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Infinite loop spaces and nilpotent K–theory
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Using a construction derived from the descending central series of the free groups, we
produce filtrations by infinite loop spaces of the classical infinite loop spaces BSU,
BU , BSO, BO , BSp, BGL1.R/C and Q0.S0/ . We show that these infinite loop
spaces are the zero spaces of nonunital E1–ring spectra. We introduce the notion
of q–nilpotent K–theory of a CW–complex X for any q � 2 , which extends the
notion of commutative K–theory defined by Adem and Gómez, and show that it is
represented by Z�B.q;U / , where B.q;U / is the qth term of the aforementioned
filtration of BU .

For the proof we introduce an alternative way of associating an infinite loop space to
a commutative I–monoid and give criteria for when it can be identified with the plus
construction on the associated limit space. Furthermore, we introduce the notion of a
commutative I–rig and show that they give rise to nonunital E1–ring spectra.

55N15, 55R35

1 Introduction

Let G denote a locally compact, Hausdorff topological group such that 1G 2G is a
nondegenerate base point. It is well known that we can obtain a model for the classifying
space BG as the geometric realization of the classical bar construction B�G . Now
fix an integer q � 2 and let �q

n be the qth stage of the descending central series of
the free group on n letters Fn , with the convention �1

n D Fn . Consider the set of
homomorphisms Bn.q;G/ WD Hom.Fn=�

q
n ;G/. If e1; : : : ; en are generators of Fn ,

then evaluation on the classes corresponding to e1; : : : ; en provides a natural inclusion
Bn.q;G/ � Gn . Using this inclusion we can give Bn.q;G/ the subspace topology.
Therefore Bn.q;G/ is precisely the space of ordered n–tuples in G generating a
subgroup of G with nilpotence class less than q . For each fixed q � 2 the collection
fBn.q;G/gn�0 forms a simplicial space with face and degeneracy maps induced by
those in the bar construction. The geometric realization of this simplicial space is
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denoted by B.q;G/. These spaces were first introduced by Adem, Cohen and Torres
Giese [1], where many of their basic properties were established. They give rise to a
natural filtration of the classifying space

B.2;G/� B.3;G/� � � � � B.q;G/� B.qC 1;G/� � � � � BG:

For q D 2 we obtain BcomG WD B.2;G/, which is constructed by assembling the
different spaces of ordered commuting n–tuples in the group G . Adem and Gómez [2]
showed that for Lie groups this space plays the role of a classifying space for commu-
tativity. More generally B.q;G/ is a classifying space for G –bundles of transitional
nilpotency class less than q .

For the infinite unitary group U D colimn!1 U.n/, it is well known that BU is the
infinite loop space underlying a nonunital E1–ring spectrum, namely the homotopy
fiber of the Postnikov section ku!HZ. In other words, BU is a so-called nonunital
E1–ring space. A basic question is whether the above gives rise to a filtration of BU
by nonunital E1–ring spaces. The main purpose of this paper is to show that indeed
this is the case, not only for U but also for other linear groups.

Theorem 1.1 The spaces B.q;SU/, B.q;U /, B.q;SO/, B.q;O/ and B.q;Sp/ pro-
vide a filtration by nonunital E1–ring spaces of the classical infinite loop spaces BSU,
BU , BSO, BO and BSp, respectively.

The q–nilpotent K–theory of a space X is defined using isomorphism classes of bundles
on X whose transition functions generate subgroups of nilpotence class less than q .
We show that Kq–nil.X /Š ŒX;Z�B.q;U /�, from which we obtain:

Corollary 1.2 Kq–nil.�/ is the zeroth term of a generalized multiplicative cohomology
theory.

In particular we obtain a sequence of multiplicative cohomology theories

Kcom.X /DK2–nil.X /!K3–nil.X /! � � � !Kq–nil.X /! � � � !K.X /:

We also show that B.q;U /! BU splits as a map of infinite loop spaces, whence we
see that topological K–theory is a direct summand in Kq–nil .

The infinite loop space structure on B.q;G/ for G D U , SU, SO, O , Sp is obtained
by using the machinery of commutative I–monoids first introduced by Bökstedt and
developed by Schlichtkrull [19], Sagave and Schlichtkrull [18] and Lind [9]. Here I
is the category of finite sets and injections. In addition to the usual construction, we
associate an infinite loop space to a commutative I–monoid by restricting the usual
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homotopy colimit construction to the subcategory P of finite sets and isomorphisms.
This allows us to identify the homotopy type of the homotopy colimit under certain
conditions. Another addition to infinite loop space theory is the introduction of the
notion of a commutative I–rig, which we show to give rise to a bipermutative category
and hence an E1–ring spectrum.

Our main examples above all arise from commutative I–rigs where we can identify
the infinite loop space as the plus construction of the associated limit space. A more
complicated situation arises for Q0.S

0/'B†C1 and BGL1.R/C . Our methods give
rise to natural sequences of E1–ring spaces but the terms are not easy to describe.

The outline of this article is as follows. In Section 2 we use the machinery of com-
mutative I–monoids to produce two associated infinite loop spaces, one of which is a
nonunital E1–ring space when the I–monoid is an I–rig. In Section 3 we show that
these are homotopy equivalent and identify them under suitable assumptions. Then
in Section 4 we apply these results to prove Theorem 1.1 and show that the spaces
B.q;U / for q � 2 are infinite loop spaces and that BU splits off. Finally, in Section 5
we introduce the notion of q–nilpotent K–theory and show that it is represented by
the infinite loop spaces Z�B.q;U /, answering the question raised for commutative
K–theory in [2].

We would like to thank Christian Schlichtkrull for helpful conversations about commu-
tative I–monoids, Simon Gritschacher for drawing our attention to Fiedorowicz and
Ogle [6] and the referee for providing very useful comments.

Acknowledgements Adem was supported by NSERC. Gómez acknowledges the
financial support of COLCIENCIAS through grant number 121565840569 of the
Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Inovación, Fondo
Francisco José de Caldas.

2 Commutative I–monoids and infinite loop spaces

The standard construction of the infinite loop space structure on BU from the per-
mutative category of complex vector spaces and their isomorphisms does not restrict
to give an infinite loop space structure on B.q;U /. Instead we are going to use
certain constructions on commutative I–monoids. More precisely, we will give two
constructions of permutative categories from commutative I–monoids. For the case
of interest the permutative categories are actually bipermutative and hence give rise
to E1–ring spectra. We start by setting up some notations and basic definitions
following [19; 18; 9]. We will use [5] as a reference for bipermutative categories and
the associated multiplicative infinite loop space machinery.

