${ }_{T}^{G G}$

ALgebraic \& Geometric Topology

Volume 23 (2023)

Groups acting on CAT(0) cube complexes with uniform exponential growth

RadHIKA GUPTA
KASIA JANKIEWICZ
THOMAS NG

Groups acting on CAT(0) cube complexes with uniform exponential growth

Radhika Gupta
KASIA JANKIEWICZ
Thomas Ng

Abstract

We study uniform exponential growth of groups acting on $\mathrm{CAT}(0)$ cube complexes. We show that groups acting without global fixed points on CAT(0) square complexes either have uniform exponential growth or stabilize a Euclidean subcomplex. This generalizes the work of Kar and Sageev that considers free actions. Our result lets us show uniform exponential growth for certain groups that act improperly on CAT(0) square complexes, namely, finitely generated subgroups of the Higman group and triangle-free Artin groups. We also obtain that nonvirtually abelian groups acting freely on CAT(0) cube complexes of any dimension with isolated flats that admit a geometric group action have uniform exponential growth.

20E07, 20F65, 20F67; 57M60

1 Introduction

In this article, we continue the inquiry to determine which groups that act on $\operatorname{CAT}(0)$ cube complexes have uniform exponential growth. Let G be a group with finite generating set S and corresponding Cayley graph $\operatorname{Cay}(G, S)$ equipped with the word metric. Let $B(n, S)$ be the ball of radius n in $\operatorname{Cay}(G, S)$. The exponential growth rate of G with respect to S is defined as

$$
w(G, S):=\lim _{n \rightarrow \infty}|B(n, S)|^{1 / n}
$$

The exponential growth rate of G is defined as

$$
w(G):=\inf \{w(G, S) \mid S \text { is a finite generating set }\} .
$$

We say a group G has exponential growth if $w(G, S)>1$ for some (hence every) finite generating set S. A group G is said to have uniform exponential growth if $w(G)>1$. The reader is referred to de la Harpe's book [26] for more details on growth of groups.

[^0]Many groups of exponential growth are known to have uniform exponential growth, for instance, nonelementary hyperbolic groups (Koubi [36]), relatively hyperbolic groups (Xie [56]), solvable groups (Alperin [2] and Osin [46]), nontrivial amalgamated free products and HNN-extensions (Bucher and de la Harpe [27]), one-relator groups (Grigorchuk and de la Harpe [20]), linear groups over a field of characteristic zero (Eskin, Mozes and Oh [18]), and many hierarchically hyperbolic groups (Abbott, Ng, Spriano, Gupta and Petyt [1]). The first examples of groups with exponential growth that do not have uniform exponential growth were introduced by Wilson [54].

Kar and Sageev showed that if a group acts freely on a CAT(0) square complex, then either it has uniform exponential growth or it is virtually abelian [35]. We generalize the result of Kar and Sageev by removing the assumption of a free action. By semisimplicity of cubical isometries - see Haglund [23, Theorem 1.4] - freeness of the action implies that the group is torsion-free. Wise shows, however, that groups acting geometrically on CAT(0) cube complexes need not even be virtually torsion-free [55, Section 9]. We show that even if the group contains elliptic elements, we can still get uniform exponential growth.

Theorem A Let G be a finitely generated group acting without global fixed point on a $C A T(0)$ square complex X. Then either G has uniform exponential growth with $w(G) \geq \sqrt[600]{2}$ or G stabilizes a flat or line in X.

See Section 2 for the definition of a flat. In the setting of groups acting properly on CAT(0) square complexes, stabilizing a flat can be upgraded to virtually abelian.

Corollary 5.3 Let G be a finitely generated group that acts properly on a $\operatorname{CAT}(0)$ square complex. Then either G has uniform exponential growth with $w(G) \geq \sqrt[600]{2}$, or G is virtually abelian.

Most known results on uniform exponential growth can be shown by producing a constant $M>0$ such that in any generating set there exists a pair of elements with word length at most M that generate a free semigroup or subgroup.

Definition 1.1 (N-short subgroup) Let G be a finitely generated group, with a finite generating set S. We say that a sub(semi)group H in G is N-short with respect to S, if there exists a finite collection of words with S-length at most N that generate H. We say G contains a uniformly N-short H, if for every finite generating set S there exists a copy of H in G that is N-short with respect to S.

Existence of uniformly N-short free subgroups or free semigroups in a group G immediately gives the uniform bound $w(G) \geq \sqrt[N]{2}$; see Alperin and Noskov [3, Proposition 2.4]. This was used by Grigorchuk and de la Harpe [19, Section (A)] to show uniform exponential growth of torsion-free hyperbolic groups. Their work builds upon work of Gromov [21, Theorem 5.3(E)] that was proved by Delzant [15, théorème I].

We say that a group G has locally uniform exponential growth if there is a constant $w_{0}>1$ such that every finitely generated subgroup H of G either has $w(H) \geq w_{0}$ or H is virtually abelian. This property is sometimes called "uniform uniform exponential growth". In the setting of groups acting properly on CAT(0) cube complexes, this is closely related to the strong Tits alternative of Sageev and Wise [51, Theorem 1.1] for a given subgroup H. Such bounds on the growth of subgroups have been shown by Mangahas for the mapping class group [38], depending on the complexity of the surface, and by Kar and Sageev for groups acting freely on square complexes [35]. The bounds on exponential growth in this paper are also uniform over finitely generated subgroups with dependence only on the dimension of the cube complex. We remark that bounds on uniform exponential growth need not pass to subgroups. For example, the free product of two copies of Wilson's group has $w(G) \geq \sqrt[4]{2}$ coming from its action on its Bass-Serre tree.

The proof of Theorem A relies on constructing a hyperbolic isometry with uniformly bounded word length from pairs of elliptic isometries of a 2 -dimensional cube complex. Our construction also works for a 3-dimensional cube complex.

Proposition 4.3 Let a and b be a pair of isometries of a CAT(0) cube complex X of dimension two or three. Then either
(1) there exists a hyperbolic element in $\langle a, b\rangle$ whose length in a, b is at most L, where L is a constant that only depends on $\operatorname{dim}(X)$, or
(2) $\langle a, b\rangle$ fixes a point in X.

If X is 2 -dimensional, then $L=12$.

We use the fact that the Burnside groups $B(2,2)$ and $B(2,6)$ are finite in the proof of Proposition 4.3. However, this means that we cannot use our proof to obtain a similar result in higher dimensions. It remains open whether the above proposition holds in higher dimensions.

In this article, we also impose extra conditions on the cube complex to show uniform exponential growth for groups acting on cube complexes of arbitrary dimension. In particular, we show the following (see Section 2.5 for definition of a CAT(0) cube complex with isolated flats).

Theorem B There exists a constant $w_{d}>1$ depending only on $d \in \mathbb{N}$ such that the following holds. Let X be a CAT(0) cube complex of dimension d with isolated flats that admits a geometric group action. For any finitely generated group G acting freely on X, either $w(G) \geq w_{d}$ or G is virtually abelian.

Note that if the action of the group G on X is free and geometric then G is relatively hyperbolic. Uniform exponential growth for relatively hyperbolic groups was proved by Xie [56]. However, we obtain bounds on growth depending only on the dimension of X rather than hyperbolicity constants. Moreover, our result shows that G has locally uniform exponential growth, which is new.

In the proof of Theorem B, we use a variation of work of Jankiewicz [33] (see Proposition 3.4) on cubical dimension of small cancellation groups (see Lemma 2.14). If instead of isolated flats, we impose the condition of hyperbolicity on our CAT(0) cube complex X, then we can use the same proof strategy as for Theorem B to relax the requirement of a geometric group action to a weakly properly discontinuous (WPD) action.

Proposition 3.7 There exists a constant $w_{d}>1$ depending only on $d \in \mathbb{N}$ such that the following holds. Let X be a $C A T(0)$ cube complex of dimension d that is hyperbolic. For any finitely generated group G acting freely and weakly properly discontinuously on X, either $w(G) \geq w_{d}$ or G is virtually infinite-cyclic.

Similar results on uniform exponential growth for groups acting on hyperbolic spaces have been obtained before. In [8, Theorem 13.1] Breuillard and Fujiwara show that if G is a finitely generated group of isometries of a Gromov hyperbolic space, then either the exponential growth rate is bounded from below by a positive constant depending on the joint minimal displacement and the hyperbolicity constant or G fixes a pair of points in the boundary. Before that, Besson, Courtois and Gallot showed that given $a>0$ and $n \in \mathbb{N}$, there is a constant $c(n, a)>0$ such that if M is a complete Riemannian manifold of dimension n with pinched sectional curvature $\kappa_{M} \in\left[-a^{2},-1\right]$ and Γ is a finitely generated discrete group of isometries of M then either $w(\Gamma)>e^{c(n, a)}>1$ or
Γ is virtually nilpotent [5, Theorem 1.1]. The action of hyperbolic manifold groups and more generally δ-hyperbolic groups is so nice that it is even possible to exhibit uniformly short free subgroups; see Dey, Kapovich and Liu [16, Theorem 1.1] and Koubi [36, Théorème 5.1].

A feature of our results is that they depend only on the dimension of the cube complex. Our results may be useful in understanding the cubical dimension of finitely generated groups as in work of Jankiewicz [33].

Besides groups that act properly on $\mathrm{CAT}(0)$ cube complexes, the results here allow us to give the first proofs of uniform exponential growth for several groups that admit improper actions on CAT(0) square complexes. We show that information about vertex stabilizers can be leveraged to give bounds on exponential growth.

Corollary 6.1 Suppose G is a finitely generated group that acts by isometries on a CAT(0) square complex X such that finitely generated subgroups of the vertex stabilizers are either virtually abelian or have uniform exponential growth bounded below by $w_{0}>1$. Then for any finitely generated subgroup $H \leq G$, either
(1) H has uniform exponential growth with $w(H) \geq \min \left\{\sqrt[600]{2}, w_{0}\right\}$, or
(2) H is virtually abelian, or
(3) H stabilizes a flat or line in X.

In particular, this lets us expand the list of acylindrically hyperbolic groups that are known to have locally uniform exponential growth. In particular, we show that the Higman group and Artin groups with triangle-free defining graphs have locally uniform exponential growth; see Theorem 6.2 and Theorem 6.4.

Organization

In Section 2, we review background on cube complexes, CAT(0) spaces with isolated flats, past results related to building free semigroups and uniform exponential growth in cube complexes. In Section 3, we prove Theorem B and Proposition 3.7. In Section 4, we construct uniformly short hyperbolic isometries in any action on a cube complex of dimension at most 3 without global fixed point. This is the key tool needed to prove Theorem A and Corollary 5.3 in Section 5. We go on to prove locally uniform exponential growth of the Higman group and triangle-free Artin groups in Section 6, where we prove Corollary 6.1.

