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Symplectic embeddings of four-dimensional ellipsoids
into integral polydiscs

DANIEL CRISTOFARO-GARDINER

DAVID FRENKEL

FELIX SCHLENK

In previous work, the second author and Müller determined the function c.a/ giving
the smallest dilate of the polydisc P .1; 1/ into which the ellipsoid E.1; a/ symplec-
tically embeds. We determine the function of two variables cb.a/ giving the smallest
dilate of the polydisc P .1; b/ into which the ellipsoid E.1; a/ symplectically embeds
for all integers b > 2 .

It is known that, for fixed b , if a is sufficiently large then all obstructions to the
embedding problem vanish except for the volume obstruction. We find that there
is another kind of change of structure that appears as one instead increases b : the
number-theoretic “infinite Pell stairs” from the b D 1 case almost completely dis-
appears (only two steps remain) but, in an appropriately rescaled limit, the function
cb.a/ converges as b tends to infinity to a completely regular infinite staircase with
steps all of the same height and width.

53D05; 14B05, 32S05

1 Introduction and result

1.1 Introduction

Since Gromov’s classic paper [15], it has been known that symplectic embedding
problems are intimately related to many phenomena in symplectic geometry, Hamil-
tonian dynamics, and other fields. The smallest interesting dimension is four, and
all our results are in this dimension. So consider the standard four-dimensional
symplectic vector space .R4; !/, where ! D dx1 ^ dy1 C dx2 ^ dy2 . Open sub-
sets in R4 are endowed with the same symplectic form. Given two such sets U

and V , a symplectic embedding of U into V is a smooth embedding 'W U ! V

that preserves the symplectic form: '�! D ! . We write U
s
,! V if there exists a

symplectic embedding U ! V . Deciding whether U
s
,! V is very hard in general.
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One thus looks at simple sets, such as the open ball B4.a/ of radius
p

a, or polydiscs
P .a; b/D B2.a/�B2.b/�R2.x1;y1/�R2.x2;y2/, or ellipsoids

E.a; b/ WD

�
x2

1
Cy2

1

a
C

x2
2
Cy2

2

b
< 1

�
:

In four dimensions, Gromov’s nonsqueezing theorem states that

B4.a/
s
,! B2.b/�R2.x2;y2/

only if a 6 b . In other words, one cannot do better than the identity mapping. After
this rough rigidity result, the “fine structure of symplectic rigidity” was investigated
by looking at other embedding problems. The first important results were on the
“packing problem”, where U is a disjoint union of balls; see Biran [2; 3], Gromov [15]
and McDuff and Polterovich [25]. Further understanding on the fine structure came
with the study of embeddings of ellipsoids; see Choi, Cristofaro-Gardiner, Frenkel,
Hutchings and Ramos [9], Frenkel and Müller [14], Hutchings [18], McDuff [23; 24],
McDuff and Schlenk [26] and Schlenk [27; 28]. Note that E.a; b/

s
,! V if and only

if E
�
1; b

a

� s
,! .1=

p
a/V . We can thus take E.1; a/ with a > 1 as U . Encode the

embedding problems E.1; a/
s
,! B4.b/ and E.1; a/

s
,! P .b; b/ DW C 4.b/ in the

functions
cB.a/ WD inff� > 0 jE.1; a/

s
,! B4.�/g;

cC .a/ WD inff� > 0 jE.1; a/
s
,! C 4.�/g:

Since symplectic embeddings are volume-preserving, cB.a/>
p

a and cC .a/>
p

a
2

.
The functions cB.a/ and cC .a/ were computed in [26; 14]:

The function cB.a/ has three parts: On Œ1; �4�, with � D 1
2
.1C
p

5/ the golden ratio,
cB is given by the “Fibonacci stairs”, namely an infinite stairs each of whose steps
is made of a segment on a line going through the origin and a horizontal segment,
with feet (endpoints) on the volume constraint

p
a, and both the feet and the edge

determined by Fibonacci numbers. Then there is one step over
�
�4; 71

9

�
, whose left

part over Œ�4; 7� is affine but nonlinear: cB.a/D
aC1

3
. Finally, for a > 71

9
the graph

of cB.a/ is given by eight strictly disjoint steps made of two affine segments, and
cB.a/D

p
a for a > 8 1

36
. See Figures 1–6 later in the introduction for similar pictures

in our setting.

The function cC .a/ has a similar structure: On Œ1; �2�, with � D 1C
p

2 the silver
ratio, cC is given by the “Pell stairs”, namely an infinite stairs each of whose steps is
made of a segment on a line going through the origin and a horizontal segment, with
feet on the volume constraint

p
a
2

, and both the feet and the edge determined by Pell
numbers. Then there is one step over

�
�2; 61

8

�
, whose left part over Œ�2; 6� is affine
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but nonlinear: cC .a/D
aC1

4
. Finally, for a > 61

8
the graph of cC .a/ is given by six

strictly disjoint steps made of two affine segments, and cC .a/D
p

a
2

for a > 7 1
32

.

1.2 Result

We are interested in understanding what happens with the rich structure of the functions
cB and cC if we take as targets “longer” sets. To this end, we look at the embedding
problems E.1; a/

s
,! P .b; c/ for c D kb with k > 2 an integer, which we encode in

the functions

(1-1) cb.a/ WD inff� > 0 jE.1; a/
s
,! P .�; �b/g; b 2N>2:

Note that c1 D cC . The volume constraint is now cb.a/ >
p

a
2b

. To formulate our
result, we define for b 2N>2 and for k 2 f0; 1; 2; : : : ; b

p
2bcg the numbers

ub.k/ WD
.2bC k/2

2b
D 2bC 2kC

k2

2b
; vb.k/ WD 2b

�
2bC 2kC 1

2bC k

�2

and

˛b WD
1

b

�
b2
C 2bC

p
.b2
C 2b/2� 1

�
; ˇb WD 2bC 4C

1

2b.bC 1/2
:

Note that ub.k/ 6 2b C 2k C 1 6 vb.k/ with strict inequalities for k2 < 2b and
equalities for k2 D 2b , and that

2bC 2k < ub.k/6 vb.k/ < 2bC 2kC 2 for k > 1:

˛b 2bC 4 ˇb

a

cb.a/

baC1
2b.bC1/

Figure 1: The affine step in our result
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Further, vb.1/ < ˛b < 2bC 4 < ˇb < ub.2/. The intervals Ib.k/ WD Œub.k/; vb.k/�

thus have positive length except for k2 D 2b , and the intervals

Ib.0/; Ib.1/; Œ˛b; ˇb �; Ib.2/; : : : ; Ib.b
p

2bc/

are in the right order and are disjoint except that Ib.0/ touches Ib.1/.

Theorem 1.1 For every integer b > 2 the function cb.a/ describing the symplectic
embedding problem E.1; a/

s
,! P .�; �b/ is given by the volume constraint

p
a

2b

except for the following
ṗ

2b
�
C 2 intervals:

(i) cb.a/D 1 if a 2 Œ1; 2b�.

(ii) For k 2 f0; 1; 2; : : : ; b
p

2bcg and on the interval Ib.k/,

cb.a/D

8<:
a

2bCk
if a 2 Œub.k/; 2bC 2kC 1�;

2bC2kC1

2bCk
if a 2 Œ2bC 2kC 1; vb.k/�:

(iii) On the interval Œ˛b; ˇb �,

cb.a/D

8̂<̂
:

baC1

2b.bC1/
if a 2 Œ˛b; 2bC 4�;

1C
2bC1

2b.bC1/
if a 2 Œ2bC 4; ˇb �:

1 2b 2bC 1

2bC 2C 1
2b

2bC 3 vb.1/
a

1

2bC1
2b

2bC3
2bC1

cb.a/

a
2b

a
2bC1

Figure 2: The graph of cb.a/ on Œ1; vb.1/�
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Remarks 1.2 (1) Theorem 1.1 also solves the problem E.1; a/
s
,! E.�; �2b/ for

integers b > 2, since, for every integer b ,

(1-2) E.1; a/
s
,! P .�; �b/ ” E.1; a/

s
,!E.�; �2b/:

This has been shown by Frenkel and Müller [14, Corollary 1.6] for b D 1 by using
that ECH capacities provide a complete set of invariants for the embedding problem
E.1; a/

s
,! P .b; c/, and this proof generalizes to all b 2N . In Section 4.1 we shall

prove (1-2) by using the “reduction method” (Method 2 of Section 2.2).

(2) One can replace the infimum in definition (1-1) by the minimum. This follows from
the previous remark and from the fact that E.1; a/

s
,!E.�; �2b/ also for �D cb.a/;

see McDuff [23, Corollary 1.6] and also Cristofaro-Gardiner [11, Corollary 1.6] for a
generalization. Altogether, we see that

E.1; a/
s
,! P .�; �b/ () E.1; a/

s
,!E.�; �2b/ () �> cb.a/:

Geometric description of the result We proceed with describing the functions cb.a/

given in Theorem 1.1 more geometrically. The left part of the steps described in part (ii)
of the theorem lie on a line passing through the origin, while the left part of the step
described in part (iii) lies on a line crossing the y –axis at 1

2b.bC1/
. We call the steps

in (ii) the “linear steps” and the step in (iii) the “affine step”.

1 4 5 6 1
4

7 8 8 1
36

a

1

5
4

7
5

17
12

c2.a/

p
a

2

Figure 3: The graph of c2.a/
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ub.k/ 2bC 2kC 1 vb.k/
a

2bCk
2b

2bC2kC1
2bCk

cb.a/

a
2bCk

p
a

2b

Figure 4: One of the
ṗ

2b
�

linear steps

The graph of cb.a/ on Œ1; vb.1/� is given by

cb.a/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

1 if a 2 Œ1; 2b�;
a

2b
if a 2 Œ2b; 2bC 1�;

2bC1

2b
if a 2

h
2bC 1; 2bC 2C

1

2b

i
;

a

2bC1
if a 2

h
2bC 2C

1

2b
; 2bC 3

i
;

2bC3

2bC1
if a 2

�
2bC 3; 2bC 4�

4

.2bC1/2

�
I

see Figure 2. This part of the graph touches the volume constraint only in three points.
Then follows a “volume interval”, and then the affine step described in part (iii) and
Figure 1. For b D 2 there are no further obstructions (Figure 3), but for b > 3 there
are
ṗ

2b
�
� 2 more linear steps, that are strictly disjoint and made of a linear and a

horizontal segment (Figures 4 and 5).

The length of the affine step is

ˇb �˛b < ˇb � vb.1/D
1

2b.bC 1/2
C

4

.2bC 1/2
;

and hence this step becomes very small for b large. The length of the k th linear step is

`b.k/ WD vb.k/�ub.k/D .2b� k2/
8b2C k2C .2C 8k/b

2b.2bC k/2
:

For fixed b , the function `b.k/ is strictly decreasing, with `b.
p

2b/D 0. For fixed k ,
however, limb!1 `b.k/D 2. More precisely, `b.0/ is strictly decreasing to 2, and
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2b 2bC 2b
p

2bcC 1
a

1

cb.a/

Figure 5: The graph of c9.a/

`b.k/ is strictly increasing to 2 for every k > 1. Since the edge of the k th step is at
2bC 2kC 1, we see that, for b!1, an arbitrarily large (but fixed) part of the graph
of cb.a/ consists of linear steps of length almost 2, which almost form a connected
staircase (Figure 6).

We reformulate this behaviour of cb.a/ for large b in terms of a rescaled limit function:
Consider the rescaled functions

ycb.a/D 2bcb.aC 2b/� 2b; a > 0;

which are obtained from cb.a/ by first forgetting about the horizontal line cb.a/D 1

over Œ1; 2b� that comes from the nonsqueezing theorem, then vertically rescaling by 2b ,
and finally translating the graph by the vector .�2b;�2b/. Further, consider the

2b 2bC 2b
p

2bcC 1
a

1

cb.a/

Figure 6: The graph of c85.a/
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2 4 6 8
a

1

2

3

4

c1.a/

Figure 7: The graph of the rescaled limit function c1.a/

function c1W Œ0;1/!R drawn in Figure 7; its graph consists of infinitely many steps
of width 2 and slope 1 that are based at the line a

2
. Then

(1-3) lim
b!1

ycb.a/D c1.a/; a 2 Œ0;1/;

uniformly on bounded sets. Indeed, applying the same rescaling to
p

a
2b

yields
2b
p
.aC 2b/=2b�2b , which is a

2
CO

�
a2

2b

�
for b > a. One can also check that ycb.a/

is increasing to c1.a/ for all a.

1.3 Interpretation

Recall from the introduction that the graph of cC .a/ has three parts: First the infinite
Pell stairs, then one affine step, and then six more steps.

If we take b D 1 in the above description of cb.a/ on Œ1; vb.1/�, we exactly obtain
cC .a/ on Œ1; v1.1/�D

�
1; 50

9

�
. Further, if we take b D 1 in the description (iii) of the

affine step of cb.a/, we exactly obtain the affine step of cC .a/ over
�
�2; 61

8

�
. Hence

cb.a/ generalizes cC .a/ on the first two steps and on the affine step. This is not a
coincidence. Indeed, the two exceptional classes giving rise to the first two steps of the
Pell stairs are the first two in the sequence (1-4) of exceptional classes En giving rise
to all the linear steps of cb.a/, and the exceptional class giving rise to the affine step
of cC .a/ is the first in a sequence of exceptional classes Fb giving rise to the affine
step in cb.a/; see Section 3.

On the other hand, the remaining infinitely many steps of the Pell stairs have no
counterpart for b > 2. Similarly, the linear steps described in Theorem 1.1(ii) are more
regular than the affine steps on the right part of cC .a/, none of which consists of a
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linear and a horizontal segment. We thus see that the first two steps and the affine step
of cC .a/D c1.a/ are stable under the deformations of b we consider, while the other
steps are not.

By Theorem 1.1, cb.a/ equals the volume constraint
p

a
2b

for a > vb.b
p

2bc/ D

2bCO.
p

b/, that is, there are no packing obstructions for the embedding problem
E.1; a/

s
,! P .�; �b/ for a sufficiently large. This is not a surprise. Indeed, this

phenomenon was already observed for the embedding problems E.1; a/
s
,!B4.b/ and

E.1; a/
s
,! C 4.b/, and it fits well with previous results: It is known for many closed

connected symplectic manifolds .M; !/ that there is a number N.M; !/ such that
.M; !/ admits a full symplectic packing by k equal balls for every k > N.M; !/

(“packing stability”; see Biran [2; 3], Buse and Hind [5; 6], Buse, Hind and Opshtein [7]
and Buse and Pinsonnault [8]). Similarly, an explicit construction implies that for any
connected symplectic manifold .M; !/ of finite volume, the proportion of the volume
that can be filled by a dilate of the ellipsoid E.1; : : : ; 1; a/ tends to 1 as a!1;
see Schlenk [28, Section 6]: The packing obstruction tends to zero as the domain is
more and more elongated.

Theorem 1.1 exhibits a different phenomenon: If in the problem E.1; a/
s
,! P .�; �b/

the target is elongated (b !1), then the regular Pell stairs in the graph of c1.a/

first almost disappears (only two linear steps and the affine step remain), but then for
large b the graph of cb.a/ reorganizes to a staircase that asymptotically is infinite and
completely regular.

1.4 Stabilization and connection with symplectic folding

Let a, b > 1 be real numbers. Following Cristofaro-Gardiner and Hind [12] we consider
for each N > 3 the stabilized problem

cN
b .a/ WD inff� > 0 jE.1; a/�CN�2 s

,! P .�; �b/�CN�2
g:

Then cN
b
.a/6 cb.a/.

Lemma 1.3 For every N > 3 and all real numbers a, b > 1,

cN
b .a/6 fb.a/ WD

2a

aC2b�1
:

Proof Set � D a.2b�1/
aC2b�1

and � D 2
�
1 � �

a

�
. Then �C �

2
D b�. Since b > 1 we

have �> �
2

. Note that �
2
D 1� �

a
is the area of a z2 –disc in E.a; 1/ over a point z1

on the boundary of the disc D.�/ of area �. Applying Hind’s folding construction

Algebraic & Geometric Topology, Volume 17 (2017)
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in [16, Section 2] with � — instead of S
SC1

— we obtain for every " > 0 a symplectic
embedding

E.1; a/�C
s
,! P

�
�C

�

2
C "; 2

�

2
C "

�
�C:

Now recall that �C �
2
D b� and note that �D fb.a/.

In view of the above proof, we call the graph of fb.a/ the folding curve. Now note
that

fb.2bC 2kC 1/D
2bC2kC1

2bCk
; k > 0:

For b 2N this is also the value of cb at the edge points of the k th linear step. In other
words, the linear steps oscillate between the volume constraint

p
a

2b
and the folding

curve; see Figures 4 and 8.

Conjecture 1.4 The edge points of the linear steps are stable, in the sense that at these
points we have cN

b
D cb for all N > 3.

This conjecture is based on the main result of [12], where it is shown that the edge
points of the Fibonacci stairs for the problem E.a; 1/

s
,! B4.�/ are stable. It is likely

that one can prove it by a similar method as in [12]; see also the discussion at the end of
the next section. A proof of Conjecture 1.4 is not the concern of the present work, but
a positive answer would imply that the folding construction in the proof of Lemma 1.3
is sharp at the edge points of the linear steps.

Recall that cb.a/D1 for a2 Œ1; 2b�. As we shall see in Proposition 3.5(ii), cb.a/D
p

a
2b

for all a > .
p

2bC 1/2 and all real b > 2. Now notice that fb.a/>
p

a
2b

if and only
if a 2 Œ.

p
2b� 1/2; .

p
2bC 1/2�. It follows that

cN
b .a/ < cb.a/ if a … Œ2b� 1; .

p
2bC 1/2�

for all b > 2 and N > 3.

We finally notice that under the rescaling yielding the limit function c1.a/, we have
yfb.a/D 2bfb.aC 2b/� 2b D 2b.aC1/

aC4b�1
, and so

f1.a/ WD lim
b!1

yfb.a/D
aC1

2
:

This means that also the limit function c1 oscillates, between the limit function a
2

of
the volume constraint

p
a

2b
and the limit function aC1

2
of the folding curve.

