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Presentably symmetric monoidal 1–categories are
represented by symmetric monoidal model categories

THOMAS NIKOLAUS

STEFFEN SAGAVE

We prove the theorem stated in the title. More precisely, we show the stronger
statement that every symmetric monoidal left adjoint functor between presentably
symmetric monoidal 1-categories is represented by a strong symmetric monoidal
left Quillen functor between simplicial, combinatorial and left proper symmetric
monoidal model categories.

55U35; 18D10, 18G55

1 Introduction

The theory of 1–categories has in recent years become a powerful tool for studying
questions in homotopy theory and other branches of mathematics. It complements
the older theory of Quillen model categories, and in many applications the interplay
between the two concepts turns out to be crucial. In an important class of examples, the
relation between 1–categories and model categories is by now completely understood,
thanks to work of Lurie [8, Appendix A.3] and Joyal [6], based on earlier results by
Dugger [2]: On the one hand, every combinatorial simplicial model category M has an
underlying 1–category M1 . This 1–category M1 is presentable, ie it satisfies the
set-theoretic smallness condition of being accessible and has all1–categorical colimits
and limits. On the other hand, every presentable 1–category is equivalent to the 1–
category associated with a combinatorial simplicial model category [8, Proposition
A.3.7.6]. The presentability assumption is essential here since a sub-1–category of
a presentable 1–category is in general not presentable, and does not come from a
model category.

In many applications one studies combinatorial model categories M equipped with
a symmetric monoidal product that is compatible with the model structure. The
underlying 1–category M1 of such a symmetric monoidal model category inherits
the extra structure of a symmetric monoidal1–category; see Lurie [9, Example 4.1.3.6
and Proposition 4.1.3.10]. Since the monoidal product of M is a Quillen bifunctor,
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M1 is an example of a presentably symmetric monoidal 1–category, ie a symmetric
monoidal 1–category C which is presentable and whose associated tensor bifunctor
˝W C � C ! C preserves colimits separately in each variable. In view of the above
discussion, it is an obvious question whether every presentably symmetric monoidal
1–category arises from a combinatorial symmetric monoidal model category. This
was asked for example by Lurie [9, Remark 4.5.4.9]. The main result of the present
paper is an affirmative answer to this question:

Theorem 1.1 For every presentably symmetric monoidal 1–category C , there is
a simplicial, combinatorial and left proper symmetric monoidal model category M
whose underlying symmetric monoidal 1–category is equivalent to C .

One can view this as a rectification result: the a priori weaker and more flexible notion
of a symmetric monoidal 1–category, which can encompass coherence data on all
layers, can be rectified to a symmetric monoidal category where only coherence data
up to degree 2 is allowed. An analogous result in the monoidal (but not symmetric
monoidal) case is outlined in [9, Remark 4.1.4.9]. The symmetric result is significantly
more complicated, as it is generally harder to rectify to a commutative structure than
to an associative one. As we will see in Section 2.6 below, the theorem can actually
be strengthened to a functorial version stating that symmetric monoidal left adjoint
functors are represented by strong symmetric monoidal left Quillen functors.

The strategy of proof for Theorem 1.1 is as follows. Using localization techniques, we
reduce the statement to the case of presheaf categories. By a result appearing in work
of Pavlov and Scholbach [10], we can represent a symmetric monoidal 1–category by
an E1–algebra M in simplicial sets with the Joyal model structure. The main result of
Kodjabachev and Sagave [7] implies that this E1–algebra can be rigidified to a strictly
commutative monoid in the category of diagrams of simplicial sets indexed by finite sets
and injections. We construct a chain of Quillen equivalences relating the contravariant
model structure on sSet=M with a suitable contravariant model structure on objects
over the commutative rigidification of M . The last step provides a symmetric monoidal
model category, and employing a result by Gepner, Groth and Nikolaus [4] we show
that it models the symmetric monoidal 1–category of presheaves on M .

It is also worth noting that our proof of Theorem 1.1 does in fact provide a symmet-
ric monoidal model category M with favorable properties: operad algebras in M
inherit a model structure from M, and weak equivalences of operads induces Quillen
equivalences between the categories of operad algebras; see Theorem 2.5 below. In
particular, there is a model structure on the category of commutative monoid objects
in M which is Quillen equivalent to the lifted model structure on E1–objects in M
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and moreover models the 1–category of commutative algebras in the 1–category
represented by M. Hence, formally M behaves very much like symmetric spectra
with the positive model structure.

1.2 Applications

Our main result allows one to abstractly deduce the existence of symmetric monoidal
model categories that represent homotopy theories with only homotopy coherent sym-
metric monoidal structures. For example, it was unknown for a long time if there is
a good point set level model for the smash product on the stable homotopy category.
Since a presentably symmetric monoidal 1–category that models the stable homotopy
category can be established without referring to such a point set level model for the
smash product, the existence of a model category of spectra with good smash product
follows from our result. (Explicit constructions of such model categories of course
predate the notion of presentably symmetric monoidal 1–categories.)

But there are also examples where the question about the existence of symmetric
monoidal models is open. One such example is the category of topological operads.
It admits a tensor product, called the Boardman–Vogt tensor product, which controls
the interchange of algebraic structures. The known symmetric monoidal point set level
models for this tensor product cannot be derived, ie they do not give rise to a symmetric
monoidal model category. However, for the underlying 1–category of 1–operads a
presentably symmetric monoidal product is constructed by Lurie [9, Chapter 2.2.5]. In
this case, our result allows to abstractly deduce the existence of a symmetric monoidal
model category modeling operads with the Boardman–Vogt tensor product.

1.3 Organization

In Section 2 we show that Theorem 1.1 and its functorial enhancement can be reduced
to the case of presheaf categories. In Section 3 we develop variants of the contravariant
model structure that are compatible with the rigidification for E1–quasicategories
recently developed by Kodjabachev and Sagave [7]. In the final Section 4 we prove
that an instance of the contravariant model structure provides the desired result about
presheaf categories.

Acknowledgments We would like to thank Gijs Heuts, Dmitri Pavlov and Markus
Spitzweck for helpful discussions. Moreover, we would like to thank the referee for
useful comments.
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2 Reduction to presheaf categories

In this section we explain how Theorem 1.1 follows from a statement about presheaf
categories that will be established in Section 3.

