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Topological equivalences of
E-infinity differential graded algebras

HALDUN OZGUR BAYINDIR

Two DGAs are said to be topologically equivalent when the corresponding Eilenberg—
Mac Lane ring spectra are weakly equivalent as ring spectra. Quasi-isomorphic
DGAs are topologically equivalent, but the converse is not necessarily true. As a
counterexample, Dugger and Shipley showed that there are DGASs that are nontrivially
topologically equivalent, ie topologically equivalent but not quasi-isomorphic.

In this work, we define E topological equivalences and utilize the obstruction
theories developed by Goerss, Hopkins and Miller to construct first examples of
nontrivially E topologically equivalent £, DGAs. Also, we show using these ob-
struction theories that for coconnective Eo IF,-DGAs, Eo, topological equivalences
and quasi-isomorphisms agree. For Eo, F,-DGAs with trivial first homology, we
show that an E, topological equivalence induces an isomorphism in homology that
preserves the Dyer—Lashof operations and therefore induces an H, IF,—equivalence.

18G55, 55P43, 55512, 55535, 55U99

1 Introduction

Dugger and Shipley [7] defined a new equivalence relation between associative differ-
ential graded algebras (which we call DGAs) that they call topological equivalences.
To define topological equivalences, they use the Quillen equivalence between R—-DGAs
and HR-algebras, where R denotes a discrete commutative ring; see Shipley [24].
Two R-DGAs X and Y are said to be fropologically equivalent if the corresponding
HR-algebras HX and HY are weakly equivalent as S—algebras, where S denotes the
sphere spectrum. Using Quillen equivalences in [24], it is easy to see that topologically
equivalent DGAs are Morita equivalent. Furthermore, topological equivalences appear
in one of the equivalent definitions of Morita equivalences of DGAs; see Theorem 1.4
of [7].

By the Quillen equivalence between R—DGAs and HR-algebras, two R—DGAs are
quasi isomorphic if and only if the corresponding HR—-algebras are weakly equivalent
as HR-algebras. Because the forgetful functor from HR-algebras to S—algebras
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preserves weak equivalences, it is clear that quasi-isomorphic DGAs are always topo-
logically equivalent. One of the main results of [7] is that there are DGAs that are not
quasi-isomorphic but are topologically equivalent. Such DGAs are called nontrivially
topologically equivalent. On the other hand, another theorem in [7] states that there
are no examples of nontrivial topological equivalences in Q—-DGAs; ie topologically
equivalent Q—DGAs are quasi-isomorphic. See Theorem 1.8 below.

Because there is also a Quillen equivalence between Eo, R—DGAs and commutative
HR-algebras (see Richter and Shipley [21]), topological equivalences for £ DGAs
can also be considered. Now we explain what we mean by topological equivalences
for DGAs and Eo, DGAs. For DGAs, we have the following definition of topological
equivalence.

Definition 1.1 Two R-DGAs X and Y are topologically equivalent if the correspond-
ing HR-algebras HX and HY are weakly equivalent as S—algebras. This is the same
as the definition of topological equivalence in [7].

The definition for topological equivalence of Eo, DGAs is the following.

Definition 1.2 Two Eo, R-DGAs X and Y are Eo fopologically equivalent if
the corresponding commutative HR-algebras HX and HY are weakly equivalent as
commutative S—algebras.

Our methods make use of obstruction theories for ring spectra. In [22], Robinson
develops an obstruction theory for showing existence of ring structures on spectra. This
obstruction theory is generalized for commutative ring spectra by Robinson in [23].
Based on the obstruction spectral sequence of Bousfield [4], Hopkins and Miller
developed another obstruction theory; see Rezk [20]. Their obstruction theory provides
an obstruction spectral sequence for calculating mapping spaces of ring spectra and
also an obstruction theory for showing the existence of ring structures on spectra.
This obstruction theory is generalized to commutative ring spectra by Goerss and
Hopkins [9]. In this work, we use the T—algebra spectral sequence of Johnson and
Noel [10], which is a generalization of the obstruction spectral sequence of Hopkins
and Miller, to calculate mapping spaces of commutative ring spectra.

In this work, we construct the first examples of nontrivially E, topologically equiv-
alent Eoo DGAs. One of these examples is in Eo F,—DGAs. This is particularly
interesting because one of the open questions in [7] asks if there are any examples of
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Topological equivalences of E-infinity differential graded algebras 1117

nontrivial topological equivalences of k—~DGAs for a field k. Our example provides
a positive answer to this question in Es, DGAs. Although there is an example of
nontrivial Es, topological equivalences over IF,,, our nonexistence results for Eso
topological equivalences hint that such examples are not common.

Before stating our nonexistence results, we note that topologically equivalent DGAs
have isomorphic homology rings. This is because the Quillen equivalence between
R-DGAs and HR-algebras gives an isomorphism between the homology ring of an
R-DGA and the homotopy ring of the corresponding ring spectra. Therefore, if X
and Y are topologically equivalent DGAs, then Hx(X) = mx(HX) = n«(HY) =
H.(Y), where the isomorphisms are ring isomorphisms and the isomorphism in the
middle is induced by the topological equivalence. The same is true for E, topological
equivalences, but as Example 5.1 indicates, the isomorphism of homology rings may
not preserve Dyer—Lashof operations. However, by Theorem 1.6, if X and Y are
E~ topologically equivalent Eo, F,—DGAs with trivial first homology, then the
isomorphism of homology rings induced by the E, topological equivalence preserves
Dyer-Lashof operations; ie it is an isomorphism of algebras over the Dyer—Lashof
algebra.

For coconnective Eoo Z/(m)-DGAs, we prove that there are no nontrivial Es topo-
logical equivalences where m is a nonunital integer (ie m € Z with m # +1). This
in particular implies that there are no nontrivial E, topological equivalences of
coconnective Eo, Z-DGAs.

Theorem 1.3 FE., topologically equivalent coconnective E~, 7 /(m)-DGAs are
quasi-isomorphic as Eso Z/(m)-DGAs. In other words, E~o topological equivalences
and quasi-isomorphisms agree for coconnective Eoo 7. /(m)—-DGAs.

There is an important class of examples for this theorem, namely the cochain com-
plex of a topological space with coefficients in Z/(m); this is the function spectrum
F(X*° X4, HZ/(m)) for a topological space X . Note that since we use homological
grading, the cochain complex of a space is coconnective. Moreover, Mandell’s re-
sult [13] states that finite-type nilpotent spaces are weakly equivalent if and only if their
cochain complexes with integer coefficients are quasi-isomorphic as Es, Z-DGAs.
Combining Mandell’s result with Theorem 1.3, we obtain the following corollary.

Corollary 1.4 Finite-type nilpotent spaces are weakly equivalent if and only if their
cochain complexes with integer coefficients are E, topologically equivalent.
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Remark 1.5 Itis also interesting to consider the following consequence of Theorem 1.3.
For a coconnective commutative S—algebra X, we use the Eo, connective cover
HmgX — X to obtain a map HZ — X which gives X a commutative H Z-algebra
structure. This says that there is an Eo, Z-DGA corresponding to a coconnective
commutative S—algebra. By this and Theorem 1.3, we deduce that weak equivalence
classes of coconnective commutative S—algebras are uniquely determined by the quasi-
isomorphism classes of the corresponding Eo, Z—DGAs.

In Example 5.1, we construct Eo, F,—DGAS that are nontrivially £, topologically
equivalent. Therefore, it is not possible to generalize Theorem 1.3 to all Eo Fp—DGAs.
However, for Eo Fp—DGAs with trivial first homology, we have the following result.

Theorem 1.6 Let X and Y be Eo F,—DGAs with trivial first homology group. If X
and Y are Eo topologically equivalent, then they are equivalent as Ho, IFp—algebras.
Furthermore, an S—algebra equivalence between HX and HY induces an isomorphism
of the homology rings that preserves Dyer—Lashof operations.

We actually prove a stronger result. Theorem 7.1 states that for Ho, HIFp—algebras
with trivial first homotopy, Hs, S—algebra equivalence implies Ho, HIFp—algebra
equivalence.

The condition of trivial first homology is due to the fact that the dual Steenrod algebra
is generated by an element of degree 1 as a ring with Dyer—Lashof operations. Again
by Example 5.1, this condition cannot be removed from this theorem.