Algebraic & Geometric Topology, Volume 17 (2017)



Symplectic embeddings of four-dimensional ellipsoids into integral polydiscs 1199

1

.
p

2b� 1/2

2b� 1 2b .
p

2bC 1/2
a

1

p
a

2b

fb.a/

Figure 8: The volume constraint, cb.a/ , and the folding curve for b D 5

1.5 Method

In principle, there are two methods to prove Theorem 1.1: The first method (Method 1
in Section 2.2, which was used by Frenkel and Müller [14] and McDuff and Schlenk
[26]) is to find the strongest obstruction for the embedding problem E.1; a/

s
,!P .�; �b/

coming from exceptional classes (ie homology classes in a certain multiple blow-up
of CP2 represented by embedded J –holomorphic �1 spheres). The second method
(Method 2 in Section 2.2, that was first used by Buse and Pinsonnault [8]) is a coho-
mological version of the first method: One associates to a hypothetical embedding
E.1; a/

s
,! P .�; �b/ a cohomology class, and checks whether this class transforms

to a “reduced vector” under Cremona transforms. While the first method is sufficient
for solving the problems E.1; a/

s
,! B4.�/ and E.1; a/

s
,! C 4.�/ — see [14; 26] —

it does not lead to a proof of the entire Theorem 1.1, because the known upper bound
for the number of obstructive exceptional classes tends to infinity with b . On the other
hand, Method 2 does yield a proof of Theorem 1.1, as will become clear from our
proof. We shall not follow such a puristic approach, however, but an opportunistic
one, which uses both methods: Given b , we first write down a finite set of exceptional
classes that yield embedding obstructions, namely E0 D .1; 0I 1/ and

(1-4)
En WD .n; 1I 1

�.2nC1//; nD b; : : : ; bCb
p

2bc;

Fb WD .b.bC 1/; bC 1I bC 1; b�.2bC3//

Algebraic & Geometric Topology, Volume 17 (2017)
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(see Section 2.2 for the notation), and then use Method 2 to show that the obstruc-
tion hb.a/ given by these classes is complete. In other words, we use Method 1 to show
that cb.a/ > hb.a/ and Method 2 to show that cb.a/ 6 hb.a/ — with the exception
that for a large and for b D 2 and a 2

�
8 1

36
; 9
�

we use Method 1 to show that cb.a/

equals the volume constraint
p

a
2b

.

This hybrid approach yields the shortest proof of Theorem 1.1 we know. Further, know-
ing a set of exceptional classes that provide all embedding obstructions is interesting for
at least two reasons: First, the holomorphic spheres underlying these classes provide a
geometric explanation of the graphs of the functions cb.a/. Second, one should be able
to use these holomorphic spheres to prove Conjecture 1.4; it is probably the case that
one can find the needed obstructions by stretching these spheres and then “stabilizing”
as in Cristofaro-Gardiner and Hind [12] and Hind and Kerman [17].

1.6 Outlook

Our ultimate goal is to see the continuous film of graphs cb.a/ for b > 1 real. It would
be particularly interesting to understand this film for b 2 Œ1; 2�, or just for b 2 Œ1; 1C "�

for some " > 0, namely to understand how the Pell stairs disappear. In Burkhart,
Panescu and Timmons [4], ECH capacities are used to compute cb.a/ for b D 13

2
and

to get an idea of this film. In accordance with Theorem 1.1, Conjecture 6.3 in [4] and
further investigations we make:

Conjecture 1.5 For any real b > 2 the function cb.a/ is given by the maximum of the
volume constraint

p
a

2b
and the obstructions coming from the exceptional classes En

and Fn in (1-4).

The obstructions given by the exceptional classes En and Fn are readily computed;
see Section 3.3: While the classes En again give rise to a finite staircase with linear
steps, the classes Fn give an obstruction only for b 2

�
n� n

.nC1/2
; nC 1

nC2

�
. While

our proof of Theorem 1.1 should extend to a proof of Conjecture 1.5, the analysis is
more involved, since fractional parts arise, that are harder to estimate.

Our only definite result for b real is that for every real b > 2 we have cb.a/D
p

a
2b

for all a > .
p

2bC 1/2 ; see Proposition 3.5(ii).
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2 Methods of proof

In this section we describe the methods we will use in the proof of Theorem 1.1. For
more details we refer to the surveys [10; 19; 29].

2.1 Translation to a ball packing problem

Fix b > 1. Since the function cb.a/ is continuous in a, it suffices to compute cb.a/

for a > 1 rational. The weight expansion w.a/ of such an a is the finite decreasing
sequence

(2-1) w.a/ WD .1; : : : ; 1„ ƒ‚ …
`0

; w1; : : : ; w1„ ƒ‚ …
`1

; : : : ; wN ; : : : ; wN„ ƒ‚ …
`N

/� .1�`0 ; w
�`1

1
; : : : ; w

�`N

N
/

such that w1 D a� `0 < 1, w2 D 1� `1w1 < w1 , and so on. For example, aD 25
9

has weight expansion w.a/D
�
1; 1; 7

9
; 2

9
; 2

9
; 2

9
; 1

9
; 1

9

�
�
�
1�2; 7

9
; 2

9
�3; 1

9
�2
�
.

Write B.w.a// for the disjoint union of balls B.1/q � � � qB.wN / whose weights
are those appearing in w.a/, with multiplicities. Based on [23] it was shown in [14,
Proposition 1.4] that E.1; a/

s
,! P .�; �b/ if and only if

(2-2) B.w.a//qB.�/qB.�b/
s
,! B.�.bC 1//I

compare the moment map picture on the left of Figure 9.

2.2 Three translations to a combinatorial problem

In order to reformulate problem (2-2), we look at the general ball packing problem

(2-3)
na

iD1

B.ai/
s
,! B.�/:

We shall describe three combinatorial solutions of (2-3).

Denote by Xn the n–fold complex blow-up of CP2 , endowed by the orientation
induced by the complex structure. Its homology group H2.XnIZ/ has the canonical
basis fL;E1; : : : ;Eng, where LD ŒCP1� and the Ei are the classes of the exceptional
divisors. The Poincaré duals of these classes are denoted by `, e1; : : : ; en . Let K WD

�3LC
Pn

iD1 Ei be the Poincaré dual of �c1.Xn/, and consider the K–symplectic cone
CK .Xn/�H 2.XnIR/, namely the set of cohomology classes that can be represented
by symplectic forms ! on Xn that are compatible with the orientation of Xn and
have first Chern class c1.!/D c1.Xn/D PD.�K/. Denote by CK .Xn/ its closure in
H 2.XnIR/.
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McDuff and Polterovich [25] proved that an embedding (2-3) exists if and only if

�`�

nX
iD1

aiei 2 CK .Xn/:

We thus need to describe CK .Xn/. For this consider the set EK .Xn/ � H2.XnIZ/
of classes E with �K �E D c1.E/D 1 and E �E D�1 that can be represented by
smoothly embedded spheres. Li and Liu [22] characterized CK .Xn/ as

(2-4) CK .Xn/D f˛ 2H 2.XnIR/ j ˛
2 > 0 and ˛.E/> 0 for all E 2 EK .Xn/g:

We thus need to describe EK .Xn/. For this define, for n > 3, the Cremona transform
CrW R1Cn!R1Cn as the linear map taking .x0Ix1; : : : ;xn/ to

(2-5) .2x0�x1�x2�x3I x0�x2�x3; x0�x1�x3; x0�x1�x2; x4; : : : ; xn/:

A vector .x0Ix1; : : : ;xn/ is ordered if x1 > � � � > xn . The standard Cremona move
takes an ordered vector .x0Ix/ to the vector obtained by ordering Cr.x0Ix/. More
generally, a Cremona move is a Cremona transform followed by any permutation of
the components of x.

For later use we recall the geometric origin of Cr and of Cremona moves. For any
nonzero vector u in an inner-product space, the map ru.x/ D x � 2 hu;xi

hu;ui
u is the

reflection about u, and hence an involution. Similarly, for a class A 2 H2.XnIR/
with A �A ¤ 0 the map rA.B/ D B � 2A�B

A�A
A is an involution of H2.XnIR/. For

jA �Aj 2 f1; 2g, this map is also an automorphism of H2.XnIZ/. Now take the classes
A0DL�E1�E2�E3 and Aij DEi�Ej for 1 6 i < j 6 n. Their self-intersection
number is �2 and so, for these classes,

(2-6) rA.B/D BC .A �B/A:

With respect to the basis fL;E1; : : : ;Eng we have that rA0
is given by (2-5), that is,

rA0
D CrW Z1Cn! Z1Cn takes the integral vector .d Im/D .d Im1; : : : ;mn/ to

(2-7) .2d�m1�m2�m3I d�m2�m3; d�m1�m3; d�m1�m2; m4; : : : ; mn/;

and rAij
is the transposition �ij interchanging the i th and j th coordinate. These

involutions of H2.XnIZ/ are induced by orientation-preserving diffeomorphisms
of Xn . This is clear for �ij (lift to Xn an isotopy of CP2 interchanging holomorphically
small discs around the i th and j th blow-up points), and it holds for all classes A0

and Aij because each of them can be represented by a smoothly embedded sphere S ,
and the smooth version of the Dehn–Seidel twist along S [30] is a diffeomorphism
inducing (2-6), in view of the Picard–Lefschetz formula [1, page 26]. Since the maps
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Cr and �ij preserve both the intersection product on H2.XnIZ/ and the class K , they
preserve the set EK .Xn/.

Based on [21; 22] it was shown in [26, Proposition 1.2.12] that a homology class
E D dL �

Pn
iD1 miEi belongs to EK .Xn/ if and only if the vector .d Im/ D

.d Im1; : : : ;mn/ is equal to .0I �1; 0; : : : ; 0/ up to a permutation of the mi , or if

.d Im/ 2N [ .N [f0g/n satisfies the Diophantine system

(2-8)
nX

iD1

mi D 3d � 1;

nX
iD1

m2
i D d2

C 1;

and reduces to .0I �1; 0; : : : ; 0/ under repeated standard Cremona moves. Summarizing,
we find:

Method 1 (obstructive classes) An embedding (2-3) exists if and only if
Pn

iD1 a2
i 6

�2 and
Pn

iD1 aimi 6�d for all vectors .d Im/ of nonnegative integers satisfying (2-8)
and reducing to .0I �1; 0; : : : ; 0/ under repeated standard Cremona moves.

Remark 2.1 It is shown in [23] (see also [19]) that (2-3) is also equivalent toPn
iD1 aimi 6 �d for all vectors .d Im/ of nonnegative integers satisfying the Dio-

phantine system (2-8). It follows that if we use exceptional classes only to give lower
bounds for cb.a/ (as we do in this paper), then we do not need to show that these
classes reduce to .0I �1; 0; : : : ; 0/ under repeated standard Cremona moves. We shall
nevertheless perform these reductions, since they are readily done (see Section 3.2)
and since we wish to know explicit exceptional classes responsible for the embedding
obstructions beyond the volume constraint.

In view of (2-2) we find that E.1; a/
s
,! P .�; �b/ if and only if �>

p
a

2b
and

(2-9) �.bC 1/> �.bm1Cm2/Cm3w1C � � �CmkC2wk

for all vectors .d Im/ of nonnegative integers satisfying (2-8) with n D k C 2 and
reducing to .0I �1; 0; : : : ; 0/ under repeated standard Cremona moves.

Condition (2-9) is not handy, since � appears on both sides. We thus better work directly
in P .�; �b/ or in its compactification S2 �S2 endowed with the product symplectic
form of the same volume. Let YkC1 be the complex blow-up of S2�S2 in kC1 points.
Then the classes S1 D ŒS

2 � pt � and S2 D Œpt�S2� and the classes F1; : : : ;FkC1 of
the exceptional divisors form a basis of H2.YkC1/. As one can guess from the picture
on the right of Figure 9, there exists a diffeomorphism  W YkC1! XkC2 such that
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the induced map  �W H2.YkC1/!H2.XkC2/ is given by

S1 7!L�E1;

S2 7!L �E2;

F1 7!L�E1�E2;

Fi 7! �EiC1; i > 2:

If we write .d; eIm1; : : : ;mkC1/ for dS1CeS2�m1F1�� � ��mkC1FkC1 , we thus
have

(2-10)  �.d; eIm/D .d C e�m1I d �m1; e�m1; m2; : : : ;mkC1/:

Given vectors u 2Rn1 and v 2Rn2 we write hu; vi D
Pmax.n1;n2/

iD1
uivi . In the basis

S1 , S2 , F1; : : : ;FkC1 , we can reformulate Method 1 as:

Method 10 (obstructive classes) An embedding E.1; a/
s
,! P .�; �b/ exists if and

only if �>
p

a
2b

and

(2-11) �> hm;w.a/i
d C be

DW �b.d; eIm/.a/

for all vectors .d; eIm/ of nonnegative integers that satisfy the Diophantine system

(2-12)
X

mi D 2.d C e/� 1;
X

m2
i D 2deC 1

and for which  �.d; eIm/ reduces to .0I �1; 0; : : : ; 0/ under repeated standard Cre-
mona moves.

For the detailed translation of Method 1 to Method 10 we refer to the proof of [14,
Proposition 3.9]. As we shall see in Section 3, the obstructions to embeddings
E.1; a/

s
,! P .�; �b/ beyond the volume (that is, the steps in the graphs cb.a/) are all

given by the two series of exceptional classes .d; e;m/

(2-13)
En WD .n; 1I 1

�.2nC1//;

Fn WD .n.nC 1/; nC 1I nC 1; n�.2nC3//:

In Method 1, the Cremona moves acted on integral homology classes .d Im/. The
second method applies Cremona moves to real cohomology classes ˛ , and verifies by
a finite algorithm whether ˛ 2 CK .Xn/.

For convenience, we write .�I a1; : : : ; an/ instead of �`�
Pn

iD1 aiei . Recall that
the Cremona transform Cr on H2.XnIZ/ is induced by an orientation-preserving
diffeomorphism ' of Xn . Since Cr D '� is an involution, the map '� induced on
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cohomology H 2.XnIR/ is also given by formula (2-5) with respect to the Poincaré dual
basis f`; e1; : : : ; eng, that is, '�DCrW R1Cn!R1Cn takes the vector .�I a1; : : : ; an/

to

(2-14) .2�� a1� a2� a3I �� a2� a3; �� a1� a3; �� a1� a2; a4; : : : ; an/:

Call an ordered vector .�I a1; : : : ; an/ reduced if � > a1 C a2 C a3 . Using the
characterisation (2-4) and building on [21; 22], Buse and Pinsonnault [8, Section 2.3]
and Karshon and Kessler [20, Section 6.3] designed the following algorithm to decide
whether an embedding (2-3) exists:

Method 2 (reduction at a point) Let ˛ D .�I a1; : : : ; an/ be an ordered vector with
� > 0 and ˛2 > 0. The sequence obtained from applying to ˛ standard Cremona
moves contains a reduced vector. Let .y�I ya1; : : : ; yan/ be the first reduced vector in this
sequence. Then ˛ 2 CK .Xn/ if and only if ya1; : : : ; yan > 0.

We shall only need the “if” part of this equivalence. In fact, we shall use a version
thereof that will permit us to avoid finding the reordering after each Cremona transform:

Proposition 2.2 Let ˛ D .�I a1; : : : ; an/ be a vector with � > 0 and ˛2 > 0, and
assume that there is a sequence ˛ D ˛0 , ˛1; : : : ; ˛m of vectors such that j̨C1 is
obtained from j̨ by a Cremona move. If ˛m D .y�I ya1; : : : ; yan/ is reduced and
ya1; : : : ; yan > 0, then ˛ 2 CK .Xn/.

Proof According to [22, Proposition 4.9(3)], a reduced vector with nonnegative
coefficients belongs to CK .Xn/. Hence ˛m 2 CK .Xn/. By assumption we have
˛m D .� ı Cr/.˛m�1/, where � is a coordinate permutation of Rn . Write � as a
product �s ı � � � ı �1 of transpositions. Since Cr and �i are involutions,

˛m�1 D .Cr ı �1 ı � � � ı �s/.˛m/:

Recall that Cr and �i preserve the set EK .Xn/. By (2-4), these maps also preserve
CK .Xn/. Thus ˛m�1 2 CK .Xn/. Iterating this argument yields ˛ D ˛0 2 CK .Xn/.

It turns out that for transforming a (reducible) vector to a reduced vector by Cremona
moves, it is best to reorder every vector in the process. In our reduction schemes in
Sections 5–8 we will usually do this, but not always, to avoid distinguishing even more
cases. The point of Proposition 2.2 is that even when we do restore the order of a
vector, we do not need to prove this, except for the head of the last vector: All we
need to make sure is that we eventually arrive at a vector .y�I ya1; ya2; ya3; ya4; : : : / that
is reduced and has yaj > 0 for all j , ie is such that

minfya1; ya2; ya3g> maxfya4; : : : ; yang; y�> ya1Cya2Cya3; yaj > 0 for all j .
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On the other hand, we will always immediately check in each step that the new
coefficients are nonnegative, since otherwise we may easily forget checking a coefficient
at the end.

Recall that an embedding E.1; a/
s
,!P .�; �b/ exists if and only if an embedding (2-2)

exists. Together with Proposition 2.2 we find the following recipe:

Proposition 2.3 An embedding E.1; a/
s
,! P .�; �b/ exists if there exists a finite

sequence of Cremona moves that transforms the vector (4-1) to an ordered vector with
nonnegative entries and defect ı > 0.

In our applications of this proposition we will have � 2 .1; 2/. The first Cremona
transform thus maps

..bC 1/�I b�; �; 1�bac; w
�`1

1
; : : : /

with ı D�1 to the vector

..bC 1/�� 1I b�� 1; �� 1; 0; 1�.bac�1/; w
�`1

1
; : : : /;

which reorders to

..bC 1/�� 1I b�� 1; 1�.bac�1/
k�� 1; w

�`1

1
; : : : /:

The action of this Cremona move on the balls

B.w.a//qB.�/qB.b�/
s
,! B..bC 1/�/

with B.w.a//
s
,! P .�; b�/ is illustrated in Figure 9.

Notation 2.4 The symbol k indicates that the terms before k are ordered, while the
terms after k are possibly not ordered, and that all terms before k are not less than
the terms after k .

.bC 1/�

�

b� .bC 1/�

b�

P .�; b�/
1
�

Cr

.bC 1/�� 1

�

b�
�� 1

b�� 1

1

Figure 9: The effect of the first Cremona move
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Method 3 (ECH capacities) Hutchings [18] used his embedded contact homology
to associate with every bounded starlike domain U � R4 a sequence of symplectic
capacities c1.U / 6 c2.U / 6 � � � . For an ellipsoid E.a; b/, this sequence is given by
arranging the numbers of the form maC nb with m, n > 0 in nondecreasing order,
with multiplicities. For instance,

.ck.E.1; 1///D .1; 1; 2; 2; 2; 3; 3; 3; 3; 4; : : : /:

McDuff [24] showed that ECH capacities provide a complete set of invariants for the
embedding problem E.a; b/

s
,!E.c; d/:

E.a; b/
s
,!E.c; d/ () ck.E.a; b//6 ck.E.c; d// for all k > 1:

Since the embedding problems E.1; a/
s
,! E.�; �2b/ and E.1; a/

s
,! P .�; �b/ are

equivalent, it follows that

(2-15) cb.a/D sup
k>1

�
ck.E.1; a//

ck.E.1; 2b//

�
:

It is not clear, though, how to derive from this description of cb.a/ the graphs given in
Theorem 1.1.