As defined by Lurie [9, Definition 2.0.0.7], a symmetric monoidal 1–category is a
cocartesian fibration of simplicial sets C˝!N.Fin�/ satisfying a certain condition.
We explain in Proposition 4.1 below that a symmetric monoidal 1–category can be
represented by an E1–algebra in simplicial sets with the Joyal model structure. We
also note that by [9, Example 4.1.3.6], every symmetric monoidal model category gives
rise to a symmetric monoidal 1–category, and every symmetric monoidal left Quillen
functor induces a left adjoint symmetric monoidal functor between the respective
1–categories.

Recall that an1–category C is called presentable if it is �–accessible for some regular
cardinal � and admits all small colimits. In that case we can write C as an accessible
localization of the category of presheaves P.C�/ on the full subcategory C� � C of
�–compact objects. Here we denote the category of presheaves on an 1–category D
as P.D/D Fun.Dop;S/, where S DN.Kan�/ is the 1–category of spaces obtained
as the homotopy coherent nerve of the simplicially enriched category of Kan complexes.
Moreover C� is essentially small. Replacing C� by a small 1–category D we see
that every presentable 1–category is equivalent to an accessible localization of the
category of presheaves P.D/ on some small 1–category D . For a detailed discussion
of presentable 1–categories and accessible localizations we refer the reader to [8,
Chapter 5.5].

To study a symmetric monoidal analogue of this statement, we recall the following
terminology from the introduction.

Definition 2.1 A symmetric monoidal 1–category C is presentably symmetric mon-
oidal if C is presentable and the associated tensor bifunctor ˝W C � C! C preserves
colimits separately in each variable.

For every symmetric monoidal structure on an 1–category D , the 1–category P.D/
inherits a symmetric monoidal structure which by [9, Corollary 4.8.1.12] is uniquely
determined by the following two properties:

� The tensor product makes P.D/ into a presentably symmetric monoidal 1–
category.

� The Yoneda embedding j W D!P.D/ can be extended to a symmetric monoidal
functor.
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We call this structure the Day convolution symmetric monoidal structure. It follows
from [9, 4.8.1.10(4)] that it has the following universal property: for every presentably
symmetric monoidal 1–category E , the Yoneda embedding j W D! P.D/ induces
an equivalence

FunL;˝.P.D/; E/! Fun˝.D; E/:

Here Fun˝ denotes the 1–category of symmetric monoidal functors and FunL;˝

denotes the 1–category of functors which are symmetric monoidal and in addition
preserve all small colimits (or, equivalently, which are left adjoint).

In order to state our first structure result for presentably symmetric monoidal 1–
categories, let us recall the notion of a symmetric monoidal localization of a symmetric
monoidal 1–category C . An accessible localization LW C! C is called symmetric
monoidal if the full subcategory of local objects C0� C admits a presentably symmetric
monoidal structure such that the induced localization functor LW C ! C0 admits a
symmetric monoidal structure. In that case these symmetric monoidal structures
are essentially unique. By [9, Proposition 2.2.1.9], the localization L is symmetric
monoidal precisely if for every local equivalence X ! Y in C and every object Z 2 C
the induced morphism X ˝Z ! Y ˝Z is also a local equivalence. Note that this
condition can be completely checked on the level of homotopy categories. See also [4,
Section 3] for a discussion of symmetric monoidal localizations.

Proposition 2.2 Every presentably symmetric monoidal 1–category is an accessible,
symmetric monoidal localization of the category of presheaves P.D/ on some small,
symmetric monoidal 1–category D .

Proof Let C be a presentably symmetric monoidal 1–category. Choose a regular
cardinal � such that C is � accessible. By enlarging � we can assume that the �–
compact objects C� � C form a full symmetric monoidal subcategory. We can replace
C� up to equivalence by a small, symmetric monoidal 1–category D since it is
essentially small. Then we find that C is an accessible localization of P.D/. The
inclusion D ' C� ! P.D/ is by construction symmetric monoidal. We conclude
that the localization functor P.D/! C can be endowed with a symmetric monoidal
structure with respect to the Day convolution symmetric monoidal structure, using the
universal property of the Day convolution. By the description of symmetric monoidal
localizations given above this finishes the proof.

Following [1, Definition 1.21] (or rather [1, Corollary 2.7]), we say that a combinatorial
model category is tractable if it admits a set of generating cofibrations with cofibrant
domains.
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Now assume that M is a simplicial, combinatorial, tractable and left proper symmetric
monoidal model category. Denote the underlying symmetric monoidal 1–category
by M1 . Let LWM1!M1 be an accessible and symmetric monoidal localization.
We say that a morphism f W A! B in M is

� a local cofibration if it is a cofibration in the original model structure on M,

� a local weak equivalence if L.�f / is an equivalence in M1 , where �f denotes
the corresponding morphism in M1 , and

� a local fibration if it has the right lifting property with respect to all morphisms
in M which are simultaneously a cofibration and a weak equivalence.

Proposition 2.3 The above choices of local cofibrations, local fibrations and local
weak equivalences define a simplicial, combinatorial, tractable and left proper sym-
metric monoidal model structure. The underlying 1–category of this model category
Mloc and the 1–category of local objects LM1 �M1 are equivalent as symmetric
monoidal 1–categories.

Proof We use [8, Proposition A.3.7.3] to conclude that Mloc exists and that it is
a simplicial, combinatorial and left proper model category. By construction, it is a
left Bousfield localization of M. It remains to verify that the local model structure
is symmetric monoidal. Since M is tractable, so is Mloc , and it follows from [1,
Corollary 2.8] that we may assume that both the generating cofibrations of Mloc and
the generating acyclic cofibrations of Mloc have cofibrant domains. To verify the
pushout-product axiom, it therefore suffices to show that on the level of homotopy
categories for an object Z 2 Ho.M/ and a local equivalence X ! Y in Ho.M/ the
morphism of X ˝Z! Y ˝Z is a local equivalence as well (here the tensor is the
tensor on the homotopy category, ie the derived tensor product). But this is true since
the corresponding fact is true in the 1–category M1 as discussed above.

By construction the 1–category LM1 of local objects is modeled by the localized
model structure Mloc . It remains to show that the two are equivalent as symmetric
monoidal 1–categories. To this end we just observe that the identity is a symmetric
monoidal left Quillen functor M!Mloc . Thus the localized model structure endows
LM1 with a symmetric monoidal structure such that the localization M!Mloc is
symmetric monoidal. But this was our defining property of the symmetric monoidal
structure on LM1 .

