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A categorification of the Alexander polynomial
in embedded contact homology

GILBERTO SPANO

Given a transverse knot K in a three-dimensional contact manifold .Y; ˛/ , Colin,
Ghiggini, Honda and Hutchings defined a hat version bECK.K;Y; ˛/ of embedded
contact homology for K and conjectured that it is isomorphic to the knot Floer
homology bHFK.K;Y / .

We define here a full version ECK.K;Y; ˛/ and generalize the definitions to the
case of links. We prove then that if Y D S3, then ECK and bECK categorify the
(multivariable) Alexander polynomial of knots and links, obtaining expressions
analogous to that for knot and link Floer homologies in the minus and, respectively,
hat versions.

57M27, 57R17, 57R58

Introduction

Given a 3–manifold Y , Ozsváth and Szabó [29] defined topological invariants of Y ,
indicated by HF1.Y /, HFC.Y /, HF�.Y / and cHF.Y /. These groups are the Heegaard
Floer homologies of Y in the respective versions.

Moreover, Ozsváth and Szabó [28] and Rasmussen [33] proved that any homologically
trivial knot K in Y induces a “knot filtration” on the Heegaard Floer chain complexes.
The first pages of the associated spectral sequences (in each version) are topological
invariants of K : these are bigraded homology groups HFK1.K;Y /, HFKC.K;Y /,
HFK�.K;Y / and bHFK.K;Y /, called Heegaard Floer knot homologies (in the respec-
tive versions).

These homologies are powerful invariants for the couple .K;Y /. For instance, in [28]
and [33], it was proved that bHFK.K;S3/ categorifies the Alexander polynomial �K

of K ; ie
�.bHFK.K;S3//

:
D�.K/;

where :
D means that the two sides are equal up to sign change and multiplication by a

monic monomial, and � denotes the graded Euler characteristic.
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This was the first categorification of the Alexander polynomial; a second one (in Seiberg–
Witten–Floer homology) was discovered later by Kronheimer and Mrowka [23].

Ozsváth and Szabó [31] developed a similar construction for any link L in S3 and got
invariants HFL�.L;S3/ and bHFL.L;S3/ for L, which they called Heegaard Floer
link homologies. Now these homologies come with an additional Zn degree, where n

is the number of connected components of L. Ozsváth and Szabó proved moreover
that HFL�.L;S3/ categorifies the multivariable Alexander polynomial of L, which is
a generalization of the classic Alexander polynomial. They found in particular that

(1) �.HFL�.L;S3//
:
D

�
�L.t1; : : : ; tn/ if n> 1;

�L.t/=.1� t/ if nD 1;

and

(2) �.bHFL.L;S3//
:
D

�
�L �

Qn
iD1.t

1=2
i � t

�1=2
i / if n> 1;

�L.t/ if nD 1:

In the series of papers [5; 6; 7; 8; 9], Colin, Ghiggini and Honda prove the equivalence
between Heegaard Floer homology and embedded contact homology for three-manifolds.
The last one is another Floer homology theory, first defined by Hutchings, which
associates to a contact manifold .Y; ˛/ two graded modules ECH.Y; ˛/ and bECH.Y; ˛/.

Theorem 0.1 (Colin, Ghiggini and Honda [5]–[9])

HFC.�Y /Š ECH.Y; ˛/;cHF.�Y /Š bECH.Y; ˛/;

where �Y is the manifold Y with the inverted orientation.

In light of Theorem 0.1, it is a natural problem to find an embedded contact counterpart
of Heegaard Floer knot homology. In analogy with the sutured Heegaard Floer theory
developed by Juhász [22], Colin, Ghiggini, Honda and Hutchings [10, Sections 6–7]
define a sutured version of embedded contact homology. This can be thought of as
a version of embedded contact homology for manifolds with boundary. In particular,
given a knot K in a contact three-manifold .Y; �/, using sutures they define a hat
version bECK.K;Y; ˛/ of embedded contact knot homology.

Roughly speaking, this is the hat version of ECH for the contact manifold with boundary
.Y n N .K/; ˛/, where N .K/ is a suitable thin tubular neighborhood of K in Y

and ˛ is a contact form satisfying specific compatibility conditions with K . In [10,
Conjecture 1.5], the following conjecture is stated:

Conjecture 0.2 bECK.K;Y; ˛/Š bHFK.�K;�Y /:
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In the present paper, we first define a full version of embedded contact knot homology
ECK.K;Y; ˛/ for knots K in any contact three-manifold .Y; �/ endowed with a
(suitable) contact form ˛ for � . Moreover, we generalize the definitions to the case
of links L with more than one component to obtain homologies ECK.L;Y; ˛/ and
bECK.L;Y; ˛/. We state then the following:

Conjecture 0.3 For any link L in Y , there exists a contact form ˛ for which

bECK.L;Y; ˛/Š bHFK.�L;�Y /;

ECK.L;Y; ˛/Š HFKC.�L;�Y /:

We remark that ECK.L;Y; ˛/ (as well as bECK.L;Y; ˛/) is defined as the first page of a
spectral sequence arising from a filtration induced by L on a suitable chain complex for
ECH.Y /. In light of the last conjecture, this fact is interesting because the analogous
filtration for HFK�.L;Y / is useful to study link surgery formulae in Heegaard Floer
(see for example Ozsváth and Szabó [32] and Manolescu and Ozsváth [25]), and one
can expect to find similar relations in ECH.

Next we compute the graded Euler characteristics of the ECK homologies for knots
and links in homology three-spheres, and we prove the following:

Theorem 0.4 Let L be an n–component link in a homology three-sphere Y . Then
there exists a contact form ˛ such that

�.ECK.L;Y; ˛// :D ALEX.Y nL/:

Here ALEX.Y nL/ is the Alexander quotient of the complement of L in Y . The
theorem is proved using Fried’s dynamic reformulation of ALEX [14]. Classical
relations between ALEX.S3 nL/ and �L imply the following result:

Theorem 0.5 Let L be any n–component link in S3. Then there exists a contact
form ˛ for which

�.ECK.L;S3; ˛//
:
D

�
�L.t1; : : : ; tn/ if n> 1;

�L.t/=.1� t/ if nD 1;

and
�.bECK.L;S3; ˛//

:
D

�
�L.t1; : : : ; tn/ �

Qn
iD1.1� ti/ if n> 1;

�L.t/ if nD 1:

This implies that the homology ECK is a categorification of the multivariable Alexander
polynomial. A straightforward consequence is:

Corollary 0.6 In S3, Conjectures 0.2 and 0.3 hold at the level of Euler characteristics.
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1 Review of embedded contact homology

1.1 Preliminaries

This subsection is devoted to recall some basic notions about contact geometry, holo-
morphic curves, Morse–Bott theory and open books.

1.1.1 Contact geometry A (cooriented) contact form on a three-dimensional oriented
manifold Y is a 1–form ˛ on Y such that ˛^d˛ is a positive volume form. A contact
structure is a smooth plane field � on Y such that there exists a contact form ˛ for
which � D ker˛ . The Reeb vector field of ˛ is the (unique) vector field R˛ determined
by the equations d˛.R˛; � / D 0 and ˛.R˛/ D 1. A simple Reeb orbit is a closed
oriented orbit of RDR˛ ; ie it is the image ı of an embedding S1 ,! Y such that RP

is positively tangent to ı for any P 2 ı . A Reeb orbit is an m–fold cover of a simple
Reeb orbit, with m � 1. The form ˛ determines an action A on the set of its Reeb
orbits defined by A. /D

R
 ˛ . By definition, A. / > 0 for any nonempty orbit  .

A basic result in contact geometry asserts that the flow of the Reeb vector field (abbre-
viated Reeb flow) � D �R preserves � , that is, .�t /�.�P /D ��t .P/ for any t 2R; see
[15, Chapter 1]. Given a Reeb orbit ı , there exists T 2RC such that .�T /�.�P /D �P
for any P 2 ı ; if T is the smallest possible, the isomorphism Lı WD .�T /�W �P ! �P
is called the (symplectic) linearized first return map of R in P.

The orbit ı is called nondegenerate if 1 is not an eigenvalue of Lı . There are two types
of nondegenerate Reeb orbits, elliptic and hyperbolic: ı is elliptic if the eigenvalues
of Lı are on the unit circle and is hyperbolic if they are real. In the last case, we can
make a further distinction: ı is called positive or negative hyperbolic if the eigenvalues
are both positive or negative, respectively.

Definition 1.1 The Lefschetz sign of a nondegenerate Reeb orbit ı is

�.ı/ WD sign.det.1�Lı// 2 fC1;�1g:

Algebraic & Geometric Topology, Volume 17 (2017)
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Observation 1.2 It is easy to check that �.ı/DC1 if ı is elliptic or negative hyper-
bolic and �.ı/D�1 if ı is positive hyperbolic.

To any nondegenerate orbit ı and a trivialization � of �jı , we can associate also the
Conley–Zehnder (CZ) index �� .ı/ 2 Z of ı with respect to � ; see for example [20,
Section 3.2] or [12]. Even if �� .ı/ depends on � , its parity depends only on ı , and

.�1/�� .ı/ D��.ı/:

Definition 1.3 Given X � Y , we will indicate by P.X / the set of simple Reeb
orbits of ˛ contained in X . An orbit set (or multiorbit) in X is a formal finite product
 D

Q
i 

ki
i , where i 2P.X / and ki 2N is the multiplicity of i in  , with ki 2f0; 1g

whenever i is hyperbolic. The set of multiorbits in X will be denoted by O.X /.

Note that the empty set is a legitimate orbit set, and it will be indicated by ∅. An orbit
set  D

Q
i 

ki
i determines the homology class Œ �D

P
i ki Œi �2H1.Y / (unless stated

otherwise, all homology groups will be taken with integer coefficients). Moreover, the
action of  is defined by A. /D

P
i ki

R
i
˛ .

1.1.2 Holomorphic curves We recall here some definitions and properties about
holomorphic curves in dimension 4. We refer the reader to [26] and [27] for the general
theory and to [20] and [5; 7; 8; 9] for an approach which is more specialized to our
context.

Let X be an oriented even-dimensional manifold. An almost complex structure on X

is an isomorphism J W TX ! TX such that J.TP X / D TP X and J 2 D �id. If
.X1;J1/ and .X2;J2/ are two even-dimensional manifolds endowed with an almost
complex structure, a map uW .X1;J1/! .X2;J2/ is pseudoholomorphic if it satisfies
the Cauchy–Riemann equation

du ıJ1 D J2 ı du:

Definition 1.4 A pseudoholomorphic curve in a four-dimensional manifold .X;J / is a
pseudoholomorphic map uW .F; j /! .X;J /, where .F; j / is a (possibly disconnected)
Riemann surface.

In this paper, we will be particularly interested in pseudoholomorphic curves (that
sometimes we will simply call holomorphic curves) in “symplectizations” of contact
three-manifolds. Given .Y; ˛/, consider the four-manifold R � Y . Call s the R–
coordinate and let R D R˛ be the Reeb vector field of ˛ . The almost complex
structure J on R�Y is adapted to ˛ if
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(1) J is s–invariant;

(2) J.�/D � and J.@s/DR at any point of R�Y ;

(3) J j� is compatible with d˛ ; ie d˛. � ;J � / is a Riemannian metric on � .

For us, a holomorphic curve u in the symplectization of .Y; ˛/ is a holomorphic curve
uW . PF ; j /! .R�Y; J /, where

(i) J is adapted to ˛ ;

(ii) . PF ; j / is a Riemann surface obtained from a closed surface F by removing a
finite number of points (called punctures);

(iii) for any puncture x there exists a neighborhood U.x/� F such that U.x/n fxg

is mapped by u asymptotically to a cover of a cylinder R� ı over an orbit ı of
R in a way that limy!x �R.u.y//D˙1, where �R is the projection on the
R–factor of R�Y .