We say that an exceptional class E D .d; eIm/ 2 EK .Xn/ is b–obstructive if there
is some a > 1 such that the obstruction function (2-11) is larger than the volume
constraint:

�b.d; eIm/.a/ >

q
a

2b
:

According to Method 1, it suffices to find all b–obstructive classes: the graph of cb.a/

is given as the supremum of the constraints of the b–obstructive classes and of the
volume constraint. Since exceptional classes are represented by holomorphic spheres,
this method gives insight into the nature of the obstruction to a full embedding. It is also
useful for guessing the graph of cb.a/, by first guessing a relevant set of b–obstructive
classes (see Section 3). On the other hand, it is sometimes hard to find all b–obstructive
classes for a point a. Method 2 is very efficient at a given point a, at least if one has an
idea what cb.a/ should be. However, the reduction scheme often depends rather subtly
on the point a; see Sections 5–8. The reduction method is thus quite “local in a”.
While it is usually impossible to compute cb.a/ by Method 3 (see however [4; 13]),
this method is very useful for guessing the graph of cb.a/, since, using (2-15) and a
computer, one gets good lower bounds for cb.a/.

Accordingly, we have found Theorem 1.1 as follows: We first found the exceptional
classes En and Fn in (2-13), then used ECH capacities to convince ourselves that there
are no further constraints besides the volume, and then proved this by the reduction
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method. This seems to be a convenient procedure for solving symplectic embedding
problems for which ECH capacities are known to form a complete set of invariants,
such as those studied in [11].

3 Applications of Method 1

Fix a real number b > 1. As in (2-11) we associate with every solution .d; eIm/ of
the Diophantine system (2-12) the obstruction function

(3-1) �b.d; eIm/.a/D
hm;w.a/i

d C be
;

where as before w.a/ is the weight expansion of a > 1. Further, define the error vector
" WD ".a/ by

mD
d C be
p

2ba
w.a/C ":

(Here, we add zeros to m or w.a/ if they do not have the same length.)

3.1 Recollections

The following proposition generalizes [14, Lemma 4.8]:

Proposition 3.1 Fix a real number b > 1. Given a nonnegative solution .d; eIm/
of (2-12) and a > 1, we have:

(i) �b.d; eIm/.a/6
p

2deC 1
p

a=.d C be/.

(ii) �b.d; eIm/.a/ >
p

a
2b

if and only if h";w.a/i> 0.

(iii) If �b.d; eIm/.a/ >
p

a
2b

, then d D beCh with jhj<
p

2b and h"; "i< 1� h2

2b
.

Proof By the Cauchy–Schwarz inequality and since
P
w2

i D a,

.d C be/�b.d; eIm/.a/D hm;w.a/i6 kmkkw.a/k D
p

2deC 1
p

a;

proving (i). Assertion (ii) is immediate. To prove (iii), we compute

2.beC h/eC 1D 2deC 1D hm;mi D

�
2beC h
p

2ba
w.a/C ";

2beC h
p

2ba
w.a/C "

�
D
.2beC h/2

2ba
aC 2

2beC h
p

2ba
hw.a/; "iC h"; "i:
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The first of the three summands is 2be2C 2ehC h2

2b
, and so

1D
h2

2b
C 2

2beC h
p

2ba
hw.a/; "iC h"; "i:

Hence, if �b.d; eIm/.a/>
p

a
2b

, then, by (ii), hw.a/; "i>0, whence 06h"; "i<1� h2

2b
.

This also shows jhj<
p

2b .

3.2 Two sequences of exceptional classes and their constraints

In our analysis of the functions cb.a/, two sequences of exceptional homology classes
will play a role. For each n 2N we define the classes

En WD .n; 1I 1
�.2nC1//;

Fn WD .n.nC 1/; nC 1I nC 1; n�.2nC3//:

Notice that En is a perfect class at a D 2nC 1, in the sense that m is a multiple
of w.a/. Similarly, Fn is nearly perfect at a D 2nC 4. While the constraints of
the classes Eb , EbC1; : : : ;EbCb

p
2bc

will give the
ṗ

2b
�

linear steps in the graph
of cb.a/ centred at 2bC2kC1, the constraint of Fb will give the affine step of cb.a/

centred at 2bC 4.

Lemma 3.2 The classes En and Fn satisfy the Diophantine system (2-12) and their
image under  � reduces to .0I �1; 0; : : : ; 0/ under repeated standard Cremona moves.

Proof One readily checks that the classes En and Fn satisfy the Diophantine sys-
tem (2-12).

For the sequel it is useful to rewrite the Cremona transform Cr as follows: Define the
defect of a vector .d Im/D .d Im1; : : : ;mk/ by ı WD d �m1�m2�m3 . Then (2-7)
can be written as

Cr.d Im/D .d C ıI m1C ı; m2C ı; m3C ı; m4; : : : ; mk/:

The isomorphism  � from (2-10) maps En D .n; 1I 1
�.2nC1// to .nI n� 1; 1�2n/,

which under one standard Cremona move is mapped to .n� 1I n� 2; 1�2.n�1//, and
thence, under n such moves, to .0I �1/. Next,  � maps F1 to the class .2I 1�5/,
which reduces to .0I �1/ under two standard Cremona moves, Further, for n > 2,

 �.Fn/D .n
2
C nI n2

� 1; n�.2nC3//:

Under n standard Cremona moves with ı D�nC 1 this vector reduces to

.2nI n�3; n� 1; 1�2n/:
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Applying one more standard Cremona move with ı D �n yields .nI n� 1; 1�2n/,
which reduces in n steps to .0I �1/, as we have seen above.

We next compute the constraints given by the classes En and Fn . In view of defini-
tion (3-1) and the definition of these classes,

�b.EbCk/.a/D
h1�.2bC2kC1/;w.a/i

2bC k
; �b.Fb/.a/D

h.bC 1; b�.2bC3//;w.a/i

2b.bC 1/
:

From this we readily find:

Lemma 3.3 Fix an integer b > 2.

(i) For k 2 f0; 1; 2; : : : ; b
p

2bcg,

�b.EbCk/.a/D

8<:
a

2bCk
if a 2 Œ2bC 2k; 2bC 2kC 1�;

2bC2kC1

2bCk
if a > 2bC 2kC 1:

(ii) �b.Fb/.a/D

8̂<̂
:

baC1

2b.bC1/
if a 2 Œ2bC 3; 2bC 4�;

1C
2bC1

2b.bC1/
if a > 2bC 4:

We in particular see that the class EbCk gives rise to the linear step over Ib.k/ and
Fb gives rise to the affine step over Œ˛b; ˇb �.

3.3 The constraints of En and Fn for real b > 2

In this subsection we compute the obstructions to the problem E.1; a/! P .�; �b/

given by the exceptional classes En and Fn for all real b > 2. This is not used in the
proof of Theorem 1.1, but supports Conjecture 1.5.

Let b > 2 be a real number. Recall that for a > 1 every exceptional class ED .d; eIm/

yields the constraint

�b.E/.a/D
hm;w.a/i

d C be
:

For E0 D .1; 0I 1/ we have

(3-2) �b.E0/.a/D 1

and for En D .n; 1I 1
�.2nC1// with n > 1 we have

�b.En/.a/D

8<:
a

nCb
if a 2 Œ2n; 2nC 1�;

2nC1

nCb
if a > 2nC 1:
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The class En is b–obstructive on Œ2n;1/ only if 2nC1
nCb

>
p

2nC1
2b

, and in view of (3-2)
we can also assume that 2nC1

nCb
> 1, or n> b� 1. The relevant values of n are thus

n 2 fbbc; : : : ; bbC
p

2bcg;

where bbc is the largest integer not greater than b . The constraint 1 of E0 meets the
first linear step, given by Ebbc , at aD bCbbc, and is thus strictly above

p
a

2b
if b …N .

For n > bbc the step of En meets the step of EnC1 at aD .2nC1/.nCbC1/=.nCb/,
which is above

p
a

2b
if and only if b� n > .b� n/2 . The step of Ebbc thus meets the

one of EbbcC1 above the volume constraint, with equality if and only if b 2N , and
all other linear steps are strictly disjoint.

Next, let b be the “integer closest to b”, namely b D bC " with " 2
�
�

1
2
; 1

2

�
. Then

�b.Fb/.a/D

8̂<̂
:

baC1

.bCb/.bC1/
if a 2 Œ2bC 3; 2bC 4�;

2b2C4bC1

.bCb/.bC1/
if a > 2bC 4:

But notice that this constraint is stronger than
p

a
2b

only if

�b.Fb/.2bC 4/D
2b2C 4bC 1

.2bC "/.bC 1/
>

r
bC2

bC"

or, equivalently, " 2
�
�

b
.bC1/2

; 1
bC2

�
. One readily checks that the affine step defined

by �b.Fb/ is strictly disjoint from the two neighbouring linear steps given by EbC1

and EbC2 .

For a > 1 and b > 2 let db.a/ be the maximum of the volume constraint
p

a
2b

and the
obstructions �b.En/.a/ and �b.Fb/ discussed above. Then db.a/> cb.a/ of course,
and Conjecture 1.5 claims that db.a/D cb.a/ for all real b > 2.

3.4 cb.a/ at a D 2b C 2 C
1

2b

Set ab WD 2bC 2C 1
2b

. We will show in Section 4.2 by the reduction method that
cb.ab/D

2bC1
2b

. (Notice that this value equals the volume constraint
p

ab=2b .) Here
we show this by using positivity of intersection with the class

Gb WD .b.2bC 1/; 2bC 1I .2b/�.2bC2/; 1�.2bC1//; b 2N:

The m of Gb is obtained from 2bw.ab/ by adding one 1, whence Gb is nearly perfect
at ab . One readily checks that Gb satisfies the Diophantine system (2-12) and that its
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image under  � reduces to .0I �1; 0; : : : ; 0/ under repeated standard Cremona moves.
Hence Gb is an exceptional class. Its obstruction at ab is

�b.Gb/
�
2bC 2C

1

2b

�
D

2b.2bC2/C1

2b.2bC1/
D

2bC1

2b
:

Write Gb D .b.2bC 1/; 2bC 1Imb; 1/ with mb WD ..2b/�.2bC2/; 1�2b/D 2bw.ab/.
Recall that exceptional classes are represented by embedded J –holomorphic spheres,
whence, by positivity of intersection, E �E0 > 0 for any two different exceptional
classes E ¤ E0 . Applying this to Gb and any different exceptional class .d; eIm/,
we obtain

.beCd/.2bC1/Db.2bC1/eC.2bC1/d > hm; .mb; 1/i> hm;mbiD2bhm;w.ab/i:

Hence

�b.d; eIm/.ab/D
hm;w.ab/i

beC d
6 2bC 1

2b
;

as we wished to show.

Remarks 3.4 (i) The classes E1 and E2 also give rise to the first two steps of
cC .a/D c1.a/, and the class F1 gives rise to the affine step of cC .a/; see [14]. This
is the “holomorphic reason” why the first two steps of the Pell stairs and the affine
step of cC .a/ survive to all functions cb.a/ for b > 2. On the other hand, none
of the classes En with n > 3 and Fn with n > 2 is obstructive for the problem
E.1; a/

s
,! C 4.�/, and none of the classes giving rise to the other steps of the Pell

stairs, nor any of the classes giving rise to the six exceptional steps of cC .a/, gives an
obstruction for the problems E.1; a/

s
,! P .�; �b/ with b > 2.

Similarly, G1 is the first of the sequence of exceptional classes E.˛n/ in [14] that imply,
via positivity of intersection, that at the feet of the Pell stairs there is no embedding
obstruction beyond the volume constraint.

(ii) We do not know all b–obstructive classes. However, using positivity of intersection
and the analogues of Lemmas 3.8 and 3.11 we checked that �b.E/.2bC 2kC 1/ <
2bC2kC1

2bCk
for any exceptional class E ¤ EbCk , and that �b.E/.2bC 4/ 6

p
2bC4

2b

for any exceptional class E¤Fb , that is, Fb is the only b–obstructive class at 2bC4.
For F2 this is carried out in Lemma 3.10.

3.5 cb.a/ for a large

For b 2N>2 we abbreviate

vC
b
WD vb.b

p
2bc/D 2b

�
2bC 2b

p
2bcC 1

2bCb
p

2bc

�2

:
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Assertion (ii) of the following proposition improves [4, Theorem 1.1].

Proposition 3.5 (i) For every b 2N>2 ,

cb.a/D

8̂<̂
:

2bC2b
p

2bcC1

2bCb
p

2bc
if a 2 Œ2bC 2b

p
2bcC 1; vC

b
�;q

a

2b
if a > vC

b
:

(ii) For every real b > 2 we have cb.a/D
p

a
2b

for all a > .
p

2bC 1/2 .

Notice that the length of the interval Œ2bC 2b
p

2bcC 1; vC
b
� in (i) is

.2bC 2b
p

2bcC 1/.2b�b
p

2bc2/

.2bCb
p

2bc/2

and hence positive if and only if b
p

2bc<
p

2b , ie 2b is not a perfect square.

Proof Assume that .d; eIm/ is a nonnegative solution of (2-12). If e D 0, then
.d; eIm/ D .1; 0I 1/, and so �b.d; eIm/.a/ D 1 is smaller than the values of cb.a/

claimed in (i) and (ii). We can thus assume that e > 1.

Suppose that �b.d; eIm/.a/ >
p

a
2b

for some a > 1. Then, by Proposition 3.1(iii),
d < beC

p
2b . We estimate

(3-3) �b.d; eIm/.a/D
hm;w.a/i

beC d
6
P

mi

beC d
D

2.d C e/� 1

beC d
DW fb;e.d/:

The function d 7! fb;e.d/ is increasing. We can thus further estimate

(3-4) �b.d; eIm/.a/6 fb;e.beC
p

2b/D
2.beC

p
2bC e/� 1

2beC
p

2b
DWL.b; e/:

Claim 1 @
@e

L.b; e/6 0.

Proof We compute

@

@e
L.b; e/D

2.bC 1/.2beC
p

2b/� 2b.2.beC
p

2bC e/� 1/

.2beC
p

2b/2
;

which is nonpositive if and only if the numerator is nonpositive. Expanding the
numerator, we see that this holds if and only if bC

p
2b 6 b

p
2b , which holds true

because b > 2.
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Proof of Proposition 3.5(ii) Assume that .d; eIm/ is an exceptional class with e > 1

and such that �b.d; eIm/.a/ >
p

a
2b

for some a > .
p

2bC1/2 . By (3-4) and Claim 1,

�b.d; eIm/.a/6 L.b; e/6 L.b; 1/D

p
2bC 1
p

2b
6
q

a

2b
;

a contradiction.

Proof of Proposition 3.5(i) Assume from now on that b 2N>2 . If eD 1, then (2-12)
becomes X

mi D

X
m2

i D 2d C 1

and so .d; eIm/ is the exceptional class Ed D .d; 1I 1
�.2dC1//. Recall that on the

interval Œ2d; 2d C 2� the obstruction function

�b.Ed /.a/D
hw.a/; 1�.2dC1/i

bC d

gives a linear step with edge at 2dC1. If b
p

2bc<
p

2b , then the largest k for which
EbCk yields a constraint strictly stronger than the volume is k D b

p
2bc, because

2bC 2kC 1

2bC k
>

q
2bC2kC1

2b
() 2b > k2:

We are left with showing that for e > 2 we have �b.d; eIm/.a/ 6
p

a
2b

for all
solutions .d; eIm/ of (2-12) and all a > vC

b
. Assume first that e > 3. Then (3-4) and

Claim 1 yield
�b.d; eIm/.a/6 L.b; e/6 L.b; 3/:

Claim 2 L.b; 3/6
p

a
2b

for all b 2N>2 and a > vC
b

.

Proof It suffices to prove the claim for aD vC
b

. We have

L.b; 3/� 1D

p
2bC 5

6bC
p

2b
and

r
vC

b

2b
� 1D

b
p

2bcC 1

2bCb
p

2bc
:

For b 2 f2; 3; 4g the inequality

b
p

2bcC 1

2bCb
p

2bc
>
p

2bC 5

6bC
p

2b

is readily verified. For b > 5 we use that x 7! xC1
2bCx

is increasing, and estimater
vC

b

2b
�L.b; 3/> .

p
2b� 1/C 1

2bC .
p

2b� 1/
�

p
2bC 5

6bC
p

2b
:
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The right-hand side multiplied with the product of the denominators equals f .b/ WD
4b
p

2b�10b�4
p

2bC5. Since bf 0.b/D 6b
p

2b�2
p

2b�10b > 0 for b > 2 and
f .5/ > 0, the claim follows.

Assume now that e D 2. We first treat the case b > 5. In view of (3-4) it suffices to
show that L.b; 2/6

p
vC

b
=2b , or
p

2bC 3

4bC
p

2b
6 b
p

2bcC 1

2bCb
p

2bc
:

This inequality is readily verified for b D 5. For b > 6 the stronger inequality
p

2bC 3

4bC
p

2b
6 .
p

2b� 1/C 1

2bC .
p

2b� 1/

holds true. Indeed, this inequality is equivalent to g.b/ WD 2b
p

2b�6b�2
p

2bC3 > 0,
which holds true since bg0.b/D 3b

p
2b�

p
2b� 6b > 0 for b > 6 and g.6/> 0.

Assume now that b 2 f2; 3; 4g. Then
p
vC

b
=2b D 1C 3

2bC2
. Using (3-3) this time

with d 6 bbeC
p

2bc, we find

�b.d; 2Im/.a/6 fb;2.b2bC
p

2bc/D
2b2bC

p
2bcC 3

2bCb2bC
p

2bc
:

For b 2 f2; 3; 4g the right-hand side is at most 1C 3
2bC2

. Proposition 3.5 is proven.

3.6 The interval
�
8 1

36
; 9

�
for b D 2

Proposition 3.6 c2.a/D
1
2

p
a for a 2

�
8 1

36
; 9
�
.

Proof The arguments in this section are close to those in [26, Section 5.3] and [14,
Section 7.3]. In fact, the last step of cB.a/ and of c2.a/ both end at 8 1

36
and are given

by the class F2 . There are some differences, however, and so we give a complete
exposition for the convenience of the reader.

Fix a rational number aD p
q
2 .8; 9/, with p

q
in reduced form, with weight expansion

(3-5) .1�`0 ; w
�`1

1
; : : : ; w

�`N

N
/:

Then wN D
1
q

and
PN

jD0 j̀wj D a C 1 � 1
q

by [26, Lemma 1.2.6]. Set M WD

`.a/ WD
PN

jD0 j̀ and LD
PN

jD1 j̀ D `.a/�8. Then q > L by [26, Sublemma 5.1.1].

For b D 2 the error vector " of an exceptional class .d; eIm/ at a is

(3-6) mD
d C 2e

2
p

a
w.a/C ":
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Define the partial error sums

� WD

MX
iD`0C1

"2
i and � 0 WD

M�`NX
iD`0C1

"2
i 6 �:

Recall from Proposition 3.1(iii) that for an obstructive class .d; eIm/ we have d D

2eCh with h 2 f�1; 0; 1g, and � < 1 if hD 0 and � < 3
4

if jhj D 1. For the function

y.a/ WD a� 3
p

aC 1

we have y
�p

q

�
> 1

q
for all p

q
2 .8; 9/. Write `.m/ for the number of positive entries

in m.