The next proposition is the technical backbone of this paper and will be proven at the
end of Section 3.
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Proposition 2.4 Let D be a small symmetric monoidal1–category. Then there exists
a simplicial, combinatorial, tractable and left proper symmetric monoidal model cate-
gory M whose underlying presentably symmetric monoidal 1–category is symmetric
monoidally equivalent to P.D/ equipped with the Day convolution structure.

We can now prove the main theorem from the introduction:

Proof of Theorem 1.1 Propositions 2.2 and 2.3 reduce the claim to the statement of
Proposition 2.4.

The following theorem establishes more properties of the symmetric monoidal model
categories that are provided by our proof of Theorem 1.1.

Theorem 2.5 Let C be a presentably symmetric monoidal 1–category. Then the
symmetric monoidal model category M of Theorem 1.1 can be chosen such that the
following holds:

(i) For any operad O in sSet, the forgetful functor MŒO�!M from the category
of O–algebras in M creates a model structure on MŒO�.

(ii) If P ! O is a weak equivalence of operads, then the induced adjunction
MŒP�� MŒO� is a Quillen equivalence. In particular, the categories of E1–
objects and strictly commutative monoid objects in M are Quillen equivalent.

(iii) The 1–category associated with the lifted model structure on commutative
monoid objects in M is equivalent to the 1–category of commutative algebra
objects in the 1–category C .

Proof Parts (i) and (ii) follow from our construction and Proposition 3.20 below. Part
(iii) follows from [10, Theorem 7.10]. The symmetric flatness hypothesis needed for
the latter theorem is verified in the proof of Proposition 3.20 below.

2.6 Functoriality

We now provide a strengthening of our main result for functors. The methods and
ideas are precisely the same as before, we only have to carefully keep track of the
functoriality.

We first prove a slight generalization of Proposition 2.2. For the formulation, we say that
a symmetric monoidal left adjoint functor F W C! C0 between presentably symmetric
monoidal 1–categories is a localization of a symmetric monoidal left adjoint functor
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GW E ! E 0 if there is a commutative diagram of presentably symmetric monoidal
1–categories

E G
//

L
��

E

L0

��

C F
// C0

in which the vertical functors L and L0 are symmetric monoidal localizations. It is
easy to see that once G and the localizations L and L0 are given, G descends to a
functor F if and only if it sends local equivalences to local equivalences. Moreover,
F is determined up to equivalence by G in that case.

Lemma 2.7 Let F W C! C0 be a symmetric monoidal left adjoint functor between pre-
sentably symmetric monoidal 1–categories. Then there exists a symmetric monoidal
functor f W D! D0 between small symmetric monoidal 1–categories such that F is
a localization of the left Kan extension fŠW P.D/! P.D0/.

Proof First note that by [8, Proposition 5.4.7.7], every left adjoint functor C! C0

preserves �–compact objects for some � , ie it restricts to a functor F jC� W C�! .C0/� .
Since F is left adjoint, it is the left Kan extension of F jC� . This in turn implies that it
is a localization of

.F jC� /ŠW P.C�/! P.C0�/:

Replacing the essentially small 1–categories C� and .C0/� by small categories proves
the claim.

In the proof of the next theorem we will use Proposition 4.3, which we state and prove
in Section 4.

Theorem 2.8 Let F W C! C0 be a symmetric monoidal left adjoint functor between
presentably symmetric monoidal 1–categories. Then there exists a simplicial symmet-
ric monoidal left adjoint functor S WM!M0 between simplicial, combinatorial and
left proper symmetric monoidal model categories M and M0 such that the underlying
functor S1WM1!M01 is equivalent to F .

Proof We first use Lemma 2.7 to conclude that there is a symmetric monoidal func-
tor f W D! D0 between small symmetric monoidal 1–categories such that F is a
localization of fŠ . Using Proposition 4.3 below, we can realize fŠ as a left Quillen
functor S WM!M0 between symmetric monoidal model categories which model
P.D/ and P.D0/. We now equip the categories M and M0 with the local model
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structures which, by Proposition 2.3, correspond to the localization that give C and C0 .
Since the functor fŠ descents to a local functor, it preserves local equivalences. Thus
the functor S is also left Quillen with respect to the local model structures and the
underlying functor of 1–categories represents the functor F .

3 The contravariant I–model structure

In this section we set up the model structures that will be used in the proof of
Proposition 2.4 and its functorial refinement Proposition 4.3.

3.1 The contravariant model structure

Let S be a simplicial set and let sSet=S be the category of objects over S . We recall
from [8, Chapter 2.1.4] or [6, Section 8] that sSet=S admits a contravariant model
structure where the cofibrations are the monomorphisms and the fibrant objects X! S

are the right fibrations, ie the maps with the right lifting property with respect to the
set of horn inclusions ƒni ��

n for 0 < i � n. As we will explain in Section 4, the
contravariant model structure is relevant for our work because of its connection to
presheaf categories coming from the straightening and unstraightening constructions [8,
Chapter 2.2.1].

We will frequently use the following feature of the contravariant model structure:

Lemma 3.2 [8, Remark 2.1.4.12] A morphism of simplicial sets S ! T induces a
Quillen adjunction sSet=S � sSet=T with respect to the contravariant model structures.
If S ! T is a Joyal equivalence of simplicial sets, then this adjunction is a Quillen
equivalence.

For simplicial sets K and T , we consider the functor

(3-1) K �� W sSet=T ! sSet=K �T

sending objects and morphisms in sSet=T to their product with idK .

Lemma 3.3 If f W X!Y is an acyclic cofibration in the contravariant model structure
on sSet=T , then K � f is an acyclic cofibration in the contravariant model structure
on sSet=K �T .

We note that since we do not view K �� as an endofunctor of sSet=T by projecting
away from K , this lemma is not implied by the fact that the contravariant model
structure is simplicial.
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Proof of Lemma 3.3 By [6, Lemma 8.16], the acyclic cofibrations in the contravariant
model structure are characterized by the left lifting property with respect to the right
fibrations between objects that are right fibrations relative to the base. Hence we have
to prove that for every acyclic cofibration U ! V in the contravariant model structure
on sSet=T and for every commutative diagram

K �U //

��

X

��

K �V //

��

Y

��

K �T
D
// K �T

in sSet where the right-hand vertical maps are right fibrations, the upper square admits
a lift K �V !X . Using the tensor/cotensor adjunction .K ��; .�/K/ on sSet, this
is equivalent to finding a lift in the upper left-hand square in

U //

��

T �.K�T /K X
K //

��

XK

��

V //

��

T �.K�T /K Y
K //

��

Y K

��

T
D

// T // .K �T /K

Since base change preserves right fibrations and the cotensor preserves right fibrations
(by the dual of [8, Corollary 2.1.2.9]), the upper vertical map in the middle is a right
fibration between right fibrations relative to T .

