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On the geometry and topology of partial configuration spaces
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We examine complements (inside products of a smooth projective complex curve
of arbitrary genus) of unions of diagonals indexed by the edges of an arbitrary
simple graph. We use Orlik–Solomon models associated to these quasiprojective
manifolds to compute pairs of analytic germs at the origin, both for rank-1 and rank-2
representation varieties of their fundamental groups, and for degree-1 topological
Green–Lazarsfeld loci. As a corollary, we describe all regular surjections with
connected generic fiber, defined on the above complements onto smooth complex
curves of negative Euler characteristic. We show that the nontrivial part at the
origin, for both rank-2 representation varieties and their degree-1 jump loci, comes
from curves of general type via the above regular maps. We compute explicit finite
presentations for the Malcev Lie algebras of the fundamental groups, and we analyze
their formality properties.

55N25, 55R80; 14F35, 20F38

1 Introduction and statement of results

Let � be a finite simple graph with cardinality n, vertex set V and edge set E. The
partial configuration space of type � on a space † is

(1) F.†; �/D fz 2†V
j zi ¤ zj for all ij 2 Eg:

When � DKn , the complete graph with n vertices, F.†; �/ is the classical ordered
configuration space of n distinct points in †. In this note, we analyze the inter-
play between geometry and topology when †D†g is a compact genus-g Riemann
surface with partial configuration space denoted F.g; �/, with special emphasis on
fundamental groups. The partial pure braid groups of type � in genus g , namely
P.g; �/ D �1.F.g; �//, are natural generalizations of classical pure braid groups,
which correspond to the case when �DKn and †DC . When the graph is not complete,

Published: 14 March 2017 DOI: 10.2140/agt.2017.17.1163

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=55N25, 55R80, 14F35, 20F38
http://dx.doi.org/10.2140/agt.2017.17.1163
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the classical approach to pure braid groups based on Fadell–Neuwirth fibrations does
not work in full generality. Nevertheless, we are able in this note to compute rather
delicate invariants of arbitrary partial pure braid groups, using techniques developed in
Dimca and Papadima [11] and Măcinic, Papadima, Popescu and Suciu [18].

Viewing †g as a smooth genus-g complex projective curve, F.g; �/ acquires the
structure of an irreducible, smooth, quasiprojective complex variety (for short, a
quasiprojective manifold). For such a quasiprojective manifold M , important geometric
information is provided by maps onto manifolds of smaller dimension. Particularly
interesting are the admissible maps in the sense of Arapura [2], ie the regular surjections
onto quasiprojective curves, f W M ! S , having connected generic fiber. We say the
admissible map f is of general type if �.S/ < 0. We know from [2] that the set
of admissible maps of general type on M , modulo reparametrization at the target,
denoted E.M/, is finite and is intimately related to the so-called cohomology jump loci
of � WD �1.M/.

When M D F.g; �/, it is relatively easy to construct certain admissible maps of
general type on M , associated to complete graphs f W Km ,! � embedded in � ; see
Section 2. For g � 2, the relevant m equals 1, and fi W F.g; �/!†g is induced by
the projection specified by the corresponding vertex i 2 V . For g D 1, the relevant m
is 2, and fij W F.1; �/!†1 n f0g is given by the projection corresponding to ij 2 E,
followed by the difference map on the elliptic curve †1 . For g D 0, the relevant m
equals 4, and fijkl W F.0; �/! P1 n f0; 1;1g is the composition of the cross-ratio
with the projection associated to the vertex set of the embedded K4 . Our first main
result, proved in Section 2, establishes that there are no other admissible maps of
general type on M D F.g; �/.

Theorem 1.1 A complete set of representatives for E.F.g; �// is given by the admis-
sible maps of general type described above.

A basic topological invariant of a connected finite CW-complex M related to its
cohomology jump loci is the Malcev Lie algebra of the fundamental group � WD�1.M/;
cf [11]. The Malcev Lie algebra m.�/ of a group, over a characteristic zero field k,
defined by Quillen in [21], is a complete k–Lie algebra whose filtration satisfies certain
axioms, obtained by taking the primitives in the completion of the group ring k� with
respect to the powers of the augmentation ideal.

Following Sullivan [23], we will say that a finitely generated group � is 1–formal if
its Malcev Lie algebra is isomorphic to the completion with respect to the lower central
series ( lcs) filtration of a quadratic Lie algebra L (ie a Lie algebra presented by degree-
1 generators and relations of degree 2): m.�/ ' yL. 1–formal groups enjoy many
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pleasant topological properties; see, for instance, Dimca, Papadima and Suciu [12].
The 1–formality of classical pure braid groups and pure welded braid groups also has
strong consequences in the corresponding theories of finite-type invariants, as shown
in Berceanu and Papadima [4].

In Section 3, we compute the Malcev Lie algebras of partial pure braid groups and
determine precisely when they are 1–formal, as follows. Our next main result extends
computations done by Bezrukavnikov [5] (for g � 1 and � D Kn ) and Bibby and
Hilburn [6] (for g � 1 and chordal graphs). Moreover, in our presentations below,
redundant relations have been eliminated for g � 1.

Theorem 1.2 The Malcev Lie algebra m.P.g; �// is isomorphic to the lcs completion
of a finitely presented Lie algebra, L.g; �/, with generators in degree 1 and relations in
degrees 2 and 3, described in Proposition 3.2 for g D 0 and Proposition 3.4 for g � 1.
The group P.g; �/ is not 1–formal if and only if g D 1 and the graph � contains
a K3 subgraph.

Now, we move to our unifying theme: the interplay between the geometry of a quasipro-
jective manifold M , encoded by a smooth compactification SM , and the embedded
topological jump loci of M . We start by recalling a couple of relevant definitions and
facts related to the topological side of this story. Fix q 2 Z>0 [ f1g. We will say
that M is a q–finite space if (up to homotopy) M is a connected CW-complex with
finite q–skeleton, whose (finitely generated) fundamental group will be denoted by � .
Let �W G!GL.V / be a morphism of complex linear algebraic groups. The associated
characteristic varieties (in degree i � 0 and depth r � 0),

(2) V i
r .M; �/D f� 2 Hom.�;G/ j dimH i .M; ��V /� rg;

are Zariski closed subvarieties (for i�q ) of the affine representation variety Hom.�;G/,
for which the trivial representation provides a natural basepoint, 12Hom.�;G/. These
cohomology jump loci are called topological Green–Lazarsfeld loci for r D 1. They
were introduced in the rank-one case (ie for �D idC� ) in Green and Lazarsfeld [14],
for a smooth projective complex variety M . In the rank-one case, we simplify notation
to V i

r .M/. Note that, in general, V 1
r .M; �/ WD V 1

r .�; �/ depends only on � for all r .

We go on by describing the infinitesimal analogs of the above notions, following [11].
Let .A�; d / be a complex commutative differential graded algebra with positive grading
(for short, a cdga). We will say that A� is q–finite if A0DC �1 and

Pq
iD1 dimAi <1.

Let � W g!gl.V / be a finite-dimensional representation of a finite-dimensional complex
Lie algebra. The affine variety of flat connections, F .A; g/, consists of the solutions
in A1˝ g of the Maurer–Cartan equation, has the trivial flat connection 0 as a natural
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basepoint, and is natural in both A and g. For ! 2 F .A; g/, there is an associated
covariant derivative, d! W A� ˝ V ! A�C1 ˝ V , with d2! D 0, by flatness. The
resonance varieties

(3) Ri
r.A; �/D f! 2F .A; g/ j dimH i .A˝V; d!/� rg

are Zariski closed subvarieties (for i � q ). We use the simplified notation Ri
r.A/ in

the rank-one case (ie when � D idC ).

We say that the cdga A� is a q–model of M (and omit q from all terminology when
q D1) if A� has the same Sullivan q–minimal model as the de Rham cdga ��.M/;
cf [23]. In particular, H �.A/'H �.M/ as graded algebras, when A is a model of M .

The link between topological and infinitesimal objects is provided by [11, Theorem B].
Assume that both A and M are q–finite and A is a q–model of M . Denote by � the
tangential representation of �. Then for i � q and r � 0, the embedded analytic germs
V i
r .M; �/.1/ � Hom.�;G/.1/ at 1 are isomorphic to the corresponding embedded

germs Ri
r.A; �/.0/�F .A; g/.0/ at 0. Moreover, by [11, Theorem A], if � is a finitely

generated group, then the germ Hom.�;G/.1/ depends only on the Malcev Lie algebra
m.�/ and the Lie algebra of G .