We say that x is a positive puncture of u if in the last condition above the limit is C1:
in this case the orbit ı is a positive end of u. If otherwise, the limit is �1, and we
say x is a negative puncture and ı is a negative end of u.

By condition (iii) above, u near a puncture x determines a cover of the Reeb orbit ı
corresponding to x : the number of sheets of this cover is the local x–multiplicity of ı
in u. The sum of the x–multiplicities over all the punctures x associated to ı is the
(total) multiplicity of ı in u.

If  and  0 are the orbit sets determined by the sets of all positive and, respectively,
negative ends of u counted with multiplicity, then we say that u is a holomorphic
curve from  to  0 .

Example 1.5 A cylinder over an orbit set  of Y is the holomorphic curve R�  �
R�Y .

Observation 1.6 Note that if there exists a holomorphic curve u from  to  0 , then
Œ �D Œ 0� 2H1.Y;Z/.

Theorem 1.7 [27, Lemma 2.4.1] Let uW .F; j / ! .R � Y;J / be a nonconstant
holomorphic curve in .X;J /. Then the critical points of �R ı u are isolated. In
particular, if �Y denotes the projection R�Y ! Y , then �Y ıu is transverse to R˛

away from a set of isolated points.

From now on, if u is a map with image in R � Y , we will set uR WD �R ı u and
uY WD �Y ıu.

Holomorphic curves also enjoy the following property, which will be essential for us;
see for example Gromov [17] and, for the noncompact case, Siefring [34].
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Theorem 1.8 (positivity of intersection) Let u and v be two distinct holomorphic
curves in a four-manifold .W;J /. Then #.Im.u/\ Im.v// <1. Moreover, if P is an
intersection point between Im.u/ and Im.v/, then its contribution mP to the algebraic
intersection number hIm.u/; Im.v/i is strictly positive, and mP D 1 if and only if u

and v are embeddings near P that intersect transversely in P.

When the almost complex structure does not play an important role or is understood, it
will be omitted from the notation.

1.1.3 Morse–Bott theory The Morse–Bott theory in contact geometry was first
developed by Bourgeois [3]. We present in this subsection some basic notions and
applications, mostly as presented in [5].

Definition 1.9 A Morse–Bott (MB) torus in a 3–dimensional contact manifold .Y; ˛/
is an embedded torus T in Y foliated by a family t ; t 2 S1, of Reeb orbits, all in the
same class in H1.T /, that are nondegenerate in the Morse–Bott sense. Here this means
the following: given any P 2 T and a positive basis .v1; v2/ of �P where v2 2 TP .T /

(so that v1 is transverse to TP .T /), then the differential of the first return map of the
Reeb flow on �P is of the form �

1 0

a 1

�
for some a¤ 0. T is a positive or negative MB torus if a> 0 or a< 0, respectively.

We say that ˛ is a Morse–Bott contact form if all the Reeb orbits of ˛ are either isolated
and nondegenerate or come in S1 –families foliating MB tori.

As explained in [3] and [5, Section 4], it is possible to modify the Reeb vector field in
a small neighborhood of a MB torus T preserving only two orbits, say e and h, of the
S1 –family of Reeb orbits associated to T .

Moreover, for any fixed L> 0, the perturbation can be done in such a way that e and h

are the only orbits in a neighborhood of T with action less then L.

If T is a positive (respectively, negative) MB torus and � is the trivialization of �
along the orbits given pointwise by the basis .v1; v2/ above, then one can make the
MB perturbation in a way that h is positive hyperbolic with �� .h/D 0 and e is elliptic
with �� .e/D 1 (respectively, �� .e/D�1).

The orbits e and h can be seen as the only two critical points of a Morse function
fT W S

1!R defined on the S1 –family of Reeb orbits foliating T and with maximum
corresponding to the orbit with higher CZ index. Often MB tori will be implicitly given
with such a function.

Algebraic & Geometric Topology, Volume 17 (2017)
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Observation 1.10 It is important to remark that, before the perturbation, T is foliated
by Reeb orbits of ˛ and so these are nonisolated. Moreover, the form of the differential
of the first return map of the flow of � implies that these orbits are also degenerate.
After the perturbation, T contains only two isolated and nondegenerate orbits, but
other orbits are created in a neighborhood of T , and these orbits can be nonisolated
and degenerate. See Figure 1 for a picture of a MB perturbation.

Proposition 1.11 [3, Section 3] For any MB torus T and any L 2R, there exists a
MB perturbation of T such that, with the exception of e and h, all the periodic orbits
in a neighborhood of T have action greater then L.

A torus T foliated by Reeb orbits all in the same class of H1.T / (like, for example, a
Morse–Bott torus) can be used to obtain constraints about the behavior of a holomorphic
curve near T .

Following [5, Section 5], if  is any of the Reeb orbits in T , we can define the slope
of T as the equivalence class s.T / of Œ � 2H1.T;R/� f0g up to multiplication by
positive real numbers.

Let T � Œ��; �� be a neighborhood of T D T � f0g in Y with coordinates .#; t;y/
such that .@# ; @t / is a positive basis for T .T / and @y is directed as a positive normal
vector to T .

Suppose that uW .F; j /! .R�Y; J / is a holomorphic curve in the symplectization
of .Y; ˛/; by Theorem 1.7, there exist at most finitely many points in T � Œ��; �� where
uY .F / is not transverse to R˛ . Then, if Ty WD T � fyg and u.F / intersects R�Ty ,
we can associate a slope sTy

.u/ to uY .F /\ Ty for any y 2 Œ��; ��: this is defined
exactly like s.T /, where uY .F /\Ty is considered with the orientation induced by
@.uY .F /\ .T � Œ��;y�//.

Observation 1.12 If u has no ends in T � Œy;y0�, then

@.uY .F /\T � Œy;y0�/D uY .F /\Ty0 �uY .F /\Ty ;

and sTy
.u/D sT 0y

.u/.

The following lemma is a consequence of the positivity of intersection in dimension
four; see [5, Lemma 5.2.3].

Lemma 1.13 (blocking lemma) Let T be linearly foliated by Reeb trajectories with
slope s D s.T / and u a holomorphic curve as above.

(1) If u is homotopic, by a compactly supported homotopy, to a map whose image
is disjoint from R�T , then uY .F /\T D∅.
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(2) Let T � Œ��; �� be a neighborhood of T D T � f0g. Suppose that for some
y 2 Œ��; �� n f0g, u has no ends in T � .0;y� if y 2 .0; �� or in T � Œy; 0/ if
y 2 Œ��; 0/. If sTy

.u/D˙s.T /, then u has an end which is a Reeb orbit in T .

Let now x be a puncture of F whose associated end is an orbit  in T ; if there exists
a neighborhood U.x/ of x in F such that uY .U.x/ n fxg/\ T D ∅, then  is a
one-sided end of u in x . This is equivalent to requiring that uY .U.x// is contained
either in T � .��; 0/ or in T � .0; �/.

Lemma 1.14 (trapping lemma [5, Lemma 5.3.2]) If T is a positive (respectively,
negative) MB torus and  � T is a one-sided end of u associated to the puncture x ,
then x is positive (respectively, negative).

Definition 1.15 Let ˛ be a Morse–Bott contact form on the three-manifold Y , and J

a regular almost complex structure on R�Y . Suppose that any MB torus T in .Y; ˛/
comes with a fixed a Morse function fT . Let P.Y / be the set of simple Reeb orbits
in Y minus the set of the orbits which correspond to some regular point of some fT .

A Morse–Bott building in .Y; ˛/ is a disjoint union of objects u of one of the following
two types:

(1) u is the submanifold of a MB torus T corresponding to a gradient flow line of
fT : in this case, the positive (respectively, negative) end of u is the positive
(respectively, negative) end of the flow line.

(2) u is a union of curves zu [ u1 [ � � � [ un of the following kind: zu is a J –
holomorphic curve in R�Y with n ends fı1; : : : ; ıng corresponding to regular
values of some ffT1

; : : : ; fTn
g. Then, for each i , the curve zu is augmented by

a gradient flow trajectory ui of fTi
: ui goes from the maximum �Ci of fTi

to ıi if ıi is a positive end and goes from ıi to the minimum ��i of fTi
if ıi is

a negative end. The ends of u are obtained from the ends of zu by substituting
each ıi with the respective �Ci or ��i .

A Morse–Bott building is nice if the zu above has at most one connected component
which is not a cover of a trivial cylinder.

1.2 ECH for closed three-manifolds

We briefly review here Hutchings’ original definitions of ECH.Y; ˛/ and bECH.Y; ˛/
for a closed contact three-manifold .Y; ˛/.

Assume that ˛ is nondegenerate (ie that any Reeb orbit of ˛ is nondegenerate). For
a fixed � 2H1.Y /, define ECC.Y; ˛; �/ to be the free Z2 –module generated by the

Algebraic & Geometric Topology, Volume 17 (2017)
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orbit sets of Y in the homology class � , and set

ECC.Y; ˛/D
M

�2H1.Y /

ECC.Y; ˛; �/:

This is the ECH chain group of .Y; ˛/. The ECH–differential @ECH (called simply @
when no risk of confusion occurs) is defined in [19] in terms of holomorphic curves in
the symplectization .R�Y; d˛;J / of .Y; ˛/ as follows.

Given ; ı 2 O.Y /, let M.; ı/ be the set of (possibly disconnected) holomorphic
curves uW . PF ; j /! .R� Y;J / from  to ı , where . PF ; j / is a punctured compact
Riemannian surface. It is clear that u determines a relative homology class ŒIm.u/� in
H2.R�Y I ; ı/ and that if such a curve exists, then Œ �D Œı� 2H1.Y /.

If � D ker.˛/ and a trivialization � of �j[ı is given, then to any surface C �R�Y

with @C D  � ı , it is possible to associate an ECH–index

I.C / WD c� .C /CQ� .C /C�
I
� .; ı/;

which depends only on the relative homology class of C . Here,

� c� .C / WD c1.�jC ; �/ is the first relative Chern class of C ;

� Q� .C / is the � –relative intersection paring of R�Y applied to C ;

� �I
� .; ı/ WD

P
i

Pki

jD1
�� .

j
i /�

P
i

Pki

jD1
�� .ı

j
i /, where �� is the Conley–

Zehnder index defined in Section 1.1.1.

We refer the reader to [20] for the details about these quantities. If u is a holomorphic
curve from  to ı , set I.u/D I.Im.u// (well-defined up to approximating Im.u/ with
a surface in the same homology class).

Define Mk.; ı/ WD fu 2M.; ı/ j I.u/D kg. The ECH–differential is then defined
on the generators of ECC.Y; ˛/ by

(3) @ECH. /D
X

ı2O.Y /

#.M1.; ı/=R/ � ı;

where we quotient M1.; ı/ by the R–action on the curves given by the translation in
the R–direction in R�Y . In [20, Section 5], Hutchings proves that M1.; ı/=R is a
compact 0–dimensional manifold, so @ECH. / is well-defined.

The (full) embedded contact homology of .Y; ˛/ is

ECH�.Y; ˛/ WDH�.ECC.Y; ˛/; @ECH/:

It turns out that these groups do not depend on either the choices J in the symplectization
or the contact form for � .
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If  D
Q

i 
ki
i is a generator of ECC.Y; ˛/, set

�. /D
Y

i
�.i/

ki ;

where �.i/ is the Lefschetz sign of the simple orbit i . Note that �. / is given by
the parity of the number of positive hyperbolic simple orbits in  .

