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Relative Thom spectra via operadic Kan extensions

JONATHAN BEARDSLEY

We show that a large number of Thom spectra, that is, colimits of morphisms
BG! BGL1.S/ , can be obtained as iterated Thom spectra, that is, colimits of mor-
phisms BG! BGL1.Mf / for some Thom spectrum Mf . This leads to a number
of new relative Thom isomorphisms, for example M UŒ6;1/^M String M UŒ6;1/'
M UŒ6;1/^SŒB3Spin� . As an example of interest to chromatic homotopy theorists,
we also show that Ravenel’s X.n/ filtration of M U is a tower of intermediate Thom
spectra determined by a natural filtration of BU by subbialagebras.

An errata was posted on 26 May 2017 in an online supplement.
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1 Introduction

We prove several new results about Thom spectra which are En –ring spectra. The most
immediately accessible results are relative Thom isomorphisms like the following from
Section 3:

� M Spin^M String M Spin'M Spin^SŒK.Z; 4/�.

� M SO^M U M SO'M SO^SŒSpin�.

� M U^M Sp M U'M U^SŒSO=U�.

� M UŒ6;1/^M String M UŒ6;1/'M UŒ6;1/^SŒB3Spin�.

� HZ=2^H Z HZ=2'HZ=2^SŒS1�.

However, in consideration of the fact that there are now a number of different methods
for defining such objects, we will take a moment to clarify precisely which models we
use for the remainder (though we do not expect that the choice of model is relevant to
the veracity of the statements). By the category of spectra, which we denote by S , we
will always mean Lurie’s symmetric monoidal quasicategory of spectra defined in [13,
Section 1.4.3]. In general, except when we explicitly state otherwise, we will always be
working with quasicategories and all of our constructions will be homotopy invariant.
For example, all of our tensor products are derived (as they must be when working
internally to a quasicategory), all of our limits and colimits are the quasicategorical
analogs of homotopy colimits and limits, and our functors are actually morphisms
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1152 Jonathan Beardsley

of simplicial sets. We also make use of Lurie’s notion of 1–operads, defined and
described in [13, Chapter 2]. We will not review the theory of 1–operads here except
to say that they are a natural generalization of the notion of multicategories and the
categories of operators of May and Thomason [17]. We are especially interested in
the En 1–operads of [13, Chapter 5] and will refer to them frequently in this paper.
These 1–operads capture the same structure as Boardman and Vogt’s little n–cubes
operads, which use embeddings of n–dimensional cubes to parametrize multiplicative
structure (see May [15, Chapter 4]). It is nontrivial to show that these quasicategorical
constructions behave identically to their model category theoretic analogs, and that
results obtained thereby are compatible with results obtained using model categories.
The interested reader is invited to refer to Lurie [12; 13] for proofs that these conditions
are met. We recognize, of course, that these references are expansive in their own right,
so will endeavor to give more specific citations throughout the paper.

Thom spectra, the main objects of investigation here, are classically constructed by
considering spaces associated to stable spherical bundles on topological spaces (see
eg Sullivan [22]). However, after work of May and Sigurdsson [16] and later work
of Ando, Blumberg, Gepner, Hopkins and Rezk [2], it became clear that there was
an alternative way to think of Thom spectra: as quotients of ring spectra by group
actions. In general, given an En –ring spectrum R, there is an n–fold loop space of
units, GL1.R/. Thus a morphism of n–fold loop spaces X !GL1.R/ gives an action
of X on R, and induces a morphism of .n�1/–fold loop spaces BX ! BGL1.R/.
By working quasicategorically, we can see that there is in fact a functor (thinking of
BX and BGL1.R/ as quasicategories) BGL1.R/ ,!LModR which is fully faithful.
Thus we have a morphism of simplicial sets BX !LModR (the quasicategory of left
R–modules, where R is considered as an E1 –ring spectrum) which is picking out an
action of X on R by R–module equivalences. This determines a diagram in LModR

whose colimit, as the thing on which every point of X , including the identity, acts in
the same way, must be exactly R=X . When RD S , the sphere spectrum BGL1.S/ is
precisely the classifying space of stable spherical fibrations, and taking the colimit of a
morphism BX ! BGL1.S/ ,!LModS produces a spectrum which is equivalent to
the one produced classically by taking a sequence of Thom spaces over BX (see [2,
Proposition 3.23]). Thus, for instance, M U is just S=U and M O is just S=O, and so
on and so forth.

