
msp
Algebraic & Geometric Topology 17 (2017) 957–982

Hopf ring structure on the mod p cohomology
of symmetric groups

LORENZO GUERRA

We describe a Hopf ring structure on
L

n�0 H�.†nIZp/ , discovered by Strickland
and Turner, where †n is the symmetric group of n objects and p is an odd prime.
We also describe an additive basis on which the cup product is explicitly determined,
compute the restriction to modular invariants and determine the action of the Steenrod
algebra on our Hopf ring generators. For p D 2 this was achieved in work of Giusti,
Salvatore and Sinha, of which this work is an extension.

20J06

1 Introduction

Let †n be the symmetric group of n objects. Strickland and Turner [8] proved that,
for a multiplicative cohomology theory E , the group ADE

�`
n�0 B.†n/

�
has the

structure of a Hopf ring (ie, it admits a coproduct �, two products ˇ and � and an
antipode �, which make it a ring object in the category of coalgebras). Equivalently,
the following conditions hold:

� .A; �; � / is a bialgebra.

� .A; �;ˇ; �/ is a Hopf algebra.

� If �.x/D
P

i x0i ˝x00i , then

x � .yˇ z/D
X

i

�
.�1/dim.x00

i
/ dim.y/.x0i �y/ˇ .x

00
i � z/

�
:

Explicitly, the structural maps are defined as follows. The obvious monomorphisms
in;mW †n�†m!†nCm determine the maps B.†n/�B.†m/!B.†mCn/, homotopy
equivalent to finite coverings. Passing to cohomology and taking their direct sum
yields the coproduct �. Additionally, in;m also determines a transfer homomorphism
trn;mW H

�.†nIZp/˝H�.†mIZp/! H�.†nCmIZp/. The product ˇ is given byL
n;m�0 trn;m . The product � is the usual cup product. Finally, � is induced by the

additive inverse of the sphere spectrum by applying the extended power functor and
then cohomology (see [8, pages 140–142]).
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Giusti, Salvatore and Sinha [3] have studied this structure for the ordinary cohomology
with coefficients in Z2 and constructed the following:

� An explicit presentation, in terms of generators and relations, of this Hopf ring.
� An additive basis for the mod 2 cohomology of the symmetric groups in which

the products � and ˇ and the coproduct � defined above can be computed by
an explicit rule.

In this presentation, the relations involve only the ˇ product. For this reason, all the re-
lations for the cup product in the cohomology of symmetric groups follow, in the mod 2

case, from Hopf ring distributivity. In addition, the authors calculated the restriction
to the Dickson invariants and the action of the Steenrod algebra on these groups.

The purpose of this paper is to study the algebraic structure of the cohomology rings
H�.†nIZp/, where p is an odd prime, as well as the derivation of the mod p analogs
of Giusti, Salvatore and Sinha’s results. In particular, following their work, we will
write a presentation of the Hopf ring H�

�`
n�0 B.†n/IZp

�
.

The generalizations to the mod p case required overcoming some complications in
calculations, especially at odd degrees and when dealing with the more complicated co-
efficients arising in the description of the Steenrod algebra action. The main differences
with the mod 2 case are the following:

� To obtain their Hopf ring presentation, Giusti, Salvatore and Sinha needed to
relate the linear duals of � , ˇ and � to the Dyer–Lashof operations. Then they
used Nakaoka’s description of H�.†nIZ2/ and dualized to obtain results in
cohomology. In the mod p case the need to treat the Bockstein homomorphism
separately yields a more complicated structure for the dual of the Dyer–Lashof
algebra, which is not a polynomial algebra as in the mod 2 case. This forces us,
in the presentation of the Hopf ring

L
n H�.†nIZp/, to use more generators

and some nontrivial relations involving the cup product.
� Consider in the cohomology groups H�.†2n IZ2/ the linear duals of the Dyer–

Lashof operations with respect to the Nakaoka monomial basis in homology. It
is known that the restriction homomorphism onto the ring of Dickson invariants
Dn D Z2Œx1; : : : ;xn�

GLn.Z2/ maps the subalgebra generated by those dual el-
ements surjectively onto Dn . In [3], the computation of the restriction of the
Hopf ring generators to Dn relies on this fact. For mod p coefficients this is no
longer true; hence, we needed to use a different technique to achieve this goal.

Apart from this introduction, this paper is organized into five sections. In Section 2 we
describe a presentation, with generators and relations, of the mod p cohomology of
the symmetric groups as a Hopf ring, obtaining the mod p analog of the main theorem
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in [3]. In Section 3 we obtain an additive basis with a rule for computing the products.
In Section 4 we carry out the calculation of the restriction of our Hopf ring generators
to the Dickson–Mùi invariant algebras. This will be crucial to the computation of the
Steenrod algebra action, which is explained in Section 5. In Section 6 we use our Hopf
ring presentation to describe the cup product structure for H�.†p2 IZp/.

Acknowledgments The author would like to thank Professor Frederick Cohen and
Professor Dev Sinha for valuable conversations, Professor Mario Salvetti for his guid-
ance, and the referee for helpful comments and suggestions.

2 Hopf ring structure

In this section, we describe AD
L

n�0 H�.†nIZp/ as a Hopf ring.

Theorem 2.1 [8, Theorem 3.2] A, with the coproduct �, the two products ˇ and �
and the antipode � described in the introduction, is a Hopf ring.

We need to describe the homology H D
L

n�0 H�.†nIZp/, dual to A. In order to
establish the notation, we recall the Dyer–Lashof operations, acting on the homology
of the symmetric groups. A complete treatment of these operations can be found in
Cohen, Lada and May [2], to which we refer for details and proofs. Given a group G ,
its classifying space is denoted by B.G/, its total space (ie a contractible topological
space with a free G–action) by E.G/. Suppose that X is a space, and we are given
a map � W E.†p/�†p

X p! X , where †p acts on X p by permuting the p factors.
Let �p be a cyclic group of order p , considered a subgroup of †p in the obvious way.
Let W� be the standard resolution of Zp with Zp Œ�p �–free modules. We can consider
the composition map

‚W H�.W�˝�p
C�.X /

˝p/!H�.E.†p/�†p
X p
IZp/

��
�!H�.X IZp/:

For every i � 0 and c 2Hd .X IZp/, we define

Qi.c/D‚.ei ˝�o
c˝p/ 2HiCpd .X IZp/;

where ei is the standard generator of Wi .

When � arises from an action of an E1–operad C on X , Qi is different from 0 on
Hq.X IZp/ only if i is congruent to q.p�1/ or to q.p�1/�1 modulo 2.p�1/ and
Qk.p�1/�1.x/D ˇQk.p�1/.x/, where ˇ is the homology Bockstein homomorphism.
Hence, by making a change of indices and defining

Qi
D.�1/iC

q.q�1/.p�1/
4

�
1
2
.p�1/!