Since K�� preserves contravariant cofibrations and all objects in sSet=T are cofibrant,
Ken Brown’s lemma and the preceding statement imply:

Corollary 3.4 The functor K ��W sSet=T ! sSet=K � T preserves contravariant
weak equivalences.

3.5 The Joyal I–model structure

Let I be the category with the finite sets mD f1; : : : ; mg for m � 0 as objects and
the injective maps as morphisms. An object m of I is positive if jmj � 1, and IC
denotes the full subcategory of I spanned by the positive objects.

In the following, we briefly summarize the main results about the Joyal I–model
structures on the functor category sSetI D Fun.I; sSet/ of I–diagrams of simplicial

Algebraic & Geometric Topology, Volume 17 (2017)



Presentably symmetric monoidal 1–categories 3199

sets from [7]. These results are motivated by (and largely derived from) the construction
of the corresponding Kan model structures on sSetI in [12].

We say that a morphism f in sSetI is a Joyal I–equivalence if hocolimI f is a Joyal
equivalence in sSet. It is shown in [7, Proposition 2.3] that sSetI admits an absolute and
a positive Joyal I–model structure. In both cases, the weak equivalences are the Joyal
I–equivalences. An object X is fibrant in the absolute (resp. positive) model structure
if each ˛W m! n in I (resp. in IC ) induces a weak equivalence of fibrant objects
˛�W X.m/! X.n/ in sSetJoyal . In both cases, the I–model structures arise as left
Bousfield localizations of absolute or positive Joyal level model structures. Particularly,
we will use that a Joyal I–equivalence between positive I–fibrant objects X ! Y is
a positive Joyal level equivalence, ie X.m/! Y.m/ is a Joyal equivalence for all m

in IC . Finally, we note that by [7, Corollary 2.4], there are Quillen equivalences

(3-2) sSetIpos
id
// sSetIabsid

oo
colimI

// sSetJoyal:
constI
oo

Concatenation of finite ordered sets induces a permutative monoidal structure on I
with monoidal unit 0 and symmetry isomorphism the obvious block permutation.
The functor category sSetI inherits a symmetric monoidal Day type convolution
product � with monoidal unit I.0;�/ from the cartesian product in sSet and the
concatenation in I . Since sSetI is tensored over sSet, any operad D in sSet gives rise
to a category sSetI ŒD� of D–algebras in sSetI. The central feature of the positive model
structure on sSetI is that without additional assumptions on D , the forgetful functor
sSetI ŒD�! sSetIpos creates a positive model structure on sSetI ŒD�, where a map is
weak equivalence or fibration if the underlying map in sSetIpos is [7, Theorem 3.1].

We say that an operad E in sSet is an E1–operad in sSetJoyal if †n acts freely on
the nth space E.n/ and E.n/ ! � is a Joyal equivalence. If E is an E1–operad
in sSetJoyal , then the Joyal model structure on sSet lifts to a Joyal model structure on
sSetŒE � by an argument analogous to the absolute case of [7, Theorem 3.1].

Theorem 3.6 [7, Theorem 1.2] Let E be an E1–operad in sSetJoyal . Then the canon-
ical morphism ˆW E ! C to the commutativity operad and the composite adjunction
in (3-2) induce a chain of Quillen equivalences

sSetIposŒC�
ˆ�

// sSetIposŒE �
colimI

//
ˆ�
oo sSetJoyalŒE �:

constI
oo

The theorem leads to the following rigidification of E1–objects in sSetJoyal to C–
algebras in sSetI, that is, to commutative monoids in .sSetI ;�/.
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Corollary 3.7 Let M be an E –algebra in sSetJoyal . There exists a rigidification functor
.�/rigW sSetI ŒE �! sSetI ŒC� and a natural chain of positive Joyal level equivalences
between positive fibrant objects ˆ�.M rig/ M c! constIM in sSetI ŒE�.

Proof This is analogous to the result about E1–spaces in [12, Corollary 3.7]: We
let M c ��� constIM be a cofibrant replacement in sSetIposŒE �. Moreover, we let
ˆ�.M

c/! ˆ�.M
c/fib be a fibrant replacement in sSetIposŒC�. Then the adjunction

unit induces an I–equivalence M c!ˆ�.ˆ�.M
c/fib/. Since both objects are positive

I–fibrant, it is even a positive Joyal level equivalence. Hence M rig Dˆ�.M
c/fib has

the desired property.

3.8 The contravariant level and I–model structures

Let ZW I ! sSet be an I–diagram of simplicial sets. We are interested in various
model structures on the comma category sSetI=Z of objects over Z that are induced
from the contravariant model structure. For this purpose, it is important to note that the
category sSetI=Z can be obtained by assembling the comma categories sSet=Z.m/
for varying m. Indeed, every morphism ˛W m! n in I induces an adjunction

(3-3) ˛ŠW sSet=Z.m/� sSet=Z.n/ W˛�

via composition with and base change along ˛�W Z.m/!Z.n/, and the adjunctions
are compatible with the composition in I . We also note that for every object m of I ,
there is an adjunction

(3-4) FmW sSet=Z.m/� sSetI=Z WEvm

with right adjoint Evm.X !Z/DX.m/!Z.m/ and left adjoint

Fm.K!Z.m//D

�
n 7!

a
.˛Wm!n/2I

˛Š.K!Z.m//

�
:

A morphism X ! Y in sSetI=Z is defined to be

� an absolute (resp. positive) contravariant level equivalence if for each object (resp.
each positive object) m of I , the morphism X.m/! Y.m/ is a contravariant
weak equivalence in sSet=Z.m/,

� an absolute (resp. positive) contravariant level fibration if for each object (resp.
each positive object) m of I , the morphism X.m/! Y.m/ is a fibration in the
contravariant model structure on sSet=Z.m/, and
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� an absolute (resp. positive) contravariant cofibration if it has the left lifting prop-
erty with respect to all morphisms that are absolute (resp. positive) contravariant
level fibrations and equivalences.

Lemma 3.9 These classes of maps define an absolute (resp. a positive) contravariant
level model structure on sSetI=Z which is simplicial, combinatorial, tractable and left
proper.

