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Infima of length functions and dual cube complexes

JONAH GASTER

In the presence of certain topological conditions, we provide lower bounds for the
infimum of the length function associated to a collection of curves on Teichmüller
space that depend on the dual cube complex associated to the collection, a concept
due to Sageev. As an application of our bounds, we obtain estimates for the “longest”
curve with k self-intersections, complementing work of Basmajian [J. Topol. 6 (2013)
513–524].

51M10; 51M16

Let † be an oriented topological surface of finite type. We denote the Teichmüller
space of † by T .†/, which we interpret as the deformation space of marked hyperbolic
structures on †. Given X 2 T .†/ and a free homotopy class (or closed curve)  on †,
we denote by `.;X / the length of the geodesic representative of  in the hyperbolic
structure determined by X . If � D fig is a collection of closed curves, then we define
`.�;X /D

P
`.i ;X /.

In this note, we are concerned with translating topological information of � into
quantitative information about the length function `.�; � /W T .†/!R. In particular,
we develop tools to estimate the infimum of `.�; � / over T .†/. This work naturally
complements that of Basmajian [3], where such estimates are obtained that depend on
the number of self-intersections of � . Here we consider a finer topological invariant
than the self-intersection number.

A construction of Sageev [7] associates to a curve system � an isometric action of
�1† on a finite-dimensional cube complex, or the dual cube complex C.�/ of � . In
what follows we connect geometric properties of the dual cube complex C.�/ to the
length of the collection of curves � on any hyperbolic surface. Indeed, [1, Theorem 3]
of Aougab and Gaster suggests that any such information is implicitly contained in the
combinatorics of C.�/. We have:

Theorem A Suppose that the action of �1† on C.�/ has a set of cubes C1; : : : ;Cm ,
of dimensions n1; : : : ; nm , respectively, in distinct �1†–orbits, such that the union of
orbits

S
i �1† �Ci is hyperplane separated. Then

inf
X2T .†/

`.�;X /�

mX
iD1

ni log
�

1C cos�=ni

1� cos�=ni

�
:
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1042 Jonah Gaster

The definition of hyperplane separated can be found in Section 1. The main use of this
idea is that it allows one to conclude that large chunks of the preimage of the curves �
in the universal cover embed on the surface under the covering map. The proof of
Theorem A proceeds by minimizing the length of these large chunks.

Remark The contribution to the bound above from a cube Ci is useless when Ci is a
2–cube. On the other hand, it still seems reasonable to expect a lower bound on the
length function in the presence of many maximal 2–cubes. Note that the presence of m

2–cubes contributes m to the self-intersection number, so that Basmajian’s bounds
immediately imply a lower bound for the length function that is logarithmic in m.
While Basmajian’s lower bounds are sharp, the examples that demonstrate sharpness
have high-dimensional dual complexes. We expect a positive answer to the following.

Question If C.�/ contains m maximal 2–cubes, is there a lower bound for the length
function `.�;X / that is linear in m?

Remark The bounds in Theorem A are sharp in the following sense: for each n 2N ,
there exists a set of curves �n on the .nC1/–holed sphere †0;nC1 , and hyperbolic
structures Xn 2 T .†0;nC1/ such that

(1) the dual cube complex C.�n/ has a hyperplane separated n–cube, and
(2) the hyperbolic length `.�n;Xn/ is asymptotic to n log n.

The problem remains of determining when a collection of curves gives rise to hyperplane
separated orbits of cubes in the action of �1† on the dual cube complex. We offer a
sufficient condition below which applies in many cases, toward which we fix some
terminology. Recall that a ribbon graph is a graph with a cyclic order given to the
oriented edges incident to each vertex. A ribbon graph G is even if the valence of each
vertex is even. When an even ribbon graph G is embedded on a surface †, a collection
of homotopy classes of curves is determined by G by going straight at each vertex.
See Section 6 for a more precise description.

Theorem B Suppose that G ,! † is an embedding of an even ribbon graph G

into † with vertices of valence n1; : : : ; nm , such that the complement † nG contains
no monogons, bigons, or triangles. Let � indicate the union of the closed curves
determined by G . Then G is a minimal position realization of � , the self-intersection
of � is given by

�
n1

2

�
C� � �C

�
nm

2

�
, and C.�/ contains cubes C1; : : : ;Cm of dimensions

n1; : : : ; nm , respectively, in distinct �1†–orbits, whose union is hyperplane separated.