If u is a holomorphic curve from  to ı , by simple computations it is possible to prove
the index parity formula (see for example Section 3.4 in [20])

(4) .�1/I.u/ D �. /�.ı/:

It follows then that the Lefschetz sign endows embedded contact homology with a
well-defined absolute Z=2–grading.

Fix now a generic point .0; z/ 2R�Y . Given two orbit sets  and ı , let

Uz W ECC�.Y; ˛/! ECC��2.Y; ˛/

be the map defined on the generators by

Uz. /D
X

ı2O.Y /

#
˚
u 2M2.; ı/ j .0; z/ 2 Im.u/

	
� ı:

Hutchings proves that Uz is a chain map that counts only a finite number of holomorphic
curves and that this count does not depend on the choice of z . So it makes sense to
define the map U WD Uz for any z as above. This is called the U–map.

The hat version of embedded contact homology of .Y; ˛/ is defined as the homology
bECH.Y; ˛/ of the mapping cone of the U–map. By this, we mean that bECH.Y; ˛/ is

defined to be the homology of the chain complex

ECC��1.Y; ˛/˚ECC�.Y; ˛/

with differential defined by the matrix�
�@��1 0

U @�

�
;

where the elements of the complex are thought as columns. Also, bECH.Y; ˛/ has the
relative and the absolute gradings above.

We end this section by stating the following result; see for example [20, Section 1.4].

Theorem 1.16 Let � be a contact structure on Y and ˛ a contact form with ker˛ D � .
Then the homology class Œ∅� 2 ECH.Y; ˛/ of the empty orbit set ∅ depends only on � ,
and it is called the ECH–contact invariant of � .
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1.3 ECH for manifolds with torus boundary

In order to define ECH for contact three-manifolds .N; ˛/ with nonempty boundary,
some compatibility between ˛ and @N should be assumed. In this paper, we are
particularly interested in three-manifolds whose boundary is a collection of disjoint tori.

In [5, Section 7], Colin, Ghiggini and Honda analyze this situation when @N is
connected. If T D @N is homeomorphic to a torus, then they prove that the ECH–
complex, and the differential can be defined almost as in the closed case, provided that
RDR˛ is tangent to T and that ˛ is nondegenerate in int.N /.

If the flow of RjT is irrational, they define ECH.N; ˛/D ECH.int.N /; ˛/, and if it
is rational, they consider the case of T Morse–Bott and do a MB perturbation of ˛
near T ; this gives two Reeb orbits h and e on T , and since ˛ is now a MB contact
form, the ECH–differential counts MB buildings.

1.3.1 Contact forms If Y is a closed 3–manifold and K � Y is an oriented null-
homologous knot, let N be a closed tubular neighborhood of K , and define N to be
the closure of Y nN . Fix a neighborhood Œ0; 2��T 2 of @N D f1g �T 2 in Y with
Œ0; 1��T 2 �N , and let V �N be the solid torus with core K and @V D f2g �T 2.
Obviously, N D .Œ1; 2��T 2/[V .

Identify now V nK with Œ2; 3/�T 2, and fix coordinates .y; #; t/2 Œ0; 3/�T 2ŠN nK
such that the natural projection Œ0; 3/� T 2� K sends .y; #; t/ to # , and for any
given y0 and t0 2 Œ0; 1�=h0� 1i, the push off f.y0; #; t0/ j # 2Kg of K has linking
number 0 with K in Y (ie it gives the Seifert framing of K ). Note in particular
that each strip ft D t0g can be seen as the intersection between N nK and some
Seifert surface for K and with the inherited orientation, so that .y; #; t0/ is a positive
coordinate system and any f.y0; #0; t/ j t 2 Œ0; 1�=h0� 1i is a positive meridian for K .

Definition 1.17 We say that the contact form ˛ on Y is adapted to K if there exists
a tubular neighborhood N of K as before such that

(1) ˛ is a Morse–Bott contact form which is nondegenerate in int.N /;

(2) the Reeb flow R˛ is positively transverse to each strip ft D t0g in N nK ;

(3) all the tori y0�T 2 for y0 2 Œ1; 3/ are linearly foliated by Reeb trajectories of ˛ ;

(4) T1 WD f1g �T 2 and T2 WD f2g �T 2 are respectively negative and positive MB
tori foliated by Reeb orbits which are meridians of K ;

(5) R˛ is transverse to the disks of the form f# D #0g\ int.V /;

(6) K is a Reeb orbit.

Algebraic & Geometric Topology, Volume 17 (2017)



A categorification of the Alexander polynomial in embedded contact homology 2093

T1

T2

K

hC

e

eC

h

Figure 1: Reeb dynamic before and after a MB perturbation of the tori T1

and T2 . Both pictures take place in a strip ft D t0g �N nK . Each flow line
represents an invariant subset of ft D t0g under the Reeb flow near K ; the
orientation gives the direction in which any point is mapped under the first
return map of the flow.

The families of Reeb orbits in T1 and T2 can be perturbed into two pairs of Reeb
orbits .e; h/ and .eC; hC/, where e and eC are elliptic with CZ index �1 and C1

respectively, and h and hC are positive hyperbolic, both with CZ index 0; see Figure 1.

Definition 1.18 A contact form ˛ is adapted to a Seifert surface S for K if the R˛

is positively transverse to int.S/.

The proof of the following lemma is given in Sections 9.2 and 10.3 of [5]; compare
also Section 7.2 of [10].

Lemma 1.19 [5] Given a null-homologous knot K and a contact structure � on Y ,
there exists a contact form ˛ for � and a genus minimizing Seifert surface S for K

such that
(1) ˛ is adapted to K ;
(2) ˛ is adapted to S .

It is important to remark that the proof of (1) is obtained by locally modifying a given
contact form near K using the Darboux–Weinstein neighborhood theorem; see for
example [15]. Moreover, the (perturbed) contact form compatible with K obtained
in [5] can be arranged to have all the orbits in N nK that have arbitrarily large linking
number with K , with the exception of the four relevant orbits e , h, eC and hC .

Example 1.20 Let .K;S; �/ be an open book decomposition of Y , where S is the
page, � the monodromy and K D @S the (not necessarily connected) binding of the
open book. Let ˛ be a contact form adapted to .K;S; �/ obtained via the Thurston–
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Winkelnkemper construction [36]. Then ˛ is compatible with S , and it can be easily
adapted also to K ; see for example [5, Section 9.3]. The strips ft D t0g �N nK can
be obtained as intersections of the pages of the open book with N nK , and the flow
depicted in Figure 1 is a dynamical representation of the restriction of � to a strip.

1.3.2 The relative ECH With the notation above, if ˛ is a contact form on Y which
is compatible with K , in [5], the authors define relative versions ECH.N; @N; ˛/ and
bECH.N; @N; ˛/ of embedded contact homology groups, and if ˛ is also compatible

with a Seifert surface S for K , they prove that

ECH.N; @N; ˛/Š ECH.Y; ˛/;(5)
bECH.N; @N; ˛/Š bECH.Y; ˛/:(6)

The notation suggests that these new homology groups are obtained by counting only
orbits in N and quotienting by orbits on @N . Let us see the definition of these
homologies in more detail.

In [5], the authors prove that it is possible to define the ECH–chain groups without
taking into account the orbits in int.V / and in T 2 � .1; 2/, so that the only interesting
orbits in N .K/ are the four orbits above (plus, obviously, the empty orbit set). Moreover,
the only curves counted by the (restriction of the) ECH–differential @ have projection
on Y as depicted in Figure 2. These curves give the relations

(7) @.e/D 0; @.h/D 0; @.hC/D eC∅; @.eC/D h:

Note that the two holomorphic curves from h to e , as well as the two from eC to hC ,
cancel each other since we work with coefficients in Z=2.

Observation 1.21 The compactification of the projection of the holomorphic curve
that limits to the empty orbit set is topologically a disk with boundary hC , which
should be seen as a cylinder closing on some point of K . This curve contribute to
the “∅ part” of the third equation of (7), which gives Œe�D Œ∅� in ECH–homology. In
the rest of this manuscript, the fact that this disk is the only ECH index-1 connected
holomorphic curve that crosses K will be essential.

Convention From now on, we will use the following notation. If .Y; ˛/ is understood,
given a submanifold X � Y and a set of Reeb orbits f1; : : : ; ng � P.Y nX /, we
will denote by ECC1;:::;n.X; ˛/ the free Z=2–module generated by orbit sets in
O.X t f1; : : : ; ng/.

Unless stated otherwise, the group ECC1;:::;n.X; ˛/ will come with the natural restric-
tion of the ECH–differential of ECC.Y; ˛/, still denoted by @ECH ; if this restriction is
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e

hC

∅

h

eC

T1

T2

K

Figure 2: Orbits and holomorphic curves near K . Here the marked points
denote the simple Reeb orbits, and the flow lines represent projections of the
holomorphic curves counted by @ECH . The two flow lines arriving from the
top on e and h are depicted only to remember that, by the trapping lemma,
holomorphic curves can only arrive at T1 .

still a differential, the associated homology is

ECH1;:::;n.X; ˛/ WDH�.ECC1;:::;n.X; ˛/; @ECH/:

This notation is not used in [5], where the authors introduced a specific notation for
each relevant ECH–group. In particular, with their notation,

ECC[.N; ˛/D ECCe.int.N /; ˛/;

ECC].N; ˛/D ECCh.int.N /; ˛/;

ECC\.N; ˛/D ECChC.N; ˛/:

As mentioned before, even if there are other Reeb orbits in N , it is possible to define
chain complexes for the ECH homology of .Y; ˛/ only taking into account the orbits
fe; h; eC; hCg.

The blocking and trapping lemmas and the relations above imply that the restriction of
the full ECH–differential of Y to the chain group ECHeC;hC.N; ˛/ is given by

(8) @.ea
Chb
C /D ea�1

C hb
Ch C ea

Chb�1
C .1C e/ C ea

Chb
C@;

where  2O.N / and where a term in the sum is meant to be zero if it contains some
elliptic orbit with negative total multiplicity or a hyperbolic orbit with total multiplicity
not in f0; 1g; see [5, Section 9.5]. We remark that the blocking lemma implies also
that @ 2O.N /.
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The further restriction of the differential to ECHhC.N; ˛/ is then given by

(9) @.hb
C /D hb�1

C .1C e/ C hb
C@:

Combining the computations of Sections 8 and 9 of [5] gives the following result.

Theorem 1.22 Suppose that ˛ is adapted to K and there exists a Seifert surface S

for K such that ˛ is adapted to S . Then

ECH.Y; ˛/Š ECHeC;hC.N; ˛/;(10)

bECH.Y; ˛/Š ECHhC.N; ˛/:(11)

Observation 1.23 It is important to remark that the empty orbit set is always taken
into account as a generator of the groups above. This implies that if orbit sets with hC
are considered, @ECH counts also the holomorphic plane that contributes to the third
of relations (7). Later we will give the definition of another differential, that we will
call @ECK , which is obtained from @ECH by simply deleting that disk.

Define now the relative embedded contact homology groups of .N; @N / by

ECH.N; @N; ˛/D ECHe.int.N /; ˛/=hŒe �� Œ �i;

bECH.N; @N; ˛/D ECH.N; ˛/=hŒe �� Œ �i:

Since hC does not belong to the complexes ECCe.int.N /; ˛/ and ECC.N; ˛/, the
blocking lemma implies that the ECH–differentials count only holomorphic curves
in N . This “lack” is balanced in the quotient by the equivalence relation

(12) Œe �� Œ �:

The reason behind this claim lies in the third of the relations (7). Indeed one can prove
the following lemma; see Lemma 9.7.1 in [5].

