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The topological sliceness of 3–strand pretzel knots

ALLISON N MILLER

We give a complete characterization of the topological slice status of odd 3–strand
pretzel knots, proving that an odd 3–strand pretzel knot is topologically slice if and
only if it either is ribbon or has trivial Alexander polynomial. We also show that topo-
logically slice even 3–strand pretzel knots, except perhaps for members of Lecuona’s
exceptional family, must be ribbon. These results follow from computations of the
Casson–Gordon 3–manifold signature invariants associated to the double branched
covers of these knots.
57M25; 57N70

1 Introduction

In the years since Fox first posed the slice-ribbon conjecture (Problem 1.33 on Kirby’s
list [14]), its validity has been established for several families of knots. The usual
strategy is to give an explicit list of ribbon knots in the family and then to provide an
obstruction to the smooth sliceness of all others in the family. An early example of this
is the following classification of the smoothly slice rational knots due to Lisca.

Theorem 1.1 (Lisca [16]) A rational knot is smoothly slice if and only if it is ribbon
if and only if it is in R.

R is an explicit family of rational knots known to be ribbon at least since the work
of Casson and Gordon [4]. Lisca argues that if K is not in R, then Donaldson’s
diagonalization theorem obstructs †2.K/ from smoothly bounding a rational homology
ball, and hence obstructs K from being smoothly slice.

In a similar spirit, though with entirely different methods, we give an almost complete
characterization of the topological sliceness of 3–strand pretzels via the computation of
Casson–Gordon signatures corresponding to the double branched cover. In particular,
we have the following complete characterization of topologically slice odd 3–strand
pretzel knots. (Note that we call a pretzel knot P .p1; : : : ;pn/ odd if all of its parameters
pi are odd and even if one parameter is even.)

Theorem 1.2 (Main Theorem A) Let K be an odd 3–strand pretzel knot with non-
trivial Alexander polynomial. Then K is topologically slice if and only if K is of the
form ˙P .p; q;�q/ or ˙P .1; q;�q � 4/ for some odd p; q 2N , in which case it is
obviously ribbon.
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By work of Freedman in [9], every knot with trivial Alexander polynomial is topologi-
cally slice. The following result, originally proved by Fintushel and Stern, illustrates
that this is far from true for 3–strand pretzel knots in the smooth category.

Theorem 1.3 (Fintushel and Stern [8]) Let K be a nontrivial odd 3–strand pretzel
knot with �K .t/D 1. Then K is not smoothly slice.

Theorems 1.2 and 1.3 therefore together give an alternate proof of the following
complete characterization of smoothly slice 3–strand pretzel knots given by Greene
and Jabuka in [11]. Their arguments, like Lisca’s, are smooth in nature and rely on
Donaldson’s theorem along with additional obstructions coming from Heegaard Floer
homology.

Theorem 1.4 (Greene and Jabuka [11]) Let K be an odd 3–strand pretzel knot.
Then K is smoothly slice if and only if it is ribbon if and only if K is of the form
˙P .p; q;�q/ or ˙P .1; q;�q� 4/ for odd p; q 2N .

Note that both Lisca and Greene and Jabuka actually prove stronger results that com-
pletely characterize the order of rational knots and odd 3–strand pretzel knots in the
smooth concordance group. Theorem 1.2 has the following nice corollary.

Corollary 1.5 Let K be a genus-one alternating knot. Then K is topologically slice
if and only if K is ribbon.

Proof Let K be a genus-one alternating knot. Then by work of Stoimenow in [18], K

either is an odd 3–strand pretzel knot with all parameters of the same sign (and hence
has nonzero signature and is not even algebraically slice) or is rational. Therefore we
may assume that K is a genus-one rational knot and hence (up to reflection) corresponds
to the fraction .4abC1/=.2a/ for some a; b> 0; see for example Burde and Zieschang
[2, Proposition 12.26]. Note that K has determinant 4abC 1> 1 and hence does not
have trivial Alexander polynomial. Therefore, since such knots can also be described
as the 3–strand pretzel knot P .1; 2a� 1;�.2bC 1//, Theorem 1.2 implies that K is
topologically slice if and only if it is ribbon.

We also consider the topological slice status of even 3–strand pretzel knots, and are
able to use Casson–Gordon signatures to prove the following theorem, where for odd
a> 0 we define Pa to be the even 3–strand pretzel knot P .a;�a� 2;�.aC 1/2=2/.

Theorem 1.6 (Main Theorem B) Let K be an even 3–strand pretzel knot that is not
of the form ˙Pa for a � 1; 11; 37; 47; 59 mod 60. Then K is topologically slice if
and only if K is of the form P .p; q;�q/ for some even p and odd q , in which case it
is obviously ribbon.
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The family f˙Pag was first considered by Lecuona in [15]. Lecuona uses techniques
analogous to those of Greene and Jabuka to describe the smooth sliceness of even
3–strand pretzel knots, except for this exceptional family f˙Pag. In fact, Lecuona’s
results are much broader, essentially characterizing the smooth sliceness up to mutation
of all even pretzel knots not in this exceptional family. It follows from work of Jabuka
in [13] that the knots f˙Pag are exactly the even 3–strand pretzel knots with trivial
rational Witt class and determinant one.

Theorem 1.7 (Lecuona [15]) Let K be an even 3–strand pretzel knot that is not of
the form ˙Pa for any a� 1; 11; 37; 47; 49; 59 mod 60. Then K is smoothly slice if
and only if it is ribbon if and only if it is of the form P .p; q;�q/ for some even p and
odd q .

Lecuona conjectures that the (non)existence of a Fox–Milnor factorization for the
Alexander polynomial obstructs even the algebraic sliceness of the f˙Pag family.
When combined with Theorem 1.6, this would imply an affirmative answer to the
following conjecture.

Conjecture 1.8 Let K be an even 3–strand pretzel knot. Then K is topologically
slice if and only if K is ribbon.

We conveniently summarize Theorems 1.2 and 1.6 in this (slightly weaker) statement:

Theorem 1.9 Let K be a 3–strand pretzel knot with nontrivial determinant. Then K

is topologically slice if and only if K is ribbon.

Note that despite our almost complete understanding of topological sliceness for 3–
strand pretzel knots, it remains open whether smoothly slice equals topologically slice
for rational knots. Recent work of Feller and McCoy [7] shows that there are rational
knots with distinct smooth and topological 4–genera.