�q
Q.2i�q/.p�1/W Hq.X IZp/!HqC2i.p�1/.X IZp/;

we see that the Qi and ˇQi generate all the nontrivial operations.
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In the category of C–spaces, these operations also satisfy the following properties (see
Cohen, Lada and May [2, Theorem 1.1, page 5]):

� Let � denote the product in the homology of a C–space X . The Qi are Zp–linear,
natural with respect to maps of C–spaces, Q0.x/Dx�p and Qi.1H�.X IZp//D0

for i > 0. Hence the operations Qi can be regarded as homological derived pth

powers.
� The following Cartan formula holds for x 2Hq.X IZp/ and y 2Hq0.X IZp/:

Qr .x �y/D
X

iCjDr

Qi.x/�Qj .x/:

� The following Adem relations hold:

Qr
ıQs

D

X
i

.�1/rCi
�.p�1/.i�s/�1

pi�r

�
QrCs�i

ıQi if r > ps;

Qr
ıˇQs

D

X
i

.�1/rCi
�.p�1/.i�s/

pi�r

�
ˇQrCs�i

ıQi

�

X
i

.�1/rCi
�.p�1/.i�s/�1

pi�r�1

�
QrCs�i

ıˇQi if r � ps:

By using the Adem relations, we can write an arbitrary composition of k operations
Qi1
ı� � �ıQik

as a linear combination of sequences Qj1
ı� � �ıQjk

with nondecreasing jl .
Furthermore, when applied to an even-dimensional class, we can also require that
jl D

P
l<m�k jm.p�1/ or

P
l<m�k jm.p�1/�1 mod 2.p�1/. We call a sequence

of nonnegative integers J D .j1; : : : ; jk/ admissible if it satisfies the previous two
conditions. We call it strongly admissible if, in addition, j1 6D 0. To simplify the
notation, we write QJ for Qj1

ı� � �ıQjk
. If we translate to the upper-indices notation,

a composition ˇ"1Qi1ı� � �ıˇ"k Qik is admissible if and only if pil�"l � il�1 for all l ,
and is strongly admissible if and only if, in addition, i1�

Pk
lD2Œ2.p� 1/il � "l � > 0.

The Dyer–Lashof operations completely describe the structure of
L

n�0 H�.†nIZp/.

Theorem 2.2 [2, Theorem 4.1, page 40] Let � 2H0.†1IZp/ be the homology class
of any point in B.†1/. Let H D

L
n�0 H�.†nIZp/. Then H , under the product �

induced by the inclusions †n �†m!†nCm , is the free graded commutative algebra
generated (in appropriate dimensions) by QI .�/ for strongly admissible sequences I .
Moreover, the action of the operations Qi is determined by the properties listed above.
In other words, it is isomorphic to the free allowable R–algebra on �, as defined in [2,
Section I.2].

As a consequence, the basis for this algebra as a Zp–vector space is given by products
of such QI .�/. We call these basis elements Nakaoka monomials.
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We now define some cohomology classes, which we will prove to be Hopf-ring genera-
tors for A.

Definition 2.3 Let the symbol _ denote the linear dual with respect to the Nakaoka
monomial basis of H . Now we define some classes:

j̨ ;k D
�
Qpk�1�pk�1�j

ı � � � ıQpj�1
ıˇQpj�1

ı � � � ıQp
ıQ1.�/

�_
;

ǰ ;k;m D
��
ˇQpk�1�pk�1�j

ı � � � ıQpjC1�p
ıQpj�1

ıˇQpj�1

ı � � � ıQ1.�/
��m�_

;

k;m D
��

Qpk�1

ı � � � ıQp
ıQ1.�/

��m�_
:

Note that j̨ ;k is an odd-dimensional homogeneous element of A, while ǰ ;k;m

and k;m are even-dimensional. Note also that we can easily convert the sequences
of operations that appear in the definition above into the lower-index notation. For
example, k;m is the linear dual to

.�1/kQı
k

2.p�1/.�/
�m:

Similarly, the linear duals of j̨ ;k and ǰ ;k;m can be written as nonzero multiples of
the elements

Qı
k�j

p�1 ıQ2p�3 ıQı
j�1

2.p�1/.�/ and
�
Qp�2 ıQı

j�i�1

p�1 ıQ2p�3 ıQı
i�1

2.p�1/.�/
��m

:

The structure of A with only the transfer product has a nice description that can be
obtained with essentially the same proof adopted by Giusti, Salvatore and Sinha in [3],
using the fact that the Bockstein homomorphism is a derivation with respect to the
cross product.

Theorem 2.4 [3, Theorem 4.13] For every sequence I of nonnegative integers,
�ˇ.QI .�// D QI .�/˝ 1C 1˝QI .�/. In other words, .H; �ˇ;�/, the Hopf dual
of .A; �;ˇ/, is freely generated under � by elements that are primitive under �ˇ .
Hence .A;ˇ/ is the tensor productO

dim.QI / even
k2N

Zp Œ.Q
I .�/p

k

/_�

.Œ.QI .�/p
k
/_�p/

˝
V
.fQI .�/_gdim.QI / odd/

of a divided power polynomial algebra and an exterior algebra, where the QI index-
ing the tensor products above are the strongly admissible sequences of Dyer–Lashof
operations ˇ"1Qi1 ı � � � ıˇ"k Qik . Moreover, the following relations hold:

(1) ˇi;j ;mˇˇi;j ;n D
�
nCm

m

�
ˇi;j ;nCm ,

(2) k;mˇ k;n D
�
nCm

m

�
k;nCm .
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Thus, as far as the transfer product is concerned, we have relations totally analogous to
those described by Sinha, Giusti and Salvatore in the mod 2 case.

However, if the cohomology is taken modulo an odd prime, there are also nontrivial
relations for the cup product of the generators, due to the more complicated structure
of the dual of the Dyer–Lashof algebra. We state them in the following lemma.

Lemma 2.5 With the previous notation, the following equalities hold:

(3) ˛i;k j̨ ;k D k;1ˇi;j ;pk�j if i < j .

(4) ˇi;j ;pk�j ˛l;k D .�1/�ˇ�.i/;�.j/;pk��.j/˛�.l/;k if i; j ; l are pairwise distinct,
where � is a permutation of the indexes i; j ; l such that �.i/ < �.j /, while
ˇi;j ;pk�j ˛l;k D 0 if i; j ; l are not pairwise distinct.

(5) ˇi;j ;mˇi0;j 0;m0 D Œ.�1/��mˇ�.i/;�.j/;mpj��.j/ˇ�.i0/;�.j 0/;m0pj 0��.j 0/ if we sup-
pose that mpj Dm0pj 0 and that i; j ; i 0; j 0 are pairwise distinct, where � is a
permutation of the indexes i; j ; i 0; j 0 such that �.i/ < �.j / and �.i 0/ < �.j 0/,
while ˇi;j ;mˇi0;j 0;m0 D 0 otherwise.

Proof This is an almost direct consequence of Cohen, Lada and May [2, Theorem 3.7,
page 29]. Explicitly, let R be the Dyer–Lashof algebra as defined in [2]. Let RŒk� be
its k th component, so that RD

L
k�0 RŒk�. The evaluation of Dyer–Lashof operations

on � gives a morphism of coalgebras 'k W RŒk�!H�.†pk IZp/, which dualizes to a
map of algebras '�

k
W H�.†pk IZp/!RŒk�� .

Because of the theorem from [2] cited above, by definition these relations hold in the
linear duals of RŒk�. We are left to check them on the full set of Nakaoka monomials.
When m is a power of p this follows immediately from the bialgebra structure of
.H;�; �:/, where �: is the coproduct dual to the cup product.

Remark The relations described above can be recalled by the properties of the Bock-
stein homomorphism ˇ in the duals, namely ˇ2 D 0 and the fact that ˇ commutes
with the product.

Example We provide a very simple example to show how the previous relations work.
In H�.†p2 IZp/, relation (3) reduces to

˛2;1˛2;2 D 2;1ˇ1;2;1:

Instead, since we do not have three distinct indices in f1; 2g, the relations in form (4)
can be written as ˇ1;2;1˛1;2 D 0 and ˇ1;2;1˛2;2 D 0. Similarly, (5) only assures that
ˇ2

1;2;1
D 0.
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For H�.†p3 IZp/ the relations which can be obtained by Lemma 2.5 are:

˛1;3˛2;3 D 3;1ˇ1;2;p; ˛1;3˛3;3 D 3;1ˇ1;3;1 and ˛2;3˛3;3 D 3;1ˇ2;3;1;

ˇ1;2;p˛1;3 D ˇ1;2;p˛2;3 D ˇ1;3;1˛1;3 D ˇ1;3;1˛3;3 D ˇ2;3;1˛2;3 D ˇ2;3;1˛3;3 D 0;

ˇ1;2;p˛3;3 D�ˇ1;3;1˛2;3 D ˇ2;3;1˛1;3;

ˇ2
1;2;p D ˇ1;2;pˇ1;3;1 D ˇ1;2;pˇ2;3;1 D ˇ

2
1;3 D ˇ1;3;1ˇ2;3;1 D ˇ

2
2;3 D 0:

We now turn to the coproduct in A. Using the fact that this is dual to the product of H

the following lemma follows from the definitions.