Acknowledgements

The authors are grateful to Talia Fernós for helping to clarify the statement of Theorem A and the referee for helpful corrections. Gupta would like to thank Michah Sageev, Mark Hagen and Giles Gardam for helpful conversations. She was partially supported by Israel Science Foundation grant 1026/15 and EPSRC grant EP/R042187/1. Ng would like to thank Dave Futer, Sam Taylor and Matthew Stover for their guidance and support on this project. He would also like to thank Carolyn Abbott and Davide Spriano for bringing our attention to the Higman group. Ng was partially supported by NSF grant DMS-1907708, ISF grant 660/20, an AMS-Simons travel grant, and at the Technion by a Zuckerman Fellowship. Ng and Jankiewicz would like to thank the members of a virtual reading group - Yen Duong, Carolyn Abbott, Teddy Einstein and Justin Lanier - for helpful conversations on [35]. The authors acknowledge support from US National Science Foundation grants DMS 1107452, 1107263, 1107367 RNMS: geometric structures and representation varieties (the GEAR Network). The authors would also like to acknowledge the conference Graphs, surfaces, and cube complexes, which was part of the 2017-2018 Warwick EPSRC Symposium, where we started this collaboration.

2 Background

In this section we review fundamentals of cube complexes and past results on building free semigroups using $\operatorname{CAT}(0)$ cube complexes. For more basics on CAT(0) cube complexes see Sageev's notes [50].

2.1 Cube complexes and hyperplanes

Let X be a $\operatorname{CAT}(0)$ cube complex. Let $\operatorname{Isom}(X)$ denote the collection of cubical isometries of X. We will assume that any isometric group action on X does not invert hyperplanes. This is achieved by cubically subdividing X once. We denote the fixed point set of a cubical isometry $a \in \operatorname{Isom}(X)$ by $\operatorname{Fix}(a) \subseteq X$. If two points x and y are fixed by a, then the $\operatorname{CAT}(0)$ geodesic joining them is also fixed by a. Therefore, $\operatorname{Fix}(a)$ is a connected and convex subspace of X (with respect to the CAT(0) metric).

Convex subcomplexes of CAT(0) cube complexes are particularly well-behaved. CAT(0) cube complexes are often regarded as high-dimensional generalizations of trees because convex subcomplexes satisfy the Helly property - that is, any collection of pairwise intersecting convex subcomplexes have nonempty intersection.

A natural family of convex subspaces are hyperplanes. A hyperplane is a subspace that separates the complex into two distinct half spaces by cutting every cube it intersects in half. We denote a hyperplane in X by $\hat{\gamma}$. Let $\mathcal{H}(X)$ denote the collection of all hyperplanes of X. For a subcomplex A of X, let $\mathcal{H}(A)$ be the collection of hyperplanes of X that separate a pair of points in A. Note that when A is convex with respect to the CAT(0) metric these are all the hyperplanes that intersect A. A path joining two vertices of X is called a combinatorial geodesic if it is a path of minimum length in the 1 -skeleton of X joining the two points. Note that every edge in a combinatorial geodesic uniquely corresponds to a hyperplane separating the vertices.

Definition 2.1 (cubical convex hull) Let A be a subspace of X. The cubical convex hull of A, denoted by $\mathrm{cHull}(A)$, is the smallest convex subcomplex of X containing A.

Hyperplanes give the cube complex a wallspace structure in the sense of Haglund and Paulin [24]. This wallspace structure produces a dual cube complex from a collection of hyperplanes of X using Sageev's construction [49]; see [50, Lecture 2] for more details. Since hyperplanes encode combinatorial geodesics in a cube complex, the hyperplanes that cross a subcomplex determine its cubical convex hull. We record this observation.

Observation 2.2 Let A be a subcomplex of X. Then the subcomplex $\operatorname{cHull}(A)$ is isomorphic to the cube complex dual to $\mathcal{H}(A)$.

We say that two subcomplexes $A, B \subset X$ are parallel when there exists $p \geq 0$ such that $A \times[0, p]$ embeds isometrically in X such that $A \times\{0\}=A$ and $A \times\{p\}=B$. In light of Observation 2.2, hyperplanes can be used to detect when two convex subcomplexes are parallel.

Lemma 2.3 [31, Lemma 2.8; 32, Lemma 2.7] Two convex subcomplexes are parallel when they are dual to the same hyperplanes. Moreover, they are equal if and only if there are no hyperplanes separating them.

2.2 Isometries of CAT(0) cube complexes and their associated subcomplexes

Let X be a finite-dimensional CAT(0) cube complex. Given a hyperplane $\hat{\kappa}$ of X and g a hyperbolic isometry of X, we say g skewers \hat{h} if for some choice of halfspace $\hat{\kappa}$
associated to $\hat{\kappa}$ we have $g^{p} \kappa \subset 反$ for some $p \geq 1$. Such a p can be taken to be at most $\operatorname{dim}(X)$. Equivalently, g skewers \hat{h} if any $\operatorname{CAT}(0)$ axis of g intersects \hat{h} in exactly one point. We say g is parallel to \hat{f} if any axis for g is contained in the R-neighborhood of \hat{h} for some $R \geq 0$. A hyperbolic isometry g is peripheral to \hat{h} if it neither skewers it nor is parallel to it.

Given a hyperbolic isometry g of X, the skewer set of g, denoted $\operatorname{sk}(g)$, is the collection of all hyperplanes skewered by g. The parallel subcomplex Y_{g} of a hyperbolic isometry g is the maximal subcomplex of X contained in the intersection of peripheral halfspaces containing the axes of g; see [35]. Let $\mathrm{p}(g)$ be the collection of hyperplanes parallel to g. The parallel subcomplex Y_{g} is a $\langle g\rangle$-invariant subcomplex of X dual to

$$
\mathcal{H}\left(Y_{g}\right)=\operatorname{sk}(g) \cup \mathrm{p}(g)
$$

This subcomplex naturally decomposes as a product $Y_{g}=E_{g} \times K_{g}$ where E_{g} is dual to $\operatorname{sk}(g)$ and K_{g} is dual to $\mathrm{p}(g)$ because any hyperplane in $\mathrm{p}(g)$ crosses every hyperplane of $\operatorname{sk}(g)$. The complex E_{g} is a Euclidean subcomplex - that is, when equipped with the combinatorial metric, it isometrically embeds in Euclidean space [33, Lemma 2.4]. The action of g on Y_{g} respects the decomposition where g acts as a translation on E_{g}, and has a fixed point in its action on K_{g}. Moreover, for every axis ℓ_{g} of g, the subcomplex Y_{g} contains $\operatorname{cHull}\left(\ell_{g}\right)$, which is isometric to E_{g}.

2.3 Rank one isometries

We record some observations about rank one isometries of CAT(0) cube complexes. Let X be a finite-dimensional locally finite CAT(0) cube complex. An isometry g of X is called rank one if it is hyperbolic and an axis of g does not bound a half flat. A bi-infinite geodesic in X is called a rank one geodesic if it does not bound a half flat. The visual boundary ∂X of a geodesic metric space X consists of equivalence classes of geodesic rays emanating from a base point where two rays are said to be equivalent if they have finite Hausdorff distance. The homeomorphism type of the boundary does not depend on the choice of base point.

Lemma 2.4 [4, Lemma III.3.3] Let g be a rank one isometry of a locally compact $C A T(0)$ space Y. Then g fixes exactly two points in the visual boundary ∂Y, denoted by $\Lambda(g)$.

We now show that g acts cocompactly on its parallel subcomplex Y_{g} when g is a rank one isometry.

Proposition 2.5 Let g be a hyperbolic isometry of X, and let ℓ_{g} be a $C A T(0)$ axis of g. Then any bi-infinite $C A T(0)$ geodesic within finite Hausdorff distance from ℓ_{g} is contained in the parallel subcomplex Y_{g} of g.

Moreover, if g is rank one, then the parallel subcomplex Y_{g} is the maximal convex subspace of X with $\partial Y_{g}=\Lambda(g)$. Furthermore, Y_{g} is a quasiline on which g acts cocompactly.

Proof Let ℓ be a bi-infinite geodesic such that $d_{\text {Haus }}\left(\ell, \ell_{g}\right)<\infty$. It is straightforward to see that the two geodesics are asymptotic. By the flat strip theorem [9, Theorem II.2.13], we get that ℓ and ℓ_{g} are in fact parallel. Therefore $\ell \subset Y_{g}$.

Suppose g is rank one. The limit set $\Lambda(g)$ has two points by Lemma 2.4. Any biinfinite geodesic joining $\Lambda(g)$ has finite Hausdorff distance from ℓ_{g}, and by the above is contained in Y_{g}. Furthermore, by [22, Lemma 4.8] $\mathrm{cHull}\left(\ell_{g}\right)$ is contained in a bounded neighborhood of the axis ℓ_{g}, so the action of g on $\mathrm{cHull}\left(\ell_{g}\right)$ is cocompact. The parallel subcomplex Y_{g} decomposes as a product of cube complexes $E_{g} \times K_{g}$, where E_{g} is isometric to $\mathrm{cHull}\left(\ell_{g}\right)$ and K_{g} is bounded since g is rank one. Thus $\partial Y_{g}=\partial E_{g}=\Lambda(g)$. The action of g preserves the product decomposition and acts as a translation on E_{g}. Hence, it follows that the action of g on Y_{g} is cocompact.

We record the following consequence that will be used in the proof of Theorem B.

Lemma 2.6 Let a and b be rank one isometries of X such that $\Lambda(a)=\Lambda(b)$. Then $Y_{a}=Y_{b}$.

Proof Since $\Lambda(a)=\Lambda(b)$, an axis of a and an axis of b are finite Hausdorff distance apart. Then by Proposition $2.5, \ell_{b} \subset Y_{a}$ and $\ell_{a} \subset Y_{b}$. By Proposition 2.5, Y_{a} is the maximal convex subspace of X with $\partial Y_{a}=\Lambda(a)$. Therefore $Y_{b} \subseteq Y_{a}$ and vice versa. Thus they are equal.

2.4 Types of group actions and Bieberbach's theorem

We recall the definitions of free, proper, and discrete actions on possibly locally infinite CW complexes. Let X be a CW complex and let G be a discrete group acting cellularly by isometries on X. The action of G is proper when for every compact set K in X, the collection $\{g \in G \mid g K \cap K \neq \varnothing\}$ is finite. Since X is a CW complex, this is equivalent to requiring that every cell stabilizer is finite; see for instance [34].

The action of G on X is free if every point in X has trivial stabilizer. We say the action is discrete if G is a discrete subgroup of homeomorphisms of X with respect to the compact-open topology. For CW complexes, proper actions are always discrete. We recall the following version of Bieberbach's theorem for later reference.

Theorem 2.7 (Bieberbach's theorem [53, Corollary 4.1.13]) For each dimension n, there is an integer m such that any group acting discretely by isometries on Euclidean n-space \mathbb{E}^{n} has an abelian subgroup of index at most m.

2.5 Flats in CAT(0) spaces

Definition 2.8 Let X be a CAT(0) space. For $k \geq 2$, a ($k-$)flat in X is an isometrically embedded copy of Euclidean space \mathbb{E}^{k}. A half-flat in X is an isometrically embedded copy of $\mathbb{R} \times \mathbb{R}_{+}$.

The reader is referred to [29] for details on CAT(0) spaces with isolated flats. We recall the definition here.