Similarly, if we have an action of a Lie group G on a smooth manifold X , we can
take its homogeneous space X=G . If we happen to have an inclusion of a normal
subgroup H ,! G , then we obtain an action of H on X and can also take the
homogeneous space X=H . It is a classical fact then that X=H admits an action of G=H

and moreover that the iterated homogeneous space .X=H /=.G=H / is diffeomorphic
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to X=G (see Bourbaki [5, Section 1.6, Proposition 13]). It stands to reason then that
something similar should be true for actions of n–fold loop spaces on a ring spectrum R,
and that is one of the main theorems of this document (see Theorem 1) if we allow
ourselves to replace the condition “H is a normal subgroup of G ” with “there is a fiber
sequence of n–fold loop spaces H!G!G=H ”. Specifically, if we have a G –action
on an En –ring spectrum R, then we obtain a G=H –action on R=H and a sequence
of ring spectra R!R=H ! .R=H /=.G=H /'R=G . In other words, R=G can be
produced as the Thom spectrum associated to an action map G=H ! BGL1.R=H /.

In Section 2 we show that a number of classical Thom spectra over S can in fact be
constructed as Thom spectra over other Thom spectra. This statement is made rigorous
by the following theorem:

Theorem 1 Suppose Y
i
�!X

q
�!B is a fiber sequence of reduced En –monoidal Kan

complexes for n> 1 with i and q both maps of En –algebras. Let f W X !BGL1.S/
be a morphism of En –monoidal Kan complexes for n> 1. Then there is a morphism of
En�1 –algebras B!BGL1.M.f ı i// whose associated Thom spectrum is equivalent
to Mf .

By constructing Mf as a Thom spectrum over an intermediate Thom spectrum, we
get a relative Thom isomorphism:

Corollary There is a morphism of En�1 –ring spectra R!M.f ı i/!Mf and
a relative Thom isomorphism Mf ^M.f ıi/ Mf ' Mf ^R RŒB�, where RŒB� D

R^S†
1
CB .

The proof requires certain technical details and constructions from Lurie [13], so we
separate the relevant lemmas into their own subsection, Section 2.1, and refer to them
as needed. In Section 3 we give a number of examples of constructions of intermediate
Thom spectra which are En –rings. The last example we present is a new construction
of M U, which bears some resemblance to Lazard’s construction of the Lazard ring
in [10]. This construction is unrelated to recent work regarding M U and complex
orientations by McKeown [18]. This paper comprises work contained in the author’s
doctoral thesis.

Let us fix some notation for the remainder of the paper: the quasicategory of spectra will
be denoted by S and the quasicategory of Kan complexes, sometimes called spaces,
will be denoted by T ; the quasicategory of small quasicategories will be denoted
by qCat (to avoid set-theoretic issues we assume the existence of inaccessible cardinals
as necessary, as in Lurie [12, Section 1.2.15]); O˝ or O will always refer to an 1–
operad; En will refer to the little n–cubes1–operad, but sometimes when considering
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the E1–operad in its role as the terminal 1–operad we will denote it by F in� , to
indicate that it is equivalent to the nerve of the category of finite pointed sets; for an
En –ring spectrum R, we denote by LModR the En�1 –monoidal quasicategory of
left R–modules over R as an E1 –ring spectrum; BGL1.R/ will be the Kan complex
defined in [2], ie the delooping of the Kan complex of homotopy automorphisms of R

in LModR .

2 Intermediate Thom spectra

The following theorem describes our general method for producing intermediate Thom
spectra:

Theorem 1 Suppose Y
i
�!X

q
�!B is a fiber sequence of reduced En –monoidal Kan

complexes for n> 1 with i and q both maps of En –algebras. Let f W X !BGL1.R/

be a morphism of En –monoidal Kan complexes for n> 1. Then there is a morphism of
En�1 –algebras B!BGL1.M.f ı i// whose associated Thom spectrum is equivalent
to Mf .