Lemma 3.7 Let .d; eIm/ be an exceptional class such that there exists aD p
q
2 .8; 9/

with `.a/D `.m/ and �2.d; eIm/.a/ >
1
2

p
a. Set vM WD .d C 2e/=.2q

p
a/. Then:

(i)
ˇ̌P

"i

ˇ̌
6
p
�L.

(ii) If vM < 1, then
ˇ̌P

"i

ˇ̌
6
p
� 0L.

(iii) If vM 6 1
2

, then vM > 1
3

and � 0 6 1
2

. If vM 6 2
3

, then � 0 6 7
9

.

(iv) With ı WD y.a/� 1
q

we have

4eC h 6 2
p

a

ı

�
p
�q�

�
1�

h

2

��
6 2
p

a

ı

�
�

ıvM
�

�
1�

h

2

��
:

If vM < 1, then � can be replaced by � 0 .

Proof The proofs of (i), (ii) and (iii) are as for [26, Lemma 5.1.2]. To prove (iv) we
compute

�

MX
iD1

"i D
dC2e

2
p

a

NX
jD0

j̀wj �

MX
iD1

mi D
dC2e

2
p

a

�
aC 1�

1

q

�
� .2d C 2e� 1/

D
4eCh

2
p

a

�
aC 1�

1

q

�
� .6eC 2h� 1/

D
4eCh

2
p

a

�
y.a/�

1

q

�
C

�
1�

h

2

�
;

where we have used (3-6) and (2-12). Then, using q > L and (i), we find

p
�q >

p
�L > 4eCh

2
p

a

�
y.a/�

1

q

�
C

�
1�

h

2

�
D

4eCh

2
p

a
ıC

�
1�

h

2

�
> ıvM q:
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Thus
p

q <
p
�=ıvM , and so

4eC h 6 2
p

a

ı

�
p
�q�

�
1�

h

2

��
<

2
p

a

ı

�
�

ıvM
�

�
1�

h

2

��
:

If vM < 1, the same arguments go through when replacing � by � 0 .

The following lemma is proven as in [26, Lemma 2.1.7]:

Lemma 3.8 Let .d; eIm/ be an exceptional class such that �2.d; eIm/.a/ >
1
2

p
a

for some a 2 Œ8; 9/. Then:

(i) The vector .m1; : : : ;m8/ is of the form

.m; : : : ;m/ or .m; : : : ;m;m� 1/ or .mC 1;m; : : : ;m/:

(ii) If m1 ¤m8 , then
P8

iD1 "
2
i > 7

8
.

Lemma 3.9 There is no exceptional class .d; eIm/ such that �2.d; eIm/.a/ >
1
2

p
a

for some a 2 .8; 9/ with `.a/D `.m/.

Proof Assume that .d; eIm/ is an exceptional class such that �2.d; eIm/.a/ >
1
2

p
a

for some a 2 .8; 9/ with `.a/D `.m/.

We first show that m1 D � � � Dm8 . Assume the contrary. By Lemma 3.8, h"; "i > 7
8

and � 6 1
8

. The inequality h"; "i> 7
8

and Proposition 3.1(iii) show that hD 0. Since
M > 8 and � 6 1

8
, we find vM > 1� 1p

8
> 1

2
. Further, since a > 81

q
,

ı D y.a/� 1
q

> y
�
81

q

�
�

1
q
D 9� 3

q
81

q
> 9� 3

q
81

2
> 1

4
:

Altogether, �
ıvM

< 1, in contradiction with Lemma 3.7(iv).

We are now going to show that e must be small. For this we first notice that, by
Lemma 3.7(iii),

vM 2

h
1

3
;
1

2

i
D)

� 0

vM
6

1=2
1=3
D

3

2
;

vM 2

h
1

2
;
2

3

i
D)

� 0

vM
6

7=9
1=2
D

14

9
;

vM > 2

3
D)

�

vM
6 3

2
:

For fixed q and h, the functions

F.a; q; h/ WD
2
p

a

ı

�
p

q�

�
1�

h

2

��
;

G.a; q; h/ WD
2
p

a

ı

�
14

9

1

ı
�

�
1�

h

2

��
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are strictly decreasing for a 2 .8; 9/. Since a > 81
q

, we see from Lemma 3.7(iv) that

4eC h 6 f .q; h/; g.q; h/;

where f .q; h/ WD F
�
81

q
; q; h

�
and g.q; h/ WDG

�
81

q
; q; h

�
. Explicitly,

f .q; h/ WD
2
q

81
q

ı.q/

�
p

q�

�
1�

h

2

��
;

g.q; h/ WD
2
q

81
q

ı.q/

�
14

9

1

ı.q/
�

�
1�

h

2

��
;

where ı.q/ WD y.81
q
/� 1

q
D 9� 3

p
81

q
. We have that @f

@q
.q; h/ > 0 for q > 3 and

@g
@q
.q; h/< 0 for q > 2, and f .q; h/<g.q; h/ for q 2 f2; 3g. In fact, f .q; h/Dg.q; h/

if and only if
p

q D 14
9

1
ı.q/

, which happens at q � 11:1. One readily checks that

f .11;�1/; g.12;�1/ < 23; f .11; 0/; g.12; 0/ < 29; f .11; 1/; g.12; 1/ < 35:

It follows that

4eC h 6 22; 28; 34 for hD�1; 0; 1; respectively;
and so

(3-7) e 6 5 if hD�1; e 6 7 if hD 0; e 6 8 if hD 1:

However, one readily checks that there are no solutions .2e C h; eIm/ of (2-12)
satisfying (3-7) and m1 D � � � Dm8 . To illustrate the computation, we take e D 8 and
hD 1. The Diophantine system then becomesX

i>1

mi D 49;
X
i>1

m2
i D 273:

Since m WDm1 D � � � Dm8 , we must have m 6 5. For mD 5 we getX
i>9

mi D 9;
X
i>9

m2
i D 73;

which has no solution for mi 6 5. Similarly there are no solutions for m 2 f1; 2; 3; 4g.

Lemma 3.10 The only exceptional class .d; eIm/ with �2.d; eIm/.8/ >
1
2

p
8 is

F2 D .6; 3I 3; 2
�7/.

Proof Consider an exceptional class with �2.d; eIm/.8/ >
1
2

p
a. By Lemma 3.11

below, `.m/ 6 8. If `.m/ 6 7, Lemma 3.8(i) shows that m D .1�7/; but the only
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solution of (2-12) with this m is .3; 1I 1�7/, and �2.3; 1I 1
�7/.8/D 7

5
< 1

2

p
8. We

can thus assume that `.m/D 8. By Lemma 3.8, the vector m has the form

mD .m�8/ or mD .m�7;m� 1/ or mD .mC 1;m�7/

for some m 2N .

If mD .m�8/, then the linear of the Diophantine equations yields 8mD 2.dC e/�1,
which is impossible since 8m is even and 2.d C e/� 1 is odd.

In the two other cases, Proposition 3.1(iii) and Lemma 3.8(ii) show that d D 2e .

If mD .m�7;m� 1/, the Diophantine system becomes

8mD 6e; 8m2
� 2mD 4e2:

Inserting e D 4
3
m into the second equation leads to 4m2 D 9m, which has no solution

in N .

If mD .mC 1;m�7/, the Diophantine system becomes

8mC 2D 6e; 8m2
C 2mD 4e2:

Inserting e D 1
3
.4mC 1/ into the second equation leads to 4m2� 7m� 2D 0, whose

only integral solution is mD 2. Hence .d; eIm/D .6; 3I 3; 2�7/D F2 .

The following lemma is a version of [26, Lemma 2.1.3]:

Lemma 3.11 Let .d; eIm/ be an exceptional class, and suppose that I is a maximal
nonempty open interval such that 1

2

p
a< �2.d; eIm/.a/ for all a 2 I . Then there is a

unique a0 2 I such that `.a0/D `.m/. Moreover, `.a/> `.m/ for all a 2 I .

Here, the last assertion is proven as follows: If `.a/<`.m/, then
P

i6`.a/m2
i <2deC1,

so that hw.a/;mi6 kw.a/k
p

2de D
p

a
p

2de . Hence

�2.d; eIm/.a/6
p

2de
p

a

d C 2e
6
p

a

2
:

End of the proof of Proposition 3.6 Suppose to the contrary that �2.d; eIm/.a/ >
1
2

p
a for some a 2

�
8 1

36
; 9
�
. By Lemma 3.11 we may choose a0 with `.a0/D `.m/

in the interval I containing a on which this inequality holds.

Assume that a0 6 8. Then a0 6 8 < a, and so 8 2 I . Then Lemma 3.10 shows that
.d; eIm/D F2 . But F2 is not obstructive for a > 8 1

36
.

Hence a0 > 8. We already know from Proposition 3.5 that c2.a/D
1
2

p
a for a > 9.

Hence a0 2 .8; 9/. Hence Lemma 3.9 applies, and yields the desired contradiction.
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4 First applications of the reduction method

In this section we first use the reduction method to prove the equivalence (1-2). We
then use this method to prove that the obstructions given by the exceptional classes En

are sharp at their edges, and then to compute cb.a/ at the end points of the first linear
step.

As in Section 3.2 we define the defect of .�Ia/D .�Ia1; : : : ;ak/ by ı WD��a1�a2�a3 .
Then the Cremona transform (2-14) can be written as

Cr.�I a/D .�C ıI a1C ı; a2C ı; a3C ı; a4; : : : ; ak/:

4.1 Proof of the equivalence (1-2)

By continuity we can assume that a is rational. Recall that E.1; a/
s
,! P .�; �b/ if

and only if there exists an embedding (2-2). By the nonsqueezing theorem we must
have �> 1. Hence Method 2 formulated in Section 2.2 shows that an embedding (2-2)
exists if and only if �>

p
a

2b
and if the first reduced vector in the orbit of

(4-1) .�.bC 1/I�b; �;w.a//

under standard Cremona moves has no negative entries.

The weight decomposition of the ellipsoid E..2b�1/�; 2b�/ is ..2b�1/�; ��.2b�1//.
The main result of [23] thus shows that E.1; a/

s
,!E.�; 2b�/ if and only if

B.w.a//qB..2b� 1/�/q
a

2b�1

B.�/
s
,! B.2b�/:

Method 2 shows that such an embedding exists if and only if �>
p

a
2b

and if the first
reduced vector in the orbit of

(4-2) .2b�I .2b� 1/�; ��.2b�1/;w.a//

under standard Cremona moves has no negative entries. Applying b � 1 standard
Cremona moves with defect ı D�� to the vector (4-2) we reach the vector (4-1).

In the rest of this paper we will show that besides for the volume constraint
p

a
2b

there
are no other obstructions to the embedding problem E.1; a/

s
,! P .�; �b/ than those

given by the exceptional classes En and Fn . For this it suffices to show that if we
take for � the value claimed for cb.a/ in Theorem 1.1, then there exists an embedding
E.1; a/

s
,! P .�; �b/. This problem, in turn, we solve by the recipe formulated in

Proposition 2.3.
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4.2 cb.a/ at a D 2b C 2k C 1, and at a D 2b and a D 2b C 2 C
1

2b

Lemma 4.1 cb.2bC 2kC 1/6 2bC2kC1
2bCk

for k 2 f0; 1; 2; : : : ; b
p

2bcg.

Proof Set � D 2bC2kC1
2bCk

D 1C kC1
2bCk

2 .1; 2/. Then one standard Cremona move
with ı D�1 takes the vector .�.bC 1/I�b; �; 1�.2bC2kC1// to

.�.bC 1/� 1I�b� 1; 1�.2bC2k/; �� 1/:

Since �b� 1C .bC k/.�� 2/D 0, applying bC k Cremona moves with ı D �� 2

to this vector yields the vector .�I .�� 1/�.2bC2kC1//, which is reduced, since ı D
3� 2�D 2b�k�2

2bCk
> 0 for k 6

p
2b and b > 2.

Lemma 4.2 cb.2b/D 1 and cb

�
2bC 2C 1

2b

�
D

2bC1
2b

.

Proof In view of the volume constraint cb.a/>
p

a
2b

, it suffices to show the inequal-
ities cb.2b/6 1 and cb

�
2bC 2C 1

2b

�
6 2bC1

2b
.

Set �D 1. Then b Cremona moves with ı D�1 take the vector .bC 1I b; 1�.2bC1//

to .1I 1/, which is reduced.

Set �D 2bC1
2b
D 1C 1

2b
. Then one standard Cremona move with ı D �1 takes the

vector
�
�.bC 1/I�b; �; 1�.2bC2/;

�
1

2b

��2b� to�
�.bC 1/� 1I�b� 1; 1�.2bC1/;

�
1

2b

��.2bC1/�
:

Since �b � 1C b.� � 2/ D 0, applying b Cremona moves with ı D � � 2 yields
the vector

�
�I 1;

�
1

2b

�
�.4bC1/�. Applying 2b Cremona moves with ı D 1

2b
yields�

1
2b
I

1
2b

�
, which is reduced.

Corollary 4.3 Theorem 1.1 holds for a 2 Œ1; 2bC 3�.

Proof By Gromov’s nonsqueezing theorem, E.1; 1/
s
,! P .�; �b/ implies �> 1. (In

our language this reads �b.E0/.1/D 1 for E0 WD .1; 0I 1/.) Since the function cb is
monotone increasing, this and cb.2b/D 1 show that cb.a/D 1 for a 2 Œ1; 2b�.

The functions cb have the scaling property

cb.�a/

�a
6 cb.a/

a
for all �> 1I

see [26, Lemma 1.1.1] for the easy proof. Therefore:
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Lemma 4.4 If for two values a0 < a1 the points .a0; cb.a0// and .a1; cb.a1// lie on
a line through the origin, then the whole segment between these two points belongs to
the graph of cb , that is, cb is linear on Œa0; a1�.

Lemmas 3.3(i), 4.1 and 4.2 thus show that the graph of cb on Œ1; 2b C 3� is as in
Figure 2.

4.3 Organization of the proof of Theorem 1.1

We order the rest of the proof by increasing difficulty.

For b 2N>5 and k D 2; : : : ; b
p

2bc� 1, the intervals Ib.k/ and Ib.kC 1/ enclose
the interval Œvb.k/;ub.kC1/�, that contains the point 2bC2kC2. We first show that
cb.a/D

p
a

2b
on this interval. More precisely, we subdivide this interval into its left

and right part,

Lb.k/ WD Œvb.k/; 2bC 2kC 2� and Rb.k/ WD Œ2bC 2kC 2;ub.kC 1/�;

and show in Section 5 and Section 6 that cb.a/D
p

a
2b

on Lb.k/ and Rb.k/, respec-
tively. Theorem 1.1 then follows for all a>2bC5. Indeed, together with Lemmas 3.3(i)
and 4.1, we now know that for k > 2 the edge point and the two end points of the linear
steps lie on the graph of cb.a/, and hence by Lemma 4.4 these linear steps belong
to cb.a/ entirely. Further, by Proposition 3.5(i), Theorem 1.1 holds for a > vb.b

p
2bc/.

Ib.k/ Lb.k/ Rb.k/ Ib.kC 1/

ub.k/

2bC 2kC 1

vb.k/ 2bC 2kC 2 ub.kC 1/ vb.kC 1/
a

Figure 10

We already know from Corollary 4.3 that Theorem 1.1 holds for a 6 2b C 3. We
are thus left with the interval Œ2b C 3; 2b C 5�. It suffices to treat the subinterval
Œvb.1/;ub.2/�. Indeed, we then know that cb.2bC3/D cb.vb.1//, whence the second
linear step is established, and we already know that the third linear step, which begins
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at ub.2/, belongs to cb.a/. (Note that for b D 2 there is no third linear step, but then
ub.2/D 2bC 5D 9.) Recall that

vb.1/ < ˛b < 2bC 4< ˇb < ub.2/:

We shall treat the interval Œvb.1/; 2bC4� in Section 7. The case bD 2 is then complete,
since c2.8/D

17
12
D c2

�
8 1

36

�
and in view of Proposition 3.6. The interval Œ2bC4;ub.2/�

for b > 3 is treated in Section 8. Showing cb.a/D
p

a
2b

on the intervals Œvb.1/; ˛b �

and Œˇb;ub.2/� is the hardest part of the paper, since on these intervals the reduction
algorithm is rather intricate. On the other hand, establishing the affine segment over
Œ˛b; 2bC 4� will be easier, and it turns out that the reduction method establishes the
affine steps of cB.a/ and cC .a/ much faster than the positivity of intersection argument
used in [26; 14].

Since the embedding functions cb.a/ are continuous, it suffices to compute them on
a dense set. In the rest of the paper we shall assume that a > 1 is rational. Hence a

has a finite weight expansion w.a/D .1�bac; w�`1

1
; w
�`2

2
; : : : /. Sometimes it will be

convenient to assume also that `1 > 1 or `2 > 1 or `3 > 2, which holds for a dense
set of rational a.

5 The intervals Lb.k/D Œvb.k/; 2b C 2k C 2�

Recall that

vb.k/D 2b
�

2bC2kC1

2bCk

�2
:

Theorem 5.1 Assume that b 2N>5 and k 2 f2; : : : ; b
p

2bc�1g. Then cb.a/D
p

a
2b

for a 2Lb.k/.

Proof The weight expansion at a 2Lb.k/ is

w.a/D .1�2.bCk/C1; w
�`1

1
; w
�`2

2
; : : : /:

Define the numbers �, z1 and z2 by

�D

r
a

2b
D

r
2.bCk/C1Cw1

2b
DW 1C z1;

z2 WD .2bC k/�� .2bC 2kC 1/D

r
2.bCk/C1Cw1

2b
.2bC k/� .2bC 2kC 1/:

Lemma 5.2 (i) 2z1 6 1C z2 .

(ii) z2 > 0 and z2 6 w1 .

(iii) For k > 3 and `1 D 1 we have w2C z2� z1 > 0.
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Proof (i) We wish to show that

2bC 2k 6 2C .2bC k � 2/�:

We show that this inequality even holds if w1 6 0 in � is set to zero, ie that

2bC 2k 6 2C

r
2.bCk/C1

2b
.2bC k � 2/:

After solving for the root, squaring and multiplying with 2b.2bCk�2/2 , we find that
this inequality is equivalent to

4b2
C .2kC 1/.k � 2/2C 2b.k2

� 2k � 4/> 0;

which holds true since k > 2 and b > 2.

(ii) Note that z2 D 0 at the left boundary vb.k/ of Lb.k/. Since z2 is increasing
on Lb.k/, we see that z2 > 0.

At vb.k/ we have w1 > 0 D z2 . In order to show that z2 6 w1 on Lb.k/, it thus
suffices to check that the derivative of the function fb;k.w1/D w1 � z2.b; k; w1/ is
nonnegative, ie

f 0b;k.w1/D 1�
1

2

r
2b

2.bCk/C1Cw1

2bCk

2b
> 0:

This holds if it holds for w1 D 0, ie if

4b

2bCk
>
r

2b

2bC2kC1
:

This is equivalent to

8b.2bC 2kC 1/> 4b2
C 4bkC k2;

which holds true since k2 6 2b .