Algebraic & Geometric Topology, Volume 17 (2017)



872 Alejandro Adem, José Manuel Gómez, John A Lind and Ulrike Tillmann

2.1 The category I and its subcategories P and N

These three categories are skeletons of the category of finite sets and injections, the
category of finite sets and isomorphisms, and the translation category associated to the
monoid of natural numbers. We will use the following notation.

For every integer n � 0, let n denote the set f1; 2; : : : ; ng. When nD 0 we use the
convention 0 WD∅. Let I denote the category whose objects are the elements of the
form n for all integers n� 0 with morphisms given by all injective maps. Note that in
particular 0 is an initial object in the category I and I is a symmetric monoidal category
under the concatenation m t n WD f1; 2; : : : ;mC ng with the symmetry morphism
given by the .m; n/–shuffle map

�m;nW mtn! ntm:

It is also symmetric monoidal under the Cartesian product

m�n WD f1D .1; 1/; 2D .1; 2/; : : : ; nC 1D .2; 1/; : : : ; mnD .m; n/g

given by lexicographic ordering. By definition, 0� n D 0 D n� 0. The associated
symmetry morphism is given by a permutation

��mnW m�n! n�m:

The latter monoidal product is distributive over the former. More precisely, left dis-
tributivity

ıl
m;n;kW m�ktn�k! .mtn/�k

is given by the identity and right distributivity is given by a permutation

ır
m;n;kW m�ntm�k!m� .ntk/:

These two structures make I into a bipermutative category, as in [5, Definition 3.6].

The category I has two natural subcategories. Let P be the totally disconnected sub-
category containing all objects and all isomorphisms � W n! n but no other morphisms,
and let N denote the connected subcategory containing all objects, their identities and
only the canonical inclusions j W n! m. While P is a bipermutative subcategory,
N does not inherit any monoidal structure from I .

2.2 Definitions of commutative I–monoids and I–rigs

An I–space is a functor X W I ! Top. Every morphism in I can be factored as
a composition of a canonical inclusion j W n ,! m and a permutation � W m ! m.
Therefore an I–space X W I! Top determines a sequence of spaces X.n/ together
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with an induced action of the symmetric group †n for n � 0, and structural maps
jnW X.n/! X.nC 1/ that are equivariant in the sense that jn.� �x/D � � jn.x/ for
every � 2†n and x 2X.n/. On the right-hand side we see � as element in †nC1 via
the canonical inclusion †n ,!†nC1 . Vice versa, given such a sequence of †n –spaces
X.n/ and compatible structure maps jn , they give rise to an I–space if and only if for
m� n and any two elements � , � 0 2†m which restrict to the same permutation of n

we have �.x/D � 0.x/ for all x 2 j .X.n//. We note that this condition is not satisfied
by the sequence X.n/D†n with the left or right multiplication action, but is satisfied
by the sequence X.n/D n with the natural permutation action since nŠ I.1;n/.

We say that an I–space is an I–monoid if it comes equipped with a natural transfor-
mation

�m;nW X.m/�X.n/!X.mtn/

of functors defined on I� I and a natural transformation

�nW � !X.n/

from the constant I–space �.n/ D � to X satisfying associativity and unit axioms
for �2X.0/. We say that X is a commutative I–monoid if � is commutative, meaning
that the diagram

X.m/�X.n/
�m;n

//

�

��

X.mtn/

�m;n

��

X.n/�X.m/
�n;m

// X.ntm/

commutes, where �.x;y/D .y;x/.

An I–rig is a commutative I–monoid equipped with a natural transformation

�m;nW X.m/�X.n/!X.m�n/

of functors defined on P �P and an element 1 2X.1/ satisfying associativity and unit
axioms, as well as left distributivity, ie that the diagram

.X.m/�X.n//�X.k/
�mtn;kı.�m;n�1/

//

.1���1/ı.1�1�4/

��

X..mtn/�k/

X.m/�X.k/�X.n/�X.k/
�m�k;n�kı.�m;k��n;k/

// X.m�ktn�k/

ıl
m;n;k

OO
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commutes, and right distributivity, which is given by an analogous commutative diagram.
Here 4 is the diagonal map. We emphasize that � is only required to be natural on
the subcategory P �P of I� I .1

A commutative I–rig is an I–rig in which � is commutative in the sense that the
diagram

X.m/�X.n/

�

��

�m;n
// X.m�n/

��m;n

��

X.n/�X.m/
�n;m

// X.n�m/

commutes. A natural transformation T between two I–spaces X and Y defines a map
of commutative I–monoids (I–rigs) if it commutes with � (and � ) in the sense that
T ı�m;n D �m;n ıT �T (and T ı�m;n D �m;n ıT �T ). We have thus defined a
category of I–spaces, a category of commutative I–monoids and a category of I–rigs.

2.3 Associated (bi)permutative translation categories

We will use the following notation for translation categories. If Y W C ! Top is a
functor from a category C to the category of topological spaces, we let CËY denote the
translation category on Y . The translation category, also known as the Grothendieck
construction, is a topological category whose objects are pairs .c;x/ consisting of an
object c of C and a point x 2 Y .c/. A morphism in C Ë Y from .c;x/ to .c0;x0/ is a
morphism ˛W c! c0 in C satisfying the equation Y .˛/.x/Dx0 . For example, if CDG

is a group, thought of as a one object category, then the translation category G Ë Y

is the action groupoid for the G–space Y and its classifying space is the homotopy
orbit space B.G Ë Y / D EG �G Y . In general, the classifying space B.C Ë Y / is
homeomorphic to the homotopy colimit hocolimC Y of Y over C defined using the
bar construction.

