xy is also hyperbolic. Moreover, the axis of xy and its translation
length can be determined as follows (see [2] for details). Denote by P the intersection
point of Ax and Ay . Denote by Q the point on Ax at distance �x=2 from P in the
positive direction of Ax and by R the point on Ay at distance �y=2 from P in the
negative direction of Ay . The axis of Axy is the oriented line from R to Q and the
translation length of xy equals twice the distance between R and Q. (See Figure 4;
this is one of the “triangles” mentioned in the introduction which are used to unravel
the Jacobi relation.)

�x=2 �y=2

�xy=2

b
P

b

Q
b

R

Ax Ay

Axy

Figure 4: The axis of xy

Remark 3.5 Consider the set of pairs of cosets G=X �G=Y . The group G acts
on the set G=X �G=Y by .gX; hY / 7! .agX; ahY /, for each a 2 G . Denote by
D.x;y/ the quotient under this action. Set f W D.x;y/! XnG=Y by mapping the
equivalence class of .gX; hY / to Xg�1hY . A straightforward computation shows
that f is well defined and it is a bijection. Also, the preimage under f of an element
XkY of I.x;y/ is the set of equivalence classes of pairs of cosets .gX; hY / such that
gAx \ hAy ¤∅ and g�1hD k . Moreover,

(4) Œhxi; hyi�D
X

.aX ;bY /2D.x;y/

�.xa;yb/hxayb
i:

4 Triple brackets and the Jacobi identity

The Jacobi identity for the extended bracket can probably be proved by arguments
analogous to those used by Goldman in his proof that the bracket of curves on surfaces
satisfies it.

In this section we present a geometric proof of the Jacobi identity, that does not use
transversality.

Let x be a hyperbolic isometry. The next result is stated using Notation 3.1.
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Lemma 4.1 The following equation holds (see Figure 5):�
Œhxi; hyi�; hzi

�
D

X
.XgY;X hZ/2T

�.x;yg/�.x; zh/hxygzh
i

C

X
.XgY;Y hZ/2U

�.x;yg/�.yg; zh/hxygzh
i;

where

T D
˚
.XgY;XhZ/ W for some P 2Ax , Ax \gAy D fPg;S.x;P; �x/\ hAz ¤∅;

hAz \ .S.y
g;P;��y=2/[S.yxg;xP; �y=2/D∅

	
;

U D
˚
.XgY;Y hZ/ W for some P 2Ax , Ax \gAy D fPg;

.S.yg;P;��y=2/[S.yxg;xP; �y=2//\ hAz ¤∅;
S.x;P; �x/\ hAz D∅

	
:

Proof Let g2G such that Ax\gAy¤∅. We can retrace the steps of the construction
described in Remark 3.4 to find Axyg (Figure 5). Next, we compute Œhxygi; hzi�.
Denote by P the intersection point between Ax and gAy , by S the intersection point
of Ax with Axyg and by R the intersection point of gAy and Axyg . Finally, denote
by Z the cyclic group generated by z . By Remark 3.2,

Œhxyg
i; hzi�D

X
hZ2G=Z;

S.xyg;R;�xy/\hAz¤∅

�.xyg; zh/hxygzh
i:

Let hZ 2 G=Z . Observe that the inequality S.xyg;R; �xy/ \ hAz ¤ ∅ holds if
and only if hAz crosses either the triangle with vertices R;P;S or the triangle with
vertices S;xP;xygR (Figure 5). Thus, hAz intersects S.xyg;R; �xy/ if and only if
exactly one of the following holds:

(1) S.x;P; �x/\hAz¤∅ and .S.yg;P;��y=2/[S.yxg;xP; �y=2//\hAzD∅, or

(2) S.x;P; �x/\ hAz D∅ and .S.yg;P;��y=2/[S.yxg;xP; �y=2/\ hAz ¤∅.

The first pair of conditions corresponds to a term in the first sum, and the second pair
of conditions corresponds to terms in the second sum.