Definition 2.9 A CAT(0) space X has isolated flats if there is a nonempty $\operatorname{Isom}(X)-$ invariant collection of flats \mathcal{F}, of dimension at least two, such that the following conditions hold:
(1) Maximal There exists a constant $D<\infty$ such that each flat in X lies in the D-tubular neighborhood of some $F \in \mathcal{F}$.
(2) Isolated For every $\rho<\infty$ there exists $\kappa(\rho)<\infty$ such that for any two distinct flats $F, F^{\prime} \in \mathcal{F}, \operatorname{diam}\left(N_{\rho}(F) \cap N_{\rho}\left(F^{\prime}\right)\right)<\kappa(\rho)$.

We say a CAT(0$)$ cube complex X has isolated flats if X with its CAT(0$)$ metric is a $\mathrm{CAT}(0)$ space with isolated flats. $\mathrm{CAT}(0)$ cube complexes are particularly well-adapted to studying isolated flats because hyperplanes inherit the isolated flats property.

Lemma 2.10 Let X be a $C A T(0)$ cube complex with isolated flats, and \hat{h} be a hyperplane of X. Then either \hat{f} does not have any flats or it is also a CAT(0) cube complex with isolated flats.

Proof Let F be a flat contained in $\hat{\kappa}$. Every flat in $\hat{\kappa}$ is a flat in X and hence there exists a maximal flat F^{\prime} in \mathcal{F} containing F. Since intersection of two convex sets is convex in a $\operatorname{CAT}(0)$ space, $\hat{\mathscr{h}} \cap F^{\prime}$ is convex. Thus $\hat{h} \cap \mathcal{F}$ is the nonempty collection of maximal flats in $\hat{\kappa}$ that satisfy Definition 2.9.

Lemma 2.11 Any half flat in a CAT(0) space with isolated flats that admits a geometric group action is contained in a bounded Hausdorff neighborhood of a maximal flat in \mathcal{F}.

Proof This follows because such spaces are relatively hyperbolic with respect to the collection of maximal flats by Hruska and Kleiner [30].

Lemma 2.12 Let a be a rank one isometry and b be a hyperbolic isometry of a CAT(0) space X with isolated flats that admits a geometric group action. If b fixes $\Lambda(a)$ then b is also a rank one isometry and $\Lambda(a)=\Lambda(b)$.

Proof Let \bar{b} be the homeomorphism of ∂X induced by b. By [48, Theorem 3.3], the set of elements of ∂X fixed by \bar{b} is equal to $\partial \operatorname{Min}(b)$. Therefore, $\Lambda(a) \subseteq \partial \operatorname{Min}(b)$. If b is not rank one then any axis of b bounds a half-flat, which is contained is a bounded neighborhood of a maximal flat F by Lemma 2.11. Hence, $\partial \operatorname{Min}(b) \subseteq \partial F$. However, $\Lambda(a)$ cannot be contained in the boundary of a maximal flat because a is rank one. Thus, b is also a rank one isometry and $\Lambda(a)=\Lambda(b)$ by Lemma 2.4.

2.6 Past results building free semigroups in cube complexes

Uniform exponential growth is typically proved by generating uniform length free semigroups. For instance, for a 2-dimensional cube complex Kar and Sageev show the following:

Proposition 2.13 [35, Proposition 15] Let a and b be two distinct hyperbolic isometries of a CAT(0) square complex X. Then either
(1) $\langle a, b\rangle$ contains a 10-short free semigroup, or
(2) there exists a Euclidean subcomplex of X invariant under $\langle a, b\rangle$.

In [33], Jankiewicz obtains the following generalization of Proposition 2.13 to higherdimensional cube complexes.

Lemma 2.14 [33, Lemma 4.2] Let a and b be two distinct hyperbolic isometries of a d-dimensional CAT(0) cube complex X such that $\langle a, b\rangle$ acts freely on X. Then one of the following hold:
(1) Short free semigroup There exists a constant $L=L(d)<\infty$ such that $\langle a, b\rangle$ contains an L-short free semigroup.
(2) Stabilize hyperplane One of $\left\langle b^{N}, a^{-d!} b^{N} a^{d!}\right\rangle$ or $\left\langle a^{N}, b^{-d!} a^{N} b^{d!}\right\rangle$ stabilizes a hyperplane of X.
(3) Virtually abelian powers The group $\left\langle a^{N}, b^{N}\right\rangle$ is virtually abelian.

Above, $N=d!K_{3}$! where K_{3} is the Ramsey number $R(d+1,3)$.
Compared to Proposition 2.13, Lemma 2.14 requires taking powers. However, under the additional assumption that X has isolated flats and a geometric group action (as in Section 3), we can recover Proposition 2.13 in all dimensions; see Proposition 3.4.

3 CAT(0) spaces with isolated flats

The goal of this section is to prove Theorem B. We start by proving some results that lead up to Proposition 3.4, which is the main lemma used to prove Theorem B. In what follows, let (X, \mathcal{F}) be a $\operatorname{CAT}(0)$ space with isolated flats that admits a geometric group action. When X is a $\operatorname{CAT}(0)$ cube complex that admits a geometric group action, X is finite-dimensional and locally finite.

Lemma 3.1 Let a and b be a pair of hyperbolic isometries of X such that

$$
\left\langle a^{N}, b^{M}\right\rangle \leq \operatorname{Isom}(X)
$$

stabilizes a flat for some $N, M \in \mathbb{Z} \backslash\{0\}$. Then $\langle a, b\rangle \leq \operatorname{Isom}(X)$ stabilizes a maximal flat in X.

Proof Let $\left\langle a^{N}, b^{M}\right\rangle$ stabilize a flat F_{0}. By Definition 2.9 (maximal), there exists a maximal flat $F \in \mathcal{F}$ such that F_{0} is contained in a D-neighborhood of F. Let ℓ_{a} and ℓ_{b} be axes of a and b, respectively. Then ℓ_{a} and ℓ_{b} are contained in a bounded neighborhood of F. This is because a^{N} has an axis in F_{0}, ℓ_{a} is also an axis of a^{N}, and any two axes of a^{N} are parallel in X. The same is true for ℓ_{b} and b^{M}. The axis ℓ_{a} (resp. ℓ_{b}) is also in a bounded neighborhood of $a F$ (resp. $b F$). Since the collection \mathcal{F} is Isom (X)-invariant, $a F, b F \in \mathcal{F}$. Now by Definition 2.9 (isolated) and maximality of F, we get that $F=a F$ and $F=b F$. Thus a and b stabilize F.

Lemma 3.2 Let a and b be a pair of hyperbolic isometries of X such that

$$
\left\langle a^{N}, b^{M}\right\rangle \leq \operatorname{Isom}(X)
$$

stabilizes a line for some $N, M \in \mathbb{Z} \backslash\{0\}$. Then either $\langle a, b\rangle$ stabilizes a flat or a and b are rank one isometries and $\langle a, b\rangle$ fixes $\Lambda(a)=\Lambda(b) \subset \partial X$.

Proof Let ℓ be a line stabilized by $\left\langle a^{N}, b^{M}\right\rangle$. Suppose ℓ is contained in a tubular neighborhood of some maximal flat $F \in \mathcal{F}$. Since maximal flats in X are isolated, $\left\langle a^{N}, b^{M}\right\rangle$ stabilizes F. Now by Lemma 3.1, $\langle a, b\rangle$ stabilizes a flat.

Now suppose ℓ is not contained in a tubular neighborhood of any maximal flat $F \in \mathcal{F}$. Then by Lemma 2.11, ℓ is a rank one geodesic. Hence, a^{N} and b^{M} are rank one isometries, and so are a and b. The axes of a and b are parallel, so they share the same endpoints $\Lambda=\Lambda(a)=\Lambda(b)$. Thus $\langle a, b\rangle$ fixes Λ by Lemma 2.4.

We obtain a similar result when an element and its conjugate stabilize a flat or line.
Lemma 3.3 Let a and b be a pair of hyperbolic isometries of X such that

$$
\left\langle a, b a b^{-1}\right\rangle \leq \operatorname{Isom}(X)
$$

stabilizes a flat or a line. Then either $\langle a, b\rangle$ stabilizes a flat or a and b are rank one isometries and $\langle a, b\rangle$ fixes $\Lambda(a)=\Lambda(b) \subset \partial X$.

Proof Let E be a line or flat stabilized by $\left\langle a, b a b^{-1}\right\rangle$ and suppose E is contained in a tubular neighborhood of some maximal flat $F \in \mathcal{F}$. Let ℓ_{a} and $\ell_{b a b^{-1}}:=b \ell_{a}$ be fixed axes of a and $b a b^{-1}$, respectively. Then ℓ_{a} and $b \ell_{a}$ are contained in a bounded neighborhood of F. The axis ℓ_{a} (resp. $b \ell_{a}$) is also in a bounded neighborhood of $a F$ (resp. $b F$). Since the collection \mathcal{F} is Isom (X)-invariant, $a F, b F \in \mathcal{F}$. Now by Definition 2.9 (isolated), we get that $F=a F$ and $F=b F$. Therefore a and b stabilize F.

Now suppose E does not lie in a tubular neighborhood of a maximal flat. It follows that $\operatorname{dim}(E)=1$, so E is an axis for a. By Lemma 2.11, a is a rank one isometry. Both a and $b a b^{-1}$ stabilize $\Lambda(a)$, which is equal to the pair of end points of E. Therefore b, and hence $\langle a, b\rangle$, also fixes $\Lambda(a)$. Then by Lemma 2.12, we conclude that b is also a rank one isometry and $\Lambda(a)=\Lambda(b)$.

In light of the above results, we are able to upgrade Lemma 2.14 in the setting of isolated flats. For the remainder of this section let X be a CAT(0) cube complex of dimension d with isolated flats that admits a geometric group action.

Proposition 3.4 Let $a, b \in \operatorname{Isom}(X)$ be a pair of hyperbolic isometries of X such that $\langle a, b\rangle$ acts freely on X. There exists a constant $M=M(d)<\infty$ such that either
(1) $\langle a, b\rangle$ contains an M-short free semigroup, or
(2) the subgroup $\langle a, b\rangle$ stabilizes a flat, or
(3) a and b are rank one isometries and $\langle a, b\rangle$ fixes $\Lambda(a)=\Lambda(b) \subset \partial X$.

Proof The proof is by induction on the dimension of X. For the base cases, if $\operatorname{dim}(X)=1$ then we are done by Lemma 5.1 with $M(1)=4$. If $\operatorname{dim}(X)=2$ then the conclusions are satisfied by [35, Theorem 1], with $M(2)=10$.

