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Higher rank lattices are not coarse median

THOMAS HAETTEL

We show that symmetric spaces and thick affine buildings which are not of spherical
type Ar

1 have no coarse median in the sense of Bowditch. As a consequence, they
are not quasi-isometric to a CAT.0/ cube complex, answering a question of Haglund.
Another consequence is that any lattice in a simple higher rank group over a local
field is not coarse median.
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Introduction

A metric space .X; d/ is called metric median if for each .x; y; z/ 2 X3 , the three
intervals I.x; y/, I.y; z/ and I.x; z/ intersect in a single point, where the interval
I.x; y/ is given by fp 2 X j d.x; p/C d.p; y/ D d.x; y/g. This point is called the
median of x , y and z . The rank of .X; d/ is then defined as the maximal dimension r
of an embedded cube f0; 1gr . The relationship between groups and median metric
spaces is rich and has been studied through many points of view, such as the Haagerup
property, property (T), actions on a CAT.0/ cube complex, and actions on a space
with (measured) walls. (See Chepoi [12], Chatterji, Drut,u and Haglund [8], Chatterji,
Fernós and Iozzi [9], Chatterji and Niblo [10], and Bowditch [5; 6], for example.)

Bowditch recently introduced the notion of a coarse median on a metric space (see [3]),
in order to gather in the same setting CAT.0/ cube complexes and Gromov hyperbolic
spaces. A metric space is Gromov-hyperbolic if and only if every finite subset admits
a good metric comparison with a tree (see for instance Ghys and de la Harpe [14,
Théorème 12, page 33]). Bowditch’s definition of a coarse median is having a good
metric comparison of every finite subset with a metric median space, or equivalently
with a CAT.0/ cube complex according to Chepoi (see [12]).

Definition (Bowditch) Let .X; d/ be a metric space. A map �!X3!X is called
a coarse median if there exist k 2 Œ0;C1/ and h!N! Œ0;C1/ such that:

� For all a; b; c; a0; b0; c0 2X , we have

d
�
�.a; b; c/; �.a0; b0; c0/

�
6 k

�
d.a; a0/C d.b; b0/C d.c; c0/

�
C h.0/:
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� For each finite nonempty set A�X , with jAj6 p , there exists a finite median
algebra .…;�…/ and maps � W A ! … and �W … ! X such that for every
x; y; z 2X , we have

d.��….x; y; z/; �.�x; �y; �z//6 h.p/;

and for every a 2 A, we have d.a; �.�.a///6 h.p/.

If … can be chosen (independently of p ) to have rank at most r , we say that � has
rank at most r .

A finitely generated group is said to be coarse median if some Cayley graph has a
coarse median (not necessarily equivariant under the group action). Bowditch showed
that a coarse median group is finitely presented, and has at most quadratic Dehn
function (see [3, Corollary 8.3]). Furthermore, Chatterji and Ruane’s criterion (see
[11]) applies to show that a coarse median group of finite rank has the rapid decay
(RD) property (see [5, Theorem 9.1]). Moreover, if a group has a coarse median of rank
at most r , there is no quasi-isometric embedding of RrC1 into that group. Bowditch
also showed that the existence of a coarse median is a quasi-isometry invariant, that
a group is Gromov hyperbolic if and only if it is coarse median of rank 1, and that
a group hyperbolic relative to coarse median groups is itself coarse median (see [4]).
Furthermore, Bowditch showed that the mapping class group of a surface of genus g
with p punctures is coarse median of rank 3g� 3Cp , hereby recovering Behrstock
and Minsky’s result that the mapping class group has property (RD) (see [2]), and the
rank theorem (see Hammenstädt [16] and Behrstock and Minsky [1]).

Since most known examples of coarse median groups have some nonpositive curvature
features, Bowditch asked in [3] whether higher rank symmetric spaces, or even CAT.0/
spaces, admit coarse medians. In this article, we give a negative answer to this question.