Lemma 2.6 The following equalities hold:

� �. j̨ ;k/D j̨ ;k ˝ 1C 1˝ j̨ ;k

� �.ˇi;j ;m/D
Pm

lD0.ˇi;j ;l ˝ˇi;j ;m�l/

� �.k;m/D
Pm

lD0.k;l ˝ k;m�l/

At this point, we have all the ingredients to describe a presentation of A as a Hopf ring
analogous to that of Giusti, Salvatore and Sinha [3, Theorem 1.2].

Theorem 2.7 As a graded commutative Hopf ring, A is generated by the elements
j̨ ;k , ˇi;j ;m and k;m as defined above (of suitable dimensions) under the relations

(1)–(5) as explained in Theorem 2.4 and in Lemma 2.5, together with:

(6) The product � between two generators belonging to different components is 0.

Moreover, the value of � on generators is determined by the preceding lemma and the
antipode is the multiplication by .�1/n on the component corresponding to †n .

Proof Let B D .BIˇB; �B; �B/ be the graded commutative Hopf ring generated by
elements j̨ ;k , ˇi;j ;m and k;m (of suitable degree) with the specified relations. There
is an obvious morphism  W B!A.

One can see that, using (3)–(5), B is generated under ˇ only by elements that can be
written in one of the two following forms:Y

j

kj ;mj �

rY
aD1

ˇi2a�1;i2a;lp
�i2a ;

Y
j

kj ;mj �

rY
aD1

ˇi2a�1;i2a;p
c�i2aˇi2a�1;i2a;p

c�i2a˛i2rC1;c :
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Here in the first case 1� i1 < � � �< i2r , pi2r � l and pkjmj D l , while in the second
case 1� i1 < � � �< i2rC1 � c and mj pkj D pc . We will always suppose that the kj

are arranged in nonincreasing order. Borrowing the notation from [3], we will call
these elements gathered blocks or simply blocks. By relations (3)–(6), these are all the
elements that can be obtained from the generators by applying �B . We will call Hopf
monomials the objects in the form b1ˇB � � �ˇB bs , where every bj is a gathered block.

Then, using relations (1), (2) and (6) and Hopf distributivity, one can prove that for
every gathered block b (of even dimension), we have bˇpD 0. Let us define an algebra

C D Ceven˝Codd;

with

Ceven D
O

d;k�0

b2H 2d .†
pk IZp/ block

Zp Œb�

bp
;

Codd D
V�˚

b W b 2H 2dC1.†pk IZp/ block; d; k � 0
	�
;

where
V
.X / indicates the exterior algebra generated by the elements of X (in appro-

priate degrees). By virtue of the above property, there is a morphism �W C ! .B;ˇ/.
Moreover, notice that, by Hopf distributivity and our coproduct formula for the gen-
erators, we haveY
j

kj ;mj �

rY
aD1

ˇi2a�1;i2a;lp
�i2a ˇ

Y
j

kj ;m
0
j
�

rY
aD1

ˇi2a�1;i2a;l 0p
�i2a

D

� lCl 0

l

�Y
j

kj ;mjCm0
j
�

rY
aD1

ˇi2a�1;i2a;.lCl 0/p�i2a :

Hence, every gathered block can be written uniquely as a nonzero multiple of gathered
blocks which lie in components indexed by a power of p . This proves that � is surjective.
Theorem 2.2 and Theorem 2.4 imply that the composition  ı�W C ! .A;ˇ/ is an
isomorphism, proving the theorem.

3 Presentation of product structures through
an additive basis

In this section we will observe that the previous theorem allows us to obtain an additive
basis of A as a Zp–vector space, similar to that in [3]. In order to describe this basis,
we need a preliminary definition.
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Definition 3.1 Let

b D k1;m1
� � � ks ;ms

ˇi1;i2;m
0
1
� � �ˇi2a�1;i2a;m

0
a

be an even-dimensional gathered block and r D 2a. We define the profile of b as the
pair .k; e/, where k D .k1; : : : ; ks/, and we suppose that, as usual, kj is arranged in
nonincreasing order, while e D .i1; : : : ; ir /.

For example, the profile of  3
2;2
1;2pˇ1;2;2 is determined by kD .2; 2; 2; 1/, eD .1; 2/.

The following result is an easy consequence of the proof of Theorem 2.7

Corollary 3.2 Consider the set M of all Hopf monomials
Jr

iD1 bi with the property
that the gathered blocks bi of even dimension have pairwise distinct profiles, and
the odd-dimensional blocks are pairwise distinct. This is a bigraded basis for A as a
Zp –vector space.

It must be noted that the pairing between this basis in cohomology and the Nakaoka
monomials in homology is not completely understood. Indeed, the necessity to apply the
Adem relations to describe the coproduct dual to � in terms of this basis complicates this
pairing. For example, if pD 3 then  4

1;3
D .Q8ıQ4.�//_�.Q9ıQ3.�//_ , because the

formula for the coproduct �� of Q9ıQ3.�/ yields a summand Q3ıQ0.�/˝Q6ıQ3.�/,
which can be written as �Q2 ıQ1.�/˝Q6 ıQ3.�/.

It is helpful to give a graphical description of this basis, similar to that obtained in [3].
First, we describe the generators as rectangles:

� k;n is a hollow rectangle of width npk and height 2.1�p�k/.

� ǰ ;k;n is a solid rectangle of width npk and height 2.1�p�j �p�k/.

� j̨ ;k is a solid rectangle of width pk and height 2.1�p�j /�p�k .

In this way, the area of the rectangle is the homological dimension of the corresponding
generator and its width accounts for the component in which the generator lies. Hollow
rectangles represent generators whose linear duals in the Nakaoka basis lie in the
subalgebra of H generated by sequences of Dyer–Lashof operations Qi1 ı � � � ıQik .�/

without the Bockstein. In terms of lower-indexed operations, these are written as
multiples of Qj1

ı � � � ıQjk
.�/ where every jl is even. These generators behave very

similarly to the ones obtained in the mod 2 case. The other generators correspond
to solid rectangles. We describe a gathered monomial, which is a product of k;n ,

ǰ ;k;m and possibly j̨ ;k all lying in the same component, as the column obtained by
placing the corresponding rectangles on top of each other. A basis element, which is a
transfer product of some gathered monomials b1; : : : ; br , is described by the diagram
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obtained by arranging the columns corresponding to b1; : : : ; br next to each other
horizontally. In order to conform to the notation used in [3], we will call these objects
skyline diagrams. Some examples of skyline diagrams are depicted in Figure 1.

With the aid of this graphical description, we can elucidate the relations (3)–(5) of
Lemma 2.5. First, observe that the rectangles of a column associated with a gathered
block must satisfy some necessary condition. For example, there must be at most one
odd-dimensional solid rectangle. This leads to the following definition.

Definition 3.3 A column made of rectangles with the same width stacked one onto
the other is called admissible if it is associated with a gathered block.

As we will see at the end of this section, the cup product of two columns is essentially
described as a new column obtained by stacking the original ones on top of each other.
Hence relation (3) says that, if a column of width l contains two odd-dimensional
solid rectangles, we can replace them with a hollow rectangle of height 2.1� l�1/ and
another solid rectangle to match the column’s height. For the graphical representation
of relation (3) see the first example in Figure 1.