Suppose now that X is a commutative I–monoid. Then the translation category I Ë X

is a permutative category, as we now explain. The monoidal structure ˚ is defined on
objects .m;x/ and .n;y/ by

.m;x/˚ .n;y/D .mtn; �m;n.x;y//

1In fact, we do not know of any nontrivial examples where � may be extended to a natural transforma-
tion of functors defined on I � I . The examples of I–rigs that we discuss in Section 2.5 do not satisfy
this additional naturality condition. Indeed, as we will see in the following sections, an I–rig that does
satisfy this condition and has each level X.n/ a connected space would give rise to a connected E1–ring
space hocolimI X . An E1–ring space whose multiplicative unit and additive unit lie in the same path
component is contractible, so such examples would only give rise to trivial E1–ring spectra.
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and on morphisms ˛W .m;x/! .m0;x0/ and ˇW .n;y/! .n0;y0/ by letting

˛˚ˇW .m;x/˚ .n;y/! .m0;x0/˚ .n0;y0/

be determined by the morphism

˛ tˇW mtn!m0 tn0

in the category I . Notice that X.˛tˇ/.�m;n.x;y//D�m0;n0.x
0;y0/ by the naturality

of �, so that this is well-defined. The associativity and unit conditions for X imply
that I Ë X is a strict monoidal category with strict unit object .0;�/ determined by
the unit � of the I–monoid X . The commutativity of X implies that I Ë X is a
permutative category, see for example [5, Definition 3.1]. Note that the permutative
structure on I Ë X restricts to the subcategory P Ë X .

Suppose now that X is a commutative I–rig. Then by the same reasoning as above,
there is another permutative category structure on P ËX with product ˝ induced by �
and strict unit object .1; 1/. The distributivity axioms for X translate to distributivity
axioms for bipermutative categories [5, Definition 3.6].

Furthermore, a natural transformation T between two I–spaces X and Y induces a
functor I Ë X ! I Ë Y . If X and Y are commutative I–monoids (I–rigs) and T is
a morphism of such then the induced functor of translation categories is a functor of
(bi)permutative categories.

We have thus proved the following result:

Proposition 2.1 The assignment X 7! I Ë X defines a functor from the category of
commutative I–monoids to the category of permutative categories, and the assignment
X 7! P Ë X defines a functor from the category of commutative I–monoids (I–rigs)
to the category of (bi)permutative categories.

2.4 Construction of two infinite loop spaces

Let X be a commutative I–monoid. As explained in [12], the classifying space of a
permutative category is an E1–space structured by an action of the Barratt–Eccles
operad. We have proved the next theorem.

Theorem 2.2 Suppose that X W I ! Top is a commutative I–monoid. Then the
homotopy colimit

hocolimI X D B.I Ë X /

is an E1–space.
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Without further assumptions on X , this E1–space need not be grouplike (ie the
monoid �0.hocolimI X / need not be a group). However, we can always form the
group completion �B.hocolimI X / to get the associated infinite loop space. Note that
an algebra over the Barratt–Eccles operad has an underlying monoid structure that is
always strictly associative (and homotopy commutative) so that the usual functorial
construction of the classifying space for monoids built using the bar construction can
be applied. We will always use this model for B in defining the group completion
functor �B.�/. The consistency results in [12] guarantee that the group completion
�B.hocolimI X / defines an infinite loop space weakly equivalent to that obtained
using any other delooping machine.

Schlichtkrull [19] defined a different infinite loop space associated to X , using the
language of � –spaces. Schlichtkrull’s construction is the same as May’s construction
[14] of a � –space applied to the permutative category I Ë X . By the uniqueness
result of [14], the infinite loop space �B.hocolimI X / is equivalent to that defined by
Schlichtkrull.

We now give a different construction of an infinite loop space associated to X . To start
note the decomposition of categories

P Ë X D
G
n�0

†n Ë X.n/;

where †n is seen as a category with one object. Thus P Ë X is a topological category
with classifying space

M WD hocolimP X D B.P Ë X /'
G
n�0

E†n �†n
X.n/:

As P Ë X is a permutative category, M D B.P Ë X / is an E1–space and thus its
group completion, �BM , is an infinite loop space. The reduction maps X.n/! �

define a map of permutative categories P Ë X ! P Ë� and hence a map of infinite
loop spaces

�X
W �B.hocolimP X /!�B.hocolimP �/:

In particular, the homotopy fiber hofib �X is naturally an infinite loop space.

When X is a commutative I–rig, we process the associated bipermutative category
P Ë X using the machinery of Elmendorf and Mandell. To a bipermutative category C ,
they functorially associate a commutative symmetric ring spectrum [5, Corollary 3.9
and Theorem 9.3.8]. By [5, Theorem 4.6] and the original work of Segal [22], its
underlying infinite loop space is weak homotopy equivalent to �BBC . By a theorem
due to Schwede [21] and later refined by Mandell and May [10, Section 1], the
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homotopy category of commutative symmetric ring spectra is equivalent to that of
E1–ring spectra. We write KC for the E1–ring spectrum associated to C under
this equivalence of homotopy categories. The underlying infinite loop space of an
E1–ring spectrum is an E1–ring space, as defined in [13, Chapter VI], so we may
functorially associate to each bipermutative category an E1–ring space �1KC .
Moreover, by [9, Theorem 1.2], the space �1KC is weak homotopy equivalent to the
group completion �BBC .

We now apply this machinery to the morphism P Ë X ! P Ë � of bipermutative
categories. We obtain a map of E1–ring spectra

K.P Ë X /!K.P Ë�/

which is equivalent to �X after applying �1 . The homotopy fiber of a map of E1–
ring spectra is a nonunital E1–ring spectrum. By a nonunital E1–ring space, we
mean the underlying infinite loop space of a nonunital E1–ring spectrum. Since �1

preserves homotopy fiber sequences, this means that the homotopy fiber of a map of
E1–ring spaces is a nonunital E1–ring space. We have proved the next theorem.

Theorem 2.3 For any commutative I–monoid X the homotopy fiber hofib �X of

�X
W �B.hocolimP X /!�B.hocolimP �/:

is an infinite loop space. If furthermore X is a commutative I–rig, then hofib �X is a
nonunital E1–ring space.

2.5 The main example

For any group G , conjugation by G or action by any other automorphism of G induces
a well-defined action on Bn.q;G/DHom.Fn=�

q
n ;G/ by postcomposition. The action

is also compatible with the simplicial face and degeneracy maps in the bar construction
and hence induces an action on B.q;G/.

For every q � 2 we define an I–space B.q;U.�// by setting n 7! B.q;U.n// with
morphisms induced by the natural inclusions and the action of †n on B.q;U.n// given
by conjugation through permutation matrices. Being induced by the natural action of
†n on n, it can be checked that this compatible sequence defines indeed an I–space.

We give B.q;U.�// the structure of an I–monoid by defining the unit map �nW � !

B.q;U.n// to be the inclusion of the base-point and defining the monoid structure map

�n;mW B.q;U.n//�B.q;U.m//! B.q;U.nCm//
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to be induced by the block sum of matrices. To see that �n;m is well-defined note
that block sum defines a group homomorphism U.n/�U.m/! U.nCm/. When
taking elements of the symmetric groups to permutation matrices, the disjoint union of
sets corresponds to block sum of matrices. Thus � defines a natural transformation of
functors defined on I� I . One checks compatibility with � and hence B.q;U.�// is
a commutative I–monoid.