A natural next question is the extent to which double branched cover Casson–Gordon
signatures obstruct the topological sliceness of pretzel knots with more than three
strands. However, several difficulties arise. First, pretzel knots with more than three
strands have nontrivial mutations which often persist in concordance. (See the work of
Herald, Kirk and Livingston [12] for examples.) However, even if we are willing to
consider knots only up to mutation we cannot expect a complete answer from these
techniques. In particular, there exist algebraically slice odd 5–strand pretzel knots
with nontrivial Alexander polynomial but trivial determinant. (For example, consider
P .7; 11; 53;�5;�19/.) There is no reason to believe that these knots are topologically
slice, but there are also no double branched cover Casson–Gordon signatures to serve
as sliceness obstructions.
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Outline of the paper In Section 2, we provide background and basic results on
Casson–Gordon signatures. In Section 3, we provide necessary results concerning the
colored signatures of links. In Section 4, we prove Main Theorem A (Theorem 1.2),
completely characterizing which odd 3–strand pretzel knots are topologically slice.
Finally, in Section 5 we briefly outline the arguments used to prove Main Theorem B
(Theorem 1.6), our result for even 3–strand pretzel knots.

2 Casson–Gordon signature invariants

Casson and Gordon associate to a knot K and a map �W H1.†n.K// ! Zd the
invariant �.K; n; �/ 2 L0.Q.!/.t//˝Q. Note that L0.Q.!/.t// is the Witt group
of nonsingular Hermitian forms on finite-dimensional Q.!/.t/–modules, where ! D
e2�i=d . These invariants obstruct the topological sliceness of K as follows.

Theorem 2.1 (Casson and Gordon [4]) Let K be a topologically slice knot and n a
prime power. Then there exists a square-root order subgroup M �H1.†n.K//, invari-
ant under the action of the covering transformations, with the linking form of †n.K/

vanishing on M �M (ie M is a metabolizer for the linking form) such that if � is a
prime-power order character with �jM D 0, then �.K; n; �/D 0.

While this is a powerful sliceness obstruction, �.K; n; �/ cannot generally be di-
rectly computed. Instead, as originated in [4], one relates the Witt class signature
x�1.�.K; n; �// to a simpler signature associated to any 3–manifold Y and character
from H1.Y / to a cyclic group. We give the definition of this signature, following [3].

First, whenever X�!X is a cyclic d–fold cover, perhaps branched, we let !D e2�i=d

and define the �–twisted homology of X to be the Q.!/ vector space

H
�
� .X / WDH�.C�.X�/˝ZŒZd �Q.!//ŠH�.X�/˝ZŒZd �Q.!/:

We now let Y be a closed 3–manifold and �W H1.Y /! Zd an onto homomorphism.
The map � induces a d–fold cyclic cover Y�! Y with a canonical generator � for
the group of covering transformations. Suppose that there is some d–fold branched
cyclic cover of 4–manifolds W�!W with branch set a closed surface F � int.W /

such that @.W�!W /D r.Y�! Y / for some r 2N . Suppose also that the covering
transformation z� of W� that induces rotation by 2�=d on the fibers of the normal
bundle of the preimage of F in W� induces the canonical covering transformation �
on Y� . We can always choose either F D∅ or r D 1 by bordism group considerations
and an explicit description in [3], respectively, and all of our work will be in one of these
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cases. The action of z� on H WDH2.W�;C/ allows us to decompose H as the direct
sum of eigenspaces H k

2
.W�/ corresponding to eigenvalues !k for k D 0; : : : ; d � 1.

For k > 0, define �k.W�/ to be the signature of the intersection form of W� when
restricted to H k

2
.W�/. Note that �1.W�/ can be equivalently be defined as the signature

of the twisted intersection form on H
�
2
.W /DH2.W�/˝ZŒZd �Q.!/.

Definition 2.2 With the above setup, the k th Casson–Gordon signature of .Y; �/ is

�k.Y; �/D
1

r

�
�.W /� �k.W�/�

2k.d�k/

d2
.ŒF � � ŒF �/

�
:

Those familiar with the definition of �.K; n; �/ should note that we generally have
�1.†n.K/; �/ ¤ x�1.�.K; n; �//. However, we can bound the difference between
�1.†n.K/; �/ and x�1.�.K; n; �//, in a straightforward extension of [4, Theorem 3].

Theorem 2.3 (Casson and Gordon [4]) Let �W H1.†n.K//!Zd be an onto homo-
morphism. Then

j�1.†n.K/; �/� x�1.�.K; n; �//j � dim H
�
1
.†n.K//C 1:

Proof We follow the proof of [4, Theorem 3]. Let Mn denote the n–fold cyclic cover
of the 3–manifold S3

0
.K/ obtained by doing 0–surgery along K . For convenience

we let †n D †n.K/. Note that � determines a map H1.Mn/! Zd , which by an
abuse of notation we also refer to as �. By the usual bordism group considerations,
for some r 2N there is a compact 4–manifold Wn with boundary r†n such that �
extends over H1.Wn/. Note that Mn can be obtained from †n by a single 0–framed
surgery along eK , the preimage of K under the branched covering map. Therefore
rMn bounds a 4–manifold Vn obtained by attaching r 0–framed 2–handles to Wn .
Let � denote the nullity of the twisted intersection form on H

�
2
.Vn/. The arguments

of the proof of [4, Theorem 3] carry over verbatim to establish the inequality

j�1.Mn; �/� x�1.�.K; n; �//j �
�

r
:

Since our covers are unbranched, Definition 2.2 gives us

�1.†n; �/D
1

r

�
�.Wn/� �.H

�
2
.Wn//

�
;

�1.Mn; �/D
1

r

�
�.Vn/� �.H

�
2
.Vn//

�
:

By our construction of Vn from Wn , it is straightforward to verify that �.Vn/D �.Wn/

and that H
�
2
.Vn/ has a codimension-r subspace which is isometric to H

�
2
.Wn/. Note

that by duality the intersection form on H
�
2
.Vn/ has nullity equal to r dim H

�
1
.†n/,
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whereas by definition the intersection form on H
�
2
.Wn/ has nullity � . We thus have the

following, which when combined with our previous inequality gives the desired result:

j�1.†n;�/��1.Mn;�/jD
ˇ̌̌
1

r

�
�.Wn/��.H

�
2
.Wn//

�
�

1

r

�
�.Vn/��.H

�
2
.Vn//

�ˇ̌̌
D

1

r

ˇ̌
�.H

�
2
.Wn//��.H

�
2
.Vn//

ˇ̌
�

1

r

�
r �.��r dimH

�
1
.†n//

�
D dimH

�
1
.†n/C1�

�

r
:

The following corollary will be our main obstruction to topological sliceness.

Corollary 2.4 [4] Suppose that K is a topologically slice knot and that nD pr is a
prime power. Then there exists a metabolizer M for the linking form on H1.†n.K//

such that if � is a character of prime-power order d vanishing on M , then for any
k D 1; : : : ; d � 1,

j�k.†n.K/; �/j � dim H
�
1
.†n.K//C 1:

Proof Replacing � with a nonzero multiple of itself permutes f�k.†n.K/; �/g
d�1
kD1

while preserving the property of vanishing on M , so Theorems 2.1 and 2.3 combine
to give the desired result.