Relations (4) and (5) determine how cup products of generators of the form ˇi;j ;m

and j̨ ;k behave when some indices are permuted. Their graphical interpretation is
that if two columns are made only with solid rectangles of which at most one is odd-
dimensional, they must be equal up to sign. Given such a column, there are two cases:

� If no admissible all-solid column of the same width and height exists, then it is 0.

� Otherwise it is equal, up to sign, to the (necessarily unique) admissible all-solid
column with the same dimensions.

This gives a simple algorithm to write a nonadmissible column as a multiple of an
admissible one, which is the graphical counterpart of what we observed in the proof
of Theorem 2.7.

With this basis, one can describe the products. For example, in H�.†p2 ;Zp/, let x be
one of the elements 2;1 , ˛1;2 , ˛2;2 or ˇ1;2;1 . We have x.1;k ˇ 1p.p�k//D 0 for
1� k � p� 1. Indeed, �.x/D x˝ 1C 1˝x , hence, by Hopf ring distributivity,

x.1;kˇ1p.p�k//Dx1;kˇ1p.p�k/C1;kˇx1p.p�k/D 0ˇ1p.p�k/C1;kˇ0D 0:

Similarly one can prove that x.1;k�1ˇ˛1;1ˇ 1p.p�k//D 0 for all 1� k � p .

The general case can be derived in the exact same way as described by Giusti, Salvatore
and Sinha [3, Section 6] and is indeed a straightforward consequence of the Hopf ring
presentation. For this reason, we omit the proofs.
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D

˛1;2˛2;2 D 2;1ˇ1;2;1

� D

. i
1;1
˛1;1ˇ 

j
1;1
˛1;1/ � 1;2 D 

iC1
1;1

˛1;1ˇ 
jC1
1;1

˛1;1

� D �2 �

.2;1˛2;2ˇ 1;1ˇ 1p/ � .˛1;2ˇ 1;1ˇ 1p/D�2 2
2;1ˇ1;2;1ˇ 1;2� 

2
2;1ˇ1;2;1ˇ 

2
1;1ˇ 1p

Figure 1: Examples of calculations using the graphical representation. The
size of the rectangles is correct only for pD 3 , but the same calculations with
classes understood to be in different degrees are actually true for every p .

We begin with the transfer product, which can be described very easily. Given two
Hopf monomials x D b1ˇ � � �ˇ br and y D b0

1
ˇ � � �ˇ b0s in M, the transfer product

xˇy is again a Hopf monomial, but it may have gathered blocks with the same profile.
However, two even-dimensional gathered blocks with the same profile can be merged
together using the formula

.k1;m1
: : : kr ;mr

ˇi1;i2;n1
: : : ˇi2a�1;i2a;na

/ˇ .k1;m
0
1
: : : ˇi2a�1;i2a;n

0
a
/

D

�m1Cm0
1

m1

�
k1;m1Cm0

1
: : : ˇi2a�1;i2a;naCn0a

:

In this way, we can write x ˇ y as a multiple of an element of M. Graphically,
the transfer product corresponds to placing two skyline diagrams next to each other,
merging two columns if they have constituent blocks of the same height and multiplying
by
�
nCm

n

�
, where n and m are the widths of the two columns.

In order to provide a formula for the coproduct, we need the following:

Definition 3.4 Let b D l1;m1
� � � lr ;mr

ˇi1;i2;n1
� � �ˇi2s�1;i2s ;ns

be an even-dimen-
sional gathered block. Let c.b/D pl1m1 D � � � D pis ns be the integer corresponding
to the component of A in which b lies. We say that a k–tuple .b1; : : : ; bk/ of gathered
blocks is a partition of b if every bi has the same profile as b and

Pk
iD1 c.bi/D c.b/.

Some c.bi/ are allowed to be 0, in which case bi is understood to be 10 . If b is an
odd-dimensional block, a partition is defined in the same way, but we only allow bi to
be equal to 10 or to b itself. A partition with k D 2 is called a splitting.
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The coproduct of elements of M can be calculated with the formula

�.b1ˇ � � �ˇ bs/D
X

.b01ˇ � � �ˇ b0s/˝ .b
00
1 ˇ � � �ˇ b00s /:

Here the sum is taken over all the possible splittings fb0i ; b
00
i g of the constituent blocks bi .

In terms of our graphical representation, the coproduct can be described by dividing
each rectangle corresponding to k;n or ǰ ;k;n into n equal parts using vertical dashed
lines. The coproduct of a skyline diagram is obtained by cutting each column along
the dashed lines that cross it from top to bottom and partitioning them into two to
create two other skyline diagrams. This must be done in every possible way and all the
outcomes must be summed.

The formula for the cup product of two elements of M is

.b1ˇ � � �ˇ br / � .b
0
1ˇ � � �ˇ b0s/D

X
.P;P 0/

.�1/"P;P0
sK

jD1

rK
iD1

.bi;j b0j ;i/I

the sum is over all pairs of sets PDf.bi;1; : : : ; bi;s/g
r
iD1

and P 0Df.b0
i;1
; : : : ; b0i;r /g

s
iD1

such that .bi;1; : : : ; bi;s/ is a partition of bi and .b0
i;1
; : : : ; b0i;r / is a partition of b0i .

The number "P;P0 is given by

"P;P0 D
X

1�i<j�s
1�k�r

dim.b0i;k/ dim.bk;j /C
X

1�h<k�r
1�i�s

dim.b0i;h/ dim.bk;i/:

The coefficient .�1/"P;P0 is due to the skew-commutativity of the product. Since the
cup product of two gathered blocks, when it is not zero, is equal up to sign to a gathered
block, each summand in the previous formula is zero or can be written, up to sign,
as a transfer product of gathered blocks. Thus, omitting all the zero summands and
eventually merging together the transfer product of gathered blocks with the same
profile as before, we can write the desired cup product as a linear combination of
elements of M. Note that one can restrict the sum to the P and P 0 such that bi;j

and b0j ;i lie in the same component, as the other terms are equal to 0.

Graphically, if we are given two skyline diagrams, in order to compute their cup product,
we apply the following algorithm:

(1) Divide the rectangles with vertical dashed lines as explained before.

(2) Divide each diagram into columns using both the boundaries of the rectangles
and the vertical dashed lines.

(3) Match each column of the first diagram with a column of the second one in all
possible ways up to automorphisms, stack the matched columns one on top of
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the other and place these newly constructed columns side by side to make new
diagrams.

(4) These diagrams may contain a pair of columns with the same profiles. In this
case we must use the transfer product formula to merge them. There may also
be nonadmissible columns, that we must write as a multiple of admissible ones
via the previously described algorithm.

For clarity, we compute two examples, represented graphically in Figure 1:

� Let x D  i
1;1
˛1;1ˇ 

j
1;1
˛1;1 and y D 1;2 . Since x is made of two columns of

width p , the only splitting of y which can yield a nontrivial summand in the formula
for the cup product is .1;1; 1;1/. Hence

x �y D  i
1;1˛1;11;1ˇ 

j
1;1
˛1;11;1 D 

iC1
1;1

˛1;1ˇ 
jC1
1;1

˛1;1:

Working graphically, the rectangle corresponding to y should be divided with a dashed
line into two equal parts (1;1 ). Up to automorphisms, there is only one way to match
the columns of x with them. Stacking matched columns is equivalent to adding one
hollow rectangle of height 2.1�p�1/ to each column of x .

� Let x D 2;1˛2;2ˇ 1;1ˇ 1p and y D ˛1;2ˇ 1;1ˇ 1p . The only two partitions
of x that can yield a nontrivial summand in the cup product are .2;1˛2;2; 1;1; 1p/

and .2;1˛2;2; 1p; 1;1/. Thus, by our formula,

x �y D 2;1˛2;2˛1;2ˇ 
2
1;1ˇ 1pC 2;1˛2;2˛1;2ˇ 1;1ˇ 1;1

D� 2
2;1ˇ1;2;1� 2 2

2;1ˇ1;2;1ˇ 1;2:

Graphically, there are two possible matches of the columns of x and y because we
only need to ensure that the two largest columns match together. When we stack the
two large columns one on top of the other we obtain a nonadmissible column that can
be transformed as described in the figure. By stacking the remaining columns in the
two possible ways, we obtain the two skyline diagrams on the left. In one diagram,
two rectangles with the same height have been merged together, and a coefficient of 2

appears.

