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Bounds on alternating surgery slopes

DUNCAN MCCOY

We show that if p=q–surgery on a nontrivial knot K yields the branched double
cover of an alternating knot, then jp=qj � 4g.K/C 3 . This generalises a bound
for lens space surgeries first established by Rasmussen. We also show that all
surgery coefficients yielding the double branched covers of alternating knots must
be contained in an interval of width two and this full range can be realised only if
the knot is a cable knot. The work of Greene and Gibbons shows that if S3

p=q
.K/

bounds a sharp 4–manifold X , then the intersection form of X takes the form of a
changemaker lattice. We extend this to show that the intersection form is determined
uniquely by the knot K , the slope p=q and the Betti number b2.X/ .

57M12, 57M25; 57M27

1 Introduction

For a knot K � S3 and p=q 2 Q we say that S3
p=q

.K/ is an alternating surgery if
it is the double branched cover of an alternating knot or link. In this paper, we will
prove some bounds on the slopes of alternating surgeries. The first of these generalises
a bound for lens space surgeries originally due to Rasmussen [27].

Theorem 1.1 If K is a nontrivial knot with an alternating surgery S3
p=q

.K/, then the
slope p=q satisfies the inequality jp=qj � 4g.K/C 3.

The bound in Theorem 1.1 is sharp with equality being attained by the T2;n torus knots.
It turns out that whenever this bound is realised, the resulting alternating surgery yields
a lens space. Hence, work of Baker [1, Theorem 1.2] shows that the T2;n torus knots
are the only knots achieving equality in Theorem 1.1.

We can also obtain a bound on the range of slopes yielding alternating surgeries.

Theorem 1.2 If K is a nontrivial knot admitting an alternating surgery, then there is
an integer N such that for any alternating surgery S3

p=q
.K/, the coefficient p=q lies in

the interval
N � 1�

p

q
�N C 1:
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The definition of N is given Section 4.3. Theorem 1.2 shows that the range of slopes
which yield alternating surgeries is contained in an interval with integer endpoints of
width two. When every slope in this interval yields an alternating surgery, then we will
show that the knot must be a cable knot. For the purposes of this paper, we consider
torus knots to be cable knots.

Theorem 1.3 Suppose that K is a nontrivial knot admitting alternating surgeries
S3r .K/ for each of the slopes r 2 fr1; r2; N g, where N is the integer appearing in
Theorem 1.2. If r1 and r2 satisfy

N � 1� r1 <N < r2 <N C 1;

then S3N .K/ is a reducible surgery and K is a cable knot.

Remark 1.4 It can be shown that Theorem 1.3 still holds under the slightly weaker
condition that r2�NC1. However, this relatively minor extension requires a substantial
amount of work so we will not prove it here.

The starting point for the proof of these results is the work of Gibbons [6], which
generalizes the work of Greene [9; 10; 11]. It provides strong restrictions on the
intersection form of a negative-definite sharp 4–manifold X bounding S3

p=q
.K/ for

p=q > 0, which must take the form of a changemaker lattice. In order to prove
Theorems 1.2 and 1.3, we are required to determine the extent to which this intersection
form depends on the knot K and the surgery slope p=q . This leads us to define the
stable coefficients of a changemaker lattice. The definition of a changemaker lattice
and its stable coefficients are given in Section 2.1. Let p=q have continued fraction
expansion p=q D Œa0; : : : ; al �

� , where ai � 2 for 1 � i � l and a0 � 1. Here
Œa0; : : : ; al �

� denotes the Hirzebruch–Jung continued fraction

Œa0; : : : ; al �
�
D a0�

1

a1�
1

: : : �
1

al

:

A p=q–changemaker lattice takes the form of an orthogonal complement

LD hw0; : : : ; wli
?
� ZtCsC1 D hf1; : : : ; ft ; e0; : : : ; esi;

where the fi and ej form an orthonormal basis for ZrCsC1 , and the wi have the
properties that

wi �wj D

8<:
ai if i D j;
�1 if ji � j j D 1;
0 if ji � j j � 2;
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and
w0 � e0 D 1;

w0 � ei D 0 for 1� i � s;

w0 �fi � 0 for 1� i � t;

wj �fi D 0 for 1� i � t and 1� j � l:

The stable coefficients of L are defined to be the values of w0 �fi satisfying w0 �fi >1.

Theorem 1.5 Let K � S3 be a knot and suppose that S3
p=q

.K/ bounds a negative-
definite sharp 4–manifold X with intersection form QX for some p=q > 0. Then the
positive-definite lattice �QX embeds into Zb2.X/ClC1 as a p=q–changemaker lattice,
where the stable coefficients are determined by K .

The stable coefficients in Theorem 1.5 form an invariant of the knot K that can be
calculated from the knot Floer homology of K . Section 2.3 provides an algorithm for
this calculation. When K is an L–space knot, the stable coefficients can be computed
directly from its Alexander polynomial. The integer N appearing in Theorems 1.2
and 1.3 is defined in terms of stable coefficients and hence is an invariant of K and
can be calculated from the Alexander polynomial.

Remark 1.6 In addition to being a lower bound for alternating surgeries, the integer
N � 1 appearing in Theorem 1.2 also has the property that if S3

p=q
.K/ bounds a

negative-definite sharp 4–manifold then p=q � N � 1. We explain this observation
after the proof of Theorem 1.2.

Given one negative-definite sharp 4–manifold, bounding a 3–manifold Y we can
obtain another by taking a connected sum with CP2 . It follows from Theorem 1.5 that
if Y D S3

p=q
.K/, then at the level of intersection forms this is the only possibility.

Corollary 1.7 Let K � S3 be a knot such that for some p=q > 0, the 3–manifold
S3
p=q

.K/ bounds negative-definite sharp 4–manifolds X and X 0 , with b2.X
0/ D

b2.X/C k for k � 0. Then

QX 0 ŠQX ˚ .�Zk/ŠQX#kCP2 :
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2 Changemaker lattices and sharp 4–manifolds

The aim of this section is to prove Theorem 1.5. We begin by defining changemaker
lattices and recalling the necessary definitions and properties from Heegaard Floer
homology. We finish the section by stating the properties of L–space surgeries that we
will require to prove the results on alternating surgeries.

2.1 Changemaker lattices

We will define p=q–changemaker lattices for any p=q > 0. Changemaker lattices
corresponding to the case q D 1 were defined by Greene in his solution to the lens
space realisation problem [9] and work on the cabling conjecture [11]. The case q D 2
arose in his work on unknotting numbers [10]. The more general definition we state
here is the one which arises in Gibbons’ work [6].

Definition 2.1 We say .�1; : : : ; �t / satisfies the changemaker condition if the follow-
ing conditions hold:

0� �1 � 1 and �i�1 � �i � �1C � � �C �i�1C 1 for 1 < i � t:

The changemaker condition is equivalent to the following combinatorial result.

Proposition 2.2 (Brown [2]) Let � D .�1; : : : ; �t /, with �1 � � � � � �t . There is
A� f1; : : : ; tg such that k D

P
i2A �i for every integer k with 0� k � �1C � � �C �t

if and only if � satisfies the changemaker condition.

Now we are ready to define changemaker lattices. It is convenient to define integer and
noninteger changemaker lattices separately, although the two are clearly similar.