This provides a general method to construct curves with definite self-intersection
number and definite hyperplane separated cubes in their dual cube complexes. For
example:
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Example Consider the curve in Figure 4. Theorem B implies that the curve has six
hyperplane separated 3–cubes. The estimate in Theorem A now applies, so that the
length of the pictured curve is at least 18 log 3 in any hyperbolic metric on †6 .

Let Ck.†/ indicate curves on † with self-intersection number k . Basmajian examined
the following quantities, showing that they both are asymptotic to log k :

mk.†/ WD min
2Ck.†/

inff`.;X / jX 2 T .†/g;

Mk WD inffmk.†/ j† is a finite-type surface with �.†/ < 0g:

Note that, for each k and †, there are finitely many mapping class group orbits among
Ck.†/. This justifies the use of minimum in the definition of mk.†/ above. One may
define analogously

mk.†/ WD max
2Ck.†/

inff`.;X / jX 2 T .†/g;

M k WD supfmk.†/ j† is a finite-type surface with �.†/ < 0g:

The curves that realize the minima mk.†/ and Mk manage to gain a lot of self-
intersection while remaining quite short, which they achieve by winding many times
around a very short curve. By constructing explicit families of curves that behave
quite differently — namely, they return many times to a fixed small compact set on
the surface — we provide a lower bound for M k that grows faster than Basmajian’s
bounds for the “shortest” curves with k self-intersections.

Theorem C We have the estimate

lim sup
k!1

M k

k
�

log 3

3
:

Remark It is not hard to observe that

lim sup
k!1

mk.†/
p

k
> 0:

Indeed, given any k –curve  2 Ck.†/, consider the closed curve  n given by wrap-
ping n times around  . The infimum of the length function of  n will grow linearly
in n, while the self-intersection number will grow quadratically in n. Performing this
calculation with a curve with one self-intersection, one finds that

lim sup
k!1

mk.†/
p

k
� 4 log.1C

p
2/:
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1044 Jonah Gaster

The problem of sharpness for our examples, namely good upper bounds for mk.†/

and M k , seems subtle. In particular, such upper bounds would imply an asymptotically
good answer to the following question.

Question Given a curve  2 Ck.†/, what is an explicit function C.k; †/ such that
there is a point X 2 T .†/ with `.;X /� C.k; †/?1

Note that one could also ask for an upper bound that is independent of †, towards
which the lower bound in Theorem C is more relevant.

Organization In Section 1 we briefly recall Sageev’s construction, and define hy-
perplane separation. In Section 2 we lay out the necessary tools for the proof of
Theorem A, and in Section 3 and Section 4 we prove these tools. Section 5 describes a
straightforward method of detecting self-intersection and hyperplane separation, and
Section 6 introduces even ribbon graphs and the proof of Theorem B. Finally, Section 7
describes a family of examples to which these tools apply, and contains a proof of
Theorem C.

Acknowledgements The author thanks Ara Basmajian, Martin Bridgeman, Spencer
Dowdall, and David Dumas for helpful conversations, and Ian Biringer for a correction
and reference in regard to Lemma 5.1.

1 Dual cube complexes and hyperplane separation

We recall Sageev’s construction. A collection � of homotopy classes of curves on †
gives rise to an isometric action of �1† on a CAT(0)-cube complex C.�/. This action
is obtained roughly as follows: choose a minimal position realization � of the curves
in � , and consider the preimage z� of � in the universal cover z†. In the language of [9],
the set z� decomposes into a union2 of elevations. Each elevation splits z† into two
connected components. A labeling of z� is a choice of half-space in the complement
of each of the elevations. The one skeleton of the cube complex C.�/ is built from
admissible labelings of z�, ie choices of half-spaces in the complement of the elevations
so that any pair intersect.

1While this paper was under review, this question has been given an answer by Aougab et al [2,
Theorem 1.4].