If the obstruction of Corollary 2.4 vanishes for characters from H1.†2.K// to Zd ,
then we will refer to K as CG-slice at d . The following proposition is often convenient
in recognizing that †n.K/� is a rational homology sphere, and hence that the bound
of Corollary 2.4 reduces to j�1.†n.K/; �/j � 1.

Proposition 2.5 (Casson and Gordon [3]) Suppose that Y is a rational homology
sphere with H1.Y;Zp/ cyclic for some prime p . Then any cyclic pn–fold cover of Y

is also a rational homology sphere.

In order to effectively apply this obstruction, we would like to be able to compute
�k.Y; �/ from an arbitrary integral surgery description of Y .

Definition 2.6 Let K be an oriented knot, and A an embedded annulus such that
@ADKt�K0 and lk.K;K0/D �. An �–twisted a–cable of K is any oriented link L

obtained as the union of n D nCC n� parallel copies of K in A such that nC are
oriented with K , n� opposite to K , and nC� n� D a.

Let LD
Sn

iD1 Li be an oriented link in S3 such that surgery along L with integer
framings f�ig

n
iD1

gives Y . We refer to the meridian of component Li as �i and let
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AD Œaij � be the linking matrix of L. The following proposition is a generalization of
[3, Lemma 3.1].

Proposition 2.7 (Gilmer [10]) Let Y be obtained by integer surgery on L as above
and �W H1.Y /! Zd be an onto homomorphism. Let L� be a satellite of L obtained
by replacing each Li by a nonempty �i–twisted mi–cable of Li , such that �.�i/�

mi mod d . Then for any 0< k < d ,

�k.Y; �/D �.A/� �L�
.!k/�

2k.d�k/

d2

� nX
i;jD1

mimj aij

�
:

In order to effectively apply Proposition 2.7 we will need to compute the Tristram–
Levine signatures of cables of links. The techniques of colored signatures prove useful
for this, as well as providing an independent means of computation for �1.Y; �/.

3 Colored signatures of colored links

A n–colored link is an oriented link L together with a surjective map assigning to each
component of L a color in f1; 2; : : : ; ng. We let Li denote the sublink of L consisting
of i–colored components, and call each Li a colored component. A C-complex for a
colored link L consists of a union of Seifert surfaces for the colored components of L

which intersect only in a prescribed way (in “clasps”; see [5] for the precise definition).

The colored signature of L is a map �LW .S
1/n!Z that is defined via the C-complex

in a way exactly analogous to the definition of the Tristram–Levine signatures in terms
of a Seifert surface for a link. The colored signature shares many properties, including
a 4–dimensional interpretation, with the ordinary signatures. We need the following
results, due primarily to Cimasoni and Florens [5]:

Recovery of Tristram–Levine signatures Let L be a n–component, n–colored link,
and call the underlying ordinary link L0 . Then for any ! 2 S1 � f1g, we have
�L.!; : : : ; !/D �L0.!/C

P
i<j lk.Li ;Lj /.

Additivity Let L0 DL0
1
[ � � � [L0m and L00 DL00

mC1
[ � � � [L00mCn be colored links

and L be the .mCn�1/–colored link obtained by connected summing any compo-
nent of L0m with any component of L00

mC1
. Then �L.!1; : : : ; !m; : : : ; !mCn�1/ D

�L.!1; : : : ; !m/C �L00.!m; : : : ; !mCn�1/:

Behavior under reversal and mirroring The colored signature is invariant under
global reversal of orientations. Also, letting L denote the mirror of L we have
�L.!1; : : : ; !n/D��L.!1; : : : ; !n/.
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Behavior at 1 (Degtyarev, Florens and Lecuona [6]) Let L be an n–colored link and
L0 be the .n�1/–colored link obtained by deleting the nth colored component of L.
Then �L.!1; : : : ; !n�1; 1/D �L0.!1; : : : ; !n�1/.

Hopf link computation Let L be either Hopf link, considered as a 2–colored link.
Then the colored signature function of L is identically 0.

We also need the following consequence of Degtyarev, Florens and Lecuona’s general
description of the signature of a splice in [6].

Example 3.1 Let L be the following 5–colored link:

c1 c2 c3

d�
dC

Let ˆ.L/ be the satellite of L obtained by replacing each component ci with a
coherently oriented torus link T .ai ;piai/ for i D 1; 2; 3. Observe that as an ordinary
oriented link, L is isotopic to its mirror image in a way that swaps components
dC and d� and preserves all other components. It follows that �L.!0; !0; E!/D 0 for
all !0 2 S1 and E! 2 .S1/3 . Let � 2 S1 be such that �ai ¤ 1 for i D 1; 2; 3. Then [6,
Theorem 2.2] and the above results imply that �ˆ.L/.�/D

P3
iD1 �T .ai ;pi ai /.�/.

Finally, in some cases colored signatures give us an alternate computational method
for Casson–Gordon signatures.

Theorem 3.2 (Cimasoni and Florens [5]) Let Y be a 3–manifold obtained by surgery
on a framed n–component link L with linking matrix AD Œaij �. Let �W H1.Y /! Zd

be a character of prime-power order that takes the meridian of each component of L to
a unit in Zd . Denote the lift of the image of the i th meridian of L to f1; : : : ; d � 1g

by mi . Consider L as a n–colored link, and let !� D .!m1 ; : : : ; !mn/. Then

�1.Y; �/D �.A/�

�
�L.!�/�

X
i<j

aij

�
�

2

d2

�X
i;j

.d �mi/mj aij

�
:

Note that in the case that every meridian is sent to 1 and k D 1, Theorems 2.7 and 3.2
both reduce to the original [3, Lemma 3.1].

4 Casson–Gordon signatures of 3–strand pretzels

We now give the outline of the proof of Theorem 1.2, deferring computations to later
propositions.
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Proof of Theorem 1.2 Suppose that K is an algebraically slice odd 3–strand pretzel
knot with nontrivial Alexander polynomial. We will argue that either the Casson–
Gordon signatures of †2.K/ obstruct the topological sliceness of K or the knot K is
in fact ribbon. Since K is algebraically slice, the ordinary signature of K vanishes,
and so an easy computation from the standard genus-one Seifert surface for K shows
that pqC qr Cpr < 0; see also [13]. Also, jH1.†2.K//j D �pq � qr �pr DD2

for some odd D 2N . Note that since K is a genus-one algebraically slice knot with
nontrivial Alexander polynomial, D2 ¤ 1 and hence D has prime divisors. Since
pqCpr C qr < 0, the parameters p , q and r are not all of the same sign and so via
reflection and the symmetries of 3–strand pretzel knots we can assume that p; q > 0

and r < 0.