4 Restriction to modular invariants

Consider the regular representation of Vn D Zn
p (the action of Vn on itself given by

the usual Zp –vector space addition). This gives a map Vn ! †pn , as the set Vn

has cardinality pn . This section is devoted to the computation of the restriction map
�nW H

�.†pn IZp/!H�.VnIZp/, induced by this immersion. This is related to the
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action of the Steenrod algebra on our Hopf ring generators, as we will see in the
next section.

First, recall that H�.ZpIZp/ is isomorphic as a Zp –algebra to Zp Œy�˝ƒ.x/, where
x and y are generators of the first and the second cohomology groups, respectively.
We will also suppose that ˇ.x/D y , where ˇ is the cohomology Bockstein. Hence,
by the Künneth formula,

H�.VnIZp/DH�.ZpIZp/
˝n
D Zp Œy1; : : : ;yn�˝ƒ.x1; : : : ;xn/:

Recall that, by a result in Adem and Milgram [1, Corollary 1.8, page 182] the image
of �n is contained in the invariant subalgebra

�
Zp Œy1; : : : ;yn�˝ƒ.x1; : : : ;xn/

�
GLn.Zp/ ,

which was determined by Mùi in [7]. In particular, the product gives a Zp –vector
space isomorphism of the previous algebra with Zp Œd0;n; : : : ; dn�1;1�˝M , where M

is the Zp –vector space with basis fRn;s W 0� s1 < � � �< sl < ng indexed by subsets of
f0; : : : ; n� 1g.

The objects dk;n�k and Rn;s1;:::;sl
are defined by Mùi in terms of some determinants.

More precisely, we can define

Ln;k D det
�
y

p
j�ıj�k

i

�
1�i;j�n

;

and (letting y� denote omission)

Mn;s1;:::;sl
D

1

l!
det

26664
x1 : : : x1 y1 : : :

b
y

ps1

1
: : :

b
y

psl

1
: : : y

pn�1

1
:::
: : :

:::
:::
: : :

:::
: : :

:::
: : :

:::

xn : : : xn yn : : :
b
y

ps1

n : : :
b
y

psl

n : : : y
pn�1

n

37775:
Additionally, we have the equalities

dk;n�k D
Ln;k

Ln;n
and Rn;s1;:::;sl

DMn;s1;:::;sl
L

p�2

n;k
:

The dimensions of dk;n�k and Rn;s1;:::;sl
are 2.pn�pk/ and lC2.pn�1�

Pl
jD1 psj /,

respectively.

Thus, as an algebra,
�
Zp Œy1; : : : ;yn�˝ƒ.x1; : : : ;xn/

�
GLn.Zp/ is generated by these

objects dk;n�k , which are the classical Dickson invariants, and Rn;s1;:::;sl
and the

product structure are determined by d0;n being a nonzero divisor and the relations

R2
n;s1;:::;sl

D 0 and Rn;s1
: : :Rn;sl

D .�1/
l.l�1/

2 Rn;s1;:::;sl
d l�1

0;n :

Much is known about these classes. For example, the Steenrod algebra action, which
we will need soon, has been determined by Hung and Minh:
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Theorem 4.1 [4, page 42] Let 0 � r < pn . Let r D
Pn�1

iD0 aip
i be the p–adic

expansion of r . We agree that a�1 D 0 by convention. Then:

� Pr .ds;n�s/ is 0 unless ai � ai�1 for all 0 � i < n, i 6D s and as C 1 � as�1 .
In this case it is given by the formula

�r;n;s

n�1Y
iD0

d
ai�ai�1Cıi;s

i;n�i ; where ıi;s D
�

1 if i D s;

0 otherwise;

and the following formula for �r;n;s holds:

�r;n;s D
.p� 1/!

.p� 1� an�1/!
Q

1�i�n�1;i 6Ds.ai � ai�1/!.asC 1� as�1/!
.asC 1/:

� Pr .Rn;s/ is 0 unless ai 2 f0; 1g, ai � ai�1 for all i 6D s and as D 0. This
condition is equivalent to r D .p � 1/�1.pnCps �pt1 �pt2/ for some t1 �

s < t2 � n. In this case,

Pr .Rn;s/DRn;t1
dt2;n�t2

�Rn;t2
dt1;n�t1

:

Here, we use the convention that Rn;n D 0 and dn;0 D 1.

� Pr .Rn;s1;s2
/ is 0 unless ai 2 f0; 1g, ai � ai�1 for i 6D s1; s2 and as1

D as2
D 0.

This condition is equivalent to r D .p�1/�1.pnCps1Cps2�pt1�pt2�pt3/

for some t1 � s1 < t2 � s2 < t3 � n. In this case, the following formula holds:

Pr .Rn;s1;s2
/DRn;t1;t2

dt3;n�t3
�Rn;t1;t2

dt2;n�t2
CRn;t2;t3

dt1;n�t1
:

Again, we agree that Rn;s;n D 0 and d0;n D 1.

Although we will not need this fact, it can be observed that, for Pr .ds;n�s/, the
coefficients �r;n;s assume a nicer form if we express them as functions of the exponents
ei D ai C ai�1C ıi;s that appear in the expression on the right. Explicitly,

p�r;n;s D
p!�

p�
Pn�1

iD0 ei

�
!
Qn�1

iD0 ei !

sX
iD0

ei :

The first factor on the right is the number of choices of disjoint subsets of cardinalities
e1; : : : ; en�1 in f1; : : :pg. After introducing the appropriate notions in Section 5, it
will be obvious that

Pn�1
iD0 ei ! counts the number of factors with an “effective scale”

of at least n� s .

We now need a preliminary lemma.
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Lemma 4.2 Let k 2N . We define Jk as the k–tuple .2.p� 1/; : : : ; 2.p� 1//. Let
J D .j1; : : : ; jk/ be a sequence of nonnegative integers (not necessarily admissible).
If QJ D

P
J 0 admissible �J ;J 0QJ 0 is the expansion of QJ as a linear combination of

admissible sequences of operations, then �J ;Jk
D 0 unless J D Jk .

Proof We recall that QJk
D˙Qpk�1

ı � � � ıQp ıQ1 and use upper indices, since
Adem relations assume a much better form this way. Given a nonadmissible sequence
in R, its expansion in the admissible basis is obtained by iterative applications of the
Adem relations. Hence, in order to prove the lemma, it is enough to check that for
every ˇ"Qrˇ"

0

Qs with r >ps�"0 , when we apply the suitable Adem relation written
as in Section 2, the expression we obtain does not contain a summand in the form
�QplC1

Qpl

for some � 2Zp n f0g. This is obvious if " 6D 0 or "0 6D 0. If "D "0 D 0,
then Qr ıQs D

P
i ciQ

rCs�iQi for some nonzero coefficients ci only if pi � r . If
there exists N{ such that cN{ 6D 0, r C s� N{ D plC1 and N{ D pl , then r C s D plC1Cpl

and r > ps implies r > plC1 . This is contradictory because pN{ D plC1 < r .

We will also need to know how the transfer product behaves with respect to the
restriction maps.

Lemma 4.3 If x1 2H�.†r IZp/ and x2 2H�.†pn�r IZp/ are Hopf monomials that
are different from 1, then ��n.x1ˇx2/D 0.

