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Loop homology of some global quotient orbifolds

YASUHIKO ASAO

We determine the ring structure of the loop homology of some global quotient
orbifolds. We can compute by our theorem the loop homology ring with suitable
coefficients of the global quotient orbifolds of the form ŒM=G� for M being some
kinds of homogeneous manifolds, and G being a finite subgroup of a path-connected
topological group G acting on M . It is shown that these homology rings split into
the tensor product of the loop homology ring H�.LM / of the manifold M and that
of the classifying space of the finite group, which coincides with the center of the
group ring Z.kŒG�/ .

55N45, 55N91, 55P35, 55P91

1 Introduction

The free loop space of a topological space X is a space of the continuous maps from
the circle S1 to X ,

(1) LX DMap.S1;X /;

with the compact-open topology. The loop homology of X is the homology of the free
loop space, H�.LX /. In the 1990s Moira Chas and Dennis Sullivan [3] discovered a
product ı on the loop homology of a closed oriented smooth manifold H�.LM/,

(2) ı W Hp.LM/˝Hq.LM/!HpCq�dim M .LM/;

called the loop product, which is a mixture of the intersection product of a manifold
and the concatenation operation identifying S1_S1 with the image of a map from S1 .
They also showed in [3] that the product defines a ring structure and a kind of Lie
algebra structure called the Batalin–Vilkovisky algebra (BV–algebra) structure on the
homology. These rich algebraic structures are called string topology of closed oriented
manifolds. The string topology of a manifold is related to several areas of mathematics
including mathematical physics through the tools of algebraic topology.

The string topology of a wider class of spaces has been developed by several authors:
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614 Yasuhiko Asao

� For classifying spaces of connected compact Lie groups, the existence of the
loop product and the BV–structure on its homology is proved by Chataur and
Menichi in [4].

� For fiberwise monoids including the adjoint bundle of principal bundles, the
loop product is constructed by Gruher and Salvatore in [8].

� And more generally, for the Borel construction of a smooth manifold with a
smooth action of a compact Lie group, the loop product is constructed by Kaji
and Tene in [11].

� In the 2000s, Lupercio, Uribe, and Xicoténcatl defined the loop homology of a
global quotient orbifold, which is an orbifold of the form ŒM=G� for M being a
smooth manifold and G being a finite group acting smoothly on M , as the loop
homology of the Borel construction M �G EG . They discovered a product

(3) ı W Hp.L.M �G EG//˝Hq.L.M �G EG//!HpCq�dim M .L.M �G EG//

on the loop homology of a global quotient orbifold H�.L.M �G EG//, and
showed that the product defines a BV–algebra structure on H�.L.M �G EG//;
see [14]. They coined the name orbifold string topology for this structure.

In spite of these interesting structural discoveries, concrete computations of loop
homology have been achieved for only a few kinds of classes of manifolds. In order to
accommodate the change in grading, we define H�.LM/DH�Cdim M .LM/.

� For a compact Lie group � , there is a homeomorphism L� Š�� �� , and a
loop homology ring isomorphism H�.L�/ŠH�.��/˝H�.�/. Furthermore,
the BV–algebra structure with coefficients in Q and Z2 of any compact Lie
group G is determined by Hepworth in [10].

� For spheres Sn and complex projective spaces CPn , the ring structure with
coefficients in Z is determined by Cohen, Jones, and Yan in [6] by constructing
the spectral sequence converging to the loop homology.

� The BV–algebra structure for CPn with coefficients in Z is determined by
Hepworth in [9].

� For complex Stiefel manifolds SU.n/=SU.k/ including odd-dimensional spheres
S2nC1 , the BV–structure is determined by Tamanoi in [18].

� For arbitrary spheres, Menichi determines the BV–structure for it in [15] by
using the Hochschild cohomology.
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� For the aspherical manifold K.�; 1/, the BV–structure is determined by Vaintrob
in [20] by establishing an isomorphism between the loop homology H�.K.�; 1//

and the Hochschild cohomology HH�.ZŒ��IZŒ��/, and another proof is obtained
by Kupers in [12].

The purpose of this paper is to determine the ring structure of some global quotient
orbifolds by using the method of the orbifold string topology. We can compute by
our theorem the loop homology ring with suitable coefficients of the global quotient
orbifolds of the form ŒM=G� for M a homogeneous manifold of a connected Lie
group G , and G a finite subgroup of G .