In the following cases, the existence of a prime d that divides D and satisfies the
given conditions implies that the Casson–Gordon signatures of †2.K/ corresponding
to characters to Zd obstruct the topological sliceness of K :

Case 1 (Proposition 4.1) d divides p and q but not r .

Case 2 (Proposition 4.3) d divides r and exactly one of p and q .

Case 3 (Proposition 4.6) d divides all of p , q and r .

Case 4 (Proposition 4.10) d divides D but none of p , q and r ; p 6� q mod d ;
and r ¤�.4pC q/ (assuming without loss of generality that q > p ).

Case 5 (Proposition 4.11) d divides D but none of p , q and r D�.4pC q/.

Case 6 (Proposition 4.12) d divides D but none of p , q and r ; p � q mod d ;
and d ¤ 3.

Now suppose that there is no prime satisfying any of the above. It follows that p , q

and r are relatively prime, p � q mod 3, and D is a power of three. We show that in
this case the Casson–Gordon signatures corresponding to characters of order 3 and 9
obstruct topological sliceness in Proposition 4.13.

We now set up for our various computations. Note that if r equals one of �p and �q ,
there is a single band move taking K to a 2–component unlink, and hence K is ribbon.
So we suppose r ¤�p;�q . We start with the surgery diagram for †2.K/ in Figure 1,
with linking matrix

AD

2664
0 1 1 1

1 p 0 0

1 0 q 0

1 0 0 r

3775
and �.A/D 0. We refer to the meridians of each component by �0 , �p , �q and �r

according to their framings.
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p q r

0

Figure 1: A surgery diagram L0 for †2.P .p; q; r//

Note that A is a presentation matrix for H1.†2.K/, and that it is straightforward to
use row and column moves and obtain the smaller presentation matrix A0D

�
pCq

p
p

pCr

�
.

Let d be any prime dividing D and suppose that d does not divide all of p , q and r .
Observe that this implies that some entry of A0 is a unit in Zd , and hence by choosing
this as our pivot entry and working over Zd we can use row and column moves to
obtain A00 D

�
1
0

0
�

�
. Observe that A00 is a presentation matrix for H1.†2.K/;Zd /,

and so we see that H1.†2.K/;Zd / is cyclic and hence every regular dn–fold cyclic
cover of †2.K/ is a rational homology sphere (Proposition 2.5). In addition, when
H1.†2.K/;Zd / is cyclic any character �W H1.†2.K// ! Zd will vanish on any
metabolizer for the linking form; see [12, Lemma 8.2]. So we have the following:

Useful fact Suppose that K D P .p; q; r/ is topologically slice, d is a prime divid-
ing pq C qr C pr that does not divide all of p , q and r , and � is any character
H1.†2.K//! Zd . Then j�1.†2.K/; �/j � 1.

4.1 Cases 1 and 2: d divides some but not all of p , q and r

Proposition 4.1 (Case 1) Let K DK.p; q; r/, where

p; q > 0; r < 0 and pqCpr C qr D�D2:

Suppose that d is a prime that divides p and q but not r . Then the Casson–Gordon
signatures of †2.K/ associated to characters to Zd obstruct the topological sliceness
of K .

Proof We start by manipulating our surgery description for †2.K/. Slide the curves
with framing p and q over the curve with framing r . Then convert the 0–framed
2–handle to a 1–handle, and cancel the 1–handle with the r–framed 2–handle. We
end with a new surgery description for †2.K/ with underlying link L D T .2; 2r/

and framings pC r and qC r . The linking matrix of L is AD
�

pCr
r

r
qCr

�
and has

�.A/ D 0. Note that if we consider the entries of A mod d we get a presentation
matrix for H1.†2.K/;Zd / with respect to basis f�p; �qg, which immediately implies
that H1.†2.K/;Zd /Š Zd , with generator �p D��q .
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By our useful fact, it suffices to show that for some �W H1.†2.K//! Zd we have
that j�1.†2.K/; �/j> 1. Define � on H1.†2.K// by �.�p/D �.��q/D 1. So L�
is the torus link T .2; 2r/ with strands oppositely oriented. Note that �L�

.!k/D�1

for 0< k < d and so we have by Proposition 2.7 that

�k.†2.K/; �/D 1�2..pC r/�2rC .qC r//
k.d�k/

d2
D 1�2

�
pCq

d

��
k.d�k/

d

�
:

Note that d divides p and q , so pC q � 2d . Note that k.d � k/ � .d � 1/ for all
choices of k D 1; : : : ; d � 1. Since d � 3, we have

j�k.†2.K/; �/j � 2 � 2 �
�
1� 1

3

�
� 1D 8

3
� 1> 1:

The above proof shows �k.†2.K/; �/ < �1 for all choices of �W H1.†2.K//! Zd

and k D 1; : : : ; d � 1, giving the following easy corollary.

Corollary 4.2 For each odd prime s , let Ks D P .ps; qs; rs/ be an odd 3–strand
pretzel knot such that ps; qs > 0 are divisible by s; rs < 0 is not divisible by s; and
psqsCpsrsC qsrs D�s2 . Then fKsg is a basis of algebraically slice knots for a Z1

subgroup of the topological concordance group.

Note that such Ks exist; for example, we can take Ks D .s
2; s2;�.s2C 1/=2/. (Note

since s is odd s2C1 is equivalent to 2 mod 4 and so this is an odd pretzel as desired.)

Proof Suppose that KD
Pn

iD1 aiKsi
is topologically slice, where each ai is nonzero.

By reflecting K , we can assume without loss of generality that a1 > 0. Since K is
topologically slice and H1.†2.K/;Zsi

/ is nonzero, it follows from Theorem 2.1 that
there is some nontrivial character �W H1.†2.K//!Zs1

such that x�1.�.K; 2; �//D 0.
Observe that

H1.†2.K//D

nM
iD1

�
H1.†2.Ksi

//˚jai j
�
D

nM
iD1

�
Zsi

Œt � =ht C 1i
�˚jai j:

Note that � is trivial on each H1.†2.Ksi
// factor for i ¤ 1, and that � can be

decomposed as � D
Lja1j

jD1
�j , where each �j W H1.†2.Ks1

// ! Zs1
and at least

one �j is nontrivial. By the additivity of Casson–Gordon signatures,

x�1.�.K; 2; �//D

ja1jX
jD1

x�1.�.Ks1
; 2; �j //:

However, the proof of Proposition 4.1 shows that �1.†2.Ks1
/; �j / <�1 whenever �j

is nontrivial, and thatˇ̌
x�1.�.Ks1

; 2; �j /� �1.†2.Ks1
/; �j /

ˇ̌
� 1:
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It follows that x�1.�.K; 2; �j // is strictly negative whenever �j is nontrivial (and zero
when �j is trivial), and so x�1.�.K; 2; �// < 0, which is our desired contradiction.

Now we continue to the next case.