Definition 2.3 (integral changemaker lattice) First suppose that q D 1, so that
p=q > 0 is an integer. Let f0; : : : ; ft be an orthonormal basis for Zt . Let w0 D
�1f1 C � � � C �tft be a vector such that kw0k2 D p and .�1; � � � ; �t / satisfies the
changemaker condition. Then

LD hw0i
?
� ZtC1

is a p=q–changemaker lattice. Let m be minimal such that �m > 1. We define the
stable coefficients of L to be the tuple .�m; : : : ; �t /. If no such m exists, then we take
the stable coefficients to be the empty tuple.
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Definition 2.4 (nonintegral changemaker lattice) Now suppose that q � 2, so that
p=q > 0 is not an integer. This has continued fraction expansion of the form p=q D

Œa0; a1; : : : ; al �
� , where ak � 2 for 1� k � l and a0 D dp=qe � 1. Now define

m0 D 0 and mk D

kX
iD1

ai � k for 1� k � l:

Set sDml and let f1; : : : ; ft ; e0; : : : ; es be an orthonormal basis for the lattice ZtCsC1 .
Let w0 D e0 C �1f1 C � � � C �tft be a vector such that .�1; : : : ; �t / satisfies the
changemaker condition and kw0k2 D a0 . For 1� k � l , define

wk D�emk�1
C emk�1C1C � � �C emk

:

We say that
LD hw0; : : : ; wli

?
� ZtCsC1

is a p=q–changemaker lattice. Let m be minimal such that �m > 1. We define the
stable coefficients of L to be the tuple .�m; : : : ; �t /. If no such m exists, then we take
the stable coefficients to be the empty tuple.

Remark 2.5 Since mk � mk�1 D ak � 1, the vectors w0; : : : ; wl constructed in
Definition 2.4 satisfy

wi :wj D

8<:
aj if i D j;
�1 if ji � j j D 1;
0 otherwise.

Remark 2.6 Let L be a p=q–changemaker lattice

LD hw0 D e0C �1f1C � � �C �tft ; w1; : : : ; wli
?
� ZtCsC1:

By definition, the stable coefficients determine the values of the �i satisfying �i > 1.
Since kw0k2 D dp=qe, the stable coefficients fix the number of �i equal to 1 and this
accounts for all nonzero �i . It follows that the number of �i equal to zero can be
deduced from the rank of L. Thus we see that the value p=q , the stable coefficients
and the rank determine L uniquely. Since we have fi 2 L if and only if �i D 0,
any two p=q–changemaker lattices L and L0 with the same stable coefficients and
rk.L0/D rk.L/C k satisfy L0 Š L˚Zk

2.2 Sharp 4–manifolds

Now we will give a summary of the necessary background on Heegaard Floer homology
and its d –invariants. Let Y be a rational homology 3–sphere. Its Heegaard Floer
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homology, �HF.Y /, when defined with coefficients in Z=2Z, takes the form of a finite-
dimensional vector space over Z=2Z. The group �HF.Y / splits as a direct sum over
spinc –structures: �HF.Y /Š

M
s2Spinc.Y /

�HF.Y; s/;

where �HF.Y; s/¤ 0 for all s 2 Spinc.Y /. We say that Y is an L–space if �HF.Y / is
as small as possible:

dimF2
�HF.Y /D jH 2.Y IZ/j D jSpinc.Y /j:

Associated to each summand there is a numerical invariant d.Y; s/ 2 Q, called the
d –invariant [22]. If Y is the boundary of a smooth negative-definite 4–manifold X ,
then for any t 2 Spinc.X/ which restricts to s 2 Spinc.Y / there is a bound on the
corresponding d –invariant,

(2-1) c1.t/
2
C b2.X/� 4d.Y; s/:

We say that X is sharp if for every s 2 Spinc.Y / there is some t 2 Spinc.X/ which
restricts to s and attains equality in (2-1).

We will be interested in the case where Y arises as surgery on a knot in S3 . Let
K � S3 be a knot. For fixed p=q 2Q n f0g, there are canonical identifications [26]

Spinc.S3p=q.K//$ Z=pZ$ Spinc.S3p=q.U //:

Using these identifications we are able to define

Dp=q.i/ WD d.S
3
p=q.K/; i/� d.S

3
p=q.U /; i/

for each i 2 Z=pZ.

The work of Ni and Wu shows that for 0� i � p� 1 these values may be calculated
by the formula [20, Proposition 1.6]

(2-2) Dp=q.i/D�2maxfVbi=qc;Hb.i�p/=qcg;

where Vj and Hj are sequences of positive integers, depending only on K , which are
nonincreasing and nondecreasing, respectively. These further satisfy H�j D Vj D 0
for j � g.K/, where g.K/ is the genus of K . In fact, it can be shown that Vj DH�j
for all j [21, Proof of Theorem 3]. Using these properties of the Vj and Hj , (2-2)
can be rewritten as

(2-3) Dp=q.i/D�2Vminfbi=qc;d.p�i/=qeg:

Let p=qD Œa0; : : : ; al �� be the continued fraction of p=q with a0 � 1 and ai � 2 for
i � 1. The changemaker theorem we will use is the following.
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Theorem 2.7 (Gibbons [6]) Let K � S3 be a knot and suppose that S3
p=q

.K/

bounds a smooth, negative-definite 4–manifold X with intersection form QX for
some p=q > 0. If the manifold X is sharp, then �QX embeds into Zb2.X/ClC1 as a
p=q–changemaker lattice,

�QX Š LD hw0; : : : ; wli
?
� ZtCsC1;

where w0 satisfies the formula

(2-4) 8Vji j D min
c�w0�a0C2i mod 2a0

c2Char.ZtC1/

kck2� t � 1

for ji j � 1
2
a0 .

Here Char.ZtC1/ denotes the set of all characteristic vectors in ZtC1 , where a charac-
teristic vector x 2 ZtC1 is one with odd coefficients with respect to any orthonormal
basis for ZtC1 .

The equation (2-4) is not explicitly stated by Gibbons. However, Greene shows that it
holds in the case of integer surgeries [11] and it follows from Gibbons’ proof that it
must also hold for noninteger surgeries. Further discussion of this can be found in [15].

2.3 Calculating stable coefficients

We will deduce Theorem 1.5 from Theorem 2.7 by showing that (2-4) determines the
stable coefficients uniquely. The argument is entirely combinatorial and uses only the
properties of the Vi stated in Section 2.2.

Let .Vi /i�0 be the nonincreasing, nonnegative sequence

V0 � V1 � � � � � Vzg�1 > Vzg D VzgC1 D � � � D 0;

for which Vi D 0 if and only if i � zg and Vi � ViC1C 1 for all i . Suppose that there
is �D .�0; : : : ; �t / 2 ZtC1 , with k�k2 D n� 2zg , such that

(2-5) 8Vjkj D min
c���nC2k mod 2n
c2Char.ZtC1/

kck2� t � 1

for jkj � 1
2
n. Possibly after an automorphism of ZtC1 , we may assume that �i � 0

for all i and that the �i form a decreasing sequence

�0 � �1 � � � � � �t � 0:

Observe that (2-5) has three pieces of input data: the sequence .Vi /i�0 and the integers
n and t . Given some choice of .Vi /i�0 , n and t , there is no guarantee that there is
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� � � � � �

:::

Vi

i

� � �

� � �

0 � � � � � �1 zg� 1 zg

V0

2

1

T1D�0‚ …„ ƒ
T2‚ …„ ƒ

T3‚ …„ ƒ
TV0�1‚ …„ ƒ

TV0
Dzg‚ …„ ƒ

„ ƒ‚ …
T2�T1D�1

Figure 1: A graph to show the relationship between the Vi and the Ti . We
have also shown how �0 and �1 occur as the number of Vi equal to one and
two, respectively.

� satisfying (2-5). However, we will show that when there is such a � , it is unique.
Moreover we will see that the coefficients of � satisfying �i > 1 are determined by the
sequence .Vi /i�0 .

Remark 2.8 If �t D 0, then any minimiser in the right-hand side of (2-5) must have
ct D˙1. So we see that �0 D .�0; : : : ; �t�1/ satisfies

8Vjkj D min
c��0�nC2k mod 2n

c2Char.Zt /

kck2� t

for all 0� jkj � 1
2
n. This allows us to assume that �i � 1 for all i .

If we restrict our attention to 0� k � 1
2
n, we find that (2-5) simplifies as follows.