Now we briefly review a part of the work of Lupercio, Uribe and Xicoténcatl in [14].
For simplicity, we denote Map.S1;M �G EG/ as LŒM=G�. In [14], the loop orbifold
of the global quotient orbifold ŒM=G� is defined as the groupoid PGM Ì G , and
they show that its Borel construction PGM �G EG is weak homotopy equivalent to
the free loop space L.M �G EG/. To determine the loop homology ring of the lens
space S2nC1=Zp , they constructed a non-G –equivariant homotopy equivalence

(4) PZp
S2nC1

'

a
g2Zp

LS2nC1

by using the fact that the action of Zp extends to an S1 action. We prove:

Proposition 3.1 [14] Let M be a closed oriented manifold, and G be a finite
subgroup of a path-connected group G acting continuously on M . Then for each
g 2G , there exists a homotopy equivalence

(5) PgX ' LM:

We prove that this homotopy equivalence can be extended to a wider class of spaces. Fur-
thermore, we find a condition so that the above homotopy equivalence is G –equivariant
at homology level.

Now we state our main theorem. Let G be a path-connected group acting continuously
on M , and G a finite subgroup of G acting smoothly on M . Then there is the
map ˆW �G � LM! LM , with ˆ.a; l/D .t 7! a.t/ � l.t//, and this map induces an
action of the Pontrjagin ring H�.�G/, namely ˆ�W H�.�G/˝H�.LM/!H�.LM/.
If the action ˆ� of �0.�G/ on H�.LMI k/ satisfies the equation ˆ�.x/ D x for
any x 2H�.LM/, we call the action ˆ� trivial. Then we prove the following.
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Proposition 3.2 Assume that the action ˆ� is trivial with coefficient in k . Then the
direct sum of the homotopy equivalence of the above proposition,a

g2G

PgM '
a
g2G

LM;

is G –equivariant at homology level with coefficients in k .

By using this homotopy equivalence, we can compute the loop homology of a certain
class of orbifolds. Our main theorem is the following; we denote the order of a group G

by jGj.

Theorem 4.1 Let G be a path-connected topological group acting continuously on
an oriented closed manifold M , let G be its finite subgroup, and k be a field whose
characteristic is coprime to jGj. If the action ˆ� is trivial with coefficients in k , then
there exists an isomorphism as k –algebras

(6) H�.LŒM=G�I k/ŠH�.LMI k/˝Z.kŒG�/;

where Z.kŒG�/ denotes the center of the group ring kŒG�.

We show that the following are the necessary conditions for the action ˆ� to be trivial.

Proposition 6.1 If G is simply connected, then the action ˆ� is trivial for any field k .

Proposition 6.2 If Hdim M .LMI k/ D k , then the action ˆ� is trivial for any pair
.G;G/.

Proposition 6.4 If the following conditions are satisfied, then the action ˆ� is trivial:
(i) M is simply connected.

(ii) j�1Gj<1.

(iii) The homomorphism H�.�M I k/!H�.LMI k/ induced by the inclusion map
�M ! LM is injective, that is, the free loop fibration �M ! LM !M is
totally noncohomologous to zero (TNCZ) with coefficients in the field k .

(iv) The characteristic of k is coprime to j�1Gj.

The organization of this paper is as follows. After this introduction in Section 1, we
briefly review the string topology first developed in [3] and the orbifold string topology
constructed in [14] in Section 2. In Section 3, we show some propositions necessary for
the proof of the main theorem. In Section 4, we prove the theorem first for vector spaces
and second for algebras. In Section 5, we remark on the relation to Hochschild coho-
mology. Finally in Section 6, we compute concrete examples by applying our theorem.
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2 Preliminaries for string topology

In this section, we briefly review the loop product in string topology.

Loop product

Let M be a smooth closed oriented manifold, and LMDMap.S1;M / be the free loop
space of M , the space of piecewise smooth maps from S1 to M with compact-open
topology. Then we have the following pullback diagram:

(7)
Map.S1 _S1;M / LM�M LM z�

//

ev1=2

��

LM�LM

ev� ev
��

M
�
// M �M

where � denotes the diagonal embedding, and evt denotes the evaluation map with
evt .l/ D l.t/. Then we can consider above z� as codimension n embedding of the
infinite-dimensional manifold, and we have the generalized Pontrjagin–Thom map

(8) z�!�W H�.LM�LM/!H�..LM�M LM/ev�
1=2

��/

due to Cohen and Klein [7], where �� denotes the normal bundle of the embedding �,
and .LM�M LM/ev�

1=2
�� denotes the Thom space of the vector bundle ev�

1=2
�� . The

similar but more homotopy-theoretic construction of this umkehr map is considered
in [11]. The loop product is formulated in [5] as the composition of maps z�!� , the
Thom isomorphism

(9) H�..LM�M LM/ev�
1=2

��/
Š
�!H� dim M .LM�M LM/;

and the concatenating map  W LM�M LM! LM with

(10)  .l1; l2/D l1 � l2 WD

�
l1.2t/ for 0� t � 1

2
;

l2.2t � 1/ for 1
2
� t � 1:

Definition 2.1 [5] The following sequence of compositions defines the loop product:

Hp.LM/˝Hq.LM/
�
�!HpCq.LM�LM/

e!�
��!HpCq..LM�M LM/ev�

1=2
��/

Thom isom.
�������!HpCq�n.LM�M LM/

�
�!HpCq�n.LM/:
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In order to accommodate the change in grading, we define H�.LM/DH�Cdim M .LM/.
Chas and Sullivan prove the following in [3].

Theorem 2.2 The loop product makes H�.LM/ an associative graded commutative
algebra.

Remark Cohen and Jones give in [5] an operadic proof of Theorem 2.2, and Tamanoi
gives in [19] a more homotopy-theoretic one.

Orbifolds

In this section, we review the basic definitions and properties of orbifolds that we will
use in this paper. Following Moerdijk [17], we use the groupoid notion of an orbifold.
For more detail, see [1; 17].

Definition 2.3 A groupoid is a category whose morphisms are all invertible. In other
words, a groupoid G is a pair of sets .G0;G1/ with the structure maps

� source and target s; t W G1! G0 ,

� identity eW G0! G1 ,

� inverse i W G1! G1 ,

� composition mW G1 �G0 G1 D f.a; b/ 2 G1 �G1jt.a/D s.b/g ! G1 ,

satisfying suitable compatibility conditions.

We note here some technical terms on groupoids. A Lie groupoid is a groupoid .G0;G1/

such that G0 and G1 both have the structure of a smooth manifold, and the structure
maps are all smooth. We will also require that s; t are submersions. An isotropy group
of a groupoid .G0;G1/ at x 2 G0 is the group Gx D ff 2 G1 j s.f /D t.f /D xg. A
Lie groupoid .G0;G1/ is said to be a proper groupoid if the map .s; t/W G1! G0 �G0

is proper. A Lie groupoid .G0;G1/ is said to be a foliation groupoid if the isotropy
group Gx is discrete for each x 2 G0 .

Definition 2.4 A groupoid is said to be an orbifold groupoid if it is a proper foliation
Lie groupoid.

Example 2.5 Let S be a set, and G be a group acting on S . Then .S;S � G/ is a
groupoid with structure maps

� s.x;g/D x; t.x;g/D gx ,

� e.x/D .x; idG/,
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Loop homology of some global quotient orbifolds 619

� i.x;g/D .gx;g�1/,

� m..x;g/; .gx; h//D .x; hg/,

for any x;y 2 S and g; h 2 G . We call this groupoid the action groupoid, and denote
it by S ÌG .

Example 2.6 Let M be a smooth manifold, and � be a compact Lie group acting
smoothly on M . If the isotropy group �x is finite for each x 2M , then the action
groupoid M Ì� is an orbifold groupoid.

Orbifolds are defined using the notion of groupoids, as follows.

Definition 2.7 A Morita equivalent class ŒG� of orbifold groupoids is called an orbifold.

Definition 2.8 An orbifold X is called a global quotient orbifold if X has a represen-
tation of an action groupoid M ÌG , where M is a smooth manifold, and G is a finite
group. We write XD ŒM=G�.

Remark The following are fundamental properties of orbifolds; see for example [1]
for proof.

(i) Any orbifold groupoid is Morita equivalent to an action groupoid M Ì� , where
M is a smooth manifold, and � is a compact Lie group acting smoothly on M

with its isotropy groups being finite.

(ii) Let X D ŒM Ì �� be an orbifold. Then the homotopy type of the Borel con-
struction M �� E� is an orbifold invariant; that is, it is invariant under Morita
equivalences.

Orbifold loop product

In this section, we review the construction of orbifold loop product defined in [14].

The following notion of loop orbifold is defined also in [14].