Proposition 4.3 (Case 2) Let K DK.p; q; r/. Suppose that there exists a prime d

that divides r and exactly one of p and q , but that r ¤ �p;�q . Then the Casson–
Gordon signatures of †2.K/ associated to characters to Zd obstruct the topological
sliceness of K .

Proof The argument is exactly analogous to that of the proof of Proposition 4.1, except
that we choose k to be .d � 1/=2; the details are left to the reader.

4.2 Case 3: d divides all of p , q and r

In this case, we have that H1.†2.K/;Zd / Š Zd ˚ Zd , and so there may be me-
tabolizers M � H1.†2.K// with nontrivial image in H1.†2.K/;Zd /. For each
such metabolizer we provide a character � to Zd vanishing on M such that the
corresponding Casson–Gordon signature has sufficiently large absolute value. We first
determine what “sufficiently large” is in the context of Corollary 2.4.

Lemma 4.4 Let �W H1.†2.K//!Zd . Then dim H
�
1
.†2.K// is 1 if �.�p/, �.�q/

and �.�r / are all nonzero and 0 otherwise.

Proof By slight simplifications of the Wirtinger presentation, we obtain

�1.S
3
�L0/D h�0; �p; �q; �r W �0�p D �p�0; �0�q D �q�0; �0�r D �r�0i;

where �� is any meridian of the �–framed curve, for � D 0;p; q; r . Note that the
0–framed longitudes of the surgery curves are given with respect to this generating
set by �0 D �r�q�p and �p D �q D �r D �0 . Gluing in solid tori according to the
surgery framings gives new relations

�0D�r�q�pD1; �p
p�pD�

p
p�0D1; �q

q�qD�
q
q�0D1; �r

r�r D�
r
r�0D1:

We therefore have the following presentation for �1.†2.K//, in which generators and
relators correspond respectively to the 1– and 2–cells of a cell-complex structure (with
a single 0–cell) on a space homotopy equivalent to †2.K/:

�1.†2.K//D

�
�0; �p; �q; �r W

Œ�0; �p �D Œ�0; �q �D Œ�0; �r �D 1;

�r�q�p D �
p
p�0 D �

q
q�0 D �

r
r�0 D 1

�
D
˝
�p; �q; �r W �r�q�p D �

p
p�
�q
q D �

p
p�
�r
r D 1

˛
:
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Any choice of x;y; z 2 Zd such that xCyC z � 0 mod d will define a character �
via �p 7! x , �q 7! y and �r 7! z . First suppose that none of x , y and z are
equivalent to 0. Then by replacing � with a nonzero multiple, which does not change
the underlying cover, we may assume that x D 1.

We now follow the Reidemeister–Schreier algorithm to lift these 0–, 1–, and 2–cells
to obtain a 2–complex with the same fundamental group as †2.K/� . Note that all
subscripts are considered mod d . First, lift the single 0–cell to d 0–cells o1; : : : ; od .
Note that �p has d lifts ˛1; : : : ; ˛d , where ˛i is a 1–cell from oi to oiC1; �q has d

lifts ˇ1; : : : ; ˇd , where ˇi is a 1–cell from oi to oiCy; and �r has d lifts 1; : : : ; d ,
where i is a 1–cell from oi to oiCz . We similarly compute the attaching maps of
the d lifts of each of the 2–cells. For example, the lifts of the 2–cell corresponding to the
relator �r�q�p have attaching maps of the form iˇzCi˛yCzCi for iD1; : : : ; d . Now
contract along ˛2; : : : ; ˛d to obtain a complex with a single 0–cell, .2dC1/ 1–cells,
and .3d/ 2–cells, with a corresponding presentation for �1.†2.K/�/. Abelianizing
gives a presentation for H1.†2.K/�/ with generators a; b1; : : : ; bd ; c1; : : : ; cd and
relations a C b1 C cx D 0; bk C cxCk�1 D 0 for k D 2; : : : ; d ; and .p=d/a D

.q=d/.b1C � � �C bd /D .r=d/.c1C � � �C cd /. This simplifies to

H1.†2.K/�/D
D
a; b1; : : : ; bd W

p

d
aD

q

d
.b1C � � �C bd /D�

r

d
.b1C � � �C bd C a/

E
:

So as a Q–module, H1.†2.K/�;Q/ has generators b1; : : : ; bd and single relation
.pqCprCqr/.b1C� � �Cbd /D 0. Note that the covering transformation of †2.K/�
sends bi onto biC1 for i D 1; : : : ; d�1, and we have that H1.†2.K/�;Q/ is a cyclic
QŒZd �–module with generator b1 and relator .pqCprCqr/.1CtCt2C� � �Ctd�1/b1 .
Since 1C �d C �

2
d
C � � �C �d�1

d
D 0, we have

H
�
1
.†2.K//DH1.†2.K/�;Q/˝QŒZd �Q.�d /ŠQ.�d /:

When one of x , y and z is 0, an extremely similar argument shows that †2.K/� is a
rational homology sphere and so dim H

�
1
.†2.K//D 0.

By considering the linking matrix A for L0 with its entries taken mod d , we see
that H1.†2.K/;Zd / is generated as a Zd–module by the images of �p; �q and �r

(which we continue to refer to as �p , �q and �r by a mild abuse of notation) and
has single relation �p C �q C �r D 0. Suppose that �W H1.†2.K//! Zd sends
�p to a, �q to b and �r to c , where 0 < a; b; c < d . We must have �.�0/ � 0

and aC bC c � 0 mod d . We will use Proposition 2.7 to compute �1.†2.K/; �/,
letting L� be the distant union of T .a;pa/, T .b; qb/ and T .c; rc/, each with all
strands coherently oriented, along with two incoherently oriented linking 0 strands
parallel to �0 , as in Figure 2.
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T .a;pa/ T .b; qb/ T .c; rc/

Figure 2: The link L� , pictured with aD 2 , b D 3 and c D 2

Note, as computed in Example 3.1, �L�
.!/D�T .a;pa/.!/C�T .b;qb/.!/C�T .c;rc/.!/.

Also, Litherland’s formula in [17] for the Tristram–Levine signature of a torus link
implies that �T .j ;jkn/.e

2� i=n/ D �2j .j � 1/k for 0 < j < n. While Litherland’s
result is stated only for torus knots, it holds for torus links as well. In particular, the
underlying computation in [1] of the signature of the Brieskorn manifold V .p; q; r/ı D

f.z1; z2; z3/ 2C3 W z
p
1
Cz

q
2
Czr

3
D ıg\D6 does not depend on any relative primeness

of the parameters p , q and r .