Remark 1.7 In [11], Lawson produces examples of Hy, S—algebras whose Heo S—
algebra structures do not lift to commutative S—algebra structures. One of the interme-
diate results of [11] states that Theorem 7.1 is still true without the restriction on the
first homotopy, but Example 5.1 contradicts this. The examples of spectra constructed
in [11] are coconnective. Therefore, Theorem 7.1 recovers the main result of [11]. We
elaborate on this in Section 7.

The proof of the nonexistence theorem in [7] for Q—DGAs also works for £, Q-DGAs.
We obtain the following.

Theorem 1.8 (E ) topologically equivalent (E~) Q—-DGAs are quasi-isomorphic.
That is, ( Ex ) topological equivalences and ( E~) quasi-isomorphisms agree in ( Eoo)
Q-DGA:s.
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In Section 2, we explain the examples of nontrivial topological equivalences given
in [7], and in the appendix, we make a correction to a mistake in the construction of
these examples. Section 3 discusses the obstruction spectral sequences that we will
use for calculating mapping spaces of ring spectra, and Section 4 describes the dual
Steenrod algebra and the Dyer—Lashof operations on it. Section 5 is devoted to our
examples of nontrivial E, topological equivalences. Section 6 contains the proof of
Theorem 1.3, and Section 7 contains the proof of Theorem 1.6.

Notation As noted earlier, for a commutative ring R, when we say R—-DGAs we mean
associative R—DGAs. Similarly, for a commutative ring spectrum R, by R-algebras
we mean associative R—algebras. A smash product without a subscript A denotes the
smash product over the sphere spectrum. The category of spectra we use is symmetric
spectra in topological spaces with the positive model structure as in Mandell, May,
Schwede and Shipley [14].

Acknowledgements The author would like to thank his thesis advisor Brooke Shipley
for her guidance, advice and financial support over the years. I also would like to thank
Michael Hopkins for suggesting Goerss—Hopkins—Miller obstruction theory for the
purpose of studying topological equivalences, and Paul Goerss for showing me the
version of this obstruction theory that I use in this paper. Finally, I would like to thank
Benjamin Antieau for his helpful advice over the years I worked on this project.

2 Previous examples of topological equivalences
In this section, we discuss the examples of nontrivial topological equivalences in [7].

Example 2.1 There are exactly two non quasi-isomorphic DGAs whose homology is
AF, (x2p—2), the exterior algebra over IF), with a single generator in degree 2p—2, and
these DGAs are topologically equivalent. Therefore, they are nontrivially topologically
equivalent. For p = 2, one of these DGAs is the formal one, and the other one is given
by

Zley:dey =2]/(e}), where |er| = 1.

This example is constructed by classifying weak equivalence classes of Postnikov

extensions which are obtained using topological Hochschild cohomology. However,
this construction in [7] contains a gap. The weak equivalences classes calculated
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in [7] are weak equivalence classes of Postnikov extensions. This in general may not
correspond to weak equivalence classes that should be considered here, namely the
weak equivalence classes of H Z—algebras. In the appendix, we explain this in detail
and correct the mistake in [7] by showing that these two equivalence classes agree for
this particular example.

Example 2.2 The second example of Dugger and Shipley has a simpler construction.
They start with HZ A HF, and give this S—algebra two H Z-algebra structures using
themaps HZ =~ HZAS —- HZANHF, and HZ ~SAHZ — HZ N HF;. These two
H Z—algebras are not weakly equivalent but their underlying S—algebras are the same.
This means that we have two DGAs that are not quasi-isomorphic but are topologically
equivalent. In Theorem 5.3, we provide a generalization of this example in Es, DGAs.

3 Obstruction theories for ring spectra

For a commutative S—algebra X, a commutative H Z-algebra structure on X is given
by amap HZ — X of commutative S—algebras. In other words, the category of com-
mutative H Z—algebras is the category commutative S—algebras under H Z . Therefore,
it is natural to consider the maps from HZ to a commutative S—algebra X for the
purpose of studying Eo topological equivalences. For this, we employ an obstruction
spectral sequence to calculate homotopy class of maps in commutative ring spectra.

The obstruction spectral sequence we use relies on Bousfield’s obstruction spectral
sequence [4]. The first application of Bousfield’s obstruction theory to ring spectra
was in the Hopkins—Miller theorem; see [20]. The obstruction theory of Hopkins
and Miller is for associative ring spectra. It is used for showing existence of ring
structures on spectra and for calculating mapping spaces of ring spectra. Hopkins and
Miller use this obstruction theory to show that the Morava stabilizer group acts on the
Morava E-theory spectrum E, . Later, Goerss and Hopkins generalized this theory to
commutative ring spectra [9].

Johnson and Noel generalized the obstruction theory of the Hopkins—Miller theorem to
calculate mapping spaces of algebras over a general monad in a model category in [10].
This is called the T—algebra spectral sequence.

Generalizing the obstruction theory of the Hopkins—Miller theorem to commutative
ring spectra is not trivial because of the following problem. For a spectrum X and a
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homology theory E, corresponding to another spectrum E, if E.X is flat over Ey,
then E.T(X) is the free associative Ex—algebra over E, X, where T (X) is the free
associative ring spectrum over X . For commutative ring spectra, one uses the free
commutative ring spectra functor Pg, but E4«Pg(X) may not have a nice description,
even under the above flatness assumption. However, for calculating mapping spaces
of commutative H[Fp—algebras one uses the fact that Py, (X)x is the free unstable
algebra over the Dyer—Lashof algebra generated by X.. Noel uses this with the
results of [10] and constructs a spectral sequence that calculates mapping spaces
of commutative HIF,—algebras; see Proposition 2.2 of [18]. More generally, his
spectral sequence calculates mapping spaces of commutative H k—algebras for any
field k. Using the adjunction between commutative S—algebras and commutative HIF,—
algebras, we obtain the following spectral sequence from Noel’s spectral sequence.

Theorem 3.1 [18, Proposition 2.2] Let X be a commutative S—algebra and let Y be
a commutative HF,—algebra. Given a map ¢: X — Y of commutative S—algebras,
there is a spectral sequence abutting to 7;—s mapg_caj,(X, Y), where S—cAlg denotes
commutative S—algebras. The E, term of this spectral sequence is given by

ES’O = HomR—alg(HFp*X» Yy),
and fort > 0,
E3" = Derly_y,(HF,, X, Y5,

where Der%_alg (—, —) denotes the s™ André—Quillen cohomology for unstable alge-
bras with Dyer—Lashof operations [19], YS" denotes the mapping spectrum from
the t—sphere to Y and Homp_,s(HTF,, X, Y«) denotes morphisms preserving Dyer—
Lashof operations.

Obstructions to lifting a morphism in E g %t0a morphism of commutative S—algebras
lie in Dery_y,(HFp, X, YS"™") fort > 2.

Obstructions to up-to-homotopy uniqueness of a lift lie in Der%_alg(H Fp, X, YS t) for
r>1.

Proof The adjunction between commutative S—algebras and commutative HIF,—
algebras gives

mapS—cA]g(X7 Y) = mapHIFp_cA]g(H]Fp ANX,Y).

Therefore, the setting of Noel’s spectral sequence that calculates the homotopy groups
of mapy,_.a1.(HFp A X,Y) provides us the spectral sequence above.
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Noel’s spectral sequence is a special case of the T—algebra spectral sequence of [10].
Therefore, Theorem 4.5 of [10] gives us the obstruction theoretical results. O

4 Dyer-Lashof operations and the dual Steenrod algebra

For a commutative ring spectrum R, we denote the free commutative algebra functor
from R-modules to commutative R—algebras by Pr. This functor is homotopically
well behaved and induces a monad on Ho(R—mod), and the algebras over this monad
are called Ho, R—algebras. Therefore, an E, algebrais an H, algebra. The converse
to this is shown to be false by counterexamples in [17] and [11].

Dyer-Lashof operations are power operations, just like the Steenrod operations, that
are constructed in a way to act on the homotopy ring of Ho, HI,—algebras in [5].
Equivalently, they act on the homology ring of Hoo F,—~DGAs. Indeed, the category of
Hoo HIFp—algebras is equivalent to the category of graded commutative rings over [,
with Dyer—Lashof operations satisfying the allowability and p" power conditions,
which are called unstable algebras over the Dyer—Lashof algebra; see the discussion in
Section 3 of [11].