This concludes the proof.

A corollary is the Jacobi identity.
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b
R

b
xyg.R/

b

b

b b

b

b

P

xP

S

Ax gAy

xgAy

hAz

Axyg

b
R

b
xyg.R/

b

b

b b

b

b

P

xP

S
b

R
b

xyg.R/

Ax gAy

xgAy

hAz

Axyg

b
R

b
xyg.R/

b

b

b b

b

b

P

xP

S
b

R
b

xyg.R/

Ax gAy

xgAy

Axyg

hAz

b
R

b
xyg.R/

b

b

b b

b

b

P

xP

S
b

R

Ax gAy

xgAy

hAz
.xyg/�1hAz

Axyg

Figure 5: Jacobi identity

Theorem 4.2 For x;y; z 2G ,�
Œhxi; hyi�; hzi

�
C
�
Œhyi; hzi�; hxi

�
C
�
Œhzi; hxi�; hyi

�
D 0:

Therefore, Œ � ; � �W ZŒC�˝ZŒC�! ZŒC� is a Lie bracket.

Proof The three terms of the Jacobi relation after applying Lemma 4.1 decompose
into six groups of terms. Among these, the pairs corresponding to the triangles of
Figure 5 cancel.
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5 Examples

Consider the modular group PSL.2;Z/, that is, the group consisting of all transforma-
tions z! .azC b/=.czC d/, where a; b; c; d 2 Z and ad � bc D 1. This group is
generated by T .z/D zC 1 and S.z/D�1=z , with relations S2 D 1 and .ST /3 D 1.
The modular group is a finitely generated, discrete subgroup of orientation-preserving
isometries of the hyperbolic plane. Therefore, the bracket can be defined on the free
module generated by conjugacy classes.

Orient the hyperbolic plane clockwise.

By computing the traces, one can see that the elements xDTSTT and yDTTTSTTT

of PSL.2;Z/ are hyperbolic and not conjugate.

T �4Ay T 2Ay T �3Ay T 3Ay

P TSTT .P /

Figure 6: Translates of Ay (in black), and a fundamental domain of Ax (in
thick red) where x D TSTT and y D TTTSTTT

As shown in Figure 6, there are exactly four translates of y by PSL.2;Z/ that intersect
the segment of Ax from the point P to TTST .P /.

In this example, I.x;y/DfXT �4Y;XT �3Y;XT 2Y;XT 3Y g. The term correspond-
ing to the double coset XT �4Y has positive sign and is the conjugacy class of ST 6

because xT �4yT 4 D TSTST 7 D ST 6 . The term corresponding to XT 3Y has
negative sign and is the conjugacy class of xT 3yT �3 D TST 8S . This element is
conjugate to STST 8 D T �1ST �1T 8 . Thus the term corresponding to the double
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coset XT 3Y is �hST 6i Also, the terms associated to XT �3Y and XT 2Y are
ChSTTST 7i and �hSTTST 7i. Thus Œhxi; hyi�D 0.

In order to study the brackets of hxpi and hyqi when p and q are larger than one,
one can use the criteria given in [14] for conjugacy in SL.2;Z/ (and therefore in
PSL.2;Z/). Doing so, one can check that Œhxi; hy3i�¤ 0. Moreover, the number of
terms of the bracket Œhxi; hy3i� (counted with multiplicity) equals twelve, which is
three times the intersection number of hxi and hyi.

In the same way one can see that Œhxi; hx2i�D 0 and Œhxi; hx3i� has 24 terms, which
is six times the self-intersection number of hxi.

The above calculations are computer-assisted: one looks at Figure 6 (done with Cin-
derella) to identify the terms, then uses Mathematica to calculate the terms, and study
cancellation.

6 Quantitative separation of geodesics

From now on, we assume that the discrete subgroup G of Isom.H/ is finitely generated.