Therefore, we have that

�1.†2.K/; �/

D 0� �L�
.!/� 2.a2pC b2qC c2r/

�
d�1

d2

�
D��T .a;pa/.!/� �T .b;qb/.!/� �T .c;rc/.!/� 2.a2pC b2qC c2r/

�
d�1

d2

�
D 2a.a� 1/

p

d
C 2b.b� 1/

q

d
C 2c.c � 1/

r

d
� 2.a2pC b2qC c2r/

�
d�1

d2

�
D

2

d2
.a.d � a/pC b.d � b/qC c.d � c/r/:

Unfortunately, we cannot conclude that j�1.†2.K/; �/j> 1 for all such choices of �.
For example, when K D P .3 � 7; 5 � 7;�17 � 7/, d D 7, and � sends �p to 2, �q to 4

and �r to 1, we have j�1.†2.K/; �/j D
8

11
. However, this choice of � does not

vanish on any metabolizer for the linking form �W H1.†2.K//�H1.†2.K//!Q=Z,
and so there is still some hope to obstruct the sliceness of K via double branched cover
Casson–Gordon signatures.

Lemma 4.5 Suppose M is a metabolizer for the linking form on H1.†2.K// with
nonzero image in H1.†2.K/;Zd /. If �W H1.†2.K// ! Zd vanishes on M and
takes �p , �q and �r to nonzero elements of Zd , then �1.†2.K/; �/ is an integer that
is divisible by 4.
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Proof For convenience, we write p D dp0 , q D dq0 and r D dr 0 . Note we have
assumed that M has nontrivial image in H1.†2.K/;Zd /, and hence we can assume
there is ˛D x�pCy�q 2M such that not both of x and y are equivalent to 0 mod d .

The linking form is given with respect to our �0 , �p , �q , �r generating set for
H1.†2.K// by �A�1 (Gordon and Litherland). Direct computation shows that
�.x�pCy�q;x�pCy�q/D .1=D

2/..qCr/x2�2rxyC.pCr/y2/. Since ˛ 2M ,
we know D2 and hence d2 divides .qC r/x2� 2rxyC .pC r/y2 , and so we have

(�) .q0C r 0/x2
� 2r 0xyC .p0C r 0/y2

� 0 mod d:

Now, let �W H1.†2.K//! Zd be a character vanishing on M . As usual, we write
a D �.�p/, b D �.�q/ and c D �.�r /, with aC bC c � 0 mod d . Since �.˛/ D
axC by � 0 mod d , we can write y D�axbx , and so neither x nor y is equivalent
to 0 mod d . Substituting into (�), we obtain

0� .q0C r 0/x2
� 2r 0xyC .p0C r 0/y2

� .q0C r 0/x2
C 2r 0axbx2

C .p0C r 0/a2xb2x2

� Œa2xb2p0C q0C .axbC 1/2r 0�x2 mod d:

Multiplying through by .b2=x2/ and recalling that c2 � .aC b/2 mod d gives us that
a2p0C b2q0C c2r 0 � 0 mod d . Finally, we can write

d2

2
�1.†2.K/; �/D a.d � a/pC b.d � b/qC c.d � c/r

D d.a.d � a/p0C b.d � b/q0C c.d � c/r 0/

D d2.p0C q0C r 0/� d.a2p0C b2q0C c2r 0/:

Observe that the right side is divisible by d2 , and hence �1.†2.K// is an integer.
Also, since d is odd, a.d � a/pC b.d � b/qC c.d � c/r is even for any choice of a,
b and c and �1.†2.K/; �/ is divisible by 4.

Proposition 4.6 (Case 3) Let K D P .p; q; r/, with p; q ¤�r and suppose that d

is a prime dividing all of p , q and r . Then the Casson–Gordon signatures of †2.K/

associated to characters to Zd obstruct the topological sliceness of K .

Proof Suppose that K is CG-slice at d , for a contradiction. So there exists a me-
tabolizer M � H1.†2.K// such that any character �0 of prime-power order that
vanishes on M has j�1.†2.K/; k�0/j � dim H

�
1
.†2.K//C 1 for all 0 < k < d . If

there exists � to Zd vanishing on M that takes any of �p , �q and �r to 0, then
†2.K/� is a rational homology sphere and arguments as in Cases 1 and 2 show that
there is some k such that j�1.†2.K/; k�/j> 1.
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So we can now assume that no such � exists. In particular, this implies that the image
of M in H1.†2.K/;Zd / is nontrivial. So let �0W H1.†2.K//! Zd be a nontrivial
character vanishing on M and taking none of �p , �q and �r to 0. Since K is
CG-slice, Corollary 2.4 and Lemma 4.4 combine to give us that j�1.†2.K/; k�0/j � 2

for all k . Lemma 4.5 gives us that �1.K; k�0/ is an integer divisible by 4 and so
�1.†2.K/; k�0/D 0.

Now, let � be a multiple of �0 such that �.�p/D 1 and �.�q/D b , and so �.�r /D

d � b� 1. We therefore have

0D
d2

2
�1.K; �/D .d � 1/pC b.d � b/qC .bC 1/.d � b� 1/r:(1)

We split into cases depending on the value of b .

Case I (0 < b < .d � 1/=2) In this case, we have .2�/.�p/D 2, .2�/.�q/D 2b ,
and .2�/.�r /D d � 2b� 2, so

0D
d2

2
.�1.K; 2�//D 2.d � 2/pC 2b.d � 2b/qC .2bC 2/.d � 2b� 2/r:(2)

We then have that

1

2
.2 eq(1)� eq(2)/D pC b2qC .bC 1/2r D 0;

1

2d
.4 eq(1)� eq(2)/D pC bqC .bC 1/r D 0:

It follows that .bC 1/r D�.b� 1/q and finally that pC q D 0, which is our desired
contradiction.

Case II (bD .d�1/=2) In this case, (1) simplifies to show that qCrD�4p=.dC1/.
Also, .2�/.�p/D 2 and .2�/.�q/D .2�/.�r /D d � 1, so

0D 2.d � 2/pC .d � 1/qC .d � 1/r:(3)

Substituting our expression for qC r into (3), we obtain that .d2 � 3d/p D 0, and
so d D 3. But this implies that qC r D�p , and hence that p is even, which is our
desired contradiction.

Case III (d=2 < b < d ) In this case, we have .2�/.�p/D 2, .2�/.�q/D 2b � d

and .2�/.�r /D 2d � 2b� 2. Therefore

(4) 0D
d2

2
.�1.K; 2�//

D 2.d � 2/pC .2b� d/.2d � 2b/qC .2b� d C 2/.2d � 2b� 2/r:
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We then have that
1

2
.2 eq(1)� eq(4)/D pC .d � b/2qC .d � b� 1/2r D 0;

1

2d
.4 eq(1)� eq(4)/D pC .d � b/qC .d � b� 1/r D 0

It follows that .d � b/q D �.d � b � 2/r , and finally that pC r D 0, which is our
desired contradiction.

