On the periodic $\boldsymbol{v}_{\mathbf{2}}$-self-map of $\boldsymbol{A}_{\mathbf{1}}$

Prasit Bhattacharya
Philip EGGER
Mark Mahowald

The spectrum $Y:=M_{2}(1) \wedge C \eta$ admits eight v_{1}-self-maps of periodicity 1 . These eight self-maps admit four different cofibers, which we denote by $A_{1}[i j]$ for $i, j \in$ $\{0,1\}$. We show that each of these four spectra admits a v_{2}-self-map of periodicity 32 .

55Q51
This paper is dedicated to the memory of Mark Mahowald (1931-2013)

1 Introduction

Convention Throughout this paper, we work in the stable homotopy category of spectra localized at the prime 2 .

Let $K(n)$ be the $n^{\text {th }}$ Morava K-theory. Let \mathcal{C}_{0} be the category of 2-local finite spectra, $\mathcal{C}_{n} \subset \mathcal{C}_{0}$ the full subcategory of $K(n-1)$-acyclics and \mathcal{C}_{∞} the full subcategory of contractible spectra. Hopkins and Smith [8] showed that the \mathcal{C}_{n} are thick subcategories of \mathcal{C}_{0} (in fact, they are the only thick subcategories of \mathcal{C}_{0}), and they fit into a sequence

$$
\mathcal{C}_{0} \supset \mathcal{C}_{1} \supset \cdots \supset \mathcal{C}_{n} \supset \cdots \supset \mathcal{C}_{\infty}
$$

We say a finite spectrum X is of type n if $X \in \mathcal{C}_{n} \backslash \mathcal{C}_{n+1}$.
A self-map $v: \Sigma^{k} X \rightarrow X$ of a finite spectrum X is called a v_{n}-self-map if

$$
K(n)_{*}(v): K(n)_{*}(X) \rightarrow K(n)_{*}(X)
$$

is an isomorphism. For a finite spectrum X, a self-map $v: \Sigma^{k} X \rightarrow X$ can also be regarded as an element of $\pi_{k}(X \wedge D X)$, where $D X$ is the Spanier-Whitehead dual of X.

For any ring spectrum E, let

$$
\iota_{E *}: \pi_{*}\left(_\right) \rightarrow E_{*}\left(_\right)
$$

denote the E-Hurewicz natural transformation. Let $k(n)$ denote the connective cover of $K(n)$. If $v: S^{k} \rightarrow X \wedge D X$ is a v_{n}-self-map, then $\iota_{k(n) *}(v) \in k(n)_{*}(X \wedge D X)$ has to be the image of $v_{n}^{m} \in k(n)_{*} \cong \mathbb{F}_{2}\left[v_{n}\right]$, for some positive integer m, under the map

$$
k(n)_{*} l X \wedge D X: k(n)_{*} \rightarrow k(n)_{*}(X \wedge D X)
$$

where $\iota_{X \wedge D X}: S^{0} \rightarrow X \wedge D X$ is the unit map. The value m is called the periodicity of the v_{n}-self-map v. We call v a minimal v_{n}-self-map for X if v is a v_{n}-self-map with minimal periodicity. An easy consequence of [8, Theorem 9] is that the periodicity of a minimal v_{n}-self-map is always a power of 2 .

Hopkins and Smith showed, among other things, that every type- n spectrum admits a v_{n}-self-map, and the cofiber of a v_{n}-self-map is of type $n+1$. However, not much is known about the minimal periodicity of such v_{n}-self-maps.
The sphere spectrum S^{0} is a type-0 spectrum with a v_{0}-self-map 2: $S^{0} \rightarrow S^{0}$. The cofiber of this v_{0}-self-map is the type- 1 spectrum $M(1)$. The spectrum $M(1)$ is known to admit a unique minimal v_{1}-self-map of periodicity 4 . The cofiber of this v_{1}-self-map is denoted by $M(1,4)$. In 2008, Behrens, Hill, Hopkins and the third author [1] showed that the minimal v_{2}-self-map on $M(1,4)$ has periodicity 32 .
Instead of S^{0}, we can start with the type-0 spectrum $C \eta$, the cofiber of η : $S^{1} \rightarrow S^{0}$. The spectrum $C \eta$ admits a nonzero v_{0}-self-map $2 \wedge 1_{C \eta}: C \eta \rightarrow C \eta$, with cofiber $M(1) \wedge C \eta:=Y$. The type- 1 spectrum Y admits eight minimal v_{1}-self-maps of periodicity 1. These eight maps are constructed by Davis and the third author [3] using stunted projective spaces. The cofiber of any of the v_{1}-self-maps is referred to as A_{1}. Though there are eight different v_{1}-self-maps, there are only four different homotopy types of the cofibers A_{1}; see [3, Proposition 2.1].
Let $A(1)$ be the subalgebra of the Steenrod algebra A generated by Sq^{1} and Sq^{2}. It turns out that the cohomology of any homotopy type of A_{1} is a free $A(1)$-module on one generator. However, different homotopy types of A_{1} have different A-module structures, which are distinguished by the action of Sq^{4}. We depict the cohomologies of the four different spectra A_{1} in Figure 1 where the square brackets represent an action of Sq^{4}, the curved lines represent an action of Sq^{2}, and the straight lines represent an action of Sq^{1}. The subalgebra $A(1)$ has four different A-module structures, each of which corresponds to a homotopy type of A_{1}. Any A-module structure on $A(1)$ has a nontrivial Sq^{4} action on the generator in degree 1 forced by the Adem relations. However, there are choices for Sq^{4} actions to be trivial or nontrivial on generators in degree 0 and degree 2 , thus giving us four different A-module structures. We denote the different homotopy types of A_{1} using the notation $A_{1}[i j]$ where i and j are the indicator functions for the action of Sq^{4} on the generators in degree 0 and degree 2, respectively.

Figure 1: The A-module structures of $H^{*}\left(A_{1}[00]\right), H^{*}\left(A_{1}[10]\right), H^{*}\left(A_{1}[01]\right)$ and $H^{*}\left(A_{1}[11]\right)$

Remark 1.1 (determining A-module structure on Spanier-Whitehead duals) For every finite spectrum X, there is an isomorphism

$$
H^{*} D X \cong D H^{*} X
$$

where we have Spanier-Whitehead duality on the left hand side and A-module duality on the right hand side. Thus, finding out the Spanier-Whitehead duality relations between the spectra $A_{1}[i j]$ boils down to finding the A-module duality relations between the A-modules depicted in Figure 1. The naïve guess is that dualizing these A-modules is equivalent to merely "flipping them upside down". However, this is not the case. For an A-module M and its dual $D M$, there is a pairing

$$
\langle-,-\rangle: M \otimes D M \rightarrow \mathbb{F}_{2}
$$

which is A-bilinear. Therefore, for elements $x, y \in M$ and $a \in A$, we have

$$
\left\langle a x, y_{*}\right\rangle=\left\langle x, \chi(a) y_{*}\right\rangle
$$

where $\chi: A \rightarrow A$ is the antipode, and hence

$$
(a x)_{*}=\sum_{\{g: a x=\chi(a) g\}} g_{*} .
$$

Because $\chi\left(\mathrm{Sq}^{1}\right)=\mathrm{Sq}^{1}$ and $\chi\left(\mathrm{Sq}^{2}\right)=\mathrm{Sq}^{2}$, the naïve guess is correct when it comes to actions of Sq^{1} and Sq^{2}. However, because we have $\chi\left(\mathrm{Sq}^{4}\right)=\mathrm{Sq}^{4}+\mathrm{Sq}^{3} S q^{1}$, the naïve guess breaks down when considering the actions of Sq^{4}. Thus we find that $H^{*}\left(A_{1}[00]\right)$ is dual to $H^{*}\left(A_{1}[11]\right)$, while $H^{*}\left(A_{1}[10]\right)$ and $H^{*}\left(A_{1}[01]\right)$ are self-dual. It follows that the spectra $A_{1}[01]$ and $A_{1}[10]$ are Spanier-Whitehead self-dual, whereas $A_{1}[00]$ and $A_{1}[11]$ are Spanier-Whitehead dual to each other.

It is worth noting that A_{1} is created in a way similar to $M(1,4)$, where $C \eta$ is analogous to S^{0}, and Y is analogous to $M(1)$. The minimal v_{1}-self-map of Y has periodicity 1 , which is less than the periodicity of the minimal v_{1}-self-map on $M(1)$, which is 4 . Hence, it is natural to ask if any of the four models of A_{1} admit a v_{2}-self-map of periodicity less than that of $M(1,4)$.

In [3, Theorem 1.4(ii)], Davis and the third author claimed, incorrectly, that the periodicity of the minimal v_{2}-self-maps on $M(1,4)$ and the two self-dual models of A_{1}, namely $A_{1}[01]$ and $A_{1}[10]$, was 8 . After successfully correcting the v_{2}-periodicity of $M(1,4)$ in [1], the v_{2}-periodicity of A_{1} was called into question by the third author. He conjectured that the minimal v_{2}-self-map of A_{1} should have periodicity 32 , which is also the periodicity of the minimal v_{2}-self-map of $M(1,4)$.

The goal of this paper is to prove the following correction of [3, Theorem 1.4(ii)], as reported in Remark 1.4 of [1]:

Main Theorem For all four models of A_{1}, the minimal v_{2}-self-map

$$
v: \Sigma^{192} A_{1} \rightarrow A_{1}
$$

has periodicity 32.

Notation 1.2 To lighten the notations, we use $\operatorname{Ext}_{T}^{s, t}(X)$ to denote $\operatorname{Exx}_{T}^{s, t}\left(H^{*}(X), \mathbb{F}_{2}\right)$, where T is a subalgebra of the Steenrod algebra A.

Notation 1.3 For any ring spectrum E, we denote the unit map by $\iota_{E}: S^{0} \rightarrow E$. The unit map ι_{E} induces the Hurewicz natural transformation

$$
\iota_{E *}: \pi_{*}\left(_\right) \rightarrow E_{*}\left(_\right)
$$

as introduced earlier. When $E=A_{1} \wedge D A_{1}$, we simply use $\iota: S^{0} \rightarrow A_{1} \wedge D A_{1}$ to denote the unit map. Let $i: S^{0} \hookrightarrow A_{1}$ be the map that represents the inclusion of the bottom cell. Let $j: A_{1} \wedge D A_{1} \rightarrow A_{1}$ denote the map $1_{A_{1}} \wedge D i$. Given a map between two spectra $f: X \rightarrow Y$, the unit map ι_{E} induces a map in E-homology, which we denote by

$$
E_{*}(f): E_{*} X \rightarrow E_{*} Y
$$

and also a map of Adams spectral sequences, which we denote by

$$
f_{*}^{E}: \operatorname{Ext}_{A}^{*, *}(E \wedge X) \rightarrow \operatorname{Ext}_{A}^{*, *}(E \wedge Y)
$$

Outline

The proof of Main Theorem consists of two parts, namely

- the nonexistence part, where we eliminate the possibility of a v_{2}-self-map of A_{1} of periodicity lower than 32,
- the existence part, where we show that there exists a v_{2}-self-map of A_{1} of periodicity 32 .