Definition 6.1 Fix ı > 0, two geodesics � and � 0 and two (not necessarily distinct)
points P and Q in � and � 0 respectively. We say that � and � 0 are ı–close at P and
Q if d.P;Q/ < ı and, if ‡ denotes a geodesic passing through P and Q, then the
absolute value of the difference between the corresponding angles between ‡ and Ax

and between ‡ and Ay (in the positive direction of both axes) is less than ı . If there
exist points P and Q such that two geodesics � and � 0 are ı–close at P and Q, then
we say that � and � 0 are ı–close.

The next lemma is well known to experts but we include a proof here because we were
unable to find one in the literature.

Lemma 6.2 For each L > 0 there exists a ı > 0 such that if x and y are two
hyperbolic transformations in G such that �x � L and �y � L and Ax and Ay are
ı–close, then Ax DAy .

Proof Denote by � the hyperbolic convex hull of the limit set of G . (Recall that the
limit set of G is the set of accumulation points of any G–orbit in H .) Since G is
finitely generated, by [11, Lemma 1.3.1 and Theorem 1.3.2], there exists a subset ��

of �, invariant under G , such that the quotient of �� by G is compact and the axis
of every hyperbolic transformation in G intersects �� . Thus, there exists a compact,
convex subset C of H such that �� �G �C .
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Fix a positive number L and denote by C 0 the closure of the .LC 1/–neighborhood
of C .

Claim 1 Given " > 0 there exists a ı > 0 such that if x and y are hyperbolic
transformations whose axes are ı–close and whose transformation lengths are bounded
above by L, then d.R; Œx;y�R/ < " for all R 2 C 0 .

We argue by contradiction. Suppose that there exist " > 0 and two sequences fxng and
fyng of hyperbolic transformations with translation length bounded above by L and
such that for each n, xn and yn are 1=n–close, Axn

¤Ayn
and there exists a point

Rn 2 C 0 that satisfies d.Rn; Œxn;yn�Rn/ > ".

Claim 2 For each n, we can assume that the points Pn and Qn in Axn
and Ayn

realizing Definition 6.1 are in C 0 .

Indeed, denote by P 0n and Q0n the points in Axn
and Ayn

realizing Definition 6.1.

The axis Axn
projects to a closed geodesic an in H=G . Since the translation length

of xn is bounded above by L, so is the length of an . On the other hand, Axn

intersects G �C . Hence, the projection of P 0n to H=G is at distance at most L from
the projection of G �C . Thus there is an element g 2G such that gP 0n is at distance at
most L from C . Since Q0n is close to P 0n , we have that Q0n is also in C 0 . The proof
of Claim 2 is completed by replacing the sequences fxng and fyng by the sequences
fgxng�1g and fgyng�1g.

Claim 3 The sequences fxng and fyng have subsequences converging to hyperbolic
transformations x and y respectively.

Consider the sequences fTng and fSng of endpoints of fAxn
g in the circle at infinity in

the negative and positive directions respectively. Since the circle is compact, by taking
subsequences, we can assume that fTng and fSng converge to T and S respectively.
Since each Axn

intersects the compact set C 0 , we get T ¤ S . Analogously, the
sequence f�xn

g of translation lengths is bounded above by L. Therefore, it has a
convergent subsequence. Thus, Claim 3 follows.

Since Axn
and Ayn

are 1=n–close, we get Ax D Ay . Hence, Œx;y�P D P for all
P 2 H . On the other hand, by taking a convergent subsequence of fRng, we see
that d.R; Œx;y�R/ � " for some R 2 C 0 . This contradiction completes the proof of
Claim 1.

To finish the proof of the lemma, observe that since G is discrete, there exists an open
subset U of isometries of H such that the identity is the only element of G in U . Let

V� D fg 2 PSL.2;R/ j d.R;gR/ < � for all R in C 0g:
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There exists an " > 0 such that V" � U . On the other hand, by Claim 1, there exists a
ı > 0 such that if the axes of x and y are ı–close, then Œx;y� 2 V" . Thus, the bracket
Œx;y� equals the identity, which implies Ax DAy .