Proof Recall that the inclusion of Vn in †pn factors through the iterated wreath
product Zp o .Zp o � � � o .Zp oZp/ � � � / (see Adem and Milgram [1, page 185]). By
construction, the image in H�.†pn IZp/ of the homology of this subgroup is given
by Dyer–Lashof operations of length n. Hence, H�.Vn/ maps onto the linear span of
these classes, which are primitive with respect to �ˇ . As a consequence, they must
pair trivially with x1ˇx2 .

We are now ready to describe the action of �n on the generators, which is the analog
of [3, Corollary 7.6] but is proved using a different technique.

Proposition 4.4 The following formulas hold:

�jCk. j̨ ;jCk/D .�1/j RjCk;k ;

�jCk.ˇi;j ;pk /D .�1/kCiRjCk;k;kCj�i ;

�jCk.j ;pk /D .�1/j dk;j :

Proof To prove the proposition, we will take advantage of the way Steenrod operations
are constructed to inductively compute �j .j ;1/. Then we will use the naturality of the
Steenrod action to work out the remaining cases. The core of this idea was originally
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used by Mann [5] to compute im.�j /. To a certain extent, we follow his reasoning, but
we are also able to reconcile this approach with the Hopf ring structure and to describe
in simpler terms the classes in the cohomology of †pj which restrict to dl;j�l , Rj ;l

and Rj ;l;m .

First we will prove that �j .j ;1/D .�1/j d0;j , or equivalently, by shifting to the lower-
index notation, �j .QJj .�/

_/D d0;j , where Jj is the j –tuple defined in Lemma 4.2.

Let us identify H�.Vj IZp/ with H�.ZpIZp/˝H�.Vj�1IZp/. The homomorphism
.�n/�W H�.VnIZp/! H�.†pn IZp/ satisfies, for every x 2 Hs.Vn�1IZp/ and for
every r � 0, the formula

.�n/�.er ˝x/D �.s/
X

k
.�1/kQrC2k�s ıPk

� .x/

� ı.r/�.s� 1/
X

k
.�1/kQrCpC.2pk�s/.p�1/ ıPk

�ˇ.x/:

Here Pk
� is the linear dual to the k th Steenrod power Pk ,

�.2j C "/D .�1/j
�

1
2
.p� 1/

�
!" and ı.2j C "/D " if " 2 f0; 1g:

This is stated in May [6, Proposition 9.1, page 205], where it is used as a preliminary
step for the proof of Nishida relations, and is essentially the dualization of the original
construction of Pk made by Steenrod.

Note that, by Lemma 4.2, all the summands in the previous formula pair trivially with
QJj .�/

_ , except possibly those in the form QrC2k�sıPk
� .x/ with rC2k�sD2.p�1/

and s � 2k.p � 1/ D 2.pj�1 � 1/. This means that r D .pj�1 � l/.p � 1/ and
s D 2.pj�1� 1/C 2k.p� 1/. Hence, dually, we have

�j .QJj .�/
_/D

pj�1�1X
kD0

.�1/kPk�j�1.Q
_
Jj�1

/y
.p�1/.pj�1�1/
j :

This implies by induction on j that the right member is equal to d0;j . Explicitly, for
j D 1 the statement is trivial. For j > 1, by the induction hypothesis, �j .QJj .�/

_/

is a GLj .Zp/–invariant polynomial in H�.Vj�1IZp/Œyj � whose leading coefficient
is d

p
0;j�1

. This must be d0;j .

The calculations of �n.x/ for n�k;pk with k > 0, j̨ ;n and ˇi;j ;pn�j follow directly
from the naturality of the Steenrod powers with respect to the restrictions �n and from
the formulas in Cohen, Lada and May [2, Theorem 3.9], which determine the Steenrod
action on the dual of RŒn�. These formulas are true in H�.†pn IZp/ only up to sum-
mands containing nontrivial transfer products, but they still determine �n ıPr on Hopf
ring generators because of Lemma 4.3. Comparison with the Steenrod powers of Mùi
invariants as determined by Hung and Minh [4, Theorems B and C] yields the result.
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As a corollary, we obtain a known fact about the image of �n .

Corollary 4.5 [5, Theorem A] The image of �n in H�.VnIZp/
GLn.Zp/ is the subal-

gebra generated by dj ;n�j , Rn;j and Rn;i;j . This can be described as

nM
lD0

M
0�s1<���<sl<n

Zp Œd0;n; : : : ; dn�1;1�d
dl=2e;0
0;n

Rn;s:

Hence, in general, �k is not surjective.

5 Steenrod algebra action

This section is devoted to the computation of the action of the Steenrod powers on the
Hopf ring A. We will achieve this by combining the calculations of Proposition 4.4 with
the ideas used by Giusti, Salvatore and Sinha [3, Section 8] for the mod 2 cohomology.

First note that, as in the mod 2 case, the products ˇ and � , the coproduct � and the
antipode are induced from stable maps; hence, there are Cartan formulas for all these.
This means that A is a Hopf ring over the mod p Steenrod algebra A.p/, so it is
sufficient to determine the action of ˇ"P l (l � 0 and " 2 f0; 1g) on the Hopf ring
generators j̨ ;jCk , ˇi;j ;pk and j ;pk .

In order to describe the Steenrod algebra action on A in terms of our additive basis,
we introduce some notation.

Definition 5.1 � The height (ht) of a gathered block b is the number of generators
that must be cup-multiplied to obtain b . The height of a Hopf monomial is the
largest of the heights of its constituent blocks.

� We define the effective scale (effsc) of a gathered block, which we assume in the
form b D l1;n1

� � � lr ;nr
ˇi1;i2;m1

� � �ˇi2s�1;i2s ;ms
˛"

j ;k
("D 0; 1) as the largest

of the integers l1; : : : ; lr ; i2s if " D 0, or as k if " D 1. In other words, for
b 2H�.†pn IZp/, effsc.x/ is the minimum k � 0 such that the restriction of x

to †pn�k

pk is not zero. The effective scale of a Hopf monomial is the minimum
of the effective scales of its constituent blocks.

� A Hopf monomial is full-width if none of its constituent blocks is 1†n
.

� We say that a gathered block is of type A if all the Hopf ring generators that must
be cup-multiplied to obtain it are in the form l;n , except one that is in the form

j̨ ;k . For example,  3
1;p2˛1;3 is of type A. More generally, a Hopf monomial is

of type A if all its constituent blocks are of type A.
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� We say that a gathered block is of type B if all the Hopf ring generators that
appear in it are in the form l;n , except one in the form ˇi;j ;m . For example,
 5

3;1
 2

2;p
ˇ1;2;3 is of type B. More generally, a Hopf monomial is of type B if all

its constituent blocks are of type B.

� We say that a Hopf monomial is of type C if it is obtained by applying � and ˇ
only to elements in the form l;n .

These definitions can be understood graphically. Given a skyline diagram:

� Its height is the maximal number of rectangles stacked one on top of the other
that appear in the diagram.

� Its effective scale is the width of the thinnest column among those delineated by
the original boundaries and the vertical dashed lines of full height.

� It is full-width if there are no columns of height 0.

� It is of type A if its columns contain exactly one solid rectangle and it is odd-
dimensional. It is of type B if its columns contain exactly one solid rectangle
and it is even-dimensional, while it is of type C if it is made only of hollow
rectangles.

The definitions of height, effective scale and full-width monomial are borrowed from [3]
and make sense also for the mod 2 cohomology.