The proof makes use of several important differentials in the Adams spectral sequence that computes the homotopy groups of the spectrum tmf. As an A-module (see Hopkins and the third author [7]),

$$
H^{*}(t m f) \cong A / / A(2)
$$

where $A(2)$ is the subalgebra of A generated by $\mathrm{Sq}^{1}, \mathrm{Sq}^{2}$ and Sq^{4}. Therefore, by a change of rings formula, the E_{2} page of that Adams spectral sequence simplifies to

$$
\begin{equation*}
E_{2}^{s, t}=\mathrm{Ext}_{A(2)}^{s, t}\left(S^{0}\right) \Rightarrow \pi_{t-s}(t m f) \tag{1.4}
\end{equation*}
$$

The E_{2} page is periodic with the periodicity generator $b_{3,0}^{4}$, which lives in bidegree $(s, t)=(8,8+48)$. The periodicity generator $b_{3,0}^{4}$ and its square $b_{3,0}^{8}$ are not present in the E_{∞} page of the above spectral sequence. There exist differentials

$$
\begin{equation*}
d_{2}\left(b_{3,0}^{4}\right)=e_{0} r \quad \text { and } \quad d_{3}\left(b_{3,0}^{8}\right)=w g r \tag{1.5}
\end{equation*}
$$

in the Adams spectral sequence computing $\operatorname{tmf} f_{*}$. But in that spectral sequence, $b_{3,0}^{16}$ is a nonzero permanent cycle which detects the periodicity generator $\Delta^{8} \in \pi_{192}(\mathrm{tmf})$. All the details mentioned above are well documented by Henriques [6].
The unit map $\iota_{k(2)}: S^{0} \rightarrow k(2)$ factors through tmf (see [1, Remark 1.3]): ie we have

$$
\begin{equation*}
\iota_{k(2)}: S^{0} \xrightarrow{\iota_{m f}} \operatorname{tmf} \xrightarrow{r} k(2) \tag{1.6}
\end{equation*}
$$

The map induced by r in homotopy

$$
r_{*}: \operatorname{tmf}_{*} \rightarrow k(2)_{*}
$$

maps $\Delta^{8 n} \mapsto v_{2}^{32 n}$, which is why tmf can detect periodic v_{2}-self-maps. This can be observed through a map of Adams spectral sequences. Since

$$
H^{*}(k(2)) \cong A / / E\left(Q_{2}\right)
$$

(due to Lellmann [9]), by a change of rings formula, we have

$$
E_{2}^{s, t}=\operatorname{Ext}_{E\left(Q_{2}\right)}^{s, t}\left(S^{0}\right) \Rightarrow \pi_{t-s}(k(2))
$$

The E_{2} page is simply a polynomial algebra generated by v_{2} in bidegree $(s, t)=$ $(1,1+6)$. The spectral sequence collapses due to sparseness, giving us the expected result $\pi_{*}(k(2))=\mathbb{F}_{2}\left[v_{2}\right]$. The map $r: \operatorname{tmf} \rightarrow k(2)$ induces a map of spectral sequences

which sends $b_{3,0}^{4 n}$ to $v_{2}^{8 n}$ in the E_{2} page, and therefore sends $b_{3,0}^{16 n}$ to $v_{2}^{32 n}$ in the E_{∞} page.

Next we study the commutative diagram of spectral sequences:

Since A_{1} is a type- 2 spectrum, Δ^{8} has a nonzero image under the composite

$$
t m f_{*} \xrightarrow{r_{*}} k(2)_{*} \xrightarrow{k(2)_{*} \iota} k(2)_{*}\left(A_{1} \wedge D A_{1}\right) .
$$

Therefore, $\operatorname{tmf}_{*} \iota\left(\Delta^{8 n}\right) \in \operatorname{tmf} f_{*}\left(A_{1} \wedge D A_{1}\right)$ is the lift of $k(2)_{*} \iota\left(v_{2}^{32 n}\right)$. Similarly, at the level of E_{2} pages, we see that

$$
\iota_{*}^{\operatorname{tmf}}\left(b_{3,0}^{4 n}\right) \in \operatorname{Ext}_{A(2)}\left(A_{1} \wedge D A_{1}\right)
$$

is the lift of $\iota_{*}^{k(2)}\left(v_{2}^{8 n}\right)$. In Section 3, we argue that the differentials in (1.5) induce a d_{2} differential and a d_{3} differential in the spectral sequence

$$
\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge D A_{1}\right) \Rightarrow t m f_{*}\left(A_{1} \wedge D A_{1}\right)
$$

supported by $\iota_{*}^{\text {tmf }}\left(b_{3,0}^{4}\right)$ and $\iota_{*}^{\text {tmf }}\left(b_{3,0}^{8}\right)$, respectively. This means that $k(2)_{*} l\left(v_{2}^{8}\right)$ and $k(2)_{*} l\left(v_{2}^{16}\right)$ do not lift to $\operatorname{tmf} f_{*}\left(A_{1} \wedge D A_{1}\right)$, thereby establishing the "nonexistence part" of Main Theorem.

The proof of the existence part of Main Theorem can roughly be divided into two parts:

- the lifting part, where we show that

$$
\iota_{*}^{t m f}\left(b_{3,0}^{4 n}\right) \in \operatorname{Ext}_{A(2)}^{8 n, 48 n+8 n}\left(A_{1} \wedge D A_{1}\right)
$$

lifts to an element $\widetilde{v_{2}^{8 n}} \in \operatorname{Ext}_{A}^{8 n, 48 n+8 n}\left(A_{1} \wedge D A_{1}\right)$ under the map

$$
\iota_{t m f *}: \operatorname{Ext}_{A}^{*, *}\left(A_{1} \wedge D A_{1}\right) \rightarrow \operatorname{Ext}_{A(2)}^{*, *}\left(A_{1} \wedge D A_{1}\right)
$$

- the survival part, where we show that $\widetilde{v_{2}^{32 n}}$ is a nonzero permanent cycle in the Adams spectral sequence

$$
E_{2}=\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right) \Rightarrow \pi_{t-s}\left(A_{1} \wedge D A_{1}\right)
$$

for all $n>0$.

To achieve the lifting part, we use a Bousfield-Kan spectral sequence

$$
E_{1}^{s, t, n}:=\operatorname{Ext}_{A(2)}^{s-n, t}\left(H^{*}(X) \otimes \overline{A / / A(2)}^{\otimes n}, \mathbb{F}_{2}\right) \Rightarrow \operatorname{Ext}_{A}^{s, t}\left(H^{*}(X), \mathbb{F}_{2}\right)
$$

which is also otherwise known as the algebraic tmf spectral sequence.
For the survival part of the argument, we show that the d_{2} and d_{3} differentials of (1.5) lift along the zigzag of spectral sequences:

Since $\widetilde{v_{2}^{8}}$ supports a d_{2} differential and $\widetilde{v_{2}^{16}}$ supports a d_{3} differential, $\widetilde{v_{2}^{32}}$ can only support a d_{r} differential for $r \geq 4$ by the Leibniz rule. There is another d_{3} differential

$$
\begin{equation*}
d_{3}\left(v_{2}^{20} h_{1}\right)=g^{6} \tag{1.9}
\end{equation*}
$$

in the Adams spectral sequence for $\pi_{*}(t m f)$ which lifts along (1.8). The lifts of the differentials in (1.5) and (1.9), along with the multiplicative structure, allow us to deduce that there is no nonzero element in the E_{4} page of

$$
\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right) \Rightarrow \pi_{t-s}\left(A_{1} \wedge D A_{1}\right)
$$

for $s \geq 36$ and $t-s=191$. As a result, $\widetilde{v_{2}^{32}}$ is a nonzero permanent cycle, which detects a 32 -periodic v_{2}-self-map of A_{1}.

Notation 1.10 Let T be any subalgebra of A, for example, $E\left(Q_{2}\right), A(2)$ or A itself. Let X be any spectrum with a map $f: S^{0} \rightarrow X$. Throughout the paper, we will denote any nonzero image of $a \in \operatorname{Ext}_{T}^{*, *}\left(S^{0}\right)$ under the map

$$
f_{*}: \operatorname{Ext}_{T}^{*, *}\left(S^{0}\right) \rightarrow \operatorname{Ext}_{T}^{*, *}(X)
$$

using the same notation.

Use of Bruner's Ext software

We will use Bruner's Ext software [2] for two purposes. Given any $A(2)$-module M which is finitely generated as an \mathbb{F}_{2}-vector space, the program can compute the groups $\operatorname{Ext}_{A(2)}^{s, t}\left(M, \mathbb{F}_{2}\right)$ to the extent of identifying generators in each bidegree within a finite range, determined by the user. Since we are interested in $\operatorname{Ext}_{A(2)}^{s, t}(X)$ for finite spectra X, such as $A_{1} \wedge D A_{1}$, whose cohomology structures as $A(2)$-modules are known, this suits our task perfectly. The second purpose is the following: As any finite spectrum X is an S^{0}-module, $\operatorname{Ext}_{A(2)}^{*, *}(X)$ is a module over $\operatorname{Ext}_{A(2)}^{*, *}\left(S^{0}\right)$. Given an element $x \in \operatorname{Ext}_{A(2)}^{s, t}(X)$, the action of $\operatorname{Ext}_{A(2)}^{*, *}\left(S^{0}\right)$ can be computed using the dolifts functionality of the software.

One should also be aware that Main Theorem is by no means a consequence of the programming output. However, parts of the proof are reduced to pure algebraic computation, which can be performed using Bruner's program.

Organization of the paper

In Section 2, we use the May spectral sequence to compute $\operatorname{Ext}_{A(2)}^{*, *}\left(A_{1}\right)$. In particular, we establish a vanishing line of slope $\frac{1}{5}$, which will be useful for subsequent use of the algebraic tmf spectral sequence. In Section 3, we use the differentials in (1.5) to conclude that A_{1} cannot admit a v_{2}-self-map of periodicity less than 32 . We then use the algebraic tmf spectral sequence to lift the differentials in (1.5) along the zigzag (1.8), so that in the Adams spectral sequence

$$
\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right) \Rightarrow \pi_{t-s}\left(A_{1} \wedge D A_{1}\right)
$$

we have nonzero differentials $d_{2}\left(\widetilde{v_{2}^{8}}\right)$ and $d_{3}\left(\widetilde{v_{2}^{16}}\right)$. In Section 4, we use the algebraic tmf spectral sequence to lift the differential (1.9) along the zigzag (1.8). Finally, in Section 5, we complete the proof of Main Theorem.

In the Appendix, we provide a description of Bruner's Ext software to familiarize the readers with its usage. A summary of the output of the Bruner's program that is needed for some of the results in Section 5 is listed in the tables from the online supplement.

Acknowledgments Bhattacharya and Egger would like to thank Mark Behrens, Bob Bruner, Paul Goerss, Mike Hill and Mike Mandell for their invaluable assistance and encouragement throughout this project, as well as Irina Bobkova for some helpful discussions. We are greatly indebted to the anonymous referee for pointing out several subtle mistakes and gaps in our logical deductions, which ultimately led to the correct proof.

2 Computation of $\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1}\right)$ and its vanishing line

J P May in his thesis [10] introduced a filtration of the Steenrod algebra called the May filtration, which induces a filtration of the cobar complex $C\left(\mathbb{F}_{2}, A_{*}, \mathbb{F}_{2}\right)$. This filtration gives a trigraded spectral sequence

$$
E_{1}^{s, t, u}=\mathbb{F}_{2}\left[h_{i, j}: i \geq 1, j \geq 0\right] \Rightarrow \operatorname{Ext}_{A}^{s, t}\left(S^{0}\right), \quad\left|h_{i, j}\right|=\left(1,2^{j}\left(2^{i}-1\right), 2 i-1\right)
$$

with differentials d_{r} of tridegree $(1,0,1-2 r)$, which converges to the E_{2} page of the Adams spectral sequence

$$
E_{2}^{s, t}=\operatorname{Ext}_{A}^{s, t}\left(S^{0}\right) \Rightarrow \pi_{t-s}\left(S^{0}\right)
$$

The element $h_{i, j}$ corresponds to the class $\left[\xi_{i}^{2^{j}}\right]$ in the cobar complex $C\left(\mathbb{F}_{2}, A_{*}, \mathbb{F}_{2}\right)$. We stick to the notation introduced by Tangora in his thesis [12]. For example, $h_{1, j}$ is abbreviated by h_{j}. Meanwhile, there are many elements $h_{i, j}$ that are not d_{1}-cycles in the May spectral sequence, however, even in these cases, the Leibniz rule means that $h_{i, j}^{2}$ will be d_{1}-cycles. To get around the awkwardness of talking about $h_{i, j}^{2}$ in later pages of the May spectral sequence, where $h_{i, j}$ may not even exist, Tangora uses $b_{i, j}$ to denote $h_{i, j}^{2}$ from the May E_{2} page onwards.

One can use the same May filtration on the subalgebra $A(2)$ of A, to obtain a filtration on the cobar complex $C\left(\mathbb{F}_{2}, A(2)_{*}, \mathbb{F}_{2}\right)$. Thus we get a May spectral sequence with finitely many differentials

$$
\mathbb{F}_{2}\left[h_{0}, h_{1}, h_{2}, h_{2,0}, h_{2,1}, h_{3,0}\right] \Rightarrow \operatorname{Ext}_{A(2)}^{s, t}\left(S^{0}\right),
$$

all of which have been computed using techniques of [12]. The bigraded ring Ext ${ }_{A(2)}^{s, t}\left(S^{0}\right)$ is the Adams E_{2} page for the homotopy groups of $t m f$.