Lemma 1.24 ECHeC;hC.N; ˛/Š ECHeC.N; ˛/=hŒe �� Œ �i.

Similarly, the fourth relation of (7) indicates why we can avoid considering h in the
full ECH.Y; ˛/:

Lemma 1.25 [5, Lemma 9.9.1] ECHeC.N; ˛/Š ECHe.int.N /; ˛/.

Since @.e /D e@. /, the differential is compatible with the equivalence relation. So,
instead of taking the quotient by Œe �� Œ � of the homology, we could take the homology
of the quotient of the chain groups under the relation e �  , and we would obtain the
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same homology groups. We will use this fact later. Note moreover that Œek �D Œ∅� for
every k . Equations (5) and (6) follow then from last two lemmas and Theorem 1.22.

1.4 ECH for knots

Let K be a homologically trivial knot in .Y; ˛/. In this subsection, we recall the
definition of a hat version of contact homology for the triple .K;Y; ˛/. This was first
defined by Colin, Ghiggini, Honda and Hutchings in [10, Section 7] as a particular
case of sutured contact homology. On the other hand, following [5, Section 10], it is
possible to proceed without dealing directly with sutures; we follow this approach here.

Let S be a Seifert surface for K . By standard arguments in homology, it is easy to
compute that

(13) H1.Y nK/!H1.Y /�Z; Œa� 7!
�
i�Œa� ; ha;Si

�
;

is an isomorphism. Here i W Y n K ! Y is the inclusion and ha;Si denotes the
intersection number between a and S : this is a homological invariant of the pair .a;S/
and is well-defined up to a slight perturbation of S (to make it transverse to a). Note
that a preferred generator of Z is given by the homology class of a meridian for K ,
positively oriented with respect to the orientations of S and Y .

Example 1.26 If Y is a homology three-sphere, the number ha;Si depends only on a

and K . This is the linking number between a and K , usually denoted by lk.a;K/.

If  D
Q

i 
ki
i is a finite formal product of closed curves in Y nK , then h;Si DP

i kihi ;Si.

Example 1.27 If .K;S; �/ is an open book decomposition of Y , ˛ is an adapted
contact form (in the sense of Thurston and Winkelnkemper) and  2 O.Y nK/ is
the orbit set

Q
i 

ki
i , then each i is a periodic orbit of the diffeomorphism � with

degree di , and h;Si D
P

i kidi .

Proposition 1.28 (see Proposition 7.1 in [10]) Suppose that K is an orbit of R˛

and let S be any Seifert surface for K . If  and ı are two orbit sets in Y nK and
uW .F; j /! .R�Y;J / is a holomorphic curve from  to ı , then

h;Si � hı;Si:

If ˛ is a contact form adapted to K , a choice of (a homology class for) the Seifert sur-
face S for K defines then a knot filtration on the chain complex .ECChC.N; ˛/; @ECH/
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for bECH.Y; ˛/, where N is the complement of a neighborhood N .K/ of K in which
the only “interesting” orbits and holomorphic curves are those represented in Figure 2.

Let ECChC
d
.N; ˛/ be the free submodule of ECChC.N; ˛/ generated by orbit sets 

in O.N t fhCg/ such that h;Si D d . Define moreover

ECChC
�d
.N; ˛/ WD

M
j�d

ECChC
j .N; ˛/:

Definition 1.29 The knot filtration induced by K is the exhaustive filtration of the
module ECChC.N; ˛/ given by

� � � � ECChC
�d�1

.N; ˛/� ECChC
�d
.N; ˛/� ECChC

�dC1
.N; ˛/� � � � :

The filtration degree of a generator  of ECChC
d
.N; ˛/ is the integer d .

Corollary 1.30 The ECH–differential respects the knot filtration.

Proof The result follows by Proposition 1.28 applied to the MB buildings counted
by @ECH , which immediately implies that, for any d 2 Z,

@ECH.ECChC
�d
.N; ˛//� ECChC

�d
.N; ˛/:

If ˛ is also adapted to S , in [5, Section 10.3], the authors prove that the filtration
above induces a spectral sequence whose page 1 is isomorphic to ECHhC.N; ˛/Š
bECH.Y; ˛/ and whose page 0 is the chain complex

(14)
M

d

�
ECChC

d
.N; ˛/; @ECK

d

�
;

where ECChC
d .N; ˛/ Š ECChC

�d .N; ˛/=ECChC
�d�1.N; ˛/ and @ECK

d
is the map on

ECChC
d .N; ˛/ induced by @ECH on the quotient; ie it is the part of @ECHjECC

hC
d
.N;˛/

that strictly preserves the filtration degree.

Observation 1.31 The proof of Proposition 1.28 implies that the holomorphic curves
counted by @ECH that strictly decrease the degree are exactly the curves that intersect K .
So we can interpret @ECK as the restriction of @ECH (given by (8)) to the count of curves
that do not cross a thin neighborhood of K . This is indeed the proper ECH–differential
of the manifold Y n int.V .K// (and not the restriction of the ECH–differential of Y

to the orbit sets in Y n int.V .K//).

Note that, by definition of ECChC.N; ˛/, all the holomorphic curves contained in
R�N strictly preserve the filtration degree. In fact the only holomorphic curve that
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contributes to @ECHjECChC .N;˛/ and decreases the degree (by 1) is the plane from hC
to ∅. Then (9) gives

(15) @.hd
C /D hd�1

C e C hd
C@;

where  2O.N / and any term is meant to be zero if it contains some orbit with total
multiplicity that is negative or, if the orbit is hyperbolic, not in f0; 1g.

Definition 1.32 The hat version of embedded contact (knot) homology of the triple
.K;Y; ˛/ is

bECK�.K;Y; ˛/ WDH�.ECChC.N; ˛/; @ECK/:

Observation 1.33 In order to define bECK.K;Y; ˛/, we supposed that ˛ is compatible
with S . This hypothesis is not present in the original definition (via sutures) in [10,
Section 7.2]. Indeed, without this condition we can still apply all the arguments above
and define the knot filtration on ECChC.N; ˛/ exactly in the same way. Page 1 of the
spectral sequence is again the well-defined homology in the definition above, and page
1 is still isomorphic to ECHhC.N; ˛/. The only difference is that now we do not
know that ECHhC.N; ˛/Š bECH.Y; ˛/ since, in Theorem 1.22, the hypothesis that ˛
is adapted to S is assumed.

This homology comes naturally with a further relative degree inherited by the filtered
degree: if bECK�;d .K;Y; ˛/ WDH�.ECChC

d .N; ˛/; @ECK
d

/ then

bECK�.K;Y; ˛/D
M

d

bECK�;d .K;Y; ˛/:

Sometimes, in analogy with Heegaard Floer, we call this degree the Alexander degree.

Example 1.34 Suppose that .K;S; �/ is an open book decomposition of Y and
that ˛ is an adapted contact form. Since any nonempty Reeb orbit in Y nK has strictly
positive intersection number with S ,

bECK�;0.K;Y; ˛/Š hŒ∅�iZ=2:

This is the ECH–analogue of the fact that if K is fibered, then

bHFK�;�g.K;Y /Š hŒc�iZ=2;

where g is the genus of K and c is the associated contact element; see Ozsváth and
Szabó [30].

Observation 1.35 The Alexander degree can be considered as an absolute degree
only once a relative homology class in H2.Y;K/ for S has been fixed since the
function h � ;Si defined on H1.Y nK/ changes if ŒS � varies. On the other hand, if
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Œ �D Œı� 2H1.Y nK/ and F � Y is a surface such that @F D  � ı , computations
analogous to those in the proof of Proposition 1.28 imply that

h;Si � hı;Si D hF;Ki;

and the Alexander degree, considered as a relative degree, does not depend on the
choice of a homology class for S . Obviously, if H2.Y /D 0, the Alexander degree
can be lifted to an absolute degree.

In [10] the authors conjectured that their sutured embedded contact homology is iso-
morphic to sutured Heegaard Floer homology. For knot complements, their conjecture
becomes the following:

Conjecture 1.36 [10] For a homologically trivial knot K in Y ,

bECK.K;Y; ˛/Š bHFK.�K;�Y /;

where ˛ is a contact form on Y adapted to K .

2 Generalizations of 2ECK

Let K be a homologically trivial knot in a contact three-manifold .Y; ˛/. As recalled
in Section 1.4, if ˛ is adapted to K , a choice of a Seifert surface S for K induces a
filtration on the chain complex .ECChC.N; ˛/; @ECH/, where int.N / is homeomorphic
to Y nK . Moreover, if ˛ is also adapted to S , the homology of .ECChC.N; ˛/; @ECH/

is isomorphic to bECH.Y; ˛/, and the first page of the spectral sequence associated to
the filtration is the hat version of embedded contact knot homology bECK.K;Y; ˛/. In
this section, we generalize the knot filtration in two natural ways.

In Section 2.1, we extend to the chain complex .ECChC;eC.N; ˛/; @ECH/ the filtration
induced by K . This filtration is defined in a way analogous to the hat case. We define
the full version of embedded contact knot homology of .K;Y; ˛/ to be the first page
ECK.K;Y; ˛/ of the associated spectral sequence.

In Section 2.2, we generalize the knot filtration to n–component links L. The resulting
homologies, defined in a similar way to the case of knots, are the full and hat versions
of embedded contact knot homologies of .L;Y; ˛/, which will be still denoted by
ECK.L;Y; ˛/ and, respectively, bECK.L;Y; ˛/. Similarly to Heegaard Floer link
homology, these homologies come endowed with an Alexander (relative) Zn –degree.

2.1 The full ECK

Let K be a homologically trivial knot in a contact three-manifold .Y; ˛/ and suppose
that ˛ is adapted to K in the sense of Section 1.3. Recall in particular that there exist
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two concentric neighborhoods V .K/ � N .K/ of K whose boundaries are MB tori
T1 D @N .K/ and T2 D @V .K/ foliated by orbits of R˛ in the homology class of
meridians for K . These two families of orbits are modified into the two couples of
orbits fe; hg and, respectively, feC; hCg.

Consider the chain complex .ECCeC;hC.N; ˛/; @ECH/ where we recall that N D

Y n int.N .K//, ECCeC;hC.N; ˛/ D hO.N t fhC; eCg/iZ=2 and @ECH is the ECH–
differential (obtained by restricting the differential on ECC.Y; ˛/) given by (8).