Corollary 6.3 For each L > 0 and each C > 0 there exists a constant M > 0 such
that for every pair of hyperbolic elements x and y in G with different axes and such
that �x <L and �y <L, the set Ax\NC .Ay/ is a (possibly empty) geodesic segment
of length at most M .

Proof Let ı be as in Lemma 6.2 for L and G and let N be the length of the (possibly
empty) segment Ax \NC .Ay/.

If Ax and Ay intersect at an angle � , then by Lemma 6.2, sin.�/ � sin.ı/. By the
rule of sines, sinh.N=2/ � sinh.C /= sin.ı/ (see Figure 7, left). Then N is bounded
above by a constant depending on C and ı .

If Ax and Ay are parallel, by Lemma 6.2 they are at distance at least ı . Since the
distance between Ax and Ay is realized, there is a quadrilateral as in Figure 7, right,
with all angles except � being right angles, A� ı and B � C .

Ay

Ax

� N=2

� C
� Ax

A B

Ay

N=2

�
X

Figure 7: Proof of Corollary 6.3

By [2, Theorem 7.17.1(i)], sinh.N=2/D cos.�/= sinh.A/� 1= sinh.ı/ (see Figure 7,
right). This implies that cosh.N=2/ is bounded above by a bound depending on ı . An
elementary computation gives the desired result.

7 The non-cancellation lemma

Let K be a real positive number. A piecewise-smooth embedding  of R in the
hyperbolic plane is a K–quasigeodesic if for any pair of points P and Q in  , the
length of the path in  joining P and Q is at most K � d.P;Q/.
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Fix a pair of hyperbolic elements x and y in G whose axes intersect at a point P . We
will describe the construction of a piecewise-smooth embedding  of R (depending
on x and y ) and show it is a quasigeodesic.

Let ˛W Œ0; 1�! H be the curve from ˛.0/ D y�1P to ˛.1/ D xP , whose image is
given by the concatenation of the geodesic segment of Ay from y�1P to P with the
geodesic segment of Ax from P to xP . Since xy.˛.0//D ˛.1/, ˛ can be extended
by periodicity to a map  .x;y/W R! H such that  .x;y/.t/ D ˛.t/ for t 2 Œ0; 1�

and  .x;y/.t C 1/D xy .x;y/.t/ for all t .

The map  .x;y/ is a piecewise geodesic curve consisting of segments of length �x

(included in the axes of conjugates of Ax by some power of xy ) alternating with
segments of length �y (included in the axes of conjugates of Ay by some power of xy ).

We remark that we will be using more than just that  .x;y/ is a quasigeodesic, but
also its geometric nature. Indeed purely abstract results about quasigeodesics suffice to
prove a weaker version of our result, where we need to assume that both p and q are
large.

Lemma 7.1 For each L> 0 there exists a constant K > 0 depending on G such that
if x and y are hyperbolic transformations in G whose axes are distinct and intersect,
and whose translation lengths are bounded above by L, then for each pair of positive
integers p and q , the curve  .xp;yq/ is a K–quasigeodesic. Moreover, the oriented
angles between any pair of consecutive maximal segments of  .xp;yq/ are congruent.

Proof Fix p and q and repeat the construction of Remark 3.4 for the hyperbolic
isometries xp and yq . The transformation xp maps the angle determined by y�qP ,
P , xp.P / to the angle xpy�qP , xpP , x2p.P / (Figure 8). Thus, these two angles
are congruent. The angle xpy�qP , xpP , x2p.P / is congruent to the angle P ,
xpP , xpyq.P / because they are opposite at the intersection of Ax and xpyq.Ay/D

Axpyx�p . This implies that the angles determined by y�qP , P , xp.P / and by P ,
xp.P /, yqxp.P / are congruent. Therefore the angles formed by the consecutive
maximal segments of  .xp;yq/ (labeled with �1 in Figure 8) are all congruent.