Theorem A Let X be a thick affine building of spherical type different from Ar
1 .

There is no locally convex Lipschitz median on X .

By considering asymptotic cones and using work of Kleiner and Leeb, and of Bowditch,
we deduce the following:

Theorem B Let X be a symmetric space of noncompact type, or a thick affine building,
of spherical type different from Ar

1 . Then X has no coarse median.

A consequence of this result is the classification of symmetric spaces of noncompact
type and affine buildings which are coarse median.
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Theorem C Let X be a symmetric space of noncompact type, or a thick affine building.
There exists a coarse median on X if and only if the spherical type of X is Ar

1 .

Note that the coarse median is not assumed to be equivariant by any group.

Haglund asked if a higher rank symmetric space or affine building is quasi-isometric to
a CAT.0/ cube complex, and we give a negative answer:

Theorem D Let X be a symmetric space of noncompact type, or a discrete, thick
affine building. Then X is quasi-isometric to a CAT.0/ cube complex if and only if the
spherical type of X is Ar

1

Note that the CAT.0/ cube complex is not assumed to be of finite dimension, and it
could also be endowed with the Lp distance for any p 2 Œ1;1�.

Also note that Theorem D still holds if we consider nondiscrete thick affine buildings
and nondiscrete CAT.0/ cube complexes.

Furthermore, for uniform lattices in semisimple Lie groups, property (RD) implies
the Baum–Connes conjecture without coefficient (see Lafforgue [20]). Property (RD)
has been proved notably for uniform lattices in SL.3;K/, where K is a local field
(see Ramagge, Robertson and Steger [23], Lafforgue [21] and Chatterji [7]). Valette
conjectured that uniform lattices in semisimple Lie groups satisfy property (RD). Since
being coarse median implies property (RD), one could ask if this could be a way to
prove property (RD) for higher rank uniform lattices. Even though it might follow
from [23] that looking only at coarse medians is not enough for SL.3;K/, the following
makes it clear.

Theorem E Let K be a local field, let G be the group of K–points of a simple
algebraic group without compact factors and let � be a lattice in G . If � is coarse
median, then G has K–rank 1.

Note that, due to property (T), higher rank lattices do not admit unbounded actions on
median metric spaces (see [8]). But in the coarse median setting this is not a consequence
of property (T), since, for instance, every hyperbolic group with property (T) is coarse
median.

In the K–rank 1 case, finding which nonuniform lattices are coarse median is harder.
Here we summarize what is known.

Proposition F Let K be a local field, let G be the group of K–points of a simple
algebraic group without compact factors of K–rank 1, and let � be a lattice in G .
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� If � is uniform in G , then � is coarse median.
� If G is locally isomorphic to SO0.n; 1/ for some n> 2, then � is coarse median.
� If G is locally isomorphic to SU.2; 1/, then � is not coarse median.

In the proof of Theorem A, we establish the following result, which is of independent
interest:

Proposition G Let X be a connected metric space, with a Lipschitz locally convex
median of rank r . There exists a median, bi-Lipschitz embedding of the r –cube Œ0; 1�r

into X with convex image.

Organization of the paper In Section 1, we recall the general definitions of median
algebras. In Section 2, we recall work of Kleiner and Leeb and of Bowditch on
asymptotic cones, and we prove that Theorem A implies Theorems B and C.

Sections 3 and 4 are devoted to the proof of Theorem A. We consider a thick affine
building X which has a locally convex Lipschitz median. In Section 3 we prove
Proposition G, which provides us with a convex cube in X . In Section 4, by considering
a tangent cone of X in the cube we can assume that some apartment F of X is
isomorphic to a vector space with the standard L1 median. Considering singular
geodesics in F , we prove that X has spherical type Ar

1 .

Finally in Section 5, we prove the main consequences of Theorem C, which are
Theorem D, Theorem E and Proposition F.
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this work. The author would also like to thank Samuel Tapie and Jean Lécureux, for
interesting discussions at an early stage of this work.