(iii) Fix k > 3 and b > 2. Define the function fb;k on Œvb.k/�bvb.k/c; 1� by

(5-1) fb;k.w1/ WD w2C z2� z1 D�w1C .2bC k � 1/�� .2bC 2k/C 1:

Then f 0
b;k

6 0. Indeed, this is equivalent to

2bC k � 1 6 2
p

2b.2bC 2kC 1Cw1/;

which follows from
2bC k 6 2

p
2b.2bC 2kC 1/:
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It therefore suffices to show that fb;k.1/> 0, ier
bCkC1

b
> 2bC2k

2bCk�1
:

Squaring and multiplying by b.2bC k � 1/2 this becomes

.1C k/..k � 3/bC .k � 1/2/> 0;

which holds true since k > 3.

In view of Proposition 2.3 we wish to transform the vector

..bC 1/�I b�; �;w.a//

to a reduced vector by a finite sequence of Cremona moves. One Cremona move yields�
.bC 1/�� 1I b�� 1; 1�2.bCk/

k z1; w
�`1

1
; w
�`2

2
; : : :

�
:

Here and in the sequel we use the notation explained in Notation 2.4. Next, bC k

Cremona moves with ı D �� 2D z1� 1 yield

(5-2) .�C z2I z2; w
�`1

1
; z
�2.bCk/C1
1

; w
�`2

2
; : : : /:

Assume that z1 > w1 . Since z2 6 w1 , the vector (5-2) reorders to

(5-3) .�C z2I z
�2.bCk/C1
1

; w
�`1

1
k z2; w

�`2

2
; : : : /:

Then ı D �C z2� 3z1 D 1C z2� 2z1 > 0 by Lemma 5.2(i). Since all entries of (5-3)
are nonnegative, this vector is reduced.

From now on we thus assume that w1 > z1 . Then the vector (5-2) becomes

(5-4) .�C z2Iw
�`1

1
k z
�2.bCk/C1
1

; z2; w
�`2

2
; : : : /:

If `1 > 3, then ı D 1C z1C z2� 3w1 > z1C z2 > 0. If `1 D 2, then

ı D 1C z1C z2� 2w1� .z1 or z2 or w2/> 1� .2w1Cw2/> 0:

So assume that `1 D 1, that is, the vector (5-4) is

.�C z2Iw1 k z
�2.bCk/C1
1

; z2; w
�`2

2
; : : : /:

Case 1 (z1 > z2;w2 ) Then the vector at hand is

.�C z2Iw1; z
�2.bCk/C1
1

k z2; w
�`2

2
; : : : /:
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Hence ıD 1Cz1Cz2�w1�2z1Dw2Cz2�z1 . For k > 3 this number is nonnegative
by Lemma 5.2(iii). Assume now that k D 2 and that ıDw2C z2� z1 < 0. We reduce
the above vector bC 2 times by ı and get

.w2Cz1Cz2C�I �Dw1C.bC2/.w2Cz2�z1/; z1; .w2Cz2/
�.2bC4/

k z2; w
�`2

2
; : : : /:

The order is right by the assumption w2C z2 6 z1 and the following lemma. For this
vector, ı D 0.

Lemma 5.3 w1C .bC 2/.w2C z2� z1/> z1:

Proof Define the function fb on Œvb.2/�bvb.2/c; 1� by

(5-5) fb.w1/ WD w1C .bC 2/.w2C z2� z1/� z1:

We compute

fb.w1/D�.bC1/w1C.2b2
C5bC1/��.2b2

C7bC5/; where �D

r
2bC5Cw1

2b
:

We wish to show that fb.w1/> 0. We estimate

f 0b.w1/D�.bC 1/C
2b2C 5bC 1

2
p

2b.2bC 5Cw1/
6 �.bC 1/C

2b2C 5b

4b
6 0:

Hence fb.w1/ > fb.1/D �.bC 1/C .2b2C 5bC 1/
p

bC3
b
� .2b2C 7bC 5/. The

right-hand side is nonnegative if and only ifr
bC3

b
> 2.b2C 4bC 3/

2b2C 5bC 1
:

Squaring and multiplying by b.2b2C 5bC 1/2 we find that this is equivalent to the
inequality .bC 3/.b� 1/2 > 0, which holds true.

Case 2 (z2 > z1; w2 ) Then ı D 1C z1�w1� .z1 or w2/> 0.

Case 3 (w2 > z1; z2 ) The vector at hand is

.�C z2Iw1; w
�`2

2
k z
�2.bCk/C1
1

; z2; w
�`3

3
; w
�`4

4
; : : : /:

Subcase 3(a) (`2 > 2) Then ıD z1Cz2�w2 . Assume that ı < 0, ie w2 > z1Cz2 .

If `2 D 2m2 > 2 is even, we reduce m2 times by ı and get�
z1C z2Cw2C�I � D w1Cm2.z1C z2�w2/ k

.z1C z2/
�m2 ; z

�2.bCk/C1
1

; z2; w
�`3

3
; w
�`4

4
; : : :

�
:
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Here, �> z1C z2 and �> w3 D w1� `2w2 because m2w2 6 `2w2 6 w1 .

If z1C z2 > w3 , then

ı D w2� .z1C z2 or z1 or z2 or w3/> w2� .z1C z2/ > 0:

If w3 > z1C z2 , then

ı D z1C z2Cw2�w3� .w3 if `3 > 2 and z1C z2 or w4 if `3 D 1/:

In the first case, ı > 0 since w2 D `3w3 C w4 > 2w3 , and in the second case,
ı D w2�w3 > 0 or ı D z1C z2 > 0.

If `2 D 2m2C 1 > 3 is odd, we again reduce m2 times by ı and get�
z1C z2Cw2C�I � D w1Cm2.z1C z2�w2/; w2 k

.z1C z2/
�m2 ; z

�2.bCk/C1
1

; z2; w
�`3

3
; w
�`4

4
; : : :

�
:

If z1C z2 >w3 , then ı D 0. If w3 > z1C z2 , then ı D z1C z2�w3 < 0. The vector
at hand is

.z1Cz2Cw2C�I �Dw1Cm2.z1Cz2�w2/; w2; w
�`3

3
k .z1Cz2/

�m2 ; w
�`4

4
; : : : /;

and applying one more Cremona transform yields the vector

.z1C z2Cw2C�I �; w2C z1C z2�w3; w
�`3�1
3

k .z1C z2/
�m2C1; w

�`4

4
; : : : /;

where now � D w1 C m2.z1 C z2 � w2/ C .z1 C z2 � w3/. The ordering holds
since if `3 > 2 then w2 C z1 C z2 � w3 > w2 � w3 > w3 , and if `3 D 1 then
w2C z1C z2�w3 D z1C z2Cw4 . Now

ı D w3� .w3 or z1C z2 or w4/> 0:

Subcase 3(b) (`2 D 1) Then ı D 1C z1C z2 �w1 �w2 � x D z1C z2 � x with
x 2 fz1; z2; w3g. If x 2 fz1; z2g then ı 2 fz2; z1g > 0. If x D w3 , then the vector at
hand is

.�C z2Iw1; w2; w
�`3

3
k z
�2.bCk/C1
1

; z2; w
�`4

4
; : : : /:

Notice that w2D1�w1 and w3Dw1�w2 . We have ıD z1Cz2�w3 . If w3> z1Cz2 ,
we apply one more Cremona transform and obtain

.z1C z2Cw2C�I � D z1C z2Cw2; z1C z2Cw2�w3; w
�.`3�1/
3

k

z1C z2; z
�2.bCk/C1
1

; z2; w
�`4

4
; : : : /:

The ordering is right since if `3 > 2 then w2 > 2w3 , and if `3D 1 then w2�w3Dw4 .

If `3 > 2 then ı D 0.
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If `3 D 1 then ı D w3� .z1C z2/ > 0 or ı D w3�w4 > 0.

The proof of Theorem 5.1 is complete.

6 The intervals Rb.k/D Œ2b C 2k C 2 ;ub.k C 1/�

Theorem 6.1 Assume that b 2N>5 and that k 2 f2; : : : ; b
p

2bc�1g. Then cb.a/Dp
a

2b
for a 2Rb.k/.

Proof For notational convenience we shift the index k by one, and prove that cb.a/Dp
a

2b
for a 2Rb.k � 1/ and k 2 f3; : : : ; b

p
2bcg.

We start with three inequalities that will be useful later on.

Lemma 6.2 We have:

.i/

.ii/

.iii/

2bC2k

2b
>
�

2bC2k�2

2bCk�2

�2
for k > 4:r

2bC2k

2b
> 2bC2k

2bCk
:

2bCk

2b
6 2bC2k

2bCk�1
if k2 6 2b:

Proof (i) This is equivalent to

.2bC 2k/.2bC k � 2/2� 2b.2bC 2k � 2/2

2b.2bC k � 2/2
> 0;

which holds true for k > 4 because the numerator of the left-hand side can be written
as 2k.b.k � 4/C .k � 2/2/.

(ii) This follows from .2bC k/2� 2b.2bC 2k/D k2 .

(iii) This follows from

.2bC 2k/.2b/� .2bC k � 1/.2bC k/D 2bC k � k2;

since 2bC k � k2 > k > 0 by assumption.

Except possibly for the right endpoint, which we can neglect, the weight expansion at
a 2Rb.k � 1/D

�
2bC 2k; 2bC 2kC k2

2b

�
is

w.a/D .1�2bC2k ; w
�`1

1
; w
�`2

2
; : : : /:
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Set �D
p

a
2b

. We wish to transform the vector

(6-1) ..bC 1/�I b�; �;w.a//

to a reduced vector by a sequence of Cremona moves. Define the numbers

z1 WD �� 1;

y1 WD .2bC k/�� .2bC 2k � 1/;

z2 WD y1��:

Then z1;y1 > 0 and z2 2 Œ0; 1�. Indeed, as we have seen in Lemma 5.2(ii), z2 D 0 at
the left endpoint of Lb.k�1/, and z2 6 1 since �6 2bCk

2b
, using also Lemma 6.2(iii).

Applying one Cremona move to (6-1) we obtain

..bC 1/�� 1I b�� 1; 1�2bC2k�1
k z1; w

�`1

1
; : : : /:

Applying bC k � 1 Cremona transforms with ı D �� 2 and reordering we obtain

(6-2) .y1I 1 k z�2bC2k�1
1

; z2; w
�`1

1
; : : : /:

6.1 The case z1 >w1

For z1 > w1 , assume first that k > 4, or that k D 3 and z2 > z1 . If z2 > z1 , then the
vector (6-2) reorders to

.y1I 1; z2; z
�2bC2k�1
1

; w
�`1

1
; : : : /:

This vector has defect ıD y1�1� z2� z1 D 0 and hence is reduced. If z1 > z2 , then
the vector (6-2) reorders to the vector

(6-3) .y1I 1; z
�2bC2k�1
1

k z2; w
�`1

1
; : : : /;

which for k > 4 is reduced, since then ı D y1 � 1 � 2z1 D y1 � .2� � 1/ > 0 by
Lemma 6.2(i) and the fact that �>

p
2bC2k

2b
.

Assume now that k D 3 and z1 > z2 . If yı WD y1 � 1� 2z1 > 0, the vector (6-3) is
reduced. Otherwise, we apply bC 2 Cremona moves to obtain

(6-4) .y1C .bC 2/yıI 1C .bC 2/yı; z1; z�2bC5
2

kw
�`1

1
; : : : /:

The ordering is right by the following claim, and the defect is y1 � 1� z1 � z2 D 0,
whence this vector is reduced.

Claim Assume that k D 3. Then:
(i) 1C .bC 2/yı > z1 .

(ii) If z1 > w1 , then z2 > w1 .
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Proof Inequality (i) is equivalent to

.2b2
C 5bC 1/�> .2b2

C 8bC 6/:

It suffices to check this inequality for � D
p

2bC6
2b

, where it is equivalent to the
inequality 3b2C 10bC 3 > 0, which holds true for all b > 1.

For (ii), we know that �� 1 > w1 , ie

(6-5) a 6 �C .2bC 5/:

Since aD 2b�2 , this is equivalent to

(6-6) �>
1C

p
1C 8b.2bC 5/

4b
:

We wish to show that z2� 2 > w1 , ie a 6 1C .2bC 2/�. In view of (6-5), this will
hold if �C .2bC 5/6 1C .2bC 2/�, ie

(6-7)
2bC 4

2bC 1
6 �:

By (6-6), this would follow from

2bC 4

2bC 1
6

1C
p

1C 8b.2bC 5/

4b
:

Isolating the root and squaring, this becomes the true inequality 72b=.2bC 1/2 > 0.

6.2 The case w1 > z1

Assume now that

(6-8) w1 > z1:

The vector (6-2) in question is

(6-9) .y1I 1 kw
�`1

1
; z�2bC2k�1

1
; z2; : : : /:

Define
z3 WD y1� 1�w1:

Note that z3 > 0 on our interval, and z3 D 0 at the right endpoint aD .2bCk/2

2b
. The

significance of z3 and of the following lemma will become clear later.

Lemma 6.3 If z3 > w1 , then the vector (6-9) is reduced.
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Proof For ı WD y1� 1� z2�w1 we have z2C ı D z3 and w1C ı D z1 . Applying
one Cremona move to

.y1I 1 k z2; w
�`1

1
; z�2bC2k�1

1
; : : : /

we thus obtain

(6-10) .y1C ıI 1C ı; z3 kw
�`1�1
1

; z�2bC2k
1

; : : : /:

The ordering is right because z3 > w1 > z1 by assumption and by (6-8). The defect
of (6-10) is thus

y1� 1� z3� .w1 or z1 or w2/> y1� 1� z3�w1 D 0:

From now on we thus assume that

(6-11) w1 > z3:

Lemma 6.4 z2 > z1; z3:

Proof The inequality z2 > z1 translates to

.2bC k � 1/�� .2bC 2k � 1/> �� 1;

or, equivalently,

(6-12) �> 2bC 2k � 2

2bC k � 2
:

But we know that �>
p

2bC2k
2b

, whence in the case k > 4 the inequality (6-12) follows
from Lemma 6.2(i). In the case k D 3, (6-12) is (6-7).

The inequality z2 > z3 is �� > �1�w1 . This is equivalent to �� 1 6 w1 , which
follows from (6-8).

The rest of the proof of Theorem 6.1 is divided into the cases `1 D 2m even and
`1 D 2mC 1 odd.

Case I (`1D 2m even) We can assume by continuity that `1 > 0, so that m > 1. By
applying m Cremona transforms to the vector (6-9) with ı D y1� 1� 2w1 we obtain

(6-13) .y2Cy1� 1Iy2 k z�2bC2k�1
1

; z2; z
�`1

3
; w
�`2

2
; : : : /;

where y2 WD 1Cm.y1� 1� 2w1/. The ordering is right by the previous and the next
lemma.

Lemma 6.5 y2 > z2; w2:
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Proof The inequality y2 > z2 is equivalent to

1Cm.y1� 1� 2w1/> y1��:

Since `1w1 6 1 and �> 1, it suffices to show that .m� 1/.y1� 1/> 0. This follows
since y1 > 1, by Lemma 6.2(ii).

The inequality y2 > w2 is equivalent to

1Cm.y1� 1� 2w1/> w2:

Since `1w1 6 1, it suffices to show that m.y1� 1/> w2 . For this, it suffices to show
that y1� 1 > w1 , ie a 6 �.2bC k/. This follows from the fact that a 6 .2bCk/2

2b
.

Lemma 6.6 If z3 > w2 , then the vector (6-13) is reduced.

Proof Assume that z3 > w2 . If z1 > z3 , then (6-13) is

.y2Cy1� 1Iy2; z2; z
�2bC2k�1
1

; z
�`1

3
; w
�`2

2
k : : : /;

which is reduced. Hence we can assume that z3 > z1 . In this case, we apply one
Cremona transform to

.y2Cy1� 1I y2; z2; z
�`1

3
k z�2bC2k�1

1
; w
�`2

2
; : : : /

with ı D z1� z3 and obtain

.y2Cy1� 1C ıI y2C ı; z2C ı; z
�`1�1
3

k z3C ı; z�2bC2k�1
1

; w
�`2

2
; : : : /

since `1 > 2. First note that z3C ı D z1 > 0. To see that the ordering is right, we
need to check that z2C ı > z3 . This is equivalent to y1�1 > 2z3 , which is equivalent
to y1� 1� 2w1 6 0, which holds by (6-11). Since the defect vanishes, this vector is
reduced.

From now on we thus assume that

(6-14) w2 > z3:

Lemma 6.7 If z1 > w2 , then the vector (6-13) is reduced.

Proof Assume that z1 > w2 . Then the vector (6-13) is

.y2Cy1� 1I y2; z2; z�2bC2k�1
1

; w
�`2

2
; z
�`1

3
k : : : /

with defect y1� 1� z2� z1 D 0.
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From now on we thus assume that

(6-15) w2 > z1:

By now, our vector is

.y2Cy1� 1I y2; w
�`2

2
k z2; z�2bC2k�1

1
; z
�`1

3
; w
�`3

3
; : : : / if w2 > z2;(6-16)

.y2Cy1� 1I y2; z2; w
�`2

2
k z�2bC2k�1

1
; z
�`1

3
; w
�`3

3
; : : : / if z2 > w2:(6-17)

Subcase 1 (`2 > 2) In case (6-16) we have ı > y1�1�w1 , since 2w2 6w1 . Since
y1� 1�w1 D z3 > 0, the vector is reduced.

In case (6-17) we have ı D z1�w2 < 0. Applying one Cremona transform yields

(6-18) .y2Cy1�1CıI y2Cı; z2Cz1�w2; w
�`2�1
2

k z�2bC2k
1

; z
�`1

3
; w
�`3

3
; : : : /:

The ordering is right since z2C z1 > 2w2 . Indeed, this is equivalent to y � 1 > 2w2 .
Since w1 > 2w2 , this follows from y1� 1 >w1 , which holds because y1� 1�w1 D

z3 > 0. The defect of (6-18) vanishes.

Subcase 2 (`2 D 1) We again distinguish two cases.

Assume first that w3 > z2 . We are then in case (6-16), and, since z2 > z1 and z2 > z3 ,
the vector at hand is

.y2Cy1� 1I y2; w2; w
�`3

3
; z2 k : : : /:

This vector is reduced, since w1 D w2Cw3 and hence ı D y1� 1�w2�w3 D z3 .

Assume now that either w2 > z2 > w3 or z2 > w2 . Since also z2 > z1 and z2 > z3 ,
in both (6-16) and (6-17) we have ı D z1�w2 . Further, w2 Dw1�w3 since `2 D 1,
and so z2C ı D z2C z1�w2 D w3C z3 . Hence both vectors transform to

.y2Cy1� 1C ıI y2C ı kw3C z3; z�2bC2k
1

; z
�`1

3
; w
�`3

3
; : : : /:

This vector is reduced after reordering: if w3C z3 > z1 , then

ı D z1C z2�w3� z3� .z1 or z3 or w3/D w2� .z1 or z3 or w3/> 0

by (6-14) and (6-15), and if z1 > w3C z3 , then ı D z1C z2� 2z1 D z2� z1 > 0.