Denote by T the triangle with vertices y�qP , P , xp.P / and by T 0 the triangle with
vertices P , xp.P / and xpyq.P /, see Figure 8. Since T and T 0 have an angle and
the two adjacent sides to the angle congruent, they are congruent.

Set g D xpyq . Then Ag is invariant under g , so Ag crosses the middle of the bandS
k2Z gk.T [T 0/.

To prove that  .xp;yq/ is a quasigeodesic, observe that triangles

gs.T /;gs.T 0/;gsC1.T /;gsC1.T 0/; : : : ;g.T /;g.T 0/; : : : ;gr .T /;gr .T 0/
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y�q.P / P
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g.P /

xpyqxp.P /

g2.P /
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b

R

b Q

T

T 0

Figure 8: Quasigeodesic associated to x , y , p and q (here g D xpyq )

form a polygon �. On the other hand, since the angles �1 , �2 and �3 (see Figure 8)
are the interior angles of a triangle, they add up to at most � . This implies that the
polygon � is convex. Therefore, the geodesic between two points in the curve 
is in the interior of �. By elementary hyperbolic geometry, there exists a positive
constant K such that  is a K–quasigeodesic. (Note that K can be taken so that it
depends only on the lower bound of the angle between intersecting elements of axes of
hyperbolic elements in G given by Lemma 6.2.)

We can (and will) assume without loss of generality that K � 1.

Lemma 7.2 Let L> 0 and let K > 0 be the constant of Lemma 7.1. Then there exists
a constant C > 0 depending on G such that if x and y are hyperbolic transformations
in G whose axes are distinct and intersect, and whose translation lengths are bounded
above by L, then for each pair of positive integers p and q , the K–quasigeodesic
 .xp;yq/ satisfies  .xp;yq/ � NC=2.Ag/ and Ag � NC=2. .x

p;yq//, where
g D xpyq .

Proof Denote by d Œp; q� the distance between P (the point in Ax \Ay ) and Ag .
Consider the region � bounded by the axes Ax and Ay and the arc of the circle of
center P and radius d Œp; q�. The area of � equals 2�1 sinh2.d Œp; q�=2/. Also, � is
included in the triangle T , of area bounded above by � � �1 (see Figure 9). Hence,

2 sinh2.d Œp; q�=2/� .� � �1/=�1 � �=ı:

Therefore, there exists a constant C1> 0 such that d Œp; q��C1 for all positive integers
p and q . Observe (Figure 8) the distance between any point in  .xp;yq/ and Ag is
smaller than d Œp; q�. This implies  .xp;yq/�NC1

.Ag/.
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�1
y�q.P /

P

xp.P /
Ag

Figure 9: The region �

Denote by R the intersection point of Ag with Ax and by Q the intersection point of
Ag with Ay (see Figure 8).

Consider the triangle with vertices P , Q and R. Triangles in the hyperbolic plane H2

are ln.1C
p

2/–thin [5, Fact 4, page 90]. In particular, the side of the triangle included
in Ag is at distance at most ln.1C

p
2/ from the union of the other two sides.

By taking C D 2 maxfln.1C
p

2/;C1g the desired result follows.

Let x and y be two hyperbolic transformations in G whose axes intersect at a point P

and whose length is less than L. Let p and q be positive integers. Denote by I the
segment of Ax from P to xp.P /.

For a subsegment J of I with endpoints S and R, we consider a rectangular neigh-
borhood U D U.J;C / defined as follows. Let s (resp. r ) be the open half-plane
bounded by the line perpendicular to Ax through S (resp. R), containing the point
xpP (resp. P ). Set U D s\ r \NC .I/.

Note that the boundary of U consists of vertical segments contained in the boundaries of
s and r and horizontal segments contained in the boundary of NC .I/. By elementary
hyperbolic geometry, the distance between the vertical segments is the length of the
geodesic J .