We have obtained A_{1} by a series of cofibrations

$$
S^{1} \xrightarrow{\eta} S^{0} \rightarrow C \eta, \quad C \eta \xrightarrow{2} C \eta \rightarrow Y \quad \text { and } \quad \Sigma^{2} Y \xrightarrow{v_{1}} Y \rightarrow A_{1}
$$

The maps $2, \eta$ and v_{1} are detected by h_{0}, h_{1} and $h_{2,0}$, respectively, in the May spectral sequence. Using the fact that cofiber sequences induce long exact sequences of E_{1} pages of the May spectral sequence, we get that the E_{1} page of the May spectral sequence converging to $\mathrm{Ext}_{A(2)}^{s, t}\left(A_{1}\right)$ is

$$
\mathbb{F}_{2}\left[h_{2}, h_{2,1}, h_{3,0}\right] \Rightarrow \operatorname{Ext}_{A(2)}^{s, t}\left(A_{1}\right)
$$

Alternatively, using a change of rings formula, we see that there is a quasi-isomorphism of cobar complexes

$$
C\left(\mathbb{F}_{2}, A(2)_{*}, A(1)_{*}\right) \cong C\left(\mathbb{F}_{2},(A(2) / / A(1))_{*}, \mathbb{F}_{2}\right)
$$

Since, $C\left(\mathbb{F}_{2},(A(2) / / A(1))_{*}, \mathbb{F}_{2}\right)$ is a quotient of $C\left(\mathbb{F}_{2}, A(2)_{*}, \mathbb{F}_{2}\right)$, the May filtration on $C\left(\mathbb{F}_{2}, A(2)_{*}, \mathbb{F}_{2}\right)$ induces a filtration on $C\left(\mathbb{F}_{2},(A(2) / / A(1))_{*}, \mathbb{F}_{2}\right)$. As a result, we have a May spectral sequence

$$
\begin{equation*}
E_{1}^{s, t, u}\left(A_{1}\right)=\mathbb{F}_{2}\left[h_{2}, h_{2,0}, h_{3,0}\right] \Rightarrow \operatorname{Ext}_{A(2)}^{s, t}\left(A_{1}\right) \tag{2.1}
\end{equation*}
$$

that is a module over the May spectral sequence for S^{0},

$$
\begin{equation*}
E_{1}^{s, t, u}\left(S^{0}\right)=\mathbb{F}_{2}\left[h_{0}, h_{1}, h_{2}, h_{2,0}, h_{2,1}, h_{3,0}\right] \Rightarrow \operatorname{Ext}_{A(2)}^{s, t}\left(S^{0}\right) \tag{2.2}
\end{equation*}
$$

The d_{1} differentials in (2.2) come from the coproduct on $A(2)_{*}$. It is well known that $d_{1}\left(h_{2}\right)=0, d_{1}\left(h_{2,1}\right)=h_{1} h_{2}$ and $d_{1}\left(h_{3,0}\right)=h_{0} h_{2,1}+h_{2} h_{2,0}$. Under the quotient map

$$
\mathbb{F}_{2}\left[h_{0}, h_{1}, h_{2}, h_{2,0}, h_{2,1}, h_{3,0}\right] \rightarrow \mathbb{F}_{2}\left[h_{2}, h_{2,1}, h_{3,0}\right]
$$

all the images of the above differentials map to zero. Therefore, there are no d_{1} differentials in (2.1).

One can use Nakamura's formula to compute higher May differentials. The operations Sq_{i} on the cobar complex of $C\left(\mathbb{F}_{2}, A_{*}, \mathbb{F}_{2}\right)$, defined by $\mathrm{Sq}_{i}(x)=x \cup_{i} x+\delta x \cup_{i+1} x$ (see [11]), satisfy

$$
\mathrm{Sq}_{0}\left(h_{i, j}\right)=h_{i, j}^{2}, \quad \mathrm{Sq}_{0}\left(b_{i, j}\right)=b_{i, j}^{2} \quad \text { and } \quad \mathrm{Sq}_{1}\left(h_{i, j}\right)=h_{i, j+1}
$$

as well as Cartan's formulas (see [11, Propositions 4.4 and 4.5])

$$
\mathrm{Sq}_{0}(x y)=\mathrm{Sq}_{0}(x) \mathrm{Sq}_{0}(y) \quad \text { and } \quad \mathrm{Sq}_{1}(x y)=\mathrm{Sq}_{1}(x) \mathrm{Sq}_{0}(y)+\mathrm{Sq}_{0}(x) \mathrm{Sq}_{1}(y)
$$

whenever x and y are represented by elements in appropriate pages of the May spectral sequence. In particular, we have

$$
\operatorname{Sq}_{1}\left(x^{2}\right)=0
$$

for every x. The differential δ in the cobar complex $C\left(\mathbb{F}_{2}, A_{*}, \mathbb{F}_{2}\right)$ satisfies the relation

$$
\begin{equation*}
\delta \mathrm{Sq}_{i}=\mathrm{Sq}_{i+1} \delta \tag{2.3}
\end{equation*}
$$

for $i \geq 0$ (see [11, Lemma 4.1]), and is often called Nakamura's formula in the literature.
Since the May spectral sequence (2.2) is obtained by filtering the cobar complex, Nakamura's formula (2.3) helps to find differentials in (2.2). Furthermore, because the cobar complex $C\left(\mathbb{F}_{2},(A(2) / / A(1))_{*}, \mathbb{F}_{2}\right)$ is a quotient of $C\left(\mathbb{F}_{2}, A(2)_{*}, \mathbb{F}_{2}\right)$, (2.3) can also help us to find differentials in (2.1).

Lemma 2.4 In the May spectral sequence

$$
\mathbb{F}_{2}\left[h_{2}, h_{2,1}, h_{3,0}\right] \Rightarrow \operatorname{Ext}_{A(2)}^{s, t}\left(A_{1}\right)
$$

we have the differentials

$$
d_{2}\left(b_{2,1}\right)=h_{2}^{3}, \quad d_{3}\left(b_{3,0}\right)=h_{2}^{2} h_{2,1} \quad \text { and } \quad d_{4}\left(b_{3,0}^{2}\right)=h_{2} b_{2,1}^{2}
$$

and the spectral sequence collapses at E_{5}.
Proof In the May spectral sequence for S^{0} (2.2), there is a differential

$$
d_{2}\left(b_{2,1}\right)=h_{2}^{3}
$$

which implies the corresponding d_{2} differential in the May spectral sequence for A_{1} (2.1). The element $b_{3,0}$ is represented by the element $\left[\xi_{3} \mid \xi_{3}\right]$ in the cobar complex $C\left(\mathbb{F}_{2}, A(2)_{*}, \mathbb{F}_{2}\right)$. Since $b_{3,0}=\mathrm{Sq}_{0} h_{3,0}$, we apply Nakamura's formula (2.3) to obtain

$$
\begin{aligned}
\mathrm{Sq}_{1}\left(d_{1}\left(h_{3,0}\right)\right) & =\mathrm{Sq}_{1}\left(h_{0} h_{2,1}+h_{2} h_{2,0}\right) \\
& =h_{0}^{2} h_{2,2}+h_{1} h_{2,1}^{2}+h_{2}^{2} h_{2,1}+h_{3} h_{2,0}^{2} \\
& =h_{2}^{2} h_{2,1}
\end{aligned}
$$

in the May spectral sequence for $A_{1}(2.1)$. Therefore, it must be the case that, in the cobar complex $C\left(\mathbb{F}_{2},(A(2) / / A(1))_{*}, \mathbb{F}_{2}\right)$,

$$
\delta\left(\left[\xi_{3} \mid \xi_{3}\right]\right)=\left[\xi_{1}^{4}\left|\xi_{1}^{4}\right| \xi_{2}^{2}\right]+\text { elements of higher May filtration. }
$$

As a result, in (2.1), we have

$$
d_{3}\left(b_{3,0}\right)=h_{2}^{2} h_{2,1}
$$

Since $\operatorname{Sq}_{0}\left(b_{3,0}\right)=b_{3,0}^{2}$, we can apply Nakamura's formula (2.3) in a similar way to obtain

$$
d_{4}\left(b_{3,0}^{2}\right)=h_{2} b_{2,1}^{2}
$$

in the May spectral sequence for $S^{0}(2.2)$ as well as $A_{1}(2.1)$.
For every r, we have that $E_{r}^{*, *, *}\left(A_{1}\right)$ is a differential graded module over $E_{r}^{*, *, *}\left(S^{0}\right)$. Since $b_{3,0}^{4}$ is a permanent cycle in (2.2), multiplication by $b_{3,0}^{4}$ commutes with differentials in (2.1). The elements of $E_{5}^{*, *, *}\left(A_{1}\right)$ that are not multiples of $b_{3,0}^{4}$ are permanent cycles by sparseness. Therefore, the elements of $E_{5}^{*, *, *}\left(A_{1}\right)$ that are multiples of $b_{3,0}^{4}$ are permanent cycles as well, and thus (2.1) collapses at the E_{5} page.

In Figure 2, the solid line of slope 1 represents multiplication by h_{1}, while the solid line of slope $\frac{1}{3}$ represents multiplication by h_{2}. The element $b_{3,0}^{4}$ is the periodicity generator of $\operatorname{Ext}_{A(2)}^{*, *}\left(A_{1}\right)$ and the solid lines in that part (right) are simply a repetition of the earlier pattern (left). This matches the output of Bruner's program [2] for $\mathrm{Ext}_{A(2)}^{s, t}\left(A_{1}\right)$, though different models of A_{1} may have different hidden extensions some of which might not be detected in the May spectral sequence.

We have thus computed the E_{∞} page of the May spectral sequence converging to $\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1}\right)$. While Bruner's program [2] shows that different spectra have different hidden extensions, we are mainly interested in a vanishing line for $\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1}\right)$, which will not be affected by these hidden extensions.

Lemma 2.5 The group $\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1}\right)$ is zero if

$$
s>\frac{1}{5}(t-s)+1
$$

and for $t-s \geq 29$, it is zero if

$$
s>\frac{1}{5}(t-s) .
$$

In other words, there is a vanishing line

$$
y=\frac{1}{5} x+1
$$

Proof Of the three generators of the E_{1} page, h_{2} has slope $\frac{1}{3}, h_{2,1}$ has slope $\frac{1}{5}$ and $h_{3,0}$ has slope $\frac{1}{6}$. However, while $\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1}\right)$ contains infinitely large powers of $h_{2,1}$ and $h_{3,0}$, it only contains powers up to 2 of h_{2}. Hence, the vanishing line of $\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1}\right)$ must have slope $\frac{1}{5}$, determined by $b_{2,1}^{2}$. Now, since $h_{2} b_{2,1}^{2}=0$, the vanishing line for stems greater than 29 is $y=\frac{1}{5} x$ and a glance at Figure 2 gives us the y-intercept of the overall vanishing line.

Figure 2: The E_{∞} page of the May spectral sequence for $\operatorname{Ext}_{A(2)}\left(A_{1}\right)$

3 A d_{2} and a d_{3} differential

In this section, we first show that $b_{3,0}^{4}$ and $b_{3,0}^{8}$ in $\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right)$ support a d_{2} and a d_{3} differential, respectively. Then we show that these differentials lift to $\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right)$ under the map of spectral sequences:

Some of the proofs in this section as well as in the subsequent sections use Bruner's program [2]. We provide the Appendix to help readers familiarize themselves with this software.