Next we note that tensor product of matrices induces a well-defined map

�n;mW B.q;U.n//�B.q;U.m//! B.q;U.nm//:

To see this note that tensor product commutes with matrix multiplication and hence
induces a homomorphism U.n/�U.m/! U.nm/. The map is equivariant for the
symmetric group actions because the permutation matrix associated to the product of
two permutations is the same as the tensor product of the corresponding permutation
matrices. Hence � is a natural transformation of functors defined on the category P�P .
Note, however, that � is not natural for proper injections. The map � is compatible
with � and the distributivity of block sum and tensor product of matrices induces
distributivity maps for � and � . We have shown:

Theorem 2.4 B.q;U.�// is a commutative I–rig.

As a consequence, we may apply Theorems 2.2 and 2.3 to get a pair of infinite loop
spaces, the latter of which carries a nonunital E1–ring structure. In the next section,
we will show that these two infinite loop spaces are equivalent.

3 Identifying and comparing the infinite loop spaces

Let X be a commutative I–monoid. We will first identify hofib �X under certain
assumptions and then show it is homotopy equivalent as an infinite loop space to
hocolimI X .

Consider the space
X1 WD hocolimn2N X.n/:

Note that X1 ' colimn2N X.n/ if the structural maps jnW X.n/! X.nC 1/ are
cofibrations. In our applications this will always be the case. Let XC1 denote Quillen’s
plus construction applied with respect to the maximal perfect subgroup of �1.X1/

(which we take to be understood to be done in each component separately, if X1 is not
connected). Also recall that a space Z is abelian if �1.Z/ is abelian and acts trivially
on homotopy groups ��.Z/. It is well known that H –spaces are abelian.
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Theorem 3.1 Let X W I! Top be a commutative I–monoid. Assume that

� the action of †1 on H�.X1/ is trivial;

� the inclusions induce natural isomorphisms �0.X.n// ' �0.X1/ of finitely
generated abelian groups with multiplication compatible with the Pontrjagin
product and in the center of the homology Pontrjagin ring;

� the commutator subgroup of �1.X1/ is perfect (for each component) and XC1
is abelian.

Then hofib �X 'XC1 and, in particular, XC1 is an infinite loop space.

Proof Let M D hocolimP X D B.P Ë X / and m be the point corresponding to the
base point in X.1/ (in the identity component of �0.X.1//). Then

Tel.M �m
�!M

�m
�!M

�m
�!� � � /' Z� .E†1 �†1 X1/:

As P Ë X is a symmetric monoidal category, its classifying space M is a homotopy
commutative topological monoid. The hypotheses imply that �0.M / is in the center
of H�.M /. Hence H�.M /Œ�0.M /�1� can be constructed by right fractions, so that
we may apply the group completion theorem [15; 17]. Therefore there is a map

f W Z� .E†1 �†1 X1/!�BM

which induces an isomorphism on homology with all systems of local coefficients
on �BM . Furthermore, the fundamental group (of each component) of E†1�†1X1
has a perfect commutator subgroup by [17], and f extends to a homology equivalence
between abelian spaces

f CW Z� .E†1 �†1 X1/
C
!�BM;

which is thus a homotopy equivalence. This shows, in particular, that the space
Z� .E†1 �†1 X1/

C is an infinite loop space as �BM is the group completion of
an E1–space.

Consider now the fibration sequence

(1) X1!E†1 �†1 X1
p
�!B†1

and the associated map of plus constructions

pCW Z� .E†1 �†1 X1/
C
! Z�B†C1:

Since f C is a homotopy equivalence and �B.hocolimP �/ ' Z � B†C1 , we can
identify the homotopy fiber of pC with hofib �X . By assumption the action of †1 on
X1 is homologically trivial. We are also assuming that XC1 is abelian and in particular
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nilpotent. Under these conditions the fiber sequence (1) remains a fiber sequence after
passing to plus constructions; see [4, Theorem 1.1]. Thus we have a homotopy fibration

XC1! Z� .E†1 �†1 X1/
C
! Z�B†C1:

This shows that the homotopy fiber of pC is XC1 and so XC1 ' hofib �X .

Remark 3.2 For any commutative I–monoid X , the multiplication on MX WDF
n�0 X.n/ is commutative up to the action of the shuffle maps �m;n . These are

induced by the action of the symmetric group. So, assuming that these actions are
trivial in homology, it follows that the Pontrjagin product is commutative on the level
of homology. In particular �0.MX / is in the center of the Pontrjagin ring H�.MX /.
Thus by the group completion theorem [15], the map

Z�X1!�B.MX /

is a homology isomorphism. In recent work, Gritschacher [7] has shown that without
any further assumption, the commutator subgroup of �1.X1/ is always perfect and
that XC1 is always an abelian space. In other words, the assumptions in Theorem 3.1
on �1.X1/ and XC1 are actually consequences.2

In contrast, the condition that the symmetric groups act homologically trivially is
necessary. To see this consider the commutative I–space X with X.n/ WD Zn for
some pointed connected space Z . Then, by the parametrized version of the Barratt–
Priddy–Quillen theorem (see for example [12; 22]),

�B.hocolimP X /'Q.ZC/

and thus hofib �X 'hofib pC'Q.Z/ while X1'hocolimn Zn . Here QD�1†1

and ZC denotes the space Z with an additional base point.

We now turn to the question of comparing the infinite loop spaces hofib �X and
hocolimI X . Suppose that X is a commutative I–monoid. Consider the following
commutative diagram of strict functors between permutative categories:

P Ë X
˛X
//

�X

��

I Ë X

�X
1
��

P Ë� ˛�
// I Ë�

The horizontal maps are induced by the inclusion P ! I . In the above diagram � is
the terminal commutative I–monoid and the vertical maps �X and �X

1
are induced by

2As we do not know whether MX is homotopy commutative, the results of [17] cannot be applied
directly to conclude that the induced map Z�XC1!�B.MX / is a homotopy equivalence.
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the projection maps to a point. Passing to the level of classifying spaces and applying
group completion we obtain a commutative diagram of infinite loop spaces:

(2)

�B.hocolimP X /
˛X

//

�X

��

�B.hocolimI X /

�X
1
��

�B.hocolimP �/
˛�
// �B.hocolimI �/' �

Note that the empty set is an initial object for I and hence hocolimI � D BI ' �.