Finally, assume that M is a quasiprojective manifold, and M D SM nD is a smooth
compactification obtained by adding at infinity a hypersurface arrangement D in SM
(in the sense of Dupont [13]). Then there is an associated (natural, finite) Orlik–
Solomon model A�. SM;D/ of the finite space M , constructed in [13]. It follows from
[11, Theorem C] that this model A determines E .M/, which is in bijection with
the positive-dimensional irreducible components through the origin, for both R1

1.A/

and V 1
1 .M/.

When M D F.g; �/, we may take SM D†V
g and D� D

S
ij2E�ij (the union of the

diagonals associated to the edges of the graph). We prove Theorem 1.1 by computing
the irreducible decomposition of R1

1.A/ for the Orlik–Solomon model ADA. SM;D�/.
When g D 1 and � D Kn , the result follows from a more precise description of all
positive-dimensional components of V 1

1 .M/, obtained by Dimca in [10]. Given a
1–finite 1–model A of a connected CW-space M , we show in Theorem 3.1 that the
Malcev Lie algebra m.�1.M// is isomorphic to the lcs completion of the holonomy
Lie algebra of A, introduced in [18]. This general result is the basic tool for the proof
of Theorem 1.2, where M D F.g; �/ and AD A. SM;D�/.

SL2.C/–representation varieties received a lot of attention, both in topology and
algebraic geometry. In order to describe their germs at 1 for partial pure braid
groups, together with the embedded germs of associated nonabelian characteristic
varieties (in degree 1 and depth 1), we use their infinitesimal analogs, described
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above. Let � W g! gl.V / be a finite-dimensional representation of g D sl2 or sol2 ,
the Lie algebra of SL2.C/ or of its standard Borel subgroup. To state our next
main result, we need two definitions from [18]. Denote by F1.A; g/ � F .A; g/

the flat connections of the form ! D � ˝ g , with d� D 0 and g 2 g, and set
….A; �/ D f! 2 F1.A; g/ j det �.g/ D 0g. To have a uniform notation, denote by
f W F.g; �/! S D xS n F the admissible maps from Theorem 1.1, where xS D †g
and F � xS is a finite subset (in particular, a hypersurface arrangement in xS ). To
avoid trivialities, we will assume in genus 0 that H 1.F.g; �//¤ 0. (The complete
description of H 1.F.g; �// may be found in Lemma 2.3; what happens in general
with the embedded topological Green–Lazarsfeld loci in degree 1 of M at the origin,
when b1.M/D 0, is explained in Section 4.)

Theorem 1.3 In the above setup, there is a regular extension xf W . SM;D/! . xS; F /

of f , for all f 2 E WD E .F.g; �//, where D is a hypersurface arrangement in SM
with complement F.g; �/, which induces cdga maps between Orlik–Solomon models,
f �W A�. xS; F /! A�. SM;D/, with the property that

(4) F .A�. SM;D/; g/DF1.A�. SM;D/; g/[
[
f 2E

f �F .A�. xS; F /; g/

for gD sl2 or sol2 , and

(5) R1
1.A

�. SM;D/; �/D….A�. SM;D/; �/[
[
f 2E

f �F .A�. xS; F /; g/

for any finite-dimensional representation � W g! gl.V /.

This shows that for partial configuration spaces on smooth projective curves, the non-
trivial part at the origin, for both SL2.C/–representation varieties and their degree-one
topological Green–Lazarsfeld loci, “comes from curves of general type, via admissible
maps”. (The contribution of these curves, f �F .A�. xS; F /; g/, was computed in [18,
Lemma 7.3].) A similar pattern is exhibited by quasiprojective manifolds with 1–formal
fundamental group; cf [18, Corollary 7.2]. The geometric formulae from Theorem 1.3
seem to be quite satisfactory, since in genus 1, where non-1–formal examples appear
(cf Theorem 1.2), the purely algebraic description from [18, Proposition 5.3] (obtained
by assuming formality) may not hold, as we explain in Example 4.6.

2 Admissible maps and rank-one resonance

We devote this section to the proof of Theorem 1.1. Our strategy is to compute the
irreducible decomposition of R1

1.A.g; �//, where A�.g; �/ is the Orlik–Solomon
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model of M WD F.g; �/D SM nD� from [13], SM D†V
g and D� D

S
ij2E�ij . As a

byproduct, we obtain a complete description of the irreducible components through 1,
for the rank-one characteristic variety V 1

1 .P.g; �//, as explained in the introduction.

The Dupont models A�. SM;D/ are defined over Q and generalize Morgan’s construc-
tion of Gysin models from [19], which corresponds to the case of a simple normal
crossing divisor D . Among other things, the models of Dupont are natural with
respect to regular morphisms xf W . SM;D/! . SM 0;D0/, in the following sense. When
the regular map xf W SM ! SM 0 has the property that xf �1.D0/ � D , it induces a
regular map f W SM nD! SM 0 nD0 , and a cdga map f �W A�. SM 0;D0/! A�. SM;D/.
Plainly, a graph inclusion f W � 0 ,! � (ie f embeds V0 into V and E0 into E) in-
duces by projection a regular morphism xf W .†V

g ;D�/! .†V0

g ;D� 0/, and a cdga map
f �W A�.g; � 0/! A�.g; �/. Moreover, A�.g; �/D A�

�
.g; �/ is a bigraded cdga with

positive weights, in the sense of Definition 5.1 from [11]. The lower degree, called
weight, is preserved by cdga maps induced by graph inclusions. A simple example is
A�.g;∅/D .H �.†�ng /; d D 0/.

Now, we recall from [11; 18] a couple of facts about rank-1 resonance, needed in
the sequel. Let A� be a finite cdga. For � 2 A1 ˝ C D A1 , the Maurer–Cartan
equation reduces to d� D 0. Thus, F .A;C/ is naturally identified with H 1.A/�A1 ,
since A0 D C � 1. By definition, R1

1.A/ D f� 2 H
1.A/ j H 1.A; d�/ ¤ 0g, where

d�� D d�C �� for � 2 A1 . Clearly, R1
1.A/ depends only on the truncated cdga

A�2 WDA�=
L
i>2A

i , and R1
1.A/D∅ when H 1.A/D 0. We will use the following

consequence of Theorem C from [11], applied to M D F.g; �/ and AD A.g; �/.

Theorem 2.1 For a quasiprojective manifold M with finite model A having posi-
tive weights, E .M/ is in bijection with the positive-dimensional (linear) irreducible
components of R1

1.A/, via the correspondence f 2 E .M/ 7! imH 1.f /�H 1.A/.

The maps from Theorem 1.1 are constructed in the following way. For a subset V0 � V ,
we denote by prV0 W F.g; �/! F.g; � 0/ the regular map induced by the canonical
projection, prV0 W†

V
g!†V0

g , where � 0 is the full subgraph of � with vertex set V0 .
For an elliptic curve †1 , let xıW .†21; �12/! .†1; f0g/ be the regular morphism defined
by xı.z1; z2/ D z1 � z2 . In genus 0, the regular map �W F.0;K4/! P1 n f0; 1;1g
is defined by �.z1; z2; z3; z4/D ˛.z4/, where ˛ 2 PSL2 is the unique automorphism
of P1 sending z1 , z2 and z3 to 0, 1 and 1, respectively. For g� 2 and f W K1 ,!� ,
corresponding to i 2 V , set fi WD pri W F.g; �/! †g . For g D 1 and f W K2 ,! � ,
corresponding to ij 2 E, set fij WD ı ı prij W F.1; �/! †1 n f0g. For g D 0 and
f W K4 ,! � , with vertex subset fijklg � V , set fijkl WD � ı prijkl W F.0; �/ !
P1 n f0; 1;1g.
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Lemma 2.2 The above maps, fi ; fij and fijkl , are admissible, of general type.

Proof In coordinates, �.z1; z2; z3; z4/D .z4�z1/=.z2�z1/ W .z4�z3/=.z2�z3/ and
�.0; 1;1; z/D z: Clearly, the maps �W F.0;K4/!P1nf0; 1;1g and ıW F.1;K2/!
†1 n f0g, and the projections pr�W F.g; �/! F.g;Kj�j/ (where � stands for i , ij or
ijkl and j�j is 1, 2 or 4) are regular and surjective. The general-type condition is also
clear: the spaces P1 n f0; 1;1g' S1 _S1 '†1 n f0g have Euler characteristic �1,
and �.†g/� �2 for g � 2.