1 Median algebras

Definition 1.1 Let X be a set. A map �W X3!X is called a median on X if for all
a; b; c; d; e in X , it satisfies

�.a; b; c/D �.b; a; c/D �.b; c; a/; ie � is symmetric;

�.a; a; b/D a;

�.a; b; �.c; d; e//D �.�.a; b; c/; �.a; b; d/; e/:(1)
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The pair .X; �/ is called a median algebra.

Remark � There is a unique median on the set f0; 1g.

� We can consider the product median on the n–cube f0; 1gn .

Definition 1.2 Let .X; �/ and .X 0; �0/ be median algebras. A map f W X ! X 0 is
called median if for every x; y; z 2X , we have �0.f .x/; f .y/; f .z//D f .�.x; y; z//.
If furthermore f is injective, it is called a median embedding.

Definition 1.3 Let .X; �/ be a median algebra. If every median embedding of an
n–cube f0; 1gn!X satisfies n6 r , we say that X has rank at most r .

Definition 1.4 Let .X; �/ be a median algebra. If a; b 2X , the interval between a
and b is I.a; b/D fc 2 X j�.a; b; c/D cg. A subset C � X is called convex if for
every a; b 2 C , we have I.a; b/� C .

If .X; d/ is a metric space, a weakening of the notion of metric median is the following:

Definition 1.5 Let .X; d/ be a metric space. An abstract median � on X is called

� continuous if �W X3!X is a continuous map,

� Lipschitz if there exists a constant k 2 Œ0;C1/ such that � is k–Lipschitz with
respect to each variable, ie for every a; b; c; a0; b0; c0 2X , we have

d
�
�.a; b; c/; �.a0; b0; c0/

�
6 k

�
d.a; a0/C d.b; b0/C d.c; c0/

�
;

� locally convex if each point of X has a basis of neighborhoods consisting of
convex subsets of X .

Here is an example of a continuous median on R2 which is not Lipschitz: consider the
image � of the standard L1 median by some non-Lipschitz diffeomorphism of R2 .
If we consider R2 with the standard L1 distance and the new median �, then � is a
continuous (even differentiable) median, but it is not Lipschitz.

Definition 1.6 Let .X; d/ be a metric space, let � be a continuous median on X ,
and let C � X be a nonempty closed, locally compact convex subset of X . Then
for each x 2 X , there exists a unique �C .x/ 2 C , called the gate projection of x
onto C , such that for every y 2 C , we have �C .x/ 2 I.x; y/. The map �C W X ! C

is called the gate projection, it is a continuous map. If � is k–Lipschitz, then �C is a
k–Lipschitz map.
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Now we recall the definition of walls in a median algebra.

Definition 1.7 Let .X; �/ be a median algebra. Then a wall in X is defined to be
a pair W D fHC.W /;H�.W /g, where HC.W / and H�.W / are nonempty convex
disjoint subsets of X whose union is equal to X .

Lemma 1.8 [3, Lemma 6.1] Let .X; �/ be a median algebra, and let A;B be disjoint
convex subsets of M . There exists a wall W D fHC.W /;H�.W /g in X separating
A from B , ie such that A�H˙.W / and B �H�.W /.

Lemma 1.9 [3, Lemma 7.3] Let .X; d/ be a metric space, and let � be a contin-
uous locally convex median on X . Let a; b be distinct points of X . There exists
a wall W D fHC.W /;H�.W /g in X strongly separating a from b , ie such that
a 2XnH�.W / and b 2XnHC.W /.

Lemma 1.10 [3, Lemma 7.5] Let X be a metric space, and let � be a continuous
locally convex median on X . For each wall W DfHC.W /;H�.W /g in X , the subset
L.W / D HC.W /\H�.W / is a convex median subalgebra of X , of rank at most
r � 1 if the rank of � is r .