Lemma 3.1 In the Adams spectral sequence

$$
E_{2}^{s, t}=\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge D A_{1}\right) \Rightarrow t m f_{t-s}\left(A_{1} \wedge D A_{1}\right)
$$

we have $d_{2}\left(b_{3,0}^{4}\right)=e_{0} r$ and $d_{3}\left(b_{3,0}^{8}\right)=w g r$.
Proof Recall the well known differentials (1.5) in the Adams spectral sequence

$$
E_{2}^{s, t}=\mathrm{Ext}_{A(2)}^{s, t}\left(S^{0}\right) \Rightarrow t m f_{t-s} .
$$

Using Bruner's program, we see that $e_{0} r$ and $w g r$ both have nonzero images in $\mathrm{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge D A_{1}\right)$. Hence, in the map of Adams spectral sequences

we have established that in the (abusive) Notation 1.3, we have

$$
\begin{aligned}
\mathrm{Ext}_{A(2)}^{s, t}\left(S^{0}\right) & \xrightarrow{\iota_{*}^{\text {tmf }}} \mathrm{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge D A_{1}\right), \\
b_{3,0}^{4} & \mapsto b_{3,0}^{4}, \\
b_{3,0}^{8} & \mapsto b_{3,0}^{8}, \\
e_{0} r & \mapsto e_{0} r, \\
w g r & \mapsto w g r .
\end{aligned}
$$

Therefore, the d_{2} differential of (1.5) forces a d_{2} differential

$$
d_{2}\left(b_{3,0}^{4}\right)=e_{0} r
$$

in the Adams spectral sequence for $\operatorname{tmf}_{*}\left(A_{1} \wedge D A_{1}\right)$. By the Leibniz rule, $d_{2}\left(b_{3,0}^{8}\right)=0$ and hence $b_{3,0}^{8}$ is nonzero in the E_{3} page. The d_{3} differential in (1.5) will force a nonzero d_{3} differential

$$
d_{3}\left(b_{3,0}^{8}\right)=w g r
$$

in the Adams spectral sequence for $t m f_{*}\left(A_{1} \wedge D A_{1}\right)$ as claimed, provided the image of $w g r$ is nonzero in the E_{3} page. Thus we have to show that there does not exist a differential of the form $d_{2}(x)=w g r$.
Using Bruner's program [2], we check that $w g r \in \operatorname{Ext}_{A(2)}^{19,95+19}\left(S^{0}\right)$ maps nontrivially to $\operatorname{Ext}_{A(2)}^{19,95+19}\left(A_{1}\right)$. Therefore if we have $d_{2}(x)=w g r$ in

$$
\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge D A_{1}\right) \Rightarrow \operatorname{tmf}_{t-s}\left(A_{1} \wedge D A_{1}\right)
$$

then x must map to a nonzero element, say x^{\prime}, under the map

$$
j_{*}: \operatorname{Ext}_{A(2)}^{17,96+17}\left(A_{1} \wedge D A_{1}\right) \rightarrow \operatorname{Ext}_{A(2)}^{17,96+17}\left(A_{1}\right)
$$

and we will have $d_{2}\left(x^{\prime}\right)=w g r$ in

$$
\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1}\right) \Rightarrow t m f_{t-s}\left(A_{1}\right)
$$

There is exactly one generator of $\operatorname{Ext}_{A(2)}^{17,96+17}\left(A_{1}\right)$, and that generator is $b_{3,0}^{4} \cdot y$ under the pairing

$$
\operatorname{Ext}_{A(2)}^{8,48+8}\left(S^{0}\right) \otimes \operatorname{Ext}_{A(2)}^{9,48+9}\left(A_{1}\right) \rightarrow \operatorname{Ext}_{A(2)}^{17,96+17}\left(A_{1}\right)
$$

It is clear that $d_{2}(y)=0$ as $\operatorname{Ext}_{A(2)}^{11,47+11}\left(A_{1}\right)=0$; see Figure 2. Thus using the Leibniz rule, we see that

$$
d_{2}\left(b_{3,0}^{4} y\right)=e_{0} r \cdot y
$$

Using [2], we check that $e_{0} r \cdot y=0$. Therefore, wgr is nonzero in the E_{3} page of the spectral sequence

$$
\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge D A_{1}\right) \Rightarrow \operatorname{tmf}_{t-s}\left(A_{1} \wedge D A_{1}\right)
$$

and therefore

$$
d_{3}\left(b_{3,0}^{8}\right)=w g r
$$

in this spectral sequence.

The fact that $v_{2}^{16} \in k(2)_{*}\left(A_{1} \wedge D A_{1}\right)$ does not lift to $\operatorname{tmf} f_{*}\left(A_{1} \wedge D A_{1}\right)$ implies that $v_{2}^{2^{k}} \in k(2)_{*}\left(A_{1} \wedge D A_{1}\right)$ for $1 \leq k \leq 4$ does not lift to $\operatorname{tmf} f_{*}\left(A_{1} \wedge D A_{1}\right)$. Indeed, suppose that for $k=0,1,2$ or 3 the element $v_{2}^{2^{k}} \in k(2)_{*}\left(A_{1} \wedge D A_{1}\right)$ lifts to an element

$$
x \in \operatorname{tmf}_{*}\left(A_{1} \wedge D A_{1}\right)
$$

then $x^{2^{4-k}}$ would be a lift of v_{2}^{16} as $A_{1} \wedge D A_{1}$ is a ring spectrum. This would contradict Lemma 3.1. Since the unit map for $k(2)$ factors through the unit map of tmf (1.6), Lemma 3.1 implies the following:

Theorem 3.2 The spectrum A_{1} cannot admit a v_{2}-self-map of periodicity 16 or less.
Next we describe an algebraic resolution which will allow us to lift the d_{2} differential and the d_{3} differential of Lemma 3.1 to the Adams spectral sequence

$$
E_{2}^{s, t}=\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right) \Rightarrow \pi_{t-s}\left(A_{1} \wedge D A_{1}\right)
$$

We will briefly recall the resolution described in [1, Section 5], and how it is used to lift elements of Ext groups over $A(2)$ to Ext groups over A. Consider the A-module

$$
A / / A(2):=A \otimes_{A(2)} \mathbb{F}_{2}
$$

and denote by $\overline{A / / A(2)}$ the kernel of the augmentation map

$$
A / / A(2) \rightarrow \mathbb{F}_{2} .
$$

When we consider the triangulated structure of the derived category of A-modules, we get maps

$$
A / / A(2) \rightarrow \mathbb{F}_{2} \rightarrow \overline{A / / A(2)}[1]
$$

and a resulting diagram

to which we shall apply the functor $\operatorname{Ext}_{A}^{s, t}\left(H^{*}(X) \otimes-, \mathbb{F}_{2}\right)$ to get a spectral sequence, which we shall refer to as the algebraic $t m f$ spectral sequence to reflect the fact that $A / / A(2)$ is the cohomology of $t m f$. This spectral sequence will be trigraded, with E_{1} page

$$
\left.\begin{array}{rl}
E_{1}^{s, t, n} & =\mathrm{Ext}_{A}^{s, t}\left(H^{*}(X) \otimes A / / A(2) \otimes \overline{A / / A(2)}\right. \\
& \otimes n \\
\left.[n], \mathbb{F}_{2}\right) \\
& \cong \operatorname{Ext}_{A(2)}^{s-n, t}\left(H^{*}(X) \otimes \overline{A / / A(2)}\right.
\end{array}{ }^{\otimes n}, \mathbb{F}_{2}\right), ~ \$
$$

which converges to

$$
\mathrm{Ext}_{A}^{s, t}\left(H^{*}(X), \mathbb{F}_{2}\right)
$$

For any element in the algebraic tmf spectral sequence in tridegree (s, t, n), we will refer to s as its Adams filtration, t as the internal degree and n as the algebraic tmf filtration. The differential d_{r} has tridegree $(1,0, r)$. It is shown in [4] that

$$
A / / A(2) \cong \bigoplus_{i \geq 0} H^{*}\left(\Sigma^{8 i} b o_{i}\right)
$$

where $b o_{i}$ denotes the $i^{\text {th }} b o$-Brown-Gitler spectrum of [5]. As a result the E_{1} page of the algebraic tmf spectral sequence simplifies to

$$
E_{1}^{s, t, n}=\bigoplus_{i_{1}, \ldots, i_{n} \geq 1} \operatorname{Ext}_{A(2)}^{s-n, t-8\left(i_{1}+\cdots+i_{n}\right)}\left(X \wedge b o_{i_{1}} \wedge \cdots \wedge b o_{i_{n}}\right) \Rightarrow \operatorname{Ext}_{A}^{s, t}(X)
$$

We will attempt to exploit the relative sparseness of the E_{1} page, especially its vanishing line properties, in the case when $X=A_{1} \wedge D A_{1}$.

Remark 3.3 (the cellular structure of $b o$-Brown-Gitler spectra) The spectrum $b o_{0}$ is the sphere spectrum. The cohomology of the spectrum $b o_{1}$ as a module over the Steenrod algebra can be described through the following picture, with the generators labeled by cohomological degree:

where the straight line, curved line and square bracket describe the actions of $\mathrm{Sq}^{1}, \mathrm{Sq}^{2}$ and Sq^{4}, respectively. Note that the 4 -skeleton of $b o_{1}$ is $C v$. Indeed, the $b o_{i}$ fit together to form the following cofiber sequence

$$
b o_{i-1} \rightarrow b o_{i} \rightarrow \Sigma^{4 i} B(i)
$$

where $B(i)$ is the $i^{\text {th }}$ integral Brown-Gitler spectrum as described in [5]. Therefore for every $i \geq 1$, the 7 -skeleton of $b o_{i}$ is $b o_{1}$ and the 4 -skeleton of $b o_{i}$ is $C v$.

One can compute $\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge D A_{1} \wedge b o_{i}\right)$ from $\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge D A_{1}\right)$ using the Atiyah-Hirzebruch spectral sequence or with Bruner's program [2].

Lemma 3.4 The group

$$
\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge D A_{1} \wedge b o_{i_{1}} \wedge \cdots \wedge b o_{i_{n}}\right)
$$

is zero if $s>\frac{1}{5}((t-s)+6)$.

Proof We showed in Lemma 2.5 that $\operatorname{Ext}_{\boldsymbol{A}(2)}^{s, t}\left(\mathrm{~A}_{1}\right)$ has a vanishing line $s=\frac{1}{5}(t-s)$ for $t-s \geq 30$ and a vanishing line of $s=\frac{1}{5}(t-s)+1$ overall. The only generator of $\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1}\right)$ with a slope greater than $\frac{1}{5}$ is h_{2}, so if we kill off h_{2} by considering $\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge C \nu\right)$ then the vanishing line is precisely $s=\frac{1}{5}(t-s)$.

As we mentioned in Remark 3.3, the 4 -skeleton of any $b o_{i}$ is $C v$ and the next cell is in dimension 6 . So we can build $b o_{i}$ by attaching finitely many cells of dimension at least 6 to $C \nu$. Hence by using the Atiyah-Hirzebruch spectral sequence and the fact that $\frac{1}{5}(x-6)+1<\frac{1}{5} x$, one can see that the vanishing line of $A_{1} \wedge b o_{i}$ is $s=\frac{1}{5}(t-s)$. One can build $A_{1} \wedge b o_{i_{1}} \wedge \cdots \wedge b o_{i_{n}}$ from $A_{1} \wedge b o_{i_{1}}$, iteratively using cofiber sequences, which depend on the cell structure of $b o_{i_{2}} \wedge \cdots \wedge b o_{i_{n}}$. Since we have already established that $\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge b o_{i_{1}}\right)$ has vanishing line $s=\frac{1}{5}(t-s)$ and that $b o_{i_{2}} \wedge \cdots \wedge b o_{i_{n}}$ is a connected spectrum, we conclude, using the Atiyah-Hirzebruch spectral sequence, that the vanishing line for $\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge b o_{i_{1}} \wedge \cdots \wedge b o_{i_{n}}\right)$ is $s=\frac{1}{5}(t-s)$.

However, $D A_{1}$ has cells in negative dimension, in fact the bottom cell is in dimension -6 . Again by using the Atiyah-Hirzebruch spectral sequence, one concludes that the vanishing line for $\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge D A_{1} \wedge b o_{i_{1}} \wedge \cdots \wedge b o_{i_{n}}\right)$ is

$$
s=\frac{1}{5}(t-s+6)
$$

for any $i_{k} \geq 1$, completing the proof.

Corollary 3.5 The group $\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right)$ is zero if

$$
s>\frac{1}{5}(t-s)+\frac{11}{5},
$$

and for $t-s \geq 23$, it is zero if

$$
s>\frac{1}{5}(t-s)+\frac{6}{5} .
$$

The result is a straightforward consequence of Lemma 2.5, Lemma 3.4 and the algebraic tmf spectral sequence.