A Seifert surface S for K induces an Alexander degree h � ;Si on the generators
of ECChC;eC.N; ˛/ exactly as in the case of ECChC.N; ˛/. Let ECChC;eC

d .N; ˛/

be the submodule of ECChC;eC.N; ˛/ generated by the  2 O.N /t fhC; eCg with
h;Si D d . If

ECChC;eC
�d

.N; ˛/ WD
M
j�d

ECChC;eC
j .N; ˛/;

we have the exhaustive filtration

� � � � ECChC;eC
�d�1

.N; ˛/� ECChC;eC
�d

.N; ˛/� ECChC;eC
�dC1

.N; ˛/� � � �

of ECChC;eC.N; ˛/. Proposition 1.28 again implies that @ECH preserves the filtration.
Let

@ECK
d W ECChC;eC

d
.N; ˛/! ECChC;eC

d
.N; ˛/

be the part of @ECH that strictly preserves the filtration degree d , that is, the differential
induced by @ECHjECC

hC;eC
�d

.N;˛/ on the quotient

ECChC;eC
�d

.N; ˛/=ECChC;eC
�d�1

.N; ˛/D ECChC;eC
d

.N; ˛/:

Set
@ECK

WD

M
d

@ECK
d W ECCeC;hC.N; ˛/! ECCeC;hC.N; ˛/:

Definition 2.1 We define the full embedded contact knot homology of .K;Y; ˛/ by

ECK.K;Y; ˛/ WDH�.ECCeC;hC.N; ˛/; @ECK/:

Note that, as in the hat case, the only holomorphic curves counted by @ECH that do not
strictly respect the filtration degree are the curves that contain the plane from hC to ∅;
see Observation 1.31. Recalling the expression of @ECH given in (8), it follows that
@ECK is given by

(16) @ECK.ea
Chb
C /D ea�1

C hb
Ch C ea

Chb�1
C e C ea

Chb
C@;

where  2 O.N / and any term is meant to be 0 if it contains an orbit with total
multiplicity that is negative or, if the orbit is hyperbolic, not in f0; 1g.
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Again the homology comes with an Alexander degree, which is well-defined once the
homology class for S is fixed, and induces the natural splitting

(17) ECK�.K;Y; ˛/Š
M
d2Z

ECK�;d .K;Y; ˛/;

where
ECK�;d .K;Y; ˛/ WDH�.ECChC;eC

d
.N; ˛/; @ECK

d /:

Lemma 2.2 If N .K/ is a neighborhood of K as above, then

ECK.K;Y; ˛/Š ECH.Y nN .K/; ˛/:

Proof Reasoning as in Lemma 1.24, it is easy to prove that

ECK.K;Y; ˛/ŠH�.ECCeC;hC.N; ˛/; @ECK/

ŠH�.ECCe;hC.int.N /; ˛/; @ECK/

ŠH�.ECC.int.N /; ˛/; @ECK/

Š ECH.int.N /; ˛/;

which follows from the fact that @ECK. /D @ECH. / for all  2O.N /.

Observation 2.3 Note that so far we only assumed that ˛ is compatible with K ,
while we did not assume the condition

(�) ˛ is compatible with a Seifert surface S for K .

As remarked in Observation 1.33, we cannot prove Theorem 1.22 without (�), and so
we do not know if the spectral sequence whose 0–page is the ECK–chain complex
limits to ECH.Y; ˛/. On the other hand, this spectral sequence is in any case well-
defined, and so is ECK.K;Y; ˛/. Even if, in light of Lemma 1.19, we could assume
(�) here without restrictions on K , we prefer to avoid it in the general definition of
ECK.K;Y; ˛/ in order to consider a wider class of contact forms.

In analogy with Conjecture 1.36 we state:

Conjecture 2.4 For any knot K in Y and any contact form ˛ on Y adapted to K ,

ECK.K;Y; ˛/Š HFKC.�K;�Y /:

2.2 The generalization to links

In this subsection, we extend the definitions of ECK and bECK to the case of homolog-
ically trivial links with more than one component. A (strongly) homologically trivial

Algebraic & Geometric Topology, Volume 17 (2017)



A categorification of the Alexander polynomial in embedded contact homology 2103

n–link in Y is a disjoint union of n knots, each of which is homologically trivial in Y .
Suppose that

LDK1 t � � � tKn

is a homologically trivial n–link in Y . We say that a contact form ˛ on Y is adapted
to L if it is adapted to Ki for each i .

Lemma 2.5 For any link L and contact structure � on Y there exists a contact form
compatible with � which is adapted to L.

Proof The proof of part (1) of Lemma 1.19 is local near the knot K and can then be
applied recursively to each Ki .

Fix LDK1 t � � � tKn homologically trivial and ˛ an adapted contact form. Since ˛
is adapted to each Ki , there exist pairwise disjoint tubular neighborhoods

V .Ki/�N .Ki/

of Ki where ˛ behaves exactly like in the neighborhoods V .K/�N .K/ in Section 1.3.
In particular, for each i , the tori Ti;1 WD @N .Ki/ and Ti;2 WD @V .Ki/ are MB and
foliated by families of orbits of R˛ in the homology class of a meridian of Ki . We
will consider these two families as perturbed into two pairs fei ; hig and feCi ; h

C
i g in

the usual way. Let

V .L/ WD
G

i

V .Ki/ and N .L/ WD
G

i

N .Ki/;

and set
N WD Y n int.N .L//:

Define moreover xe WD
F

i ei , and let xh, xeC and xhC be similarly defined.

Consider ECCxeC;xhC.N; ˛/ endowed with the restriction @ECH of the ECH differential
of .Y; ˛/, and let ECHxeC;xhC.N; ˛/ be the associated homology.

Lemma 2.6 ECHxeC;xhC.N; ˛/ is well-defined and the curves counted by @ECH inside
each N .Ki/ are given by analogous expressions to those in (7).

Proof The blocking and trapping lemmas can be applied locally near each component
of @N and the proofs of Lemmas 7.1.1 and 7.1.2 in [5] work immediately in this
context too. This imply that the homology of .ECC.N; ˛/; @ECH/ is well-defined.

Again the blocking and trapping lemmas, together with the local homological arguments
in Lemmas 9.5.1 and 9.5.3 in [5], imply that the only holomorphic curves counted
by @ECH inside each N .Ki/ are as required (see Figure 2), and so ECHxeC;xhC.N; ˛/
is well-defined.

An explicit formula for @ECH can be obtained by generalizing (8) in the obvious way.
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For each i 2 f1; : : : ; ng, fix a (homology class for a) Seifert surface Si for Ki . These
surfaces are not necessarily pairwise disjoint, and it is even possible that Si \Kj ¤∅
for some i ¤ j . Consider then the Alexander Zn –degree on ECHxeC;xhC.N; ˛/ given
by the function

(18) ECCxeC;
xhC.N; ˛/! Zn;  7! .h;S1i; : : : ; h;Sni/:

Define a partial ordering on Zn by

.a1; : : : ; an/� .b1; : : : ; bn/ () ai � bi for all i:

Proposition 1.28 applied to each Ki implies that if  and ı are two orbit sets in
O.N t fxeC; xhCg/, then for any k ,

Mk.; ı/=R¤ 0 D) .hı;S1i; : : : ; hı;Sni/� .h;S1i; : : : ; h;Sni/:

This implies that @ECH does not increase the Alexander degree, which induces a
Zn –filtration on .ECCxeC;xhC.N; ˛/; @ECH/. Like in the previous subsection, we are
interested in the part of @ECH that strictly respects the filtration degree. This can be
defined again in terms of quotients as follows.

Let d 2 Zn and let ECCxeC;xhCd .N; ˛/ be the submodule of ECCxeC;xhC.N; ˛/ freely
generated by orbit sets  2O.N t fxeC; xhCg/ such that

.h;S1i; : : : ; h;Sni/D d:

Define
ECCxeC;

xhC
�d

.N; ˛/ WD
M
j�d

ECCxeC;
xhC

d
.N; ˛/;

and let ECCxeC;xhC<d .N; ˛/ be similarly defined.

Define the full ECK–differential in degree d to be the map

@ECK
d W ECCxeC;

xhC
d

.N; ˛/! ECCxeC;
xhC

d
.N; ˛/

induced by @ECHjECC
xeC;
xhC

�d
.N;˛/ on the quotient

ECCxeC;
xhC

�d
.N; ˛/=ECCxeC;

xhC
<d

.N; ˛/Š ECCxeC;
xhC

d
.N; ˛/:

Define then the full ECK–differential by

@ECK
WD

M
d

@ECK
d W ECCxeC;

xhC.N; ˛/! ECCxeC;
xhC.N; ˛/:

Observation 2.7 Observing the form of @ECH , it is easy again to see that the only
holomorphic curves that are counted by @ECH and not by @ECK are the ones containing
a holomorphic plane from some hCi to ∅.
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Definition 2.8 The full embedded contact knot homology of .L;Y; ˛/ is

ECK.L;Y; ˛/ WDH�.ECCxeC;
xhC.N; ˛/; @ECK/:

The fact that ECK.L;Y; ˛/ is well-defined is a direct consequence of the good definition
of ECHxeC;xhC.N; ˛/ and the fact that @ECH respects the Alexander filtration. Note that
we have again a natural splitting

(19) ECK�.L;Y; ˛/D
M

d2Zn

ECK�;d .L;Y; ˛/;

where
ECK�;d .L;Y; ˛/DH�.ECCxeC;

xhC
d

.N; ˛/; @ECK
d /:

The proof of the following lemma is the same of that of the analogous Lemma 2.2 for
knots applied to each component of L.

Lemma 2.9 If N .L/ is a neighborhood of L as above, then

ECK.L;Y; ˛/Š ECH.Y nN .L/; ˛/:

Consider now the submodule ECCxhC.N; ˛/ of ECCxeC;xhC.N; ˛/ endowed with the
restriction of @ECH . Observe that its homology ECHxhC.N; ˛/ is well-defined. Filter-
ing .ECCxhC.N; ˛/; @ECH/ by the Alexander degree, for any d 2 Zn , we can define
ECCxhC

d
.N; ˛/ with differential

@ECK
d W ECC

xhC
d
.N; ˛/! ECC

xhC
d
.N; ˛/:

Definition 2.10 The hat version of embedded contact knot homology of .L;Y; ˛/ is

bECK.L;Y; ˛/ WDH�.ECC
xhC.N; ˛/; @ECK/:

Observation 2.7 and a splitting like the one in (19) hold also for bECK.L;Y; ˛/. More-
over, it is easy to see that if L has only one connected component, we get the same
theories of Sections 1.4 and 2.1.

Conjecture 2.11 If L is a link in Y and ˛ is any contact form on Y adapted to L, then

ECK.L;Y; ˛/Š HFKC.�L;�Y /;

bECK.L;Y; ˛/Š bHFK.L;Y /:

Convention In order to simplify the notation in the rest of the paper, we will indicate
the ECH chain groups for the knot embedded contact homology groups of links and
knots by

ECC.L;Y; ˛/ WD ECCxeC;
xhC.N; ˛/;

bECC.L;Y; ˛/ WD ECC
xhC.N; ˛/:
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These groups will implicitly come endowed with the differential @ECK .

We end this section by saying some words about a further generalization of ECK to
weakly homologically trivial links. We say that L � Y is a weakly homologically
trivial (or simply weakly trivial) n–component link if there exist surfaces with boundary
S1; : : : ;Sm�Y with m�n and such that @Si\@Sj D∅ if i ¤ j and

Fm
iD1 @SiDL.

Also, here we do not require that Si or even @Si is disjoint from Sj for j ¤ i .
Clearly, L is a strongly trivial link if and only if it is weakly trivial with mD n.

If L is a weakly trivial link with mŒ n, we cannot in general define a homology with
a filtered n–degree. In fact, there exists S 2 fS1; : : : ;Smg such that @S has more than
one connected component. Suppose for instance that @S DK1 tK2 . The arguments
behind Proposition 1.28 imply that if uW .F; j /! .R�Y;J / is a holomorphic curve
from  to ı , then

h;Si � hı;Si D hIm.u/; R� .K1 tK2/i � 0:

So in this case, we can still apply the arguments above and get well-defined ECH
invariants for L. However, this time they will come only with a filtered (relative)
Zm –degree on the generators  of an ECH complex of Y , which is given by the
m–tuple .h;S1i; : : : ; h;Smi/.

Example 2.12 Let .L;S; �/ be an open book decomposition of Y with possibly dis-
connected boundary. Using a (connected) page of .L;S; �/ to compute the Alexander
degree, the generators of the chain complex for ECKd .L;Y; ˛/ are d –periodic orbits
of the diffeomorphism � for any d 2 Z.

3 Euler characteristics

In this section, we compute the graded Euler characteristics of the embedded contact
homology groups for knots and links in homology three-spheres Y with respect to
suitable contact forms. The computations will be done in terms of the Lefschetz zeta
function of the flow of the Reeb vector field.