Case II (`1 D 2mC 1 odd) We start from the vector (6-9). By applying m > 0

Cremona transforms with ı D y1� 1� 2w1 we obtain

.yy2Cy1� 1I yy2; z
�.`1�1/
3

; w1; z�2bC2k�1
1

; z2; w
�`2

2
; : : : /;

where yy2 WD 1Cm.y1� 1� 2w1/.
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Now apply another Cremona transform to the partially reordered vector

.yy2Cy1� 1I yy2; w1; z2; z�2bC2k�1
1

; z
�.`1�1/
3

; w
�`2

2
; : : : /:

With ı D y1� 1�w1� z2 D z1�w1 we obtain

(6-19) .yy2Cy1� 1C ıI yy2C ı k z�2bC2k
1

; z
�`1

3
; w
�`2

2
; : : : /

since w1CıD z1 and z2CıD z3 . We are again assuming, by continuity, that `2 > 1.
The ordering is right in view of the following lemma:

Lemma 6.8 (i) yy2C ı > z1 .

(ii) yy2C ı > z3 .

(iii) yy2C ı > w2 .

Proof Using 1D `1w1Cw2 and y1� 1D z1C z2 , we compute

yy2C ı D .mC 1/.z1C z2/� z2Cw2:

Assertions (i) and (iii) follow at once. Assertion (ii) follows at once for m > 1, and for
mD 0 it also holds, since then w1Cw2 D 1 > z2 .

We now show that the vector (6-19) is reduced, or can be transformed in one step to
a reduced vector. (We will need to transform the vector in only one case). In view
of Lemma 6.8, we just have to consider the various possibilities for the orderings of
z1 , z3 and w2 . Denote by ı� the defect of the reordering of (6-19).

Case 1 (z1 > z3; w2 ) Then ı� D y1� 1� 2z1 D z2� z1 > 0 by Lemma 6.4.

Case 2 (z3 > z1; w2 ) Then ı� > y1� 1� 2z3 D w1� z3 > 0 by (6-11).

Case 3 (w2 > z1; z3 ) Then the vector (6-19) is

(6-20) .yy2Cy1� 1C ıI yy2C ı; w
�`2

2
k z�2bC2k

1
; z
�`1

3
; w
�`3

3
; : : : /:

Subcase (`2 > 2) Then (6-20) is reduced if y1�1 > 2w2 . We know that 2w2 6w1 .
Hence it suffices to show that y1� 1 > w1 , which follows from the fact that z3 > 0.

Subcase (`2 D 1) We distinguish three cases.

Assume first that w3 > z1; z3 . Then (6-20) is reduced, since

ı� D y1� 1� .w2Cw3/D y1� 1�w1 D z3:

Assume next that z3 > z1; w3 . Then (6-20) is reduced, since

ı� D y1� 1�w2� z3 D w1�w2:
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Assume finally that z1 > z3; w3 . Then the vector in question is

.yy2Cy1� 1C ıI yy2C ı; w2; z�2bC2k
1

k z
�`1

3
; w
�`3

3
; : : : /:

If yı WD y1� 1�w2� z1 D z2�w2 > 0, this vector is reduced. Otherwise, we apply
one Cremona transform and obtain

(6-21) .yy2Cy1� 1C ıCyıI yy2C ıCyı; w2C
yı; z1C

yı; z�2bC2k�1
1

; : : : /:

Note that z1C
yıD y1�1�w2 > y1�1�w1D z3 > 0 and that w2C

yıD z2 > z1 by
Lemma 6.4. Hence (6-21) reorders to the vector

.yy2Cy1� 1C ıCyıI yy2C ıCyı; z2; z�2bC2k�1
1

; : : : /

which is reduced, since its defect is y1� 1� z2� z1 D 0.

The proof of Theorem 6.1 is finally complete.

7 The interval Œvb.1/; 2b C 4�

Recall that for b 2N>2 we defined vb.1/ WD 2b
�

2bC3
2bC1

�2 and

˛b WD
1

b
.b2
C 2bC

p
.b2
C 2b/2� 1/ 2 �vb.1/; 2bC 4Œ:

Theorem 7.1 For every b 2N>2 we have

cb.a/D

8̂<̂
:
q

a

2b
if a 2 Œvb.1/; ˛b �;

baC1

2b.bC1/
if a 2 Œ˛b; 2bC 4�:

In particular, cb.˛b/D
p
˛b

2b
and cb.2bC 4/D 1C 2bC1

2b.bC1/
.

Proof Let a 2 Œvb.1/; 2bC 4� be a rational number. For w1.b/D vb.1/� .2bC 3/

we compute w0
1
.b/D 16=.2bC 1/3 . Hence w1.b/> w1.2/D

21
25
> 5

6
for b > 2, and

so `1 D 1 and `2 > 5. The weight expansion of a thus has the form

w.a/D .1�.2bC3/; w1; w
�`2

2
; : : : ; w

�`N

N
/:

We wish to show that for �D cb.a/ as in the theorem, the vector ..bC1/�I b�; �;w.a//

can be reduced to a reduced vector.

Algebraic & Geometric Topology, Volume 17 (2017)



1236 Daniel Cristofaro-Gardiner, David Frenkel and Felix Schlenk

7.1 The interval Œvb.1/; ˛b�

Assume that a 2 Œvb.1/; ˛b �. Then �D
p

a
2b

. Define the numbers

z1 WD �� 1;

z2 WD .2bC 1/�� .2bC 3/;

z3 WD .2bC 1/�� .a� 1/;

z4 WD b.z3� z1/Cw1;

z5 WD 2b.bC 1/�� .baC 1/;

z6 WD b.2z5C z1� z4� 2z3/C z4:

In the following, the symbol e
D means that an identity is readily checked by expanding

the relevant zi as polynomials of degree two in � with coefficients polynomials in b .
For instance,

z3 D 1C z2�w1
e
D z1C z5� z4;(7-1)

z6
e
D b.2b.bC 1/� 1/�� .b2a�w1/:(7-2)

In this section, all newly created numbers will be one of z1; : : : ; z6 or 0, and we shall
write down each zi of every vector. In other words, the dots : : : in any vector are
either wj or 0.

7.1.1 Inequalities

Lemma 7.2 On the interval Œvb.1/; ˛b � the following inequalities hold true:

(i) b�� 1 > 1 and w1 > z1 > w2 .

(ii) w1 > 1� z1C z2 > z1 > z2 .

(iii) z1 > z3 > z2; w2 .

(iv) z1 > z5 . Moreover, z5 > z3 is equivalent to z4 > z1 .

(v) z4 > z3 .

(vi) z6 > z2 , z5 , w2 .

(vii) If b > 3, then z1� z4C 2z5� 2w2 > 0.

(viii) zi > 0 for all i 2 f1; : : : ; 6g.

Proof (i) We have b�� 1 > b� 1 > 1. In order to prove w1 > z1 , we show that the
function

fb.a/ WD w1� z1 D a� .2bC 2/�
q

a

2b
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is nonnegative. Since f 0
b
.a/ D 1� 1

4b

p
2b
a
> 0, it suffices to see that fb.vb.1// D

.4b2� 5/=.2bC 1/2 > 0, which holds true for b > 2.

To prove z1 >w2 , define the function fb.a/ WD z1�w2D
p

a
2b
Ca� .2bC5/. Since

f 0
b
.a/D 1

4b

p
2b
a
C 1> 0, it suffices to see that fb.vb.1//D .4b� 2/=.2bC 1/2 > 0,

which holds true for b > 2.

(ii) We compute

1� z1C z2 D 2b.�� 1/� 1 > �� 1D z1:

This proves the second inequality, and that the first inequality w1 > 1 � z1 C z2

is equivalent to 2b�2 � 2b� � 2 > 0. Since the left-hand side is increasing for
� > 1, it suffices to check this inequality at �.vb.1// D

2bC3
2bC1

, where it becomes
.4b� 2/=.2bC 1/2 > 0.

The third inequality z1 > z2 is equivalent to
p

2ab 6 2bC 2. Squaring this leads to
a 6 2bC 4C 2

b
, which is verified for a 6 ˛b < 2bC 4.

(iii) The inequality z1 > z3 is equivalent to w1 > 1� z1C z2 , hence true. The other
two inequalities follow from z3 D z2Cw2 .

(iv) The inequality z1 > z5 is equivalent to a > .2b2C2b�1/2=2b3 . This inequality
is satisfied since .2b2C 2b� 1/2=2b3 6 vb.1/ is equivalent to 8b3C 12b2 � 1 > 0,
which is true for b > 2.

The inequality z5 > z3 is equivalent to z4 > z1 since z3 D z1C z5� z4 .

(v) Define the function fb.�/ WD z4� z3
e
D �.2b2� 2b� 1/� .b� 2/2b�2� 4. For

b D 2 we compute f2.�/D 3�� 4 > f2.�.v2.1///D
1
5
> 0. For b > 3 we have

f 0b.�/D 2b2
� 2b� 1� 4b.b� 2/�6 �2b2

C 6b� 1 6 �1

since �> 1. It thus suffices to show that fb.�/ > 0 at �D
p

2bC4
2b

, that is,r
2bC4

2b
.2b2

� 2b� 1/> 2b2
� 4:

Squaring both sides leads to 4b2� 7bC 2 > 0 which is verified for b > 3.

(vi) The first inequality means that the function

fb.a/D z6� z2
e
D .2b3

C 2b2
� 3b� 1/�C .1� b2/a

is nonnegative for a 2 Œvb.1/; ˛b �. Equivalently,

1
p

2b
.2b3

C 2b2
� 3b� 1/>

p
a.b2

� 1/:
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It suffices to show this inequality for aD 2bC 4, ie

1

2b
.2b3

C 2b2
� 3b� 1/2 > .2bC 4/.b2

� 1/2:

This is equivalent to .b� 1/2 > 0, which holds true.

We next show that the function

fb.a/D z6� z5
e
D�2� 2bC .2b3

� 3b/�C .1C b� b2/a

is nonnegative for a 2 Œvb.1/; ˛b �.

If b D 2, then fb.a/D�aC 5
p

a� 6> 0 on Œ2bC 3; 2bC 4�D Œ7; 8�.

For b > 3 we compute that

f 0b.a/D .2b3
� 3b/�0b.a/C .1C b� b2/

is negative on Œvb.1/; ˛b �, since �0
b
.a/D 1=.2

p
2ab/ is decreasing and since f 0

b
.2b/D

1
4
C b� b2

2
< 0 for b > 3. It thus suffices to show that

fb.2bC 4/D 2.1C 2b� b2
� b3/C .2b3

� 3b/

q
bC2

b

is positive. This is equivalent to b2C 2b� 4 > 0, which holds true.

We finally show that the function

fb.a/D z6�w2
e
D�7� 4bC b.2b2

C 2b� 1/�C .2� b2/a

is nonnegative for a 2 Œvb.1/; ˛b �.

If b D 2, then fb.a/D�2aC 11
p

a� 15> 0 on Œ2bC 3; 2bC 4�D Œ7; 8�.

For b > 3 we compute that

f 0b.a/D b.2b2
C 2b� 1/�0b.a/C 2� b2

is negative on Œvb.1/; ˛b �, since f 0
b
.2b/D 1

4
.2b2C2b�1/C2�b2 < 0 for b > 3. It

thus suffices to show that

fb.2bC 4/D 1� 2b2.bC 2/C b.2b2
C 2b� 1/

q
bC2

b

is positive. This is equivalent to b2C 2b� 1 > 0, which holds true.

Algebraic & Geometric Topology, Volume 17 (2017)



Symplectic embeddings of four-dimensional ellipsoids into integral polydiscs 1239

(vii) We compute

ıb.a/ WD z1� z4C 2z5� 2w2
e
D�8� 4bC .1C 4bC 2b2/�C .1� b/a

and
ı0b.a/D 1� bC

2b2C 4bC 1

2
p

2
p

ab
:

Assume first that b D 3. Then ı3.a/D�20C 31p
6

p
a� 2a. Since

ı03.a/D�2C
31

2
p

6
p

a

is positive for a2 Œ2bC3; 2bC4�D Œ9; 10�, and since ı3.v3.1//D
1

49
> 0, the function

ı3.a/ is positive on Œv3.1/; ˛3�.

Assume now that b D 4. Then

ı4.a/D�24C
49
p

a

2
p

2
� 3a:

Hence ı4.2b/ D ı4.8/ D 1 and ı4.2b C 4/ D ı4.12/ D �60C 49
p

3
2
> 0, and so

ı4.a/ > 0 for all a 2 Œ2b; 2bC 4�.

Assume finally that b > 5. Then ı0
b
.a/ < 0 for a 2 Œ2b; 2b C 4�. Indeed, ı0

b
.a/ is

decreasing and ı0
b
.2b/D 1� bC .2b2C 4bC 1/=4b < 0. We are left with showing

that
ıb.2bC 4/D�.4C 6bC 2b2/C .1C 4bC 2b2/

r
bC2

b

is positive, which is true since equivalent to bC2
b
> 0.

(viii) We show that z2 , z5 > 0. The other inequalities then follow from the previous
items. The inequality z2 > 0 is equivalent to �> 2bC3

2bC1
, which holds true. Moreover,

z5 > 0 is equivalent to

(7-3) �> baC1

2b.bC1/
;

which means that the line a 7! baC1
2b.bC1/

of the affine step is below the volume con-
straint

p
a

2b
. This holds true on Œ2b; ˛b �, since

p
a

2b
is convex and since (7-3) is an

equality at ˛b and a strict inequality at 2b .

7.1.2 Reductions Reducing the vector ..bC 1/�I b�; �; 1�.2bC3/; w1; w
�`2

2
k : : : /

with ı D�1 yields

..bC 1/�� 1I b�� 1; �� 1„ƒ‚…
Dz1

; 0; 1�.2bC2/; w1; w
�`2

2
; : : : /:
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By Lemma 7.2(i) this vector reorders to

..bC 1/�� 1I b�� 1; 1�.2bC2/; w1; z1; w
�`2

2
k : : : ; 0/:

Applying b Cremona transforms with ıD ��2 and regrouping the produced z1 ’s, we
get

..2bC 1/�� .2bC 1/„ ƒ‚ …
Dz2C2

I 2b�� .2bC 1/„ ƒ‚ …
D1�z1Cz2

; 1�2; w1; z
�.2bC1/
1

; w
�`2

2
; : : : /:

By Lemma 7.2(ii), this vector reorders to

.z2C 2I 1�2; w1; 1� z1C z2; z
�.2bC1/
1

; w
�`2

2
k : : : /:

Applying one Cremona transform with ı D z2�w1 yields the vector

.2z2C 2�w1I .1C z2�w1/„ ƒ‚ …
Dz3 by (7-1)

�2; z2; 1� z1C z2; z
�.2bC1/
1

; w
�`2

2
; : : : /;

which by Lemma 7.2(iii) reorders to

.2z2C 2�w1I 1� z1C z2; z
�.2bC1/
1

; z�2
3 k z2; w

�`2

2
; : : : /:

Applying b�1 Cremona transforms with ıD z3�z1 and regrouping the produced z3 ’s,
we get

(7-4) ..b�1/.z3�z1/C2z2C2�w1„ ƒ‚ …
e
D2z1Cz5

I b.z3�z1/Cw1„ ƒ‚ …
Dz4

; z�3
1 ; z�2b

3 ; z2; w
�`2

2
; : : : /:

We now distinguish the cases z4 > z1 and z1 > z4 .

Case 1 (z4 > z1 ) The ordered vector is then

.2z1C z5I z4; z
�3
1 ; z�2b

3 k z2; w
�`2

2
; : : : /:

One more Cremona transform with ı D z5� z4 yields

.2.z1C z5/� z4I z5; .z1C z5� z4„ ƒ‚ …
Dz3 by (7-1)

/�2; z1; z
�2b
3 ; z2; w

�`2

2
; : : : /;

which by Lemma 7.2(iv) reorders to

.2.z1C z5/� z4I z1; z5; z
�.2bC2/
3

k z2; w
�`2

2
; : : : /:

We already know that all entries of this vector are nonnegative, and its defect is
ı D z1C z5� z4� z3 D 0. Hence this vector is reduced.
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Case 2 (z1 > z4 ) Reorder the vector (7-4) as

.2z1C z5I z
�3
1 ; z4; z

�2b
3 k z2; w

�`2

2
; : : : /:

Recall from Lemma 7.2(iv) that z1 >z5 . Apply one Cremona transform with ıDz5�z1

to obtain
.2z5C z1I z

�3
5 ; z4; z

�2b
3 ; z2; w

�`2

2
; : : : /:

Since z3 > z5 by Lemma 7.2(iv), this vector reorders to

.2z5C z1I z4; z
�2b
3 k z2; z

�3
5 ; w

�`2

2
; : : : /:

Applying b Cremona transforms with ı D 2z5C z1 � z4 � 2z3 and regrouping the
produced z5 ’s, we obtain the vector

..bC1/.2z5Cz1/�b.z4C2z3/„ ƒ‚ …
DW�

I b.2z5Cz1�z4�2z3/Cz4„ ƒ‚ …
Dz6

; z2; z
�.2bC3/
5

; w
�`2

2
; : : : /;

which by Lemma 7.2(vi) reorders to

(7-5) .�I z6 k z2; z
�.2bC3/
5

; w
�`2

2
; : : : /:

Notice that this vector does not contain z1 , z3 or z4 .

Proposition 7.3 Assume that a 6 ˛b and z1 > z4 . If b D 2, also assume that
w2 6 maxfz2; z5g. Then the vector (7-5) is reduced.

Proof We already know that all entries of (7-5) are nonnegative. Using (7-1) we
compute

(7-6) �� z6 D z1� z4C 2z5 D z3C z5:

Subcase 1 (z5 > w2 ) Then

ı D �� z6� z5� .z2 or z5/D z3� .z2 or z5/> 0;

where in the last step we have used Lemma 7.2(iii)–(iv).

Subcase 2 (z2 > w2 > z5 ) Then

ı D �� z6� .z2Cw2/D z3C z5� z3 D z5 > 0:

Subcase 3 (w2 > z2 , z5 ) This is the case where we assume that b > 3. Recall that
`2 > 2. Hence

ıb.a/D �� z6� 2w2 D z1� z4C 2z5� 2w2

is nonnegative by Lemma 7.2(vii).
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In view of Proposition 7.3 we can assume that b D 2 and that w2 > maxfz2; z5g. The
vector at hand then is

(7-7) .�I z6; w
�`2

2
k z2; z

�.2bC3/
5

; : : : /:

We set z7 WD z2C z5 and compute

ı D �� z6� 2w2
(7-6)
D z3C z5� 2w2

(7-1)
D 1C z2�w1C z5� 2w2 D z7�w2:

If ı > 0 we are done. So assume that ı D z7 �w2 < 0, and set m WD
�

1
2
`2

˘
and

y� WD �Cmı , yz6 WD z6Cmı . Applying m Cremona transforms and swapping the
position of w2 and z�2m

7
if `2 is odd, we obtain

.y�I yz6; z
�2m
7 ; z2; z

�.2bC3/
5

; w
�`3

3
; : : : / if `2 D 2m;(7-8)

.y�I yz6; w2; z
�2m
7 ; z2; z

�.2bC3/
5

; w
�`3

3
; : : : / if `2 D 2mC 1:(7-9)

Proposition 7.4 After reordering, the vector (7-8) is reduced. After reordering, the
vector (7-9) is reduced if z7 >w3 , and transforms to a reduced vector by one Cremona
move if w3 > z7 .