The following two corollaries follow immediately from Theorem 1:

Corollary 2 Given the assumptions of Theorem 1, there is an equivalence of En�1 –
R–algebras Mf 'M.f ı i/^RŒ�B�R, where R is equipped with the trivial RŒ�B�–
module structure.

Proof For a fiber sequence Y ! X ! B of En –spaces we have a fiber sequence
�B! Y !X such that X is equivalent to a bar construction Bar�.Y; �B;�/. Thus,
since the Thom spectrum functor is symmetric monoidal and preserves colimits (see
[1, Corollary 8.1] or Lewis’ slightly weaker result in [11]), the Thom spectrum of
X ! BGL1.R/ is equivalent to the bar construction in En –R–algebras, and so in
general only admits the structure of an En�1 –algebra.

Remark 3 Constructing Thom spectra as bar constructions is not a new idea, and
should be compared to the bar construction definition of generalized Thom spectra
given in [16, Sections 23.4 and 23.5].

Corollary 4 Given the assumptions of Theorem 1, there is a morphism of En�1 –R–
algebra spectra R!M.f ı i/!Mf and a relative Thom isomorphism Mf ^M.f ıi/

Mf 'Mf ^R RŒB�, where RŒB�DR^S†
1
CB .
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Proof The fact that the equivalence exists and is an equivalence of En�1 –R–algebras
follows from [1, Corollary 1.8]. In particular, we know that the equivalence is given
by a morphism Mf ^M.f ıi/ Mf !Mf ^M.f ıi/ Mf ^R RŒB�!Mf ^R RŒB�,
where the first map is the Thom diagonal and the second map is the M.f ı i/–algebra
structure map of Mf .

We now give a proof of Theorem 1, though it relies on lemmas which we defer to
Section 2.1. It also makes crucial use of the notion of an operadic left Kan extension,
as described in [13, Section 3.1.2].

Proof Note that M.f ı i/ is an En –algebra, so BGL1.M.f ı i// is an .n�1/–fold
loop space, so we cannot hope for the desired map to be more structured than this. By
Lemmas 5 and 6 the En�1 –monoidal left Kan extension of X

f
�!BGL1.S/ ,! S

along qW X ! B exists and takes the unique 0–simplex of B to M.f ı i/. By
Proposition 8, this Kan extension factors as a morphism of En�1 –monoidal Kan
complexes through BGL1.M.f ı i//. Taking the Thom spectrum of the induced
morphism B ! BGL1.M.f ı i// produces M.f ı i/=.�B/ as a Thom spectrum
over M.f ı i/. Moreover, taking the colimit of the functor B! BGL1.M.f ı i//

is equivalent to forming the left operadic Kan extension along the map B! �. By
Lemma 7 and [13, Corollary 3.1.4.2] we have that the left operadic Kan extension
along X !B followed by the left operadic Kan extension along B!� is equivalent
to the left operadic Kan extension along X !� (ie Kan extensions compose). Thus
the iterated Kan extension which produces M.f ı i/D S=�Y and then quotients it by
the action of �B is equivalent to the one-step Kan extension producing S=�X 'Mf

with an “action” of the trivial En�1 –space. Hence Mf is produced as a Thom spectrum
over M.f ı i/.

2.1 The lemmas

Lemma 5 Let X be a Kan complex and f W X ! C an En –monoidal morphism of
quasicategories, where C is a cocomplete quasicategory. Then, for any morphism of
En –monoidal Kan complexes pW X ! B , the operadic Kan extension of f along p

exists.

Proof Since X and B are Kan complexes, hence essentially small, and C is co-
complete, the result follows from [13, Corollary 3.1.3.5].

Lemma 6 Let Y
i
�!X

q
�!B be a fiber sequence of En –monoidal Kan complexes.