2An illustrative example is provided by the case that � is given by the geodesic representatives of �
relative to a chosen hyperbolic structure, in which case z��H2 is evidently a union of complete geodesics.
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Two such admissible labelings are connected by an edge when they differ on precisely
one elevation of z� (in analogy with the dual graph to the set z�). Finally, C.�/ is given
by the unique nonpositively curved cube complex with the prescribed 1–skeleton. The
action of �1† on the elevations comprising z� naturally induces a permutation of the
labelings, which induces an isometry of C.�/. See [7; 8; 4] for details.

We collect this information conveniently.

Theorem (Sageev) The action of �1† on the CAT.0/ cube complex C.�/ is inde-
pendent of realization. There is a �1†–equivariant incidence-preserving correspon-
dence of the hyperplanes of C.�/ with the elevations in z�, so that maximal n–cubes
are in correspondence with maximal collections of n pairwise intersecting elevations of
curves in � .

In light of Sageev’s theorem we may sometimes identify the elevations in z� with the
hyperplanes of the cube complex C.�/.

Given a cube C in a cube complex C , we denote the set of hyperplanes of C by H.C/,
and the set of hyperplanes of C by H.C /�H.C/.

Definition Suppose C and D are two cubes in a cube complex. We say that C and D

are hyperplane separated if either H.C /\H.D/D∅, or jH.C /\H.D/j D 1, and,
for any c 2H.C / and d 2H.D/ with c ¤ d , the hyperplanes c and d are disjoint.

A union of cubes
S

i Ci is hyperplane separated when every pair is hyperplane sepa-
rated.

2 Proof of Theorem A

Consider an n–cube C � C.�/. The orientation of z† induces a counterclockwise
cyclic ordering of the n elevations of curves from � that correspond to the hyperplanes
of C . In what follows, we fix a hyperbolic surface X 2 T .†/ and identify the universal
cover z† with H2 . We will work with the Poincaré disk model for H2 , with conformal
boundary S1 .

Enumerate the n geodesic representatives .1; : : : ; n/ of the elevations of curves that
correspond to C , respecting the cyclic order. Each geodesic i has two endpoints
pi ; qi 2 S1 . Choose these labels so that p1; : : : ;pn; q1; : : : ; qn is consistent with the
cyclic order of S1 .

Given a trio of elevations i�1; i ; iC1 �H2 , consider the pair of distinct disjoint
geodesics .pi�1;piC1/ and .qi�1; qiC1/. We will refer to this pair as the separators

Algebraic & Geometric Topology, Volume 17 (2017)
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i�1

i

iC1

ıi

Figure 1: The separators of the hyperplane i and the diagonal ıi

of the hyperplane i in C , and we will denote the pair by sep.i ;C /. (When i D 1

or i D n, the separators of i are the geodesics .pi�1; qiC1/ and .qi�1;piC1/, with
indices read modulo n.) Let ıi indicate the portion of i between the separators. We
will refer to the arcs fı1; : : : ; ıng as the diagonals of the cube C . See Figure 1 for a
schematic picture.

Lemma 2.1 For each i , we have

`.ıi/D log
ˇ̌̌̌
.pi � qi�1/.pi � qiC1/.qi �piC1/.qi �pi�1/

.pi �piC1/.pi �pi�1/.qi � qiC1/.qi � qi�1/

ˇ̌̌̌
:

Proof The proof is a calculation in H2 .

Towards Theorem A, we suppose below that C1; : : : ;Cm are cubes of C.�/ in distinct
�1†–orbits. Let ıi

1
; : : : ; ıi

ni
be the diagonals of the cube Ci , let

Di WD

[
k

ıi
k

indicate the union of the diagonals of Ci , and D WD D1[ � � � [Dm .

For ease of exposition, we postpone the proof of the following proposition.

Proposition 2.2 If the union of orbits
S
�1† �Ci is hyperplane separated, then the

covering map � W H2!† is injective on the union D minus a finite set of points.