Definition 2.9 [14] Let ŒM=G� be a global quotient orbifold. The loop orbifold of
ŒM=G� is the action groupoid PGM ÌG , where

PGM D
a
g2G

PgM; PgM D f� W Œ0; 1�!M j �.1/D�.0/gg � LM;

and G acts on PGM via the map

PgM �G! Ph�1ghM; .�; h/ 7! �h:
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In the same paper, they prove the weak homotopy equivalence L.X �G EG/ '

PGX �G EG . Hence we can consider PGM �G EG instead of L.M �G EG/ for
studying the string topology of the orbifold ŒM=G� because of the Whitehead theorem.
They construct the orbifold loop product as follows.

Construction of the orbifold loop product We consider the pullback diagram

(11)
PgM �M PhM

z�
//

ev1=2

��

PgM �PhM

ev1 � ev0
��

M
�

// M �M

for any g; h2G , where evt denotes the evaluation map. Then we have the generalized
Pontryagin–Thom map

z�!W PgM �PhM ! .PgM �M PhM /ev�
1=2

�� ;

where �� denotes the normal bundle of the embedding �, and .PgM �M PhM /ev�
1=2

��

denotes the Thom space of the vector bundle ev�
1=2
�� . We also have the concatenation

map  W PgM �M PhM ! PghM with

(12)  .�g; �h/D

�
�g.2t/ for 0� t � 1

2
;

�h.2t � 1/ for 1
2
� t � 1:

Then we obtain a sequence of compositions

Hp.PgM /˝Hq.PhM /
�
�!HpCq.PgM�PhM /

z�!�
�!HpCq..PgM�M PhM /ev�

1=2
��/

Thom isom.
�������!HpCq�dim M .PgM �M PhM /

�
�!HpCq�dim M .PghM /;

and we obtain a map

(13) � W Hp.PgM /˝Hq.PhM /!HpCq�dim M .PghM /:

By summing over g; h 2G , we obtain a map, which we also denote by � ,

(14) � W Hp.PGM /˝Hq.PGM /!HpCq�dim M .PGM /:

To lift the map � to a map

(15) ı W Hp.PGM �G EG/˝Hq.PGM �G EG/!HpCq�dim M .PGM �G EG/;

we use the following fundamental lemma in algebraic topology.
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Lemma 2.10 Let pW zX ! X be a finite Galois covering and G its Galois group.
If k is a field whose characteristic is coprime to jGj, then there exists an injective
homomorphism �� called the transfer map,

(16) ��W H�.X I k/!H�. zX I k/;

such that

(17) Im�� ŠH�. zX I k/
G ;

where the right-hand side is the G –invariant subspace of H�.X I k/.

Proof We first define the transfer map ��W H�.X /!H�. zX /. Let � be a homomor-
phism between singular chain complexes, �W C�.X /! C�. zX / with

�.�/D
X

lifts of�

z�:

The summation runs over all lifts of the singular simplex �. We can see that �
commutes with the differentials, hence we can define ��W H�.X /!H�. zX / with

(18) ��.x/D
X
g2G

g�x:

Then both the maps p�ı��W H�.X /!H�.X / and ��ıp�W H�. zX /G!H�. zX /
G are

multiplication by jGj 2 k . As the characteristic of k is coprime to jGj, multiplication
by jGj is an isomorphism on a k –vector space, which implies �� and p� are also
isomorphisms. Thus (16) holds.

By using this transfer map, we obtain a sequence of compositions

Hp.PGM �G EG/˝Hq.PGM �G EG/
��˝��
�����!Hp.PGM /˝Hq.PGM /

�

�!HpCq�n.PGM /
p�
��!HpCq�dim M .PGM �G EG/;

where p� is the map induced from the covering map pW PGM �EG!PGM �G EG .

The obtained map

(19) ı W Hp.PGM �G EG/˝Hq.PGM �G EG/!HpCq�dim M .PGM �G EG/;

is the desired orbifold loop product, which coincides with the ordinary loop product
when G is the trivial group by the above construction.

Remark It is shown in [14] that the orbifold loop product ı is indeed an orbifold
invariant.
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3 Propositions for the proof of the main theorem

In this section, we prove some propositions that we use for the proof of the main
theorem. Unless otherwise stated, we denote by M a smooth closed oriented manifold,
by G a path-connected group acting continuously on M , and by G a finite subgroup
of G acting smoothly on M .

The following proposition is proved in [14] for computing the loop product of some
lens spaces. We prove it below because we use the proof of it in this paper.

Proposition 3.1 [14] Let G be a path-connected group acting continuously on M ,
and G a finite subgroup of G acting smoothly on M . Then for each g 2G , there exists
a homotopy equivalence

(20) PgX ' LM:

Proof By the assumption on G , for each g 2 G there exists a path �g in G which
starts at the unit in G and ends at g . We fix such paths f�ggg2G .