Lemma 3.6 The element

$$
b_{3,0}^{4} \in \operatorname{Ext}_{A(2)}^{8,48+8}\left(A_{1} \wedge D A_{1}\right)
$$

lifts to an element $\widetilde{v_{2}^{8}}$ under the map

$$
\iota_{t m f *}: \operatorname{Ext}_{A}^{8,48+8}\left(A_{1} \wedge D A_{1}\right) \rightarrow \operatorname{Ext}_{A(2)}^{8,48+8}\left(A_{1} \wedge D A_{1}\right)
$$

Proof Consider the algebraic tmf spectral sequence:

$$
\begin{gathered}
E_{1}^{s, t, n}=\bigoplus_{i_{1} \geq 1, \ldots, i_{n} \geq 1} \operatorname{Ext}_{A(2)}^{s-n, t-8\left(i_{1}+\cdots+i_{n}\right)}\left(A_{1} \wedge D A_{1} \wedge b o_{i_{1}} \wedge \ldots b o_{i_{n}}\right) \\
\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right)
\end{gathered}
$$

The element $b_{3,0}^{4}$ has tridegree $(s, t, n)=(8,48+8,0)=(8,56,0)$ in the above spectral sequence. The element $d_{n}\left(b_{3,0}^{4}\right)$ has tridegree $(9,56, n)$ and hence belongs to

$$
\operatorname{Ext}_{A(2)}^{9-n, 56-8\left(i_{1}+\cdots+i_{n}\right)}\left(A_{1} \wedge D A_{1} \wedge b o_{i_{1}} \wedge \cdots \wedge b o_{i_{n}}\right)
$$

for some $\left(i_{1}, \ldots, i_{n}\right)$ where $i_{k} \geq 1$. We will show that the above group is zero for all $n \geq 1$ and for all tuples $\left(i_{1}, \ldots, i_{n}\right)$ where $i_{k} \geq 1$.

By Lemma 3.4 the above group is zero if

$$
\begin{equation*}
\frac{1}{5}\left(56-8\left(i_{1}+\cdots+i_{n}\right)-9+n+6\right)<9-n \tag{3.7}
\end{equation*}
$$

which is trivially satisfied for $n>4$.
For $n=1$, (3.7) becomes

$$
\frac{1}{5}\left(54-8 i_{1}\right)<8
$$

thus $i_{1}>1$, so it suffices to verify that

$$
\operatorname{Ext}_{A(2)}^{8,48}\left(A_{1} \wedge D A_{1} \wedge b o_{1}\right)=0
$$

For $n=2$, (3.7) becomes

$$
\frac{1}{5}\left(55-8\left(i_{1}+i_{2}\right)\right)<7,
$$

thus $i_{1}+i_{2}>2$, so it suffices to verify that

$$
\operatorname{Ext}_{A(2)}^{7,40}\left(A_{1} \wedge D A_{1} \wedge b o_{1} \wedge b o_{1}\right)=0
$$

For $n=3$, (3.7) becomes

$$
\frac{1}{5}\left(56-8\left(i_{1}+i_{2}+i_{3}\right)\right)<6
$$

thus $i_{1}+i_{2}+i_{3}>3$, so it suffices to verify that

$$
\operatorname{Ext}_{A(2)}^{6,32}\left(A_{1} \wedge D A_{1} \wedge b o_{1} \wedge b o_{1} \wedge b o_{1}\right)=0
$$

For $n=4$, (3.7) becomes

$$
\frac{1}{5}\left(57-8\left(i_{1}+i_{2}+i_{3}+i_{4}\right)\right)<5
$$

thus $i_{1}+i_{2}+i_{3}+i_{4}>4$, so it suffices to verify that

$$
\operatorname{Ext}_{A(2)}^{5,24}\left(A_{1} \wedge D A_{1} \wedge b o_{1} \wedge b o_{1} \wedge b o_{1} \wedge b o_{1}\right)=0
$$

For all four models of A_{1}, Bruner's program [2] shows that all the groups we expected to be zero are in fact zero.

Corollary 3.8 For all $n \in \mathbb{N}$, the elements $b_{3,0}^{4 n} \in \operatorname{Ext}_{A(2)}^{8 n, 48 n+8 n}\left(A_{1} \wedge D A_{1}\right)$ lift to an element $\widetilde{v_{2}^{8 n}} \in \operatorname{Ext}_{A}^{8 n, 48 n+8 n}\left(A_{1} \wedge D A_{1}\right)$ under the map $\iota_{\text {tmf } *}$.

Proof Since $A_{1} \wedge D A_{1}$ is a ring spectrum, it follows that the map

$$
\iota_{t m f *}: \operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right) \rightarrow \operatorname{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge D A_{1}\right)
$$

is a map of algebras. By Lemma 3.6, $b_{3,0}^{4}$ lifts and thus $b_{3,0}^{4 n}$ lifts for every $n \in \mathbb{N}$.
Remark 3.9 The lift of $\widetilde{v_{2}^{8 n}}$ in Corollary 3.8 may not be unique. The indeterminacy in the choice of $\widetilde{v_{2}^{8 n}}$ consists of elements of higher algebraic tmf filtration.
Lemma 3.10 In the Adams spectral sequence

$$
E_{2}^{s, t}=\mathrm{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right) \Rightarrow \pi_{t-s}\left(A_{1} \wedge D A_{1}\right)
$$

there is a d_{2}-differential

$$
d_{2}\left(\widetilde{v_{2}^{8}}\right)=e_{0} r+R
$$

and a d_{3}-differential

$$
d_{3}\left(\widetilde{v_{2}^{16}}\right)=w g r+S
$$

for some R and S in algebraic tmf filtration greater than zero.
Proof Recall that $e_{0} r$ and $w g r$ are elements in $\operatorname{Ext}_{A}^{*, *}\left(S^{0}\right)$ (see [12]), which maps nontrivially (see Lemma 3.1) under the composite

$$
\operatorname{Ext}_{A}^{*, *}\left(S^{0}\right) \rightarrow \operatorname{Ext}_{A(2)}^{*, *}\left(S^{0}\right) \rightarrow \operatorname{Ext}_{A(2)}^{*, *}\left(A_{1} \wedge D A_{1}\right)
$$

Therefore, by inspecting the commutative diagram

we see that $e_{0} r$ and $w g r$ are nonzero image in $\operatorname{Ext}_{A}^{*, *}\left(A_{1} \wedge D A_{1}\right)$. Since $\widetilde{v_{2}^{8}}$ and $\widetilde{v_{2}^{16}}$ are lifts of $b_{3,0}^{4}$ and $b_{3,0}^{8}$, respectively, the differentials of Lemma 3.1 force the differentials as claimed.

4 Another \boldsymbol{d}_{3} differential

The goal of this section is to lift the d_{3} differential (1.9) in the spectral sequence for $t m f_{*}$ to a d_{3} differential

$$
d_{3}\left(\widetilde{v_{2}^{20} h_{1}}\right)=g^{6}
$$

in the Adams spectral sequence

$$
E_{2}^{s, t}=\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right) \Rightarrow \pi_{*}\left(A_{1} \wedge D A_{1}\right)
$$

along the zigzag (1.8).
The element $g \in \operatorname{Ext}_{A}^{4,20+4}\left(S^{0}\right)$ is Tangora's name [12] for the element detected by $b_{2,1}^{2}$ in the May spectral sequence

$$
\mathbb{F}_{2}\left[h_{i, j}: i>0, j \geq 0\right] \Rightarrow \operatorname{Ext}_{A}^{s, t}\left(S^{0}\right) .
$$

In the literature, the same name is adopted for its image in $\operatorname{Ext}_{A(2)}^{4,20+4}\left(S^{0}\right)$.
Lemma 4.1 In the Adams spectral sequence

$$
E_{2}^{s, t}=\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge D A_{1}\right) \Rightarrow t m f_{t-s}\left(A_{1} \wedge D A_{1}\right),
$$

the element g^{6} is hit by a d_{3} differential

$$
d_{3}\left(v_{2}^{20} h_{1}\right)=g^{6} .
$$

Proof From the calculation in Lemma 2.4, it is clear that $g^{6}=b_{2,1}^{12}$ has a nonzero image in $\operatorname{Ext}_{A(2)}^{24,120+24}\left(A_{1}\right)$. Since we have a factorization of maps

$$
\operatorname{Ext}_{A(2)}^{24,120+24}\left(S^{0}\right) \rightarrow \operatorname{Ext}_{A(2)}^{24,120+24}\left(A_{1} \wedge D A_{1}\right) \rightarrow \operatorname{Ext}_{A(2)}^{24,120+24}\left(A_{1}\right)
$$

we have that g^{6} must also be nonzero in the Adams E_{2} page for $t m f_{*}\left(A_{1} \wedge D A_{1}\right)$.
To show that it is also nonzero in the Adams E_{3} page, we must exclude the possibility that $g^{6} \in \operatorname{Ext}_{A(2)}^{24,120+24}\left(A_{1} \wedge D A_{1}\right)$ might be hit by a d_{2} differential

$$
d_{2}(\hat{x})=g^{6}
$$

for some elements $\hat{x} \in \operatorname{Ext}_{A(2)}^{22,121+22}\left(A_{1} \wedge D A_{1}\right)$. In such a case, \hat{x} would have to map to a nonzero element $x \in \operatorname{Ext}_{A(2)}^{22,121+22}\left(A_{1}\right)$ and there would exist a differential

$$
\begin{equation*}
d_{2}(x)=g^{6} \tag{4.2}
\end{equation*}
$$

in the Adams spectral sequence

$$
E_{2}^{s, t}=\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1}\right) \Rightarrow t m f_{t-s}\left(A_{1}\right)
$$

as $g^{6} \neq 0 \in \operatorname{Ext}_{A(2)}^{24,120+24}\left(A_{1}\right)$. From the calculations of Lemma 2.4, there is exactly one possible nonzero $x \in \operatorname{Ext}_{A(2)}^{22,121+22}\left(A_{1}\right)$. Using Bruner's program [2] (see (A.2)) we see that this x is a multiple of $g b_{3,0}^{4}$ under the pairing

$$
\operatorname{Ext}_{A(2)}^{12,68+12}\left(S^{0}\right) \otimes \operatorname{Ext}_{A(2)}^{10,53+10}\left(A_{1}\right) \rightarrow \operatorname{Ext}_{A(2)}^{22,121+22}\left(A_{1}\right), \quad g b_{3,0}^{4} \otimes \bar{x} \mapsto x
$$

Clearly $d_{2}(\bar{x})=0$ as $\operatorname{Ext}_{A(2)}^{12,52+12}\left(A_{1}\right)=0$, and hence by the Leibniz rule, we get

$$
d_{2}(x)=g e_{0} r \cdot \bar{x}
$$

However, $g e_{0} r=0$ in $\operatorname{Ext}_{A(2)}^{14,67+14}\left(S^{0}\right)$, therefore $d_{2}(x)=0$. It follows that the d_{2} differential in (4.2) cannot exist and g^{6} is a nonzero element in the E_{3} page of the spectral sequence

$$
\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge D A_{1}\right) \Rightarrow \operatorname{tmf}_{t-s}\left(A_{1} \wedge D A_{1}\right)
$$

Thus the d_{3} differential of (1.9) in Adams spectral sequence

$$
\mathrm{Ext}_{A(2)}^{s, t}\left(S^{0}\right) \Rightarrow t m f_{t-s}
$$

forces the d_{3} differential

$$
d_{3}\left(v_{2}^{20} h_{1}\right)=g^{6}
$$

in the Adams spectral sequence for $t m f_{*}\left(A_{1} \wedge D A_{1}\right)$ as claimed.

Our next goal is to lift this d_{3} differential to the Adams spectral sequence

$$
\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right) \Rightarrow \pi_{t-s}\left(A_{1} \wedge D A_{1}\right)
$$

The main tool at our disposal is the algebraic tmf spectral sequence, described in Section 3.