Lemma 7.3 Let L> 0 and let x and y be two hyperbolic transformations in G whose
axes intersect at a point P and whose length is less than L. Let p and q be positive
integers such that p ��x � 6KC , where K and C are as in Lemmas 7.1 and 7.2. Denote
by I the segment of Ax from P to xp.P /.

Let S and R be the points in Ax at distance 3KC from P and xpP , and let J be the
segment from S to R. Let U D U.J;C / be the associated rectangular neighborhood.

Then closure.U /\NC .�/D∅ for all maximal geodesic segments of � of  .xp;yq/

distinct from I .
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Proof Let Q 2 �, where � is a maximal segment of  .xp;yq/ different from I ,
and let T 2 I be a point. Then by construction the length of a path in  .xp;yq/

from Q to T is at least 3KC . As  .xp;yq/ is a K–quasigeodesic, it follows that
d.Q;T / > 3C . As Q was an arbitrary point of � and U � NC .�/ it follows that
closure.U /\NC .L/D∅.

Observe that U contains the open subsegment J of length at least p � �x � 6KC .

The following lemma is key to the paper.

Lemma 7.4 For each L> 0 there exists a positive integer p0 such that for each pair
of integers p and q satisfying p � p0 , and for each pair of hyperbolic transformations
x , y and x1 , y1 whose axes are distinct and intersect, and whose translation length
is bounded above by L, if xpyq D x

p
1

y
q
1

, x1 is conjugate to x , and y1 is conjugate
to y , then  .xp;yq/D  .x

p
1
;y

q
1
/.

Proof We start by informally describing the two parts of the proof. First, in the situation
above, the two corresponding quasigeodesics are such that one is in a C –neighborhood
of the other. In particular, segments of one quasigeodesic are in C –neighborhoods
of segments of the other quasigeodesic. By making the integer p large enough, we
obtain a “long” geodesic segment in a C –neighborhood of other geodesic segment.
This implies that these two segments intersect in an interval.

Second, we use the fact that the quasigeodesics are constructed by translating two
consecutive maximal segments by powers of g , to show if the two intersecting segments
are distinct, an impossible figure is obtained.

Here are the details of the proof. For each finitely generated, discrete subgroup G of
Isom.H/, there exists a positive constant �0 such that for each hyperbolic transformation
x 2G , one has �x � �0 (see, for instance, [11, Theorem 1.4.2])

Let C and K be as in Lemmas 7.1 and 7.2. Let M be the constant of Corollary 6.3.
We will show that p0 DK.3M C 6C /=�0 gives the desired conclusion.

Since xpyq D x
p
1

y
q
1

, we have Axpyq DAx
p

1
y

q

1
. By Lemma 7.2,

 .x
p
1
;y

q
1
/�NC=2.Ag/�NC . .x

p;yq//:

Let U and J respectively be the neighborhood and the segment given by Lemma 7.3,
so J � U , J � I �  .xp;yq/ and the length of J is at least p�x � 6KC .

Observe that  .xp
1
;y

q
1
/ must intersect U , for otherwise  .xp

1
;y

q
1
/ is included in

NC . .x
p;yq/ n J /, which has two components. Furthermore,  .xp

1
;y

q
1
/ must in-

tersect both components, contradicting the fact that  .xp
1
;y

q
1
/ is connected. By
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Lemma 7.3, NC .L/\ closure.U /D∅ for all maximal segments � of  .xp;yq/ dis-
tinct from I . Hence,  .xp

1
;y

q
1
/ does not intersect the horizontal boundary components

of U , as otherwise we obtain points in  .xp
1
;y

q
1
/ whose distance from  .xp;yq/ is

greater than C .

By hypothesis, the length of J is at least p�x � 6KC so it is at least 3KM .