2 Ultralimits of spaces and coarse medians

In [18], Kleiner and Leeb developed a geometric definition of spherical and affine
buildings, and in particular they studied their asymptotic cones.

Theorem 2.1 [18, Theorem 1.2.1] Let X be a symmetric space of noncompact type
or a thick affine building. Then any asymptotic cone of X is a thick affine building of
the same spherical type as X .

They also proved that any tangent cone of an affine building is an affine building:

Theorem 2.2 [18, Theorem 5.1.1] Let .X; d/ be an affine building, let ! be a
nonprincipal ultrafilter on N , let .xn/n2N be a sequence in X and let .�n/n2N be
a sequence in .0;C1/ such that lim! �n D C1. Letting .X1; d1; x1/ be the
!–ultralimit of .Xn; �nd; xn/, then .X1; d1/ is an affine building. Furthermore,
if X is thick, then X1 is thick. The affine Weyl group of X1 acts transitively on each
apartment of X1 .

One motivation for Bowditch’s definition of coarse median is that it behaves well when
one considers asymptotic cones.
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Theorem 2.3 [3, Theorem 2.3] Let .X; d/ be a metric space, and let � be a
.k; h/–coarse median on X . Then on any asymptotic cone .X1; d1/ of .X; d/,
� defines a k–Lipschitz, locally convex median �1 .

We can now prove that Theorem A implies Theorem B.

Proof Let X be a symmetric space of noncompact type, or a thick affine building,
of spherical type different from Ar

1 . By Theorem 2.1 any asymptotic cone X1 is
a thick affine building. If there existed a coarse median � on X , it would give rise
by Theorem 2.3 to a locally convex Lipschitz median on X1 , which contradicts
Theorem A since the spherical type of X1 is not Ar

1 . Hence there is no coarse median
on X .

We can also prove that Theorem B implies Theorem C.

Proof Let X be a symmetric space of noncompact type or an affine building of
spherical type Ar

1 . If X is a symmetric space, it is a product of rank 1 symmetric
spaces, which are Gromov hyperbolic, so X has a coarse median. If X is an affine
building, if we endow it with the L1 metric it becomes a metric median space. In
particular, this median is a coarse median with respect to any usual metric on X , which
is equivalent to the L1 metric.

3 Existence of a convex cube

In this Section, we will prove Proposition G, which we recall here.

Proposition G Let X be a connected metric space, with a Lipschitz locally convex
median of rank r . There exists a median, bi-Lipschitz embedding of the r –cube Œ0; 1�r

into X with convex image.

Fix X a geodesic metric space, and �W X3!X a Lipschitz median.

Definition 3.1 A continuous path pW I !X , where I �R is an interval, is said to
be monotone if for each t1 < t2 < t3 in I , we have �.p.t1/; p.t2/; p.t3//D p.t2/.

To prove Proposition G, we will need the following two lemmas:

Lemma 3.2 Let X be a connected metric space, with a continuous locally convex
median �, and let f W f0; 1gr!X be a median embedding of the r –cube, and let W be
a wall in X strongly separating f .0; : : : ; 0/ and f .1; 0; : : : ; 0/. There exists a median
embedding gW f0; 1gr!X such that for every t 2f0g�f0; 1gr�1 , we have g.t/Df .t/
and for every t 2 f1g � f0; 1gr�1 , we have g.t/ 2 L.W /.
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Proof Note that if we knew that L.W / was locally compact, projecting the half-cube
f1g�f0; 1gr�1 using the gate projection onto L.W / would immediately give the result.

Intervals are connected, so we can consider a 2 I.f .0; : : : ; 0/; f .1; 0; : : : ; 0//\L.W /.
Define

gW f0; 1gr !X;

t 2 f0g � f0; 1gr�1
7! f .t/;

t 2 f1g � f0; 1gr�1
7! �.f .0; t2; : : : ; tr/; a; f .t//:

Since L.W / is convex, we deduce that for every t 2 f1g � f0; 1gr�1 , we have that
g.t/ 2 L.W /.