Lemma 2.9 For 0� k � 1
2
n,

8Vk D min
c��D2k�n

c2Char.ZtC1/

kck2� t � 1:

Proof Suppose c 2 Char.ZtC1/ satisfies c � � D 2mn � nC 2k for some m 2 Z.
Consider the vector c0 D c � 2m� . This satisfies

c0 � �D 2k�n� c � � mod 2n
and

kc0k2 D kck2� 4mc � �C 4m2nD kck2� 4m.nm�nC 2k/:

Since we are assuming �n� 2k�n� 0, we have m.nmC2k�n/� 0 for all m 2Z.
Therefore, we have kc0k2 � kck2 . This shows that if c is a minimiser in (2-5) we can
assume it satisfies c � �D 2k�n.
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For m� 1, it will be convenient to consider the quantities

Tm D
ˇ̌
f0� i < zg j 0 < Vi �mg

ˇ̌
:

These are illustrated in Figure 1. We will show how to calculate these in terms of � .
First we need to define the following collection of tuples for each m� 0:

Sm D
˚
˛ 2 ZrC1 W ˛i � 0; 2mD

P
˛i .˛i C 1/

	
:

Lemma 2.10 For 0�m< V0 , we can calculate Tm by

Tm D max
˛2Sm

� �˛

and TV0
satisfies

TV0
D zg D

1

2

tX
iD0

�2i � �i and TV0
� max
˛2SV0

� �˛:

Proof Since the Vk form a decreasing sequence with Vk D 0 if and only if k � zg ,
we necessarily have TV0

D zg . Using Lemma 2.9, we that Vk D 0 if and only if
there is c 2 f˙1gtC1 with c � � D 2k � n. The smallest of value k for which this
is true is k D 1

2

�
n �

Pt
iD0 �i

�
, which is obtained by taking c D f�1gtC1 . Thus

2zg D
Pt
iD0 �

2
i � �i , as required (see [11, Proposition 3.1]).

Now observe that for 0�m< V0 , we have

Tm D zg�minfk W Vk Dmg:

By Lemma 2.9, Vk Dm and 0 � k < 1
2
n implies there is c 2 Char.ZtC1/ such that

kck2 � t � 1D 8m and c � � D 2k � n. If we write the coefficients of c in the form
ci D�.2˛i C 1/, then

Pt
iD0 ˛i .˛i C 1/D 2m and

(2-6) 2k D n�

tX
iD0

�j � 2˛ � �D 2zg� 2˛ � �:

We see that for any ˛ minimising (2-6), we must have ˛ 2 Sm , since it must satisfy
˛i � 0 for all i . Thus we see that

Tm D max
˛2Sm

� �˛

for 0 � m < V0 . The equation (2-6) also shows that there must exist ˛ satisfyingPt
iD0 ˛i .˛i C 1/D 2V0 and ˛ � �D zg . This implies the inequality

TV0
� max
˛2SV0

� �˛;

which completes the proof.

Algebraic & Geometric Topology, Volume 17 (2017)



2612 Duncan McCoy

Remark 2.11 It follows from this lemma that T1D�0 and T2D�0C�1 . In particular
this implies that �1 D T2�T1 . This is illustrated in Figure 1.

We now begin the process of showing how the remaining �i can be recovered from the
sequence .Vi /i�0 . We begin with the simplest case, which is when V0 � 1.

Lemma 2.12 If V0 � 1, then zg � 3 and � takes the form

�D

8̂̂̂<̂
ˆ̂:
.1; 1; : : : ; 1/ if zg D 0;
.2; 1; : : : ; 1/ if zg D 1;
.2; 2; 1; : : : ; 1/ if zg D 2;
.3; 1; : : : ; 1/ if zg D 3:

Proof If V0 D 0, then zg D 0 and Lemma 2.10 implies that
Pt
iD0 �

2
i � �i D 0. This

shows that we have �i D 1 for all 0� i � t .

Suppose now that V0 D 1. By Lemma 2.10, we have

0 < T1 D zg D
1

2

tX
iD0

�2i � �i � max
˛2S1

� �˛:

Since S1 consists of vectors with a single nonzero coordinate, which equals one, we
have max˛2S1

� � ˛ D �0 . Thus we must have �20 � �0 � 2�0 , and hence �0 � 3. If
�0 D 3, then we have

zg D 3C
1

2

tX
iD1

�i .�i � 1/� �0 D 3;

which implies that �i D 1 for 1� i � t and zgD 3. If �0 D 2, then zg � 2 implies that
�1 2 f1; 2g, giving the other two possibilities in the statement of the lemma.

From now on we will suppose that V0 > 1. This allows us to define the quantity

�D min
1�i<V0

fTi �Ti�1g:

Since T1 D �0 and T0 D 0, we must have �� �0 .

Lemma 2.13 If �0 � 5 or
P
�i even �i � 6, then �� 2.

Proof For m< V0 , Lemma 2.10 shows that there is ˛ 2 Sm such that � �˛ D Tm . If
˛l > 0, then consider ˛0 defined by

˛0i D

�
˛i if i ¤ l;
˛i � 1 if i D l:
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By construction, we have ˛02Sm�˛l
and ˛0 ��D˛ ����l DTm��l . As ˛0 ���Tm�˛l

,
we get

(2-7) �l � Tm�Tm�˛l
� ˛l�:

If we have a maximiser ˛ 2 Sm such that � �˛ D Tm and ˛ does not satisfy

(2-8) ˛i �

8̂<̂
:
1
2
.�i � 2/ if �i is even,
1
2
.�i � 3/ if �i > 3 is odd,
1
2
.�i � 1/ if �i 2 f1; 3g;

for all i , then there is l such that �l=˛l < 3. So, by (2-7), we see that �� 2. We will
show that if � satisfies the hypotheses of the lemma, then such a maximiser must exist.

Let c 2 Char.ZtC1/ be such that c � �D n. By (2-5), we have

8V0 � kck
2
� t � 1:

On the other hand, the Cauchy–Schwarz inequality implies that

jc � �j2 D n2 � k�k2kck2 D nkck2;

showing that kck2 � n with equality if and only if c D � . Altogether, this yields

V0 �
1

8
.k�k2� t � 1/D

1

8

tX
iD0

.�2i � 1/;

with equality if and only if � 2 Char.ZtC1/. We will let N denote the quantity

N D

�
1

8

tX
iD0

.�2i � 1/

�
� V0:

Now take ˛ 2 Sm , which satisfies the conditions given by (2-8). It follows that

(2-9) mD
1

2

tX
iD0

˛i .˛i C 1/

�

X
�i>3 odd

.�i � 3/.�i � 1/

8
C

X
�i even

�i .�i � 2/

8
C

X
�i2f1;3g

�2i � 1

8

D

tX
iD0

�2i � 1

8
C

X
�i>3 odd

1� �i

2
C

X
�i even

1� 2�i

8
:
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If �0 is odd and �0 � 5, then (2-9) shows that

m�

tX
iD0

�2i � 1

8
� 2 < N � 1

In particular, there is no ˇ 2 SN�1 satisfying (2-8). Since N � 1 < V0 , there is
ˇ 2 SN�1 with ˇ ��D TN�1 and so (2-7) implies that �� 2. If

P
�i even �i � 6, then

we must have
P
�i even.2�i � 1/�

3
2

P
�i even �i � 9. Therefore, (2-9) shows that

m<

tX
iD0

�2i � 1

8
� 1 < N:

In particular, there is no ˇ 2 SN satisfying (2-7). Since we are assuming there is an
even �i , we have N < V0 and so there exists ˇ 2 SN such that ˇ � � D TN and so
(2-7) implies that �� 2.

If � > 2, then � must fall into one of a small number of cases.