Finally, we will need the solution to the following optimization problem, whose proof
we also postpone: given 2n distinct points x1; : : : ;x2n2S1, for notational convenience
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we adopt the natural convention that subscripts should be read modulo 2n, so that
x2nC1 D x1 and x0 D x2n . Let F.x1; : : : ;x2n/ be defined by

F.x1; : : : ;x2n/D log
2nY

jD1

ˇ̌̌̌
.xj �xjCnC1/.xj �xjCn�1/

.xj �xjC1/.xj �xj�1/

ˇ̌̌̌
:

Lemma 2.3 When .x1; : : : ;x2n/ are cyclically ordered in S1 , we have

F.x1; : : : ;x2n/� n log
�

1C cos�=n

1� cos�=n

�
:

Assuming for now Proposition 2.2 and Lemma 2.3, we are ready to prove Theorem A.

Proof of Theorem A We bound from below the sum of lengths of the curves from �

in the hyperbolic structure determined by X 2 T .†/. Pull � tight to geodesics, and
consider the preimage under the covering transformation. As described above, each
cube Ci , of dimension ni , has ni hyperplanes with ni corresponding elevations of
mutually intersecting geodesics in H2 . These curves determine 2ni cyclically ordered
distinct points

pi
1;p

i
2; : : : ;p

i
ni
; qi

1; q
i
2; : : : ; q

i
ni

on S1 , the diagonals Di , and D , the union of Di . We estimate

`.�;X /� `.D/

D

mX
iD1

`.Di/

D

mX
iD1

niX
jD1

`.ıi
j /

D

mX
iD1

log
niY

jD1

ˇ̌̌̌
ˇ
�
pi

j � qi
j�1

��
pi

j � qi
jC1

��
qi

j �pi
jC1

��
qi

j �pi
j�1

��
pi

j �pi
jC1

��
pi

j �pi
j�1

��
qi

j � qi
jC1

��
qi

j � qi
j�1

� ˇ̌̌̌ˇ
�

mX
iD1

ni log
�

1C cos�=ni

1� cos�=ni

�
;

where the first, fourth and fifth lines follow from Proposition 2.2, Lemma 2.1 and
Lemma 2.3, respectively.
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bar

Figure 2: The notion of an H in H2 . From left to right: an H and its bar, the
cross of an H, and H’s with overlapping bars.

3 Proof of Proposition 2.2

Proposition 2.2 is the sole motivation for the definition of hyperplane separated. We
turn to the proof. To aid our exposition, we will say that an H in H2 is a pair of disjoint
geodesics, and a geodesic arc connecting them. Associated to an H is a cross, a pair
of intersecting geodesics with the same limit points as the H. See Figure 2 left and
middle for a schematic. For example, the union of the diagonal ıi and the separators
sep.i ;C / form an H, with associated cross fi�1; iC1g.

Lemma 3.1 Suppose H1;H2 �H2 are distinct H’s whose bars overlap in an interval.
Then the crosses of H1 and H2 intersect.

See Figure 2 right for a schematic.

Proof The convex hull of an H is an ideal quadrilateral. By assumption, the convex
hulls of H1 and H2 intersect. The lemma follows from the following simple observation:
if two ideal quadrilaterals intersect, then their crosses intersect. We demonstrate this
below. Note that the ideal points of an ideal quadrilateral are cyclically ordered. We
say that two such points are opposite if they are not neighbors in the cyclic order.

Let P and Q be intersecting ideal quadrilaterals, with cyclically ordered ideal points
@P and @Q in @1H2 . As P and Q intersect, there are two points q; q0 2 @Q lying in
distinct components of @1H2 n @P . Suppose that q and q0 are not opposite vertices.
The vertex that follows q0 in the cyclic order is either in the same component of
@1H2 n @P as q , in which case there are three vertices in the same component as q ,
or it is in a distinct component from q . Thus if P and Q intersect, there are a pair of
opposite vertices of @Q in distinct components of @1H2 n @P .

Opposite vertices of an ideal quadrilateral are boundary points of the cross of the
quadrilateral. Thus there is a geodesic of the cross of Q that runs between distinct
components of @1H2 n @P , so that the crosses of P and Q intersect.