Using repeatedly property (1), we prove that g is a median map. As a consequence, if
for some t; t 0 2 f0; 1gr we have g.t/D g.t 0/, then

f .0; t2; : : : ; tr/D �.g.0; t2; : : : ; tr/; g.t/; g.0; t
0
2; : : : ; t

0
r//

D �.g.0; t2; : : : ; tr/; g.t
0/; g.0; t 02; : : : ; t

0
r//

D f .0; t 02; : : : ; t
0
r/;

hence .0; t2; : : : ; tr/D .0; t 02; : : : ; t
0
r/, so t D t 0 and hence g is injective.

Lemma 3.3 Let .X; �/ be a median algebra. Assume there exists a median embedding
of the r –cube f W Œ0; 1�r ! X , such that the image by f of any edge of Œ0; 1�r is
convex. Then the image of f is convex in X .

Proof For each k 2 ŒŒ1; r��, let ek D .0; : : : ; 0; 1; 0; : : : ; 0/, where the 1 is in the kth

position. Let x 2 I.f .0/; f .e1 C � � � C er//. For each k 2 ŒŒ1; r��, since the image
by f of the edge Œ0; ek� is convex, we deduce that I.f .0/; f .ek//D f .Œ0; ek�/, so
there exists tk 2 Œ0; 1� such that �.f .0; : : : ; 0/; x; f .ek//D f .tkek/. We will show
by induction on k 2 ŒŒ0; r�� that f .t1e1C � � �C tkek/D �.f .0/; x; f .e1C � � �C ek//.

For k D 0 this is immediate using property (1), so assume that for some k < r we
have f .t1e1C � � �C tkek/D �.f .0/; x; f .e1C � � �C ek//. Then

f .t1e1C � � �C tkC1ekC1/

D �
�
f .t1e1C � � �C tkek/; f .tkC1ekC1/; f .e1C � � �C ekC1/

�
D �

�
�.f .0/; x; f .e1C � � �C ek//; �.f .0/; x; f .ekC1//; f .e1C � � �C ekC1/

�
D �

�
f .0/; x; �.f .e1C � � �C ek/; f .ekC1/; f .e1C � � �C ekC1//

�
D �

�
f .0/; x; f .e1C � � �C ekC1/

�
:
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As a consequence, for k D r we deduce that

f .t1e1C � � �C trer/D �.f .0/; x; f .e1C � � �C er//D x;

as x 2 I.f .0/; f .e1C � � �C er//. So we have proved that the image of f is equal to
the interval I.f .0/; f .e1C � � �C er//, which is convex.

We can now prove Proposition G.

Proof of Proposition G Since the rank of the median � is r , consider a median
embedding f W f0; 1gr ! X . Applying Lemma 3.2 2r times, up to replacing f by
another median embedding of f0; 1gr into X , we can assume that for each i 2 ŒŒ1; r��
and " 2 f0; 1g, the image under f of the codimension-1 face

f0; 1gi�1
� f"g � f0; 1gr�1�i

is included in a closed convex subspace L.Wi;"/ of X , where Wi;" is a wall of X .
According to Lemma 1.10, each L.Wi;"/ has rank at most r � 1, and since it contains
the image by f of the .r�1/–cube f0; 1gi�1�f"g�f0; 1gr�1�i , we deduce that each
L.Wi;"/ has rank r � 1.

For i; j 2 ŒŒ1; r�� distinct and "; "0 2 f0; 1g, since

L.Wi;"/\L.Wj;"0/D L.L.Wi;"/\Wj;"0/;

where L.Wi;"/\Wj;"0 is a wall in the rank r � 1 median algebra L.Wi;"/, we deduce
by Lemma 1.10 that L.Wi;"/\L.Wj;"0/ has rank r � 2.