For each g 2G we consider the maps �gW PgM ! LM and �gW LM! PgM with

�g.t/D

�
�.2t/ for 0� t � 1

2
;

�.1/ L�g.2t � 1/ for 1
2
� t � 1;

(21)

�g.l/D

�
l.2t/ for 0� t � 1

2
;

l.1/�g.2t � 1/ for 1
2
� t � 1;

(22)

where L�g denotes the image of �g by the map G! G which sends an element to its
inverse. Then we can see �g ı �g ' idLM and �g ı �g ' idPgM , hence PgM ' LM
for each g 2G .

We consider the map ˆW �G �LM! LM with

(23) ˆ.a; l/D .t 7! a.t/ � l.t//;

and the induced map ˆ�W H�.�G/˝H�.LM/!H�.LM/, which defines an action of
the Pontrjagin ring H�.�G/ on H�.LM/. If the action ˆ� of �0.�G/ on H�.LM/
satisfies ˆ�.x/D x for any x 2H�.LM/, we call the action ˆ� trivial.

Proposition 3.2 Assume that the action ˆ� is trivial. Then the homotopy equivalence

(24)
a
g2G

PgM '
a
g2G

LM

of Proposition 3.1 is G –equivariant at homology level with coefficients in k .
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Figure 1: Picture for Proposition 3.2

We use the following lemma for the proof.

Lemma 3.3 Let G be a path-connected group acting continuously on M , and G a
finite subgroup of G acting smoothly on M . Then G acts on H�.LM/ trivially.

Proof The paths f�ggg2G in the proof of Proposition 3.1 make a homotopy between
the actions of e and g on H�.LM/. Because H�.LM/ is discrete, they act trivially.

Proof of Proposition 3.2 We need to show the commutativity of the following diagram
for each g; h 2G :

H�.LM/
h�

// H�.LM/

H�.PgM /
h�
//

�g�

OO

H�.Ph�1ghM /

�
h�1gh�

OO

By Lemma 3.3, the upper h� is equal to an identity. Thus we need to show

.�h�1gh ı h ı �g/� D id :

Let a be the loop h�1�gh � L�h�1gh in G , where � denotes concatenating operation
defined by (10); see Figure 1. Then the map �h�1gh ı h ı �g is equal to the map
ˆ.a;�/W LM! LM , and the induced homomorphism .�h�1gh ı h ı �g/� is equal to
the action ˆ�.Œa�;�/W H�.LM/!H�.LM/, which is trivial by the assumption.
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4 Main theorem

Let � be a direct sum

� D
M

g

�gW

a
g2G

PgM !
a
g2G

LM:

Then by Proposition 3.2 and Lemma 3.3, � induces an isomorphism

H�.LŒM=G�/DH�

� a
g2G

PgM

�G

(25)

��
ŠH�

� a
g2G

LM
�G

(26)

ŠH�.LM/˝Z.kŒG�/:(27)

The last isomorphism follows from Lemma 3.3.

Our main theorem, asserting that �� preserves loop products, is the following.

Theorem 4.1 Let G be a path-connected group acting continuously on M , and G be
a finite subgroup of G acting smoothly on M , and k be a field whose characteristic is
coprime to jGj. If the action ˆ� is trivial with coefficients in k , then there exists an
isomorphism as k –algebras,

(28) H�.LŒM=G�I k/ŠH�.LMI k/˝Z.kŒG�/;

where Z.kŒG�/ denotes the center of the group ring kŒG�.

For the proof, we need to show that the diagram

(29)

Hp

�`
g LM

�G
˝Hq

�`
g LM

�G ı
// HpCq�dim M

�`
g LM

�G

Hp

�`
g PgM

�G
˝Hq

�`
g PgM

�G ı
//

��˝��

OO

HpCq�dim M

�`
g PgM

�G
��

OO

is commutative. To prove this we need some lemmas. We consider the following
commutative diagram of pullbacks, where �1=2 is a map induced from the universality
of the pullback:
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(30)

LM�M LM
ev1=2

xx

// LM�LM
ev1=2 � ev0

xx

PgM �M PhM

ev1=2

��

�1=2

OO

// PgM �PhM

�g��h

OO

ev1 � ev0

��

M
�

// M �M

Lemma 4.2 The diagram

(31)

LM LM �M LM
 0

oo

PghM

�gh

OO

PgM �M PhM


oo

�1=2

OO

is commutative at homology level, where  0 and  are concatenating maps defined by