Lemma 2.14 If �>2 then either T1D 3 or T1D 4. If T1D 3, then � takes the form

�D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

.3; : : : ; 3„ ƒ‚ …
d

; 1; : : : ; 1/ if zg D 3d;

.3; : : : ; 3„ ƒ‚ …
d

; 2; 1; : : : ; 1/ if zg D 3d C 1;

.3; : : : ; 3„ ƒ‚ …
d

; 2; 2; 1; : : : ; 1/ if zg D 3d C 2:

If T1 D 4, then � must take the form

�D .4; 3; : : : ; 3„ ƒ‚ …
d

; 1; : : : ; 1/; where zg D 3d C 6:

Proof If � > 2, then Lemma 2.13 and the observation that � � T1 D �0 , we must
have �0 2 f3; 4g. If �0 D 3, then Lemma 2.13 implies that we have �i D 2 for at
most two values i . If �0 D 4, then Lemma 2.13 implies that �i is odd for all i � 1.
It is then easy to deduce that � must take the required form by using the formula
zg D 1

2

Pt
iD0 �

2
i � �i .

Remark 2.15 Although it suffices for our purposes, Lemma 2.14 does not quite tell
the full story. If � D .4; 3; : : : ; 3; 1; : : : ; 1/, then one can show that we have � D 1.
This shows that the only cases with �> 2 are those given in Lemma 2.14 with �0D 3.
For these examples we do have �D 3.
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Now we show that the sequence .Vi /i�0 determines � when �� 2.

Lemma 2.16 If �� 2, then the vector � satisfying (2-5) is unique.

Proof We will show that can calculate the coefficients of � iteratively from the values
T0<T1< � � �<TV0

Dzg . Using the Ti , we will construct a sequence s.0/, s.1/; : : : ; s.N/ ,
which we will show to satisfy

s.k/ D .�0; : : : ; �k; 0; : : : ; 0/

for each k �N . The integer N will be large enough that S .N/ satisfies

max
˛2St

s.N/ �˛ D Tt

for all t < V0 . We will show we can deduce �i for any i >N by considering TV0
D zg .

Start by setting
s.0/ D .T1; 0; : : : ; 0/D .�0; 0; : : : ; 0/:

Now suppose that for l � 0 we have s.l/i D �i for all i � l . Suppose there is t < V0�1
minimal such that M Dmax˛2St

s.l/ �˛ < Tt .

Claim 1 We have �lC1 D Tt �Tt�1 .

Proof of Claim 1 Let ˛ 2 St�1 be such that s.l/ � ˛ D Tt�1 . Such an ˛ must also
satisfy � �˛ D Tt�1 . In particular, ˛i D 0 for i > l .

Now we consider ˛0 2 St defined by

˛0i D

�
˛i if i ¤ l C 1;
1 if i D l C 1:

We have ˛0 � �D Tt�1C �lC1 � Tt . This implies that

(2-10) �lC1 � Tt �Tt�1:

Let ˇ 2 St be such that � �ˇ D Tt . Since M < Tt , we may assume ˇlC1 > 0. Thus
we can define ˇ0 by

ˇ0i D

�
ˇi if i ¤ l;
ˇi � 1 if i D l C 1:

We have ˇ0 2 St�ˇl
. Therefore we obtain

(2-11) Tt�1 � Tt�ˇl
� � �ˇ0 D Tt � �lC1:

Combining (2-10) and (2-11) gives �lC1 D Tt �Tt�1 , as claimed.
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Thus if we define s.lC1/ by

s
.lC1/
i D

�
s
.l/
i if i ¤ l C 1;
Tt �Tt�1 if i D l C 1;

we see that s.lC1/ satisfies

s.lC1/ D .�0; : : : ; �lC1; 0; : : : ; 0/

and
s.lC1/ �˛0 D max

˛2St

˛ � s.lC1/ D Tt ;

where ˛0 2 St is as defined in the proof of Claim 1

Proceeding in this way, we eventually obtain s.N/ such that Tt Dmax˛2St
˛ � s.N/ for

all 0� t < V0 and
s.N/ D .�0; : : : ; �N ; 0; : : : ; 0/:

Claim 2 We have �l � �� 2 for all l > N .

Proof of Claim 2 Let � < V0�1 be such that T�C1�T� D �. There is ˛ 2 S� such
that ˛ � �D ˛ � s.N/ D T� . Such an ˛ must satisfy ˛l D 0 for l > N . Let ˛0 2 S�C1
be defined by

˛0i D

�
˛i if i ¤ l;
1 if i D l:

We have
�l D ˛

0
� ��T� � T�C1�T� D �� 2;

as required.

It remains to determine how many values of i > N satisfy �i D 2. Since we have the
formula TV0

D
1
2

Pt
iD0 �i .�i � 1/, we see that there are

TV0
�
1

2

tX
iD0

s
.N/
i .s

.N/
i � 1/

values of i > N with �i D 2. Since �i D 1 for all remaining values of i , this shows
that � is determined by the Ti .

The proof of Lemma 2.16 combined with Lemmas 2.12 and 2.14 provides an algorithm
for calculating � . This shows that � is the unique vector with �0 � �1 � � � � � �t > 0
and k�k2Dn satisfying (2-5). Moreover, if we take m to be maximal such that �m>1,
then this algorithm calculates the tuple .�0; : : : ; �m/ using only the sequence .Vi /i�0 .

This allows us to deduce Theorem 1.5 and Corollary 1.7 from Theorem 2.7.
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Proof of Theorem 1.5 Theorem 2.7 shows that the intersection form QX takes the
form of a p=q–changemaker lattice,

�QX Š LD hw0; : : : ; wli
?
� ZtCsC1;

where the sequence .Vi /i�0 , which is an invariant of K , can be calculated from
w0 D �tft C� � �C �1f1C e0 by the formula (2-4). Thus, w0 satisfies (2-5) and using
the algorithm provided by Lemma 2.12, Lemma 2.14 and the proof of Lemma 2.16, we
see that the tuple .�m; : : : ; �t /, where m is minimal such that �m > 1, is independent
of t and kw0k2 D dp=qe. By definition, .�m; : : : ; �t / are the stable coefficients of L
and it follows that they are independent of b2.X/ and p=q .

Proof of Corollary 1.7 This follows combining Theorem 1.5 with Remark 2.6.
Theorem 1.5 shows that �QX and �QX 0 are both p=q–changemaker lattices with
the same stable coefficients. Remark 2.6 then shows that QX 0 ŠQX ˚ .�Zk/. The
isomorphism of intersection forms QX ˚ .�Zk/ŠQX#kCP2 is clear.

2.4 L–space knots

Now we specialise to the case of L–space surgeries. A knot K is said to be an L–space
knot if S3

p=q
.K/ is an L–space for some p=q 2Q. The knot Floer homology of an

L–space knot is known to be determined by its Alexander polynomial, which can be
written in the form

�K.t/D a0

gX
iD1

ai .t
i
C t�i /;

where g D g.K/, ag D 1 and the nonzero values of ai alternate in sign and assume
values in f˙1g [23; 24]. Given an Alexander polynomial in this form, we can compute
its torsion coefficients by the formula

ti .K/D
X
j�1

jaji jCj :

When K is an L–space knot, the Vi appearing in (2-3) satisfy Vi D ti .K/ for i �0 [26].
Thus if S3

p=q
.K/ is an L–space bounding a negative-definite sharp 4–manifold X , then

Theorem 1.5 shows that the intersection form is isomorphic to a p=q–changemaker
lattice L, where the stable coefficients, .�r ; : : : ; �m/, are determined by the torsion
coefficients. Since ti .K/ D 0 if and only if i � g.K/, Lemma 2.10 shows that the
genus can be computed by the formula

(2-12) g.K/D
1

2

rX
iDm

�i .�i � 1/;

which was first proven by Greene [11, Proposition 3.1].

Algebraic & Geometric Topology, Volume 17 (2017)



2618 Duncan McCoy

Remark 2.17 Lemma 2.10 shows that �r and �r�1 have particularly simple interpre-
tations in terms of torsion coefficients:

�r D #f0� i < g j ti .K/D 1g and �r�1 D #f0� i < g j ti .K/D 2g:

As in the proof of Lemma 2.16, the remaining stable coefficients can be also be
computed from the torsion coefficients. However, the relationship is more complicated.