In order to finish the proof, we show that all the fibers are connected. Let us denote by f�
any of the maps fi , fij or fijkl and by '� the restriction of f� to F.g;Kn/�F.g; �/.
The fiber '�1� .z/ is dense in f �1� .z/ (fix one or two or four points and move the other
points outside the diagonals zp D zq ), so it is enough to show that the fibers of '� are
connected. The fibers of ı and � are path-connected:

†1 � ı
�1.z/� F.1;K2/; F .0;K3/� �

�1.z/� F.0;K4/:

The fibers of '� are path-connected as preimages of path-connected spaces through
the locally trivial fibrations pr�W F.g;Kn/ ! F.g;Kj�j/ (j � j D 1, 2 or 4) with
path-connected fibers F.†g n fz�g; Kn�j�j/.

We recall from [13, Section 6] the complete description of the cdga A�2 for A WD
A.g; �/. We set H � WD H �.†g/, with H 2 D C �! and with canonical symplectic
basis fx1; y1; : : : ; xg ; ygg of H 1 for g � 1, with xsys D ! for all s . We know
from [13] that A� is generated as an algebra by .H �/˝V (with weight equal to degree)
and G WD spanfGij j ij 2 Eg (with degree 1 and weight 2). The bigraded cdga map
f �W A�.g; � 0/! A�.g; �/, associated to f W � 0 ,! � , is determined by the canonical
inclusions, .H �/˝V0 ,! .H �/˝V and G0 ,!G . For i 2V and g�0, we set f �i ! WD!i ,
and for g � 1, we set f �i x

s WD xsi and f �i y
s WD ysi for all s . The structure of the

truncated algebra A�2 D A�2.g; �/ is described as follows:

� A11 DH
1.†V

g/D
L
i2V f

�
i H

1 and A12 DG ;

� A22 DH
2.†V

g/;

� A23 D A11 ˝ G modulo the relations (in genus g � 1) .xsi � x
s
j /˝ Gij and

.ysi �y
s
j /˝Gij for s D 1; : : : ; g and ij 2 E;

� A24 D
V2
G modulo the relations Gjk ^ Gik � Gij ^ Gik C Gij ^ Gjk for

f W K3 ,!� (note that A24DOS2.A�/, the degree-2 piece of the Orlik–Solomon
algebra [20] of the associated graphic arrangement of hyperplanes in CV );

� d.A11/ D 0, d.Gij / D !i C!j C
P
s.y

s
i ˝ x

s
j � x

s
i ˝ y

s
j / 2 A

2
2 when g � 1,

and d.Gij /D !i C!j when g D 0;
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� �W
V2
G!A24 is the quotient map (exactly as in the graded algebra OS�.A�/);

� �W
V2
A11! A22 is the cup-product in the cohomology ring H �.†V

g/;

� �W A11˝G! A23 is the quotient map.

(The lower indices of f , x , y , ! and G show the position in the cartesian or tensor
product; the same convention will be used in Section 3 for a , b , z and C .)

Lemma 2.3 In degree one, we have the following:

(1) If gD 0, then H 1.F.0; �//D 0 if and only if every connected component of �
is a tree or contains a unique cycle and this cycle has an odd length.

(2) If g � 1, then H 1.F.g; �//DH 1.†V
g/¤ 0.

Proof Due to the fact that A is a model of F.g; �/, we have

H 1.F.g; �//D A11˚ ker.d W A12! A22/DH
1.†V

g/˚ ker.d W G!H 2.†V
g//:

We can split the differential according to the connected components of the graph
� Dq�.˛/, VDqV.˛/, G DqG.˛/:

ker.d W G!H 2.†V
g//D

M
˛

ker.d W G.˛/!H 2.†V.˛/
g //;

so we give the proof for a connected graph � .

For g � 1, the coefficient of ysi ˝ x
s
j in the differential of  D

P
ij2EtijGij is tij ;

therefore, d W G!H 2.†V
g/ is injective.

For g D 0, we have that  D
P
ij2E tijGij is a cocycle if and only if the coefficient

of !i in d./ is zero, ie

(6)
X

j2V; ij2E

tij D 0 for any i 2 V:

This system of equations has n equations and jEj unknowns; if �.�/D n� jEj< 0,
one can find a nontrivial solution; hence b1.F.0; �// � 1. If �.�/ � 0, we have to
analyze only two cases (since � is connected):

Case a (�.�/D1) In this case, � is a (finite) tree; hence it has a vertex i of degree 1.
One of the equations in the system (6) is tij D 0, and induction on jVj applied to the
tree � n fig shows that the system has only the trivial solution (the induction starts
with nD 1, when G D 0).

Case b (�.�/D 0) In this case, � ' S1 contains a unique cycle �0 and, possibly,
some branches; starting with a vertex of degree 1, we can eliminate these branches
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(if any), like in the previous case. The system is reduced to the equations corresponding
to the vertices of �0 , say 1; 2; : : : ; l :

ti�1;i C ti;iC1 D 0; i � 1; : : : ; l .mod l/:

We get a nonzero solution .a;�a; a; : : : ;�a/ only for l even.

Example 2.4 �1 W
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b1.F.0; �1//D 0

Example 2.5 Every edge is marked with its coefficient in an arbitrary cocycle; the
unmarked edges have coefficient 0.

�2 W
� �

�

�

� � �

�

� �

�

��

a

a

b
b

c

c

.aC bC c D 0/

b1.F.0; �2//D 3
�d �d

d d

d d
�2d









��HH

J
J
JJ

��
�
�

�
�

H
H HH

A
A

Remark 2.6 More generally, let † be an arbitrary complex projective manifold of
dimension m � 1. The full configuration space F.†;Kn/ has a remarkable cdga

model, E�.†; n/; when m D 1, we have E�.†g ; n/ D A�.g;Kn/ (see eg [3] for
details and references related to these models). As a graded algebra, E�.†; n/ is
generated by H �.†n/ and G WD spanfGij j 1� i < j � ng, taken in degree 2m� 1.
Denote by EE�.†; n/ the graded subalgebra of E�.†; n/ generated by G . It is shown
in [3] that, when †¤†0 , the restriction of d to EEC.†; n/ is injective. This more
general result gives an alternative proof of Lemma 2.3(2).

Proposition 2.7 If g � 2, then R1
1.A.g; �// D

S
i2V imH 1.fi / is the irreducible

decomposition.

Proof The inclusion
S
i2V imH 1.fi /�R1

1.A.g; �// is an obvious consequence of
Theorem 2.1 and Lemma 2.2. For the proof of the opposite inclusion, we start with a
nonzero cohomology class � in H 1.A/ and a d� –cocycle � 62C � � :

� D
X
i;s

.psi x
s
i C q

s
i y
s
i /; �D

X
i;s

.usi x
s
i C v

s
i y
s
i /C

X
ij2E

tijGij :
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(From Lemma 2.3(2), � has no component in G .) For an arbitrary �, the differential
d��D d�C � � � belongs to A22˚A

2
3 ; these two components are

A22 3
X
ij2E

tij

�
!i C!j C

X
s

.ysi ˝ x
s
j � x

s
i ˝y

s
j /

�
C

X
i;s

.psi x
s
i C q

s
i y
s
i / �

X
i;s

.usi x
s
i C v

s
i y
s
i /;

A23 3
X
i;s

.psi x
s
i C q

s
i y
s
i / �

X
ij2E

tijGij D � � :

We will show that the G–component of the d� –cocycle �, namely  D
P
ij2E tijGij ,

is 0. Otherwise, there is an edge ij with tij ¤ 0. Since the annihilator of Ghk is the
span of fxs

h
�xs

k
; ys
h
�ys

k
g1�s�g , the vanishing of the A23–component of d�� implies

that � is reduced to

� D
X
s

ps.xsi � x
s
j /C

X
s

qs.ysi �y
s
j /;

and also that  has only one nonzero coefficient t� (we can normalize it: tij D 1).
In A22 , if h¤ i; j , the coefficients of xsi ˝x

r
h

, xsi ˝y
r
h

, ysi ˝x
r
h

and ysi ˝y
r
h

should
be 0; hence us

h
D vs

h
D 0 for any h ¤ i; j and any s . Hence, the A22–component

of d�� is reduced to

!i C!j C
X
s

.ysi ˝ x
s
j � x

s
i ˝y

s
j /

C

�X
s

ps.xsi � x
s
j /C

X
s

qs.ysi �y
s
j /

�
�

X
s

.usi x
s
i Cu

s
jx
s
j C v

s
i y
s
i C v

s
j y
s
j /I

the coefficients of the following elements in the canonical basis of A22 are 0:

!i xsi ˝y
s
j ysi ˝ x

s
j xri ˝ x

s
j

1C
P
s p

svsi �
P
s q
susi �1Cpsvsj C q

susi 1C qsusj Cp
svsi prusj Cp

suri

We show that this system has no solution. By the symmetry .p; x/ $ .q; y/, we
can suppose that there is an index s such that ps ¤ 0; if some pr D 0, the second
equation (for s! r ) implies that uri ¤ 0, and from the last equation we get ps D 0, a
contradiction. If all the coefficients ps are nonzero, the last equation (for sD r ) implies
that usj D �u

s
i for any s , and the third equation shows that 1 � qsusi C p

svsi D 0

for any s . Adding these g equations, we find g C
P
s p

svsi �
P
s q
susi D 0, and,

comparing with the first equation, we obtain g D 1, again a contradiction.
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Therefore,  D 0; the nonvanishing of H 1.A; d�/ is equivalent to

d��D � � �D 0; � 62C � �:

This implies that � 2R1
1.H

�.†g/
˝V; d D 0/. We infer from the Künneth formula for

resonance [17, Proposition 5.6] that � 2 imH 1.fi / for some i 2 V .