Proof The key observation is that by Lemma 3.2, the adjunction (3-3) is a Quillen
adjunction with respect to the contravariant model structures. With this observation,
the existence of the absolute contravariant level model structure follows by a standard
lifting argument using the adjunctionY

m2I

sSet=Z.m/� sSetI=Z

induced by the adjunctions .Fm;Evm/ from (3-4) and the product model structure on
the codomain; compare [1, Theorem 2.28]. If IZ.m/ is a set of generating cofibrations
for sSet=Z.m/, then fFm.i/ j m 2 I; i 2 IZ.m/g is a set of generating cofibrations
for the absolute contravariant level model structure, and similarly for the generating
acyclic cofibrations. The model structure is obviously tractable, and it is simplicial and
left proper since sSet=Z.m/ is.

In the positive case, we index the above product by the objects of IC instead.

The contravariant model structure on sSet=Z.m/ is cofibrantly generated and left
proper. Since its cofibrations are the monomorphisms, we may use

IZ.m/ D
˚
.K!Z.m//! .L!Z.m// j .K! L/D .@�n ,!�n/

	
as a set of generating cofibrations of sSet=Z.m/. Let WZ.m/ be the set of objects in
sSet=Z.m/ given by the domains and codomains of IZ.m/ . By [3, Proposition A.5], a
map U ! V of fibrant objects in the contravariant model structure on sSet=Z.m/ is
a contravariant weak equivalence if and only if the induced morphism of simplicial
mapping spaces MapZ.m/.K;U /!MapZ.m/.K; V / is a weak homotopy equivalence
of simplicial sets for every object K!Z.m/ in WZ.m/. For an object K!Z.m/

in WZ.m/ and a morphism ˛W m! n in I , we let

Fn.˛Š.K//! Fm.K/

be the morphism in sSetI=Z that is adjoint to the inclusion

˛Š.K/ ,!
a

.ˇ Wm!n/2I

ˇŠ.K/D Evn.Fm.K//
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of the summand indexed by ˛ . We write

(3-5) SZ D
˚
Fn.˛Š.A//! Fm.A/ j .˛W m! n/ 2 I and .A!Z.m// 2WZ.m/

	
for the set of all such maps and let SZ

C
be the subset of SZ consisting those maps that

come from ˛ 2 IC .

Proposition 3.10 The left Bousfield localization of the absolute (resp. positive) con-
travariant level model structure on sSetI=Z with respect to SZ (resp. SZ

C
) exists. It is

a simplicial, combinatorial, tractable and left proper model structure.

We refer to this model structure as the absolute (resp. positive) contravariant I–model
structure. The weak equivalences in these model structures are called absolute (resp.
positive) I–equivalences. The cofibrations are the same as in the respective level model
structures. An object X ! Z is absolute (resp. positive) contravariant I–fibrant if
is absolute (resp. positive) contravariant level fibrant an each ˛W m! n in I (resp.
in IC ) induces a contravariant weak equivalence X.m/! ˛�.X.n// in sSet=Z.m/.

The contravariant I–model structures are homotopy invariant in level equivalences of
the base:

Lemma 3.11 Let Z ! Z0 be a morphism in sSetI. Then the induced adjunction
sSetI=Z � sSetI=Z0 is a Quillen adjunction with respect to the absolute and positive
contravariant I–model structures. If Z! Z0 is an absolute (resp. a positive) Joyal
level equivalence, then it is a Quillen equivalence with respect to the absolute (resp.
positive) contravariant I–model structures.

Proof We treat the absolute case; the positive case is similar. It is clear that the
adjunction in question is a Quillen adjunction with respect to the absolute level model
structure. Since .Z ! Z0/Š.SZ/ is a subset of SZ0 , there is an induced Quillen
adjunction on the localizations. Using Lemma 3.2, it is also clear that an absolute
Joyal level equivalence induces a Quillen equivalence with respect to the absolute
contravariant level model structures. To see that it is a Quillen equivalence, we note
that by adjunction, the .Z ! Z0/Š.SZ/–local objects coincide with the SZ0 –local
objects.

We write .�/I D colimI for the colimit over I and note that the adjunction

.�/I W sSetI � sSet W constI

induces adjunctions of overcategories

(3-6) sSetI=Z � sSetI= constI.ZI/� sSet=ZI :
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Lemma 3.12 Let Z be cofibrant and fibrant in the absolute Joyal I–model structure
on sSetI. Then the composite adjunction sSetI=Z � sSet=ZI is a Quillen equivalence
with respect to the absolute contravariant I–model structure on sSetI=Z and the
contravariant model structure on sSet=ZI .

Proof Since Z is cofibrant and fibrant, the Quillen equivalence (3-2) shows that
the adjunction unit Z ! constI.ZI/ is an absolute Joyal level equivalence. Hence
the first adjunction in (3-6) is a Quillen equivalence by Lemma 3.11. It follows
from the definitions that the second adjunction is a Quillen adjunction whose right
adjoint detects weak equivalences between fibrant objects. Hence it is sufficient to
show that the derived adjunction unit is an absolute contravariant I–equivalence. Let
X! constI.ZI/ be a cofibrant object in the absolute contravariant I–model structure.
A fibrant replacement X!X 0 and the adjunction counit of .F0;Ev0/ provide a chain
of absolute contravariant I–equivalences between cofibrant objects

X //
�
// X 0 F0Ev0.X

0/:
�
oo

Since 0 is initial in I , there is an isomorphism F0Ev0.X
0/Š constI X 0.0/. The claim

follows because the evaluation of the adjunction unit of ..�/I ; constI/ on constI X 0.0/
is even an isomorphism and constI preserves weak equivalence between all objects.

Proposition 3.13 For every absolute Joyal I–fibrant Z in sSetI, the identity functors
form a Quillen equivalence .sSetI=Z/pos � .sSetI=Z/abs with respect to the positive
and absolute contravariant I–model structures.

Proof Let Zc!Z be a cofibrant replacement in the absolute Joyal I–model structure
and let Zc! constI.ZcI/ be the adjunction unit. Since these two maps are absolute
Joyal level equivalences, Lemma 3.11 and the two out of three property for Quillen
equivalences reduce the claim to the case where Z D constI T for a simplicial set T .