Algebraic & Geometric Topology, Volume 17 (2017)
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Proof of Proposition 2.2 As the union D is compact, properness of the action
of �1† ensures that there are finitely many elements g 2�1† such that g �D\D¤∅.
Let D0 indicate the complement in D of the finitely many points that are transversal
intersections of D with g �D . If � is not injective on D0 , then there is an element
1¤ g 2 �1† such that g � ık

i and ıl
j overlap in an open interval. In particular, note

that g sends the hyperplane containing ık
i to the hyperplane containing ıl

j .

If kD l and g �Ck DCk , then g �Dk DDk , and by Brouwer’s fixed point theorem there
would be a fixed point of g , violating freeness of the action of �1†. Since g �Ck ¤Cl

for k ¤ l (recall that the cubes fCig are in distinct �1†–orbits), we may thus assume
that g �Ck and Cl are distinct cubes that share the common hyperplane containing the
diagonals g � ık

i and ıl
j . Let the hyperplanes of Ck be given by f1; : : : ; nk

g, and
those of Cl by f�1; : : : ; �nl

g, so that g � i D �j .

Observe that a trivial consequence of separatedness is that the separators sep.�j ;g �Ck/

are not the same pair of geodesics as the separators sep.�j ;Cl/: if they were identical,
then g �Ck and Cl would be two distinct cubes in the union

S
�1† �Ci that share the

hyperplanes corresponding to j�1 , j , and jC1 .

Consider then the two H’s formed by g �ık
i and sep.�j ;g �Ck/ on the one hand, and ıl

j

and sep.�j ;Cl/ on the other. By assumption these two H’s have overlapping bars,
so that by Lemma 3.1 their crosses intersect. Namely, one of g � i�1 and g � iC1

intersects one of �j�1 and �jC1 . This contradicts separatedness of C . We conclude
that � is injective on D0 , the union of the diagonals of C1; : : : ;Cm minus finitely
many points, as desired.

4 Proof of Lemma 2.3

We solve the necessary optimization problem.

Proof of Lemma 2.3 Note that F has several useful invariance properties: first it
is clear that F is invariant under rotations of S1 . More generally, the conformal
automorphisms of the disk Aut.D/ act diagonally on .S1/2n , and for any � 2Aut.D/,
F ı � D F . As well, it is immediate from the definition that F.x1;x2; : : : ;x2n/ D

F.x2; : : : ;x2n;x1/.

For each j D 1; : : : ; 2n, let xj D ei�j . Applying a rotation of S1 if necessary, we
assume that 0� �1 < � � �< �2n < 2� .

The identity jei˛ � eiˇj D
p

2� 2 cos.˛�ˇ/ implies that

log
ˇ̌̌̌
ei�j � ei�k

ei�j � ei�l

ˇ̌̌̌
D

1
2

log
1� cos.�j � �k/

1� cos.�j � �l/
:
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Taking a derivative we find

@F

@�j
D

sin.�j � �jCn�1/

1� cos.�j � �jCn�1/
C

sin.�j � �jCnC1/

1� cos.�j � �jCnC1/

�
sin.�j � �j�1/

1� cos.�j � �j�1/
�

sin.�j � �jC1/

1� cos.�j � �jC1/
:

Since sin �=.1� cos �/D cot �
2

, we may write the above as

@F

@�j
D cot

�j � �jCn�1

2
C cot

�j � �jCnC1

2
� cot

�j � �jC1

2
� cot

�j � �j�1

2
:

Towards candidates for absolute minima of F , we seek solutions to the system of
equations

˚
@F=@�j D 0

	
. Given the invariance properties of F , any such solution is

far from unique, even locally. In order to characterize the unique Aut.D/–orbit of a
solution, we pick a j , and fix the choices �nCj � �j D � , and �nCjC1� �jC1 D � .