In conclusion, R1
1.A/D

S
i2V imH 1.fi / is a finite union of linear subspaces. Since

clearly there are no redundancies, this is the irreducible decomposition, as claimed.

Proposition 2.8 When g D 1, we have that R1
1.A.1; �//D

S
ij2E imH 1.fij / is the

irreducible decomposition if E¤∅. Otherwise, R1
1.A.1; �//D f0g.

Proof Suppose that ED∅. As mentioned before, A.1;∅/D
�V
.xi ; yi /; d D 0

�
, and

it is well known that the resonance variety R1
1 of an exterior algebra is reduced to 0.

Suppose that E is nonempty. Given � D
P
i pixi C

P
i qiyi , a nonzero cohomology

class in R1
1.A/ (see Lemma 2.3(2)), we may find

�D
X
i

uixi C
X
i

viyi C
X
ij2E

tijGij

such that d��D 0 and � 62 C � � . We may also suppose that there is one coefficient
tij ¤ 0 (otherwise we are in the previous case). Now we can apply the argument
given in the proof of Proposition 2.7: there is only one nonzero coefficient t� and
� 2 Ann.Gij /; hence � D p.xi � xj /C q.yi � yj /. On the other hand, it is obvious
that H 1.fij /.z/D zi � zj for z 2H 1.†1 n f0g/DH

1.†1/.

We conclude, like in the proof of Proposition 2.7, that R1
1.A/D

S
ij2E imH 1.fij / is

the irreducible decomposition, in this case.

Proposition 2.9 If g D 0 and H 1.A.0; �//D 0, then R1
1.A.0; �//D∅.

If H 1.A.0; �// ¤ 0, then R1
1.A.0; �// D f0g [

S
imH 1.fijkl/ is the irreducible

decomposition, where the union is taken over all K4–subgraphs of � with vertex
set fijklg, and f0g is omitted when � contains such a subgraph.

Proof If H 1.A.0; �//D 0 and � 2R1
1.A/, the definitions imply that d0�D d�D 0

for some � 2 A1 . From this we get �D 0, which shows that R1
1.A.0; �//D∅.

From now on, we assume H 1.A/¤ 0. For any K4 ,! � on vertices i , j , k and l ,
let us denote by Rijkl �H 1.A/ the 2–dimensional subspace

fa.Gij CGkl/C b.GikCGjl/C c.GjkCGil/ j aC bC c D 0g:
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When � DK4 , we find that H 1.A.0;K4//DR1234 , by solving the system (6). The
map H 1.fijkl/ is injective, sincefijkl is admissible. Therefore, imH 1.fijkl/DRijkl .

The inclusion R1
1.A/ � f0g [

S
Rijkl follows from Theorem 2.1 and Lemma 2.2.

Since plainly there are no redundancies in the above finite union of linear subspaces,
we are left with proving that R1

1.A/ n f0g �
S
Rijkl . To achieve this, we will also

need to consider, for any K3 ,! � on vertices i , j and k , the linear subspace
Rijk �G D OS1.A�/ defined by Rijk D faGij C bGjkC cGik j aC bC c D 0g.

If � 2 R1
1.A/ n f0g � G n f0g, then d� D 0 and there is � 2 G n C � � such that

d��D d�C � � �D 0 2 A
2
2˚A

2
4 , or, equivalently, d�D 0 and � � �D 0 2 OS2.A�/.

In particular, � 2 R1
1.OS�.A�/; d D 0/ n f0g. It follows from [22, Section 3.5] that

either � 2Rijk for some K3 ,! � , or � 2Rijkl for some K4 ,! � .

The first case cannot occur, since clearly Rijk\ker.d/D 0, by (6), and we are done.

Theorem 2.1 and Lemma 2.2, together with Propositions 2.7–2.9, prove Theorem 1.1
from the introduction. In the genus-0 case, the implication

H 1.A.0; �//D 0 D) � has no K4–subgraphs

is provided by Lemma 2.3(1).

3 Malcev completion and formality

We continue our analysis of partial pure braid groups with the proof of Theorem 1.2.
Their Malcev Lie algebras are computed with the aid of the holonomy Lie algebras of
their Orlik–Solomon models, A�.g; �/.

We will also consider a weaker notion of 1–formality: a finitely generated group � is
filtered formal if its Malcev Lie algebra m.�/ is isomorphic to the lcs completion of
a Lie algebra presentable with degree-1 generators and relations homogeneous with
respect to bracket length. We recall that the free Lie algebra on a vector space, L�.W /,
is graded by bracket length. In low degrees, L1.W /DW , and the Lie bracket identifies
L2.W / with

V2
W .

We are going to make extensive use of the following construction, introduced in [18,
Definition 4.2]. The holonomy Lie algebra h.A/ of a 1–finite cdga A is the quotient of
L.A1�/ by the Lie ideal generated by im.d�C��/, where d W A1!A2 (respectively
�W

V2
A1! A2 ) is the differential (respectively the product) of the cdga A�2 , and

. � /� denotes vector space duals. This Lie algebra is functorial with respect to cdga

maps, and has the following basic property. (A result similar to our theorem below was
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proved by Bezrukavnikov in [5], under the additional assumption that A� is quadratic
as a graded algebra; note that this condition is not satisfied in general by finite cdga

models of spaces, in particular by the models A�.0; �/.)

Theorem 3.1 If A is a 1–finite 1–model of a connected CW-space M, then m.�1.M//

is isomorphic to the lcs completion of h.A/ as filtered Lie algebras.

Proof Our approach is based on a key result obtained by Chen in [7] and refined by
Hain in [15]. This result provides the following description for the Malcev completion
of � WD �1.M/, over a characteristic zero field k, in terms of iterated integrals and
bar constructions.

Consider the complete Hopf algebra ck� , where the completion is taken with respect to
the powers of the augmentation ideal of the group ring k� . The complete Lie algebra
m.�/ is the Lie algebra of primitives, Pck� , endowed with the induced filtration, defined
by Quillen in [21, Appendix A]. On the other hand, let B�.A/ be the differential graded
Hopf algebra obtained by applying the bar functor to the augmented cdga A� , where the
augmentation sends AC to 0 and is the identity on A0D k �1; see eg [15, Section 1.1].
The dual Hopf algebra, H 0B.A/� DHomk.H

0B.A/;k/, is a complete Hopf algebra,
with filtration induced from the bar filtration of H 0B.A/; see [15, Section 2.4].

Next, let f W A0!A00 be an augmented cdga map inducing an isomorphism in H i for
i � 1 and a monomorphism in H 2 (for short, f is an augmented 1–equivalence). If
H 0.A0/Dk �1, we claim that the induced map, H 0B.f /�WH 0B.A00/�!H 0B.A0/� ,
is a filtered isomorphism. Indeed, a standard argument based on the Eilenberg–Moore
spectral sequence (like in Proposition 1.1.1 from [15]) shows that H 0B.f / induces
an isomorphism at the associated graded level, with respect to the bar filtrations, which
clearly implies our assertion. The fact that A� and ��.M/ have the same Sullivan
1–minimal model, M� , implies by rational homotopy theory [23] the existence of two
augmented 1–equivalences, M�! A� and M�!��.M/. Here, both A� and M�

are canonically augmented, as above, since A0 DM0 D k � 1, and the augmentation
of ��.M/ is induced by the basepoint chosen for �1.M/, as in [15].