The category sSetI= constI T is equivalent to the category .sSet=T /I of I–diagrams
in sSet=T . Under this equivalence, the absolute contravariant I–model structure
corresponds to the homotopy colimit model structure on .sSet=T /I provided by [3,
Theorem 5.1]. The cited theorem implies that the weak equivalences in the absolute con-
travariant I–model structure are the maps that induce contravariant weak equivalences
under hocolimI W .sSet=T /I ! sSet=T .

The argument for comparing the model structures now works as in [7, Proposition 2.3]:
The inclusion IC! I is homotopy cofinal [12, Proof of Corollary 5.9], and hence
every positive contravariant level equivalence is an hocolimI –equivalence. Together
with S constI T

C
� S constI T , this shows that every positive contravariant I–equivalence
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is an absolute contravariant I–equivalence. For the converse, it suffices to show
that a hocolimI –equivalence of positive contravariant I–fibrant objects is a positive
contravariant I–equivalence. Using again that IC ! I is homotopy cofinal, this
follows by restricting along IC! I and applying [3, Theorem 5.1(a)] in .sSet=T /IC .

Corollary 3.14 If Z is absolute Joyal cofibrant and positive Joyal I–fibrant, then
sSetI=Z � sSet=ZI is a Quillen equivalence with respect to the positive contravariant
I–model structure on sSetI=Z and the contravariant model structure on sSet=ZI .

Proof Since the derived adjunction unit Z! constI..ZI/
Joyal-fib/DZ0 is a positive

level equivalence, the adjunction sSetI=Z � sSetI=Z0 is a Quillen equivalence with
respect to the positive contravariant I–model structure by Lemma 3.11. Because Z0

is cofibrant and fibrant in the absolute Joyal I–model structure, Proposition 3.13 and
Lemma 3.12 show the claim.

Let N be a commutative monoid object in .sSetI ;�/. Then the overcategory sSetI=N
inherits a symmetric monoidal product

.X !N/� .Y !N/D .X �Y !N �N !N/

from the symmetric monoidal structure of N and the multiplication of N .

The following result is a key step in the proof of our main result:

Theorem 3.15 Let E be an E1–operad in sSetJoyal and let M be an E –algebra. Then
there is a chain of Quillen equivalences of simplicial, combinatorial and left proper
model categories

sSetI=M rig � sSetI=M c � sSetI=constIM � sSet=M

relating sSet=M with the contravariant model structure and the symmetric monoidal
model category sSetI=M rig with the positive contravariant I–model structure. The
chain is natural with respect to M .

Proof Using the chain of positive level equivalences M rig M c! constIM from
Corollary 3.7 and the fact that constIM Š F0M is absolute Joyal I–cofibrant, the
chain of Quillen equivalences is a consequence of Lemma 3.11 and Corollary 3.14. It
is shown in Corollary 3.19 that sSetI=M rig satisfies the pushout product axiom.

We need one more observation about the tensor product on sSetI=M rig . We call an
object in Ho.sSetI=M rig/ representable if it corresponds to an object of the form
�0!M under the equivalence Ho.sSetI=M rig/'Ho.sSet=M/ induced by the chain
of Quillen equivalences from Theorem 3.15. Note that these are precisely the objects
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which correspond to representable presheaves under the equivalence to presheaves on
the 1–category M .

Lemma 3.16 The tensor product of two representables in Ho.sSetI=M rig/ is again
representable.

Proof It follows from the construction of M rig and the chain of Quillen equivalences
that the representables in Ho.sSetI=M rig/ are represented by the cofibrant objects of
the form F I

k
.�0/!M with k an positive object of I . Since F I

k
.K/�F I

l
.L/ Š

F I
ktl

.K �L/, this set of objects is closed under the monoidal product.

3.17 Monoidal properties of the contravariant I -model structure

The following proposition is the key tool for the homotopical analysis of the �–product
on sSetI=N for a commutative N . Both its statement and proof are analogous to [12,
Proposition 8.2; 7, Proposition 2.6]:

Proposition 3.18 Let N be a commutative monoid object in sSetI. If X ! N is
absolute contravariant cofibrant, then X �� W sSetI=N ! sSetI=N preserves positive
contravariant I–equivalences between arbitrary objects.

Proof We begin by showing that if Y1 ! Y2 is an absolute contravariant level
equivalence in sSetI=N , then so is X�Y1!X�Y2 . For this, we use a cell induction
argument and first consider the case X D Fm.K/.

By [12, Lemma 5.6], the map .Fm.K/� .Y1! Y2//.n/ is isomorphic to

(3-7) K �
�
colimmtk!n.Y1.k/! Y2.k//

�
where the colimit is taken over the comma category .mt�# n/. Since each connected
component of this comma category has a terminal object, we can choose a set A of
morphisms ˛W mtk! n such that (3-7) is isomorphic toa

.˛Wmtk!n/2A

K � .Y1.k/! Y2.k//:

Using Corollary 3.4, it follows that each summand is a contravariant weak equivalence
in sSet=.K �N.k//. Composing with the map

K �N.k/!N.m/�N.k/!N.n/

induced by the morphism ˛W k t m ! n indexing the summand, it follows that
each summand is a contravariant weak equivalence in sSet=N.n/. Hence (3-7) is a
contravariant weak equivalence in sSet=N.n/.
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Next we assume that Fm.K/! Fm.L/ is a generating cofibration in sSetI=N , that
X˛C1 is the pushout of Fm.L/  Fm.K/ ! X˛ in sSetI=N and that X˛ � �
preserves absolute contravariant level equivalences. By the above decomposition,
Fm.K! L/�Yi is a cofibration when evaluated at n, and the gluing lemma in the
left proper model category sSet=N.n/ shows that X˛C1� .Y1! Y2/ is an absolute
contravariant level equivalence in sSet=N . Since a general absolute contravariant
cofibrant object X is a retract of a colimit of a sequence of maps of this form, it follows
that X �� preserves absolute contravariant level equivalences.

We now turn to the statement of the proposition and assume that Y1! Y2 is a pos-
itive contravariant I–equivalence. By applying the previous argument to cofibrant
replacements of the Yi , we may assume that the Yi are absolute contravariant cofibrant.
Let Y2 � N c ���N be a factorization in the absolute Joyal model structure. By
Lemma 3.11, Y1! Y2 is a positive contravariant I–equivalence in sSetI=N c . Since
the induced map of colimits is a contravariant equivalence in sSet=.XI � N

c
I / by

Corollaries 3.4 and 3.14, another application of Corollary 3.14 shows that the induced
map X �Y1!X �Y2 is a positive contravariant I–equivalence in sSetI=.X �N c/.
Composing with X�N c!N �N !N shows that X�Y1!X�Y2 is a positive
contravariant I–equivalence in sSetI=N .