 0..l1; l2//.t/D

8̂<̂
:

l1.2t/ for 0� t � 1
4
;

l2
�
2t � 1

2

�
for 1

4
� t � 3

4
;

l1.2t � 1/ for 3
4
� t � 1;

(32)

 ..�1; �2//.t/D

(
�1.2t/ for 0� t � 1

2
;

�2.2t � 1/ for 1
2
� t � 1:

(33)

Proof Let b be the loop h L�h �
L�g � g�1�gh in G (see Figure 2). Then we have the

commutative diagram

(34)

LM

�gh

��

LM�M LM
 0

oo

PghM PgM �M PhM

�1=2

OO

ww

PghM

�b

OO

where �b denotes the map � 7! � � �.1/b . Hence it reduces to showing that
.�b/�W H�.PghM /! H�.PghM / is equal to an identity, which follows from the
similar argument in the proof of Proposition 3.2.
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�1=2

 0

�gh



�b

D

Figure 2: Picture for Lemma 4.2

Lemma 4.3 The concatenating map  0 defines the same product as the loop product ı;
in other words, the following diagram commutes:

(35)

H�.LM�LM/
P T
// H�..LM�M LM/TM/

Thom
// H��dim M .LM�M LM/

 0�
// H��dim M .LM/

H�.LM�LM/

.�1=2�id/�

OO

P T
// H�..LM�M LM/TM/

D.�1=2�1=2id/
�

OO

Thom
// H��dim M .LM�M LM/

.�1=2�1=2id/�

OO

�
// H��dim M .LM/

�1=4�

OO

Proof It follows from the commutative diagram

(36)

LM LM �M LM
 0

oo

xx

// LM�LM
ev1=2 � ev0

ww

LM

�1=4

OO

LM�M LM


oo

��

�1=2�1=2id

OO

// LM�LM

�1=2�id

OO

ev0� ev0

��

M
�

// M �M

and the naturality of the Pontrjagin–Thom construction and Thom isomorphism, where
�a is the parameter transformation map defined by �a.l/D .t 7! l.t C a//.

Algebraic & Geometric Topology, Volume 18 (2018)



Loop homology of some global quotient orbifolds 627

Proposition 4.4 For any g; h 2G , the following diagram commutes:

(37)

Hp.LM/˝Hq.LM/ ı
// HpCq�dim M .LM/

Hp.PgM /˝Hq.PhM /
�
//

�g�˝�h�

OO

HpCq�dim M .PghM /

�gh�

OO

Proof Because of the diagram (30) and Lemma 4.2, by the naturality of the Pontrjagin–
Thom map and Thom isomorphism we obtain the following commutative diagram:

(38)

H�.LM
�LM/

// H�..LM�M LM/TM/ // H��dimM .LM
�M LM/

// H��dimM .LM/

H�.PgM
�PhM /

.�g��h/�

OO

// H�..PgM�M PhM /TM/

e�1=2�

OO

// H��dimM .PgM
�M PhM /

�1=2�

OO

// H��dimM .PghM /

�gh�

OO

which implies the diagram (37) is commutative by Lemma 4.3.

Proof of Theorem 4.1 By the definition of the loop product, diagram (29) is same as
the following diagram:

(39)

Hp

�`
gPgM

�G
˝Hq

�`
gPgM

�G
� _

��

��˝��
// Hp

�`
gLM

�G
˝Hq

�`
gLM

�G
� _

��

Hp

�`
gPgM

�
˝Hq

�`
gPgM

� ��˝��
//

�

��

Hp

�`
gLM

�
˝Hq

�`
gLM

�
ı

��

HpCq�dimM

�`
gPgM

� ��
//

�1�
��

HpCq�dimM

�`
gLM

�
�2�
��

HpCq�dimM

�`
gPgM

�G ��
// HpCq�dimM

�`
gLM

�G
where �1�; �2� are defined as

�1�W H�
�`

g PgM
� pr�

// H�
��`

g PgM
�
=G
� ��

Š
// H�

�`
g PgM

�G
;(40)

�2�W H�.LM�G/
pr�
// H�..LM�G/=G/

��

Š
// H�.LM�G/G ;(41)

where �� is as defined in the proof of Lemma 2.10. The G –equivariance of �� implies
the commutativity of the upper square, and Proposition 4.4 implies the commutativity
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of the middle square. The commutativity of the lower square follows from the definition
of �� and G –equivariance of �� .