The En�1 –monoidal left Kan extension of an En –monoidal morphism

f W X ! BGL1.S/!LMod.M.f ı i//
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along qW X ! B is computed by taking the colimit of the composition

fib.X ! B/' Y !X ! BGL1.S/!LMod.M.f ı i//:

Proof Following the notation given in Definition 3.1.2.2 and the construction in
Remark 3.1.3.15 of [13], we have a correspondence of 1–operads given by

M˝ ' .X˝ ��1/q
a

X ˝�f1g

B˝! F in� ��1:

In other words, there is a family of 1–operads indexed by �1 which looks like X˝

(the 1–operad associated to X as an En –monoidal Kan complex) at one end and B˝

at the other end. Formula .�/ of [13, Definition 3.1.2.2] states that the value of the
desired Kan extension at a 0–simplex � 2 B is given by the colimit diagram

..M˝act/=� �M˝ X˝/F! .M˝/F=� !M˝! T ;

where the morphism .M˝/F
=�
!M˝ takes the cone point to � . In other words, the

value of the Kan extension at � is computed by taking the colimit over the diagram
in M˝ of objects (and active morphisms) living over � . As the simplicial set M˝

is nothing more than the mapping cylinder of the morphism of En –monoidal Kan
complexes X˝! B˝ , we have the result.

Lemma 7 There is a �2 –family of 1–operads induced by the morphisms of En�1 –
monoidal Kan complexes X ! B and B!�, denoted by M˝! �2 �F in� , and
the induced projection M˝!�2 is a flat categorical fibration.

Proof The equivalence of morphisms .X ! B! �/' .X ! �/ is given by a 2–
simplex in the quasicategory of En�1 –monoidal quasicategories, hence by a morphism
of simplicial sets in Hom.�2;Hom.E˝

n�1
; qCat//' Hom.�2 �E˝

n�1
; qCat/. By the

quasicategorical Grothendieck construction of [12], we obtain a cocartesian fibration
of simplicial sets pWM˝ ! �2 � E˝

n�1
such that p�1.0/ ' X˝, p�1.1/ ' B˝

and p�1.2/'�˝ , where X˝, B˝ and �˝ are the 1–operads witnessing the En�1 –
monoidal structure on X, B and �. The projection map induces a family of1–operads
M˝! �2 . This projection is a flat fibration as it satisfies the requirements of [13,
Example B.3.4], ie there are cocartesian lifts of every edge in �2'�2����2�F in� .

Proposition 8 Let Y
i
�!X

q
�!B be a fiber sequence of reduced, connected En –

monoidal Kan complexes. The left operadic Kan extension of an En –morphism
f W X ! BGL1.S/!LMod.M.f ı i// along the En –morphism qW X ! B factors
as a morphism of En�1 –monoidal Kan complexes through BGL1.M.f ı i//.
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Proof Note that the left operadic Kan extension along q takes the unique zero simplex
of B to M.f ı i/ by Lemma 6. Since B is a Kan complex it must be that this
Kan extension factors through BGL1.M.f ı i//. This morphism is only En�1 since
BGL1.M.f ı i// is only an .n�1/–fold loop space.

3 Examples

A large number of morphisms of En –monoidal Kan complexes fit into the framework
described in the introduction and Theorem 1. In the following we repeatedly use the fact
from [4, Examples 6.39] that there is a sequence of infinite loop maps U!O!GL1.S/
(where they write F for GL1.S/). The delooped (infinite loop) map BO!BGL1.S/ is
called the j –homomorphism and the composition BU!BO!BGL1.S/ is called the
complex j –homomorphism. We also use the fact that deloopings and connective covers
(modeled by a bar construction and based loops on a bar construction, respectively)
take En –spaces to En�1 –spaces and En –spaces to En –spaces, respectively.

(1) BSU! BU!CP1 is a fiber sequence of infinite loop spaces. The complex
j –homomorphism BU! BGL1.S/ is a morphism of infinite loop spaces.

(2) BString!BSpin!K.Z; 4/ is a fiber sequence of infinite loop spaces. Using
the covering map BSpin ! BO composed with the j –homomorphism, we
obtain a map of infinite loop spaces BSpin! BGL1.S/.

(3) BU ! BSO ! Spin is a fiber sequence of infinite loop spaces as a result
of [9, Table 2.1.1], and the map BSO! BGL1.S/ comes from the classical
j –homomorphism, as above.