Corollary 3.19 Let N be a commutative monoid object in sSetI. The positive con-
travariant I–model structure on sSetI=N satisfies the pushout product axiom and the
monoid axiom as defined in [13].

Proof The cofibration part of the pushout product axiom follows from Proposition 8.4
of [12]. As explained there, Proposition 3.18 implies the statement about the generating
acyclic cofibrations.

For the monoid axiom, we have to show that transfinite composition of cobase changes of
maps of the form X�.Y1!Y2/ with Y1!Y2 an acyclic cofibration are contravariant
I–equivalences. Since sSetI=N is tractable, we may assume that also the generating
acyclic cofibrations of the positive contravariant I–model structure have cofibrant
domains and codomains [1, Corollary 2.8]. Using Proposition 3.18 and a cofibrant
replacement of X , it follows that X � .Y1! Y2/ is a contravariant I–equivalence. It
is also an injective level cofibration, ie a cofibration when evaluated at any object n

of I . Using a cofibrant replacement in the absolute contravariant level model structure,
it follows that cobase changes and transfinite compositions preserve morphisms that
are both contravariant I–equivalences and injective level cofibrations.

The next proposition states that (any monoidal left Bousfield localization of) the positive
contravariant I–model structure on sSetI=N lifts to operad algebras in the best possible
way.
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Proposition 3.20 Let N be a commutative monoid object in sSetI, let M be a left
Bousfield localization of the positive contravariant I–model structure on sSetI=N , and
assume that M satisfies the pushout product axiom with respect to �.

(i) For any operad O in sSet, the forgetful functor MŒO�!M from the category
of O–algebras in M creates a model structure on MŒO�.

(ii) If P ! O is a weak equivalence of operads, then the induced adjunction
MŒP�� MŒO� is a Quillen equivalence.

Proof The criteria given in [10, Theorems 5.10 and 7.5] reduce this to showing that
M is symmetric h–monoidal and symmetric flat in the sense of [11, Definitions 4.2.4
and 4.2.7].

As a first step, we show that the levelwise cofibrations in M are h–cofibrations in
the sense of [11, Definition 2.0.4], ie that cobase change along levelwise cofibrations
preserves weak equivalences. For this it is sufficient that pushouts along levelwise
cofibrations are homotopy pushouts in M. Let V  U !X be a diagram in M with
U ! V a levelwise cofibration. Let U ! V 0! V be a factorization of U ! V into
a positive I–cofibration U ! V 0 and a positive level equivalence V 0! V . Then the
induced map of pushouts V 0qU X ! V qU X is a positive level equivalence by a
levelwise application of the left properness of the contravariant model structure. Hence
V qU X is a homotopy pushout.

By [11, Theorem 4.3.9(iii)], it is sufficient to verify symmetric h–monoidality on the
generating (acyclic) cofibrations. For this we let

(3-8) vi D F
I
ki
.@�mi !�mi / for 1� i � e

be a family of generating cofibrations of M. (We drop the augmentation to N from
the notation.) Let .ni /1�i�e be a family of natural numbers. Then the iterated pushout
product map

(3-9) v D v
�n1
1 � � � �� v�ne

e

is a †.ni /D†n1 �� � ��†ne –equivariant map. For every †.ni /–object Y in M, there
is an isomorphism

Y � v Š .Y �F I
k .�//� �;

where kD k
tn1
1
t � � � tk

tne
e and

�D .@�m1 !�m1/�n1 � � � �� .@�me !�me /�ne
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is the iterated pushout product map in spaces. Hence Y �v is a levelwise cofibration of
simplicial sets, and so is its quotient by the †.ni /–action. This verifies the cofibration
part of the symmetric h–monoidality.

Next let .vi W Vi ! Wi /1�i�e be a family of generating acyclic cofibrations for M.
We may assume that the Vi and Wi are positive cofibrant since sSetI=N and hence
M is tractable. Let vW V ! W be defined as in (3-9) and let Y be a †.ni /–object
in M. For the acyclic cofibration part of the symmetric h–monoidality, we have to
show that .Y � v/†.ni /

is a weak equivalence in M. Let f W X ! Y be a cofibrant
replacement in M and consider the diagram

X �V
f�V

//

X�v

��

Y �V

Y�v

��

.Y �V /cof

g

��

�

pV
oooo

X �W
f�W

// Y �W .Y �W /cof
�

pW
oooo

where g is a replacement of Y �v by a map of cofibrant objects in the projective model
structure on M†.ni / . The map X � v is a weak equivalence in M by the pushout
product axiom in M, and the maps f �V and f �W are positive I–equivalences by
Proposition 3.18. Hence Y �v and g are weak equivalences in M. To see that Y �v

becomes a weak equivalence after taking †.ni /–orbits, we first note that g induces a
weak equivalence of †.ni /–orbits because it is a map of cofibrant objects. Hence it is
sufficient to show that pV and pW induce a weak equivalence of †.ni /–orbits. Since
these are actually positive contravariant level equivalences, it is sufficient to show that
the †.ni /–action on Y �W is free in positive levels. The group †ni –acts freely on
W

�ni
i .m/ because Wi is positive cofibrant [7, Lemma 2.9]. The fact that there is a

morphism of †.ni /–spaces

.Y �W /.m/!W.m/! .W
�n1
1 � � � ��W �ne

e /.m/!W
�n1
1 .m/�� � ��W �ne

e .m/

thus implies that †.ni / act freely on Y �W .m/. This completes the acyclic cofibration
part of the symmetric h–monoidality.

For symmetric flatness, it is by [11, Theorem 4.3.9(ii)] sufficient to show that for a
weak equivalence yW Y !Z in the projective model structure on M†.ni / and for v
as in (3-8) and (3-9), the map .y� v/†.ni /

is a weak equivalence in M. Here y� v

is the pushout product map in the square

Y �V
y�V

//

Y�v
��

Z�V

Z�v
��

Y �W
y�W

// Z�W
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Replacing y by a weak equivalence of cofibrant objects in M†.ni / and using Proposition
3.18 and the pushout product axiom in M shows that the vertical maps are weak
equivalences in M. Since X�v is a levelwise cofibration by [12, Proposition 7.1(vi)],
it is an h–cofibration by the argument at the beginning of the proof. Hence y � v

is a weak equivalence in M by two out of three. Arguing as in the previous step of
the proof, the fact that †.ni / acts freely on the positive levels of Y �W implies that
.y� v/†.ni /

is a weak equivalence in M.