The above diagram induces an infinite loop map between the homotopy fibers of the
maps �X and �X

1
. By definition the homotopy fiber on the left is the space hofib �X .

Also, since hocolimI � is contractible, the homotopy fiber on the right can be identified
with �B.hocolimI X /. This shows that we have a map of infinite loop spaces

hofib �X g
�!�B.hocolimI X /:

Note that �X has a canonical splitting of permutative categories induced by the unit
�!X of the I–monoid X . Thus it follows from the following theorem that g is a
homotopy equivalence whenever the stated conditions on X are satisfied.

Theorem 3.3 Let X be a commutative I–monoid such that all maps j W X.n/!X.m/

induced by injections j W n!m are monomorphisms. Furthermore, assume that, for
all x 2X.n/ and y 2X.m/, the sum �n;m.x;y/ is in the image of a map induced by
a nonidentity order preserving injection if and only if x or y is. Then

˛X � �
X
W�B.hocolimP X /!�B.hocolimI X /��B.hocolimP �/

is a weak homotopy equivalence of infinite loop spaces which is natural for commutative
I–monoids.

Notice that, when X is a commutative I–rig, we may use the theorem to transfer
the nonunital E1–ring space structure on hofib �X along g to obtain a nonunital
E1–ring space structure on the group completion of hocolimI X .

A version of the theorem was proved by Fiedorowicz and Ogle [6] in the setting of
simplicial sets. This was revisited in Gritschacher [7, Section 4]. For convenience of
the reader we sketch a streamlined argument following [7].

Proof Given x 2 X.n/ we can write it as x D jx.xx/, where xx 2 X.xn/, jx W xn! n

is an order-preserving injection and xn is minimal. We call x reduced if x D xx . Note
that xx and jx are uniquely determined. Denote by X .n/ the set of reduced elements
in X.n/. The assignment n 7!X .n/ defines a P –diagram. By the assumption on � the
commutative I–monoid structure of X induces the structure of a permutative category
on P Ë X .
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Assume now that X is discrete. Then the assignment .n;x/ 7! .xn; xx/ on objects
extends to define a functor

RX W I Ë X ! P Ë X :

It has a right inverse given by the inclusion �X W P Ë X ! I Ë X . Furthermore, the
maps jx define a natural transformation from �X ıRX to the identity on I ËX . Hence,
RX defines a homotopy deformation retract on classifying spaces. We also note that
by our assumption on �, the functor RX is a strict symmetric monoidal functor.

The inclusions P Ë X ! P Ë X and P ! P Ë X combine via the monoidal product
functor to a functor

TX W .P Ë X /�P ! P Ë X

that maps the object ..xn; xx/;n/ to .xnC n; j .xx//, where j is the canonical inclusion
xn ,! xnCn. We claim this is a homotopy equivalence on classifying spaces. Indeed,
an analysis of the effect of permutations on reduced points shows that the functor is
bijective on automorphism groups of objects. As both source and target categories are
groupoids and every isomorphism class of the target category has a representative in
the image, this is an equivalence of categories. We note that TX is not a strict monoidal
functor (only up to conjugation by a block permutation). However, the left inverse
functor .n;x/ 7! ..xn; xx/;n� xn/ does commute strictly with the monoidal structure.
Hence, this defines a homotopy equivalence of monoids on classifying spaces, and
induces a homotopy equivalence of group completions. Compare [6, Lemma 1.7].

Consider now the map of permutative categories

˛X � �
X
W P Ë X ! .I Ë X /�P

and take the group completion of their classifying spaces

(3) ˛X � �
X
W �B.B.P Ë X //!�B.B.I Ë X //��B.BP /:

We claim that this is a weak homotopy equivalence which is natural in commutative
I–monoids. To see this precompose with the map of group completed classifying
spaces induced by TX and postcompose with the map induced by RX � Id. The
resulting composite is homotopic to the endofunctor of .P Ë X /�P given by

..xn; xx/;m/ 7! ..xn; xx/; xnCm/:

This map is the identity on the first component and an equivalence on the second
component because we are working with group-complete monoids.

Using the naturality of the weak homotopy equivalence in (3) and applying it to
boundary and face maps allows us to extend it to I–diagrams in simplicial sets. More
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precisely, for any commutative I–monoid X in simplicial sets that satisfies levelwise
the condition on �, we have a map of simplicial permutative categories which is a weak
homotopy equivalence on applying �B.B.�// to each simplicial level, and hence a
weak homotopy equivalence on total spaces:

˛X � �
X
W jn 7!�B.B.P Ë X.n///j ' jn 7!�B.B.I Ë X.n///��B.BP /j:

As � commutes with Cartesian product, and as jn 7!�Z.n/j'�jn 7!Z.n/j whenever
each Z.n/ is connected (see [11, Theorem 12.3]), we also have

˛X � �
X
W�jn 7! B.B.P Ë X.n///j '�jn 7! B.B.I Ë X.n///�B.BP /j:

Furthermore, as realizations of multisimplicial sets can be taken in any order, we deduce
that

˛X � �
X
W �B

�
B.P Ë jn 7!X.n/j/

�
'�B

�
B.I Ë jn 7!X.n/j/

�
��B.BP /:

Compare [6, Lemma 1.8]. Finally, by replacing every space by its singular simplicial
set, any I–diagram X in topological spaces gives rise to an I–diagram in simplicial
sets, taking commutative I–monoids to simplicial ones. Note that the conditions on �
are pointwise conditions and are automatically satisfied by the singular p–simplices
for each p . As a space is weakly homotopy equivalent to the realization of its singular
simplicial set, the theorem follows.

Example 3.4 Consider the commutative I–space X with X.n/ WD Zn , where Z

is a well-pointed connected space. Note that in this case †n does not act trivially
on H�.Z

n/ and hence Theorem 3.1 does not apply. As before, by the parametrized
version of the Barratt–Priddy–Quillen theorem,

�B.hocolimP X /'Q.ZC/'Q.S0/�Q.Z/

and hence hofib �X 'Q.Z/. Thus, by Theorem 3.3 we also have hocolimI X 'Q.Z/,
which is in agreement with a result of Schlichtkrull [20].

4 Constructing filtrations by infinite loop spaces

In this section we use the results obtained in the previous sections to produce filtrations
of classical infinite loop spaces by sequences of infinite loop spaces arising from the
descending central series of the free groups.