For each integer s, there is a Dyer—Lashof operation denoted by Q°. These operations
are preserved under Ho, HT,—algebra morphisms and hence Eo, HIFj,—algebra mor-
phisms. The operation Q° increases the degree by 2s(p — 1) for odd primes and by s
for p = 2. For an element x in the homotopy ring of a commutative H,—algebra,
the unstable Dyer—Lashof operations satisfy the following properties (the properties
for p = 2 are given in parentheses):

Q’x =0 for 2s < |x]| (for s < |x]),
Q’x =x? for 2s = |x]| (for s = |x]),
Q°1=0 for s #0.

Also, these operations satisfy the Cartan formula and the Adem relations as in Chap-
ter III, Theorem 1.1 of [5].

As mentioned earlier, for X a commutative H[Fp—algebra, Pyy,(X)« is the free
unstable algebra over the Dyer—Lashof algebra generated by X .

Theorem 4.1 [1] Py, (X)x« is the free commutative graded FFp—algebra generated
by QIXj, where the x; form a basis for X« and I = (e1,11,€2,...,€n,iy) Is admissi-
ble and satisfies excess(/) + &1 > |x;]|.
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The definition of admissibility and excess can be found in [15].

Dual Steenrod algebra Now we discuss the dual Steenrod algebra and the Dyer—
Lashof operations on it. The dual Steenrod algebra is first described by Milnor in [16]
and the Dyer-Lashof operations on it are first studied in Chapter III of [5]. We
also recommend [2]. The dual Steenrod algebra A, =~ HI, HI), is a free graded
commutative [F,—algebra. For p = 2, it is given by two different standard sets of
generators

Av=TFaltr |r = 1] =Faltr | r 2 1],

where || = |{| = 2" — 1. The transpose map of the smash product applied to
HI, N HIF,, induces an automorphism of the dual Steenrod algebra denoted by y.
The reason we have two different set of generators above is to keep track of the
action of y. We have y(&,) = {,. The generating series §(t) =1+, £-1%" and
¢(t)=t+, .4 {rt?" are composition inverses in the sense that {(£(2)) =t =£({(1)).
This in particu_lar shows that & = (.

Since commutative H [F,—algebras form the category of commutative S—algebras under
HT,, we can give HF, A HIF), two different commutative H [F,—algebra structures
using the maps

We call these maps g; and g, respectively. We denote the Dyer—Lashof operations
induced on A, from the first structure map by Q° and the second structure map by Qs.

Since the transpose map induces an isomorphism of commutative H[F,—algebras, y
preserves the corresponding Dyer—Lashof operations; ie y(Q°x) = Q* x(x). For p=2,
A is generated as an algebra over the Dyer—Lashof algebra by &, and we have

Q25_2§1 = for s>1.
By using the fact that y preserves Dyer—Lashof operations, one obtains
(325_251 =§& for s> 1.
For an odd prime p, the dual Steenrod algebra is given by
As =T, |r > 1@ A(ts | s> 0) =Fp[r | r > 1] @ A(Ts | s > 0),

where |&,| = |{| =2(p" — 1) and |t5| = |Ts| = 2p® — 1. The action of the antipode
map is given by (&) = ¢, and y(z,) = 7. We use the following formula to relate
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the two set of generators for the dual Steenrod algebra; see Section 7 of [16] and the
proof of Lemma 4.7 in [2]:

_ _ ps—l _ ps—z _
(1) Ts+fs—1§1 +Ts—2§2 +"'+T0§s+fs =O

The dual Steenrod algebra is generated by tp as an algebra over the Dyer—Lashof
algebra. We have the following formulae for the Dyer—Lashof operations for s > 1:

Q(Ps—l)/(P—l).L—O = (-1)°%;,
BRIy = (—1)%¢;.

More can be found on the Dyer—Lashof operations on the dual Steenrod algebra in [2]
and in Chapter III of [5].

5 Examples of nontrivial E,, topological equivalences

SA Examples in E,, F,-DGAs

Here, we discuss the first examples of Eo, DGAs that are not quasi-isomorphic but
are E topologically equivalent, ie nontrivially Eo, topologically equivalent.

The first example we construct is in Eo F,—DGAs. By the equivalence of Eoo Fp—
DGAs and commutative H IF,—algebras, constructing nontrivially topologically equiva-
lent Eoo Fp—DGAs is the same as constructing commutative H[F,—algebras that are
not weakly equivalent as commutative H I,—algebras but are weakly equivalent as
commutative S—algebras.

As we noted earlier, commutative HIF,—algebras form the category of commutative
S—algebras under HIF,,. There is a model structure induced on the undercategory,
where the weak equivalences, cofibrations and fibrations are precisely the same as for
commutative S—algebras.

In our example, we start with a commutative S—algebra X and induce two differ-
ent commutative HIF,—algebra structures on this object by providing two different
commutative S—algebra maps from HIF, to X . Clearly these two commutative HF,—
algebras are weakly equivalent (even isomorphic) as commutative S—algebras. We show
that these two commutative H [F,—algebras are not weakly equivalent as commutative
HTFp—algebras by showing that their homotopy rings are not isomorphic as algebras
over the Dyer—Lashof algebra. By the discussion of Section 4, this shows that these
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nontrivially E«, topologically equivalent Eoo F,—DGAs are furthermore not equivalent
as Hoo Fp—DGAs.

Example 5.1 For an odd prime p, the Eo F,—DGAs we produce have the same
homology ring, given by Ag,[70,&1,71]/(t0o71, T1€1, T0§1 — 71), Where the degrees
of the generators are those of the dual Steenrod algebra, ie |79| =1, |£1| =2(p—1)
and |t1| = 2p — 1. However, the homology groups of these Eo, F,—DGAs are not
isomorphic as algebras over the Dyer—Lashof algebra. In one of them, Q! (7)) = 11,
and in the other, Q' (z9) = 0. Therefore, these two Eoo F,—DGAs are not equivalent
as Hoo Fp,—DGAs, and therefore they are not quasi-isomorphic.

For p = 2, the homology ring of the two E topologically equivalent Eo, F2—DGAs
is Fa[&1]/ (Ef), where |1 = 1 as in the dual Steenrod algebra. In the homology
of the first Eoo F2-DGA, Q?(£1) = &3, and in the other one, Q?(§1) = 0. Again,
these two Eo, F2—DGAs are not quasi-isomorphic because their homology rings are
not isomorphic as algebras over the Dyer-Lashof algebra, and therefore they are not
equivalent as Hoo F2—DGAs.

First, we discuss our example for p = 2. For this, we are going to use Postnikov
sections for commutative ring spectra. These were first introduced in Section 8 of [3]
for studying Postnikov towers of commutative ring spectra. The n'" Postnikov section
of a connected commutative ring spectrum Z is a map Z — P, Z that induces an
isomorphism on 7;(Z) — 7; (P, Z) for i <n and for which n; P,Z =0 for i > n.
Let HF; A HFy — P3(HTF, A HIF,) be the third Postnikov section of HIF, A HIF, as
a commutative S—algebra. We have 7. (P3(HF2 A HF2)) = Fa[£1, £/ (E]. €2, 6162)
with |&1] =1 and |&,| = 3, ie the dual Steenrod algebra quotiented out by the ideal of
elements of degree 4 and higher. By using Lemma 5.2, we kill the element & f’ + &
in m«(P3(HIF, A HIF,)), and then taking the third Postnikov section, we obtain
another commutative S—algebra X with (X)) =F,[&1, &] /(éf, 522, £162, $13 + &)=
Falé1]1/ (€ f). The reason we kill & 13 +&; is because it is equal to ¢, in the dual Steenrod
algebra; this follows from the generating series we discuss in Section 4. Note that for
Lemma 5.2, one can use the commutative H [Fp—algebra structure on P3(HIF, A HTF,)
induced by the map HF, AS — HIF» A HFy, — P3(HTF> A HIF).