3 Graph lattices and obtuse superbases

In this section, we gather together some lattice-theoretic concepts and properties that
we will need.

3.1 Graph lattices

We recall the definition of a graph lattice and state the results that we will require for
this paper. All statements in this section can be found with proof in [17].

Let G D .V;E/ be a finite, connected, undirected graph with no self-loops. For a
pair of disjoint subsets R; S � V , let E.R; S/ be the set of edges between R and S .
Define e.R; S/D jE.R; S/j. We will use the notation d.R/D e.R; V nR/.

Let xƒ.G/ be the free abelian group generated by v 2 V . Define a symmetric bilinear
form on xƒ.G/ by

v �w D

�
d.v/ if v D w;
�e.v; w/ if v ¤ w:

In this section we will use the notation ŒR�D
P
v2R v , for R�V . The above definition

gives

(3-1) v � ŒR�D

�
�e.v;R/ if v …R;
e.v; V nR/ if v 2R:

From this it follows that ŒV � � x D 0 for all x 2 xƒ.G/. We define the graph lattice of
G to be

ƒ.G/ WD
xƒ.G/

ZŒV �
:

The bilinear form on xƒ.G/ descends to ƒ.G/. Since we have assumed that G is
connected, the pairing on ƒ.G/ is positive-definite. This makes ƒ.G/ into an integral
lattice. Henceforth, we will abuse notation by using v to denote its image in ƒ.G/.

Recall that a vector z in a lattice is irreducible if it cannot be written in the form
z D xCy for nonzero x and y with x �y � 0. The irreducible vectors in ƒ.G/ can
be characterised in terms of the graph G .

Algebraic & Geometric Topology, Volume 17 (2017)



Bounds on alternating surgery slopes 2619

Lemma 3.1 The vector x 2ƒ.G/ n f0g is irreducible if and only if x D ŒR� for some
R � V such that R and V nR induce connected subgraphs of G .

A connected graph is said to be 2–connected if it cannot be disconnected by deleting
a vertex. This property is equivalent to ƒ.G/ being indecomposable, that is, ƒ.G/
cannot be written as the orthogonal direct sum ƒ.G/ D L1˚L2 with L1 and L2
nonzero sublattices.

Lemma 3.2 The following are equivalent:

(i) The graph G is 2–connected.

(ii) Every vertex v 2 V is irreducible.

(iii) The lattice ƒ.G/ is indecomposable.

Given a graph lattice of some graph G , the following lemma will be useful for identi-
fying other graphs with isomorphic graph lattices.

Lemma 3.3 Suppose that G is 2–connected. Let v be a vertex such that we can
find x; y 2 ƒ.G/, with v D x C y and x � y D �1. Then there is a cut edge e in
G nfvg and, if R and S are the vertices of the two components of .G nfvg/nfeg, then
fx; ygD fŒR�Cv; ŒS�Cvg. Let u1 and u2 be the endpoints of e . These are the unique
vertices u1; u2 ¤ v , with x �u1 D y �u2 D 1. Furthermore, any vertex w … fv; u1; u2g
satisfies w � x;w �y � 0.

3.2 Obtuse superbases

Given a positive definite integral lattice L of rank r , we say that L admits an obtuse
superbase if it contains a set B Dfv0; : : : ; vrg such that v1; : : : ; vr form a basis for L,
v0 C � � � C vr D 0 and vi � vj � 0 for all 0 � i ¤ j � r . We will call the set B a
an obtuse superbase for L. This terminology is taken from the work of Conway and
Sloane [3].

Given an obtuse superbase B D fv0; : : : ; vrg for L, we can construct a graph GB by
taking vertex set B with jvi �vj j edges between vertices vi and vj for i ¤ j . With this
construction in mind, we will frequently refer to elements of a given obtuse superbase
as vertices of L.

Proposition 3.4 The graph GB is connected and L is isomorphic to ƒ.GB/.
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v

u1 u2

G1 G2

u1Cu2

G1 G2

xy

Figure 2: The graphs GB and GB0 corresponding to the obtuse superbases
appearing in Lemma 3.5

Proof First we show that GB is connected. Let R �B be the vertices of a nonempty
connected component of GB . We see that the vector ŒR�D

P
x2R x satisfies ŒR��vi D0

for all 0� i � r (see (3-1)). Since L is positive-definite, this implies that ŒR�D 0. By
definition, v1; : : : ; vr must be linearly independent. It follows that RD B and hence
GB is connected, as required.

To show that ƒ.GB/ is isomorphic to L, take the linear map which takes vertices to
the corresponding vectors in L. Since v0C � � �C vr D 0, we have

d.vk/D�
X
i¤k

vk � vi D kvkk
2;

and by construction we have e.vi ; vj /D�vi � vj for i ¤ j . This shows that this map
is the required isomorphism.

For any given lattice there may be many choices of obtuse superbase. The following
lemma shows one way to convert one obtuse superbase into another.

Lemma 3.5 Let L be an indecomposable lattice with an obtuse superbase B . Suppose
that we have v 2B which can be written as vD xCy , where x; y 2L and x �yD�1.
There are unique u1; u2 2 B with u1 � x > 0 and u2 � y > 0 and the set B 0 D
.B n fv; u1; u2g/[fx; y; u1Cu2g is also an obtuse superbase for L.

Proof Since L is indecomposable, Lemma 3.2 shows that the graph GB is 2–
connected. Thus we may apply Lemma 3.3, which shows that there are disjoint
connected subgraphs G1 and G2 of GB and vertices u1 and u2 such that x D
v C u1 C

P
z2G1

z and y D v C u2 C
P
z2G2

, with a unique edge between u1
and u2 which is a cut-edge in GB n fvg. It is straightforward to verify that B 0 D
.B n fv; u1; u2g/[ fx; y; u1C u2g is an obtuse superbase for L. An illustration of
how the graph GB 0 is obtained from GB is given in Figure 2.
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4 Alternating surgeries

In this section, we will prove our main results.

4.1 The Goeritz form

A diagram D of a link L divides the plane into connected regions. We may colour
these regions black and white in a chessboard fashion. This colouring can be done
in two different ways. Each of the possible colourings gives an incidence number,
�.c/ 2 f˙1g, at each crossing c of D , as shown in Figure 3. We construct a planar
graph, �D , by drawing a vertex in each white region and an edge e for every crossing
c between the two white regions it joins. We define an incidence number on each edge
by �.e/D�.c/. We call this the white graph corresponding to D . This gives rise to a
Goeritz matrix, GD D .Gij /, defined by labelling the vertices of �D by v1; : : : ; vrC1
and, for 1� i; j � r , setting

gij D
X

e2E.vi ;vj /

�.e/

for i ¤ j and
gi i D�

X
e2E.vi ;�Dnvi /

�.e/

otherwise [13, Chapter 9].

Now suppose that L is an alternating, nonsplit link. If D is any alternating diagram,
then we may fix the colouring so that �.c/D�1 for all crossings. In this case, GD
defines a positive-definite bilinear form. This in turn gives a lattice, ƒD , which we will
refer to as the white lattice of D . Observe that if D is reduced (ie contains no nugatory
crossings), then �D contains no self-loops or cut-edges and ƒD is isomorphic to the
graph lattice ƒ.�D/.

Ozsváth and Szabó have shown that the Heegaard Floer homology d –invariants of the
branched double cover †.L/ are determined by ƒD [25].

�DC1 �D�1

Figure 3: The incidence number of a crossing
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Theorem 4.1 [25] Let L be a nonsplit alternating link with a reduced alternating
diagram D . The double branched cover †.L/ is an L–space which bounds a sim-
ply connected negative-definite sharp 4–manifold with intersection form isomorphic
to �ƒD .

4.2 Changemaker lattices admitting obtuse superbases

We will establish some restrictions on changemaker lattice which admits an obtuse
superbase. The following proposition, which combines results from [17; 16], will allow
us to restrict our attention to integer changemaker lattices.