Proof We first show the inequalities

(7-10) yz6 > w2 > z7 > z2; z5:

Then also yz6 , z7 > 0. We have w2� z7 D�ı > 0 and z7 D z2C z5 > z2; z5 . We are
thus left with proving yz6 > w2 . For m 2N we compute

fm.a/ WDyz6�w2D z6Cmz7�.mC1/w2D�.mC2/aC
�

17
2

mC11
�p

a�.16mC15/:

Then f 0m.a/D�.mC2/C
�

17
2

mC11
�
=.2
p

a/>0 for all m2N and a2 Œ2bC3;2bC4�D

Œ7; 8�, since this holds true for a D 8. Recall that `2 > 5. Since `2 D bw1=w2c D�
�7Ca
8�a

˘
and `2.˛2/ D 30, we can assume that 2 6 m 6 15. If the multiplicity

of w2 is `2 , then w1 2 Œ`2=.`2 C 1/; .`2 C 1/=.`2 C 2/Œ. Thus yz6 � w2 is given
by fm for a 2

�
7C 2m

2mC1
; 7C 2mC2

2mC3

�
\ Œv2.1/; ˛2�. Since each fm is increasing on

Œ7; 8�, it now suffices to note that f2.v2.1//D f2

��
14
5

�2�
D

1
25
> 0 and to check that

fm

�
7C 2m

2mC1

�
> 0 for m2 f3; : : : ; 15g, which is readily done, for instance by noticing

that m 7! fm

�
7C 2m

2mC1

�
is increasing.

Case 1 (z7 > w3 ) The part .�I a1; a2; a3/ of the ordered vectors is then as in (7-8)
and (7-9). Therefore, yı D �� z6� 2z7 D ı� 2.z7�w2/D�ı > 0 if `2 is even, and
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yı D �� z6�w2� z7 D ı� .z7�w2/D 0 if `2 is odd. Hence the vectors (7-8) and
(7-9) are reduced.

Case 2 (w3 > z7 ) In this case, the vectors at hand are

.y�I yz6; w
�`3

3
k z�2m

7 ; w
�`4

4
; z2; z

�.2bC3/
5

; : : : / if `2 D 2m;(7-11)

.y�I yz6; w2; w
�`3

3
k z�2m

7 ; w
�`4

4
; z2; z

�.2bC3/
5

; : : : / if `2 D 2mC 1:(7-12)

Assume first that `2 is even. If `3 D 1, then (7-10) shows that

yı D �� z6�w3� .z7 or w4/D w2C z7�w3� .z7 or w4/D .w2�w3 or z7/> 0:

If `3 > 2, then yı D �� z6� 2w3 D w2C z7� 2w3 > z7 > 0.

Assume now that `2 is odd. Then yı D �� z6 �w2 �w3 D z7 �w3 < 0. Applying
one more Cremona move to the vector (7-12) yields

.y�CyıI yz6C
yı; w2C

yı; w
�`3�1
3

k z�2mC1
7

; w
�`4

4
; z2; z

�.2bC3/
5

; : : : /:

The ordering is right because if `3 D 1, then w2C
yı D w2C z7�w3 D z7Cw4 , and

if `3 > 2, then w2C
yı D w2C z7�w3 > w3 .

If `3D1, then the defect is now zıD��z6�w2�
yı�.z7 or w4/Dw3�.z7 or w4/>0,

and if `3 > 2, then zı D w3�w3 D 0.

This completes the proof of Theorem 7.1 for a 6 ˛b .

7.2 The interval Œ˛b; 2b C 4�

It turns out that the reduction process for a2 Œ˛b; 2bC4� is the same as for a2 Œvb.1/; ˛b �

in Case 2. Set �D baC1
2b.bC1/

and define z1; : : : ; z6 as in Section 7.1. Applying the same
Cremona moves (ie the same sequence of Cremona transforms and reorderings) as in
Case 2, we obtain the vector (7-5), namely

(7-13) .�I z6 k z2; z
�.2bC3/
5

; w
�`2

2
; : : : /:

It suffices to prove the following statement:

Proposition 7.5 If a > ˛b , then the vector (7-13) is reduced.

Proof The identity �D baC1
2b.bC1/

is equivalent to z5 D 0. We now show z6; z2 > w2 ,
implying z6; z2 > 0. Using (7-2) we find that the inequality z6 > w2 is equivalent to
the inequality

w1 > 3bC 3

3bC 4
;
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which is satisfied since 3bC3
3bC4

6 ˛b� .2bC3/ for all b > 2
3
.�1C

p
7/. The inequality

z2 > w2 is equivalent to the inequality

w1 > 4b2C 3b� 1

4b2C 3b
;

which is satisfied since 4b2C3b�1
4b2C3b

6 ˛b � .2bC 3/ for all b > 5
4

.

The ordered vector is thus

.�I z6; z2; w
�`2

2
; : : : ; 0�.2bC3//:

(The inequality z6 > z2 holds true, but there is no need to prove it). Using again
�� z6 D z1 � z4C 2z5 and z1C z5 � z4 D 1C z2 �w1 from (7-1) we find, since
z5 D 0,

ı D .�� z6/� .z2Cw2/D .z1� z4/� .z2C 1�w1/D 0:

Hence the vector (7-13) is reduced.

8 The interval Œ2b C 4;ub.2/� for b > 3

Recall that b WD ub.2/D
.2bC2/2

2b
D 2bC 4C 2

b
and that

ˇb WD
.2b2C 4bC 1/2

2b.bC 1/2
D 2bC 4C

1

2b.bC 1/2
2 �2bC 4; b Œ:

Throughout this section we assume that b > 3.

Theorem 8.1 For b > 3 we have

cb.a/D

8<:1C
2bC1

2b.bC1/
if a 2 Œ2bC 4; ˇb �;q

a

2b
if a 2 Œˇb; b �:

Proof In view of Theorem 7.1 it suffices to prove that cb.a/D
p

a
2b

on Œˇb; b �. Let
a 2 Œˇb; b � be a rational number with weight expansion

w.a/D .1�.2bC4/; w
�`1

1
; w
�`2

2
; : : : ; w�`n

n /:
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8.1 Inequalities

Set �D
p

a
2b

. We wish to show that the vector ..bC1/�I b�; �;w.a// can be reduced
to a reduced vector. Notice that

�.ˇb/D 1C
2bC1

2b.bC1/
; �.b/D 1C

1

b
:

Define the numbers
z1 WD �� 1;

z2 WD .2bC 1/�� .2bC 3/;

z3 WD 1C b.z2� z1/;

z4 WD 1C .bC 1/.z2� z1/;

z5 WD z1C z2�w1

and mD
�

1
2
`1

˘
, where `1 D

�
1
w1

˘
.

Lemma 8.2 On the interval Œˇb; b � the following inequalities hold true:
(i) 1� z1C z2 > z1 > z2 > 0.

(ii) 1� z1C z2 > w1 .
(iii) z3 > z2 , z4 , w1 and z4 > 0.
(iv) z3C b.z4� z2/> z2 .
(v) z2C z4�w1 > w1 .

(vi) 2z2 > w1 and z2 > w3 .
(vii) 1� z1C z2Cm.z1C z2� 2w1/> w1 .

In particular, zi > 0 for all i .

Proof (i) The inequality z1 > z2 was already shown in the proof of Lemma 7.2(ii).

The inequality z2 > 0 is equivalent to .2bC 1/� > 2bC 3. Since � is increasing, it
suffices to verify this in aD ˇb , that is, that

.2bC 1/

�
1C

2bC1

2b.bC1/

�
> 2bC 3;

or, equivalently, .2bC 1/2 > 4b.bC 1/, which holds true.

The inequality 1� z1C z2 > z1 is equivalent to .2b� 1/�> 2b . It suffices to verify
this in aD ˇb , that is, that

.2b� 1/
�
1C

2bC1

2b.bC1/

�
> 2b;

or, equivalently, 2b2 > 2bC 1, which holds true.
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(ii) This is equivalent to a� 3 6 2b�. Since the slope of 2b�D
p

2ba is
p

b
2a
< 1,

it suffices to check this inequality at aD b , ie that 2bC 2 > a� 3, which holds true.

(iii) The inequality z3 > z2 is equivalent to .2b2� 2b� 1/�> 2b2� 4. It suffices to
verify this at aD ˇb , that is, that

.2b2
� 2b� 1/

�
1C

2bC1

2b.bC1/

�
> 2b2

� 4;

or, equivalently, 2b > 1, which holds true.

The inequality z3 > z4 follows from z1 > z2 .

The inequality z3 > w1 is equivalent to 2b2�> 2b2C a� 5 or, using aD 2b�2 , to

fb.�/ WD �2b�2
C 2b2�� 2b2

C 5 > 0:

Since b > 3 we have f 0
b
.�/D 2b.b� 2�/ > 0, and fb.�.ˇb//D

2b2C2b�1
2b.bC1/2

> 0.

The inequality z4 > 0 is equivalent to 2b.bC 1/�> 2b2C 4bC 1, which holds true,
since this is an equality at aD ˇb .

(iv) This is equivalent to .2b2C4bC1/�> 2.b2C3bC2/. At aDˇb , this inequality
is equivalent to

.2b2
C 4bC 1/.2bC 1/> 2b.bC 1/.2bC 3/;

which in turn simplifies to 1 > 0.

(v) This is equivalent to .2b2C 4bC 1/�> 2.aC b2C b� 2/, or, using aD 2b�2 ,
to

(8-1) fb.�/ WD 4b�2
� .2b2

C 4bC 1/�C 2.b2
C b� 2/6 0

on Œˇb; b �. Its derivative is f 0
b
.�/D 8b�� .2b2C 4bC 1/.

Assume first that bD3. Then f 0
b
.�/D24��31 > 0 since this holds true in �.ˇb/D

31
24

.
Hence (8-1) follows from fb.�.b//D f3

�
4
3

�
D 0.

Assume now that b > 4. Then f 0
b
.�.b//D 8.bC 1/� .2b2C 4bC 1/6 0, whence

f 0
b
.�/6 0. Thus (8-1) follows from fb.�.ˇb//D�

b�1
2b.bC1/2

6 0.

(vi) This is equivalent to

(8-2) fb.�/ WD b�2
� .2bC 1/�C .bC 1/6 0

on Œˇb; b �. Since f 0
b
.�/ D 2b� � .2b C 1/ > 2b�.ˇb/ � .2b C 1/ D b

bC1
> 0 on

Œˇb; b �, the inequality (8-2) follows from fb.�.b//D 0.
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Further, z2 > 1
2
w1 > w3 since w1 D `2w2Cw3 > w2Cw3 > 2w3 .

(vii) Recall that 1D `1w1Cw2 . If `1 D 2mC 1, then (vii) becomes

w2� z1C z2Cm.z1C z2/> 0;

which holds true. If `1 D 2m, then (vii) becomes w2 � z1C z2Cm.z1C z2/ > w1 .
This holds true since it holds true for mD 1 by assertion (vi).

The following lemma will be very useful:

Lemma 8.3 If w2 > z2 , then `2 D 1.

Proof Recall that we can assume `3 > 1, that is, w3 > 0. If `2 > 2, then w1 D

`2w2Cw3 > 2w2 > 2z2 > w1 , by Lemma 8.2(vi).

8.2 Reductions

Applying one Cremona transform to

..bC 1/�I b�; �; 1�.2bC4/; w
�`1

1
; : : : /

with ı D�1 yields

..bC 1/�� 1I b�� 1; �� 1„ƒ‚…
Dz1

; 0; 1�.2bC3/; w
�`1

1
; : : : /;

which we reorder to

..bC 1/�� 1I b�� 1; 1�.2bC3/
k z1; w

�`1

1
; : : : ; 0/:

Applying b Cremona transforms with ı D �� 2 we obtain

..2bC 1/�� .2bC 1/„ ƒ‚ …
Dz2C2

I 2b�� .2bC 1/„ ƒ‚ …
D1�z1Cz2

; 1�3; z
�.2bC1/
1

; w
�`1

1
; : : : ; 0/;

which by Lemma 8.2 reorders to

.z2C 2I 1�3; 1� z1C z2 k z
�.2bC1/
1

; w
�`1

1
; : : : ; 0/:

Applying one Cremona transform with ı D z2� 1 yields

.2z2C 1I z�3
2 ; 1� z1C z2; z

�.2bC1/
1

; w
�`1

1
; : : : ; 0/;

which we reorder to

(8-3) .2z2C 1I 1� z1C z2 k z
�.2bC1/
1

; z�3
2 ; w

�`1

1
; : : : ; 0/:
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We now distinguish several cases, according to the order of z1 > z2 and w1 .

Case 1 (z1 > z2; w1 ) Applying b � 1 Cremona moves to the vector (8-3) with
ı D z2� z1 we get the vector

(8-4) .z1C z2C z3I z3; z
�3
1 ; z

�.2bC1/
2

; w
�`1

1
; : : : /:

Case 1(a) (z1 > z2 > w1 ) If z3 > z1 , we apply one more Cremona move with
ı D z2� z1 and obtain

.2z2C z3I z3C z2� z1„ ƒ‚ …
Dz4

; z1; z
�.2bC3/
2

; w
�`1

1
; : : : /:

The assumption z3 > z1 is equivalent to z4 > z2 . Hence this vector is ordered up to
possibly swapping z4 and z1 , and in either case ı D 0, whence this vector is reduced.
We can thus assume for the rest of Case 1(a) that

(8-5) z1 > z3 and z2 > z4:

By Lemma 8.2(iii) the vector (8-4) reorders to

(8-6) .z1C z2C z3I z
�3
1 ; z3 k z

�.2bC1/
2

; w
�`1

1
; : : : /:

One Cremona transform with ı D z4� z1 yields the vector

.2z4C z1I z
�3
4 ; z3; z

�.2bC1/
2

; w
�`1

1
; : : : /;

which by (8-5) reorders to

.2z4C z1I z3; z
�.2bC1/
2

k z�3
4 ; w

�`1

1
; : : : /:

Under b Cremona transforms with ı D z4� z2 this vector becomes

.2z4C z1C b.z4� z2/I z3C b.z4� z2/; z2 k z
�.2bC3/
4

; w
�`1

1
; : : : /;

where the ordering follows from Lemma 8.2(iv). Then

ı D z4� .z4 or w1/:

If z4 > w1 we are done. If w1 > z4 , one more Cremona transform with ı D z4�w1

yields the vector

.2z4Cz1Cb.z4�z2/CıI z3Cb.z4�z2/Cı; z2Cz4�w1; w
�.`1�1/
1

k z
�.2bC4/
4

; : : : /;

which is ordered by Lemma 8.2(v) and has defect 0.
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Case 1(b) (z1 >w1 > z2 ) Assume first that z1 > z3 . The vector (8-4) then reorders
to

(8-7) .z1C z2C z3I z
�3
1 ; z3; w

�`1

1
k z
�.2bC1/
2

; w
�`2

2
; : : : /:

Since z4 6 z3 6 z1 , we also have z4 6 z1 , and so ı D z4 � z1 6 0. One Cremona
transform yields

.2z4C z1I z
�3
4 ; z3; w

�`1

1
; z
�.2bC1/
2

; w
�`2

2
; : : : /:

Since z1C z4 D z2C z3 and z1 > z3 , we have z4 6 z2 , whence this vector reorders to

.2z4C z1I z3; w
�`1

1
k z
�.2bC1/
2

; z�3
4 ; w

�`2

2
; : : : /:

By Lemma 8.2(v) we can estimate

ı D .z4C z2�w1/� .w1 or z2 or z4 or w2/> w1�w1 D 0:

For the rest of Case 1(b) we can thus assume that

z3 > z1 and z4 > z2:

The vector (8-4) then reorders to

.z1C z2C z3I z3; z
�3
1 ; w

�`1

1
k z
�.2bC1/
2

; w
�`2

2
; : : : /:

Applying one Cremona transform with ı D�z1C z2 yields

.2z2C z3I z4$ z1; w
�`1

1
k z
�.2bC3/
2

; w
�`2

2
; : : : /:

The ordering is right up to possibly swapping z4$ z1 , since z4 >w1 by Lemma 8.2(v).
Abbreviate

� WD z2C z4�w1 and z5 WD z1C z2�w1:

Then z5 > z2 . Applying one Cremona transform with ı D z2�w1 we obtain

(8-8) .�C z1C z2I �; z5; w
�.`1�1/
1

; z
�.2bC4/
2

; w
�`2

2
; : : : /:

By Lemma 8.2(v) we have �> w1 . If also z5 > w1 , then

ı D w1� .w1 or z2 or w2/> 0:

So assume that z5 6 w1 . Then the vector (8-8) reorders to

(8-9) .z1C z2C�I �; w
�.`1�1/
1

k z5; z
�.2bC4/
2

; w
�`2

2
; : : : /:
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Subcase 1 (`1 D 2m C 1 with m > 0) Applying m Cremona transforms with
ı� WD z5�w1 we get

(8-10) .z1C z2C�Cmı�I �Cmı�; z
�`1

5
; z
�.2bC4/
2

$ w
�`2

2
; : : : /:

We claim that this vector is reduced after reordering.

Assume that z5 >w2 . Then the ordering in (8-10) is right by Lemma 8.4(i) below, and

ı D w1� .z5 or z2 or w2/> 0:

Assume that w2 > z5 . Recall that z5 D z1C z2�w1 > z2 > w3 . By Lemma 8.3 we
have `2 D 1, and so by Lemma 8.4(i) the vector (8-10) reorders to

.z1C z2C�Cmı�I �Cmı�$ w2; z
�`1

5
; z
�.2bC4/
2

k : : : /:

Now ı D z1C z2�w2� z5 D w1�w2 > 0.

Subcase 2 (`1 D 2m with m > 1) Applying m� 1 Cremona transforms to (8-9)
with ı� D z5�w1 we get

(8-11) .z1Cz2C�C.m�1/ı�I �C.m�1/ı�; w1; z
�.`1�1/
5

; z
�.2bC4/
2

; w
�`2

2
; : : : /:

Assume that z5 > w2 . Then Lemma 8.4(ii) shows that (8-11) reorders to

.z1C z2C�C .m� 1/ı�I �C .m� 1/ı�$ w1; z
�.`1�1/
5

k z
�.2bC4/
2

; w
�`2

2
; : : : /;

and ı D 0.