Theorem 4.1 The spaces B.q;U /, B.q;SU/, B.q;SO/ B.q;O/ and B.q;Sp/ pro-
vide a filtration by nonunital E1–ring spaces of the classical nonunital E1–ring
spaces BU , BSU, BSO, BO and BSp, respectively.
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Proof Consider first the case of BU . Recall that the spaces B.q;U / provide a filtration
of the space BU

B.2;U /� B.3;U /� � � � � B.q;U /� B.qC 1;U /� � � � � BU:

We will show that this filtration is a filtration by nonunital E1–ring spaces. For
this notice that by the main example in Section 2, each n 7! B.q;U.n// for q � 2

is a commutative I–rig. In what follows we are going to show that the conditions
of Theorem 3.1 are satisfied, and hence B.q;U / ' hofib �B.q;U.�// is a nonunital
E1–ring space by Theorem 2.3.

The conjugation action of †n on B.q;U.n// is homologically trivial because this
action factors through the conjugation action of U.n/. The conjugation action by any
element in U.n/ is trivial, up to homotopy, since the action of the identity matrix is
trivial and U.n/ is path-connected. This implies in particular that the action of †1
on B.q;U / is homologically trivial.

Note that B.q;U.n// and hence B.q;U / is path connected. Next, we argue that the
space B.q;U / is an H –space under direct sum multiplication. To be more precise,
consider the injection N tN!N defined by .1; 2; 3; 4; : : : /[ .10; 20; 30; 40; : : : / 7!
.1; 2; 10; 20; 3; 4; 30; 40; : : : /. It defines a map of vector spaces C1 �C1!C1 and
hence a continuous homomorphisms U �U ! U . The image of U.n/ in U under
right or left multiplication by the identity matrix I differs from the image under the
standard inclusion by conjugation of an even permutation. As such a permutation is in
the path-component of the identity matrix, we see that the multiplication is unital up to
homotopy.

H –spaces have abelian fundamental group and hence Theorem 3.1 applies. We
conclude that B.q;U /' hofib �B.q;U.�// for every q � 2 and is a nonunital E1–ring
space by Theorem 2.3. The very same arguments can be used to prove analogous
statements for the commutative I–rig n 7! B.q;SU.n//, and n 7! B.q;Sp.n// for
any q � 2.

In case of the commutative I–rig n 7!B.q;SO.n// we note that †n is not a subgroup
of SO.n/. Nevertheless, the alternating group An is contained in SO.n/ and by the
same argument as above acts therefore trivially on the homology of B.q;SO.n//.
Furthermore, when n is odd, any odd permutation is represented by a matrix with
determinant equal to �1. Hence it can be path-connected to the diagonal matrix
�I with constant entry �1. As �I is in the center of O.n/ it acts trivially by
conjugation on B.q;SO.n// and hence also on its homology. But then so does any
odd permutation. This proves that when n is odd the action of †n on B.q;SO.n//
is homologically trivial. This in turn implies that the action of †1 on B.q;SO/ is
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homologically trivial. We also have that B.q;SO/ is an H –space and hence abelian.
Thus B.q;SO/ ' hofib �B.q;SO.�// for every q � 2 and it is a nonunital E1–ring
space by Theorem 2.3. This line of argument can also be used to prove the analogous
statement for the commutative I–rig n 7! B.q;O.n//.

As remarked in [1, Theorem 6.3], the natural map �B.q;G/!�BG admits a splitting
up to homotopy. It is given by a factorization of the usual homotopy equivalence
G ! �BG. Indeed we have that †G D F1B.q;G/ D F1BG, where F1 denotes
the first layer in the usual filtration of the geometric realization of these simplicial
spaces. Hence, the adjoint of †G ! BG factors through �B.q;G/. Note that this
splitting does not in general admit a delooping; see [1, Section 6] for a counterexample.
Nevertheless, we have the following theorem. Here E.q;G/ denotes the pull-back of
the universal G –bundle EG over BG. It is homotopy equivalent to the homotopy fiber
of the inclusion B.q;G/! BG.

Theorem 4.2 For all q � 2, and G D U , SU, SO, O and Sp, there is a homotopy
split fibration of infinite loop spaces

E.q;G/! B.q;G/! BG:

In particular there is a splitting of spaces

B.q;G/' BG�E.q;G/:

Both are natural in the entry q , meaning that both are compatible with the filtration
maps.

In order to prove the theorem, we will need to know the fundamental group of B.q;G/

for the groups in question. We have the following general result:

Lemma 4.3 Let G be a topological group with a CW–structure. Assume �0.G/ is
abelian and that the natural homomorphism G! �0.G/ splits. Then, for all q � 2,

�1.B.q;G//D �0.G/:

Proof Consider †G D F1B.q;G/D F1BG. As the 1–skeleton of the realization of
a (good) simplicial space is contained in the first filtration [11, Proposition 11.4], any
map from S1 to B.q;G/ will factor through †G . Hence the map †G! B.q;G/ is
surjective on fundamental groups.

The fundamental group of a suspension †X for any space X has fundamental group
the free group over the set �0.X /�f1g; hence we have

�1.†G/D F
�
g j g 2 �0.G/�f1g

�
:
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The inclusion †G!BG induces the surjective map of fundamental groups �1.†G/!

�0.G/ which sends a generator g to the element g 2 �0.G/ and, more generally, the
word g1 � � � � � gk to the product of the elements g1 � � �gk . To see this geometrically,
consider �0.G/ as a subgroup of G , and note that the 2–simplex .g; h/ defines a
homotopy from the 2–letter word g � h to the product element gh.

We now note that, as �0.G/ is abelian, the 2–simplex .g; h/ is contained in B2.q;G/

for q � 2. Hence all the above relations are already satisfied in �1.B.q;G//. As the
factorization �1.†G/! �1.B.q;G//! �1.BG/ is surjective, the result follows.

Proof of Theorem 4.2 As EG1 ' �, for every q � 2 we have a homotopy fibration
sequence E.q;G1/!B.q;G1/!BG1 . As the map on the right is a map of infinite
loop spaces, the homotopy fiber E.q;G1/ is an infinite loop space. It remains to show
that it splits.

Let Gn denote one of the groups U.n/, SU.n/, SO.n/, O.n/ or Sp.n/, so that
G1 D colimn Gn denotes the group U , SU, SO, O or Sp, respectively. For each
fixed q � 2, the assignment n 7! �B.q;Gn/ defines a commutative I–rig with �
given by block sum and � given by tensor product of matrices. In the same way
the assignment n 7!�BGn also defines a commutative I–rig and the inclusion map
�B.q;Gn/!�BGn defines a morphism of commutative I–rigs.