(4) That BSp!BU!SO=U is a fiber sequence of infinite loop spaces also follows
from [9].

(5) BString! BUŒ6;1/! B3Spin is a fiber sequence of infinite loop spaces,
again from [9]. The map BUŒ6;1/! BGL1.S/ is the obvious one.

(6) BSpin!BSO!B.SO=Spin/ is clearly a fiber sequence of infinite loop spaces,
and the map BSO! BGL1.S/ is clear.

(7) �SU.n/ ! �SU.n C 1/ ! �S2nC1 is a fiber sequence of E2 –spaces, as
shown in [20, Diagram 9.1.2]. Since, by Bott periodicity, �SU' BU, there is
a morphism of E2 –spaces �SU.nC 1/!�SU' BU! BGL1.S/.

(8) BSO! BO! Z=2 is the usual fiber sequence of infinite loop spaces giving
the 1–connected cover.

(9) �2S3Œ3;1/!�2S3! S1 is a fiber sequence of E2 –spaces, after [14], and
the morphism �2S3! BGL1.S/ is also the one given there.
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Thus from Corollaries 2 and 4 we obtain the following equivalences (with respect to
the numbering given above):

(1) M U'M SU^SŒS1� S and M U^M SU M U'M U^SŒCP1�.

(2) M Spin'M String^K.Z;3/ S and

M Spin^M String M Spin'M Spin^SŒK.Z; 4/�:

(3) M SO'M U^SO=U S and M SO^M U M SO'M SO^SŒSpin�.

(4) M U'M Sp^SŒU=Sp� S and M U^M Sp M U'M U^SŒSO=U�.

(5) M UŒ6;1/'M String^BBSpin S and

M UŒ6;1/^M String M UŒ6;1/'M UŒ6;1/^SŒB3Spin�:

(6) M SO'M Spin^SŒSO=Spin� S and

M SO^M Spin M SO'M SO^SŒB.SO=Spin/�:

(7) X.nC 1/'X.n/^�2SU.n/ S and

X.nC 1/^X .n/X.nC 1/'X.nC 1/^SŒ�S2nC1�:

(8) M O'M SO^SŒZ=2� S and M O^M SO M O'M O^SŒRP1�.

(9) HZ=2'HZ^SŒZ� S and HZ=2^H Z HZ=2'HZ=2^SŒS1�.

Remark 9 Some of the examples given above can be verified by computations using
the spectral sequence found in [8, Theorem 6.4],

TorE�.R/
p;q .E�.M /;E�.N //)EpCq.M ^R N /:

For instance, for E DHZ we can relatively easily check that

H�.X.nC 1/^X .n/X.nC 1/IZ/ŠH�.X.nC 1/IZ/˝Z H�.�S2nC1
IZ/:

Similar computations can be made for M U over M SU as well as for the fiber sequences
appearing in Bott periodicity. Much of the relevant algebra for the latter has in fact
already been determined in [6]. It is the author’s hope that the above equivalences will
be of use to homotopy theorists doing the much harder computations related to various
connective covers of BO.

Remark 10 The relative Thom isomorphisms described above can be interpreted as
torsor conditions for modules over spectral algebraic group schemes. In particular, if
X is a Kan complex (and thus a coalgebra by the diagonal map) then we may think
of an equivalence Mf ^M.f ıi/Mf 'Mf ^SŒX � as giving Spec.Mf / the structure
of a Spec.SŒX �/–torsor over Spec.M.f ı i//. Indeed, in terminology familiar to
noncommutative geometers, many of the above examples are Hopf–Galois extensions
in the sense of Rognes [21]. We delay an investigation of this structure to future work.
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3.1 A new construction of M U

The Lazard ring, which classifies formal group laws over discrete rings, is constructed
iteratively by obstruction theory, one polynomial generator at a time (see [10]). The
spectrum M U, which classifies complex oriented ring spectra, is given in [19] as the
colimit of the sequence of spectra X.n/ described in the previous section. Moreover,
the spectra X.n/ are strongly related to rings used to construct the Lazard ring. This nat-
urally leads to the question of whether or not the X.n/ spectra, and thus M U, can also
be constructed by some form of obstruction or deformation theory. Theorem 1 and its
corollaries indicate that X.nC1/ is a “torsor” over X.n/ for the coalgebra SŒ�S2nC1�.
The stable splitting of �S2nC1 then further implies that X.nC1/ can be thought of a
twisted polynomial extension of X.n/ (by a polynomial algebra with a single generator
in degree 2n).