Proposition 4.2 Suppose that for some p=q D n� r=q with q > r � 1, the change-
maker lattice

Lp=q D hw0; : : : ; wli
?
� ZtCsC1;

where w0D e0C�1f1C� � �C�tft , admits an obtuse superbase. Then the changemaker
lattices

Ln D hw0i
?
� ZtC1 D he0; f1; : : : ; ft i;

Ln�1 D hw0� e0i
?
� Zt D hf1; : : : ; ft i;

both admit obtuse superbases. Furthermore, if �t > 1, then we can assume the obtuse
superbase for Ln�1 contains a vector x with x �f1 D�2.

Proof Since Lp=q admits an obtuse superbase, it follows from [16, Proposition 7.7]
that the lattice

Ln�1=2 D hw0; e1� e0i
?
� ZtC2 D he1; e0; f1; : : : ; ft i

also admits an obtuse superbase, which we will call B . The results of [17] show that
there are precisely two vertices v and w in B with v � e0; w � e0 ¤ 0 and they satisfy
v �w � �1. Moreover, the results of the same paper show that we can assume that
v D�f1C e0C e1 and w � e0 Dw � e1 D�1, and if there is k such that �k > 1, then
we can assume that w �f1 D�1.

Consider the set B 0DB nfv;wg[fvCwg. Since .vCw/ �e0D .vCw/ �e1D 0, we
have B 0 � Ln�1 . Since B spans Ln�1=2 , we see that B 0 must span Ln�1 . Since B
is an obtuse superbase for Ln�1=2 , it follows that B 0 is an obtuse superbase for Ln�1 ,
where the graph GB 0 is obtained from GB by contracting the edge between v and w .
Furthermore, if there is �k >1, then xD vCw is the required vector with x �f1D�2.

Now consider the set B 00 D B n fv;wg [ fv � e1; w C e1g. Since every element
x 2 B n fv;wg has x � e1 D 0, we see that every x 2 B 00 satisfies x � e1 D 0, so we
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have B 00 � he0; f1; : : : ; ft i and hence B 00 � LnC1 . Since B is an obtuse superbase
for Ln�1=2 and v �w��1, it follows that B 00 is an obtuse superbase for LnC1 , where
the graph GB 00 is obtained from GB by deleting an edge between v and w .

The next lemma gives bounds on when a changemaker lattice can be decomposable.

Lemma 4.3 [9, Lemma 5.1] Suppose that LD hw0i? �Zt is a changemaker lattice,
where w0D �1f1C� � �C�tft with �i � 1 for all i and �t >1 . Let m� t be minimal
such that �m > 1. If L is decomposable, then �m Dm� 1.

We get a similar bound on a changemaker lattice admitting an obtuse superbase in terms
of its stable coefficients. This will allow us to prove the upper bound in Theorem 1.2.

Lemma 4.4 Suppose that L D hw0i? � Zt is a changemaker lattice, where w0 D
�1f1C � � � C �tft with �i � 1 for all i . If the stable coefficients .�m; : : : ; �t / are a
nonempty tuple and L admits an obtuse superbase, then �m �m� 2 and

kw0k
2
� 1C �mC

tX
iDm

�2i :

Proof If L is decomposable, then Lemma 4.3 shows that the bound is automatically
satisfied. We will assume from now on that L is indecomposable.

For 2� i �m� 1, let vi be the vector vi D ei � ei�1 . Since �i D �i�1 D 1 for i in
this range, we have vi 2 L. We will use Lemma 3.5 to show that L admits an obtuse
superbase containing the vectors v2; : : : ; vm�1 .

Let B be an obtuse superbase and let k �m� 1, be minimal such that vk is not in B .
Suppose first that k D 2. Since v2 is irreducible, Lemma 3.1 implies that it can be
written as a sum of elements of B . Hence, there is a vector u 2 B with u � v2 > 0.
By Lemma 3.2, the indecomposability of L implies that u is irreducible. In turn, this
implies that .u� v2/ � v2 D u � v2 � 2D �1. Therefore by applying Lemma 3.5, we
see that there is an obtuse superbase containing v2 .

Now we suppose that k > 2. Since vk is irreducible, Lemma 3.1 shows that it can be
written as a sum of elements of B . Since vk�1 is a vertex of B and vk � vk�1 D�1,
there is u 2 B with u � vk D�u � vk�1 D 1. This must satisfy .u� vk/ � vk D�1. By
Lemma 3.5, this implies we can find an obtuse superbase containing vk . Moreover,
since .u�vk/�vj �0 and vk �vj �0 for all 2�j <k , we can assume that v2; : : : ; vk�1
are also in this obtuse superbase. Thus, proceeding inductively, we see that we can
assume that v2; : : : ; vm�1 are all contained in the obtuse superbase B .
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Suppose that �m D m � b for some m � 2 � b � 2. Consider the vector vm D
�emC em�1C � � �C eb 2 L. Since this is irreducible, Lemma 3.1 shows that we may
write it as a sum of vertices vmD

P
x2R x for some subset R�B . Since vm �vbD�1,

we have vb …R and there must exist u 2R with u �vb D�1 and u �vmD 1. However,
as kvbk2 D 2, there are at most two vectors in B which pair nontrivially with vb . If
b � 3 then we have vb�1 � vb D vbC1 � vb D�1 and vb�1 � vm D vbC1 � vm D 0. This
implies that the required u 2 B cannot exist if b � 3. Thus we must have b D 2. This
shows that �m �m� 2, as required. Since �i D 1 for i < m, we have

kw0k
2
Dm� 1C

tX
iDm

�2i � 1C �mC

tX
iDm

�2i ;

which is the required bound. This completes the proof.

This allows us to prove the inequality which will give Theorem 1.1.

Lemma 4.5 Suppose that LD h�1f1C � � �C �tft i? � Zt is a changemaker lattice
which admits an obtuse superbase and �t > 1. Then

tX
iD1

�2i � 2

tX
iD1

�i .�i � 1/C 3:

Proof Let m be minimal such that �m > 1. Since L admits an obtuse superbase,
Lemma 4.4 shows that we have

tX
iD1

�2i �

tX
iDm

�2i C �mC 1:

Observe that if �i � 2, then �2i � 2�i .�i �1/. Since �m � 2, we also have �2mC�m �
2�m.�m� 1/C 2. Combining these inequalities, we obtain

tX
iD1

�2i �

tX
iDm

�2i C �mC 1� 2

tX
iDm

�i .�i � 1/C 3D 2

tX
iD1

�i .�i � 1/C 3;

which is the required inequality.

4.3 The main results

Suppose that K is an nontrivial knot such that S3
p=q

.K/ is an alternating surgery, that
is, S3

p=q
.K/ D †.L/ for an alternating knot or link L. Since a nontrivial L–space

knot cannot admit both positive and negative L–space surgeries and

�S3r .K/D S
3
�r.K/D†.L/;
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we may assume that p=q > 0 and that all other alternating surgeries on K arise from
positive slopes.

Let D be a reduced alternating diagram of L. By Theorems 1.5 and 4.1, the lattice
ƒD is isomorphic to a p=q–changemaker lattice,

ƒp=q D hw0; : : : ; wli
?
� ZrkƒDClC1;

whose stable coefficients are determined by the Alexander polynomial of K .

Since ƒD is the graph lattice associated to the white graph of D , the lattice ƒp=q
admits an obtuse superbase. We write w0 in the form

w0 D

�
e0C �1f1C � � �C �tft if q > 1;
�1f1C � � �C �tft if q D 1:

Since D is reduced, �D contains no cut-edges. This implies that ƒD contains no
vectors of norm 1 and so �i � 1 for all i . As we are assuming that g.K/ > 0, (2-12)
implies that �t > 1. So the stable coefficients form a nonempty tuple, .�m; : : : ; �t /.
This allows us to define

N D �mC

tX
iDm

�2i ;

which will be the integer appearing in the statement of Theorem 1.2.