It follows from [15, Corollary 2.4.5] that integration induces an isomorphism be-
tween ck� and H 0B.A/� , as complete Hopf algebras. This leads to the aforementioned
description of the Malcev Lie algebra: m.�/' PH 0B.A/� , as complete Lie algebras.

Now, we claim that we may assume that A� is of finite type, ie all graded pieces are
finite dimensional. Indeed, the canonical cdga projection, A� � A�2 , is clearly a 1–
equivalence. Hence, A�2 is also a 1–model of M , by [23]. It is equally easy to check
that �W k �1˚A1˚ .im.d/C im.�// ,!A�2 is a cdga inclusion and a 1–equivalence.
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Therefore, we may replace A�2 by the above finite-type sub-cdga, without changing
the holonomy Lie algebra, as claimed.

We may thus consider the dual cocommutative differential graded coalgebra, A� WDA�� .
By the standard duality between the bar construction for a cdga and the Adams cobar
construction C for a cocommutative differential graded coalgebra [1], the complete
Hopf algebras H 0B.A�/� and yH0C.A�/ are isomorphic. In concrete terms, the Hopf
algebra H0C.A�/ is easily identified with the quotient of the primitively generated
tensorial Hopf algebra on A1 , by the two-sided Hopf ideal generated by im.�d�C��/,
and the completion is taken with respect to the descending filtration induced by ten-
sor length.

Denote by q.A/ the quotient of the free Lie algebra L.A1/ by the Lie ideal generated
by im.�d� C ��/. The above discussion shows that the complete Hopf algebras
H 0B.A/� and yU q.A/ are isomorphic, where yU is Quillen’s completed universal
enveloping algebra functor from [21, Appendix A].

Plainly, � idWA1 ! A1 induces an isomorphism between the Lie algebras q.A/

and h.A/. We infer that m.�/' P yU h.A/, as complete Lie algebras.

Finally, let h be a Lie algebra, and consider the canonical Lie homomorphism from
[21, Appendix A], �W h! P yU h. By [21, Corollary A3.9 and Remark A3.11], � sends
the lcs filtration of h into the Malcev filtration of P yU h, inducing an isomorphism at
the associated graded level. Passing to completions, we infer that y�W yh! P yU h is a
filtered Lie isomorphism. We conclude that m.�/ ' bh.A/, as filtered Lie algebras,
thus finishing our proof.

When M DF.g; �/ and ADA.g; �/, set L.g; �/ WD h.A.g; �//. We will denote, for
g� 0, the basis dual to fGij gij2E and f!igi2V by fCij gij2E and fzigi2V , respectively.
For g � 1, the basis dual to fxsi ; y

s
i j 1� i � n; 1� s � gg will be denoted fasi ; b

s
i g.

Proposition 3.2 The Malcev Lie algebra m.P.0; �// is isomorphic to the lcs comple-
tion of L.0; �/, where the Lie algebra L.0; �/ is the quotient of the free Lie algebra
on fCij gij2E by the relationsX

j2V; ij2E

Cij .i 2 V/;(7)

ŒCij ; Ckl � .ij; kl 2 E/;(8)

ŒCij ; Cjk� .ij; jk 2 E and ik 62 E/;(9)

ŒCij CCjk; Cik� .ij; jk; ik 2 E/:(10)

In particular, the group P.0; �/ is always 1–formal.
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zi Cij ^Ckl Cij ^Cjk Cij ^Cik Cij ^Cjk
i 2 V i;j;k; l distinct ik … E ij; ik;jk 2 E ij; ik;jk 2 E

d�
P

j2V; ij2E

Cij 0 0 0 0

�� 0 ŒCij ; Ckl � ŒCij ; Cjk� ŒCijCCjk; Cik� ŒCijCCik; Cjk�

+ (7) (8) (9) (10) (10)

Table 1: From the proof of Proposition 3.2. In the last two columns, i < j < k .

Proof We consider the following canonical basis in .A2/� :

fzigi2V [ fCij ^Cklgij;kl2E [ fCij ^Cjkgik…E [ fCij ^Cik; Cij ^Cjkgij;ik;jk2E

(in the product Cij ^Ckl we take i < j , i < k < l and j ¤ k; l , and in the last set
we take i < j < k ; see [5]). Dualizing d and �, where

dGij D !i C!j ; �.Gik ^Gjk/DGij ^Gjk �Gij ^Gik;

we obtain the defining relations in the last row of Table 1. From the last two relations, we
see ŒCikCCjk; Cij �D0, hence the relation (10), where i; j; k are arbitrarily ordered.

Remark 3.3 By [19, Corollary 10.3], if the quasiprojective manifold M has the
vanishing property in degree 1, ie W1H 1.M/D 0, then �1.M/ is 1–formal, where
W� denotes Deligne’s weight filtration [8; 9]. According to [8; 9], W1H 1.M/ D 0

whenever M admits a smooth compactification SM with b1. SM/D 0. Hence, P.0; �/
is actually 1–formal in this stronger sense.

Proposition 3.4 For g � 1, the Malcev Lie algebra m.P.g; �// is isomorphic to the
lcs completion of L.g; �/, where the Lie algebra L.g; �/ is the quotient of the free
Lie algebra on fasi ; b

s
i g by the relations

Cij WD Œa
s
i ; b

s
j �D Œa

t
j ; b

t
i � .8i ¤ j;8s; t/;(11)

Cij D 0 .ij 62 E/;(12)

Œasi ; b
t
j �D Œa

s
j ; b

t
i �D 0 .8i < j; 8s ¤ t /;(13)

Œasi ; a
t
j �D Œb

s
i ; b

t
j �D 0 .8i ¤ j; 8s; t/;(14) X

j
Cij D

X
s
Œbsi ; a

s
i � .i 2 V/;(15)

Œask; Cij �D Œb
s
k; Cij �D 0 .8k ¤ i;j; 8s/:(16)

In particular, L.g; �/ is generated in degree 1 with relations in degrees 2 and 3, and
consequently, the group P.g; �/ is always filtered formal.
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1 2 3 4 5

zi Cij ^Ckl Cij ^Cjk Cij ^Cik Cij ^Cjk
i 2 V i;j;k; l distinct ik … E ij; ik;jk 2 E ij; ik;jk 2 E

d�
P

j2V; ij2E

Cij 0 0 0 0

��
P
s
Œasi ; b

s
i � ŒCij ; Ckl � ŒCij ; Cjk� ŒCijCCjk; Cik� ŒCijCCik; Cjk�

+ (15) (17) (20) (19) (19)

6 7 8 9 10 11 12 13

asi˝b
t
j bsi˝a

t
j asi˝a

t
j bsi˝b

t
j as

k
˝Cij bs

k
˝Cij asi˝Cij bsi˝Cij

i < j i < j i < j i < j k ¤ i;j k ¤ i;j i < j i < j

�ıstCij ıstCij 0 0 0 0 0 0

Œasi ;b
t
j � Œbsi ;a

t
j � Œasi ;a

t
j � Œb

s
i ;b

t
j � Œa

s
k
;Cij � Œb

s
k
;Cij � Œa

s
iCa

s
j ;Cij � Œb

s
iCb

s
j ;Cij �

(11)–(13) (11)–(13) (14) (14) (16) (16) (18) (18)

Table 2: From the proof of Proposition 3.4. The indices in columns 4 and 5
satisfy i < j < k . For any Cpq in the table, pq 2 E , and the entries in
columns 6 and 7 are to be replaced by 0 in the second row when ij 62 E .