By induction, we prove that for each p 2 ŒŒ1; r��, for each distinct i1; : : : ; ip 2 ŒŒ1; r��
and each "1; : : : ; "p 2 f0; 1g, the intersection

T
16k6pL.Wik ;"k

/ has rank r �p .

For each k 2 ŒŒ1; r��, let ek D .0; : : : ; 0; 1; 0; : : : ; 0/, where the 1 is in the kth position.
Hence for each k 2 ŒŒ1; r��, the points f .0/ and f .ek/ are contained in a convex rank 1
closed subspace. In particular, there exists an injective, monotone, bi-Lipschitz path pk

from f .0/ to f .ek/, with convex image.

We will show by induction on k 2 ŒŒ0; r�� that we can extend f to a bi-Lipschitz median
embedding from Œ0; 1�k � f0; 1gr�k into X . The case k D 0 is already true. Assume
we have extended f to a bi-Lipschitz median embedding f W Œ0; 1�k � f0; 1gr�k!X

for some k < r . Define

f W Œ0; 1�k � Œ0; 1�� f0; 1gr�k�1
!X

.t; u; v/ 2 Œ0; 1�k � Œ0; 1�� f0; 1gr�k�1
7! �.f .t; 0; v/; pkC1.u/; f .1; : : : ; 1//:

Algebraic & Geometric Topology, Volume 16 (2016)
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f .1; : : : ; 1/

f .t; 0; v/

pkC1.u/
f .t; u; v/

Figure 1: Extending f

See Figure 1. Since pkC1 and � are bi-Lipschitz, we deduce that f is bi-Lipschitz
on Œ0; 1�k � Œ0; 1�� f0; 1gr�k�1 .

So f is extended to a bi-Lipschitz map f W Œ0; 1�r !X . If t 2 Œ0; 1�r and k 2 ŒŒ1; r��,
notice that in Œ0; 1�r the median of .t; 0; ek/ is equal to tkek . Therefore,

�.f .t/; f .0/; f .ek//D f .tkek/D pk.tk/:

Since each path p1; : : : ; pr is injective, we deduce that f itself is injective.

By using property (1) several times, we prove that f preserves the medians. Hence f
is a median embedding, and by Lemma 3.3 the image of f is convex.

Let us recall Bowditch’s definition of the separation dimension of a space, which is a
good notion of dimension when working with medians on a metric space.

Definition 3.4 (Bowditch) If X is a Hausdorff topological space, define the separa-
tion dimension of X inductively as follows:

� If X D∅, then the separation dimension of X is �1.

� X has separation dimension at most n 2N if for any distinct x; y 2X , there
exist closed subsets A, B of X such that x …B , y …A, X DA[B and A\B
has dimension at most n� 1.

Remark If X is a Hausdorff metric space, then the inductive dimension of X is at
most equal to the separation dimension. Conversely, we have the following:

Lemma 3.5 [17, Section III.6] If X is a locally compact Hausdorff metric space,
then the inductive dimension of X equals the separation dimension.

The following lemma is immediate:

Algebraic & Geometric Topology, Volume 16 (2016)
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Lemma 3.6 Let X; Y be Hausdorff topological spaces, and let f W X ! Y be a
continuous injective map. Then the separation dimension of X is at most equal to the
separation dimension of Y .

We deduce the following:

Corollary 3.7 Let X be a connected metric space, with a Lipschitz locally convex
median of rank r . Then the separation dimension of X equals r .

Proof According to [3, Theorem 2.2], the separation dimension of X is bounded
above by r . According to Proposition G, there exists an embedding of Œ0; 1�r into X ,
so according to Lemma 3.6 the separation dimension of X is precisely equal to r .

Finally, for affine buildings, we have the following:

Corollary 3.8 Let X be an affine building of rank r . Then any locally convex
Lipschitz median on X has rank r .