For the induction step, apply Lemma 2.14. Let

$$
M(d)=\max \{(2 d!+N) \cdot M(d-1), L(d)\}
$$

where $L(d)$ is the constant from Lemma 2.14. If the condition (short free semigroup) is satisfied then we are done. If the condition (virtually abelian powers) is satisfied then $\left\langle a^{N}, b^{N}\right\rangle$ stabilizes a flat or line by the flat torus theorem [9]. By Lemma 3.1 or Lemma 3.2, conclusion (2) or (3) holds. If the condition (stabilize hyperplane) is satisfied then up to switching a and b, the group $H=\left\langle a^{N}, b^{-d!} a^{N} b^{d!}\right\rangle$ stabilizes a hyperplane. Since hyperplanes are convex in the cube complex, the elements a^{N} and $b^{-d!} a^{N} b^{d!}$ have axes in $\hat{\mathscr{h}}$ [9, Chapter II. 6 Proposition 6.2(4)]. Hence, they are both hyperbolic in the restricted action of H on \hat{h}. Moreover, the restricted action is free. Therefore by the induction hypothesis, $\left\langle a^{N}, b^{-d!} a^{N} b^{d!}\right\rangle$ either contains an $M(d-1)$-short free semigroup or $\left\langle a^{N}, b^{-d!} a^{N} b^{d!}\right\rangle$ stabilizes a flat in $\hat{\kappa}$ or a^{N} and $b^{-d!} a^{N} b^{d!}$ are rank one isometries of $\hat{\kappa}$ fixing $\Lambda\left(a^{N}\right)=\Lambda\left(b^{-d!} a^{N} b^{d!}\right) \subset \partial \hat{\kappa} \subset \partial X$. In the case when $\left\langle a^{N}, b^{-d!} a^{N} b^{d!}\right\rangle$ stabilizes a flat in $\hat{\kappa}$, conclusion (2) or (3) holds by Lemma 3.3 followed by Lemma 3.1 or Lemma 3.2. In the remaining case, $b^{-d!}$ fixes $\Lambda\left(a^{N}\right)$ because $b^{-d!} \Lambda\left(a^{N}\right)=\Lambda\left(b^{-d!} a^{N} b^{d!}\right)$. By Lemma 2.12, $b^{-d!}$ is a rank one isometry of $\hat{\kappa}$ with $\Lambda:=\Lambda\left(b^{-d!}\right)=\Lambda\left(a^{N}\right)$.

If a and b are also rank one in X then $\langle a, b\rangle$ fixes $\Lambda=\Lambda(a)=\Lambda(b)$ and we are done. Suppose now that b is not rank one in X. It must be that the subgroup $\langle a, b\rangle$ stabilizes a maximal flat $F \in \mathcal{F}$. Indeed, by Lemma 2.12 the element a is also not rank one in X. By Lemma 2.11 any axis of a (resp. b) is within finite Hausdorff distance of a maximal flat $F_{a} \in \mathcal{F}$ (resp. $F_{b} \in \mathcal{F}$) such that $a F_{a}=F_{a}$ (resp. $b F_{b}=F_{b}$). Since $\Lambda(a)=\Lambda(b)$, the maximal flats F_{a} and F_{b} are equal. Therefore $F:=F_{a}=F_{b}$ is stabilized by $\langle a, b\rangle$.

Now that we understand how pairs of hyperbolic isometries stabilize flats and pairs of points in ∂X, we are able to extend this to any finite collection.

Lemma 3.5 Let s_{1}, \ldots, s_{n} be a collection of hyperbolic isometries of X such that for each $1 \leq i \neq j \leq n$, either $\left\langle s_{i}, s_{j}\right\rangle$ stabilizes a flat or s_{i} and s_{j} are rank one isometries and $\left\langle s_{i}, s_{j}\right\rangle$ stabilizes $\Lambda\left(s_{i}\right)=\Lambda\left(s_{j}\right)$. Then either $\left\langle s_{1}, \ldots, s_{n}\right\rangle$ stabilizes a flat or for every $i \geq 1, s_{i}$ is a rank one isometry and $\left\langle s_{1}, \ldots, s_{n}\right\rangle$ stabilizes $\Lambda\left(s_{1}\right)=\cdots=\Lambda\left(s_{n}\right) \subset \partial X$.

Proof If s_{1} is a rank one isometry then so is every s_{i}. Indeed, rank one isometries do not stabilize any flat and every hyperbolic isometry $g \in \operatorname{Stab}\left(\Lambda\left(s_{1}\right)\right)$ is rank one with $\Lambda(g)=\Lambda\left(s_{1}\right)$.

We may thus assume that every pair in $\left\{s_{1}, \ldots, s_{n}\right\}$ stabilizes a flat. Let E_{i} be a flat stabilized by $\left\langle s_{1}, s_{i}\right\rangle$ where $2 \leq i \leq n$. By Definition 2.9 (maximal), E_{i} is contained in a tubular neighborhood of maximal flat $F_{i} \in \mathcal{F}$. We argue as in the proof of Lemma 3.1 that $\left\langle s_{1}, s_{i}\right\rangle$ stabilizes F_{i}. Let ℓ be an axis of s_{1}. Then ℓ is contained in a bounded neighborhood of F_{i} for all $2 \leq i \leq n$. Therefore by Definition 2.9 (isolated), $F_{i}=F_{j}=: F$ for all $i \neq j$. Therefore, each s_{i} stabilizes F and hence $\left\langle s_{1}, \ldots, s_{n}\right\rangle$ stabilizes a flat in X.

We are now ready to prove Theorem B.

Theorem B There exists a constant $w_{d}>1$ depending only on $d \in \mathbb{N}$ such that the following holds. Let X be a CAT(0) cube complex of dimension d with isolated flats that admits a geometric group action. For any finitely generated group G acting freely on X, either $w(G) \geq w_{d}$ or G is virtually abelian.

Proof Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ be a finite generating set for G. Since the action is free, each s_{i} is a hyperbolic isometry of X. For every $1 \leq i \neq j \leq n$, consider the pair s_{i} and s_{j}. By Proposition 3.4 applied to s_{i} and s_{j}, if there exists a constant $M=M(d)<\infty$ such that $\left\langle s_{i}, s_{j}\right\rangle$ contains an M-short free semigroup, then

$$
w(G) \geq \sqrt[M]{2}=: w_{d}
$$

So suppose for all pairs $i \neq j$, either $\left\langle s_{i}, s_{j}\right\rangle$ stabilizes a flat or s_{i} and s_{j} are rank one isometries and $\left\langle s_{i}, s_{j}\right\rangle$ stabilizes $\Lambda\left(s_{i}\right)=\Lambda\left(s_{j}\right)$. By Lemma 3.5, either $G=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ stabilizes a flat or for every $i \geq 1, s_{i}$ is a rank one isometry and G stabilizes

$$
\Lambda:=\Lambda\left(s_{1}\right)=\cdots=\Lambda\left(s_{n}\right) \subset \partial X
$$

First suppose G stabilizes a flat. Since G acts freely on X, it is a discrete subgroup of isometries of the flat. Thus by Bieberbach's theorem, the group G is virtually abelian.

Now suppose each s_{i} is a rank one isometry and G stabilizes Λ. By Lemma 2.6, the parallel subcomplex $Y_{s_{i}}$ coincides with $Y_{s_{j}}$ for all $i \neq j$. Let $Y:=Y_{s_{1}}=\cdots=Y_{s_{n}}$. By Proposition 2.5, Y is a quasiline. Since G acts freely on X, G acts freely and hence properly on Y. By Proposition 2.5, each s_{i} acts cocompactly on Y. Hence, G acts geometrically on Y. Thus, G is two-ended and hence virtually infinite cyclic.

If instead of isolated flats, we impose the condition of hyperbolicity on our CAT(0) cube complex X, then we can use the same proof strategy as for Theorem B to get uniform exponential growth where the requirement of a geometric group action is replaced with the weaker hypothesis of a weakly properly discontinuous action introduced Bestvina and Fujiwara [6, Section 3]; see [47] for more details on acylindrical hyperbolicity. We first recall a lemma from a paper of Dahmani, Guirardel, and Osin.

Lemma 3.6 [13, Lemma 6.5] Let G be a group acting on a δ-hyperbolic space X and let $h \in G$ be a hyperbolic WPD element. Then h is contained in a unique maximal virtually cyclic subgroup $E(h)$ of G. Moreover, $E(h)=\left\{g \in G \mid d_{\text {Haus }}(g \ell, \ell)<\infty\right\}$, where ℓ is a quasigeodesic axis of h in X.

In more general actions on hyperbolic spaces, stabilizers of endpoints of hyperbolic isometries need not be virtually abelian let alone virtually cyclic. By requiring that hyperbolic isometries be WPD, we can prove the following.

Proposition 3.7 There exists a constant $w_{d}>1$ depending only on $d \in \mathbb{N}$ such that the following holds. Let X be a $C A T(0)$ cube complex of dimension d that is hyperbolic. For any finitely generated group G acting freely and weakly properly discontinuously on X, either $w(G) \geq w_{d}$ or G is virtually infinite-cyclic.

Proof Let $a, b \in G$ be two distinct hyperbolic isometries of X. Suppose $\left\langle a^{M}, b^{N}\right\rangle$ stabilizes a line ℓ in X. Then a^{M} and b^{N} fix the endpoints of ℓ. Since a and a^{N} share the same fixed points in ∂X, we conclude that a and b fix the same pair of points in ∂X. This implies that $b \ell_{a}$ has finite Hausdorff distance from ℓ_{a}. Thus, by Lemma 3.6, $b \in E(a)$ and $\langle a, b\rangle$ is virtually cyclic. Similarly, if a and $b a b^{-1}$ stabilize a line then $\langle a, b\rangle$ is virtually cyclic because $b \in E(a)$.

Now let $\left\{s_{1}, \ldots, s_{n}\right\}$ be a finite generating set of G such that each s_{i} acts as a hyperbolic isometry of X. Then the result follows as in the proof of Proposition 3.4, Lemma 3.5 and Theorem B.

Remark 3.8 Let G be a group acting freely on a CAT(0) cube complex X. If G satisfies the conclusions of Lemmas 3.1, 3.2, 3.3 and 3.5, then we can use Lemma 2.14 as above to obtain a uniform exponential growth result for G.

A simple example to illustrate the difficulty of working with powers is the following: Let $G=\left\langle x, y \mid\left[x^{2}, y^{2}\right]=1\right\rangle$. Then G acts freely on a CAT(0) cube complex because its presentation 2 -complex can be subdivided into a CAT(0) square complex. The subgroup $\left\langle x^{2}, y^{2}\right\rangle$ is free abelian. However, G is far from being virtually abelian. The group G is isomorphic to a (finitely generated free)-by-cyclic group. A brief outline is as follows: we change the presentation by replacing the generator y by $z=x y$ and we get $G=\left\langle x, z \mid x^{2} z x^{-1} z x^{-2} z^{-1} x z^{-1}=1\right\rangle$. Consider the epimorphism $\phi: G \rightarrow \mathbb{Z}$ which sends x to 1 and z to 0 . Then by Brown's criterion [10] - see also [17, Section 5] — $\operatorname{ker}(\phi)$ is finitely generated and by Magnus's Freiheitssatz [37] it is a free group. Thus G is isomorphic to $\operatorname{ker}(\phi) \rtimes \mathbb{Z}$.

4 Generating hyperbolic isometry

In this section, our goal is to produce a hyperbolic isometry g of a CAT(0) cube complex X by composing two elliptic isometries a and b, such that g has uniform length in a and b. For example, if a and b are two elliptic isometries of a tree with disjoint fixed points, then $g=a b$ is a hyperbolic isometry of the tree [52, I Proposition 26]. We obtain an analogous result when X has dimension 2 or 3 .