Lemma 4.3 The elements g^{6} and $v_{2}^{20} h_{1}$ lift to $\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right)$ under the map

$$
\iota_{t m f *}: \operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right) \rightarrow \operatorname{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge D A_{1}\right)
$$

Proof In the proof of Lemma 4.1, we showed that g^{6} is a nonzero element if $\operatorname{Ext}_{A(2)}^{24,120+24}\left(A_{1} \wedge D A_{1}\right)$. Since g^{6} is an element of $\operatorname{Ext}_{A}^{24,120+24}\left(S^{0}\right)$, from the
commutative diagram

$$
\begin{gathered}
\operatorname{Ext}_{A}^{*, *}\left(S^{0}\right) \xrightarrow{\iota_{*}} \operatorname{Ext}_{A}^{*, *}\left(A_{1} \wedge D A_{1}\right) \\
\operatorname{Ext}_{A(2)}^{*, *}\left(S^{0}\right) \xrightarrow{\iota_{m f *}} \stackrel{\downarrow_{t m f}^{t_{*}}}{t_{*}} \operatorname{Ext}_{A(2)}^{*, *}\left(A_{1} \wedge D A_{1}\right)
\end{gathered}
$$

it easily follows that g^{6} lifts to $\operatorname{Ext}_{A}^{24,120+24}\left(A_{1} \wedge D A_{1}\right)$ under the map $\iota_{t m f *}$. It is known that $v_{2}^{20} h_{1}=b_{3,0}^{8} \cdot v_{2}^{4} h_{1}$ under the pairing $\operatorname{Ext}_{A(2)}^{16,96+16}\left(S^{0}\right) \otimes \operatorname{Ext}_{A(2)}^{5,25+5}\left(S^{0}\right) \rightarrow \operatorname{Ext}_{A(2)}^{21,121+21}\left(S^{0}\right), \quad b_{3,0}^{8} \otimes v_{2}^{4} h_{1} \mapsto v_{2}^{20} h_{1}$. Therefore the same relation $v_{2}^{20} h_{1}=b_{3,0}^{8} \cdot v_{2}^{4} h_{1}$ is true in $\operatorname{Ext}_{A(2)}^{21,121+21}\left(A_{1} \wedge D A_{1}\right)$ as

$$
\iota_{*}^{t m f}: \operatorname{Ext}_{A(2)}^{s, t}\left(S^{0}\right) \rightarrow \operatorname{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge D A_{1}\right)
$$

is a map of algebras. From Corollary 3.8 , we already know that $b_{3,0}^{8}$ lifts to

$$
\widetilde{v_{2}^{16}} \in \operatorname{Ext}_{A}^{16,96+16}\left(A_{1} \wedge D A_{1}\right)
$$

Using the algebraic tmf spectral sequence

$$
\begin{gathered}
E_{1}^{s, t, n}=\bigoplus_{i_{1} \geq 1, \ldots, i_{n} \geq 1} \operatorname{Ext}_{A(2)}^{s-n, t-8\left(i_{1}+\cdots+i_{n}\right)}\left(A_{1} \wedge D A_{1} \wedge b o_{i_{1}} \wedge \cdots \wedge b o_{i_{n}}\right) \\
\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right)
\end{gathered}
$$

and the vanishing lines established in Lemma 3.4, we see $v_{2}^{4} h_{1} \in \operatorname{Ext}_{A(2)}^{5,25+5}\left(A_{1} \wedge D A_{1}\right)$ also has a lift

$$
\widetilde{v_{2}^{4} h_{1}} \in \operatorname{Ext}_{A}^{5,25+5}\left(A_{1} \wedge D A_{1}\right)
$$

Therefore,

$$
\widetilde{v_{2}^{16}} \cdot \widetilde{v_{2}^{4} h_{1}} \in \operatorname{Ext}_{A}^{21,121+21}\left(A_{1} \wedge D A_{1}\right)
$$

is a lift of $v_{2}^{20} h_{1}$, as

$$
\iota_{t m f *}: \mathrm{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right) \rightarrow \mathrm{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge D A_{1}\right)
$$

is a map of algebras.

We will denote any lift of $v_{2}^{20} h_{1}$ by $\widetilde{v_{2}^{20} h_{1}} \in \operatorname{Ext}_{A}^{21,121+21}\left(A_{1} \wedge D A_{1}\right)$. One should be aware that the choice of $\widetilde{v_{2}^{20} h_{1}}$ is not unique. The indeterminacy in the choice of $\widehat{v_{2}^{20} h_{1}}$ consists of elements of higher algebraic tmf filtration. This does not cause problems later in the paper because of the following technical lemma.

Lemma 4.4 Suppose that we have a nontrivial differential $d_{r}(x)=y$ in the Adams spectral sequence for a spectrum X,

$$
E_{2}^{s, t}=\operatorname{Ext}_{A}^{s, t}(X) \Rightarrow \pi_{t-s}(X)
$$

If x has algebraic tmf filtration greater than zero, then so does y.
Proof If the algebraic tmf filtration of x is greater than zero then the map of spectral sequences

sends x to 0 . Therefore,

$$
\begin{aligned}
\iota_{t m f *}(y) & =\iota_{t m f *}\left(d_{r}(x)\right) \\
& =d_{r}\left(\iota_{t m f *}(x)\right) \\
& =0,
\end{aligned}
$$

which means that the algebraic tmf filtration of y is greater than zero.
Lemma 4.5 In the Adams spectral sequence

$$
\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right) \Rightarrow \pi_{t-s}\left(A_{1} \wedge D A_{1}\right)
$$

there exists a d_{3} differential

$$
d_{3}\left(\widetilde{v_{2}^{20} h_{1}}\right)=g^{6}
$$

Proof It is easy to check that Lemma 4.1, along with the map of Adams spectral sequences

induced by $\iota_{t m f}$, forces a d_{3} differential (also see Remark 4.7)

$$
\begin{equation*}
d_{3}\left(\widetilde{v_{2}^{20} h_{1}}\right)=g^{6}+R \tag{4.6}
\end{equation*}
$$

where R is an element of algebraic tmf filtration greater than zero. Studying the algebraic tmf spectral sequence for $A_{1} \wedge D A_{1}$, using the vanishing lines of Lemma 3.4 and using the fact that (checked using Bruner's program)
$\operatorname{Ext}_{A(2)}^{23,113+23}\left(A_{1} \wedge D A_{1} \wedge b o_{1}\right)=0 \quad$ and $\quad \operatorname{Ext}_{A(2)}^{22,106+22}\left(A_{1} \wedge D A_{1} \wedge b o_{1} \wedge b o_{1}\right)=0$, we conclude that R is in fact zero.

Remark 4.7 Lemma 4.4 in particular eliminates the possibility of a differential of the form

$$
d_{r}(S)=g^{6}
$$

where S is in the higher algebraic tmf filtration. This is needed for the conclusion of (4.6).

5 Proof of Main Theorem

Recall from Corollary 3.8 that there are candidates in the E_{2} page of the Adams spectral sequence

$$
\begin{equation*}
E_{2}^{s, t}=\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right) \Rightarrow \pi_{t-s}\left(A_{1} \wedge D A_{1}\right) \tag{5.1}
\end{equation*}
$$

denoted by $\widetilde{v_{2}^{8 n}}$, that can detect an $8 n$-periodic v_{2}-self-map. Since $\widetilde{v_{2}^{8}}$ supports a d_{2} differential and $\widetilde{v_{2}^{16}}$ supports a d_{3} differential (see Lemma 3.10), by the Leibniz formula $\widetilde{v_{2}^{32}}$ is a nonzero d_{3}-cycle. The only way $\widetilde{v_{2}^{32}}$ can fail to detect a 32 -periodic v_{2}-self-map is by supporting a nonzero d_{r} differential for $r \geq 4$ in the Adams spectral sequence (5.1). So we look for candidates in the E_{2} page of (5.1) that can potentially be the target of a nonzero d_{r} differential supported by $\widetilde{v_{2}^{32}}$ for $r \geq 4$. Such elements will live in $\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right)$ with $t-s=191$ and Adams filtration $s \geq 36$. We use the algebraic tmf spectral sequence to detect such candidates. The goal of this section is to argue that any such candidate is either zero or not present in the E_{4} page of the spectral sequence (5.1).

From Section 3, we recall the algebraic tmf spectral sequence:

$$
\begin{gathered}
E_{1}^{s, t, n}=\bigoplus_{i_{1}, \ldots, i_{n} \geq 1} \operatorname{Ext}_{A(2)}^{s-n, t-8\left(i_{1}+\cdots+i_{n}\right)}\left(b o_{i_{1}} \wedge \cdots \wedge b o_{i_{n}} \wedge A_{1} \wedge D A_{1}\right) \\
\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right)
\end{gathered}
$$

An easy consequence of the vanishing line established in Lemma 3.4 is the following.

Lemma 5.2 The only potential contributors to $\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right)$ for $t-s=191$ and $s \geq 36$ come from the following summands of the algebraic tmf E_{1} page:

$$
\begin{aligned}
\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1} \wedge D A_{1}\right) & \oplus \bigoplus_{1 \leq i \leq 3} \operatorname{Ext}_{A(2)}^{s-1, t-8 i}\left(A_{1} \wedge D A_{1} \wedge b o_{i}\right) \\
& \oplus \bigoplus_{1 \leq i \leq 2} \operatorname{Ext}_{A(2)}^{s-2, t-8-8 i}\left(A_{1} \wedge D A_{1} \wedge b o_{1} \wedge b o_{i}\right) \\
& \oplus \operatorname{Ext}_{A(2)}^{s-3, t-24}\left(A_{1} \wedge D A_{1} \wedge b o_{1} \wedge b o_{1} \wedge b o_{1}\right)
\end{aligned}
$$

While the result holds for all models of A_{1}, the computations will be slightly different for different models, and so we will treat these models separately. Since $A_{1}[00]$ and $A_{1}[11]$ are Spanier-Whitehead dual to each other, we can treat the cases of $A_{1}[00]$ and $A_{1}[11]$ as one case. We will then have to treat the cases of the self-dual spectra $A_{1}[01]$ and $A_{1}[10]$ separately. The completeness of the tables in this section will be justified by the more detailed tables in the online supplement.

Notation 5.3 The elements of $E_{1}^{s, t, n}$, the E_{1} page of the algebraic tmf spectral sequence for $A_{1} \wedge D A_{1}$, which are nonzero permanent cycles, will detect nonzero elements of $\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right)$. Therefore we place an element $x \in E_{1}^{s, t, n}$ in bidegree $(t-s-n, s+n)$. Thus the elements that may contribute to the same bidegree of $\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right)$ are placed together. With this arrangement any differential in the algebraic tmf spectral sequence will look like Adams d_{1} differential. The generators of

$$
E_{1}^{s, t, n}=\bigoplus_{i_{1}, \ldots, i_{n} \geq 1} \operatorname{Exx}_{A(2)}^{s-n, t-8\left(i_{1}+\cdots+i_{n}\right)}\left(A_{1} \wedge D A_{1} \wedge b o_{i_{1}} \wedge \cdots \wedge b o_{i_{n}}\right)
$$

will be denoted by dots in the following manner (recall that $b o_{0}=S^{0}$):

- elements with $n=0$ are denoted by a •,
- elements with $n=1, i_{1}=1$ are denoted by a \circ^{1},
- elements with $n=1, i_{1}=2$ are denoted by a \circ^{2},
- elements with $n=2, i_{1}=1, i_{2}=1$ are denoted by a \odot,
- and N/A stands for "not applicable," ie coordinates of the table which are irrelevant to our arguments.

5.1 The case $A_{1}=A_{1}[00]$ or $A_{1}=A_{1}[11]$

We begin by laying out, in Table 1, the elements of the E_{1} page of the algebraic tmf spectral sequence, in Notation 5.3. The table makes it clear that all elements

$s \backslash t-s$	189	190	191
40	0	0	0
39	0	$\langle\bullet \bullet\rangle:=Y_{39}^{0}$	$\langle\bullet \bullet \bullet\rangle:=X_{39}^{0}$
38	N/A	$\langle\bullet \cdots \cdot \bullet\rangle=Y_{38}^{0}$	$\langle\bullet \bullet \cdot\rangle:=X_{38}^{0}$
37	N/A	$\langle\bullet \cdots \cdots\rangle$	$\langle\bullet \cdots \cdot \bullet\rangle:=X_{37}^{0}$
		$\left\langle 0^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1}\right\rangle$	$\left\langle\circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1}\right\rangle:=X_{37}^{1}$
			$\langle\bullet \bullet \cdot\rangle:=X_{36}^{0}$
36	N/A	N/A	$\left\langle\circ^{1} \circ^{1}\right\rangle:=X_{36}^{1}$
			$\langle\odot \odot \odot \odot \odot \odot\rangle:=X_{36}^{1,1}$

Table 1: E_{1} page of the algebraic $t m f$ spectral sequence for $\mathrm{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right)$, where $A_{1}=A_{1}[00]$ or $A_{1}=A_{1}[11]$, stem 189-191.