Proof According to [19, Theorem B], X has separation dimension equal to r . Ac-
cording to Corollary 3.7, any locally convex Lipschitz median on X has rank r .

4 Proof of Theorem A

Consider a thick affine building X . Assume that there exists a k–Lipschitz, locally
convex median � on X . We will show that X has spherical type Ar

1 .

Proposition 4.1 There exists x 2X such that in a tangent cone .X1; d1; x1; �1/
of .X; d; x; �/ at x , the ultralimit F1 of some apartment F containing x is convex
and median-isomorphic to .Rr ; L1/ by an affine isomorphism.

Proof According to Corollary 3.8, the median � has rank r , and according to
Proposition G, there exists a bi-Lipschitz, median embedding f of Œ0; 1�r into X
with convex image. According to [18, Corollary 6.2.3], the image of f intersects
finitely many apartments of X . Consider a nonempty open subset U of Œ0; 1�r such
that f .U / lies in one apartment F of X . The map f jU W U !F is bi-Lipschitz, hence
it is differentiable almost everywhere: Pick a point t 2 U where f is differentiable.
Since f is bi-Lipschitz, the differential of f at t is invertible. Then in any tangent
cone of .X; d; x; �/ at xD f .t/, the ultralimit of F is convex and median-isomorphic
to .Rr ; L1/, by an affine isomorphism.
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According to Proposition 4.1, up to considering a tangent cone of X and using
Theorem 2.2, we can assume that there exists a convex apartment F of X with a
median, affine isomorphism with .Rr ; L1/. Since F is convex, closed and locally
compact, we can consider �F W X ! F the gate projection onto F .

Lemma 4.2 For each x 2XnF , and for each apartment F 0 of X containing x such
that F \F 0 is a half-apartment, we have �F .x/ 2 F \F

0 .

Proof By contradiction, assume that there exists such an x 2XnF and an apartment
F 0 containing x such that F \F 0 is a half-apartment, and such that �F .x/ … F \F

0 .
Fix a Lipschitz embedding � of the .r�1/–ball Br�1 into F \ F 0 . Extend � to a
Lipschitz embedding of the half r –ball Br;C into F 0n

ı

F , where Br�1 is the equatorial
sphere of Br . Extend � to a Lipschitz map �W Br!F[F 0 by setting �.z/D�F .�.�z//,
for z 2Br;� . Since �F .x/2F nF

0 and � is Lipschitz, we deduce .�.Br/n�.@Br//\F

has nonempty interior.

For each z 2 .@Br/C D Sr�1;C , we have �.�z/D �F .�.z//. Consider the following
map:

z�0W Sr�1;C
� Œ0; 1�!X

.z; t/ 7! �
�
�.z/; �F .�.z//; Œ.1� t /�.z/C t�F .�.z//�

�
;

where Œ.1� t /�.z/C t�F .�.z//� is the unique point on the CAT.0/ geodesic segment
between �.z/ and �F .�.z// at distance td.�.z/; �F .�.z/// from �.z/ (see Figure 2).

x

�F .x/

�.z/

�.�z/

�0.z; t/

F 0

F

Sr�1;C

Sr�1;�

Figure 2: The sphere Sr in X

Algebraic & Geometric Topology, Volume 16 (2016)



Higher rank lattices are not coarse median 2907

The map z�0 is Lipschitz and satisfies z�0.z; t//Dz�0.z; t 0/ for every z 2 @Sr�1;CD @Br�1

and every t; t 0 2 Œ0; 1�, since �.z/ 2 F \F 0 and hence �F .�.z//D �.z/. Consider the
quotient of Sr�1;C � Œ0; 1� by the equivalence relation defined for every z 2 @Sr�1;C

and t; t 0 2 Œ0; 1� by .z; t/� .z; t 0/: it is a topological ball Br . So z�0 induces a Lipschitz
map �0W Br !X such that �jSr�1 D �0jSr�1 . This defines a Lipschitz map ˛W Sr !X .