We first prove a general lemma quantifying how elliptic isometries of CAT(0) cube complexes interact with the cubical hull of their fixed sets.

Lemma 4.1 Let X be a d-dimensional CAT(0) cube complex and let a be an elliptic isometry of X. Then $\operatorname{cHull}(\operatorname{Fix}(a))$ is pointwise fixed by a^{k} where $k=\operatorname{lcm}\{1,2, \ldots, d\}$.

Proof Let $A:=\operatorname{Fix}(a)$. By Observation 2.2, $\operatorname{cHull}(A)$ is dual to the collection of hyperplanes $\mathcal{H}(A)$. We will show that a^{k} fixes each hyperplane in $\mathcal{H}(A)$, which implies that a^{k} pointwise fixes $\mathrm{cHull}(A)$.

Let A_{0} be the union of all open cubes of X that intersect A nontrivially. Then a preserves every cube $C \in A_{0}$. Also every hyperplane that crosses C is in $\mathcal{H}(A)$. Since C contains fixed points of a, the action of a on C is determined by a permutation of at most d hyperplanes. However, the order of every cyclic permutation group on d objects divides $k=\operatorname{lcm}\{1,2, \ldots, d\}$, so a^{k} is a trivial permutation of hyperplanes crossing a cube. Therefore, a^{k} fixes each hyperplane in $\mathcal{H}(A)$.

Figure 1: The hyperplanes $a^{r} \hat{\hbar}$ and $b^{s} \hat{\hbar}$ are disjoint from $\hat{\kappa}$.
The next lemma differs from Proposition 4.3 in that the conclusion involves the subgroup $\left\langle a^{k}, b^{k}\right\rangle$ instead of $\langle a, b\rangle$.

Lemma 4.2 Let a and b be two elliptic isometries of a CAT(0) cube complex X of dimension d. If their fixed sets are separated by a hyperplane then there exists a hyperbolic isometry $g \in\langle a, b\rangle$, such that g has length at most $2 d$ in a and b. Otherwise, the subgroup $\left\langle a^{k}, b^{k}\right\rangle$, where $k=\operatorname{lcm}\{1,2, \ldots, d\}$, fixes pointwise the intersection $\operatorname{cHull}(\operatorname{Fix}(a)) \cap \mathrm{cHull}(\operatorname{Fix}(b))$.

Proof Let \hat{h} be a hyperplane that separates $A:=\operatorname{Fix}(a)$ and $B:=\operatorname{Fix}(b)$. Since X is d-dimensional, there are two hyperplanes in $\left\{\hat{h}, a \hat{h}, a^{2} \hat{h}, \ldots, a^{d} \hat{h}\right\}$ that are either equal or disjoint. If $\hat{h}=a \hat{h}$, then the point in \hat{h} closest to A is fixed by a, which is not possible since $\hat{\kappa}$ separates A and B. Suppose $\hat{\kappa}=a^{k} \hat{\kappa}$ for some $2 \leq k \leq d$, and for all $m=1, \ldots, k-1$ we have $\hat{\kappa} \neq a^{m} \hat{h}$ and $\hat{h} \cap a^{m} \hat{h} \neq \varnothing$. Then the collection $H_{k}:=\left\{\hat{h}, a \hat{h}, \ldots, a^{k-1} \hat{h}\right\}$ is invariant under a. Also each pair of hyperplanes in H_{k} intersects, therefore by the Helly property for hyperplanes they all have a common point of intersection which is invariant under a. This is again not possible since \hat{h} separates A and B. Therefore, there exists $r, s \in\{1,2, \ldots, d\}$ such that $a^{r} \hat{h}$ and $b^{s} \hat{h}$ are disjoint from $\hat{\kappa}$ and contained in different halfspaces determined by $\hat{\kappa}$. Let κ be the halfspace containing A. Then we have $b^{s} \hbar \subset a^{r} \hbar$. See Figure 1. Thus $a^{-r} b^{s}$ is a hyperbolic isometry of length at most $2 d$ in a and b.

If there is no hyperplane separating A and B, then $\operatorname{cHull}(A)$ and $\mathrm{cHull}(B)$ intersect in a nonempty set. Therefore, by Lemma 4.1, a^{k} and b^{k} fix $\operatorname{cHull}(A) \cap \operatorname{cHull}(B)$, where $k=\operatorname{lcm}\{1,2, \ldots, d\}$.

We will now prove Proposition 4.3. Recall that the free Burnside group $B(m, n)$ is the quotient of the free group on m generators by the normal subgroup generated by the $n^{\text {th }}$ powers of all the elements. If $m \geq 2$ and n is sufficiently large, then $B(m, n)$ is infinite [43; 44; 45]. However, for small values of n, some are known to be finite. For
instance, $B(2,2) \cong \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and $B(2,6)$ are known to be finite [25]. In order to extend our proof of Proposition 4.3 for cube complexes of dimension $d \geq 4$, we would need $B(2, k)$, where $k=\operatorname{lcm}\{1,2, \ldots, d\}$, to be finite. However, already for $d=4$, it is not known whether $B(2,12)$ is finite or not.

Proposition 4.3 Let a and b be a pair of isometries of a CAT(0) cube complex X of dimension two or three. Then either
(1) there exists a hyperbolic element in $\langle a, b\rangle$ whose length in a, b is at most L, where L is a constant that only depends on $\operatorname{dim}(X)$, or
(2) $\langle a, b\rangle$ fixes a point in X.

If X is 2-dimensional, then $L=12$.
Proof Let $F(\alpha, \beta)$ be the free group on two generators, generated by α and β. First assume X is 2-dimensional. Let K be the kernel of the map from $F(\alpha, \beta)$ to $B(2,2)$. Then K is finitely generated by $\alpha^{2}, \beta^{2}, \alpha \beta^{2} \alpha^{-1}$ and $\beta \alpha^{2} \beta^{-1}$. Let $w_{1}=\alpha, w_{2}=\beta$, $w_{3}=\alpha \beta \alpha^{-1}$ and $w_{4}=\beta \alpha \beta^{-1}$. Then K is generated by $w_{1}^{2}, w_{2}^{2}, w_{3}^{2}$ and w_{4}^{2}, and each w_{i} has length at most 3 in $F(\alpha, \beta)$. Let $\phi: F(\alpha, \beta) \rightarrow\langle a, b\rangle$ be the map that sends α to a and β to b. Then $\bar{w}_{i}:=\phi\left(w_{i}\right)$ for $1 \leq i \leq 4$ also has length at most 3 in $\langle a, b\rangle$. The following is a schematic:

If \bar{w}_{i} is a hyperbolic isometry of X for some $1 \leq i \leq 4$, then we are done. So suppose each \bar{w}_{i} is elliptic in X. For $i \neq j$, by Lemma 4.2, either $\left\langle\bar{w}_{i}^{2}, \bar{w}_{j}^{2}\right\rangle$ fixes $\operatorname{cHull}\left(\operatorname{Fix}\left(\bar{w}_{i}\right)\right) \cap \operatorname{cHull}\left(\operatorname{Fix}\left(\bar{w}_{j}\right)\right)$, or there exists a hyperbolic isometry in $\left\langle\bar{w}_{i}, \bar{w}_{j}\right\rangle$ of length at most 4 in \bar{w}_{i}, \bar{w}_{j}, so of length at most $4 \cdot 3=12=: L$ in $\langle a, b\rangle$. Suppose the latter happens for each pair \bar{w}_{i}, \bar{w}_{j}. By Helly's property for cubically convex sets, there exists a point $x \in \bigcap \operatorname{cHull}\left(\operatorname{Fix}\left(\bar{w}_{i}\right)\right)$, which is fixed by each \bar{w}_{i}^{2} and hence by $\phi(K)$. Since K is a finite index subgroup of $F(\alpha, \beta), \phi(K)$ is a finite index subgroup of $\langle a, b\rangle$. Thus $\langle a, b\rangle$ has a global fixed point in X.

If X is 3-dimensional, then we consider the group $B(2,6)$ instead of $B(2,2)$ which is also finite. Let $M>0$ be the maximum length in α, β of the elements in the smallest finite generating set of K. Then as above, we can either find a hyperbolic isometry of length at most $6 M=L$ in $\langle a, b\rangle$ or $\langle a, b\rangle$ fixes a point in X.

5 Cubical groups generated with torsion

In this section, X will be a CAT(0) square complex. We consider a finitely generated group G acting without global fixed point on X. In [35], the authors restrict their attention to free actions. Freeness implies that every element of G acts as a hyperbolic isometry of X. If the action is not free, then a given generating set may consist partially or entirely of elements acting elliptically on X. We will use Proposition 4.3 to construct a hyperbolic isometry from elliptic isometries and then build on the proof of Theorem 1 in [35].

Before proving Theorem A, we recall the basic case of groups acting on trees.
Lemma 5.1 Let S be a finite collection of isometries of a simplicial tree T. Either $\langle S\rangle$ stabilizes a point or a line, or $\langle S\rangle$ contains a 4 -short free semigroup.

Proof Suppose S contains a hyperbolic isometry g of T with axis ℓ. If $S \subset \operatorname{Stab}(\ell)$ then we are done. Otherwise, there exists $s \in S$ such that the axis $s \ell \neq \ell$. By [35, Proposition 10], $g^{ \pm 1}$ and $s g^{ \pm 1} s^{-1}$ generate a free semigroup. If S consists only of elliptic isometries of T, then we may assume there exists elements $a, b \in S$ that do not fix a common point or else we are done. By [52, I Proposition 26], the element $a b$ is a hyperbolic isometry of T. We may repeat the argument above with $g=a b$.

We use Proposition 4.3 to generalize [35, Proposition 15] to actions that are not free.
Proposition 5.2 Let S be a finite collection of isometries of X, and suppose S contains at least one hyperbolic isometry, and at least one elliptic isometry. Then either
(1) $\langle S\rangle$ contains a 50 -short free semigroup, or
(2) $\langle S\rangle$ stabilizes a flat or line in X.

Proof Let $S=S_{0} \sqcup S_{\text {elliptic }}$ where S_{0} is the set of hyperbolic isometries, and $S_{\text {elliptic }}$ is the set of elliptic isometries. Let $S_{1}=S_{0} \cup\left\{\right.$ ese $\left.^{-1} \mid s \in S_{0}, e \in S_{\text {elliptic }}\right\}$ and $S_{2}=S_{1} \cup\left\{e s e^{-1} \mid s \in S_{1}, e \in S_{\text {elliptic }}\right\}$. Each of S_{0}, S_{1} and S_{2} is a finite collection of hyperbolic isometries of X with S-length at most 5 . Assume no pair of word of length at most 50 in S generates a free semigroup. In this case, we will find a Euclidean subcomplex that is stabilized by S.