$s \backslash t-s$	70	71
15	$\langle\bullet \bullet\rangle=g^{-6} Y_{39}^{0}$	$\langle\bullet \bullet \cdot\rangle=g^{-6} X_{39}^{0}$
14	$\langle\bullet \cdots \cdots \bullet\rangle=g^{-6} Y_{38}^{0}$	$\langle\bullet \bullet \bullet\rangle=g^{-6} X_{38}^{0}$
13	$\langle\bullet \cdots \cdot \bullet\rangle$	$\langle\bullet \cdots \cdots \cdots \cdot\rangle=g^{-6} X_{37}^{0}$
$\left\langle\circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1}\right\rangle$	$\left\langle 0^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1}\right\rangle=g^{-6} X_{37}^{1}$	
12	N/A	$\left\langle 0^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1}\right\rangle=g^{-6} X_{36}^{1}$
$\langle\odot \odot \odot \odot \odot \odot\rangle=g^{-6} X_{36}^{1,1}$		

Table 2: E_{1} page of the algebraic $t m f$ spectral sequence for $\mathrm{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right)$, where $A_{1}=A_{1}[00]$ or $A_{1}=A_{1}[11]$, stem 70-71.
with $t-s=191$, with the possible exception of those in X_{36}^{0}, are permanent cycles in the algebraic tmf spectral sequence. Our goal is to show that every linear combination of elements in $X_{s}^{i_{1}, \ldots, i_{n}}$ is either absent or zero in the E_{4} page of the Adams spectral sequence. Using Bruner's program (for details see Tables 1-4 from the online supplement), we observe that a lot of these elements are multiples of g^{6} in the E_{1} page of the algebraic $t m f$ spectral sequence, which we record in Table 2.

Lemma 5.4 Every element of

$$
X_{39}^{0} \oplus X_{38}^{0} \oplus X_{37}^{0} \oplus X_{37}^{1} \oplus X_{36}^{1} \oplus X_{36}^{1,1}
$$

is present in the Adams E_{2} page, but is either zero or absent in the Adams E_{4} page.

Proof Tables 1-4 of the online supplement make clear that multiplication by g^{6} surjects onto $X_{39}^{0} \oplus X_{38}^{0} \oplus X_{37}^{0} \oplus X_{37}^{1} \oplus X_{36}^{1} \oplus X_{36}^{1,1}$. Notice that for any

$$
x=g^{6} \cdot y \in X_{39}^{0} \oplus X_{38}^{0} \oplus X_{37}^{0} \oplus X_{37}^{1} \oplus X_{36}^{1} \oplus X_{36}^{1,1}
$$

both x and y are nonzero permanent cycles in the algebraic $t m f$ spectral sequence. Indeed, the target of any differential supported by y, must have algebraic tmf filtration greater than y and from Table 2 it is clear no such element is present in the appropriate bidegree. Hence y is present in the Adams E_{2} page. The same argument holds for x. Case 1 When $x=g^{6} \cdot y \in X_{39}^{0} \oplus X_{38}^{0} \oplus X_{37}^{1} \oplus X_{36}^{1} \oplus X_{36}^{1,1}$, then both x and y are permanent cycles in the algebraic tmf spectral sequence as the differentials must increase algebraic tmf filtration. In fact these elements are permanent cycles in the Adams spectral sequence for either degree reasons or by Lemma 4.4. If y is a target of a differential in the algebraic tmf spectral sequence or an Adams d_{2} differential, then y is zero in the E_{3} page. Consequently, $x=g^{6} \cdot y$ is zero in the E_{3} page as well. If y is not a target of such differentials, then we have

$$
d_{3}\left(\widetilde{v_{2}^{20} h_{1}} \cdot y\right)=\widetilde{v_{2}^{20} h_{1}} \cdot d_{3}(y)+d_{3}\left(\widetilde{v_{2}^{20} h_{1}}\right) \cdot y=g^{6} \cdot y=x .
$$

In either case, x is zero in the E_{4} page.
Case 2 When $x=g^{6} \cdot y \in X_{37}^{0}$ and y is a permanent cycle, then we can argue $x=g^{6} \cdot y$ is zero in the E_{4} page as we did in the previous cases. If

$$
d_{2}(y)=y^{\prime}
$$

then y^{\prime} must belong to $g^{-6} Y_{39}^{0}$. Since multiplication by g^{6} is a bijection between $g^{-6} Y_{39}^{0}$ and Y_{39}^{0}, we get

$$
d_{2}(x)=d_{2}\left(g^{6} \cdot y\right)=g^{6} \cdot d_{2}(y)+d_{2}\left(g^{6}\right) \cdot y=g^{6} \cdot y^{\prime} \neq 0 .
$$

Therefore, x is absent in the E_{4} page.
Thus we are left with the case when $x \in X_{36}^{0}$.
Lemma 5.5 Every element of X_{36}^{0} is either zero or absent in the Adams E_{4} page.
Proof X_{36}^{0} is spanned by three generators $\left\{s_{1}, t_{1}, t_{2}\right\}$. Using Bruner's program, we explore the following relations in the E_{1} page of the algebraic tmf spectral sequence:

$$
\begin{array}{lrl}
s_{1}=b_{3,0}^{4} \cdot x_{1}, & Y_{38}^{0} \ni e_{0} r \cdot x_{1} \neq 0, & \\
t_{1}=b_{3,0}^{4} \cdot y_{1}=b_{3,0}^{8} \cdot z_{1}, & e_{0} r \cdot y_{1}=0, & Y_{39}^{0} \ni \mathrm{wgr} \cdot z_{1} \neq 0, \\
t_{2}=b_{3,0}^{4} \cdot y_{2}=b_{3,0}^{8} \cdot z_{2}, & e_{0} r \cdot y_{2}=0, &
\end{array}
$$

On the periodic v_{2}-self-map of A_{1}

$s \downarrow t-s \rightarrow$	94	95	$s \downarrow t-s \rightarrow$	142	143
23	0	0	30	0	0
22	0	0	29	$\langle\bullet \bullet \bullet \bullet\rangle$	$\langle\bullet \bullet \bullet \bullet\rangle$
21	0	0	28	N/A$\left\langle\bullet=x_{1}, \bullet=y_{1}, \bullet=y_{2}\right\rangle:=Z_{28}$ $\left\langle 0^{1} \circ^{1}\right\rangle$	
20	N/A	$\left\langle\bullet=z_{1}, \bullet=z_{2}\right\rangle:=Z_{20}$			

Table 3: E_{1} page of the algebraic $t m f$ spectral sequence for $\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right)$, where $A_{1}=A_{1}[00]$ or $A_{1}=A_{1}[11]$.
and $w g r \cdot z_{1}$ and $w g r \cdot z_{2}$ are linearly independent. In Bruner's notation, $s_{1}=36_{64}$, $t_{1}=36_{65}, t_{2}=36_{66}, x_{1}=28_{32}, e_{0} r \cdot x_{1}=38_{25}, y_{1}=28_{33}, y_{2}=28_{34}, z_{1}=20_{1}$, $w g r \cdot z_{1}=39_{1}, z_{2}=20_{2}$ and $w g r \cdot z_{2}=39_{2}$; see Table 5 from the online supplement.

From Table 3 , it is clear that any element in Z_{20} and Z_{28} are permanent cycles.
Case 1 If $x=\epsilon_{1} s_{1}+\delta_{1} t_{1}+\delta_{2} t_{2} \neq 0$ in the Adams E_{2} page with $\epsilon_{1} \neq 0$, then

$$
d_{2}(x)=\epsilon_{1} d_{2}\left(\widetilde{v_{2}^{8}} \cdot x_{1}\right)=\epsilon_{1}\left(e_{0} r \cdot x_{1}\right) \neq 0
$$

Thus x is not present in the E_{4} page.
Case 2 If $x=\delta_{1} t_{1}+\delta_{2} t_{2} \neq 0$, then

$$
d_{2}(x)=0
$$

If $x \neq 0$ in the Adams E_{3} page, then

$$
d_{3}(x)=\delta_{1} d_{3}\left(\widetilde{v_{2}^{16}} \cdot z_{1}\right)+\delta_{2} d_{3}\left(\widetilde{v_{2}^{16}} \cdot z_{2}\right)=w g r \cdot\left(\delta_{1} z_{1}+\delta_{2} z_{2}\right) \neq 0
$$

Thus x is not present in the E_{4} page.

This proves Main Theorem in the cases $A_{1}=A_{1}[00]$ or $A_{1}=A_{1}[11]$.

5.2 The case $A_{1}=A_{1}[01]$ or $A_{1}=A_{1}[10]$

A priori, $A_{1}[01]$ and $A_{1}[10]$ are two different spectra and we must therefore give two different proofs of Main Theorem. However, it turns out that Tables 4 and 5 are identical for $A_{1}[01]$ and $A_{1}[10]$, and therefore the exact same arguments will apply to both spectra. For $A_{1}[01]$, refer to Tables $6-9$ of the online supplement, and for $A_{1}[10]$, refer to Tables 10-13 of the online supplement, to observe that most of the elements in Table 4 are multiples by g^{6} of elements in Table 5.

$s \backslash t-s$	190	191
39	0	$\langle\bullet\rangle:=X_{39}^{0}$
38	$\langle\bullet \cdots \bullet\rangle:=Y_{38}^{0}$	$\langle\bullet\rangle:=X_{38}^{0}$
37	$\langle\bullet \cdots \bullet\rangle$	$\langle\bullet \cdots \cdots \cdot\rangle:=X_{37}^{0}$
	$\left\langle\circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1}\right\rangle$	$\left\langle 0^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1}\right\rangle:=X_{37}^{1}$
36	N/A	$\langle\odot \odot\rangle:=X_{36}^{1,1}$

Table 4: E_{1} page of the algebraic $t m f$ spectral sequence for $\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right)$, where $A_{1}=A_{1}[01]$, stem 190-191.

$s \backslash t-s$	70	71
15	0	$\langle\bullet\rangle=g^{-6} X_{39}^{0}$
14	$\langle\bullet \bullet \bullet\rangle=g^{-6} Y_{38}^{0}$	$\langle\bullet \bullet\rangle=g^{-6} X_{38}^{0}$
13	$\begin{gathered} \langle\cdot \cdots \cdot \cdot\rangle \\ \left\langle o^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} o^{1}\right\rangle \end{gathered}$	$\begin{gathered} \langle\bullet \cdots \cdots \cdot \bullet \cdot\rangle=g^{-6} X_{37}^{0} \\ \left\langle\circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1}\right\rangle=g^{-6} X_{37}^{1} \end{gathered}$
12	N/A	$\begin{aligned} & \left\langle\circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1} \circ^{1}\right\rangle \\ & \langle\odot \odot\rangle=g^{-6} X_{36}^{1,1} \\ & \langle\odot)^{2} \end{aligned}$

Table 5: E_{1} page of the algebraic $t m f$ spectral sequence for $\operatorname{Ext}_{A}^{s, t}\left(A_{1} \wedge D A_{1}\right)$, where $A_{1}=A_{1}[01]$, stem 70-71.
Lemma 5.6 All elements of

$$
\begin{equation*}
X_{39}^{0} \oplus X_{38}^{0} \oplus X_{37}^{0} \oplus X_{37}^{1} \oplus X_{36}^{1,1} \tag{5.7}
\end{equation*}
$$

are present in the Adams E_{2} page, but are zero in the Adams E_{4} page.
Proof Differentials in the algebraic tmf spectral sequence increase algebraic tmf filtration. Therefore, as Tables 4 and 5 make clear, all elements of (5.7) are permanent cycles in the algebraic tmf spectral sequence and are therefore present in the Adams E_{2} page. Furthermore, all these elements are permanent cycles in the Adams spectral sequence, either for degree reasons or by Lemma 4.4.
Tables 6-13 of the online supplement make clear that multiplication by g^{6} is surjective onto (5.7). Therefore, any element $x=g^{6} \cdot y$ in (5.7) which is not zero in the Adams E_{3} page is a target of a d_{3} differential

$$
d_{3}\left(\widetilde{v_{2}^{20} h_{1}} \cdot y\right)=d_{3}\left(\widetilde{v_{2}^{20} h_{1}}\right) \cdot y+\widetilde{v_{2}^{20} h_{1}} \cdot d_{3}(y)=g^{6} \cdot y=x
$$

hence zero in the E_{4} page.

Appendix: General remarks on the use of Bruner's program

Since many of our proofs relied on the output of Bruner's program, we append some facts about the program to justify our claims.