With �j C� substituted for �nCj , the equations @F=@�j D 0 and @F=@�nCj D 0 now
yield

cot
�j � �jCn�1

2
C cot

�j � �jCnC1

2
D cot

�j � �jC1

2
C cot

�j � �j�1

2
;

tan
�j � �j�1

2
C tan

�j � �jC1

2
D tan

�j � �jCn�1

2
C tan

�j � �jCnC1

2
;

respectively. Eliminating tan �j��j C1

2
, we find

cot
�j � �jCn�1

2
C cot

�j � �jCnC1

2
� cot

�j � �j�1

2

D

�
tan

�j � �jCn�1

2
C tan

�j � �jCnC1

2
� tan

�j � �j�1

2

��1

:

Recall the remarkable fact that the solutions of the equation

1

x
C

1

y
C

1

z
D

1

xCyCz

are precisely the equations x D�y , x D�z , or y D�z . As a consequence, we have
one of the following:

tan
�j � �jCn�1

2
D� tan

�j � �jCnC1

2
;

tan
�j � �jCn�1

2
D tan

�j � �j�1

2
; or

tan
�j � �jCnC1

2
D tan

�j � �j�1

2
:
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By assumption,

0< �jCn�1� �j < � < �jCnC1� �j < �j�1� �j < 2�;

so that

�� <
�j � �j�1

2
<
�j � �jCnC1

2
< �

�

2
<
�j � �jCn�1

2
< 0:

The only possibility above is thus the first equation, so that

�nCjC1� �j

2
�� D

�j � �jCn�1

2
;

or �jCnC1C �jCn�1 D 2�j C2� . The equation @F=@�j D 0 now implies as well that
�j�1C �jC1 D 2�j C 2� .

On the other hand, we have also assumed that �jCnC1� �jC1 D � , so

�jCn�1C �jC1 D 2�j C 2� � �jCnC1C �jC1 D 2�j C�:

This implies that

�j�1� �jCn�1 D �j�1� .2�j C� � �jC1/

D �j�1� �2� .2�j C�/

D .2�j C 2�/� .2�j C�/

D �:

We now know that if we make the normalizing assumptions �jCn D �j C � and
�jCnC1D �jC1C� , then the equations

˚
@F=@�j D 0; @F=@�jCnD 0

	
ensure �j�1D

�jCn�1C � . Using all the equations
˚
@F=@�j D 0

	
, it is now evident that �nCk D

�k C� , for each k D 1; : : : ; n.

We apply this understanding to the equation @F=@�j D 0:

cot
�j � �j�1

2
C cot

�j � �jC1

2
D cot

�j � �jCn�1

2
C cot

�j � �jCnC1

2

D cot
�j � �j�1��

2
C cot

�j � �jC1��

2

D� tan
�j � �j�1

2
� tan

�j � �jC1

2
;

so that

� tan
�j � �j�1

2
� cot

�j � �j�1

2
D tan

�j � �jC1

2
C cot

�j � �jC1

2
:
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Since tan xC cot x D 2=sin 2x , we obtain

sin.�j � �j�1/D sin.�jC1� �j /:

If �j ��j�1D �� .�jC1��j /, then �jC1��j�1D � . However, �jCnD �jC� , and
the �j are distinct. Thus �j � �j�1 D �jC1� �j , for each j D 1; : : : ; 2n. Set �1 D 0,
and we see that

�
1; e�i=n; e2�i=n; : : : ; e.2n�1/�i=n

�
is the unique Aut.D/–orbit for

which the partial derivatives simultaneously vanish. As it is evident that F.x1; : : : ;x2n/

goes to C1 as points xj and xjC1 collide, the absolute minimum of F must occur
at a simultaneous zero of its partial derivatives. Evaluating F

�
1; e� i=n; e2�i=n; : : : ;

e.2n�1/�i=n
�

achieves the result.

5 Bigons and triangles

Towards Theorem B, for the computation of the self-intersection number of a self-
intersecting closed curve, we require a slight generalization of the “bigon criterion”
of [5]. Recall that a representative � of a collection of closed curves � is in minimal
position if its intersection points are transverse, and the number of intersections of �,
counted with multiplicity, is minimal among representatives of � . A monogon is a
polygon with one side and a bigon is a polygon with two sides.

Definition A representative � of a collection of closed curves � �† has an immersed
monogon if there is an immersion of a monogon whose boundary arc is contained in �,
and it has an immersed bigon if there is such an immersion of a bigon.

Lemma 5.1 If the representative � of a collection of closed curves on † is without
immersed monogons and without immersed bigons, then it is in minimal position.

Remark An error in a previous version of this lemma was pointed out by Ian Biringer,
as well as a reference to a very similar statement due to Hass and Scott. The corrected
statement is above (see [6, Theorems 3.5 and 4.2]). As they note, a nonprimitive curve
demonstrates that the converse is false [6, p. 94].