Words in S_{i} for $i=0,1,2$ have S-length at most 5 . By assumption there does not exist a 50 -short free semigroup with respect to S, so there is no 10 -short free semigroup with
respect to any S_{i}. By [35, Theorem 1], there exists a minimal S_{2}-invariant subspace F_{2}, which is an isometrically embedded Euclidean plane or line (with respect to the CAT(0) metric). Since $S_{1} \subset S_{2}, F_{2}$ is also stabilized by S_{1}. Let F_{1} be a minimal subspace of F_{2} stabilized by S_{1}. Similarly, let F_{0} be a minimal subspace of F_{1} stabilized by S_{0}. We have $F_{0} \subseteq F_{1} \subseteq F_{2}$. Since the three Euclidean spaces have dimensions 1 or 2, either $F_{0}=F_{1}$, or $F_{0} \subsetneq F_{1}=F_{2}$. For $i=1,2,3$, we denote the subcomplex $\operatorname{cHull}\left(F_{i}\right)$ by E_{i}.

First suppose that $F_{0}=F_{1}$. Then we also have that their cubical convex hulls $E_{0}=E_{1}$ are equal. If $S_{\text {elliptic }} \subset \operatorname{Stab}\left(E_{1}\right)$, we are done. Suppose there exists $e \in S_{\text {elliptic }}$ such that $e E_{1} \neq E_{1}$. If the subcomplexes $e E_{1}$ and E_{1} are not parallel, then there exists a hyperplane $\hat{\kappa} \in \mathcal{H}\left(E_{1}\right)$ such that $e \hat{\kappa} \notin \mathcal{H}\left(E_{1}\right)$. Since $\hat{\kappa}$ intersects E_{1}, which is a minimal Euclidean complex stabilized by S_{1}, there exists $g \in\left\langle S_{1}\right\rangle$ such that $\hat{h} \in \operatorname{sk}(g)$. It follows that $e \hat{h} \in e \operatorname{sk}(g)=\operatorname{sk}\left(e g e^{-1}\right)$. Since $e g e^{-1} \in\left\langle S_{1}\right\rangle$ and S_{1} stabilizes E_{1}, $e \hat{\hbar}$ must intersect E_{1}. Thus $e E_{1}$ and E_{1} must be parallel. Since X is 2-dimensional we get $\operatorname{dim} E_{1}=\operatorname{dim} e E_{1}=1$. Since E_{1} is a subcomplex it must be a combinatorial line. The parallel subcomplex of g is isometric to $E_{1} \times T$ and is stabilized by S by repeating the above argument for every element $e \in S_{\text {elliptic }}$. Moreover, $\langle S\rangle$ preserves the product structure of $E_{1} \times T$. By Lemma 5.1, $\langle S\rangle$ stabilizes a point or line ℓ in its action on T. Thus, $\langle S\rangle$ stabilizes the line E_{1} or flat $E_{1} \times \ell$.

Now consider the case where $F_{0} \subsetneq F_{1}=F_{2}$. We must have $\operatorname{dim} F_{0}=1$ and $\operatorname{dim} F_{1}=2$. Since X is 2-dimensional, any Euclidean 2-plane is equal to its cubical convex hull. Hence, we have $F_{1}=E_{1}=F_{2}=E_{2}$. We repeat the argument from the previous paragraph for E_{1}, E_{2} in the place of E_{0}, E_{1}. We conclude that $S_{\text {elliptic }} \subset \operatorname{Stab}\left(E_{2}\right)$, as otherwise we get a contradiction with the fact that $\operatorname{dim} E_{1}=2$.

We are now ready to prove Theorem A and Corollary 5.3.

Theorem A Let G be a finitely generated group acting without global fixed point on a $C A T(0)$ square complex X. Then either G has uniform exponential growth with $w(G) \geq \sqrt[600]{2}$ or G stabilizes a flat or line in X.

Proof Let S be a finite generating set for G. If S contains no hyperbolic isometries then by Proposition 4.3 we may replace S with a new generating set containing a hyperbolic isometry whose S-length is ≤ 12. Thus without loss of generality we may assume that S contains at least one hyperbolic isometry. If S contains no elliptic
isometries, then we reduce to Theorem 1 of [35]. Suppose that S contains at least one elliptic isometry. By Proposition 5.2, either there exists a pair of words of length at most 50 in S that freely generate a free semigroup or S stabilizes a flat or line in X. When G has uniform exponential growth we get $w(G) \geq \sqrt[600]{2}$.

For proper actions on $\operatorname{CAT}(0)$ square complexes we can upgrade stabilizing a flat or line to being virtually abelian.

Corollary 5.3 Let G be a finitely generated group that acts properly on a $\operatorname{CAT}(0)$ square complex. Then either G has uniform exponential growth with $w(G) \geq \sqrt[600]{2}$, or G is virtually abelian.

Proof Suppose G does not have uniform exponential growth with $w(G) \geq \sqrt[600]{2}$. By Theorem A, G stabilizes a flat or line F. Consider the image \bar{G} of G in $\operatorname{Isom}(F)$. Since the action of G on X is proper, the action on F is also proper, and so \bar{G} is a discrete subgroup of $\operatorname{Isom}(F)$. Also, the properness of the action implies that $K=\operatorname{ker}(G \rightarrow \bar{G})$ is finite. By Bierberbach's theorem (Theorem 2.7), the quotient \bar{G} is virtually abelian. Thus, G is finite-by-(virtually abelian) and hence virtually abelian. For completeness we include a proof of this in Lemma 5.4 below.

Lemma 5.4 Let G be a finitely generated finite-by-(virtually abelian) group, ie there exists a finite normal subgroup $K<G$ such that G / K is virtually abelian. Then G is virtually abelian.

Proof Let A be a maximal rank free abelian subgroup of G / K and let H be the preimage of A in G. Then H is a finite index subgroup of G and fits into the short exact sequence

$$
1 \rightarrow K \rightarrow H \rightarrow A \rightarrow 1
$$

Let $\pi: H \rightarrow A$ denote the projection. The group H acts on K by conjugation, ie there is a homomorphism $H \rightarrow \operatorname{Aut}(K)$, so we can pass to a further finite index subgroup H^{\prime} whose action on K is trivial, ie we have the central extension

$$
1 \rightarrow K^{\prime} \rightarrow H^{\prime} \rightarrow A^{\prime} \rightarrow 1
$$

where $K^{\prime}=K \cap H^{\prime}$ and $A^{\prime}=\pi\left(H^{\prime}\right)<A$. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a minimal set of generators of A^{\prime}, and let $\left\{h_{1}, \ldots, h_{n}\right\}$ be a set of elements of H such that $\pi\left(h_{i}\right)=a_{i}$ for all $1 \leq i \leq n$. We will show that $\left\langle h_{1}^{m_{1}}, \ldots, h_{n}^{m_{n}}\right\rangle=\mathbb{Z}^{n}$ for some $m_{1}, \ldots, m_{n} \in \mathbb{N}$.

This follows from the following claim: for any $g, h \in H^{\prime}$ with $[\pi(g), \pi(h)]=1$, there exists $m \in \mathbb{N}$ such that $\left[g, h^{m}\right]=1$. To see that the claim is true, note that for every $m \in \mathbb{N}$ we have $\left[g, h^{m}\right] \in K^{\prime}$. Since K^{\prime} has only finitely many elements there exist distinct m_{1} and m_{2} such that $g h^{m_{1}} g^{-1} h^{-m_{1}}=g h^{m_{2}} g^{-1} h^{-m_{2}}$, which implies that $h^{m_{1}-m_{2}} g^{-1}=g^{-1} h^{m_{1}-m_{2}}$.

It remains to show that $H^{\prime \prime}:=\left\langle h_{1}^{m_{1}}, \ldots, h_{n}^{m_{n}}\right\rangle$ has finite index in H^{\prime}. Note that $A^{\prime \prime}:=\left\langle a_{1}^{m_{1}}, \ldots, a_{n}^{m_{n}}\right\rangle$ has finite index in A^{\prime}. The finite index subgroup $\phi^{-1}\left(A^{\prime \prime}\right)$ of H^{\prime} is generated by $\left\{h_{1}^{m_{1}}, \ldots, h_{n}^{m_{n}}\right\} \cup K$, and so is isomorphic to $K \times H^{\prime \prime}$.

In general, stabilizing a flat is far from sufficient to show that a group is virtually abelian. The following example was brought to our attention by Talia Fernós.

Example 5.5 Let $G=\mathbb{Z}^{2} \oplus R$ where R is the Grigorchuk group, which has intermediate growth. R acts faithfully on a tree T, with a single global fixed point v, so G acts faithfully on the universal cover of the wedge sum a torus and T along the vertex v. The torus lifts to a 2 -flat stabilized by G, but G does not act faithfully on this flat. Moreover, G is neither virtually abelian nor contains a free semigroup because it has intermediate growth.

Nevertheless, by studying the interactions between vertex stabilizers it is sometimes possible to show that certain groups acting improperly on a CAT(0) square complex may still satisfy the conclusion of Corollary 5.3.

6 Improper actions and locally uniform exponential growth

It is not known whether all acylindrically hyperbolic groups have uniform exponential growth. However, they may contain finitely generated exponentially growing subgroups without uniform exponential growth. For example, this is the case for the free product of Wilson's group with itself. In this section, we will show that by understanding vertex stabilizers it is possible to use Theorem A to prove locally uniform exponential growth results for certain acylindrically hyperbolic groups that also act on cube complexes. In each case, we make use of the following.

Corollary 6.1 Suppose G is a finitely generated group that acts by isometries on a CAT(0) square complex X such that finitely generated subgroups of the vertex stabilizers are either virtually abelian or have uniform exponential growth bounded below by $w_{0}>1$. Then for any finitely generated subgroup $H \leq G$, either
(1) H has uniform exponential growth with $w(H) \geq \min \left\{\sqrt[600]{2}, w_{0}\right\}$, or
(2) H is virtually abelian, or
(3) H stabilizes a flat or line in X.

Proof If H acts without global fixed point on X then, by Theorem A, either it contains a uniformly short free semigroup, or it stabilizes a flat or line. If H has a fixed point in X, then it is a finitely generated subgroup of one of the vertex groups, so either is virtually abelian or has uniform exponential growth bounded by w_{0}.

6.1 Higman group

The Higman group [28], H, is given by the presentation

$$
H:=\left\langle a_{i} \mid a_{i}\left(a_{i+1}\right) a_{i}^{-1}=a_{i+1}^{2}\right\rangle_{i \in \mathbb{Z} / 4 \mathbb{Z}}
$$

This presentation gives a decomposition of H as a square of groups with the following local groups. Each vertex group is a copy of $\mathrm{BS}(1,2)$. Each edge group is a copy of \mathbb{Z}. Each 2-cell group is trivial. This decomposition gives a cocompact action of H on a CAT(0) square complex X, whose vertex stabilizers are the groups mentioned above. Martin used this structure to show that certain generalizations of the Higman group act acylindrically hyperbolically [40, Theorem B] on CAT(0) square complexes. The Higman group itself is acylindrically hyperbolic coming from its structure as a free product with amalgamation and [42].

Theorem 6.2 Let G be any finitely generated subgroup of the Higman group H. Then either G is cyclic or G has uniform exponential growth with $w(G) \geq \sqrt[600]{2}$.