Proof The canonical basis in .A2/� contains the list in the proof of Proposition 3.2,
and also (with indices 1� i < j � n, 1� s; t � g and k ¤ i; j )

fasi ˝ a
t
j ; a

s
i ˝ b

t
j ; b

s
i ˝ a

t
j ; b

s
i ˝ b

t
j g [ fa

s
k˝Cij ; b

s
k˝Cij ; a

s
i ˝Cij ; b

s
i ˝Cij g:

To dualize d and �, the relevant relations are

dGij D !i C!j C
P
s
.ysi ˝ x

s
j � x

s
i ˝y

s
j /;

�.xsi ^y
s
i /D !i ; �.xsi ^y

t
j /D x

s
i ˝y

t
j ; �.ysi ^ x

t
j /D y

s
i ˝ x

t
j .i < j /;

�.xsi ^ x
t
j /D x

s
i ˝ x

t
j ; �.ysi ^y

t
j /D y

s
i ˝y

t
j .i < j /;

�.xsi ^Gjk/D x
s
i ˝Gjk; �.ysi ^Gjk/D y

s
i ˝Gjk;

�.xsi ^Gij /D x
s
i ˝Gij D �.x

s
j ^Gij /; �.ysi ^Gij /D y

s
i ˝Gij D �.y

s
j ^Gij /:

The defining relations are obtained in the last row of Table 2. Note that, when ij 2 E, in
the relations (11) Cij is the dual of Gij . The relations (16) are obtained in columns 10
and 11 for ij 2 E and, otherwise, are a trivial consequence of (12). It remains to prove
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that the relations (11)–(16) imply the following list:

ŒCij ; Ckl �D 0 .if cardfi; j; k; lg D 4/;(17)

Œasi C a
s
j ; Cij �D Œb

s
i C b

s
j ; Cij �D 0 .8i ¤ j;8s/;(18)

ŒCij CCjk; Cik�D 0 .if ij; ik; jk 2 E/;(19)

ŒCij ; Cjk�D 0 .if ij; jk 2 E and ik … E/:(20)

The first relation is obvious:

ŒCij ; Ckl �D ŒCij ; Œa
s
k; b

s
l ��D 0 .by (11) and (16)/:

The second equation comes from the equalities

Œasj ; Cij �D
�
asj ;

P
k Cik

�
.by (16)/

D
�
asj ;

P
t Œb

t
i ; a

t
i �
�
.by (15)/

D Œasj ; Œb
s
i ; a

s
i �� .by (13) and (14)/

D ŒCij ; a
s
i � .by (11) and (14)/

(by symmetry, we get Œbsi C b
s
j ; Cij �D 0).

Using (18), we can finish the proof as follows:

ŒCij CCjk; Cik�D ŒŒa
s
i ; b

s
j �C Œa

s
k; b

s
j �; Cik� .by (11)/

D ŒŒasi C a
s
k; b

s
j �; Cik�D 0 .by (16) and (18)/;

and finally (20) may be established as follows:

ŒCij ; Cjk�D ŒCij ; Œa
s
j ; b

s
k�� .by (11)/

D ŒŒCij ; a
s
j �; b

s
k� .by (16)/

D�ŒŒCij ; a
s
i �; b

s
k� .by (18)/

D�ŒCij ; Œa
s
i ; b

s
k��D 0 .by (16), (11) and (12)/:

Example 3.5 Note that filtered formality is strictly weaker than 1–formality, as shown
by the Torelli group in genus 3, which has a cubic, non-1–formal Malcev Lie algebra;
cf Hain’s work from [16].

Proposition 3.6 Suppose that either g � 2, or g D 1 and � contains no K3 . Then
the group P.g; �/ is 1–formal.

Algebraic & Geometric Topology, Volume 17 (2017)
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Proof The cubic relations (16) follow from the quadratic relations: if g � 2, take
t ¤ s ; then

Œask; Cij �D Œa
s
k; Œa

t
i ; b

t
j ��D 0 .by (11), (13) and (14)/:

If g D 1 and, say, ik … E, we find

Œa1k; Cij �D Œa
1
k; Œa

1
j ; b

1
i ��D 0 .by (11), (12) and (14)/:

Proposition 3.7 If g D 1 and � contains a K3 subgraph, then the group P.1; �/ is
not 1–formal.

Proof When g � 1 and f W � 0 ,! � is arbitrary, note that f�W H1.†V
g/�H1.†

V0

g /

extends to f�W L�.H1.†V
g// � L�.H1.†V0

g //, a graded Lie surjection which pre-
serves the graded parts of the defining Lie ideals (11)–(16). Furthermore, the canon-
ical injection f�W H1.†

V0

g / ,! H1.†
V
g/ extends to a graded Lie monomorphism,

f�W L
�.H1.†

V0

g // ,!L�.H1.†V
g//, which preserves the cubic relations (16). Therefore,

the 1–formality of P.1; �/ would imply the 1–formality of P.1;K3/, in contradiction
with [12, Example 10.1].

Remark 3.8 It follows from Proposition 2.7 and [17, Proposition 5.6] that when g� 2,
we have R1

1.A
�.g; �//DR1

1.H
�.†V

g// for any graph � . Nevertheless, m.P.g; �// 6'
m.�1.†

V
g// if E¤∅. Indeed, assuming the contrary, we infer from [23] that the spaces

F.g; �/ and †V
g have isomorphic decomposable subspaces in the cohomology ring

in degree two: DH 2.F.g; �// ' DH 2.†V
g/. Plainly, DH 2.†V

g/ D H
2.†V

g/. The
description of the Orlik–Solomon model A�.g; �/ from Section 2 readily implies that
DH 2.F.g; �//DH 2.†V

g/=dG . By Lemma 2.3(2), the above two vector spaces DH 2

have different dimensions if E¤∅, a contradiction.

4 Nonabelian representation varieties and jump loci

Finally, we analyze germs at 1 of rank-2 nonabelian representation varieties and
their degree-one topological Green–Lazarsfeld loci for partial pure braid groups, via
admissible maps and Orlik–Solomon models, and we prove Theorem 1.3. In this
section, GD SL2.C/ or its standard Borel subgroup, with Lie algebra gD sl2 or sol2 .
Key to our computations is the well-known fact that ŒA; B� D 0 in g if and only if
rankfA;Bg � 1.

If S D xS n F is a quasiprojective curve, where xS is projective and F � xS is a
finite subset, then . xS; F / is the unique smooth compactification of S . For a quasi-
projective manifold M , it is known that there is a convenient smooth compactification,
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M D SM nD , where D is a hypersurface arrangement in SM , which has the property
that every admissible map of general type, f W M ! S , is induced by a regular
morphism, xf W . SM;D/! . xS; F /. These in turn induce cdga maps between Orlik–
Solomon models, denoted f �W A�. xS; F / ! A�. SM;D/. By naturality, we obtain
an inclusion

(21) F .A�. SM;D/; g/�F1.A�. SM;D/; g/[
[

f 2E .M/

f �F .A�. xS; F /; g/:

For any finite-dimensional representation � W g ! gl.V /, we also know from [18,
Corollary 3.8] that ….A; �/�Rk

1 .A; �/ if Hk.A/¤ 0.

Let ff W B�
f
! A�g be a finite family of cdga maps between finite objects.

Proposition 4.1 Assume that H 1.A/ ¤ 0. For every f , suppose that B�
f
D B

�2
f

,
�.H �.Bf // < 0 and f is a monomorphism. If R1

1.A/ D
S
f imH 1.f / and (21)

holds as an equality for the family ff W B�
f
! A�g, then

(22) R1
1.A; �/D….A; �/[

[
f

f �F .Bf ; g/

for any finite-dimensional representation � W g! gl.V /.

Proof We first show the inclusion “�”. The fact that ….A; �/ � R1
1.A; �/ is due

to the assumption H 1.A/ ¤ 0. The equality R1
1.Bf ; �/ D F .Bf ; g/ follows from

[18, Proposition 2.4] since B�
f
D B

�2
f

and �.H �.Bf // < 0. Lemma 2.6 from [18]
implies that f �R1

1.Bf ; �/ � R1
1.A; �/, since f is injective in degree 1. To verify

the inclusion “�”, pick ! 2 R1
1.A; �/ n

S
f f
�F .Bf ; g/. We infer from (21) that

! D �˝ g , with d� D 0 and g 2 g. Theorem 1.2 from [18] says then that there
is an eigenvalue � of �.g/ such that �� 2 R1

1.A/. If det �.g/ ¤ 0, then � ¤ 0.
Since R1

1.A/ D
S
f imH 1.f /, we deduce that � D f ��f for some f and some

�f 2 H
1.Bf /. Hence, f �.�f ˝ g/ 2 F .A; g/. The injectivity of f forces then

�f ˝g 2F .Bf ; g/. This implies that ! 2f �F .Bf ; g/, a contradiction. Consequently,
! 2….A; �/, and we are done.

Let A be a finite model of the finite space M . If b1.M/D 0, then it follows from [21]
that m.�1.M//D 0. Theorems A and B in [11] together imply then that both germs
Hom.�1.M/;G/.1/ and F .A; g/.0/ contain only the origin. Furthermore, b1.M/D 0

implies that V 1
1 .M; �/.1/ DR1

1.A; �/.0/ D∅; cf [11, Theorem B] and [18, (15)]. For
a quasiprojective manifold M with b1.M/ > 0, it follows from [11, Example 5.3]
that we may always find a convenient compactification (by adding at infinity a normal
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crossing divisor) which satisfies all hypotheses from Proposition 4.1, for the family
ff �W A�. xS; F /! A�. SM;D/gf 2E .M/ , except possibly the last assumption.