Before proceeding, we briefly recall what the graded Euler characteristic is. Given a
collection of chain complexes

.C; @/D
˚
.C�;.i1;:::;in/; @.i1;:::;in//

	
.i1;:::;in/2Zn ;

where � denotes a relative homological degree, its graded Euler characteristic is

�.C /D
X

i1;:::;in

�.C�;.i1;:::;in// t
i1

1
� � � t in

n 2 ZŒt˙1
1 ; : : : ; t˙1

n �;
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where �.C�;.i1;:::;in// is the standard Euler characteristic of C�;.i1;:::;in/ , and the tj are
formal variables. By definition, �.C / is a Laurent polynomial, and the properties of
the standard Euler characteristic imply

�.C /D �.H.C; @//:

In this case, the homology H.C; @/ is a categorification of �.C /.

The most important result of this section relates the Euler characteristic of ECK
homologies of a link in S3 with its multivariable Alexander polynomial.

Theorem 3.1 Let L be any n–link in S3. Then there exists a contact form ˛ adapted
to L such that

(20) �.ECK.L;S3; ˛//
:
D

�
�L.t1; : : : ; tn/ if n> 1;

�L.t/=.1� t/ if nD 1;
and

(21) �.bECK.L;S3; ˛//
:
D

�
�L �

Qn
iD1.1� ti/ if n> 1;

�L.t/ if nD 1:

This theorem implies that ECK categorifies the Alexander polynomial of knots and
links in S3 . This is the third known categorification of this kind, after the ones obtained
in Heegaard Floer homology by Ozsváth and Szabó [28; 31] and Rasmussen [33] and
in Seiberg–Witten–Floer homology by Kronheimer and Mrowka [24; 23].

An immediate consequence of Theorem 3.1 and Equations (1) and (2) is:

Corollary 3.2 For any link L in S3, there exists a contact form ˛ such that

�.ECK.L;S3; ˛//
:
D �.HFLC.�L;�S3//;

�.bECK.L;S3; ˛//
:
D �.bHFL.�L;�S3//:

This corollary implies that Conjecture 2.11 (which generalizes Conjectures 1.36 and 2.4)
holds for links in S3 at least at the level of Euler characteristic.

A key ingredient to prove Theorem 3.1 is the dynamical formulation of the Alexander
quotient given by Fried [14].

3.1 A dynamical formulation of the Alexander polynomial

Given any link L D K1 t � � � tKn in S3, we can associate to it its multivariable
Alexander polynomial

�L.t1; : : : ; tn/ 2 ZŒt˙1
1 ; : : : ; t˙1

n �=h˙t
a1

1
� � � tan

n i
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with ai 2 Z. The quotient means that the Alexander polynomial is well-defined only
up to multiplication by monomials of the form ˙t

a1

1
� � � t

an
n .

A slightly simplified version is the (classical) Alexander polynomial �L.t/ defined by
setting t1 D � � � D tn D t , ie

�L.t/ WD�L.t; : : : ; t/:

If L is a knot, the two notions obviously coincide.

There are many possible definitions of the Alexander polynomial �L . In this section,
we give a formulation of �L in terms of the dynamics of suitable vector fields in S3nL.

The fact that the Alexander polynomial is related to dynamical properties of its comple-
ment in S3 originates with the study of fibrations of S3. For example, A’Campo [1]
studied the twisted Lefschetz zeta function of the monodromy of an open book decompo-
sition .S; �/ of S3 associated to a Milnor fibration of a complex algebraic singularity.
More generally, if .K;S; �/ is any open book decomposition of S3, one can easily
prove that

�K .t/
:
D det.1� t�1

�/;

where 1 and �1
� are the identity map and, respectively, the application induced by � ,

on H1.S;Z/. The basic idea in this context is to express the right-hand side of the
above equation in terms of traces of iterations of �1

� , then to apply the Lefschetz fixed
point theorem to get expressions in terms of periodic points (ie periodic orbits) for the
flow of some vector field in S3 nK whose first return on a page is � .

Suppose now that L is not a fibered link, so its complement is not globally fibered over
S1, and let R be a vector field in S3 nL. If one wants to apply arguments as above, it
is necessary to decompose S3 nL in “fibered-like” pieces with respect to R, in which
it is possible to define at least a local first return map of the flow �R of R. Obviously,
some condition on R is required. For example, Franks [13] considers Smale vector
fields, ie vector fields with one-dimensional and hyperbolic chain recurrent set; see [35].

Here we are more interested in the approach used by Fried [14]. Consider a three-
dimensional manifold X . Any abelian cover zX �

�!X with deck-transformation group
isomorphic to a fixed abelian group G is uniquely determined by the choice of a class
�D �.�/ 2H 1.X;G/ŠHom.H1.X;Z/;G/. Here � is determined by the following
property: for any Œ �2H1.X /, if z W Œ0; 1�! zX is any lifting of the loop  W Œ0; 1�!X ,
then �.Œ �/ is determined by �.Œ �/.z .0//D z .1/.

Since the correspondence between abelian covers and cohomology classes is bijective,
with abuse of notation sometimes we will refer to an abelian cover directly by identifying
it with the corresponding � .
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Example 3.3 The universal abelian cover of X is the abelian cover with deck-
transformation group G DH1.X;Z/ and corresponding to �D id.

Example 3.4 Let LDK1t � � � tKn be an n–component link in a three-manifold Y

such that Ki is homologically trivial for any i , and fix a Seifert surface Si for Ki .
Let moreover �i be a positive meridian for Ki . If i W Y nL ,! Y is the inclusion, the
isomorphism

H1.Y nL/!H1.Y /˚ZŒ�1�˚ � � �˚ZŒ�n�; Œ � 7! .i�.Œ �/; h;S1i; : : : ; h;Sni/;

gives rise naturally to the abelian cover

�L 2 Hom.H1.Y nL;Z/; Zn/

of Y nL defined by
�L.Œ �/D .h;S1i; : : : ; h;Sni/:

Setting ti D Œ�i � 2H1.Y nL;Z/, we can regard �L.Œ �/ as a monomial in the ti :

�L.Œ �/D t
h;S1i

1
� � � t h;Sni

n :

In the rest of the paper, we will often use this notation. Note finally that if Y is a
homology three-sphere, �L coincides with the universal abelian cover of Y nL.

If R is a vector field on X satisfying some compatibility condition with � (and with @X
if this is nonempty), Fried relates the Reidemeister–Franz torsion of .X; @X / with the
twisted Lefschetz zeta function of the flow �R .

3.1.1 Twisted Lefschetz zeta function of flows Let R be a vector field on X and 
a closed isolated orbit of �R . Pick any point x 2  and let D be a small disk transverse
to  such that D\  D fxg. With this data it is possible to define the Lefschetz sign
of  exactly like we did in Section 1.1.1 for orbits of Reeb vector fields associated to a
contact structure � , but using now TxD instead of �x . Indeed, it is possible to prove
that the Lefschetz sign of  does not depend on the choice of x and D , and that it is
an invariant �. / 2 f�1; 1g of �R near  .

Definition 3.5 The local Lefschetz zeta function of �R near  is the formal power
series � .t/ 2 ZŒŒt �� defined by

� .t/ WD exp
�X

i�1

�. i/
t i

i

�
:

Let now zX �
�! X be an abelian cover with deck-transformation group G , and let

�D �.�/ 2H 1.X;G/. Suppose that all the periodic orbits of �R are isolated.
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Definition 3.6 We define the �–twisted Lefschetz zeta function of �R by

��.�R/ WD
Y


� .�.Œ �//;

where the product is taken over the set of simple periodic orbits of �R .

When � is understood, we will write directly �.�R/ and we will call it the twisted
Lefschetz zeta function of �R .

We remark that in [14], the author defines ��.�R/ in a slightly different way, and then
he proves in Theorem 2 that the two definitions coincide.

Convention Suppose that � 2 H 1.X;Zn/ is an abelian cover of X and chose a
generator .t1; : : : ; tn/ of Zn . Then, with a similar notation to that of Example 3.4, we
will often identify ��.�R/ with an element of ZŒŒt˙1

1
; : : : ; t˙1

n ��.

3.1.2 Torsion and flows Fried [14] relates the Reidemeister torsion of an abelian
cover � of a (not necessarily closed) three-manifold X with the twisted Lefschetz
zeta function of certain flows. In particular, in Section 5, he considers a kind of
torsion that he calls the Alexander quotient and denotes it by ALEX�.X /: the reason
for the “quotient” comes from the fact that Fried uses a definition of Reidemeister
torsion only up to the choice of a sign (this is the “refined Reidemeister torsion” of
Turaev [38]), while ALEX�.X / is defined up to an element in the abelian group of
deck transformations of � .

In fact, one can check that ALEX�.X / is exactly the Reidemeister–Franz torsion �
considered by Ozsváth and Szabó [31]. In particular, when X is the complement of an
n–component link L in S3 and � is the universal abelian cover of X , then

(22) ALEX.S3
nL/

:
D

�
�L.t1; : : : ; tn/ if n> 1;

�L.t/=.1� t/ if nD 1;

where we removed �D idH1.S3nL;Z/ from the notation; see [14, Section 8] and [38].

Since the notation “� ” is ambiguous, we follow Fried [14] and we refer to the
Reidemeister–Franz torsion as the Alexander quotient, indicated by ALEX�.X /.

In order to relate ALEX�.X / to the twisted Lefschetz zeta function of the flow �R

of a vector field R, Fried assumes some hypotheses on R. The first condition that R

must satisfy is circularity.

Definition 3.7 A vector field R on X is circular if there exists a C 1 map � W X!S1

such that d�.R/ > 0.
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If @X D∅, this is equivalent to say that R admits a global cross section. Intuitively, the
circularity condition on R allows us to define a kind of first return map of �R . Suppose
that R circular, and consider S1 ŠR=Z with R–coordinate t . The cohomology class

u� WD �
�.Œdt �/ 2H 1.X;Z/

is then well-defined.

Definition 3.8 Given an abelian cover zX �
�!X with deck-transformation group G ,

let �D �.�/ 2H 1.X;G/ be the corresponding cohomology class. A circular vector
field R on X is compatible with � if there exists a homomorphism vW G!R such
that v ı �D u� , where � and u� are as above.

Example 3.9 The universal abelian cover corresponds to � D idW H1.X;Z/ !
H1.X;Z/, and it is compatible with any circular vector field on X .

The following theorem is not the most general result in [14], but it will be enough for
our purposes.

Theorem 3.10 [14, Theorem 7] Let X be a three-manifold and � 2H 1.X;G/ an
abelian cover. Let R be a nonsingular, circular and nondegenerate vector field on X

compatible with � . Suppose moreover that, if @X ¤ ∅, then R is transverse to @X
and pointing out of X . Then

ALEX�.X /
:
D ��.�R/;

where the equivalence :
D is up to multiplication by ˙g for any g 2G .

An immediate consequence is the following:

Corollary 3.11 If L is an n–component link in S3, let N .L/ be a tubular neighbor-
hood of L, and let N DS3 nN .L/. Let R be a nonsingular circular vector field on N ,
transverse to @N and pointing out of N . Then

(23) �.�R/
:
D

�
�L.t1; : : : ; tn/ if n> 1;

�L.t/=.1� t/ if nD 1:

3.2 Results

In the next subsections, we prove Theorem 3.1, which will be obtained as a consequence
of the following more general result. Recall that an n–link L � Y determines the
abelian cover �L 2 H 1.Y nL;Zn/ of Y nL given in Example 3.4. When Y is a
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homology three-sphere, we have

�L � 1W H1.Y nL/!H1.Y nL/Š Zn:

In order to simplify the notations, we remove �L from the notation of the Alexander
quotient and of the twisted Lefschetz zeta function:

ALEX.Y nL/ WD ALEX1.Y nL/; �.�/ WD �1.�/:

Let .t1; : : : ; tn/ be a basis for H1.Y nL/, where Œ�i �D ti for �i a positively oriented
meridian of Ki .