To understand exponential growth in the Higman group, we first show uniform exponential growth of finitely generated subgroups of Baumslag-Solitar groups. Uniform exponential growth of solvable Baumslag-Solitar groups follows from work of Bucher and de la Harpe [27], however they do not address subgroups.

Lemma 6.3 (Baumslag-Solitar groups) Any finitely generated subgroup of a Baum-slag-Solitar group $\mathrm{BS}(1, m)$, where $m \neq \pm 1$, is either cyclic or has uniform exponential growth bounded by $\sqrt[4]{2}$.

Proof Let S be any finite collection of elements of the Baumslag-Solitar group with presentation $\left\langle a, t \mid t a t^{-1}=a^{m}\right\rangle$. Let T be the Bass-Serre tree for $\operatorname{BS}(1, m)$ with
\mathbb{Z} vertex and edge groups. This tree can be obtained from the Cayley complex by collapsing in the a-direction.

By Lemma 5.1, either $G=\langle S\rangle$ contains a 4-short free semigroup or stabilizes a point or line in T. If G stabilizes a point then G is cyclic, so assume that G stabilizes a line ℓ. It suffices to show that $\operatorname{Stab}(\ell)$ is cyclic.

Every element of $\mathrm{BS}(1, m)$ can be written in the form $h=a^{p} t^{q}$ because $t a=a^{m} t$. We claim elements of the form a^{p} cannot stabilize ℓ. Indeed, if a^{p} stabilizes ℓ then it would fix the line pointwise because such elements fix a vertex in T. Vertex stabilizers are conjugates of a, so segments of length n can only be fixed pointwise by elements that are powers of $a^{m n}$. Taking n larger than p gives a contradiction. If $q \neq 0$ then h is also a hyperbolic isometry of T. The only hyperbolic isometries that will stabilize the axis of g are roots and powers of g. The axes of any other hyperbolic isometry h will diverge from ℓ in the tree T, so h cannot stabilize ℓ. It follows that $\operatorname{Stab}(\ell)$ is cyclic.

With this, we are ready to address the Higman group.

Proof of Theorem 6.2 By Corollary 6.1 and Lemma 6.3, any finitely generated subgroup $G \leq H$ of the Higman group either has $w(G) \geq \sqrt[600]{2}$, or is virtually abelian, or stabilizes a flat or line in X. Let E be the line or flat in X stabilized by G. We have homomorphism $\pi: G \rightarrow \operatorname{Isom}(E)$ where the image \bar{G} is virtually abelian. The kernel is contained in $\bigcap_{p \in E} \operatorname{Stab}(p)$, so it is cyclic. If $\operatorname{dim}(E)=2$ then $\operatorname{ker}(\pi)$ is trivial because the 2 -cell groups are trivial. If $\operatorname{dim}(E)=1$ then E is contained in the 1 -skeleton of X. Stabilizers of adjacent edges have trivial intersection by [39, Lemma 2.1], so we again have $\operatorname{ker}(\pi)$ is trivial. Therefore, $G \cong \bar{G}$, and moreover G is cyclic, since the Higman group is torsion-free and does not contain \mathbb{Z}^{2} as a subgroup [39, Proposition 4.15].

6.2 Triangle-free Artin groups

Artin groups generalize the braid group. They admit presentations corresponding to finite labeled graphs where each label m is at least two. Vertices correspond to generators and an edge labeled by m joining vertices a and b corresponds to the relation

$$
\underbrace{a b a \cdots}_{m}=\underbrace{b a b \cdots}_{m} .
$$

Triangle-free Artin groups are those whose defining graphs have girth ≥ 4. Spherical Artin groups are those whose quotient Coxeter group is finite. This quotient is obtained
by imposing that all generators have order 2. An Artin group is FC-type when every clique in the defining graph is associated to a spherical Artin subgroup. An Artin group is 2-dimensional if every spherical Artin subgroup has rank at most 2. It is easy to see that an Artin group is triangle-free if and only if it is 2-dimensional FC-type.

Many subclasses of Artin groups exhibit properties of nonpositive curvature and have attracted much attention in recent years. Indeed, FC-type Artin groups are acylindrically hyperbolic by Chatterji and Martin [12, Theorem 1.2]. In recent work, Martin and Przytycki exploit an improper action of FC-type Artin groups on CAT(0) cube complexes in order to prove the strong Tits alternative [41].

Charney and Davis showed an Artin group A is FC-type if and only if its Deligne complex \mathbb{D}_{A} is a $\operatorname{CAT}(0)$ cube complex. Moreover, they showed that \mathbb{D}_{A} is a $K(\pi, 1)$ space for A so it has the same cohomological dimension as the Artin group [11, Theorem 4.3.5]; see also [41]. In particular, the Deligne complex of triangle-free Artin groups is a CAT(0) square complex. The action of any FC-type Artin group A on its Deligne complex has vertex stabilizers that are conjugates of standard parabolic subgroups, which correspond to subgraphs of the defining graph of A.

Theorem 6.4 Let G be any finitely generated subgroup of a triangle-free Artin group A. Either G is virtually abelian or it has uniform exponential growth with $w(G) \geq \sqrt[600]{2}$.

The base case of the theorem is the following.
Lemma 6.5 (rank 2 Artin groups) Any finitely generated subgroup of a rank 2 Artin group is either virtually abelian or has uniform exponential growth bounded by $\sqrt[4]{2}$.

Proof Any rank 2 Artin group A acts geometrically on a CAT(0) square complex isometric to $\mathbb{R} \times T$ where T is a simplicial tree [32, Theorem 5.1] (a similar complex is also described in [7]). Also, A is torsion-free [14]. Therefore, any subgroup of A acts freely on $\mathbb{R} \times T$. The bounds on growth follow from [35, Theorem 1] in the special case where X is isometric to $\mathbb{R} \times T$.

Proof of Theorem 6.4 The Deligne complex \mathbb{D}_{A} of a triangle-free Artin group is a $\operatorname{CAT}(0)$ square complex. Every edge in \mathbb{D}_{A} lies in a square and every square in \mathbb{D}_{A} has one vertex with trivial stabilizer joined to two vertices with cyclic stabilizers that are conjugates of subgroups generated by two distinct standard generators, and one vertex that is a conjugate of a rank 2 standard parabolic subgroup; see [11; 41].

Suppose that the exponential growth rate $w(G)<\sqrt[600]{2}$. If G has a global fixed point in \mathbb{D}_{A} then G is virtually abelian by Lemma 6.5 . Hence, by Corollary $6.1, G$ stabilizes a flat or line $E \subset \mathbb{D}_{A}$. Therefore, the image, \bar{G}, of G in $\operatorname{Isom}(E)$ is virtually abelian. The kernel $\operatorname{ker}(G \rightarrow \bar{G})$ has a subgroup K of index at most 2 that pointwise stabilizes the cubical convex hull of E. The group K is contained in the pointwise stabilizer $\bigcap_{x \in \operatorname{cHull}(E)^{(0)}} \operatorname{Stab}(x)$ of $\operatorname{cHull}(E)$ in G, which we will show is trivial. If $\mathrm{cHull}(E)$ contains any vertex with trivial stabilizer, then $\bigcap_{x \in \operatorname{cHull}(E){ }^{(0)}} \operatorname{Stab}(x)$ is clearly also trivial. Suppose that E is a combinatorial line that does not contain any vertices with trivial stabilizers. Such a line must contain a vertex with cyclic stabilizer, so $\operatorname{ker}(G \rightarrow \bar{G})$ is a (possibly trivial) cyclic group. Hence, G is a cyclic-by-(virtually \mathbb{Z}) group, which is virtually abelian.