Furthermore, we have a map P3(HTF, A HF;) — X with the induced map on the
homotopy rings being the canonical one. By precomposing this map with the map
into the Postnikov section HIF» A HF, — P3(HIF, A HIF,), we obtain a map of
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commutative S—algebras f: HFF, A HF, — X. We construct two commutative
S—algebra maps from HIF, to X as shown in the diagram below:

HFQ%HFz/\S

g1
@) HF> A HF, — 5 X
HF,~SAHF, °©
The maps g; and g, induce two commutative H [Fp—algebra structures on X . The com-

mutative H [Fp—algebra with unit f o g is denoted by X; and with unit f o g, by X5.

As we discuss in Section 4, HF, A HIF, can be given two commutative H [Fp—algebra
structures through the maps g; and g», and we call the two associated commutative
HFy—algebras Y1 and Y>. The Dyer-Lashof operations on 7«(Y7) are denoted by Q°
and the Dyer-Lashof operations on 7« (Y2) are denoted by Q* as in Section 4.

Because morphisms in commutative H [Fy—algebras are morphisms of commutative
S—algebras under HIF,, from the map f alone we obtain two H[F—algebra maps
g: Y1 — X1 and h: Y — X». These maps induce maps that preserve Dyer—Lashof
operations in the homotopy rings, and we use this to understand the Dyer—Lashof
operations on m(X1) and m«(X>2). On 74 (X1),

Q*(61) = Q®(gx(£1)) = gx(Q*(61)) = gx(L2) =L =] + £ = 0.
On 7.(X>3),
Q% (1) = Q*(h« (1)) = ha(Q*(£1)) = ha(E2) = &2 £ 0.

Therefore, m4«(X1) and m«(X>) are not isomorphic as algebras over the Dyer-Lashof
algebra as desired.

For odd primes p, the construction of an example is similar. By (1) in Section 4,
71 = 101 — 11. Therefore, one can use Lemma 5.2 to kill 7o& — 71, which kills Qlz.
The rest of the arguments follow similarly.

Lemma 5.2 Let X be a connective commutative HIF,—algebra with mo(X) =F, and
wi(X) =0 fori >n. Given x € m,(X), there is a commutative S—algebra Y and a
map of commutative S—algebras X — Y which induces the morphism X, — X/ (x)
on the level of homotopy groups.

Proof Let the HIF,—module map X" HF, — X represent x. By adjunction and by
applying the n™ Postnikov section functor, we obtain the map P, (Pyr, (X" HFp)) —
Pp(X) =~ X. The homotopy ring 7«(Pgr, (X" HFp)) is the free unstable algebra
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over the Dyer—Lashof algebra generated by an element of degree n. Therefore, we
obtain that 7« (Pn(Pyr, (3" HFp))) = Af,[xn], where |x,| = n. Let Z denote
Pn(Pyy, (X" HIFp)). The required Y is P,(HF, Az X), where HIFj is a commuta-
tive Z—algebra by the map Z — PoZ = HF,.

The homotopy groups of HIF, Az X can be calculated using the Kiinneth spectral
sequence whose E? page is TorAFﬁ Lxn] (Fp, X+). We want to show that m«(HF, Az X)
and Fp ® A, [x,] X+ agree for degree less than n + 1.

There is a standard resolution of I, over A, [x,] which is Ek”A]F [xx] at homolo-
gical degree k. Therefore, we have TorAFP [x”](IFP, X«)=0for k>0and [ <n,

and hence the only terms that contribute to wi(HFp, Az X) for i <n are in EO -

Since the differentials on these terms hit the second quadrant, they are zero. We
obtain m; (HF, Az X) = Tor&?ﬂ[x”](IFp,X*) =~ (Fp Ay, X«)i for i <n. Be-
cause [F, ® Awp[xa] X« 1s concentrated in degrees between 0 and n, we have .Y =~
T+ (Pn(HFp Az X)) = TFp ®Ag, Xx. Since the image of x, in mx(X) is x, we
have 4 Y = Fp @A, Xx = 74 (X)/(x),and X — Y induces the desired morphism
m+X — 1w« X /(x) on the homotopy ring. For this lemma, we forget the HF, structure
and use the corresponding commutative S—algebra map X — Y. |

SB Examples in E,, Z-DGAs

Now we discuss examples of nontrivial £, topological equivalences in Es, Z-DGAs.
Theorem 5.4 below gives a general scenario where examples of nontrivially Eo
topologically equivalent Eo, Z-DGAs occur. We start with Theorem 5.3, which
provides examples that have a simple construction. This theorem uses the construction
of the example of Dugger and Shipley that we discuss in Example 2.2 above. For Es
DGA:s, this construction is generalized to odd primes.

Theorem 5.3 Let X and Y denote the commutative H Z—algebras whose underly-
ing commutative S—algebras are H7 N HIF, and whose commutative H Z—algebra
structures are respectively given by the maps

H7Z =HZAS— HZANHF, and HZ=SANHZ— HZAHTF,.

These commutative H Z—algebras X and Y are not weakly equivalent. Since the
underlying commutative S—algebras of X and Y are the same, we deduce that the
E~ Z-DGAs corresponding to X and Y are not quasi-isomorphic but are E, topo-
logically equivalent.
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Proof Assume that X and Y are weakly equivalent as commutative H Z-—algebras.
Taking cofibrant and fibrant replacements, we assume that there is a weak equivalence
¥: X = Y of commutative H Z-algebras. This means that there is the following
diagram in commutative S—algebras:

(3) (D¢ HZ Yy

U(X) 4 > U(Y)

Here, U denotes the forgetful functor to commutative S—algebras and ¢y and ¢y
denote the commutative H Z-algebra structure maps of X and Y, respectively. Note
that by the Kiinneth spectral sequence,

Taking the HF, homology of the diagram above, we obtain the following:

HF, HZ
) HFp.ox HFp oy

H]Fp*l/f

HF,, HZ &, HF, HF, s HF, HZ Qp, HF,, HF,

With this identification, HIF, ¢x(x) = x ® 1. Similarly, we have HF, U(Y) =
HFp HZ ®F, HFp HFp and HF, ¢y (x) = 1 ® x. As noted earlier, the canonical
map HF, HZ7Z — HIF, HTF, is an inclusion, and HF,, HZ is a free commu-
tative ring generated by the same generators as HIF,, HIF, except 9. The only
degree-1 element in HF, HZ ®p, HF, HF), is 1 ® 79, and since HFp ¥ is an
isomorphism, this is mapped by HF, ¥ to 1 ® 9. Since Q'(1® 10) = 1 ® 71, we
have HF, ¥ (1 ® T1) =1 ® 71. However, the commutativity of the triangle forces
HT, v (t1®1) =1®7;, which contradicts the injectivity of HIF, v . Thus, X and Y
are not equivalent as commutative H Z-algebras. The argument for p =2 is similar. O

Theorem 5.4 Let X be either an Eo, IF,—DGA for an odd prime p that satisfies
(1) HiX=0fori=1andi>2p>—4,
(2) H;X #0 foreitheri =2p—1ori =2p—2,
or an Eo, F,—DGA that satisfies
(1) HX=0fori=1andi >4,
(2) HiX #0 fori =2.

For such an X, there exists an Eo, Z—DGA that is E, topologically equivalent to X
but not quasi-isomorphic to X .

Algebraic € Geometric Topology, Volume 18 (2018)



Topological equivalences of E-infinity differential graded algebras 1129

Indeed, we show that the Eo, Z-DGA we construct in the proof of the above theorem
is not quasi-isomorphic to any Eo F,—-DGA.

It is clear that Eo, IF,—DGAs that satisfy the conditions of this theorem exist. One can
start with a graded commutative ring that satisfies the above conditions and use the
corresponding formal commutative [F,—DGA.

Remark 5.5 A special case of the above theorem gives the example of Dugger and
Shipley that we discuss in Example 2.1. For this, one uses the formal commutative
F>—DGA with homology the exterior algebra with a generator in degree 2 for X.
Moreover, our theorem provides a generalization of this example. We start with an X
as described in the p =2 case above and let Y be the Eo, Z-DGA we produce in the
proof. Then X and Y are not quasi-isomorphic as associative Z-DGAs although they
are topologically equivalent; ie X and Y are nontrivially topologically equivalent as
associative DGAs.