2C 2C

U

 .x
p

1
; y

p

1
/

Figure 10: The intersection of neighborhood U of J with  .xp
1
;y

q
1
/

Thus, the components of the set U \ .x
p
1
;y

q
1
/ are piecewise linear curves starting and

ending at the vertical sides of U (see Figure 10). Let ˇ be one of these components.
We claim that ˇ contains a segment l of length greater than M . Indeed, if ˇ contains
three or more vertices of  .xp

1
;y

q
1
/ then one segment of ˇ is a maximal segment of

 .x
p
1
;y

q
1
/ included in a translate of x

p
1

. Therefore, it must have length at least p0�x .
Otherwise, ˇ consists of at most three segments. Denote by m the length of the longest
of these segments. As the distance between the vertical boundary components of U is
the length of J ,

3KM � p�x � 6KC � 3m:

Since K > 1, m>M . Thus the claim is proved.

The segment l of ˇ of length at least M is included in some segment I 0 of  .xp
1
;y

q
1
/.

Thus I 0\NC .J / contains a segment longer than M . By Corollary 6.3, I 0 intersects I

in a subsegment. This concludes the first part of the proof. We will show that the
assumption I ¤ I 0 leads to a contradiction.

If I ¤ I 0 , by interchanging the roles of I and I 0 if necessary, we can assume that
there is a vertex v of I which is not in I 0 . Let v0 be the vertex of I 0 closest to v .
Denote by � (resp. �0 ) the maximal segment of  .xp;yq/ (resp.  .xp

1
;y

q
1
/) such that

I and � (resp. I 0 and �0 ) are adjacent and intersect in v (resp. v0 ).

Recall that  .xp;yq/ (resp.  .xp
1
;y

q
1
/) is constructed by taking two consecutive

maximal segments and translating them by powers of g . To simplify the notation, we
write g D xpyq . The segment adjacent to � (resp. �0 ) different from I (resp. I 0 )
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is g.I/ (resp. g.I 0/). Denote by u (resp. u0 ) the other vertex of I (resp. I 0 ). Note
that v and g.u/ (resp. v0 and g.u0/) are the vertices of � (resp. �0 ).

Suppose first that u is in I 0 . By Lemma 7.1, the angles u, v , g.u/ and v , g.u/, g.v/

are congruent. Hence there is a convex quadrilateral with vertices v , v0 , g.u/, g.u0/,
see Figure 11. By Lemma 7.1, the sum of the interior angles of this quadrilateral is 2� ,
a contradiction in hyperbolic geometry. This implies that u is not in I 0 .

v

I 0 I

�0 �

b
g.v/

b
g.v0/

b
u
b

v0

b
u0

b

b
g.u0/

b
g.u/

g.I/

Figure 11: Length of I equals the length of I 0

Denote by l the geodesic through v and g.u/. By Lemma 7.1, the angles u, v ,
g.u/ and v , g.u/, g.v/ are congruent. This implies that u and g.v/ are in different
sides of l . On the other hand, u and v0 (resp. g.v/ and g.u0/) are on the same side
of l . Then v0 and g.u0/ are on different sides of l . Hence � intersects �0 and the
quasigeodesics are arranged as in Figure 12.

In particular, the segments � and �0 intersect at a point z . The triangles with vertices
z , v0 , v and z , g.u/, g.u0/ have congruent corresponding angles. Hence, these two
triangles are congruent. Thus, z is the middle point of �, and also of �0 . Since the
segments with vertices u, u0 and g.u/, g.u0/ are congruent, the segments with vertices
u, u0 and v0 , v are congruent.

Denote by w the middle point of I . Observe that w is also the middle point of I 0 (as
segments with vertices u, u0 and v , v0 are congruent). As x1 is conjugate to x and y1 is
conjugate to y , the length of the arc of  .xp

1
;y

q
1
/ from w to z equals .p�xCq�y/=2.

Also, the length of the arc of  .xp;yq/ from w to z equals .p�xC q�y/=2. By the
triangle inequality, this is impossible. Thus we conclude that v D v0 , and hence also
uD u0 .