We claim that the commutative I–rigs G� , �B.q;G�/ and �BG� satisfy the hy-
potheses of Theorem 3.1. Indeed, except in the case G DO , the group Gn '�BGn

is path-connected for every n � 0 and, as �0.�B.q;Gn//Š �1.B.q;Gn// is trivial
by Lemma 4.3, �B.q;Gn/ is also path-connected. When G DO ,

�0.�B.q;O.n///D �1B.q;O.n//D Z=2Z

for each n � 1 by Lemma 4.3. The multiplication in �0�B.q;O.n// is compatible
with direct sum and stabilization. This checks the second condition in Theorem 3.1.

Except in the cases G D SO or G D O , the action of †n is homologically trivial
as conjugation by any element in the path component of the identity is trivial, up
to homotopy, and Gn is path-connected. This implies that †1 acts homologically
trivially on G1 , �B.q;G1/ and �BG1 . The same conclusion can be obtained for
G D SO or G DO using a similar argument as in the proof of Theorem 4.1. Hence
the first condition from Theorem 3.1 holds.

To verify the third condition, observe that the commutator group of �1.�B.q;Gn//Š

�2.B.q;Gn// is trivial, as this group is abelian in all cases. Finally, �B.q;G1/ is an
abelian space since it is a loop space and hence in particular an H –space.
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By Theorem 3.1 we thus have maps of E1–spaces

G1!�B.q;G1/!�BG1

whose composition is a homotopy equivalence. Taking classifying spaces is compatible
with E1–space structures and hence the above splitting deloops to give the splitting
of the theorem.

We have concentrated so far on compact groups such as O.n/ and U.n/, although
the methods clearly extend to other linear groups. Using some results by Pettet and
Souto [16] and Bergeron [3] we can prove the following theorem:

Theorem 4.4 Suppose that G is the group of complex or real points in a reductive
linear algebraic group (defined over R in the real case). Let K � G be a maximal
compact subgroup. Then the inclusion map i W B.q;K/ ! B.q;G/ is a homotopy
equivalence for every q � 2.

Proof By [3, Theorem I] it follows that the inclusion map inW Bn.q;K/! Bn.q;G/

is a homotopy equivalence for all q � 2 and all n� 0. Thus the inclusion map induces
a simplicial map i�W B�.q;K/! B�.q;G/ that is a levelwise homotopy equivalence.
Since G is assumed to be the group of complex or real points in a reductive linear
algebraic group (defined over R in the real case), we can identify G with a Zariski
closed subgroup of SLN .C/ for some N �0. Also, for every n�0 we can see the space
Bn.q;G/ as an algebraic variety since it is defined in terms of iterated commutators
of elements in G and such equations can be defined in terms of polynomial functions.
Moreover, the subspace S1

n .q;G/� Bn.q;G/ consisting of all n–tuples in Bn.q;G/

for which at least one of the coordinates is equal to 1G is an algebraic subvariety
of Bn.q;G/. By the semialgebraic triangulation theorem (see [8, Section 1]) it follows
that Bn.q;G/ has the structure of a CW–complex in such a way that S1

n .q;G/ is a
subcomplex. In particular, it follows that the pair .Bn.q;G/;S

1
n .q;G// is a strong

NDR pair. This proves that B�.q;G/ is a proper simplicial space. The same is true
for B�.q;K/. Using the gluing lemma — for example see [12, Theorem A.4] — we
obtain the result of the theorem.

Our tools can also be used to obtain a similar filtration for the infinite loop space
defining algebraic K–theory for any discrete ring R. Indeed, suppose that R is a
discrete ring with unit and let q � 2. Consider the commutative I–rig B.q;GL�.R//
defined by n 7! B.q;GLn.R//. As before the morphisms are induced by the natural
inclusions and the conjugation action of †n on B.q;GLn.R//. The multiplication
map

�n;mW B.q;GLn.R//�B.q;GLm.R//! B.q;GLnCm.R//

Algebraic & Geometric Topology, Volume 17 (2017)



888 Alejandro Adem, José Manuel Gómez, John A Lind and Ulrike Tillmann

is also given by the block sum and � by tensor product of matrices. Note that
Theorem 3.3 applies to give

hocolimI B.q;GL�.R//' hofib �B.q;GL�.R//:

By Theorem 2.3, this space has the structure of a nonunital E1–ring space. This way
we obtain a filtration of nonunital E1–ring spaces:

hocolimI B.2;GL�.R//�� � ��hocolimI B.q;GL�.R//�� � ��hocolimI BGL�.R/:

As is well known, the conjugation action of †n on BGLn.R/ is homologically trivial.
It follows from Theorems 3.1 and 3.3 that we have an equivalence

BGL1.R/C ' hofib �BGL�.R/ ' hocolimI BGL�.R/:

Thus the above gives a filtration of nonunital E1–ring spaces with final space weakly
homotopy equivalent to the algebraic K–theory of R. However, unlike the case
of BGLn.R/, we do not know whether the conjugation action of †n on B.q;GLn.R//

is homologically trivial, and we expect that the natural map

B.q;GL1.R//! hocolimI B.q;GL�.R//

is not a homology isomorphism.

In a similar way we can obtain a filtration of Q.S0/. For this note that the conjugation
action of †n on B†n is homologically trivial. Therefore, by the Barratt–Priddy–
Quillen theorem, the level zero component of Q.S0/ is equivalent to the homotopy
colimit over I of the classifying spaces of the symmetric groups:

Q0.S
0/' .B†1/

C
' hofib �B†� ' hocolimI B†�:

Consider the commutative I–rig B.q; †�/ defined by n 7! B.q; †n/. The structural
maps are given by conjugation of †n and inclusions in an analogous way as above.
Then by Theorem 2.2 we have a filtration of nonunital E1–ring spaces

hocolimI B.2; †�/� � � � � hocolimI B.q; †�/� � � � � hocolimI B†� 'Q0.S
0/:

As in the case of B.q;GLn.R//, the conjugation action of †n on B.q; †n/ may fail to
be homologically trivial (for example this is the case for the conjugation action of †3

on B.2; †3/; see [1]). The conditions of Theorem 3.3 are satisfied but the homotopy
types of the spaces hocolimI B.q; †�/' hofib �B.q;†�/ remain to be determined.
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Corollary 4.5 The spaces

hocolimI B.q;GL�.R//' hofib �B.q;GL�.R//;

hocolimI B.q; †�/' hofib �B.q;†�/

provide filtrations of nonunital E1–ring spaces with final target the classical nonunital
E1–ring spaces BGL1.R/C and Q0.S

0/.