What we show in this section is that even more is true. By invoking [3, Theorem 4.10],
we can deduce that X.nC1/ is in fact a so-called versal E1 –X.n/–algebra of charac-
teristic �n , where �n is a class in �2n�1.X.n//. This terminology, introduced in [23],
indicates that X.nC 1/ can be thought of as a highly structured (E1 , to be specific)
homotopy quotient of X.n/ along �n . It is never equivalent to the simpler process of
“coning off” that class. What is true, however, is that X.nC 1/–module structure on a
spectrum (where we are thinking of X.nC 1/ as an E1 –algebra) is equivalent to an
X.n/–module structure on that spectrum and a null-homotopy of multiplication by �n .
Moreover, it is a result of the nilpotence theorem of [7] that each �n is nilpotent for
all n. Recalling that �2n�1 is the first homotopy degree of X.n/ which is not either
polynomial or empty, we see then that our construction of M U is given by iteratively
attaching E1 –cells along nilpotent elements, which is exactly what one might expect to
do if one wished to construct the universal nilpotence detecting ring spectrum (which
M U is).

Definition 11 Given ˛ 2 �k.R/ for R an En –ring spectrum, we define the versal
En –R–algebra of characteristic ˛ to be the pushout in En –R–algebras

FrEn
.†kR/

adj.˛/
��

adj.0/
// R

��

R // R==˛

where FrEn
is the free En –algebra functor and the maps adj.˛/ and adj.0/ are the

adjoints of the associated maps of R–modules ˛W †kR!R and 0W †kR!R.
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Corollary 12 Let X.n/ be the Thom spectrum associated to the morphism of E2 –
monoidal Kan complexes �SU.n/!BU!BGL1.S/. Then X.nC1/ is a versal E1 –
algebra over X.n/ of characteristic �n where �n is a canonical class in �2n�1.X.n//.

Proof Given the fiber sequence �SU.n/!�SU.nC 1/!�S2nC1 and an appli-
cation of Theorem 1 above, we can identify X.nC 1/ as the E1 –monoidal Thom
spectrum given by the E1 –monoidal left Kan extension �S2nC1 ! BGL1.X.n//.
By application of standard adjunctions, the map of E1 –monoidal Kan complexes
zz�n 2MapE1

.�S2nC1;BGL1.X.n/// induces a map of Kan complexes

z�n 2MapT
�
S2n�1;GL1.X.n//

�
:

Note z�n must have image contained in a connected component u 2 �0.GL1.X.n///'

Z=2 which induces a translation �uW �
1X.n/!�1X.n/. The composition

�u ı z�nW S
2n�1

!�1X.n/

lifts to a morphism of spectra �nW S2n�1!X.n/. An application of [3, Theorem 4.10]
gives that X.nC 1/ is the versal E1 –algebra of characteristic �n on X.n/. In other
words, X.nC 1/ in the following diagram is a pushout:

FE1
.†2n�1X.n//

adj.0/
//

adj.�n/

��

X.n/

��

X.n/ // X.nC 1/

This concludes the proof.

Remark 13 The content of [3] allows us to consider X.nC 1/ as the E1 –spectrum
obtained by attaching an E1 –X.n/–cell to X.n/ along the map �n described above.
Note that �1 , as a nonzero element of �1.S/, must be equivalent to �, the Hopf
element. The Hopf element is, of course, the first nilpotent element in the stable
homotopy groups of spheres and so, again, it stands to reason that it would be the
first element eliminated in an effort to construct the maximal nilpotence detecting ring
spectrum.

The following result is included since it follows immediately from [3]:

Corollary 14 The E1 –cotangent complex of the E1 –algebra X.nC 1/ in X.n/–
modules is equivalent to †2nFE1

.X.n//^X .n/X.nC 1/.

Proof Compare [3, Proposition 5.4].
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