Theorem 3.12 Let L be an n–link in a homology three-sphere Y . Then there exists a
contact form ˛ such that

�.ECK.L;Y; ˛// :D ALEX.Y nL/:

The proofs of Theorems 3.1 and 3.12 will be carried out in two main steps: in Section 3.3,
we will prove the theorems in the case of fibered links, while the general case will be
treated in Section 3.4.

3.3 Fibered links

In this subsection, we prove Theorems 3.1 and 3.12 for fibered links. Let .L;S; �/ be
an open book decomposition of a homology three-sphere Y , and let ˛ be an adapted
contact form on Y . In particular, with our definition, ˛ is also adapted to L.

In order to prove the theorems above, we want to express the Euler characteristic
�.ECK.L;Y; ˛// in terms of the twisted Lefschetz zeta function of the Reeb flow �R

of RDR˛ and then apply Theorem 3.10. The first thing that one should do is then to
check if �R and �L satisfy the hypotheses of that theorem. Unfortunately, this is not
the case. The needed properties are, in fact, that R is

(1) nonsingular and circular;

(2) compatible with �L ;

(3) nondegenerate;

(4) transverse to @V .L/ and pointing out of Y n VV .L/, where VV .L/D int.V .L//.

In our situation, only properties (1) and (2) are satisfied. Indeed, by the definition of
open book decomposition, there is a natural fibration � W Y n VV .L/! S1 ŠR=Z such
that the surfaces ��1.t/ are the pages of the open book. The fact that ˛ is adapted to
.L;S; �/ implies that R is always positively transverse to the pages. This evidently
implies that d�.R/ > 0, so R is circular. The fact that R is compatible with �L (that
coincides with the universal abelian cover of Y n VV .L/) comes from Example 3.9.
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On the other hand, properties (3) and (4) above are not satisfied. Indeed, after the MB
perturbation of T2 , the vector field R is tangent to @V .L/ on xeC and xhC . Moreover,
as observed in Section 1.1.3, the MB perturbations near the two tori T1 and T2 may
create degenerate orbits. We will then perturb R to get a new vector field R0 . This
vector field will be defined in Y n V 0.L/, where V 0.L/ � VV .L/ is an open tubular
neighborhood of L defined by V 0.L/ D V 0.K1/ t � � � t V 0.Kn/, where, using the
coordinates of Section 1.3.1, @.V 0.Ki//D fy D 2:5g.

Lemma 3.13 There exists a (noncontact) vector field R0 such that

(i) R0 coincides with R outside a neighborhood of N .L/;

(ii) R0 satisfies properties (1)–(4) above with V .L/ replaced by V 0.L/;

(iii) the only periodic orbits of R0 in N .V /nV 0.L/ are the four sets of nondegenerate
orbits xe; xh; xeC; xhC .

Observe that property (i) implies that the twisted Lefschetz zeta functions of the
restrictions of the flows �R and �R0 to Y nN .K/ coincide, while property (ii) allows
us to apply Theorem 3.10 to �R0 .

Proof A perturbation of R into an R0 satisfying the conditions (i)–(iii) can be obtained
in more than one way. An example is pictured in Figure 3; see also Figure 1. We briefly
explain how it is obtained. Since the modification of R is nontrivial only inside disjoint
neighborhoods of each Ki , we will describe it only for a fixed component K of L.
The characterization of the a perturbation will be presented in terms of perturbation
of the lines in a page S of .L;S; �/ that are invariant under the first return map �
of �R : we will refer to these curves as �–invariant lines on S . Note that these curves
are naturally oriented by the flow.

Outside a neighborhood of @V 0 , one can see this perturbation in terms of a perturbation
of � into another monodromy �0 , and R0 is the vector field @t in Y n V 0.L/ Š

S � Œ0; 1�=h.x; 1/� .�0.x/; 0/i, where t is the coordinate of Œ0; 1�.

Observe first that the only periodic orbit in the (singular) �–invariant line a1 contain-
ing h (in correspondence to the singularity) is exactly h. Similarly, the only periodic
orbit in the �–invariant singular flow line a2 containing hC is precisely hC . Denote
by Ai � Y the mapping torus of .ai ; �jai

/, i D 1; 2. We modify R separately inside
the regions of .Y nV 0.K// n .A1 tA2/ as follows.

In the region containing e (and with boundary A1 ), the set of �–invariant lines
(the elliptic lines in Figure 3 (left)) is perturbed in a set of �0–invariant spiral-like
lines (Figure 3 (right)), each of which is negatively asymptotic to a1 and positively
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hC

e

eC

h

a1

a2

T1

T2

@V 0

hC

e

eC

h

Figure 3: The dynamics of the vector fields R and R0 near N .V / nV 0.L/ .
Each oriented line represents an invariant subset of a page of .L;S; �/ under
the first return map � (left) and �0 (right); the invariant lines a1 and a2 are
stressed. The situation at the left is the same depicted in Figure 1.

asymptotic to e . It is easy to see that after the perturbation, the only periodic orbit in
the interior of this region is e . Moreover, we can arrange the perturbation such in a way
that the differential LR0

e of the first return map on S of �R0 along e coincides, up to a
positive factor smaller then 1, with LR

e , so that the Lefschetz sign �.e/ of e is still C1.

A similar perturbation is done in the region of .Y nV 0.K//n .A1tA2/ containing eC
in such a way that eC is the only periodic orbit of the perturbed vector field R0 , with
still �.eC/DC1.

The perturbation in the region between A1 and A2 is done by slightly pushing the
monodromy in the positive y –direction in such a way that the set of �–invariant lines
is perturbed into a set of �0–invariant lines, each of which is negatively asymptotic
to a1 and positively asymptotic to a2 (in particular, there can not exist periodic orbits
in this region).

A similar perturbation is done also inside the region between A2 and @V 0.K/, but in
this case each �0–invariant line is negatively asymptotic to a2 and intersects @V 0.K/
pointing out of the three-manifold.

Finally, we leave R0 DR in the rest of the manifold, where R was supposed having
only isolated and nondegenerate periodic orbits.
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Note that the two bases of eigenvectors of LR
h

and LR
hC

are contained in the tangent
spaces of the curves a1 and a2 , and since �R D �R0 on these curves, the Lefschetz
signs of the two orbits are preserved by the perturbation.

It is easy to convince ourselves that R0 satisfies the properties (i)–(iii) above.

Set � D �1 . Since the Lefschetz zeta function of a flow depends only on its periodic
orbits and their signs, we have the following:

Corollary 3.14 If R0 is obtained from R as above, then

�.�R0/D �.�R0 j.Y nN .K /tfxe;xh;xeC;xhCg//D �.�Rj.Y nN .K /// �
Y

2fxe;xh;xeC;xhCg

� .Œ �/;

where Œ � is the homology class of  in H1.Y nN .K//.

Now we want to compute more explicitly the twisted Lefschetz zeta function �.�R0/.
Let us begin with the local Lefschetz zeta function of the simple orbits; see Definition 3.5.

Lemma 3.15 Let  be an orbit of R or R0 . Then

(24) � .t/D

8<:
.1� t/�1 D 1C t C t2C � � � if  elliptic;
1� t if  positive hyperbolic;
1C t if  negative hyperbolic:

Proof This is just matter of replacing the Lefschetz signs given in Observation 1.2. For
example, if  is positive hyperbolic, then all the iterates are also positive hyperbolic,
�. i/D�1 for every i > 0, and

� .t/D exp
�X

i�1

�
t i

i

�
D exp.log.1� t//D 1� t:

Observation 3.16 Note that the equations above are exactly the generating functions
given by Hutchings in [20, Section 2].

Let �i be a positive meridian of Ki for i 2 f1; : : : ; ng, and set ti D Œ�i � 2H1.Y nK/;
fix moreover a Seifert surface Si for each Ki . Recall that, for a given X � Y , we
denote by P.X / the set of simple Reeb orbits contained in X .

Corollary 3.17 The twisted Lefschetz zeta function of �Rj.Y nN .L// is

�.�Rj.Y nN .L///D
Y

2P.Y nN .L//

� .Œ �/;
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where � .Œ �/ is determined as follows:

� .�L. //D

�
1�

nY
iD1

t
h;Si i

i

��1

D

1X
lD0

� nY
iD1

t
h;Si i

i

�l

. elliptic /;

� .�L. //D 1�

nY
iD1

t
h;Si i

i . positive hyperbolic);

� .�L. //D 1C

nY
iD1

t
h;Si i

i . negative hyperbolic/:

Proof of Theorem 3.12 for fibered links To finish the proof, it remains essentially
to prove that

(25) �.ECC.L;Y; ˛//D �.�Rj.Y nN .L/// �
Y

2fxe;xh;xeC;xhCg

� .Œ �/:

This is easy to verify recursively on the set of simple orbits. Suppose ı D
Q

j ı
kj
j

is an orbit set and let  be an orbit such that  ¤ ıj for any j . Then the set of all
multiorbits that we can build using ı and  can be expressed via the product formulae

(26)
ı � f∅; ;  2; : : : g if  is elliptic;
ı � f∅;  g if  is hyperbolic:

As remarked in Section 1.2, the index parity formula (4) implies that the Lefschetz
sign endows the ECH–chain complex with an absolute degree, and it coincides with
the parity of the ECH–index. Then the contribution to the graded Euler characteristic
of ı �  l , for any l (l 2N if  is elliptic and l 2 f0; 1g if  is hyperbolic), is

�.ı/

nY
iD1

t
hı;Si i

i �

�
�. /

nY
iD1

t
h;Si i

i

�l

:

Substituting the last formula in (26), the total contribution of the product formulae to
the Euler characteristic are

� �.ı/
Qn

iD1 t
hı;Si i

i �
P1

lD0

�Qn
iD1 t

h;Si i

i

�l if  is elliptic,

� �.ı/
Qn

iD1 t
hı;Si i

i �
�
1�

Qn
iD1 t

h;Si i

i

�
if  is positive hyperbolic,

� �.ı/
Qn

iD1 t
hı;Si i

i �
�
1C

Qn
iD1 t

h;Si i

i

�
if  is negative hyperbolic,

that is,

�.ı/

nY
iD1

t
hı;Si i

i � � .Œ �/:
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Starting from ı D∅, (25) follows by induction on the set of the simple Reeb orbits in
.Y nN .L//t fxe; xh; xeC; xhCg. The theorem follows then by applying Corollary 3.14
and Theorem 3.10 to the flow of R0 .

Proof of Theorem 3.1 for fibered links Theorem 3.12 and (22) imply (20) imme-
diately. To prove the result in the hat version, we reason again at the level of chain
complexes. Recall that if N WD Y n VN .L/, by the definition of the ECK–chain
complexes,

ECC.L;Y; ˛/D ECCxeC;
xhC.N; ˛/

D ECC
xhC.N; ˛/˝

nO
iD1

h∅; eCi ; .e
C
i /

2; : : : i

D bECC.L;Y; ˛/˝
nO

iD1

h∅; eCi ; .e
C
i /

2; : : : i;

where the second line comes from the product formula (26) and the fact that eCi is
elliptic for any i . Taking the graded Euler characteristics as above, we have

�.ECC.L;Y; ˛//D �.bECC.L;Y; ˛// �
nY

iD1

�
e
C

i

.ŒeCi �/

D �.bECC.L;Y; ˛// �
nY

iD1

1

1�ti
;

where the last equality comes from the fact that ŒeCi � D Œ�i � D ti 2 H1.Y nL/. If
Y D S3, then the last equation and (20) evidently imply (21).