4.3 Cases 4, 5 and 6: d divides pqCprC qr but not any of p , q , r

The link L0 considered as a 4–colored link has identically 0 colored signature, since it
is a connected sum of 2–colored Hopf links. Note that since d divides none of p , q

and r , every nontrivial character � to Zd has all of �.�p/, �.�q/, �.�r / and �.�0/

nonzero, and so Theorem 3.2 applies and we have the following simple formula for
�1.†2.K/; �/.

Proposition 4.7 Let K D P .p; q; r/ and suppose �W H1.†2.K//! Zd has �.�p/,
�.�q/, �.�r / and �.�0/ all nonzero. Let a, b , c and � be the unique lifts of �.�p/,
�.�q/, �.�r / and �.�0/ to f1; : : : ; d � 1g. Then

�1.†2.K/; �/D 3�
2

d2
f .�/;

where f .�/ WD .d��/.aCbCc/C.d�a/.apC�/C.d�b/.bqC�/C.d�c/.crC�/.

Remark 4.8 Note that the parity of aC bC c and of � together determine the parity
of f .�/; in particular, if aC bC c is odd then � and f .�/ have opposite parities.
Also, when aC bC c D d we have that

f .�/D d2
C d�C a.d � a/pC b.d � b/qC .aC b/.d � .aC b//r:

Lemma 4.9 Let �W H1.†2.K//! Zd , where d divides none of p , q and r . Then
f .�/ is divisible by d2 .

Proof First, recall that H1.†2.K// is presented by linking matrix A, and so our
a, b , c and � values must satisfy

aC bC c � apC � � bqC � � cr C � � 0 mod d:

We can rewrite f .�/ as

f .�/D d
�
.aC bC c/C .apC �/C .bqC �/C .cr C �/

�
�
�
�.aC bC c/C a.apC �/C b.bqC �/C c.cr C �/

�
:
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The first term can immediately be seen to be divisible by d2 , and so it suffices to show
that g.�/D �.aCbC c/Ca.apC �/Cb.bqC �/C c.crC �/ is also divisible by d2 .
Writing apC �D k1d , bqC �D k2d and cr C �D k3d for k1; k2; k3 2Z, we have

g.�/D a.apC �C �/C b.bqC �C �/C c.cr C �C �/

D
k1d � �

p
.k1d C �/C

k2d � �

q
.k2d C �/C

k3d � �

r
.k3d C �/

D
k2

1
d2� �2

p
C

k2
2
d2� �2

q
C

k2
3
d2� �2

r
:

Note that since d is relatively prime to all of p , q and r , we can multiply through
by pqr without changing the divisibility of g.�/ by d2 . We therefore have the desired
result, since

g.�/pqr D .k2
1d2
� �2/qr C .k2

2d2
� �2/pr C .k2

3d2
� �2/pq

D d2.k2
1qr C k2

2qr C k2
3pr/� .pqC qr Cpr/�2:

Proposition 4.10 (Case 4) Let K D P .p; q; r/ with p , q and r odd, q � p > 0,
and r < 0, and let d be some prime dividing pqC pr C qr which divides none of
p , q and r . Suppose also that r ¤�.4pCq/ and that p 6� q mod d . Then the Casson–
Gordon signatures of †2.K/ associated to characters to Zd obstruct the topological
sliceness of K .

Proof For the sake of contradiction, assume K is CG-slice at d. Since H1.†2.K/;Zd /

is cyclic, for any �W H1.†2.K//! Zd we must have

j�1.†2.K/; �/j D
ˇ̌̌
3�

2

d2
f .�/

ˇ̌̌
� 1:

Note that the first equality comes from Proposition 4.7 in the above equation. Therefore,
by Lemma 4.9 we have f .�/D d2 or 2d2 .

We will work with two characters. Note that our formula for f .�/ uses the unique
integer lifts of �.�i/ to f1; : : : ; d � 1g, so we will be careful to only write �.�i/D x

if 0 < x < d . We define �1 to have �1.�r / D 1, and �2 D 2�1 . It follows that
�1.�0/ is the unique integer � in .0; d/ such that �C r � 0 mod d , �1.�p/ is the
unique integer a in .0; d/ such that �Cap� 0 mod d , and �1.�q/D d�a�1. Note
that �i.�p/C�i.�q/C�i.�r /D d , so by Remark 4.8, f .�i/ has the opposite parity
as �i.�0/ for i D 1; 2. We now define some convenient notation:�

x1

x2

�
y

D

�
x1 if 0< y < d=2;

x2 if d=2< y < d
and

�
x1

x2

�
p.y/

D

�
x1 if y is even;
x2 if y is odd:
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We therefore have

�2.�p/D

�
2a

2a� d

�
a

; �2.�q/D

�
d � 2a� 2

2d � 2a� 2

�
a

; �2.�0/D

�
2�

2�� d

�
�

;

f .�1/D

�
d2

2d2

�
p.�/

and f .�2/D

�
d2

2d2

�
�

:

(Note that if aD .d � 1/=2, then �1 sends both �p and �q to .d � 1/=2. But this
implies that p � q mod d , which we have assumed is not the case.)

We thus have the following two equations from our formulas for f .�1/ and f .�2/:�
0

d2

�
p.�/

D d�Ca.d�a/pC.aC1/.d�a�1/qC.d�1/r;(5) �
0

d2

�
�

D d�C

�
a.d�2a/pC.aC1/.d�2a�2/q

.2a�d/.d�a/pC.2C2a�d/.d�a�1/q

�
a

C.d�2/r:(6)

Consider eq(7)D eq(5)� eq(6) and eq(7)D .1=d/.2 eq(5)� eq(6)/:�
0

d2

�
p.�/

�

�
0

d2

�
�

D

�
a2pC .aC 1/2q

.d � a/2pC .d � a� 1/2q

�
a

C r;(7) �
0

2d

�
p.�/

�

�
0

d

�
�

D �C

�
apC .aC 1/q

.d � a/pC .d � a� 1/q

�
a

C r:(8)

Note that the left side of (8) is even exactly when � < d=2, while the right side has the
same parity as � . So we can assume � < d=2 if and only if � is even, and (7) and (8)
simplify to the following:

0 D

�
a2pC .aC 1/2q

.d � a/2pC .d � a� 1/2q

�
a

C r;(9) �
0

d

�
�

D �C

�
apC .aC 1/q

.d � a/pC .d � a� 1/q

�
a

C r:(10)

We can use (9) to see that if a < d=2 then D D apC .aC 1/q and if a > d=2 then
D D .d � a/pC .d � a� 1/q . We will now split into cases, and show that each leads
to a contradiction by using (9) to write r in terms of a, d , p and q and substituting
this expression into (10). Note that since d divides D , we certainly have that d �D .

Case I (a; � < d=2) By combining (9) and (10) in this case, we see that we have
� D a2.pC q/C a.q�p/, and so

2a2.pC q/ < 2a2.pC q/C 2a.q�p/D 2� < d �D D apC .aC 1/q:
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It follows that .2a2�a/pC .2a2�a�1/q < 0, which gives the desired contradiction.