The program takes as input a graded module M over A (or $A(2)$) that is a finite dimensional \mathbb{F}_{2}-vector space and computes $\operatorname{Ext}_{A}^{s, t}\left(M, \mathbb{F}_{2}\right)$ (or Ext ${ }_{A(2)}^{s, t}\left(M, \mathbb{F}_{2}\right)$) for t in a user-defined range, and $0 \leq s \leq$ MAXFILT, where one has MAXFILT $=40$ by default. The structure of M as an A-module is encoded in a text file named M , placed in the directory $\mathrm{A} /$ samples in the way we will now describe.

The first line of the text file M consists of a positive integer n, the dimension of M as an \mathbb{F}_{2}-vector space, whose basis elements we will call g_{0}, \ldots, g_{n-1}. The second line consists of an ordered list of integers d_{0}, \ldots, d_{n-1}, which are the respective degrees of the g_{i}. Every subsequent line in the text file describes a nontrivial action of some Sq^{k} on some generator g_{i}. For instance, if we have

$$
\mathrm{Sq}^{k}\left(g_{i}\right)=g_{j 1}+\cdots+g_{j l}
$$

we would encode this fact by writing the line
i k l j1 ...jl
followed by a new line. Every action not encoded by such a line is assumed to be trivial. To ensure that such a text file in fact represents an honest A-module, we must run the newconsistency script, which will alert us if:

- the text file contains a line
i k l j1 ...jl
and it turns out that one of the d_{j} is not equal to $d_{i}+k$, or
- the module taken as a whole fails to satisfy a particular Adem relation.

Example A. 1 Consider the A-module given by Figure 3, where generators are depicted by dots and actions of $\mathrm{Sq}^{1}, \mathrm{Sq}^{2}$ and Sq^{4} are depicted by straight lines, curved lines and square brackets, respectively.

Based on this picture, we get the text file in Figure 4, which we call A1-00_def. We go to the directory A2 and run:

```
./newmodule A1-00 ../A/samples/A1-00_def
cd A1-00
```


Figure 3: $H^{*} A_{1}[00]$ as an A-module

Now we are ready to compute. Running the script
./dims 0250
will compute $\operatorname{Ext}_{A(2)}^{s, t}\left(A_{1}[00]\right)$ for $0 \leq s \leq \operatorname{MAXFILT}=40$ and $0 \leq t \leq 250$. To see the Ext group, one runs

```
./report summary
./vsumm A1-00 > A1-00.tex
pdflatex A1-00.tex
```

to produce a pdf document A1-00.pdf as in the online supplement.
As this file makes apparent, the generators of the Ext group (as an \mathbb{F}_{2} vector space) are stored in the computer with names such as s_{g}, where s is the Adams filtration of the generator, and g is some way of ordering all generators of filtration s. It should be emphasized that g is not the stem of the generator. In A1-00.pdf from the online supplement, for instance, the generator 1_{2} is the second generator of filtration 1 , but it is in stem 6. This file also tells us the action of the Hopf elements h_{0} through h_{3}, so that in our example, h_{2} multiplied by the generator 1_{2} equals the generator 2_{2}.

By running

$$
\text { ./display } 0 \text { A1-00_ }
$$

to produce single-page pdf documents A1-00_1.pdf, A1-00_2.pdf, ..., it is also possible to see the Ext group in the visually more appealing form of a chart, as shown in A1-00_1.pdf from the online supplement.

The program is also capable of computing dual modules via the dualizeDef script, and tensor products via the tensorDef script. Both executables are conveniently located in

8								
0	1	2	3	3	4	5	6	
0	1	1	1					
0	2	1	2					
0	3	1	3					
0	6	1	7					
1	2	1	4					
1	3	1	5					
1	4	1	6					
1	5	1	7					
2	1	1	3					
2	2	1	5					
3	2	1	6					
3	3	1	7					
4	1	1	5					
5	2	1	7					
6	1	1	7					

Figure 4: The text file A/samples/A1-00_def
the A/samples directory where we put our module definition text files. Thus, running

```
./dualizeDef A1-00_def DA1-00_def
./tensorDef A1-00_def DA1-00_def ADA1-00_def
```

produces the text file ADA1-00_def, with which we proceed in the same way as earlier with A1-00_def.

While ADA1-00.pdf only shows the action of the Hopf elements h_{0} through h_{3}, the scripts cocycle and dolifts enable the user to input a specific generator and find the action of much of $\operatorname{Ext}_{A(2)}^{s, t}\left(S^{0}\right)$ on that specific generator. Let us do this with the generator $0_{6} \in \operatorname{Ext}_{A(2)}^{0,0}\left(A_{1}[00] \wedge D A_{1}[00]\right)$ by going to directory A 2 and running

$$
\text { ./cocycle ADA1-00 } 06
$$

which will create a subdirectory A2/ADA1-00/0_6. To find the action of all elements of $\mathrm{Ext}_{A(2)}^{s, t}\left(S^{0}\right)$ with $0 \leq s \leq 20$ on 0_{6}, we go back to directory A2/ADA1-00 and run:

```
./dolifts 0 20 maps
```

Now ADA1-00/0_6 will contain several text files, among them brackets. sym (which contains information about Massey products) and Map.aug (which contains information about the action of $\operatorname{Ext}_{A(2)}^{s, t}\left(S^{0}\right)$ on $\left.0_{6}\right)$.
The generators of $\operatorname{Ext}_{A(2)}^{s, t}\left(S^{0}\right)$ are stored in the computer in the format s_{g}. Here we include a list of important elements of $\operatorname{Ext}_{A(2)}^{s, t}\left(S^{0}\right)$ and their s_{g} representations:

$$
\begin{aligned}
g & =4_{8} \in \operatorname{Ext}_{A(2)}^{4,20+4}\left(S^{0}\right) \\
b_{3,0}^{4} & =8_{19} \in \operatorname{Ext}_{A(2)}^{8,48+8}\left(S^{0}\right) \\
e_{0} r & =10_{18} \in \operatorname{Ext}_{A(2)}^{10,47+10}\left(S^{0}\right) \\
b_{3,0}^{8} & =16_{54} \in \operatorname{Ext}_{A(2)}^{16,96+16}\left(S^{0}\right) \\
w g r & =19_{56} \in \operatorname{Ext}_{A(2)}^{19,95+19}\left(S^{0}\right) \\
v_{2}^{20} h_{1} & =21_{85} \in \operatorname{Ext}_{A(2)}^{21,121+21}\left(S^{0}\right) \\
g^{6} & =24_{90} \in \operatorname{Ext}_{A(2)}^{24,120+24}\left(S^{0}\right)
\end{aligned}
$$

We'd like to know what $s_{g}\left(0_{6}\right) \in \operatorname{Ext}_{A(2)}\left(A_{1}[00] \wedge D A_{1}[00]\right)$ is in the notation of ADA1-00.pdf. Of course, $s_{g}\left(0_{6}\right)$ is in filtration s, so we only need to specify which of the generators in filtration s make up $s_{g}\left(0_{6}\right)$. If, for instance, we have

$$
s_{g}\left(0_{6}\right)=s_{g 1}+\cdots+s_{g n},
$$

then ADA1-00/0_6/Map. aug will contain the lines:

```
s g1 g
s g2 g
    \vdots
    s gn g
```

Now, in the Adams spectral sequence

$$
\operatorname{Ext}_{A(2)}^{s, t}\left(S^{0}\right) \Rightarrow t m f_{t-s}
$$

we have
$d_{2}\left(b_{3,0}^{4}\right)=e_{0} r=10_{18} \in \operatorname{Ext}_{A(2)}^{10,47+10}\left(S^{0}\right) \quad$ and $\quad d_{3}\left(b_{3,0}^{8}\right)=19_{56} \in \operatorname{Ext}_{A(2)}^{19,95+19}\left(S^{0}\right)$.
It follows that if

$$
10_{18}\left(0_{6}\right)=10_{x} \in \operatorname{Ext}_{A(2)}^{8,8+47}\left(A_{1} \wedge D A_{1}\right)
$$

and

$$
19_{56}\left(0_{6}\right)=19_{y} \in \operatorname{Ext}_{A(2)}^{19,19+95}\left(A_{1} \wedge D A_{1}\right)
$$

then $b_{3,0}^{4} \in \operatorname{Ext}_{A(2)}^{8,48+8}\left(A_{1} \wedge D A_{1}\right)$ and $b_{3,0}^{8} \in \operatorname{Ext}_{A(2)}^{16,96+16}\left(A_{1} \wedge D A_{1}\right)$ support a d_{2} differential and a d_{3} differential, respectively. By doing the above steps for all four versions of A_{1}, and checking the respective Map. aug files, each contain lines

$$
\begin{aligned}
& 10 \times 18 \\
& 19 \text { y } 56
\end{aligned}
$$

justifying the claim in Lemma 3.1.
Using the tools we have so far described, it is easy to verify the claim from the proof of Lemma 4.1, that for all four models of A_{1} we have

$$
\begin{equation*}
g b_{3,0}^{4} \cdot 10_{3}=22_{7} \tag{A.2}
\end{equation*}
$$

It is similarly easy to verify that if $A_{1}=A_{1}[00]$ or $A_{1}=A_{1}[11]$, we have

$$
g e_{0} r \cdot 10_{3}=0,
$$

while if $A_{1}=A_{1}[01]$ or $A_{1}=A_{1}[10]$, we have

$$
g e_{0} r \cdot 10_{3}=24_{0}=g^{6}
$$

Finally, in order to run the algebraic tmf spectral sequence, we will also need do computations involving the bo-Brown-Gitler spectra. We give the $A(2)$-module definitions for the cohomologies of $b o_{1}$ and $b o_{2}$ in bo1_def and bo2_def from the online supplement.

References

[1] M Behrens, M Hill, M J Hopkins, M Mahowald, On the existence of a v_{2}^{32}-self map on $M(1,4)$ at the prime 2, Homology Homotopy Appl. 10 (2008) 45-84 MR
[2] RR Bruner, Ext in the nineties, from "Algebraic topology" (MC Tangora, editor), Contemp. Math. 146, Amer. Math. Soc., Providence, RI (1993) 71-90 MR
[3] D M Davis, M Mahowald, v_{1} - and v_{2}-periodicity in stable homotopy theory, Amer. J. Math. 103 (1981) 615-659 MR
[4] D M Davis, M Mahowald, Ext over the subalgebra A_{2} of the Steenrod algebra for stunted projective spaces, from "Current trends in algebraic topology, Part 1" (R M Kane, S O Kochman, P S Selick, V P Snaith, editors), CMS Conf. Proc. 2, Amer. Math. Soc., Providence, RI (1982) 297-342 MR
[5] P G Goerss, J D S Jones, M E Mahowald, Some generalized Brown-Gitler spectra, Trans. Amer. Math. Soc. 294 (1986) 113-132 MR
[6] A Henriques, The homotopy groups of tmf and its localizations, from "Topological modular forms" (CL Douglas, J Francis, A G Henriques, M A Hill, editors), Math. Surveys Monogr. 201, Amer. Math. Soc., Providence, RI (2014) 189-205
[7] M J Hopkins, M Mahowald, From elliptic curves to homotopy theory, from "Topological modular forms" (C L Douglas, J Francis, A G Henriques, M A Hill, editors), Math. Surveys Monogr. 201, Amer. Math. Soc., Providence, RI (2014) 261-285 MR
[8] M J Hopkins, J H Smith, Nilpotence and stable homotopy theory, II, Ann. of Math. 148 (1998) 1-49 MR
[9] W Lellmann, Connected Morava K-theories, Math. Z. 179 (1982) 387-399 MR
[10] J P May, The cohomology of restricted Lie algebras and of Hopf algebras: application to the Steenrod algebra, PhD thesis, Princeton University (1964) MR Available at http://search.proquest.com/docview/302273947
[11] O Nakamura, On the squaring operations in the May spectral sequence, Mem. Fac. Sci. Kyushu Univ. Ser. A 26 (1972) 293-308 MR
[12] M C Tangora, On the cohomology of the Steenrod algebra, PhD thesis, Northwestern University (1966) MR Available at http://search.proquest.com/docview/ 302217803

Department of Mathematics, University of Notre Dame 106 Hayes-Healy Hall, Notre Dame, IN 46556, United States
Department of Mathematics, Pennsylvania State University 235 McAllister, University Park, PA 16802, United States
Department of Mathematics, Northwestern University Evanston, IL 60208, United States
pbhattac@nd.edu, pee3@psu.edu, markmah@me.com
Received: 21 January 2015 Revised: 28 June 2016