5 Relation to Hochschild cohomology

In [5], the theorem of Cohen and Jones states that if M is simply connected, then its loop
homology ring is isomorphic to the Hochschild cohomology of the singular cochains,
hence we have H�.LM/ŠHH�.C �M;C �M /. In [2], this result is studied for global
quotient orbifolds by Ángel, Backelin and Uribe, who show that if M is a simply con-
nected manifold with G action, then its orbifold loop homology ring with coefficients
in k is isomorphic to the Hochschild cohomology of the DGA C �.M I k/#kG , hence
we have H�.LŒM=G�I k/ Š HH�.C �M #kG;C �M #kG/. Here the DGA structure
on C �.M I k/#kG is defined as follows. With C �.M I k/#kG D C �.M I k/˝k kŒG�

as a module, the multiplication is defined by .x˝g/.y˝ h/D xg.y/˝gh, and the
differential is defined by d D dC�M ˝ idkŒG� .

By using our theorem, we obtain the following as a corollary.

Corollary 5.1 Under the situation we consider in the theorem, if ˆ� is trivial and M

is simply connected, then it holds that

H�.LŒM=G�I k/Š HH�.C �M;C �M /˝Z.kŒG�/(42)

Š HH�.C �M #kG;C �M #kG/:(43)

Proof The first equation follows from our theorem and the theorem of Cohen and
Jones, and the second one follows from the above theorem of Ángel, Backelin and
Uribe.

6 Examples

In this section, we will compute some examples of orbifold loop homology. Before
that, we will prove some propositions which are useful to apply our main theorem and
to compute examples.

Proposition 6.1 If G is simply connected, then the action ˆ� is trivial for any field k.

Proof Because �0.�G/ is represented only by the identity loop, its action on H�.LM/
is trivial.
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Proposition 6.2 If Hdim M .LMI k/D k for a field k , then the action ˆ� is trivial for
any pair .G;G/.

To prove this proposition, we use the following lemma by Hepworth.

Lemma 6.3 [9] Let ˆ be the natural map defined by (23). Then the induced linear
action ˆ�W H0.�G/˝H�.LM/! H�.LM/ is an algebra action, in other words for
any ˛ 2H0.�G/ and any x;y 2H�.LM/, they satisfy

(44) ˛ � .x ıy/D .˛ �x/ ıy D x ı .˛ �y/:

Proof Let a be a loop in G which starts and ends at the unit. We need to show that the
action ˆa� Dˆ�.Œa�;�/W H�.LM/!H�.LM/ is trivial, where ˆa denotes the map
ˆ.a;�/. We also denote by ˆa the restriction map of the map ˆ.a;�/W LM! LM
to M � LM , where we regard M as the image of the map cW M ! LM which assigns
the constant loop.

We consider the following sequence of maps:

(45)
Hdim M .M /

ˆa�
//

c�
//

id�

&&
˚

Hdim M .LM/
ev�
// Hdim M .M /

As Hdim M .LM/ D Hdim M .M / D k , we obtain ˆa� D c� D id. Hence for any
x 2H�.LM/, we have by Lemma 6.3 the equality

ˆa�x Dˆa�.ŒM � ıx/D .ˆa�ŒM �/ ıx D x:

Therefore the action of �0.�G/ on H�.LM/ is trivial.

Proposition 6.4 Let k be a field. If the following conditions are satisfied, then the
action ˆ� is trivial.

(i) �1M D 1.

(ii) j�1Gj DW r <1.

(iii) The homomorphism H�.�M I k/!H�.LMI k/ induced by the inclusion map
�M ! LM is injective; that is, the free loop fibration �M ! LM !M is
totally noncohomologous to zero (TNCZ) with respect to the field k .

(iv) The characteristic of k is coprime to r .
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For the proof of Proposition 6.4, we use the following lemma by Hepworth.

Lemma 6.5 [9] Let G be a topological group acting continuously on a closed oriented
manifold M . Then the homomorphism ˆ0�W H�.�GI k/!H�.LMI k/ with

(46) ˆ0�Œa�D Œa� � ŒM �

commutes with the products, ie they satisfy

(47) ˆ0�Œa� ıˆ
0
�Œa
0�Dˆ0�.Œa� � Œa

0�/;

where the product on the right-hand side denotes the Pontrjagin product.