In ˛.Sr/, if we collapse the complement of a small open ball in F nF 0 , we obtain
a topological sphere Sr . As a consequence, Hr.˛.Sr// ¤ 0. According to [19,
Theorem B], X has topological dimension r , and since ˛.Sr/ is a compact subspace
of X , we deduce that Hr.˛.Sr// ! Hr.X/ is an injection (see for instance [17,
Theorem VIII.3’]). Since X is contractible, this is a contradiction.

We can now conclude the proof of Theorem A. By contradiction, assume that X
has not spherical type Ar

1 . Since X is thick, there exists a Weyl wall W in F ,
and two singular geodesics ;  0 in X , each intersecting W , such that  and  0

intersect in XnF . Let x D  \  0 2 XnF . Since  is singular, the intersection of
all apartments F 0 containing  such that F 0 \F is a half-apartment is equal to  .
According to Lemma 4.2, we deduce that �F .x/ 2  \F . Similarly, �F .x/ 2 

0\F .
This contradicts the assumption that  and  0 intersect in XnF .

As a consequence, X has spherical type Ar
1 . This concludes the proof of Theorem A,

as well as Theorem B and Theorem C.

5 Proof of the main consequences

We will now prove the main consequences of Theorem C, namely Theorem D and
Theorem E, and also give the proof of Proposition F.

Proof of Theorem D In one direction, assume that X is a symmetric space or affine
building of spherical type Ar

1 . If X is a discrete affine building of spherical type Ar
1 , if

we endow it with the L1 metric, X becomes an actual CAT.0/ cube complex. If X is
a symmetric space, it is isometric to a product of rank 1 symmetric spaces. According
to [15, Theorem 1.8], every word-hyperbolic group is quasi-isometric to a CAT.0/
cube complex. So each rank 1 symmetric space is quasi-isometric to a CAT.0/ cube
complex, hence X itself is quasi-isometric to a CAT.0/ cube complex.

Conversely, assume that the symmetric space or affine building X is quasi-isometric to
a CAT.0/ cube complex .Y; dp/, possibly of infinite dimension, endowed with the Lp

distance for some p 2 Œ1;1�. Since .Y; dp/ is quasi-isometric to the metric space X
which has finite dimension, we deduce that .Y; dp/ is quasi-isometric to .Y; d1/. Since
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.Y; d1/ is a metric median space, we deduce that there exists a coarse median on X .
According to Theorem C, we deduce that the spherical type of X is Ar

1 .

Proof of Theorem E Assume that � is coarse median. Since nonuniform lattices do
not have property (RD), � is cocompact in G . So � , endowed with a word metric, is
quasi-isometric to G , endowed with a left G–invariant metric. Let X be the symmetric
space of noncompact type of G (if KDR or C ) or the Bruhat–Tits Euclidean building
of G (if K is nonarchimedean). Then G is quasi-isometric to X , and so X has a
coarse median. According to Theorem C, X has spherical type Ar

1 , so G has relative
type Ar

1 . Since G is simple, r D 1, and G has K–rank 1.

We will now consider the rank 1 case, and give the proof of Proposition F.

Proof of Proposition F If � is a uniform lattice in G , then � is hyperbolic and hence
coarse median.

If G is locally isomorphic to SO0.n; 1/ for some n> 2, � is hyperbolic relative to a
family P1; : : : ; Pm of parabolic subgroups. Each parabolic subgroup Pi is virtually
isomorphic to Zn�1 . In particular, each Pi is coarse median, so by [4] � itself is
coarse median.

If G is locally isomorphic to SU.2; 1/, � is hyperbolic relative to a family P1; : : : ; Pm

of parabolic subgroups. Each parabolic subgroup Pi is virtually isomorphic to the
3–dimensional Heisenberg group H3 , which has cubic Dehn function (see [13]). This
implies that � has cubic Dehn function (see [22]), so by [5] � is not coarse median.
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