Proof To produce our Eo Z-DGA, we start with an X as above and construct a
commutative S—algebra map ¢y: HZ — U(X) using obstruction theory, where U is
the forgetful functor to commutative S—algebras. This gives us a new commutative
H 7Z—algebra Y whose underlying commutative S—algebra is U(X). Obstruction theory
gives us control over the map induced by ¢y on the HI, homology. Using this and
Dyer-Lashof operations, we show that Y is not weakly equivalent as a commutative
H Z—algebra to any commutative H I,—algebra.

We describe our example when p is an odd prime and H;,1X # 0. The case
H>p 2 X # 0 is similar. We explain the p = 2 example at the end.

For the obstruction spectral sequence of Theorem 3.1, we use the composite map
H7Z — HF, XU (X) as a basepoint, where the map ¢x is the HF, structure
morphism of X. Using this basepoint and by setting up the obstruction spectral
sequence to calculate the commutative S—algebra maps from HZ to X, we obtain
that obstructions to lifting a morphism of unstable algebras over the Dyer—Lashof
algebra in

E>® = Hompg_ug(HF, ,HZ, X+)
to a commutative S—algebra map from HZ to U(X) lie in the cohomology groups

DerfR—alg(HFp*HZ, X*SH) for t > 2.
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Here, X S denotes the mapping spectrum from the (¢—1)-sphere S’~! to X.
In Lemma 5.6 below, we show that these groups that contain the obstructions are
trivial. Therefore, every map in Homp_u,(HF,, HZ, X4) lifts to a commutative
S—algebra map.

The canonical morphism HF, HZ — HIF,, HIF, is an injection and the image of
this morphism is the free commutative algebra generated by ¢; and 7; for i > 1 when p
is odd. For p = 2, the image is generated by 512 and {; for i > 1. Since the above
inclusion comes from a map of commutative H IF,—algebras, it preserves Dyer-Lashof
operations. This says that the Dyer—Lashof operations on HI, HZ are those of
HE, HF,.

To construct the commutative S—algebra map ¢y: HZ — U(X) that defines Y as
desired, we start with any morphism f in Eg’o = Homp_ao(HFp HZ, X) that
maps 71 to anonzero element in H>,_1X and use the lift of this map to a commutative
S—algebra map. Here, ¢y being a lift of f means that the map

idAgy
HF, A HZ 2% HF, AU(X) — U(X)

induces f in homotopy, where the second map is given by the HI,—module structure
map of X.

At this point, we need to show that the Es, Z—DGAs corresponding to X and Y
are not quasi-isomorphic; ie X and Y are not weakly equivalent as commutative
H Z—algebras. Assume that they are weakly equivalent over H Z. We start with an X
that is cofibrant and fibrant as a commutative H I,—algebra. Therefore, Y is also
fibrant as a commutative H Z-algebra because the underlying commutative S—algebra
of Y is the underlying commutative S—algebra of X. Our X is also cofibrant as
a commutative H Z—algebra since we use a cofibrant HIF,, so that the initial map
HZ7Z — HF, — X is a composition of two cofibrations. Recall that cofibrations of
commutative H IF,—algebras are those of commutative H Z-algebras. Therefore, we
have a weak equivalence of commutative H Z-algebras ¥: X = Y. That is, we have
the following commuting diagram in commutative S—algebras:

HZ —
5
) 2 HTF, o
UX) = UY) < id U(X)
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From the above diagram, by applying the H[F, homology functor, we obtain the
following diagram:

HF, HZ
HF, oy HF, HIF), .
(6) PxPX
HF, X < H]F;*'/’ \HFP*X
:

Therefore, all the morphisms in this triangle preserve Dyer—Lashof operations. The
bottom left arrow is induced by the H[F,—module structure map of X . This is a
morphism of commutative H IF,—algebras, therefore the bottom left vertical arrow also
preserves Dyer—Lashof operations operations. In conclusion, all the arrows in this
diagram preserve Dyer—Lashof operations.

The composition of the vertical arrows on the left gives the map f as chosen above.
Therefore, 71 in HIF, , HZ is mapped to a nonzero element in X, by the composition
of the vertical arrows. Because the triangle above commutes, if we travel 7; through
the diagonal arrow to HIF, HIF, and then to X, we see that 71 in HIF, HI, must
also be mapped to a nonzero element in X . Because 71 X is trivial, 7o in HF, HIF),
is mapped to zero in X,. However this, and the fact that T, = —BQ! 1o imply that T
in HF, HI, is mapped to zero in X4. This contradicts f(7;) # 0. Therefore, Y
and X are not weakly equivalent as commutative H Z-algebras.

For the case Hzp—2X # 0, we use an f in Homp_ao(HIF,, HZ, X,) that maps {;
to a nonzero element in 72, X . Since Qlry = —{1, the rest of the argument follows
similarly.

For p =2, we start withan " in Homp_ue(HF24 H Z, X ) that maps élz in HF» HZ
to a nonzero element in 77, X . Note that £ 12 in HF,, HZ is a free algebra generator and
¢1 & HF HZ . The arguments are similar but we do not use Dyer—Lashof operations
in this case. Again considering diagram (6), & 12 in HF», HIF, is mapped to a nonzero
element in 715 X but since 71 X = 0, we have that &; is mapped to zero, and this is a
contradiction. Since we haven’t used Dyer—Lashof operations, we may consider the
underlying associative H Z-algebras of X and Y and the above arguments still work;
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ie the associative Z—DGAs corresponding to X and Y are nontrivially topologically
equivalent.

What is left to prove is the following lemma which says that the obstructions in the
above setting for lifting f to a map of commutative S—algebras are zero. a

Lemma 5.6 In the setting of Theorem 5.4,

Der%—alg(HFP*HZ’Xft_l) =0 fort=>2.

Proof We describe the odd prime case; the proof is similar for p = 2. Let Fr({1,71)
denote the free unstable algebra over the Dyer—Lashof algebra generated by two
elements whose degrees are the degrees of the corresponding generators in the dual
Steenrod algebra. The free unstable algebra over the Dyer—Lashof algebra is described
in Theorem 4.1. The lowest-degree generator of Fr ({1, 7;) after {1 and 77 is BQP{q,
with degree 2p? —3. Note that HF, . HZ has no free algebra generators in this degree,
showing that HF,, H7 cannot be the free unstable algebra over the Dyer—Lashof
algebra generated by {1 and 7;. However, also note that HIF,,  H7 agrees with
Fr(¢1,71) up to degree 2p? — 4. Therefore, the morphism Fr({1,71) — HF,, HZ
which preserves Dyer—Lashof operations maps ¢; to {1 and T; to Tp is an isomorphism
up to degree 2p? — 4.

Furthermore, considering the free simplicial resolution of these objects as unstable
algebras over the Dyer—Lashof algebra, we get a morphism

FRPU (Fr(81. 7)) — Fy Y (HE,, HZ)

of simplicial unstable algebras over the Dyer-Lashof algebra. Up to degree n > 0,
Fr(M) only depends on the part of the vector space M up to degree n. Therefore,
the morphism above is an isomorphism up to degree 2p? — 4 at each simplicial degree.

Let the functor

t—1 t—1
Derp ag(— X3 ) =mapr_yox, (— X2 )

denote the degree-preserving derivations that preserve Dyer—Lashof operations. Since
X5 """ is concentrated in degree 2p? — 4 and below, this functor depends only on the
input up to degree 2p? — 4. Therefore, the morphism of simplicial sets above induces
an isomorphism

1

. -1 R _ _
DerR—alg(FR+1(HFp*HZ)vXft );DerR—alg(FR+1(FR(§1,fl))’Xft )
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In cohomology, this induces the isomorphism
—1 — -1
Der%—alg(H]FP*HZ’ XJ )= Der%—alg(FR(é'l, 7). X357 )=0 fort>0.

The last equality follows because André—Quillen cohomology of a free object is trivial
above degree 0. |

6 Proof of Theorem 1.3

To prove Theorem 1.3, we need to show that two coconnective commutative H Z /(m)-
algebras that are weakly equivalent as commutative S—algebras are also weakly equiva-
lent as commutative H Z /(m)-algebras for any m € Z with m # +1.