Proof of Theorems 1.1 and 1.2 Proposition 4.2 implies that the dp=qe–changemaker
lattice

ƒ0 D hw0i
?
�

�
ZtC1 if q > 1;
Zt if q D 1;

also admits an obtuse superbase. As shown by (2-12), we have

2g.K/D

tX
iD1

�i .�i � 1/:

Therefore, Lemma 4.5 gives the boundl
p

q

m
D kw0k

2
� 4g.K/C 3:

This proves Theorem 1.1. From Lemma 4.4, we get the upper bound

p

q
� kw0k

2
� 1C �mC

tX
iDm

�2i DN C 1:
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Since .�1; : : : ; �t / satisfies the changemaker condition, we must have

�m � 1C

m�1X
iD1

�i D 1C

m�1X
iD1

�2i ;

where the second inequality holds since �i D 1 for 1� i < m. Thus we obtain

p

q
�

tX
iD1

�2i �

tX
iDm

�2i C �m� 1DN � 1:

This completes the proof of Theorem 1.2.

The lower bound N �1 appearing in this proof arises from the fact that there can be no
r –changemaker lattice for any r < N � 1 with stable coefficients .�m; : : : ; �t /. Thus
it follows from Theorem 1.5 that if S3r .K/ bounds a negative-definite sharp manifold
for r > 0, then r �N � 1. This justifies the claim made in Remark 1.6.

Now it remains to prove Theorem 1.3.

Proof of Theorem 1.3 Assume that S3r .K/ is an alternating surgery for r 2fr1; N; r2g
with N � 1 � r1 < N < r2 < N C 1. Let S3ri

.K/ D †.Li / for i D 1; 2 and
S3N .K/D†.L/ for L and Li alternating. For iD 1; 2, let Di be a reduced alternating
diagram for Li and let D be a reduced alternating diagram for L. Theorem 1.5 shows
that there is w0D�tftC� � �C�2f2 such that ƒD1

is isomorphic to the r1–changemaker
lattice

ƒr1
D hw0C e0; w1; : : : ; wl1i

?
� hf2; � � � ; ft ; e0; : : : ; es1i;

ƒD2
is isomorphic to the r2–changemaker lattice

ƒr2
D hw0Cf1C e0; w1; : : : ; wl2i

?
� hf1; f2; � � � ; ft ; e0; : : : ; es2i;

and ƒD is isomorphic the N –changemaker lattice

ƒN D hw0i
?
� hf1; : : : ; ft i:

Since ƒr2
admits an obtuse superbase, Proposition 4.2 implies that ƒN admits an

obtuse superbase containing a vertex v with v �f1 D�2. Since ƒr1
is a changemaker

lattice, .�2; : : : ; �t / must satisfy the changemaker condition. Therefore, if g > 1 is
minimal such that v �fg �0, then Proposition 2.2 implies that there is A�f2; : : : ; g�1g
with �g � 1D

P
i2A �i . If we set z D fg � f1�

P
i2A fi , we have z 2ƒN and we
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can compute

.v� z/ � z D v �fg � 1C�.v �f1C 1/�
X
i2A

.v �fi C 1/

� v �fg � v �f1� 2D v �fg � 0:

Since z ¤ v , this shows that v is reducible. Thus Lemma 3.2 implies that ƒN is
decomposable and that if ƒN is isomorphic to a graph lattice ƒ.G/ for any connected
graph G , then G contains a cut vertex. This shows that the white graph �D contains a
cut vertex. Since, we have assumed that D is reduced, this implies that LD L1 #L2
for nontrivial L1 and L2 . Therefore S3N .K/D †.L1/ #†.L2/ is reducible. Using
work of Hoffman [12], Matignon and Sayari [14] showed that if S3N .K/ is a reducible
surgery, then either N � 2g.K/� 1 or K is a cable knot. Since we have

N > 2g.K/D

tX
iD1

�i .�i � 1/;

it follows that K is cable knot. This completes the proof of Theorem 1.3.

5 Examples and questions

We give some examples relating to alternating surgeries and sharp 4–manifolds to
illustrate the results of this paper. We then conclude the paper by discussing some
questions that arise naturally from this work.

5.1 Alternating surgeries via the Montesinos trick

We will now describe a construction for building knots admitting alternating surgeries.
As far as the author is aware, this construction accounts for all known examples of
alternating surgeries.

An almost-alternating diagram D is one which can be obtained by a crossing change
from an alternating diagram. We call a crossing which can be changed to obtain an
alternating diagram a dealternating crossing. Now let D be an almost-alternating
diagram of the unknot with a dealternating crossing c and let B be a small ball
containing c . Since the double cover of S3 branched over the unknot is S3 , the ball B
lifts to a solid torus T � S3 when we take the double cover of S3 branched over D .
Let K �S3 be the knot given by the core of T . If D0 is obtained from D by replacing
c with some other rational tangle, then the Montesinos trick shows that †.D0/ is
obtained by surgery on K [18]. Since we may perform tangle replacements such that
the resulting diagram is alternating, we see that K admits alternating surgeries. If
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we take D0 to be the alternating diagram obtained by changing c , then the resulting
surgery is half-integral:

S3nC1=2.K/D†.D
0/

for some n 2 Z. By reflecting D , if necessary, we may assume that n is positive. It
can be shown (eg [16, Proposition 5.4]) there are tangle replacements showing that
S3r .K/ is an alternating surgery for all r in the range n� r � nC 1.

Remark 5.1 It follows from the work of Watson that for all r � n, the manifold
S3r .K/ is the double branched cover of a quasi-alternating link L [28]. However,
Theorem 1.2 shows that when K is nontrivial L can only be alternating for r � nC 2.
Thus we see that almost-alternating diagrams of the unknot gives rise to infinite families
of nonalternating quasi-alternating knots and links.

Remark 5.2 It follows from Theorem 1.3 that if K is not a cable knot or the unknot,
then K can admit at most one other alternating surgery with r D nC 2 or r D n� 1.
If one uses the generalisation of Theorem 1.3 asserted in Remark 1.4, then we see that
actually neither of these possibilities can arise and that S3r .K/ is an alternating surgery
if and only if n� r � nC 1.

As an example, we see what the results of this paper say about alternating surgeries on
the .�2; 3; 7/–pretzel knot and describe how they arise through the construction given
in this section.

Example 5.3 Let K denote the .�2; 3; 7/–pretzel knot. It is well known that K
admits two lens space surgeries [5]. This implies that K is an L–space knot and in
particular that it has alternating surgeries. The Alexander polynomial is

�K.t/D t
5
C t�5� .t4C t�4/C t2C t�2� .t1C t�1/C 1:

The corresponding nonzero torsion coefficients are t0 D t1 D 2 and t2 D t3 D t4 D 1.
From Lemma 2.13 we can deduce that the stable coefficients of the corresponding
changemaker vector are .2; 2; 3/. If we apply Theorem 1.2 to K , then integer N we
obtain is N D 32C 22C 22C 2D 19. Therefore, if S3r .K/ is an alternating surgery,
then 18� r � 20.

Since the changemaker lattice

LD h3f6C 2f5C 2f4Cf3Cf2Cf1i
?

does not admit an obtuse superbase, we see that S3r .K/ cannot be an alternating surgery
for 19 < r � 20.
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Figure 4: A diagram of 817 with its unknotting crossing circled. For each r
in the range 18� r � 19 , r –surgery on the .�2; 3; 7/–pretzel knot yields the
branched double cover of an alternating knot or link obtained by replacing the
unknotting crossing in 817 by some rational tangle. Note that both resolutions
of the unknotting crossing give a 2–bridge knot or link. The two resolutions
correspond to the cases r D 18 and 19 .

In fact, K arises through the construction given in Section 5.1, and for each r in
18 � r � 19, S3r .K/ branches over an alternating knot or link obtained by tangle
replacement on the knot 817 , as shown in Figure 4.

5.2 Some knots with no alternating surgeries

We use the results of this paper to exhibit two examples of L–space knots which do
not admit any alternating surgeries. Although both are cables of the trefoil, they do not
admit alternating surgeries for different reasons: in one case, the cabling slope is “too
large” and in the other it is “too small”.