Proof Suppose � is without immersed bigons or monogons, and has n transverse
self-intersections. Let G� �† indicate the graph determined by �, choose a spanning
tree T� for G� , a lift of T� to the universal cover, and a representative of each of the
n intersection points. At each of these representative intersection points, the preimage
of � in e† consists of a pair of linked curves: if there was only one curve the covering
map would produce an immersed monogon for � on †, and if the pair of curves at this
intersection point were not linked the covering map would produce an immersed bigon
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for � on †. The self-intersection number of � is equal to the number of �1†-orbits
of linked elevations of curves from � in the universal cover e† , so we are done.

In order to recognize the presence of hyperplane separated cubes in the dual cube
complex of � , we will employ a lemma.

Lemma 5.2 Suppose that � has a minimal position realization ��† such that � has
k points of transverse self-intersection of orders n1; : : : ; nk , listed with multiplicity.
Then C.�/ has cubes of dimensions n1; : : : ; nk , with multiplicity. Moreover, the �1†–
orbit of the union of these cubes is hyperplane separated for the action of �1† on C.�/
if and only if the complement † n� has no triangles.

Proof Consider the preimage z� WD��1�� z†, and choose lifts p1; : : : ;pk of the self-
intersection points of �, where pi has order ni . By hypothesis, there are ni linked
elevations from z� through pi , so that there is an ni –cube in C.�/. We denote this
ni –cube corresponding to the choice of lift pi by Ci .

If the complement † n � had a triangle, then this triangle would lift to z†, so that
the curves corresponding to Ci , for some i , would contain two sides of the lifted
triangle. As a consequence, there would be a different lift p0 of one of the intersection
points, so that p0 would also abut this triangle. Let C 0 indicate the maximal cube
corresponding to the lift p0 . By construction, C 0 shares a hyperplane with Ci , while
there are two other hyperplanes, one of Ci and one of C 0 , that intersect. As C 0 is in the
same �1†–orbit as Cj , for some j , the union of orbits

S
�1† �Ci is not hyperplane

separated.

Finally, suppose the union of orbits is not hyperplane separated. Then there is g 2 �1†

such that Ci and g �Ci share a hyperplane  , and have a pair of other intersecting
hyperplanes, say 1 and 2 . In this case, there is a triangle T � z† formed by  ,
1 and 2 . While this triangle may not embed under the covering map, it contains
an innermost triangle, namely a triangle in the complement of z† n z�. This triangle
must embed under the covering map, so † n� contains a triangle.

6 Closed curves from ribbon graphs

We now prove Theorem B, thus obtaining explicit constructions of curves to which
Theorem A applies. Recall that a ribbon graph is a graph with a cyclic order given to
the oriented edges incident to each vertex, and a ribbon graph is even if the valence of
each edge is even. In what follows, we introduce notation for even ribbon graphs and
analyze the closed curves that they determine.
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Let S.n/ indicate the union of the n line segments

ft exp.� im=n/ j t 2 Œ�1; 1�g;

for m D 1; : : : ; n, and label the endpoints exp.� im=n/ and � exp.� im=n/ by am

and a0m , respectively. Fix a permutation of endpoints � by �.am/D a0m D �
�1.am/,

for mD 1; : : : ; n. We refer to S.n/ as a star, and � as the switch map of the star.

Let n be the tuple .n1; : : : ; nk/, and consider the union S.n/ WD S.n1/t � � � tS.nk/.
Let � be a fixed-point-free, order-two permutation (that is, a pairing) of the set

faj ;i ; a
0
j ;i j 1� j � ni ; 1� i � kg:

Let �.n; �/ indicate the graph given by

�.n; �/ WD S.n/=�;

where aj; i � �.aj; i/. The vertices of �.n; �/ are in bijection with the stars S.nj /, and
the orientation of C at 0 induces a cyclic order to the vertex contained in each S.nj /.
These orientations give �.n; �/ the structure of an even ribbon graph. Moreover, it is
clear that every even ribbon graph can be constructed in this way.