In this way, we infer from Remark 3.3 and Proposition 4.1 that the genus-0 case of
Theorem 1.3 becomes a consequence of the following general result.

Theorem 4.2 If b1.M/ > 0 and W1H 1.M/ D 0, then equality holds in (21) for a
convenient compactification with normal crossings and for gD sl2 or sol2 .

Proof For every f 2 E .M/, note that H �. xf /W H �. xS/!H �. SM/ is injective; see eg
[11, Example 5.3]. Our vanishing assumption on W1H 1.M/ implies that H 1. SM/D 0;
cf [8; 9]. Hence, W1H 1.S/D 0.

Let A�
�
WD A�. SM;D/ be the Gysin model, and assume that W1H 1.M/ D 0. Then

A1 D A12 , by [19]. Set Z12 WDH
1.A/� A12 , and denote by A�Z � A

�2 the sub-cdga
with d D 0 defined by A0Z DQ � 1, A1Z DZ

1
2 and A2Z D �.

V
2Z12/� A

2
4 . Note that

d.A12/� A
2
2 . We infer that the cdga inclusion �W A�Z ,! A�2 is a 1–equivalence, ie it

induces an isomorphism in H 1 and a monomorphism in H 2 . On the other hand, it fol-
lows from the definitions that the variety F .A; g/ depends only on the corestrictions of
d W A1!A2 and �W

V2
A1!A2 to the subspace im.d/Cim.�/�A2 for any cdga A

and any Lie algebra g. Therefore, we have an inclusion ��W F .AZ ; g/�F .A; g/.

Since � is a 1–equivalence, it follows from Theorem 3.9 and Sections 7.3–7.5 in [11]
that F .AZ ; g/ and F .A; g/ have the same analytic germs at 0. Now, we recall from
[11] that each cdga, A and AZ , has positive weights, and the associated C�–actions
preserve the varieties F .AZ ; g/ and F .A; g/, and the origin 0. This implies that all
irreducible components of F .A; g/ pass through 0, and similarly for F .AZ ; g/. This
in turn is enough to infer that actually F .AZ ; g/DF .A; g/, since the germs at 0 are
equal. Moreover, F .AZ ; g/DF .H �.A/; g/, by construction.

The equalities F .A�. SM;D/; g/DF .H �.M/; g/ and F .A�. xS; F /; g/DF .H �.S/; g/

are clearly compatible with the natural maps induced by xf W . SM;D/! . xS; F / for any
f 2 E .M/. Plainly F1.A�. SM;D/; g/ depends only on H 1.M/ and g. Thus, we may
replace in (21) A�. SM;D/ by .H �.M/; d D 0/ and A�. xS; F / by .H �.S/; d D 0/. In
this way, our claim reduces to the equality proved in [18, Corollary 7.2(55)].

In positive genus, we are going to describe explicitly the convenient compactifications
from Theorem 1.3, and check that all hypotheses from Proposition 4.1 hold for the
associated families of cdga maps, ff �W A�. xS; F /! A�. SM;D/gf 2E .M/ , except the
last assumption.

When g� 2, we have that M WDF.g; �/D†V
g nD� is a convenient compactification:

for i 2V , the regular morphism xfi WDpri W .†
V
g ;D�/! .†g ;∅/ extends the admissible
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map fi W F.g; �/ ! †g from Lemma 2.2. By Lemma 2.3(2), H 1.A.g; �// ¤ 0

for g � 1. Clearly, B�
f
D B

�2
f

and �.H �.Bf // < 0 for any f 2 E .M/, since
B�
f
D .H �.†g/; d D 0/. It is easy to check that f �W A�.g; � 0/!A�.g; �/ is injective

in degree ��2 for any f W � 0 ,!� and g�0. Finally, the assumption on R1
1.A.g; �//

in Proposition 4.1 follows from Proposition 2.7.

In genus gD 1, we have that M WDF.1; �/D†V
1 nD� is again a convenient compact-

ification. For ij 2 E, denote by prij W .†
V
1 ;D�/! .†21;DK2

/ the regular morphism
induced by projection. Let xıW .†21;DK2

/! .†1; f0g/ be the regular morphism induced
by the difference map of the elliptic curve †1 . Then clearly the regular morphism
xfij WD xı ı prij extends the admissible map fij W F.1; �/!†1 n f0g from Lemma 2.2.

For any f 2 E .M/, we have that B�f D A�.†1; f0g/D B
�2
f

is given by B0f DC � 1,
B1f D spanfx; y; gg and B2f D C �O . The differential is given by dx D dy D 0 and
dg DO , and the multiplication table is xg D yg D 0 and xy DO . The hypotheses
on B�f from Proposition 4.1 are clearly satisfied. It follows from naturality of Orlik–
Solomon models [13] that ı�xDx1�x2 , ı�yDy1�y2 and ı�gDG12 . In particular,
ı�W A�.†1; f0g/ ,! A�.1;K2/ is injective, which proves the injectivity of B�f ! A�

for any f 2 E .M/. Finally, the assumption on R1
1.A.1; �// in Proposition 4.1 follows

from Proposition 2.8, when E¤∅. Otherwise, the claims in Theorem 1.3 follow from
[18, Corollary 7.7].

By virtue of Proposition 4.1, we have thus reduced the proof of Theorem 1.3 in positive
genus to checking that (21) holds as an equality for the families ff �W A�. xS; F /!
A�. SM;D/gf 2E .M/ described above. To verify this equality, we will use another
basic property of the holonomy Lie algebra of a cdga A, proved in Proposition 4.5
from [18]. This result allows us to naturally replace the variety of flat connections
F .A; g/ by the variety of Lie homomorphisms, HomLie.h.A/; g/, and F1.A; g/ by
Hom1Lie.h.A/; g/ WD f' 2 HomLie.h.A/; g/ j dim im.'/� 1g.

Proposition 4.3 If '2HomLie
�
h.A.1; �//; g

�
nHom1Lie

�
h.A.1; �//; g

�
, there is ij 2E

such that ' 2 f �ij HomLie
�
h.A.†1; f0g//; g

�
.

Proof For g � 1, the holonomy Lie algebra h.A.g; �// is isomorphic to the Lie
algebra L.g; �/ from Proposition 3.4. By (14), a morphism ' 2HomLie

�
h.A.1; �//; g

�
satisfies

Œ'.ai /; '.aj /�D Œ'.bi /; '.bj /�D 0;

thus ' is defined by two elements v;w2g and two n–vectors ˛�D .˛i / and ˇ�D .ˇi /:

'.ai /D ˛iv; '.bi /D ˇiw:
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Equation (11) implies that .˛i ǰ � j̨ˇi /Œv; w� D 0. If ' … Hom1Lie

�
h.A.1; �//; g

�
,

we have ˛� ¤ 0, ˇ� ¤ 0 and Œv; w�¤ 0; hence rankf˛�; ˇ�g D 1. Equation (15) is
equivalent to X

j

Œai ; bj �D
X
j

Œaj ; bi �D 0 .i 2 V/:

Together with relation (14), these imply that
P
i ai and

P
i bi are central elements;

therefore, their images
P
i ˛iv and

P
i ˇiw are 0. In particular, at least two compo-

nents of ˛� (and the same components of ˇ� ) are nonzero.

We will show that ˛� and ˇ� have exactly two nonzero components. Relations (11)
and (16) imply that, for any three distinct indices i , j and k ,

˛k˛i ǰ Œv; Œv; w��D ˇk˛i ǰ Œw; Œv; w��D 0:

The brackets Œv; Œv; w�� and Œw; Œv; w�� cannot be both 0 (otherwise rankfv;wg D 1);
if Œv; Œv; w��¤ 0, we have (for any three indices) ˛k˛i ǰ D 0, which proves our claim
(similarly if Œw; Œv; w��¤ 0).

We infer that ' must be of the form

(23)
'.ai /D ˛v; '.aj /D�˛v; '.ak/D 0;

'.bi /D ˇw; '.bj /D�ˇw; '.bk/D 0;

with ˛; ˇ ¤ 0 (where k ¤ i; j ). Therefore, ij 2 E, by (12).