We will also need the following result from Adem and Milgram’s book:

Lemma 5.2 [1, Corollary 1.4, page 180] Let �n and �n be the natural restrictions
from the cohomology of †pn to H�.VnIZp/ and H�.†p

pn�1 IZp/ŠH�.†pn�1 IZp/
˝p,

respectively. The following homomorphism, whose components are �n and �n , is
injective:

H�.†pn IZp/!H�.VnIZp/˚H�.†
p

pn�1 IZp/:

This lemma is derived in [1] by proving that elementary abelian subgroups detect
the cohomology of †pn , and that all these groups are conjugate to subgroups of
†

p

pn�1 or to Vn . However, the same result can also be obtained as a consequence of
our description. Indeed, the restriction of �n to the linear span of Hopf monomials
of height n in H�.†pn IZp/ is injective by Proposition 4.4. These monomials map
trivially to H�.†

p

pn�1 IZp/. Recall that a basis for H�.†pn�1 IZp/
˝p is given by

x1˝ � � � ˝ xp , where xi are Hopf monomials and that �n can be identified with the
iterated coproduct. Let x1 ˝ � � � ˝ xp be such a basis element. By our coproduct
formulas, there exists exactly one Hopf monomial x 2 H�.†pn IZp/ of height less
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than n such that x1˝ � � � ˝ xp appears with a nonzero coefficient in the expansion
of �n.x/. Explicitly, x is the transfer product of the gathered blocks b 2H�.†mIZp/

such that, for every 1� i � p , there is bi 2H�.†mi
IZp/ that is a constituent block

of xi with the same profile of b and
P

i mi Dm (some mi are allowed to be 0). This
implies the lemma.

With these tools, we can obtain formulas for the Steenrod action on A. The idea is to use
Theorem 4.1 and Lemma 5.2 and check, case by case, that the two expressions we wish
to be equal assume the same value if restricted to H�.VnIZp/ and H�.†

p

pn�1 IZp/.

Lemma 5.3 Pr .n�k;pk / can be expressed as a linear combination of full-width Hopf
monomials of Type C with a height of at most p and an effective scale of at least n�k .

Following the notation used by Giusti, Salvatore and Sinha [3], we will call these
monomials the outgrowth monomials of n�k;pk . We denote the set of such monomials
by Outgrowth.n�k;pk /.

Proof of Lemma 5.3 The proof will follow that of [3, Theorem 8.3]. We proceed by
induction on k . First, assume k D 0. By Theorem 4.1 and Lemma 5.2, Pr .n;1/ must
restrict to (

0 on H�.†
p

pn�1 IZp/;

.�1/n�r;n;0

Qn�1
iD0 d

ai�ai�1Cıi;0

i;n�i on H�.VnIZp/:

Hence, it must be a multiple of
Qn�1

iD0 
ai�ai�1Cıi;0

n�i;pi . This is the only full-width Hopf
monomial of Type C, of degree 2.pn� 1/C 2r.p� 1/ with a height of at most p and
an effective scale of at least n.

For k > 0, since �n.n�k;pk /D 
˝p

n�k;pk�1 , using the external Cartan formula, we have

�n.Pr .n�k;pk //D
X

r1C���CrpDr

Pr1.n�k;pk�1/˝ � � �˝Prp .n�k;pk�1/:

By induction, this is a linear combination of elements x1˝ � � �˝xp , where each xi is
an outgrowth monomial of n�k;pk�1 . Recall that, for each x1˝� � �˝xp in this form,
there exists a unique Hopf monomial x 2 H�.†pn IZp/ with effsc.x/ < n whose
restriction to H�.†

p

pn�1 IZp/ has a nonzero multiple of x1˝ � � �˝xp as a summand.
We have described x explicitly above. Moreover, we have effsc.x/ � n � 1 and
x 2Outgrowth.n�k;pk / since height and the fact of being full-width are preserved by
the coproduct, and the minimum of the effective scales of xi must be equal to effsc.x/.
A Hopf monomial x 62 Outgrowth.n�k;pk / with an effective scale less than n cannot
appear in the expression of Pr .n�k;pk�1/, because this would yield summands in
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�n.Pr .n�k;pk // that are not tensor products of elements in Outgrowth.n�k;pk�1/.
If a Hopf monomial with an effective scale equal to n appear, this must, once again,
be an outgrowth monomial of n�k;pk . Otherwise, by applying the restriction to
H�.VnIZp/, we would contradict Theorem 4.1.

Thus,
Pr .n�k;pk /D

X
x2Outgrowth.

n�k;pk /

deg.x/D2.pn�pk/C2r.p�1/

cn;k;xx:

We are left to determine the coefficients cn;k;x . Note that, by restricting to H�.VnIZp/,
using Proposition 4.4 and comparing with the formula in Theorem 4.1, we can directly
determine cn;k;x when

x D

n�1Y
iD0


ai�ai�1Cıi;k

n�i;pi

is the unique term made by a single gathered block. Explicitly,

c
n;k;

Qn�1
iD0 

ai�ai�1Cıi;k

n�i;pi

D .�1/n�kC
Pn�1

iD0 .ai�ai�1Cıi;s/.n�i/�r;n;k ;

where r D
P

i aip
i .

In general, let x D b1ˇ� � �ˇ bl 2H�.†pn IZp/ be the transfer product of l gathered
blocks with pairwise distinct profiles. We assume that bi 2 H�.†pni mi

IZp/ with
effsc.bi/D ni . As a notational convention, given a block b , we denote the (necessarily
unique) block which has the same profile and lies in H�.†peffsc.b/ IZp/ by b0 . The
restriction of x to the cohomology of

Ql
iD1†

mi

pni
is the symmetrization of the class

b
0˝m1

1
˝ � � �˝ b

0˝ml

l
. By observing that

n�k;pk jQ
i †

mi

p
ni

D

O
i


mi

n�k;pk�nCni
;

we obtain, by application of the naturality of the Steenrod operations and of the external
Cartan formula for Pr as above, that cn;k;x D

Ql
iD1 cn�ni ;ni�nCk;b0

i
. This reduces

the computation of cn;k;x to the previous particular case.

We summarize our calculations in the following proposition.

Proposition 5.4 Let 0� k < n. Let bD
Qn�1

iD0 
ei

n�i;pi 2Outgrowth.n�k;pk / be the
gathered block with an effective scale of n. We define

cn;k;b D .�1/n�kC
P

i ei .n�i/�.p�1/�1Œ
P

i 2.pn�pi /�2.pn�pk/�;n;k

D .�1/n�kC
P

i ei .n�i/ .p� 1/!

.p� ht.b//!
Qn�1

iD1 ei !

kX
iD1

ei :
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Let x 2Outgrowth.n�k;pk / be a general outgrowth monomial. Then xDb1ˇ� � �ˇbs ,
with bi 2 H�.†li

IZp/ that are gathered blocks with pairwise distinct profiles. We
define

cn;k;x D

lY
iD1

c
li

effsc.bi /;k�nCeffsc.bi /;b
0
i

:

Then
Pr .n�k;pk /D

X
x2Outgrowth.

n�k;pk /

deg.x/D2.pn�pkCr.p�1//

cn;k;xx:

Remark Note that, with our proof, we do not need to check inductively that the coeffi-
cients agree when we restrict to H�.†pn�1 IZp/ because this is automatically satisfied.
However, this can be proved “manually” by observing that �r;n;s D �rpk ;nCk;sCk .
Because of this, for a block b D

Qn�1
iD0 

ai�ai�1Cıi;k

n�i;i 2H�.†pn IZp/, not necessarily
with effsc.b/D n, we have

cn;k;b D .�1/n�kC
P

i .ai�ai�1Cıi;k/.n�i/�P
i ai pi ;n;k ;

agreeing with Theorem 4.1. More generally, given a gathered block

b D
Y

i


ai�ai�1Cıi;k

n�i;mpi

in H�.†pnm/with effsc.b/Dn and given two partitions .pk1; : : : ;pk1/, .pk0
1; : : :pk0

l 0 /

of m with powers of p , the following equality holds in Zp :

lY
jD1

�P
i ai p

iCkj ;nCkj ;kj
D

l 0Y
jD1

�P
i ai p

iCk0
j ;nCk0

j
;k0
j

:

This implies that the desired coefficients agree in the restriction to H�.†
p

pn�1 IZp/.