Assume that w2 > z5 . Then `2 D 1 by Lemma 8.3, and we reorder (8-11) to

.z1C z2C�C .m� 1/ı�I �C .m� 1/ı�; w1; w2; z
�.`1�1/
5

; z
�.2bC4/
2

; : : : /:

One Cremona transform with yı D z5�w2 yields the vector

.z1Cz2C�C .m�1/ı�CyıI �C .m�1/ı�Cyı; z1Cz2�w2; z
�`1

5
; z
�.2bC4/
2

; : : : /:

Recall that z1C z2�w2 > z5 > z2 > w3 (by Lemma 8.2(vi)) and note that

�C .m� 1/ı�Cyı > z5C
yı D 2z1C 2z2� 2w1�w2 > 0

by Lemma 8.4(ii), the assumption z1 > w1 and Lemma 8.2(vi).

If �C .m� 1/ı�Cyı > z5 , then ı D w2� z5 > 0.

If �C .m� 1/ı�Cyı 6 z5 , then ı D �C .m� 1/ı�� z5 > 0.

Lemma 8.4 Assume that z1 > w1 > z5 .
(i) If `1 D 2mC 1, then �Cmı� > z5 .

(ii) If `1 D 2m, then �C .m� 1/ı� > z5 .
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The proof is given in Section 8.3.

Case 2 (w1 > z1 > z2 ) Then z1 > z2 > z5 . Recall from Lemma 8.2(vi) that z2 >w3 .
We shall therefore not display w�`3

3
in the vectors below. The vector (8-3) reorders to

(8-12) .2z2C 1I 1� z1C z2; w
�`1

1
k z
�.2bC1/
1

; z�3
2 ; w

�`2

2
; : : : /:

Case 2(a) (`1 D 2m C 1 is odd) Applying m Cremona transforms with ı� D

z5�w1 6 0 we obtain the vector

.2z2C 1Cmı�I 1� z1C z2Cmı�; w1; z
�.`1�1/
5

; z
�.2bC1/
1

; z�3
2 ; w

�`2

2
; : : : /:

By assumption, z1 > z2 > z5 . By Lemma 8.2(vii) this vector reorders to

(8-13) .2z2C1Cmı�I 1�z1Cz2Cmı�; w1 k z
�.2bC1/
1

; z�3
2 ; z

�.`1�1/
5

; w
�`2

2
; : : : /:

Subcase 1 (z1 > w2 ) Applying one Cremona move with ı D z2�w1 we obtain

.3z2C 1�w1Cmı�I 1� z1C 2z2�w1Cmı�; z�2b
1 ; z�4

2 ; z
�`1

5
; w
�`2

2
; : : : /:

Applying b Cremona transforms with ı D z2� z1 and setting

�1 WD 1Cmı�C .bC 1/.z2� z1/C z2�w1;

we obtain

(8-14) .�1C z1C z2I �1; z
�.2bC4/
2

; z
�`1

5
; w
�`2

2
; : : : /:

We claim that this vector is reduced after reordering. To see this, assume first that
z2 >w2 . If �1 > z2 then ıD z1� z2 > 0, and if z2 > �1 then ıD�1C z1�2z2 > 0

by Lemma 8.5. Assume now that w2 > z2 . Then `2 D 1 by Lemma 8.3. If �1 > z2

then ıD z1�w2 > 0, and if z2 > �1 then ıD�1C z1� z2�w2 > 0, by Lemma 8.5.

Subcase 2 (w2 > z1 ) Then `2 D 1 by Lemma 8.3, and

(8-15) w1 > w2 > z1 > z2 > z1C z2�w2 > z1C z2�w1 D z5:

The vector (8-13) becomes

.2z2C 1Cmı�I 1� z1C z2Cmı�; w1; w2; z
�.2bC1/
1

; z�3
2 ; z

�.`1�1/
5

; : : : /:

Applying one Cremona move with ı D z1C z2�w1�w2 we obtain

.�C z1C z2I �; z
�.2bC1/
1

; z�3
2 ; z1C z2�w2; z

�`1

5
; : : : /;

where � WD 1C2z2Cmı��w1�w2 . Applying b Cremona transforms with ıD z2�z1

we obtain the vector

.�2C z1C z2I �2; z1; z
�.2bC3/
2

; z1C z2�w2; z
�`1

5
; : : : /;
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where
�2 WD 1Cmı�C b.z2� z1/C 2z2�w1�w2 D �1C z1�w2:

This vector is reduced after reordering. Indeed, if �2 > z2 then ı D 0, and if z2 > �2

then ı D �2� z2 D �1C z1� z2�w2 > 0, by Lemma 8.5.

Lemma 8.5 Assume that w1 > z1 > z2 > z5 and that `1 D 2mC 1. Then

�1 > 2z2� z1; w2C z2� z1:

The proof is given in Section 8.3.

Case 2(b) (`1 D 2m is even) Applying to the vector (8-12) m Cremona transforms
with ı� D z5�w1 6 0 we obtain the vector

.2z2C 1Cmı�I 1� z1C z2Cmı�; z
�`1

5
; z
�.2bC1/
1

; z�3
2 ; w

�`2

2
; : : : /:

By Lemma 8.2(vii) this vector reorders to

(8-16) .2z2C 1Cmı�I 1� z1C z2Cmı� k z
�.2bC1/
1

; z�3
2 ; z

�`1

5
; w
�`2

2
; : : : /:

Subcase 1 (z1 >w2 ) Applying b Cremona transforms with ıD z2� z1 and setting

�3 WD 1Cmı�C .bC 1/.z2� z1/

we obtain

(8-17) .�3C z1C z2I �3; z1; z
�.2bC3/
2

; z
�`1

5
; w
�`2

2
; : : : /:

If z2 > w2 , then Lemma 8.6 shows that the ordering is

.�3C z1C z2I �3$ z1; z
�.2bC3/
2

k z
�`1

5
; w
�`2

2
; : : : /;

and this vector is reduced since ı D 0. So assume that z1 >w2 > z2 . Then `2 D 1 by
Lemma 8.3, and we reorder the vector (8-17) to

.�3C z1C z2I �3; z1; w2; z
�.2bC3/
2

; z
�`1

5
; : : : /:

Applying one Cremona transform with ı D z2�w2 we obtain

.�3C z2�w2C z1C z2I �3C z2�w2$ z1C z2�w2; z
�.2bC4/
2

; z
�`1

5
; : : : /:

Note that z1Cz2�w2 > z2 by assumption. If the ordering is right, then ıDw2�z2 > 0.
Otherwise, z2 > �3C z2�w2 , and then ı D �3� z2 > 0 by Lemma 8.6.

Subcase 2 (w2 > z1 ) By Lemma 8.3 we have `2D 1, and the vector (8-16) becomes

.2z2C 1Cmı�I 1� z1C z2Cmı�; w2; z
�.2bC1/
1

; z�3
2 k z

�`1

5
; : : : /:
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Applying one more Cremona move with ı D z2�w2 we obtain

.�4C z1C z2I �4; z
�2b
1 ; z�4

2 ; z1C z2�w2; z
�`1

5
; : : : /;

where �4 WD1Cmı��z1C2z2�w2 . Applying b Cremona transforms with ıD z2�z1

we obtain the vector

.�4C b.z2� z1/C z1C z2I �4C b.z2� z1/; z
�.2bC4/
2

; z1C z2�w2; z
�`1

5
; : : : /:

We claim that this vector is reduced after reordering. Indeed, if the ordering is right,
then ı D z1� z2 > 0. Otherwise, z2 > �4C b.z2� z1/, and then

ı D �4C b.z2� z1/C z1� 2z2 D �3C z1� z2�w2 > 0

in view of Lemma 8.6.

Lemma 8.6 Assume that w1 > z1 > z2 > z5 and that `1 D 2m. Then

�3 > z2; w2C z2� z1:

8.3 Proof of Lemmas 8.4, 8.5 and 8.6

In this section we prove Lemmas 8.4, 8.5 and 8.6. Recall that ı� D z1C z2� 2w1 and

� D z2C z4�w1 D 1C .bC 1/.z2� z1/C z2�w1:

Hence
�Cmı� D �1 D 1Cmı�C .bC 1/.z2� z1/C z2�w1;

�3 D 1Cmı�C .bC 1/.z2� z1/:

Note that ı� 6 0 in all three lemmas. The proofs are along the following lines. All
inequalities are, roughly, of the form

(8-18) 1Cmı�C b.z2� z1/> 0

or, using 1D .2m.C1//w1Cw2 ,

(8-19) m.z1C z2/C b.z2� z1/> 0:

In Lemma 8.4, the assumption z1 >w1 translates, roughly, to m < b
2

. Further, w1 > z5

translates to 3z2 > z1 , which together with (8-19) implies Lemma 8.4 for m < b
2
C 1.

For the remaining one or two m� bC1
2

we prove the lemma using (8-18) and ı� 6 0.

m

Lemma 8.4 Lemmas 8.5–8.6

b
2

b
3

Figure 11
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Lemmas 8.5 and 8.6 are proven similarly: the case m < b
3

is settled using 2z2 > z1

and (8-19), and the case m 4 b
3
� 1 is settled using (8-18) and ı� 6 0.

Proof of Lemma 8.4 The inequality z1 > w1 implies that

(8-20) `1 > b:

Indeed, z1 > w1 is equivalent to
p

a
2b

> a� .2bC 3/, or

a 6 2bC 3C
1C

p
16b2C 24bC 1

4b
;

which in turn translates to

1

w1
> 4b

1C
p

16b2C 24bC 1� 4b
:

Since the right-hand side is larger than b , inequality (8-20) follows.

We next observe that w1 > z5 implies that

(8-21) 3z2 > z1:

Indeed, .3z2� z1/� .w1� z5/D 2.2z2�w1/> 0 by Lemma 8.2(vi). This is the main
ingredient for proving the next two claims.

Claim 1 Lemma 8.4(i) holds for m > b
2
C 1.

Proof This follows from � Cmı� > z1 , and, since 1 D .2mC 1/w1 C w2 , this
inequality follows from

.bC 2/.z2� z1/Cm.z1C z2/> 0:

Using (8-21) we estimate

.bC2/.z2�z1/Cm.z1Cz2/D .�bCm�2/z1C.bCmC2/z2 > .�bC2m�2/2
3
z1;

which is nonnegative if m > b
2
C 1.

Claim 2 Lemma 8.4(ii) holds for m > b
2
C

3
2

.

Proof This follows from � C .m � 1/ı� > w1 , and since 1 D 2mw1 C w2 , this
inequality follows from

.bC 1/.z2� z1/C .m� 1/.z1C z2/C z2 > 0:
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Using (8-21) we estimate

.bC 1/.z2� z1/C .m� 1/.z1C z2/C z2 D .�bCm� 2/z1C .bCmC 1/z2

> .�2bC 4m� 5/1
3
z1;

which is nonnegative if m > b
2
C

5
4

.

Proof of Lemma 8.4(i) In view of (8-20) and Claim 1 we can assume that m is in�
b�1

2
; bC1

2

�
. We wish to show that for these m (of which there are one or two) we

have �Cmı� > z5 . Since ı� 6 0, this follows if �C bC1
2
ı� > z5 , that is,

fb.�/ WD �2b.bC 1/�2
C b.3bC 4/�� .b2

C b� 2/> 0

for a2
�
2bC4C 1

2mC2
; 2bC4C 1

2mC1

�
and m2

�
b�1

2
; bC1

2

�
. Since f 0

b
.�/6�b2< 0

and m > b�1
2

, it suffices to show that fb.�/> 0 at

�D

r
2bC 4C 1=b

2b
;

that is,

1C
2

b
C

1

2b2
>
�

3b2C 7bC 3C 1=b

3b2C 4b

�2

:

Subtracting 1 and multiplying by 2b2.3b2C 4b/2 this inequality becomes

3b4
� 8b3

� 30b2
� 12b� 2 > 0;

which holds true for b > 5.

To deal with the cases b 2 f3; 4g we return to �Cmı� > z5 , ie

(8-22) 1C .bC 1/.z2� z1/Cm.z1C z2� 2w1/� z1 > 0:

Assume that b D 4. Then mD 2, and (8-22) becomes

7z2C 1 > 4z1C 4w1 on I WD
�
12C 1

6
; 12C 1

5

�
;

ie f .a/ WD �aC 59
8

p
a
2
� 6 > 0 on I . This holds true since f 0.a/ < 0 on I and

f
�
12C 1

5

�
> 0. Finally, if b D 3, then m 2 f1; 2g. For mD 2, (8-22) becomes

�2aC
13

2

q
3a

2
� 5 > 0

on
�
10C1

6
; 10C1

5

�
, which holds true; and for mD1, (8-22) becomes �aC31

2

p
a
6
�10>

0 on
�
10C 1

4
; 10C 1

3

�
, which holds true too.
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Proof of Lemma 8.4(ii) In this case, (8-20) and Claim 2 show that we can assume
that m 2

�
b
2
; b

2
C 1

�
. We wish to show that for these m we have �C .m� 1/ı� > z5 .

Since ı� 6 0, this follows if �C b
2
ı� > z5 , that is,

fb.�/ WD �2b2�2
C .3b2

C 3b� 1/�� b.bC 2/> 0

for a 2
�
2b C 4 C 1

2mC1
; 2b C 4 C 1

2m

�
and m 2

�
b
2
; b

2
C 1

�
. Since f 0

b
.�/ 6

�b2C 3b� 1< 0 and since m > b
2

, it suffices to show that fb.�/> 0 at

�D

r
2bC4C1=b

2b
;

that is,

1C
2

b
C

1

2b2
>
�

3b2C 6bC 1

3b2C 3b� 1

�2

:

Subtracting 1 and multiplying by 2b2.3b2C 3b� 1/2 this becomes

3b4
� 6b3

� 21b2
� 2bC 1 > 0;

which holds true for b > 4.

Assume that bD3. Then mD2, and �C.m�1/ı�> z5 becomes �aC 31
2

p
a
6
�10 > 0

on
�
10C 1

5
; 10C 1

4

�
, which holds true.

Proof of Lemma 8.5 This is equivalent to

(8-23) 1Cmı�C b.z2� z1/C z2�w1 > z2; w2:

Since 1D .2mC 1/w1Cw2 , this is equivalent to

m.z1C z2/C b.z2� z1/C z2Cw2 > z2; w2;

which follows if

(8-24) m.z1C z2/C b.z2� z1/> 0:

Claim 1 (8-24) holds for m > b
3

.

Indeed, since 2z2 > w1 > z1 by Lemma 8.2 and by assumption,

m.z1C z2/C b.z2� z1/D .m� b/z1C .mC b/z2 > .3m� b/
z1

2
:

Claim 2 (8-23) holds for m 6 b
3
� 1.
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Proof Since ı� 6 0 and w1 > z2 , w2 , it suffices to show that

(8-25) 1C

�
b

3
� 1

�
ı�C b.z2� z1/C z2�w1 > w1;

or, equivalently, that

(8-26) fb.�/ WD �4b2�2
C .8b2

C 2b� 3/�� 2.2b2
C b� 3/> 0:

Note that f 0
b
.�/D�8b2�C.8b2C2b�3/<0 for �>�.ˇb/ since .bC1/f 0

b
.�.ˇb//D

�.6b2C 5bC 3/ < 0. Hence (8-26) follows from bfb.�.b//D b� 3 > 0.

Claim 3 (8-23) holds for m 6 b�1
3

if b > 7.

Proof It suffices to show that

1C
b�1

3
ı�C b.z2� z1/C z2�w1 > w1;

or, equivalently, that

(8-27) gb.�/ WD �.4b2
C 8b/�2

C .8b2
C 6bC 1/�� 4b2

C 2bC 14 > 0:

Since g0
b
.�/ < 0 for �> 1, (8-27) follows from bgb.�.b//D b� 7.

In view of the three claims above we are left with showing the lemma for b 2 f4; 5g

and mD 1.

Assume that b D 5. It suffices to show that 1C ı� C 5.z2 � z1/C z2 > 2w1 for
a 2 Œˇb; b �, that is,

f .�/ WD �40�2
C 73�� 30 > 0 for a 2 Œˇb; b �:

This holds true since f 0.�/ < 0 for �> 1 and f .�.b//D 0.

Assume that b D 4. Then �1 D 1C ı� C 5.z2 � z1/C z2 � w1 . The inequality
�1 > 2z2� z1 becomes 1C 5z2 > 3w1C 3z1 , or

f .�/ WD �8�2
C 14�� 5 > 0;

which holds true since f 0.�/ < 0 for � > 1 and f .�.b// D 0. The inequality
�1 > w2C z2� z1 D 1� 3w1C z2� z1 becomes 6z2 > 3z1 , which holds true.

Proof of Lemma 8.6 This is equivalent to

(8-28) � WD 1Cmı�C .bC 1/.z2� z1/> z2; w2C z2� z1:
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Since 1 D 2mw1Cw2 , this is equivalent to m.z1C z2/C b.z2 � z1/ > z1 �w2; 0,
which follows if

(8-29) m.z1C z2/C b.z2� z1/> z1; 0:

Claim 1 (8-29) holds for m > bC2
3

, b
3

.

Claim 2 (8-28) holds for m 6 b
3

, b�2
3

.

Proof For m 6 b
3

, the inequality � > z2 in (8-28) follows from the inequality
1 C b

3
ı� C .b C 1/.z2 � z1/ > z2 , which is equivalent to (8-25). For m 6 b�2

3
,

the inequality � >w2C z2� z1 in (8-28) follows from 1C b�2
3
ı�C b.z2� z1/>w1 ,

or

(8-30) fb.�/ WD .�4b2
C 2b/�2

C .8b2
� 2b� 4/�� 4b2

C 7 > 0:

Note that f 0
b
.�/ < 0 for � > �.ˇb/ since .bC 1/f 0

b
.�.ˇb//D�2.3b2C bC 1/ < 0.

Hence (8-30) follows from bfb.�.b//D b� 2.

Claim 3 (8-28) holds for mD bC1
3

if b > 5, and for mD b�1
3

if b > 4.

Proof The first assertion is that 1C bC1
3
ı�C .bC 1/.z2� z1/> z2 for b > 5, or

(8-31) gb.�/ WD .�4b2
� 4b/�2

C .8b2
C 4b� 1/�� 4b2

C 10 > 0:

Since g0
b
.�/ < 0 for �> 1, (8-31) follows from bgb.�.b//D b� 5.

The second assertion follows if 1C b�1
3
ı�C b.z2� z1/> w1 for b > 4, that is,

(8-32) hb.�/ WD .�4b2
� 2b/�2

C .8b2
� 2/�� 4b2

C 2bC 11 > 0:

Since h0
b
.�/ < 0 for �> 1, (8-32) follows from bhb.�.b//D b� 4.

The three claims above imply Lemma 8.6.

Remark 8.7 One can use the reduction method also for showing that c2.a/D
1
2

p
a

on Œˇ2;u2.2/�D
�
8 1

36
; 9
�
, of course. Contrary to all other assertions in Lemma 8.2,

assertion (v) does not hold for bD 2 if a > 8:0831, however. The reduction scheme for
b D 2 on Œˇb;ub.2/� is therefore quite different from the one for b > 3, in particular
in Case 1(b).
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