Example 5.4 Let K be the .2; 15/–cable of T2;3 . Since

S330.K/D S
3
15=2.T3;2/ #L.2; 1/

is an L–space, K is an L–space knot. We will show that this does not admit any
alternating surgeries. The Alexander polynomial of K is given by

�K.t/D t
9
Ct�9�.t8Ct�8/Ct5Ct�5�.t4Ct�4/Ct3Ct�3�.t2Ct�2/CtCt�1�1:

By the observations of Remark 2.17 and (2-12), we see that the stable coefficients given
by K must be .2; 2; 2; 4/. Thus the quantity N in Theorem 1.2 is given by N D 30.
Combining this with Proposition 4.2, we see that to verify that K has no alternating
surgeries we need only check that none of the three changemaker lattices

L29 D h4e0C 2e1C 2e2C 2e3C e4i
?;

L30 D h4e0C 2e1C 2e2C 2e3C e4C e5i
?;

L31 D h4e0C 2e1C 2e2C 2e3C e4C e5C e6i
?;
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admit obtuse superbases. Since this can be verified relatively easily, for example by
using that in each case there are only a small number of irreducible vectors v with
v � e0 ¤ 0, we see that K does not admit any alternating surgeries.

Example 5.5 Let K be the .2; 3/–cable of T2;3 . We will show that this is an L–space
knot not admitting any alternating surgeries. The Alexander polynomial of K is

�K.t/D t
3
� t2C 1� t�2C t�3:

Observe that this is the same as the Alexander polynomial for the torus knot T3;4 . If
S3r .K/D†.L/ were an alternating surgery, then for any reduced alternating diagram
D of L, the white lattice ƒD would be isomorphic to an r –changemaker lattice with
stable coefficients the tuple .3/. It follows that we must have 11 � r � 13. Since
S3r .T4;3/ is an alternating surgery for any r in this range, we must have ƒD ŠƒD0 ,
where D0 and is any reduced alternating diagram for an alternating knot or link L0

such that †.L0/ D S3r .T4;3/. Since L and L0 are alternating, this isomorphism
of white lattices implies that L and L0 must be mutants of one another and that
†.L/ D †.L0/ D S3r .T4;3/ [8]. Surgery on a torus knot is always a small Seifert
fibred space [19], but S3r .K/ is a small Seifert fibred space only if r takes the form
r D 6˙ 1=q [7]. Thus K admits no alternating surgeries.

5.3 Surgeries bounding sharp 4–manifold

It seems natural to wonder what we can say about the set of positive surgery slopes for
which a given knot bounds a negative-definite sharp manifold. It can be shown that if
it is nonempty then this set is an unbounded interval.

Theorem 5.6 [15, Theorem 1.2] Let K be a knot in S3 . If S3p=q.K/ bounds a
sharp negative-definite 4–manifold for some p=q > 0, then S3

p0=q0
.K/ bounds a sharp

negative-definite 4–manifold for all p0=q0 � p=q .

This allows us to characterise the set of all such slopes for torus knots admitting positive
L–space surgeries.

Proposition 5.7 For r; s >1 and p=q >0, the manifold S3
p=q

.Tr;s/ bounds a negative-
definite sharp 4–manifold if and only if p=q � rs� 1.

Proof Since S3rs�1.Tr;s/ is a lens space [19], Theorem 5.6 shows that S3p=q.Tr;s/
bounds a negative-definite sharp 4–manifold for any p=q � rs � 1. To obtain the
converse, observe that S3rsC1.Tr;s/ is also a lens space and hence also an alternating
surgery. Thus, for K D Tr;s , we see that the integer N in Theorem 1.2 is N D rs .
Thus Remark 1.6 gives the desired lower bound.
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There are also examples of L–space knots for which no such slopes exist.

Example 5.8 Let K be the .2; 5/–cable of T2;3 . We will show that K is an L–space
knot such that S3r .K/ cannot bound a sharp negative-definite 4–manifold for any
r > 0. Since S310.K/D S

3
5=2
.T3;2/ #L.2; 1/ is an L–space, K is an L–space knot.

To show that S3r .K/ cannot bound a sharp 4–manifold, we show there is no vector
satisfying (2-4). The Alexander polynomial of K is

�K.t/D t
4
� t3C 1� t�3C t�4;

which has nonzero torsion coefficients t0.K/D t1.K/D t2.K/D t3.K/D 1. Thus,
by Remark 2.17, we can assume that the first coordinate of any vector satisfying
(2-4) is �0 D 4. However this contradicts (2-12), which implies that we must have
�0.�0� 1/� 2g.K/D 8.

5.4 Further questions

Given the results of this paper, it is natural to wonder how the set of knots admitting
alternating surgeries are contained within the set of all L–space knots. For the purposes
of this discussion we define several classes of L–space knots. We will restrict our
attention to those admitting positive L–space surgeries. We say that S3r .K/ is a quasi-
alternating surgery if it is the double branched cover of a quasi-alternating knot or
link.

LD fK W S3r .K/ is an L–space for some r > 0g;

AD fK W S3r .K/ is an alternating surgery for some r > 0g;

DD fK WK is the double branched cover of an unknotting arc in an
alternating diagramg;

QAD fK W S3r .K/ is a quasi-alternating surgery for some r > 0g:

Since the double branched cover of a quasi-alternating knot is an L–space and any
alternating link is quasi-alternating, these sets satisfy the inclusions

D �A�QA� L:

Watson has shown that any sufficiently large cable of a torus knot is in QA [28]. In
particular, the .2; 15/–cable of T .2; 3/ is in QA. As we have shown that it is not in A,
this shows that A ¨ QA.

Remark 5.9 It seems probable that there are L–space knots which do not admit
quasi-alternating surgeries. The .2; 3/–cable of T2;3 and the .2; 5/–cable of T2;3
seem to be potential candidates for knots in L nQA.
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As far as the author is aware, all known examples of knots in A are also in D , ie they
arise through the construction in Section 5.1. Moreover, it is known that for every
noninteger alternating surgeries, there is a knot in D with the same surgery.

Theorem 5.10 [16, Theorem 1.2] If S3p=q.K/ is an alternating surgery with q > 1,
then there is K 0 2 D with S3

p=q
.K/D S3

p=q
.K 0/.

This suggests the following conjecture.

Conjecture 1 Every alternating surgery arises as tangle replacement on an almost-
alternating diagram of the unknot, that is, we have AD D .

Since lens spaces arise as the double branched covers of alternating links, one can ask
how this conjecture agrees with results and conjectures on lens space surgeries. The
cyclic surgery theorem of Culler, Gordon, Luecke and Shalen shows that only torus
knots admit noninteger lens space surgeries [4]. Since torus knots are in D , this verifies
Conjecture 1 in certain cases.

Short of attacking Conjecture 1 in full, there are various related questions we can ask.

Question 2 Does Theorem 5.10 extend to the case of integer alternating surgeries?

It follows from their construction that every knot in D admits a strong inversion.

Question 3 Is every knot in A strongly invertible?

It seems likely that any progress on Conjecture 1 would require an alternative description
of the class D .

Question 4 Is there a characterisation of D which does not refer to almost-alternating
diagrams of the unknot?

Finally, as we demonstrated with the .2; 5/–cable of T2;3 , (2-4) can be used to show
that for some knots no manifold obtained by positive surgery can bound a negative-
definite sharp manifold. As we saw in Example 5.5, the .2; 3/–cable of T2;3 passes
this obstruction as it has the same Alexander polynomial as T3;4 . However, it seems
unlikely that any positive surgery on the .2; 3/–cable of T2;3 bounds a sharp manifold.

Question 5 Can one find alternative ways to show that surgery on a knot does not
bound a sharp 4–manifold? In particular, is it possible to show that no positive surgery
on the .2; 3/–cable of T2;3 bounds a sharp manifold?
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