The computation of Pr . j̨ ;k/ and Pr .ˇi;j ;pk / can be done in the same way. Before
stating the final results we define the analogous notion of outgrowth monomials for ˛i;j

and ˇi;j ;pk as the full-width monomials of height one or two with an effective scale
of at least j , of types A and B respectively. We will denote the set of such monomials
by Outgrowth.˛i;j / and Outgrowth.ˇi;j ;pk /, respectively.

Proposition 5.5 Let 1� j �n. For xD n�u;pu˛n�t;n 2Outgrowth. j̨ ;n/, we define
c0n;j ;x D .�1/jCtCu.ıt�n�j � ıu�n�j /. Here, we allow u D n with the convention
that 0;pn D 1. Then

Pr . j̨ ;n/D
X

x2Outgrowth. j̨ ;n/
deg.x/D2..p�1/rCpn�pn�j /�1

c0n;j ;xx:
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Let 1� i < j � n and let k D n� j . Given a gathered block b D n�v;vˇn�u;n�t;pt

in Outgrowth.ˇi;j ;pk /, define

c00n;i;j ;b D .�1/iCkCtCuCv.ıv>kCj�i � ıu>kCj�i/ıt�kCj�i.ıt�k � ıv�k/ıu>k :

For a general outgrowth monomial x D b1 ˇ � � � ˇ bl with bs 2 H�.†ms
IZp/ and

effsc.bs/D ns for all 1� s � l , we define c00n;i;j ;x D
Ql

sD1.c
00
ns ;i;j ;bs

/ms . Then

Pr .ˇi;j ;pk /D
X

x2Outgrowth.ˇ
i;j ;pk /

deg.x/D2..p�1/rCpn�pn�j�pn�i /

c00n;i;j ;xx:

In this result, the coefficients c0n;j ;x and c00n;i;j ;x are always equal to �1, 0 or 1.

We close this section with a proposition that describes the action of the Bockstein
homomorphism ˇ on Hopf ring generators. This clearly determines ˇ on the whole
Hopf ring and follows easily from [6, Theorem 3.9, page 33].

Proposition 5.6 The following formulas hold:

� ˇ. j̨ ;k/D k;1 if j D k and is equal to 0 otherwise.

� ˇ.ˇi;j ;pk /D�˛i;j if k D 0 and is equal to 0 otherwise.

� ˇ.j ;pk /D 0.

6 An example

As an example we now extract the cup product structure from our Hopf ring presentation
in the case of H�.†p2 IZp/. An equivalent description has been given by Mùi [7] by
analyzing the restriction to elementary p–subgroups.

First note that, by our results, an additive basis for H�.†p2 IZp/ is given by

B D
n
 a

2;1
b
1;p˛

"1

1;2
˛
"2

2;2
ˇ
"3

1;2;1
W a; b; "i � 0;

3P
iD1

"i � 1
o

[

n pJ
iD1


ti

1;1
˛
"i

1;1
W ti � 0; "i 2 f0; 1g not all factors equal

o
:

The elements of the last set are to be considered up to permutations of the p factors.
More simply, we can order the basis for H�.†pIZp/ with the rule

 a
1;1˛

"
1;1 > 

b
1;1˛

ı
1;1 () .a> b/_ .aD b ^ " > ı/;
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where we agree that, in the last set,  t1

1;1
˛
"1

1;1
� � � � � 

tp
1;1
˛
"p
1;1

in the given order. It will
be useful to order the set of the basis elements in this form with the product order.

We now write the generators and relations in H�.†p2 IZp/ as a ring. We define:

� x1 D 2;1

� x2 D ˛1;2

� x3 D ˛2;2

� x4 D ˇ1;2;1

� yi D 1;i ˇ 1p2�pi for 1� i � p� 1

� yp D 1;p

� zi D 1;i�1ˇ˛1;1ˇ 1p2�pi for 1� i � p

There are equalities x2x3 D x1x4 , x2x4 D 0, x3x4 D 0 and x2
4
D 0 coming directly

from relations (3)–(5) in our Hopf ring presentation. Moreover, we have seen as an
example in Section 2 that, for every 1� i � 4, we have xiyj D 0 for 1� j � p� 1

and xizj D 0 for 1� j � p . These will be our cup product generators and relations.

Proposition 6.1 Consider the unital ring

S D
U.x1;x2;x3;x4;y1;y2;y3; z1; z2; z3/

I
;

where U.X / is the free associative skew-commutative algebra generated by the ele-
ments of X (in appropriate dimensions) and let I � S be the bilateral ideal generated
by the relations above. There is an isomorphism 'W S !H�.†p2 IZp/.

Proof There is a ' defined in the obvious way because we have checked that these
relations hold in this cohomology ring. We now prove that ' is bijective. First, let
w D

Jp
jD1


tj
1;1
˛
"j
1;1

, with the factors  tj
1;1
˛
"j
1;1

ordered from largest to smallest with
respect to the product ordering. Consider the set P of elements f.bk;1; : : : ; bk;p/g

2
kD1

where .b1;1; : : : b1;p/ is a partition of 1;i and .b2;1; : : : ; b2;p/ is a partition of 1p.p�i/ .
Moreover, let P 0 be the set of elements f.b0

j ;1
; b0

j ;2
/g

p
jD1

where .b0
j ;1
; b0

j ;2
/ is a splitting

of  tj
1;1

. Using our rule for the cup product explained at the end of Section 2, we have

yi �w D
X
P;P0

pK
jD1

b1;j b0j ;1 ˇ

pK
jD1

b2;j b0j ;2:

Observe that a partition .b1;1; : : : ; b1;p/ of 1;k corresponds to a partition k1; : : : ; kp

of the natural number k with nonnegative integers. Explicitly, the correspondence is
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given by b1;j D 1;kj . Similarly, a partition .b2;1; : : : ; b2;p/ of 1p.p�i/ corresponds
to a partition h1; : : : ; hp of p.p � i/ by the rule b2;j D 1hj . The only splittings of
 a

1;1
˛"

1;1
are . a

1;1
˛"

1;1
; 10/ and .10; 

a
1;1
˛"

1;1
/.

Hence, we can write explicitly yi � .
Jp

jD1


tj
1;1
/ as a linear combination of elements of

our basis B , and we obtain

yi �w D �i

pK
kD1


tkCık�i

1;1
˛
"k

1;1
C � � �

for some �i 2 Zp n f0g, where . . . stands for terms that are smaller than the previous
one in the considered ordering. With the same reasoning we can prove that

zi �w D �i

pK
kD1


tkCık<i

1;1
˛
"kCıminfh�iW"hD0g.k/

1;1
C � � � ;

where �i 2 Zp n f0g and . . . has the same meaning as before.

An additive basis for S is given by

B0 D
n
xa

1yb
px

"1

2
x
"2

3
x
"3

4
W a; b; "i � 0;

3P
iD1

"i � 1
o
[

n pQ
iD1

y
ti

i

pQ
iD1

z
"i

i W ti � 0; "i 2 f0; 1g
o
:

By induction, using the previous formulas, the expansion in the basis B of the coho-
mology class '

�Qp
iD1

y
ti

i

Qp
iD1

z
"i

i

�
(with ti � 0 and "i 2 f0; 1g) is in the form

'

� pY
iD1

y
ti

i

pY
iD1

z
"i

i

�
D �t ;"

pK
iD1



Pp

kDi
tkC

Pp

kDiC1
"k

1;1
˛
"i

1;1
C � � � ;

where, again, �t ;" 6D 0 in Zp and . . . stands for smaller terms. This implies that the
matrix associated with the Zp –linear function

'W Span
� pY

iD1

y
ti

i

pY
iD1

z
"i

i

�
! Span

� pK
iD1


ti

1;1
˛
"i

1;1

�
with respect to the two bases considered above (if we properly order their elements)
is triangular, with all nonzero entries on the diagonal. Hence, 'W A!H�.†p2 IZp/

must be an isomorphism.
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