The description of A�.†1; f0g/ implies, by a straightforward computation, that the
Lie algebra h.A.†1; f0g// is the quotient of the free Lie algebra L.x�; y�; g�/ by the
relation g�CŒx�; y��D 0, where fx�; y�; g�g is the basis dual to fx; y; gg. Therefore,
h.A.†1; f0g// D L.x�; y�/. Moreover, the description of the action of ı� and pr�ij
on Orlik–Solomon models implies, by taking duals, that the Lie homomorphism
fij�W h.A.1; �//! h.A.†1; f0g// sends ai to x� , aj to �x� , bi to y� , bj to �y� ,
and ak; bk to 0 for k ¤ i; j ; see [18, Definition 4.2].

Define  2 HomLie
�
h.A.†1; f0g//; g

�
by x� 7! ˛v and y� 7! ˇw . By (23), we have

' D f �ij . /.

Proposition 4.4 Assume that g � 2. If

' 2 HomLie
�
h.A.g; �//; g

�
nHom1Lie

�
h.A.g; �//; g

�
;

there is i 2 V such that ' 2 f �i HomLie
�
h.A.†g ;∅//; g

�
.
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Proof The holonomy Lie algebra of A.†g ;∅/ D A.g;K1/ is generated by the
elements fa1; b1; : : : ; ag ; bgg modulo the relation

P
sŒa

s; bs�D 0; hence a morphism
 2 HomLie

�
h.A.†g ;∅//; g

�
is defined by 2g elements v1; w1; : : : ; vg ; wg 2 g sat-

isfying the relation
P
sŒv

s; ws�D 0.

It is sufficient to show that for ' 2 HomLie
�
h.A.g; �//; g

�
nHom1Lie

�
h.A.g; �//; g

�
,

there is an index i such that '.atj /D '.b
t
j /D 0 for any j ¤ i and any t ; this implies,

via (11), that '.Cjk/D 0 (for any j ¤ k ) and, using (15), that
P
sŒ'.a

s
i /; '.b

s
i /�D 0.

Denote by A and B the span of f'.a��/g and f'.b��/g respectively. As dim im.'/� 2,
we have to analyze only two cases:

Case 1 (dim.A/ D dim.B/ D 1) In this case there are two linearly independent
elements v;w 2 g and indices .i; s/ and .k; t/ such that

'.arj /D ˛
r
j v and '.brj /D ˇ

r
jw for any j; r and ˛si ¤ 0¤ ˇ

t
k
:

Relation (13) and Œv; w�¤ 0 imply that ˇrj D 0 if j ¤ i and r ¤ s ; from the hypothesis
g � 2 and relation (11), we obtain

'.Cij /D ˛
s
i ˇ
s
j Œv; w�D ˛

r
i ˇ
r
j Œv; w�D 0;

hence ˇrj D 0 for any j ¤ i and any r . This implies that k D i and, by symmetry,
that ˛rj D 0 for any j ¤ i and any r .

Case 2 (dim.A/ � 2) (By symmetry, the case dim.B/ � 2 can be treated in the
same way.) In this case, there are indices i D j , s ¤ t and two linearly independent
elements vs; vt 2 g such that

'.asi /D v
s; '.atj /D v

t

(i ¤ j contradicts relation (14), since Œvs; vt � ¤ 0). For any k ¤ i and any r , we
obtain from (14) that

Œ'.asi /; '.a
r
k/�D Œ'.a

t
i /; '.a

r
k/�D 0; hence '.ark/D 0:

Using relation (13), the same argument applied to br
k

shows that '.br
k
/D 0 for any

k ¤ i and any r ¤ s; t . Again from (13), Œ'.ati /; '.b
s
k
/� D 0. On the other hand,

by (11), Œ'.asi /; '.b
s
k
/� D Œ'.at

k
/; '.bti /� D 0. Hence, '.br

k
/ D 0 for any k ¤ i and

r D s; t , and we are done.

Propositions 4.3 and 4.4 complete the proof of Theorem 1.3. Similar results were
obtained in [18] for quasiprojective manifolds with 1–formal fundamental group.
(Note that .H �.S/; d D 0/ is a finite model of a quasiprojective curve S , and
F ..H �.S/; d D 0/; g/ is computed in Lemma 7.3 from [18] when �.S/ < 0.) They
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were based on the following algebraic construction. Let A� be a 1–finite cdga with
linear resonance, ie R1

1.A/D
S
C2C C is a finite union of linear subspaces of H 1.A/.

For each C 2 C , let A�C ,! A�2 be the sub-cdga defined by A0C D C � 1, A1C D C
and A2C D A

2 .

Proposition 4.5 [18, Proposition 5.3] If in addition d D 0, then

F .A; g/DF1.A; g/[
[
C2C

F .AC ; g/

for gD sl2 or sol2 .

Example 4.6 The geometric formulae from Theorem 1.3, based on Orlik–Solomon
models, seem to be the right extension of the similar results in [18], beyond the 1–
formal case. Indeed, let us consider for A� D A�.1; �/ the linear decomposition of
R1
1.A/ from Proposition 2.8, case E ¤ ∅. For each C D imH 1.fij /, we claim

that F .AC ; g/ D F1.AC ; g/, when g D sl2 or sol2 . This implies that the alge-
braic formula from Proposition 4.5 reduces in this case to the equality F .A; g/ D

F1.A; g/. On the other hand, we have seen that h
�
A.†1; f0g/

�
is a free Lie alge-

bra on two generators, and therefore F
�
A.†1; f0g/; g

�
contains an element not in

F1
�
A.†1; f0g/; g

�
. Consequently, if ij 2 E then it follows from Theorem 1.3 that

f �ijF
�
A.†1; f0g/; g

�
nF1

�
A.1; �/; g

�
¤∅. Thus, the algebraic formula does not hold.

To compute h.AC /, we may replace A2C by �C
�V2

C
�
. Note that dC D 0, C is

two-dimensional generated by xi � xj and yi � yj , and .xi � xj /.yi � yj / ¤ 0. It
follows that the holonomy Lie algebra h.AC / is two-dimensional abelian. Therefore,
HomLie.h.AC /; g/D Hom1Lie.h.AC /; g/ as claimed.
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[18] D A Măcinic, Ş Papadima, C R Popescu, A I Suciu, Flat connections and resonance
varieties: from rank one to higher ranks, Trans. Amer. Math. Soc. 369 (2017) 1309–
1343 MR

[19] J W Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Études
Sci. Publ. Math. 48 (1978) 137–204 MR

[20] P Orlik, H Terao, Arrangements of hyperplanes, Grundl. Math. Wissen. 300, Springer,
New York (1992) MR

Algebraic & Geometric Topology, Volume 17 (2017)

http://dx.doi.org/10.2140/agt.2014.14.57
http://msp.org/idx/mr/3158753
http://dx.doi.org/10.1142/S0218216509007257
http://dx.doi.org/10.1142/S0218216509007257
http://msp.org/idx/mr/2549480
http://dx.doi.org/10.1007/BF01895836
http://msp.org/idx/mr/1262702
http://dx.doi.org/10.2140/agt.2016.16.2637
http://dx.doi.org/10.2140/agt.2016.16.2637
http://msp.org/idx/mr/3572342
http://dx.doi.org/10.1090/S0002-9904-1977-14320-6
http://msp.org/idx/mr/0454968
http://dx.doi.org/10.1007/BF02684692
http://msp.org/idx/mr/0498551
http://dx.doi.org/10.1007/BF02685881
http://msp.org/idx/mr/0498552
http://dx.doi.org/10.1112/S0010437X09004461
http://msp.org/idx/mr/2581244
http://dx.doi.org/10.1142/S0219199713500259
http://msp.org/idx/mr/3231055
http://dx.doi.org/10.1215/00127094-2009-030
http://msp.org/idx/mr/2527322
http://dx.doi.org/10.5802/aif.2994
http://msp.org/idx/mr/3449588
http://dx.doi.org/10.1007/BF01388711
http://dx.doi.org/10.1007/BF01388711
http://msp.org/idx/mr/910207
http://dx.doi.org/10.1007/BF00533825
http://msp.org/idx/mr/908993
http://dx.doi.org/10.1090/S0894-0347-97-00235-X
http://msp.org/idx/mr/1431828
http://dx.doi.org/10.1016/j.jpaa.2009.12.025
http://msp.org/idx/mr/2608110
http://dx.doi.org/10.1090/tran/6799
http://dx.doi.org/10.1090/tran/6799
http://msp.org/idx/mr/3572275
http://dx.doi.org/10.1007/BF02684316
http://msp.org/idx/mr/516917
http://dx.doi.org/10.1007/978-3-662-02772-1
http://msp.org/idx/mr/1217488
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