Proof of Proposition 6.4 We denote dim M by n below. Let a be a loop in G which
starts and ends at the unit. By the arguments in the proof of Proposition 6.2, we need
to show that ˆa�ŒM � is the unit in H0.LM/ for the triviality of the action of �0.�G/.
By the TNCZ assumption, we have the ring isomorphism

(48) H�.LM/ŠH�.�M /˝H�.M /;

hence we obtain the linear isomorphism

(49) Hn.LM/ Š
M

pCqDn

Hp.�M /˝Hq.M /:

By the assumption of �1M D 1, we have H0.�M /Š k , hence H0.�M /˝Hn.M /

is a 1–dimensional vector space, and we can put

(50) ˆa�ŒM �D x � 1C
X

i

yi � �i ˝ ıi ;

where

1D 1˝ ŒM � 2H0.�M /˝Hn.M /; �i 2H>0.�M /; ıi 2H<n.M /;

deg �i C deg ıi D n; x;yi 2 k:

We can see xD 1 as follows. We have a ring homomorphism induced by the evaluation
map ev�W H�.LM/!H�.M /. Hence we have

(51) ev�.�i ˝ ıi/D ev�.�i ˝ ŒM �/ ı ev�.1˝ ıi/:

Because the degree of �i is positive, the degree of �i ˝ ŒM � is larger than n, hence
ev�.��˝ ŒM �/ is equal to 0. Therefore, we obtain

ev�ˆa�ŒM �D x � ev� 1C
X

i

yi � ev�.�i ˝ ıi/D x � ev� 1:
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Moreover, we have the diagram

(52)

Hn.M /
ˆa�
//

id�

##
˚

Hn.LM/
ev�
// Hn.M /

Thus we have

(53) x � ŒM �D x � ev� 1D ev� ıˆa�ŒM �D ŒM �;

hence we obtain x D 1. Furthermore, we can show that the yi are all 0 as follows.
Because the ıi are all nilpotent, we have

(54) .ˆa�ŒM �� 1/N D 0

for sufficiently large N . By the assumption j�1Gj D r <1 and Lemma 6.5, we have

(55) .ˆa�ŒM �/r D .ˆ0�Œa�/
r
Dˆ0�Œa�

r
Dˆ0�Œ1�D 1:

Since the characteristic of k is coprime to r , the common divisor of .ˆa�ŒM �� 1/N

and .ˆa�ŒM �/r � 1 is ˆa�ŒM �� 1. Hence we conclude that the yi are all 0, which
implies ˆa�ŒM �D 1.

Example 6.6 We consider the case .M;G;G; k/D .S3;Spin.3/; �; k/, where

� D ha; b; c j a2
D b2

D c2
D .ab/2 D .bc/3 D .ca/5i

and k is an algebraic closed field whose characteristic is not 2, 3 or 5. The finite
group � acts on S3 and the quotient manifold S3=� is called the Poincaré homology
sphere. Then we have an algebra isomorphism

H�.L.S
3=�/I k/ŠH�.S

3
I k/˝Z.kŒ��/

ŠH�.S
3
I k/˝ k9:

Here we use the fact that if k is an algebraic closed field and G is a finite group, then
Z.kŒG�/Š kc.G/ , where c.G/ denotes the number of conjugacy classes of G .

Remark If k DQ, Vigué [21] shows that the following are equivalent.

(i) The homomorphism H�.�M I k/ ! H�.LMI k/ induced by the inclusion
�M ! LM is injective.

(ii) H�.M I k/ is a free graded commutative algebra.
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Remark For M D Sn or CPn , Menichi [16] shows that the following are equivalent.

(i) The homomorphism induced by the inclusion H�.�M I k/! H�.LMI k/ is
injective.

(ii) The Euler number �.M / is 0 in k .

Remark The necessary condition for the free loop fibration

(56) �M ! LM!M

to be the TNCZ fibration with respect to a finite field Fp has been studied for many
homogeneous spaces by Kuribayashi [13]. For example:

� For M D CPn or HPn , the fibration (56) is TNCZ if and only if the Euler
number �.M / is 0 in Fp .

� For M D SU.mC n/=SU.n/ or Sp.mC n/=Sp.n/, the fibration (56) is TNCZ
for any m; n� 0, p > 0.

� For SO.mCn/=SO.n/ and p > 2, the fibration (56) is TNCZ if and only if n is
odd.

� For SO.mCn/=SO.n/ and p D 2, the fibration (56) is TNCZ if m � 4 or
1�m� 8 and n� 43.

� For U.mCn/=U.m/�U.n/ and Sp.mCn/=Sp.m/� Sp.n/, the fibration (56)
is not TNCZ for any m; n� 0, p > 0.
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