Observation 3.18 (symplectic Floer homology) If .L;S; �/ is an open book decom-
position of Y , one can think of ECK.L;Y; ˛/ and bECK.L;Y; ˛/ as invariants of the
pair .S; �/ and the adapted ˛ . It is interesting to note that the Euler characteristic of
ECK1.L;Y; ˛/ with respect to the surface S (see Example 2.12) coincides with the
sum of the Lefschetz signs of the Reeb orbits of period 1 in the interior of S , ie the
Lefschetz number ƒ.�/ of � .

In fact, given Y (not necessarily an homology three-sphere) we can say even more
about this fact by relating ECK1.L;Y; ˛/ to the symplectic Floer homology SH.S; �/
of .S; �/, whose Euler characteristic is precisely ƒ.�/. Here we are considering the
version of SH.S; �/ for surfaces with boundary that is slightly rotated by � in the
positive direction, with respect to the orientation induced by S on @S ; see for example
Cotton-Clay [11].
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Combining the definition of ECK, the relation between the periodic Floer homology
PFH and ECH for a mapping torus (see Theorem 3.6.1 in [7]) and between PFH and
SH (see for example Hutchings and Sullivan [21]) one can easily prove that

(27) ECK1.L;Y; ˛/Š SH.S; �/;

where the degree of ECK.L;Y; ˛/ is computed with respect to the Alexander degree
induced by S . We remark that an analogous result for HFK is currently unknown.

3.4 The general case

The first approach that one could use to attempt to apply Theorem 3.10 to a general link
L� Y is to look for a contact form on Y that is compatible with L and whose Reeb
vector field is circular outside a neighborhood of L. Unfortunately we will not be able
to find such a contact form. The basic idea to solve the problem consists of two steps:

Step 1 Find a contact form ˛ on Y which is compatible with L and for which there
exists a finite decomposition Y nLD

F
i Xi for which RDR˛ is circular in each Xi .

Step 2 Apply repeatedly the Torres formula for links to get the result.

As we will see, the Torres formula is a classical result which explains how to compute
the Alexander polynomial of any sublink of a given link L starting from the Alexander
polynomial of L.

3.4.1 Preliminary The key ingredient for Step 1 of our strategy is the following result;
see Baker, Etnyre and Van Horn-Morris [2] and Guyard [18] for slightly different proofs.

Proposition 3.19 Let LDK1 t � � � tKn � Y be an n–component link and let � be
any fixed contact structure on Y . Then there exists an m–component link L0 � Y with
m� n and such that

(1) L0 DLtKnC1 t � � � tKm ;

(2) L0 is fibered and the associated open book supports � .

Proof The proof makes a deep use of the proof of the Giroux correspondence between
open book decompositions and contact structures; see Giroux [16] and Colin [4]. Given
a contact structure � on Y , Giroux explicitly constructs an open book decomposition
of Y that supports a contact form ˛ such that ker.˛/D � . Such decomposition is built
starting from a cellular decomposition D of Y that is compatible (in a specific sense)
with � : for us it is important that, up to taking a refinement, any cellular decomposition
of Y can be made compatible with � by an isotopy.
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Figure 4: Making L contained in @S in N .D0/: easy case (left) and general
(right). The dotted lines are 1–simplexes in D1, while the bold segments
from Q1 to Q2 represent the push-offs of L in N .D0/ .

Using the simplicial approximation theorem, it is possible to choose a triangulation D
of Y in such a way that, up to isotopy, L is contained in D1, where Di denotes the
i –skeleton of D . Up to taking a refinement, we can then suppose that D is adapted to � .

Let N .D1/ be a tubular neighborhood of D1. Suppose that N .D0/ � N .D1/ is a
tubular neighborhood of D0 such that N .D1/ nN .D0/ is homeomorphic to a tubular
neighborhood of D1 nN .D0/. The 0–page S of the associated open book built via
the proof of Giroux satisfies then the following properties:

(1) S �N .D1/, L0 WD @S � @N .D1/ and D1 � int.S/;

(2) S \ .N .D1/ nN .D0// is a disjoint union of strips which are diffeomorphic to
.D1nN .D0//� Œ�1; 1�, with D1nN .D0/ corresponding to .D1nN .D0//�f0g.

These properties imply that L � int.S/ and that it is possible to push L nN .D0/

inside S to make it contained in @S . Note that in each strip composing S nN .D0/,
we have only one possible choice for the direction in which to push L nN .D0/ to @S
in such a way that the orientation of L coincides with that of @S .

We would like to extend this isotopy also to L \N .D0/ to make the whole of L

contained in @S . Suppose that B is a connected component (homeomorphic to a ball)
of N .D0/. In particular, we suppose that B \S is connected. Then L\ @B consists
of two points Q1 and Q2 . The extension is done differently in the following two cases
(see Figure 4):

Easy case This is when Q1 and Q2 belong to the same connected component of
@S\B . The isotopy is then extended to B by pushing L\B to @S\B inside S\B ;
see Figure 4 (left).
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General case If Q1 and Q2 belong to (the boundary of) different connected compo-
nents a1 and a2 of @S \B , we proceed as follows: Let Pi be a point in the interior
of ai for i D 1; 2. Let  be a simple arc in S \B from P1 to P2 (there exists only
one choice for  up to isotopy). Let S 0 be obtained by positive Giroux stabilization
of S along  ; see Figure 4 (right). Now we can connect Q1 with a2 by an arc in @S 0

crossing the belt sphere of the 1–handle of the stabilization once; let Q0
2

be the end
point of this arc. Since a Giroux stabilization is compatible with the orientation of @S ,
the points Q0

2
and Q2 are in the same connected component of a n fP2g, so we can

connect them inside @S \B , and we are done.

Pushing L to @S (and changing L and S as before where necessary) gives a link xL
that is contained in @S . To see that xL is isotopic to L, we have to prove that, for any B

as before, the two kinds of push-offs we use do not change the isotopy class of L.

Clearly, the isotopy class of L is preserved in the easy case. For the general case, it suf-
fices to show that substituting the arc L\S\B from Q1 to Q2 with an arc crossing the
belt sphere of the handle once does not change the isotopy class of L. This is equivalent
to proving that if  is the path of the Giroux stabilization and x D  [c , where c is the
core curve of the handle, then x bounds a disk in Y nL. This can be proved for example
by using the particular kind of Heegaard diagrams used in [7]. Observe that if b is the
cocore of the handle, then x is isotopic in S to b[�0.b/, where �0 is the monodromy
on S 0 given by the Giroux stabilization. We finish by observing that b[�0.b/ is isotopic,
up to a small perturbation near @S , to an attaching curve of a Heegaard diagram of Y .

We now recall the Torres formula that we will use in the second step of our proof of
Theorem 3.12. Since we need to consider the Alexander quotient as a polynomial,
when we need to highlight its variables t1; : : : ; tk , we will indicate them as subscripts
and write ALEXt1;:::;tk

instead of ALEX.

Theorem 3.20 (Torres formula) Let LDK1t � � �tKn be an n–link in a homology
three-sphere Y , KnC1 a knot in Y nL and L0DLtKnC1 . Let Si be a Seifert surface
for Ki for i 2 f1; : : : ; nC 1g. Then

ALEXt1;:::;tn;1.Y nL0/
:
D ALEXt1;:::;tn

.Y nL/ �

�
1�

nY
iD1

t
hKnC1;Si i

i

�
;

where ALEXt1;:::;tn;1.Y nL0/ indicates the polynomial ALEXt1;:::;tnC1
.Y nL0/ evalu-

ated at tnC1 D 1.

We refer the reader to Torres [37, Theorem 3] for the original proof. See also Franks
[13, Theorem 6.4] for a proof making use of techniques of dynamics and Turaev [38,
Section 1.4] for a generalization of the formula to links in any three-manifold.
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Observation 3.21 One can see the condition tnC1D 1 from a purely topological point
of view. Imagine taking the manifold Y nL0 and then gluing back KnC1 . The effect
on H1.Y nL0/ is that the generator Œ�nC1� is killed, and now the homology class
of a loop  � Y nL0 is determined only by the numbers h;Sii for Si 2 f1; : : : ; ng

(ie by �L. /).

3.4.2 Proof of the result in the general case

Proof of Theorem 3.12 Let LDK1t� � �tKn be a given link in Y . Proposition 3.19
implies that there exists an open book decomposition .L0;S; �/ of Y with binding

L0 DLtKnC1 t � � � tKm

for some m � n. Let ˛ be a contact form on Y adapted to .L0;S; �/. Let RDR˛

be its Reeb vector field. As remarked in Section 3.3, and using the same notation, R is
circular in Y n VV 0.L0/, where we recall that V 0.L/ is an union of tubular neighborhoods
V 0.Ki/¨ V .Ki/, for i 2 f1; : : : ;mg, of L.

Since ˛ is also adapted to L0 , each VV .Ki/ is, by definition, foliated by concentric tori,
which in turn are linearly foliated by Reeb orbits that intersect positively a meridian disk
for Ki in V .Ki/. Now, we can choose ˛ in such a way that for each i 2fnC1; : : : ;mg,
the tori contained in V 0.Ki/ are foliated by orbits of R with fixed irrational slope. This
condition can be achieved by applying the Darboux–Weinstein theorem in V .Ki/ to
make ˛jV 0.Ki / like in Example 6.2.3 of [5]. It follows that for each i 2 fnC1; : : : ;mg,
the only closed orbit of R in V 0.Ki/ is Ki . Define U.L0/D

Fm
iD1 U.Ki/, where

U.Ki/D

�
V .Ki/ if i 2 f1; : : : ; ng;

V 0.Ki/ if i 2 fnC 1; : : : ;mg:

We have

�.ECC.L;Y; ˛//D ��L
.�RjY nV .L//

D ��L
.�RjY nU.L0// �

mY
iDnC1

Y
2P.V 0.Ki //

� .�L.Œ �//

D ��L
.�RjY nU.L0// �

mY
iDnC1

�Ki
.�L.ŒKi �//

D ��L0
.�RjY nU.L0//jt1;:::;tn;1;:::;1 �

mY
iDnC1

�Ki
.�L.ŒKi �//

:
D ALEXt1;:::;tn;1;:::;1.Y nL0/ �

mY
iDnC1

�Ki
.�L.ŒKi �//
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D ALEXt1;:::;tn;1;:::;1.Y nL0/ �

mY
iDnC1

�
1�

nY
jD1

t
hKi ;Sj i

j

��1

D ALEXt1;:::;tn
.Y nL/;

where

� line 2 follows from reasoning as in the proof of (25);

� line 3 holds since Ki , for i 2 fnC 1; : : : ;mg, is the only Reeb orbit of ˛ in
V 0.Ki/;

� line 4 comes from the idea in Observation 3.21: �L and �L0 coincide on the
generators ti of H1.Y nL/ for i 2 f1; : : : ; ng, and ti D Œ�i �D 1 2H1.Y nL/

for i 2 fnC 1; : : : ;mg;

� line 5 holds since, up to a slight perturbation of R near each @U.Ki/ to make it
nondegenerate and transverse to the boundary like in the proof in Section 3.3,
�L0 and RjY nU.L0/ satisfy the hypothesis of Theorem 3.10;

� line 6 is due to the fact that the Ki are elliptic;

� line 7 is obtained by applying repeatedly the Torres formula on the components
KnC1; : : : ;Km .

The proof of Theorem 3.1 works then exactly as in the fibered case.
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