Thus, we see that I D I 0 and �D �0 . It follows that the quasigeodesics  .xp;yq/ and
 .x

p
1
;y

q
1
/ coincide as they are the unions of translates under g of I [� and I 0[�0 ,

respectively.
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g.u0/
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g.v0/

b
g.v/
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Figure 12: Length of I is larger than length of I 0

Theorem 7.5 For each L > 0 there exists a positive integer p0 such that for each
pair p � p0 and q of positive integers, if x and y (resp. x1 and y1 ) are hyperbolic
transformations whose axes are distinct and intersect, x is conjugate to x1 , y is
conjugate to y1 , the translation lengths of x , x1 , y , y1 are bounded above by L,
p�x ¤ q�y , and xpyq D x

p
1

y
q
1

, then there exists an h 2 G such that x1 D xh and
y1 D yh .

Proof Since xpyq D x
p
1

y
q
1

, we have Axpyq D Ax
p

1
y

q

1
. Moreover, both axes are

oriented in the same direction. If p0 is the positive integer given by Lemma 7.4, then
 .xp;yq/ D  .x

p
1
;y

q
1
/. Hence, by the definition of  .xp;yq/, if g D xpyq there

exists an n 2 Z such that one of the following holds:

(1) x
p
1
D .xp/g

n

and y
q
1
D .yq/g

n

.

(2) x
p
1
D .yq/g

nC1

and y
q
1
D .xp/g

n

.

Since p�x ¤ q�y , (2) is impossible. Thus the result follows by taking hD gn .

8 Proof of the main theorem

An element z in ZŒC� can be uniquely represented as a sum
Pk

iD1 nihxii so that the
conjugacy classes hxii are all distinct and the integers ni are non-zero. We define the
Manhattan norm of z by

M

� kX
iD1

nihxii

�
D

kX
iD1

jni j:

We are now in a position to prove our main theorem. Denote by Xp and Yq the cyclic
groups generated by xp and yq respectively. Note that by definition

Œhxp
i; hyq

i�D
X

XpbYq2I.xp;yq/

�.xp; .yq/b/hxp.yq/bi:
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Figure 13: Values of p and q in the main theorem, p0 D 5 , p=q ¤ 3
2

, p in x–axis

Our first step is to collate terms in this expression. There is a natural quotient map from
XpnG=Yq to XnG=Y , mapping Xpng=Yq to Xng=Y . Observe that �.xp; .yq/b/D

�.x;yb/. Further observe that if Xpng=Yq and Xpng
0=Yq map to the same element

in XgY , then hxp.yq/gi D hxp.yq/g
0

i D hxp.yg0/qi. The lemma below follows by
grouping terms corresponding to their images in I.x;y/.

Lemma 8.1 We have

Œhxp
i; hyq

i�D pq

� X
X bY 2I.x;y/

�.x;yb/hxp.yb/qi

�
:

We are now ready to prove our main result.

Main Theorem Let G be a finitely generated, discrete group of Isom.H/ and let
L > 0. There exists a p0 such that if p and q are integers at least one of which is
larger than p0 , then the following holds:

(1) If x and y are hyperbolic transformations in G such that neither is conjugate
to a power of the other, with translation lengths bounded above by L and such
that p�.x/¤ q�.y/, then M Œxp;yq �=.p � q/ equals the geometric intersection
number of x and y .

(2) If p ¤ q , and x is a hyperbolic transformation in G , not a proper power, and
has translation length bounded above by L, then M Œxp;xq �=.2 �p � q/ equals
the geometric self-intersection number of x .

Proof Interchanging x and y if necessary, we can assume that p � p0 .

Suppose that hxp.yb/qi D hxp.yb0/qi. Then for some h 2G ,

xp.yb/q D .xp.yb0/q/h D .xp/h.yq/hb0
D .xh/p.yhb0/q:
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By Theorem 7.5, there is an element g that conjugates x to xg and yb to ygb0. In
particular, the signs �.x;yb/ and �.xg;ygb0/ coincide, so there is no cancellation. This
concludes the proof.
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