Since the category of commutative H Z /(m)-algebras is the category of commutative
S—algebras under HZ/(m), for our purpose, it is natural to consider the homotopy
class of commutative S—algebra maps from HZ/(m) to a coconnective HZ /(m)—
algebra X . We omit the forgetful functor to commutative S—algebras and denote this
by 7o mapg_ a1 (HZ/(m), X). We show in Proposition 6.1 that there is a unique
homotopy class of maps in mapg_c;,(HZ/(m), X). The proof of Theorem 1.3 is
based on this fact.

Proof of Theorem 1.3 Let X and Y be coconnective commutative H Z /(m)—algebras
that are weakly equivalent as commutative S—algebras. We assume X and Y are
cofibrant and fibrant as commutative H 7Z/(m)—algebras. Recall that cofibrations,
fibrations and weak equivalences of commutative H Z /(m)-algebras are precisely
those of commutative S—algebras. Therefore, X and Y are also fibrant as commutative
S—algebras. Furthermore, they are also cofibrant commutative S—algebras because
the initial map S — U(X) factors as a composition of two commutative S—algebra
cofibrations as S «— HZ/(m) — U(X), where U denotes the forgetful functor to
commutative S—algebras.

Since X and Y are weakly equivalent as commutative S—algebras and they are cofibrant
and fibrant as commutative S—algebras, there is a weak equivalence of commutative S—
algebras v: U(X) = U(Y). Let ox: HZ/(m) — U(X) and ¢y: HZ/(m) — U(Y)
denote the commutative S—algebra maps that are the HZ /(m) structure maps of X
and Y, respectively. Since i is only a commutative S—algebra map, it may not preserve
the HZ/(m) structure; ie ¥ o ¢x is not necessarily equal to ¢y .
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Let Y’ be the commutative HZ/(m)-algebra whose underlying commutative S—algebra
is U(Y) and whose HZ/(m) structure map is ¥ o ¢x . With this HZ/(m) structure
of Y’, the map vy becomes a weak equivalence of commutative H Z /(m)—algebras
from X to Y'. Therefore, it is sufficient to show that Y’ and Y are weakly equivalent
as HZ/(m)-algebras.

By Proposition 6.1, 7o mapg_ca,(HZ/(m),Y) = {x}. Therefore, py and ¥ o gx,
the structure maps of ¥ and Y’ respectively, are homotopic. A homotopy between gy
and V¥ o @x is given by the following diagram:

Yy
U®y)
R
(M HZ/(m) — UY)!
Uy)=U®")
Yopx

Here, U(Y)! denotes a path object of U(Y). This is a diagram in commutative
S—algebras. However, if we give U(Y)! a commutative H Z/(m)-algebra structure
using f and call this commutative HZ/(m)-algebra Z, then p; becomes a weak
equivalence of commutative H Z/(m)-algebras from Z to Y, and p, becomes a weak
equivalence of commutative H 7 /(m)-algebras from Z to Y’. Therefore, ¥ and Y’
are weakly equivalent commutative H Z /(m)-algebras and so are ¥ and X. O

What is left to prove is the following proposition.

Proposition 6.1 For a coconnective commutative H 7 /(m)-algebra X , the mapping
space maps_cajo(HZ/(m), X) is contractible.

We use the obstruction spectral sequence to show that all the homotopy groups of
this mapping space are trivial. However, since we work over a general Z /(m) where
m may not be a prime, we do not have a description of the E, page of the spectral
sequence as in Theorem 3.1. It turns out that it is sufficient to consider the E; page
only. For this purpose, we use the spectral sequence in Theorem A of [10], which we
can do by Corollary 4.13 of [10]. Because X is a commutative H Z /(m)—algebra, there
is a map of commutative S—algebras HZ/(m) — U(X) that serves as a basepoint for
this spectral sequence.
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In this setting, the £ page of this spectral sequence is given by
EY' =7y mapg i (PET (HZ/(m)), X),

where the homotopy groups are calculated at the given basepoint; see the proof of
Theorem A of [10]. This spectral sequence abuts to

Tt—s mapg_ . (HZ/(m), X).

The free commutative S—algebra functor induces a monad in the homotopy category of
S—modules and let hPg denote this monad. We use that the Eg % term of this spectral
sequence is given by

EJ° = Homyp_qg(HZ/(m), X),

which denotes morphisms of algebras over hlPs in S—modules. Note that Eg % term
of this spectral sequence is just a set.

Proof We will show that in the above spectral sequence, E f’t =0 for t > 0 and
Eg 0= pt. This is sufficient to show that the homotopy groups of the mapping space
are trivial.

We start by showing that Eg % — 0. We have the following isomorphisms for E ?’O
that we explain below:
0,0
El =T mapSchlg(PS (HZ/(WI)), X)

= o mapSfmod(HZ/(m)’ X)

= HOHlmeod(HZ*HZ/(m), Xx)

= HomZ—mod(Z/(m), XO)-
The first isomorphism follows by adjunction. For the second isomorphism, we use
the universal coefficient spectral sequence of Theorem 4.5 in Chapter IV of [8] with
respect to the homology theory H Z .. This works because X is an H Z-module by

forgetting the H Z /(m)-module structure through the map H7Z — HZ/(m). For this
spectral sequence, we have

EP? =Bxty U (HLZHL/(m). Xx). df,: EZT — EJTH7+1
where p denotes the cohomological degree and —g denotes the internal degree; partic-

ularly, it denotes the Ext groups calculated by considering the maps that increase the
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degree by —¢g. This spectral sequence abuts to

TT—(p+q) mapS—mod(HZ/(m)v X)

Since Z has global dimension one, Eé’ 1 = 0 for p > 1 and therefore all differentials
are zero and the only terms that contribute to mg are Eg % and Ezl’_1 . Note that by
Proposition 1.2 in Chapter IV of [8], HZHZ/(m) is connective. Therefore, there is
a projective resolution of HZ. H 7 /(m) that is connective in each resolution degree.
From such a resolution, there are no maps of degree 1 to the coconnective object X.
Hence, Ezl’_1 = 0. This proves the second isomorphism. By the Tor spectral sequence
of Theorem 4.1 in Chapter IV of [8], HZoH Z/(m) = Z/(m). The third isomorphism
follows from this because X is coconnective.

By the description of the Eg 0 above, a morphism in E ?’0 that lifts to Eg % should
preserve the multiplicative identity. Since Z/(m) is generated as an abelian group by 1,
there is only one such morphism in E$:% =~ Homy_,q(Z/(m), Xo). Furthermore, we
know that this morphism lifts to the £9 term because it is represented by a morphism
which is an actual commutative S—algebra map HZ /(m) — X which is our basepoint.
In conclusion, Eg 0 = pt.

Now we will show that E f’t =0 for r > 0. Again by adjunction, we have

EY' = mapg o, (Pg™ (HZ/(m)). X)
>~ 1y mapg,mod(Pé (HZ[(m)), X).

There is a spectral sequence for calculating homotopy groups of the homotopy orbit of
a spectrum with an action of a group G :

Using this spectral sequence, it is clear that the homotopy orbit spectrum of a connective
spectrum is connective. Therefore, Pg(Y') is connective when Y is because Pg(Y) is
wedges of homotopy orbits of ¥ with respect to the action of the symmetric group.
This means that Pg(H Z/(m)) is connective. Since X is coconnective by hypothesis,
we have

7 maps moq(PS(HZ/(m)), X) =0 for t>0

by Proposition 1.4 in Chapter IV of [8]. O
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7 Proof of Theorem 1.6

In this section, we prove the following theorem.

Theorem 7.1 Let X and Y be Hoo HIF,—algebras with trivial first homotopy groups.
If X and Y are equivalent as H, S—algebras, then they are equivalent as Hoo HTF,—
algebras.

This is a slightly stronger result than Theorem 1.6. If two E DGAs are E, topo-
logically equivalent, then the corresponding ring spectra are commutative S—algebra
equivalent and therefore Ho, S—algebra equivalent. Therefore, Theorem 1.6 is a
corollary of Theorem 7.1.