Remark 3.21 The argument given in the previous proof actually shows the stronger
statement that the two assertions in the proposition hold for colored operads and for
operads internal to C .

4 E1 objects and symmetric monoidal 1–categories

The goal of this section is to prove Proposition 2.4 and its functorial refinement
Proposition 4.3.

The 1–category SymMonCat1 of small symmetric monoidal 1–categories is
equivalent to the 1–category CAlg.Cat1/ of commutative algebra objects in 1–
categories [9, Remark 2.4.2.6]. Now let E be an E1–operad in sSetJoyal in the above
sense (for example, the Barratt–Eccles operad). We will use the following result about
the rectification of commutative algebras in the1–categorical sense to operad algebras
in the model category.

Proposition 4.1 There is an equivalence of 1–categories

(4-1) .sSetJoyalŒE �/1 ' CAlg.Cat1/

relating the 1–category associated with the model category of E –algebras in sSetJoyal

and CAlg.Cat1/. For an object M in sSetJoyalŒE �, the 1–category represented by M
is naturally equivalent to the underlying 1–category of the associated commutative
algebra in Cat1 .

Proof This is essentially a consequence of [10, Theorem 7.10] (which is in turn based
on [9, Theorem 4.5.3.7]). However, [10, Theorem 7.10] is not directly applicable since
it is formulated in terms of simplicial model categories and simplicial operads, while
E is an operad in sSetJoyal . As explained in [10, Remark 7.12], this context requires
a different argument for identifying the free E –algebra E.X/ on a cofibrant object
X with its derived counterpart in CAlg.Cat1/. To circumvent this problem, we note
that under the chain of Quillen equivalences in Theorem 3.6, E.X/ corresponds to the
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free commutative algebra on a positive cofibrant replacement of constI.X/. Using [7,
Lemma 2.9] in place of [9, Lemma 4.5.4.11(3)], the claim about E.X/ follows as in
part (e) of the proof of [9, Theorem 4.5.3.7].

We are now ready to give the proof of the key proposition from Section 2:

Proof of Proposition 2.4 Using the above discussion, we choose an E –algebra M in
sSet representing the given small symmetric monoidal 1–category D and consider
the model category sSetI=M rig arising from Theorem 3.15. By Proposition 3.10 and
Corollary 3.19, this is a simplicial, combinatorial, tractable and left proper symmetric
monoidal model category. Let C D .sSetI=M rig/1 be the presentably symmetric
monoidal 1–category associated with sSetI=M rig . We will show that C and P.D/
are equivalent as symmetric monoidal 1–categories.

It is immediate from Theorem 3.15 that after forgetting the monoidal structure, C
is equivalent to the underlying 1–category of the contravariant model structure on
sSet=M . The underlying 1–category of sSet=M is equivalent to the 1–category
P.D/ by means of the 1–categorical Grothendieck construction [8, Theorem 2.2.1.2]
and the fact that the underlying 1–category of M is equivalent to the underlying
1–category of D . Note that all the involved equivalences, ie the equivalences coming
from Theorem 3.15 as well as the Grothendieck construction, are pseudonatural in M ,
that is, natural in a 2–categorical sense. Thus, invoking [5, Appendix A], we conclude
that the induced equivalence of 1–categories

ˆW P.D/! C

is natural in D in the 1–categorical sense. Note however that this equivalence does
not necessarily need to respect the symmetric monoidal structures.

We need to show that ˆ is compatible with the symmetric monoidal structures on
P.D/ and C . By the universal property of the Day convolution symmetric monoidal
structure on D reviewed in Section 2, it suffices to equip the functor

‰ Dˆ ı j W D! C

given by composition with the Yoneda embedding j W D! P.D/ with a symmetric
monoidal structure. The functor ‰ is also natural in D in the 1–categorical sense. We
denote the essential image of ‰ by ‰.D/. By construction ‰.D/ is a full subcategory
of C . It follows from Lemma 3.16 that ‰.D/ is closed under tensor products in C .
Thus it inherits a symmetric monoidal structure from C such that the inclusion functor
‰.D/! C is a symmetric monoidal functor.
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To complete the proof, it is sufficient to show that the corestriction D ! ‰.D/ of
‰ is a symmetric monoidal functor. For this we use the equivalence (4-1) and the
functoriality of the involved constructions to view the construction D 7! ‰.D/ as a
functor

GW SymMonCat1! SymMonCat1

This functor G comes with a natural equivalence UG ' U given by ‰ , where
U W SymMonCat1! Cat1 is the canonical forgetful functor. The next lemma implies
that G is canonically equivalent to the identity functor on SymMonCat1 and that
the equivalence refines ‰ . We conclude that for each D , the functor ‰ refines to an
equivalence D'‰.D/ of symmetric monoidal 1–categories.

Lemma 4.2 Let GW SymMonCat1 ! SymMonCat1 be a functor together with
an equivalence UG ' U . Then the equivalence admits a canonical refinement to an
equivalence G ' id.

Proof We first observe that G preserves limits and filtered colimits, since these are
generated by the functor U . Together with the fact that SymMonCat1 is presentable
and the adjoint functor theorem, this shows that G is right adjoint. Denote the left
adjoint of G by F . The equivalence UG ' U implies that the diagram

Cat1
Fr
((

Fr
vv

SymMonCat1
F

// SymMonCat1

commutes, where Fr is the free symmetric monoidal category functor. Now we use that
the functor Fr exhibits SymMonCat1 as the free presentable, preadditive category
on Cat1 [4, Theorem 4.6]. Since F is left adjoint this implies that it has to be
canonically equivalent to the identity. Thus also the right adjoint G is canonically
equivalent to the identity.

The proof of Proposition 2.4 in fact provides the following stronger statement:

Proposition 4.3 For every symmetric monoidal functor f W D! D0 between small
1–categories there exists a symmetric monoidal, left Quillen functor between model
categories F WM!M0 such that fŠW P.D/! P.D0/ is symmetric monoidally equiv-
alent to the underlying functor of F .

Proof We use Proposition 4.1 to represent f by a map of E –algebras. Then we get
the induced functor between model categories and our proof of Proposition 2.4 shows
that this models the 1–functor fŠ .
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