Let †.n; �/ be the surface with boundary associated to the ribbon graph �.n; �/. We
identify �.n; �/ as smoothly3 and incompressibly embedded in †.n; �/, so that the
embedding induces isomorphisms on the level of fundamental groups. By a closed
curve in �.n; �/, we mean the free homotopy class of the image of a smooth immersion
of S1 into �.n; �/.

Lemma 6.1 Closed curves in �.n; �/ are in correspondence with fixed cycles of
.��/l , for l > 0. The closed curves in �.n; �/ are in minimal position in †.n; �/, and
the total intersection number of these closed curves is given by

�
n1

2

�
C
�
n2

2

�
C� � �C

�
nk

2

�
.

Proof The first statement is evident. The second follows from Lemma 5.1, since the
complement †.n; �/ n�.n; �/ contains no disks, and hence no immersed bigons or
monogons.

To obtain closed curves on closed surfaces, one may glue together †.n; �/ and another
(possibly disconnected) surface along its boundary. Some of the components that are
glued may be disks, so it is possible that the curves from �.n; �/ are no longer in
minimal position. While Section 5 can be used to build an algorithm that can be applied
on a case-by-case basis, a more straightforward control on this phenomenon can be
obtained in many cases.

3Note that the smooth structure of �.n; �/ in a neighborhood of its vertices is induced by viewing
S.nj / as an immersed submanifold of C .
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Lemma 6.2 Suppose that y† is a surface obtained by a gluing of †.n; �/, so that
there is a natural inclusion †.n; �/ ,! y†. If the complement y† n �.n; �/ contains
no monogons, bigons, or triangles, then the closed curve �.n; �/ � y† is in minimal
position.

Proof Suppose that �.n; �/� y† is not in minimal position, so by Lemma 5.1 it has
either an immersed monogon or bigon. Suppose that �W B ,! y† is an example of
the latter. By assumption, the bigon is not embedded. Thus ��1.�.n; �// consists
of the two sides of B , together with some connected arcs that connect opposite sides
of the bigon B . It is easy to see by induction on the number of such arcs that the
complement in B must contain either a bigon or a triangle. This triangle embeds
under � , violating the assumption that y† n�.n; �/ contains no triangles. The case of
an immersed monogon is straightforwardly similar.

Lemmas 6.1, 6.2 and 5.2 imply Theorem B directly.

7 A family of examples and Theorem C

Towards Theorem C, for each k let �k indicate the sequence .3; : : : ; 3/ with k terms.
The vertices of S.�k/ are given by

fa1;j ; a2;j ; a3;j ; a
0
1;j ; a

0
2;j ; a

0
3;j j 1� j � kg:

Let � indicate the following pairing:

a2;j $ a01;j ;

a3;j $ a02;j for j D 1; : : : ; k;

a1;j $ a03;jC1 for j D 1; : : : ; k � 1,

a1;k $ a03;1:

See Figure 3 for a schematic picture of �.�k ; �/, and Figure 4 for a gluing of †.�6; �/

to which Lemma 5.2 and Lemma 6.2 apply.

Proof of Theorem C Let † indicate the surface †.�k ; �/, so that † contains an
embedded minimal position copy of the curve �.�k ; �/, with the self-intersection
number 3k by Lemma 6.1.
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Figure 3: The ribbon graph �.�k ; �/

Figure 4: A gluing of †.�6; �/ without triangles or bigons in the complement
of �.�6; �/ , such that the given closed curve has six hyperplane separated
3–cubes

By Lemma 5.2, the dual cube complex of �.�k ; �/ in † contains k hyperplane
separated 3–cubes. Using Theorem A, we may estimate

lim sup
k!1

M k

k
� lim sup

k!1

M 3k

3k

� lim sup
k!1

1

3k
inff`.�.�k ; �/;X / jX 2 T .†/g

� lim sup
k!1

1

3k
k log

�1C cos�=3
1� cos�=3

�
D

1
3

log 3:
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Note that in the construction above, it is evident that the genus of †.�k ; �/ will grow
with the self-intersection number of � .�k ; �/. As a consequence, these lower bounds
are not applicable to mk.†/ for a fixed surface †. It seems likely4 that mk.†/ grows
as
p

k .
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