Remark 7.2 As mentioned in Remark 1.7, one of the intermediate results of [11],
Proposition 5, states that Theorem 7.1 is still true for Ho, HIF,—algebras with nontrivial
first homology and this contradicts Example 5.1. The proof of Proposition 5 of [11]
ends by stating that the canonical map

3 [PHIFP (M), M]H]prmod — [Ps(M), M]s_mod

between homotopy classes of maps in H[F,—modules to S—modules is injective,
where M is an HIF,—module. This says that Ho, HIF,—algebra structure maps forget
injectively to Hs, S—algebra structure maps. However, this does not imply the desired
result since one needs to consider Hoo, HIFp—equivalences and Hso S—equivalences
between different Ho, HT,—algebra and Hy, S—algebra structures on M .

In the proof of Theorem 7.1, we use the following facts about H, algebras which can
be derived using the results of [5]. In the items below, X denotes an Ho, HI,—algebra.

(1) A morphism of H, S—algebras induces a map of rings in the homotopy groups.

(2) The structure map uy: HF, A X — X induced by the HI,—-module structure
on X is a map of Hy, HIF,—algebras. Therefore, this map preserves Dyer—
Lashof operations on the homotopy ring.

(3) There is an equivalence HFF, A X = (HF, A HFp) AgF, X . Using this, we
obtain the identification w4 (HF, A X) = A, ®F, X« . Note that the Dyer—Lashof
operations on Ay ®F, X4 are not those of the tensor product because the HTF),
structure on HIF, A X is given by multiplication with the HIF, factor on the
left. With this identification, py , is given by ux,(a®x) =ax ifa € Ag =F),
and puy,(a®x)=0ifa e A; fori > 0.
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(4) The unit map nx: SAX — HIF, A X satisfies ux o ny = id. However, nx is
only a map of Hy, S—algebras and it may not preserve Dyer—Lashof operations in
the homotopy ring. By the identification of m«(HIF, A X') above, the morphism
induced by ny on the homotopy ring is given by nx,(x) =1 ® x.

Proof of Theorem 7.1 Let ¢: X — Y be an equivalence of Hy, S—algebras. This
implies that @, is an isomorphism of rings. We will show that ¢ induces an equivalence
of Hy HIFp—algebras by showing that ¢« preserves Dyer-Lashof operations. This
is sufficient because an Ho, HIp—algebra equivalence type is determined by the
isomorphism class of its homotopy ring as an algebra over the Dyer—Lashof algebra;
see Theorem 4 in [11] and the discussion after it.

We have the following diagram:
x —% vy
Lo Lo
©) HF, AX “2% HEF, AY
lu«x luy
X Y
Applying the homotopy functor to this diagram produces the following:

\L"X * \LnY *

(10) A ®F, Xo —L5 Ay ®F, Vs

\L:U«X * \LMY *

The middle horizontal morphism ¥ is the morphism induced on the homotopy groups
by id A ¢. Because we do not assume ¢ to be a map of Ho, HIF,—algebras, ¥
may not be induced by two morphisms on the tensor factors. However,  preserves
Dyer-Lashof operations because it is the morphism in HIF, homology induced by ¢.

The top square in diagram (10) commutes because it is induced by the commutative
square in diagram (9). Although the bottom square is not induced by a commuting
square, we show that it also commutes. For this purpose, we need to know more about
the Dyer—Lashof operations on A, ®F, Xx.

We have the map

HFp NHFp = (HFp A HFp) Agw, HFp — (HFp A HFp) AgF, X = HEp A X
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induced by the map of Ho, HF,—algebras HF, — X . This is a map of Hoo HEF)—
algebras when the HF, multiplication on HF, A HTF, is given by that of the HTF),
factor on the left. Therefore, the morphism Ay — Ax ®F, X« induced on the homotopy
groups preserves Dyer—Lashof operations. This says that on Ax ®p, {1} € Ax ®F, Xx,
Dyer—Lashof operations are given by the ones on the dual Steenrod algebra, that is,

Q) =Qa)R1.

Now we show that the bottom square in diagram (10) commutes. We first show this
for elements of the form a ® x € Ax ®p, X« with |a] > 0. By the description
of uyx, in the paragraph before this proof, we have uy,(a ® x) = 0 and therefore
0% 0 x «(@ ® x) = 0. Therefore, our goal is to show that puy, o ¥(a ® x) = 0.
Let 79 denote the degree-1 element in 4, that generates it as an algebra over the
Dyer-Lashof algebra (this element is called &; for p = 2). Because 7;(Y) =0, we
have puy, o ¥ (to ® 1) = 0. Since uy, o ¥ is a morphism of rings that preserves
Dyer-Lashof operations, py, o ¥(a ® 1) = 0 whenever |a| > 0. Therefore, when
la| >0,

py«ov(@®x) = (uysoy(@®1)-(uy, oy (1®x)) =0.

After this, we just need to show that the bottom square in diagram (10) commutes for
elements in A ®F, X of the form a ® x, where a € A9 =T, . Clearly, it is sufficient
to work only with the elements of the form 1 ® x. By the description of py, in the
paragraph before this proof, we have @« o iy (1 ® x) = @« (x). Therefore, our goal
is to show that uy, o ¥ (1 ® x) = p«(x). Because the top square in diagram (10)
commutes, we deduce that

(11) Y@ x) =¥ (nx.(xX) =Ny «(@x(x)) = 1 ® ¢ (x).
Using this, we obtain what we wanted to show:
1y« 0P (1 ®x) = py (1 ® g« (x)) = @a(x).

At this point, we know that the bottom square in diagram (10) commutes and we are
ready to show that ¢« preserves Dyer-Lashof operations. Given x € X, we have

0+(Q°x) = x(Q’pux (1 ® X)) = @s 0 ux (A (1 ® X)) = py 4 0 Y(Q* (1 ® x)).

Therefore, we need to show that uy ., o ¥ (Q°(1 ® x)) = Q%¢«(x). This is given by
the following chain of equalities

py oY (Q(1®x)) =Quy (Y1 ®x)) =Q uy.(1®¢«(x)) = Q px(x).
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The first equality follows because both i and py, preserve Dyer—Lashof operations
and the second equality follows by (11). Since ¢« preserves Dyer—Lashof operations, it
induces an isomorphism between X, and Y, as algebras over the Dyer—Lashof algebra
and therefore X and Y are equivalent as Ho, HIF,—algebras. O

Appendix

In Section 2, we discuss the first class of examples of nontrivial topological equivalences
provided in [7]. These examples rely on the classification of Postnikov extensions of
ring spectra developed in [6]. In this appendix, we point out a mistake in the construction
of these examples and provide a correction which recovers the classification of quasi-
isomorphism classes of Z-DGAs with homology ring Af,(x,) for n > 0, ie the
exterior algebra with a single generator in a positive degree.

Let R be a connective commutative ring spectrum. We first explain the classification
of Postnikov extensions of connective (trivial negative homotopy groups) R-algebras
developed in [6]. For a connective R—algebra X, the n™ Postnikov section of X is a
map of R-algebras X — P, X which induces an isomorphism on 7; (X) — 7; (P X)
for i <n and with 7;(P,X) =0 for i > n. Given a connective R—algebra Y with
P,_1Y ~Y and a 7o(Y)-bimodule M, a Postnikov extension of Y of type (M, n)
is a map of R-algebras X — Y which satisfies the following properties:

1) mi(X)=0fori>n.
(2) 7 (X)— m;(Y) is an isomorphism for i <n.

(3) There is an isomorphism of 7y (X )-bimodules 7, (X) = M, where mo(X)-
bimodule structure of M is obtained by the map 7o(X) — mo(Y).

The moduli space of Postnikov extensions of Y of type (M, n), which we denote by
MRg(Y 4+ M, n), is defined to be the category whose objects are Postnikov extensions
of Y of type (M, n), and a morphism between two extensions X; — Y to X, — Y is
a weak equivalence X; —> X, for which the following triangle commutes:

X ———— X»

NS

The main result of [6] is a classification of these Postnikov extensions in terms of
topological Hochschild cohomology.
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Theorem A.1 [6] Assuming X is cofibrant as an R—module, we have a bijection

moMR(X + M,n) = THHR (X, M) /Aut(M).

This result is used in [7] to classify weak equivalence classes of Z—DGAs with homology
ring A, (xn), the exterior algebra over IF, with a single generator in degree n for
n > 0. Any such DGA is a Postnikov extension of [, of type (F,,n). By the
Quillen equivalence of Z-DGAs and H Z-—algebras, this is the same as classifying
H 7Z—algebras with homotopy ring Ap,(x,), and such H Z-algebras are Postnikov
extensions of HIF, of type (HIF,,n) in H Z—algebras.