Case II (a < d=2< � ) In this case we have

0< d � � D�a.a� 1/p� a.aC 1/q < 0:

Case III (� <d=2< a) First, suppose aD d�2. Then (9) implies that r D�.4pC

q/, which we have assumed is not the case. So we can assume that a< d � 2, and so

DD .d�a/pC.d�a�1/q < .d�a/.d�a�1/pC.d�a�1/.d�a�2/qD � < d:

Case IV (d=2< a; � ) As in Case III, we can assume that a< d � 2, and so

0< d � � D�.d � a/.d � a� 1/p� .d � a� 1/.d � a� 2/q < 0:

Proposition 4.11 (Case 5) Suppose K D P .p; q; r/ for r D �.4pC q/. Suppose
d is a prime that divides pq C pr C qr but none of p , q and r . Then either
K D P .1; q;�.qC 4//, in which case K is ribbon, or the Casson–Gordon signatures
of †2.K/ corresponding to characters to Zd obstruct the topological sliceness of K .

Note that KDP .1; q;�.qC4// is a 2–bridge knot. If we write qD2kC1, then K is a
generalized twist knot corresponding to the fraction �.4.kC1/.kC2/C1/=.2.kC1//

and has been known to be ribbon at least since [3].

Proof Let � be the character sending �p to d�2, �q and �r to 1 and �0 to � . Then
�0 D 1

2
.d � 1/� sends �p to 1, �q and �r to 1

2
.d � 1/ and �0 to �0 . Arguments as

in the proof of Proposition 4.10 show that if p > 1 then at least one of j�1.†2.K/; �/j

and j�1.†2.K/; �
0/j is strictly larger than 1, and hence that K is not CG-slice at d .

Proposition 4.12 (Case 6) Suppose d divides pqCprCqr but none of p , q and r ,
p� q mod d and d ¤ 3. Then the Casson–Gordon signatures of †2.K/ associated to
characters to Zd obstruct the topological sliceness of K .

Proof For i D 1; 2, consider the characters �i W H1.†2.K// ! Zd defined by
�i.�p/D �i.�q/D i , �i.�r /D d � 2i and �i.�0/D �i . (Note that since d ¤ 3 we
have that d �2i > 0 for i D 1; 2.) Arguments as in the proof of Proposition 4.10 show
that at least one of j�1.†2.K/; �i/j is strictly larger than 1, and hence that K is not
CG-slice at d .

Proposition 4.13 Suppose that K D P .p; q; r/ has p , q and r relatively prime,
jH1.†2.K/j D jpqCprCqr j D 32n for some n 2N , and p� q mod 3. Then either
K is ribbon or the Casson–Gordon signatures associated to characters of order 3 and 9

obstruct the topological sliceness of K .
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Proof First, suppose that n � 2. Since p , q and r are pairwise relatively prime,
H1.†2.K// is cyclic, and any character to Z3n will vanish on the unique metabolizer
for the linking form. Proposition 2.5 implies that the associated covers are rational
homology spheres, and so it suffices to find such a character � with j�1.†2.K/; �/j>1.
The arguments of Propositions 4.10, 4.11 and 4.12 applied to d D 9 (according to
whether r D�.4pC q/ and whether p � q mod 9) show that this is the case.

Now suppose that nD 1 and so pqCpr Cpq D�9 and r D�.pqC9/=.pCq/. A
slight variation on our usual arithmetic arguments then implies that �1.†2.K/; �/<�1

for some �W H1.†2.K//! Z3 , and hence that K is not CG-slice at d D 3.

5 Topological sliceness of even 3–strand pretzel knots.

We now outline the proof of our argument that all topologically slice even 3–strand
pretzel knots are either ribbon or in Lecuona’s family f˙Pag, leaving the details of
arithmetic to the reader.

Theorem 5.1 Let K be an even 3–strand pretzel knot. Suppose that K is topologically
slice. Then, up to reflection, either K D P .p;�p; q/ for some p; q 2 N (and K is
ribbon) or KDPaDP .a;�a�2;�.aC1/2=2/ for some a�1; 11; 37; 47; 59 mod 60.

Proof Suppose that K is an algebraically slice even 3–strand pretzel. First, note that
by Jabuka’s computation of the rational Witt classes of pretzel knots, we can assume that
either KDP .p;�p; q/ for some odd p and even q or KDP .�p;p˙2; q/ for some
odd p and even q such that det.K/D˙2q�p2� 2p Dm2 > 0 [13, Theorem 1.11].
In the first case K is ribbon, and so we assume that we are in the second case. By
the symmetries of 3–strand pretzel knots, we can also assume that up to reflection
KDP .�p;pC2; q/ for p 2N . Then our condition that det.K/D 2q�p2�2p > 0

implies that q > 0 as well.

First, observe that if det.K/D 1 then q D .pC 1/2=2 and up to reflection K is an
element of Lecuona’s family fPag. For a 6� 1; 11; 37; 47; 49; 59 mod 60, Theorem 4.5
of [15] states that K is not algebraically slice. When a � 49 mod 60, an argument
analogous to the proof of [15, Theorem 4.5] shows that �K .t/ does not have a Fox–
Milnor factorization and hence that K is not algebraically slice. (In particular, note
that since a � 49 mod 60 we have that 5 divides .aC 1/2=4 and 3 divides aC 2.
Working mod 5, we have �Pa

.t/ � …1¤d jaˆd .t/…1¤d jaC2ˆd .t/, where ˆd .t/

denotes the d th cyclotomic polynomial. Since ˆ3.t/ is symmetric, irreducible mod 5,
and relatively prime to each ˆd .t/ for d ¤ 3 dividing a or aC 2, the desired result
follows.)
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So we can assume that det.K/Dm2>1, and in particular that there is an (odd) prime d

dividing det.K/. Arguments as in the proof of Proposition 4.1 show that †2.K/ has a
surgery presentation with underlying link the coherently oriented torus link �T .2; 2p/

and linking matrix
�

2
�p
�p

q�p

�
. It follows that H1.†2.K// is cyclic, and hence that

H1.†2.K/;Zd / is certainly cyclic as well. It therefore suffices to show that there is a
single �W H1.†2.K//! Zd with j�k.†2.K/; �/j> 1 for some 1� k < d .

The construction of � and computation of the corresponding Casson–Gordon signatures
is extremely similar to the arguments of Section 4, and therefore we only list the cases
one must consider and leave the verification of the details to the interested reader. It
is convenient to consider six cases, according to the values mod d of the parameters
of K: �p� q� 0; pC2� q� 0; �p� 2q 6� 0; pC2� 2q 6� 0; �p�pC2 6� 0;
and �p , pC 2 and q are mutually distinct and nonzero.
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