5 Transitional nilpotence, bundles and K–theory

In this section we extend the notions of transitionally commutative bundles and com-
mutative K–theory as defined in [2] to more general q–nilpotent notions for q � 2,
reflecting the filtration induced by the descending central series of the free groups. We
will show that these geometrically defined theories are represented by the infinite loop
spaces Z�B.q;U /.

Definition 5.1 For a CW–complex X a principal G–bundle � W E ! X is said to
have transitional nilpotency class at most q if there exists an open cover fUigi2I

of X such that the bundle � W E!X is trivial over each Ui and for every x 2X the
group generated by the collection f�i;j .x/gi;j is a group of nilpotency class at most q .
Here �i;j W Ui \Uj !G denotes the transition functions, and i and j run through all
indices in I for which x 2 Ui \Uj . The minimum of all such numbers q is said to be
transitional nilpotency class of � W E!X .

The principal G–bundle pqW E.q;G/ ! B.q;G/ is universal for all principal G–
bundles with transitional nilpotency class less than q .

Theorem 5.2 Assume that G is an algebraic subgroup of GLN .C/ for some N � 0,
X is a finite CW–complex and that � W E! X is a principal G –bundle over X . Then,
for any q � 2, the classifying map f W X ! BG of � factors through B.q;G/ (up to
homotopy) if and only if � has transitional nilpotency class less than q .

Proof The case q D 2 was treated in [2, Theorem 2.2] and in fact this theorem is true
for any Lie group in this case. The proof goes through verbatim also for q > 2 using
the fact that when G is an algebraic subgroup of GLN .C/, then the simplicial space
B�.q;G/ is proper, as was pointed out in the proof of Theorem 4.4.

As Œ†X;BG�D ŒX; �BG� and the canonical map �B.q;G/!�BG always admits a
splitting up to homotopy, any principal G –bundle on a suspension †X has transitional
nilpotency class less than q for all q . However, the nilpotency structure is not unique
in general, not even up to isomorphism in the sense of the following definition:
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Definition 5.3 Let �0W E0!X and �1W E1!X be two principal G –bundles with
transitional nilpotency class less than q . We say that these bundles are q–transitionally
isomorphic if there exists a principal G–bundle pW E!X � Œ0; 1� with transitional
nilpotency class less than q such that �0 D pjp�1.X�f0g/ and �1 D pjp�1.X�f1g/ .

A complex vector bundle � W E!X is said to have transitional nilpotency class less
than q if the corresponding frame bundle, under a fixed Hermitian metric on E , has
transitional nilpotency class less than q . Theorem 4.2 can then be interpreted to say that
any vector bundle is stably of transitional nilpotency class less than q for all q � 2, and
there is a functorial choice of such a structure. The set Vectq–nil.X / of q–transitionally
isomorphism classes of complex vector bundles over X with transitional nilpotency
class less than q is a monoid under the direct sum of vector bundles. The q–nilpotent
K–theory of X is defined as the associated Grothendieck group.

Definition 5.4 Kq–nil.X / WD Gr.Vectq–nil.X //.

Tensor products induce a natural multiplication on Kq–nil.X / just as in classical K–
theory.

Theorem 5.5 For any finite CW–complex X there is a natural isomorphism of rings

Kq–nil.X /Š ŒX;Z�B.q;U /�:

Hence, it is the zeroth term of a multiplicative generalized cohomology theory.

Proof Let X be a finite CW–complex. By working one path-connected component
at a time, we may assume without loss of generality that X is path-connected. By
Theorem 5.2,

Vectq–nil.X /D

�
X;
G
n�0

B.q;U.n//

�
as abelian monoids, where the addition is induced by direct sum of matrices on the right
hand side. Any injection N �N!N induces a linear injection C1 �C1! C1 ,
which in turn induces an H –space product on Z�B.q;U /. The natural inclusions
B.q;U.n//! B.q;U / define a map�

X;
G
n�0

B.q;U.n//

�
! ŒX;Z�B.q;U /�:

As the symmetric groups act by homotopy equivalences on B.q;U /, we see that the
above map is compatible with the product structure on both sets, ie it is a map of
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monoids. By the universal property of the Grothendieck construction, this map factors
through a unique map of abelian groups

Kq–nil.X /! ŒX;Z�B.q;U /�:

As X is compact, any map X ! B.q;U / factors through some B.q;U.n// for some
large enough n. Hence the above map is surjective.

To prove that it is injective, suppose that the image of ŒA� � ŒB� 2 Kq–nil.X / in
ŒX;Z � B.q;U /� is zero. Let us write fBW X ! B.q;U / for the image of a map
representing B in the colimit B.q;U / D colimn2N B.q;U.n//. Since B.q;U / is
a grouplike H –space, the induced product on Map.X;B.q;U // is also a grouplike
H –space structure. Let fB0 W X ! B.q;U / be a homotopy inverse for fB under
this product. Since X is compact, we may factor fB0 through a finite stage of the
colimit and find a corresponding bundle B0 over X with transitional nilpotency class
less than q which is classified by the map fB0 . It follows that B ˚ B0 is stably
q–transitionally isomorphic to the trivial bundle �k of rank k D dim BC dim B0 . By
our assumption, we see that the image of ŒA˚B0�� Œ�k � in ŒX;Z�B.q;U /� is also
zero. This means that A˚B0 is stably q–transitionally isomorphic to a trivial bundle,
say A˚B0˚ �t Š �kCt . We then have the relation

ŒA�� ŒB�D ŒA˚B0˚ �t �� Œ�kCt �D 0

in Kq–nil.X /, which completes the proof.

This answers the question raised in [2] for q D 2. Moreover, we have a sequence of
cohomology theories and maps between them,

Kcom.X /DK2–nil.X /!K3–nil.X /! � � � !Kq–nil.X /! � � � !K.X /:

By Theorem 4.2, topological K–theory splits off q–nilpotent K–theory for all q � 2.
These theories are not well understood and would seem to warrant further attention.
For example in [2] it was shown that Kcom.Si/ Š K.Si/ for 0 � i � 3, but that
Kcom.S4/¤K.S4/.

We leave it to the reader to formulate q–nilpotent versions of real and hermitian
K–theory.
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