At this point, we note the piece of explanation that is missing in [7] about this clas-
sification. In [7], it is claimed that weak equivalence classes of H Z—algebras whose
homotopy ring are A, (x,) are classified by moMpz(HF, + HFp,n). However in
Mpuz(HF,+ HF,, n), the morphisms are weak equivalences of Postnikov extensions;
ie for two Postnikov extensions of HIF, of type (HF,,n), namely X1 — HF, and
X> — HF,, a morphism in Mgz (HF, + HIF,,n) is a weak equivalence of HZ—
algebras X; = X, for which the triangle above commutes. In the classification
we are concerned with here, a morphism of two Postnikov extensions is just a weak
equivalence of H Z-algebras X1 = X». In general, one should not expect these two
classifications to be the same. However, in this case we will show that they are actually
the same. Unfortunately we cannot use simple point set arguments to prove this, even if
we work with Z-DGAs instead of H Z—algebras, because one needs to use a cofibrant
and fibrant H Z-algebra model of HIF,, and also because we need the same result
over S—algebras, not only for H Z-algebras.

We prove that these two classifications are the same by first showing that there is
a unique homotopy class of H Z-algebra maps from X to HIF,. We prove this in
Lemma A.3 by using the obstruction theory of the Hopkins—Miller theorem. Using
this fact, we prove that moMpz(HIF, + HIF,,n) actually classifies weak equivalence
classes of H Z-algebras with homotopy ring Ap, (xz).

Proposition A.2 The set moMpyz(HF, + HIF,,n) is in bijective correspondence
with weak equivalence classes of H Z—algebras with homotopy ring A, (x,) for n > 0.
This statement holds for S—algebras too. Namely, the set moMs(HF, + HIF,,n) isin
bijective correspondence with weak equivalence classes of S—algebras with homotopy
ring Af, (xn) forn > 0.
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Proof We will only prove the statement for H Z—algebras. The proof is similar for
S—algebras; the only important difference is that one uses the second part of Lemma A.3
instead of the first part.

Since up to weak equivalence there is a unique H Z-algebra with homotopy [,
concentrated at degree 0, every H Z-algebra with homotopy ring A, (xp) is a Post-
nikov extension of HIF, of type (HF,,n). Given two such Postnikov extensions
¢1: X1 — HF, and ¢2: X2 — HT)p, if these extensions are weakly equivalent in
Mpuz(HF, + HF,,n) then they are clearly weakly equivalent as H Z—-algebras. We
need to show that when these Postnikov extensions are weakly equivalent as HZ—
algebras, they are also weakly equivalent in Mpz(HF, + HF,,n).

Let X; and X, be weakly equivalent as H Z—algebras, we show that ¢; and ¢, are
weakly equivalent in Mpz(HF, + HIF,,n). We assume that X; and X, are both
fibrant and cofibrant and HIF), is fibrant as H Z-algebras.

Because X and X, are weakly equivalent as H Z—algebras and because X is cofibrant
and X» is fibrant, there is a weak equivalence of H Z-algebras ¥: X; — X». Using
this weak equivalence, we define another Postnikov extension of HIF,, of type (HIF,, n)
which is the composite g20v: X1 — HI),. This Postnikov extension, g0/, is weakly
equivalent to ¢, in Mpz(HF, + HF,,n) through . Therefore, it is sufficient to
show that ;0 is weakly equivalent to ¢y in Mpyz(HF,+HF,,n). By Lemma A.3,
there is a unique homotopy class of maps from X7 to HIF,. Therefore, ¢1 and ¢ 0y
are homotopic. We have the following diagram in H Z-algebras which corresponds to
a homotopy between these maps, where X A I is a path object of X;:

X1

The map X1 A I — HIF, in the above diagram is also a Postnikov extension of
type (HIF,,n) of HIF, because it factors ¢; by a weak equivalence. Therefore,
the above diagram gives a zig-zag of weak equivalences between ¢; and ¢, o ¥
in Mgz (HF, + HF,,n). This shows that ¢; and ¢, are weakly equivalent in
Muz(HF, + HF,,n). m
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At this point, we are ready to provide the classification of weak equivalence classes of
H Z—algebras with homotopy ring Af, (x,) for n > 0 and hence quasi-isomorphism
classes of Z-DGAs with homology ring A, (x,) for n > 0. By Proposition A.2
and Theorem A.1, this is given by THH"H+ZZ(H Fp, HF,)/Aut(Fp). As described in
Example 3.15 of [7], THH}, ,(HF,, HF,) = Fp[o2], a polynomial algebra with a
generator in degree 2 (with cohomological grading). Calculating the quotient of F,[03]
by the multiplicative action of F,, one obtains the following classification: for odd
n >0, there is a unique H Z-algebra with homotopy ring A, (x»), and for even n >0,
there are exactly two H Z—algebras that are not weakly equivalent whose homotopy ring
is Af,(xn). For n = 0, this classification says that there are two Postnikov extensions
of HF, of type (HF,,0) and these are HZ/p? and HAF, (xo).

Similarly, weak equivalence classes of S—algebras with homotopy ring A, (x,) are
given by THHE "> (HF,, HFp)/Aut(F,). In this case, THHE (HF,, HF,) =T'[a2] as
rings, where I'[or2] is the divided polynomial algebra on a generator of degree 2 which
is isomorphic to [F,[02] as an F,—module; see Theorem 13.4.15 in [12]. Therefore, we
get a similar classification result: there are exactly two S—algebras that are not weakly
equivalent with homotopy ring A, (x,) for odd n > 0 and there is only one for even
n>0.

What we are really interested in here is deciding which of these non-weakly equivalent
H 7Z—algebras are weakly equivalent as S—algebras. For this, one considers the map

THH} (HF,, HF,) — THHE " (HF,, HF))

induced by the forgetful functor from H Z-algebras to S—algebras. This corresponds
to a morphism of rings ¢: Fp[02] — ['[a2], where ¢ maps o2 to ay because HZ/p?
and HAF,(xo) are not weakly equivalent as S—algebras. Since af =0 in I'[oz],
we have @(Uf ) = 0. This implies that the two non-weakly equivalent H Z—algebras
corresponding to azp and 0 are weakly equivalent as S—algebras. These are the first
example of nontrivial topological equivalences from [7]. That is, there are two Z—
DGAs that are not weakly equivalent with homology ring Af,(x2p—2) which are
topologically equivalent.

To complete the proof of Proposition A.2, we need to prove the following lemma.
Let X denote an H Z-algebra or an S—algebra with homotopy ring 7«(X) = A, (x)
for |x,| > 0.
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Lemma A.3 If X is an HZ-algebra as above, we have

7o MaPpy7,_q,(X, HFp) = pt.
For an S—algebra X as above, we have

7o maps_,, (X, HFp) = pt.

Proof Hopkins—Miller obstruction theory states that obstructions to lifting a morphism
in Eg,o =Homp, _ag(7+« HFp Aprz X, Fp) to amap of H Z-algebras lie in the André-
Quillen cohomology for associative algebras,

E;’t_l = Der' (n« HFp Az X, Q' 'Fp) for t > 2,
and obstructions to homotopy uniqueness of the lift lie in
EY' =Der' (n. HF, Az X, Q'Fp,) for t > 1.

The desuspension functor Q% is defined by Q5 My, = M, for a graded module M.
By the Kiinneth spectral sequence, mo HIF, Agz X = [Fj,. Therefore, there is only a
single map in Homp,, (n«HIFFp, Az X,Fp) because these morphisms preserve the
identity and the grading. To show that the obstructions to existence and uniqueness are
zero, first note that by the Kiinneth spectral sequence, 7w« HF, Agz X is connected and
Q'F, is in negative degrees for ¢ > 0. Thus Der(F**!(n s HFp Az X), Q'Fp) =0
for t+ > 0, where F denotes the free associative algebra functor. Therefore, the
cohomology of this cosimplicial abelian group is also zero. This proves the desired
result. The argument for the homotopy class of maps in S—algebras is similar, the only
difference is that one uses 7« HIF, As X instead of nx HF), Agz X . O
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