References

[1] C Abbott, T Ng, D Spriano, R Gupta, H Petyt, Hierarchically hyperbolic groups and uniform exponential growth, preprint (2019) arXiv:1909.00439
[2] R C Alperin, Uniform growth of polycyclic groups, Geom. Dedicata 92 (2002) 105-113 MR Zbl
[3] R C Alperin, G A Noskov, Uniform growth, actions on trees and GL_{2}, from "Computational and statistical group theory" (R Gilman, A G Myasnikov, V Shpilrain, editors), Contemp. Math. 298, Amer. Math. Soc., Providence, RI (2002) 1-5 MR Zbl
[4] W Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar 25, Birkhäuser, Basel (1995) MR Zbl
[5] G Besson, G Courtois, S Gallot, Uniform growth of groups acting on CartanHadamard spaces, J. Eur. Math. Soc. 13 (2011) 1343-1371 MR Zbl
[6] M Bestvina, K Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002) 69-89 MR Zbl
[7] T Brady, J P McCammond, Three-generator Artin groups of large type are biautomatic, J. Pure Appl. Algebra 151 (2000) 1-9 MR Zbl
[8] E Breuillard, K Fujiwara, On the joint spectral radius for isometries of non-positively curved spaces and uniform growth, Ann. Inst. Fourier (Grenoble) 71 (2021) 317-391 MR Zbl
[9] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999) MR Zbl
[10] K S Brown, Trees, valuations, and the Bieri-Neumann-Strebel invariant, Invent. Math. 90 (1987) 479-504 MR Zbl
[11] R Charney, M W Davis, The $K(\pi, 1)$-problem for hyperplane complements associated to infinite reflection groups, J. Amer. Math. Soc. 8 (1995) 597-627 MR Zbl
[12] I Chatterji, A Martin, A note on the acylindrical hyperbolicity of groups acting on CAT(0) cube complexes, from "Beyond hyperbolicity" (M Hagen, R Webb, H Wilton, editors), London Math. Soc. Lecture Note Ser. 454, Cambridge Univ. Press (2019) 160-178 MR
[13] F Dahmani, V Guirardel, D Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc. 1156, Amer. Math. Soc., Providence, RI (2017) MR Zbl
[14] P Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972) 273-302 MR Zbl
[15] T Delzant, Sous-groupes à deux générateurs des groupes hyperboliques, from "Group theory from a geometrical viewpoint" (E Ghys, A Haefliger, A Verjovsky, editors), World Sci., River Edge, NJ (1991) 177-189 MR Zbl
[16] S Dey, M Kapovich, B Liu, Ping-pong in Hadamard manifolds, Münster J. Math. 12 (2019) 453-471 MR Zbl
[17] N M Dunfield, D P Thurston, A random tunnel number one 3-manifold does not fiber over the circle, Geom. Topol. 10 (2006) 2431-2499 MR Zbl
[18] A Eskin, S Mozes, H Oh, On uniform exponential growth for linear groups, Invent. Math. 160 (2005) 1-30 MR Zbl
[19] R Grigorchuk, P de la Harpe, On problems related to growth, entropy, and spectrum in group theory, J. Dynam. Control Systems 3 (1997) 51-89 MR Zbl
[20] R I Grigorchuk, P de la Harpe, One-relator groups of exponential growth have uniformly exponential growth, Mat. Zametki 69 (2001) 628-630 MR Zbl In Russian; translated in Math. Notes 69 (2001) 575-577
[21] M Gromov, Hyperbolic groups, from "Essays in group theory" (S M Gersten, editor), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75-263 MR Zbl
[22] M Hagen, Large facing tuples and a strengthened sector lemma, Tunis. J. Math. 4 (2022) 55-86 MR Zbl
[23] F Haglund, Isometries of CAT(0) cube complexes are semi-simple, preprint (2007) arXiv:0705. 3386
[24] F Haglund, F Paulin, Simplicité de groupes d'automorphismes d'espaces à courbure négative, from "The Epstein birthday schrift" (I Rivin, C Rourke, C Series, editors), Geom. Topol. Monogr. 1, Geom. Topol., Coventry (1998) 181-248 MR Zbl
[25] M Hall, Jr, Solution of the Burnside problem for exponent six, Illinois J. Math. 2 (1958) 764-786 MR Zbl
[26] P de la Harpe, Uniform growth in groups of exponential growth, Geom. Dedicata 95 (2002) 1-17 MR Zbl
[27] P de la Harpe, M Bucher, Free products with amalgamation, and HNN-extensions of uniformly exponential growth, Mat. Zametki 67 (2000) 811-815 MR Zbl In Russian; translated in Math. Notes 67 (2000) 686-689
[28] G Higman, A finitely generated infinite simple group, J. London Math. Soc. 26 (1951) 61-64 MR Zbl
[29] G C Hruska, Geometric invariants of spaces with isolated flats, Topology 44 (2005) 441-458 MR Zbl
[30] G C Hruska, B Kleiner, Hadamard spaces with isolated flats, Geom. Topol. 9 (2005) 1501-1538 MR Zbl
[31] J Huang, Quasi-isometric classification of right-angled Artin groups I: the finite out case, Geom. Topol. 21 (2017) 3467-3537 MR Zbl
[32] J Huang, K Jankiewicz, P Przytycki, Cocompactly cubulated 2-dimensional Artin groups, Comment. Math. Helv. 91 (2016) 519-542 MR Zbl
[33] K Jankiewicz, Lower bounds on cubical dimension of $C^{\prime}(1 / 6)$ groups, Proc. Amer. Math. Soc. 148 (2020) 3293-3306 MR Zbl
[34] M Kapovich, A note on properly discontinuous actions, preprint (2023) arXiv: 2301.05325
[35] A Kar, M Sageev, Uniform exponential growth for CAT(0) square complexes, Algebr. Geom. Topol. 19 (2019) 1229-1245 MR Zbl
[36] M Koubi, Croissance uniforme dans les groupes hyperboliques, Ann. Inst. Fourier (Grenoble) 48 (1998) 1441-1453 MR Zbl
[37] W Magnus, Über diskontinuierliche Gruppen mit einer definierenden Relation. (Der Freiheitssatz), J. Reine Angew. Math. 163 (1930) 141-165 MR Zbl
[38] J Mangahas, Uniform uniform exponential growth of subgroups of the mapping class group, Geom. Funct. Anal. 19 (2010) 1468-1480 MR Zbl
[39] A Martin, On the cubical geometry of Higman's group, Duke Math. J. 166 (2017) 707-738 MR Zbl
[40] A Martin, Acylindrical actions on CAT(0) square complexes, Groups Geom. Dyn. 15 (2021) 335-369 MR Zbl
[41] A Martin, P Przytycki, Tits alternative for Artin groups of type FC, J. Group Theory 23 (2020) 563-573 MR Zbl
[42] A Minasyan, D Osin, Acylindrical hyperbolicity of groups acting on trees, Math. Ann. 362 (2015) 1055-1105 MR Zbl
[43] P S Novikov, S I Adjan, Infinite periodic groups, I, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968) 212-244 MR Zbl In Russian; translated in Math. USSR-Izv. 2 (1968) 209-236
[44] PS Novikov, S I Adjan, Infinite periodic groups, II, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968) 251-524 MR Zbl In Russian; translated in Math. USSR-Izv. 2 (1968) 241-479
[45] PS Novikov, S I Adjan, Infinite periodic groups, III, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968) 709-731 MR Zbl In Russian; translated in Math. USSR-Izv. 2 (1968) 665-685
[46] D V Osin, The entropy of solvable groups, Ergodic Theory Dynam. Systems 23 (2003) 907-918 MR Zbl
[47] D Osin, Acylindrically hyperbolic groups, Trans. Amer. Math. Soc. 368 (2016) 851-888 MR Zbl
[48] KE Ruane, Dynamics of the action of a CAT(0) group on the boundary, Geom. Dedicata 84 (2001) 81-99 MR Zbl
[49] M Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. 71 (1995) 585-617 MR Zbl
[50] M Sageev, CAT(0) cube complexes and groups, from "Geometric group theory" (M Bestvina, M Sageev, K Vogtmann, editors), IAS/Park City Math. Ser. 21, Amer. Math. Soc., Providence, RI (2014) 7-54 MR Zbl
[51] M Sageev, D T Wise, The Tits alternative for CAT(0) cubical complexes, Bull. London Math. Soc. 37 (2005) 706-710 MR Zbl
[52] J-P Serre, Trees, Springer (2003) MR Zbl
[53] W P Thurston, Three-dimensional geometry and topology, I, Princeton Mathematical Series 35, Princeton Univ. Press (1997) MR Zbl
[54] J S Wilson, On exponential growth and uniformly exponential growth for groups, Invent. Math. 155 (2004) 287-303 MR Zbl
[55] D T Wise, Complete square complexes, Comment. Math. Helv. 82 (2007) 683-724 MR Zbl
[56] X Xie, Growth of relatively hyperbolic groups, Proc. Amer. Math. Soc. 135 (2007) 695-704 MR Zbl

School of Mathematics, Tata Institute of Fundamental Research
Mumbai, India
Department of Mathematics, University of California, Santa Cruz
Santa Cruz, CA, United States
Mathematics Department, Technion - Israel Institute of Technology
Haifa, Israel
radhikagupta.maths@gmail.com, kasia@ucsc.edu,
thomas.ng.math@gmail.com

Received: 8 July 2020 Revised: 19 September 2021

Algebraic \& Geometric Topology
 msp.org/agt

EDITORS

Principal Academic Editors
John Etnyre etnyre@math.gatech.edu
Georgia Institute of Technology
Kathryn Hess
kathryn.hess@epfl.ch
École Polytechnique Fédérale de Lausanne

Board of Editors

Matthew Ando	University of Illinois mando@math.uiuc.edu	Tsuyoshi Kobayashi	Nara Women's University tsuyoshi09@gmail.com
Julie Bergner	University of Virginia jeb2md@eservices.virginia.edu	Christine Lescop	Université Joseph Fourier lescop@ujf-grenoble.fr
Joan Birman	Columbia University jb@math.columbia.edu	Robert Lipshitz	University of Oregon lipshitz@uoregon.edu
Steven Boyer	Université du Québec à Montréal cohf@math.rochester.edu	Norihiko Minami	Nagoya Institute of Technology nori@nitech.ac.jp
Indira Chatterji	CNRS \& Université Côte d'Azur (Nice) indira.chatterji@math.cnrs.fr	Andrés Navas Flores	Universidad de Santiago de Chile andres.navas@usach.cl
Fred Cohen	University of Rochester cohf@math.rochester.edu	Thomas Nikolaus	University of Münster nikolaus@uni-muenster.de
Alexander Dranishnikov	University of Florida dranish@math.ufl.edu	Robert Oliver	Université Paris-Nord bobol@math.univ-paris13.fr
Tobias Ekholm	Uppsala University, Sweden tobias.ekholm@math.uu.se	Luis Paris	Université de Bourgogne lparis@u-bourgogne.fr
Mario Eudave-Muñoz	Univ. Nacional Autónoma de México mario@matem.unam.mx	Jérôme Scherer	École Polytech. Féd. de Lausanne jerome.scherer@epfl.ch
David Futer	Temple University dfuter@temple.edu	Peter Scott	University of Michigan pscott@umich.edu
Soren Galatius	Stanford University galatius@math.stanford.edu	Zoltán Szabó	Princeton University szabo@ math.princeton.edu
John Greenlees	University of Warwick john.greenlees@ warwick.ac.uk	Ulrike Tillmann	Oxford University tillmann@maths.ox.ac.uk
J. Elisenda Grigsby	Boston College grigsbyj@bc.edu	Maggy Tomova	University of Iowa maggy-tomova@uiowa.edu
Ian Hambleton	McMaster University ian@math.mcmaster.ca	Chris Wendl	Humboldt-Universität zu Berlin wendl@math.hu-berlin.de
Hans-Werner Henn	Université Louis Pasteur henn@math.u-strasbg.fr	Daniel T. Wise	McGill University, Canada daniel.wise@mcgill.ca

Daniel Isaksen Wayne State University isaksen@ math.wayne.edu

See inside back cover or msp.org/agt for submission instructions.
The subscription price for 2023 is US $\$ 650 /$ year for the electronic version, and $\$ 940 /$ year ($+\$ 70$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP. Algebraic \& Geometric Topology is indexed by Mathematical Reviews, Zentralblatt MATH, Current Mathematical Publications and the Science Citation Index.
Algebraic \& Geometric Topology (ISSN 1472-2747 printed, 1472-2739 electronic) is published 9 times per year and continuously online, by Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall \#3840, Berkeley, CA 94720-3840. Periodical rate postage paid at Oakland, CA 94615-9651, and additional mailing offices. POSTMASTER: send address changes to Mathematical Sciences Publishers, c/o Department of Mathematics, University of California, 798 Evans Hall \#3840, Berkeley, CA 94720-3840.

AGT peer review and production are managed by EditFlow ${ }^{\circledR}$ from MSP.
PUBLISHED BY

I. mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/
© 2023 Mathematical Sciences Publishers
Algebraic \& Geometric Topology
Volume 23 Issue 1 (pages 1-508) 2023
Proper 2-equivalences between infinite ended finitely presented groupsManuel Cárdenas, Francisco Fernández Lasheras, AntonioQuintero and Ranja Roy
Groups acting on CAT(0) cube complexes with uniform exponential growth 13
Radhika Gupta, KaSia Jankiewicz and Thomas Ng
Admissible replacements for simplicial monoidal model categories 43
Haldun Özgür Bayindir and Boris Chorny
The bridge number of arborescent links with many twigs 75
Sebastian Baader, Ryan Blair, Alexandra Kjuchukova and Filip Misev
G_{∞}-ring spectra and Moore spectra for β-rings 87
Michael Stahlhauer
External Spanier-Whitehead duality and homology representation theorems for 155 diagram spaces
Malte Lackmann
On the surjectivity of the tmf-Hurewicz image of A_{1} 217
Viet-Cuong Pham
The handlebody group and the images of the second Johnson homomorphism 243
Quentin Faes
Recognition of connective commutative algebra spectra through an idempotent 295 quasiadjunction
Renato Vasconcellos Vieira
SL_{2} quantum trace in quantum Teichmüller theory via writhe 339
Hyun Kyu Kim, Thang T Q Lê and Miri Son
Constraints on families of smooth 4-manifolds from $\mathrm{Pin}^{-}(2)-$ monopole 419
Hokuto Konno and Nobuhiro Nakamura
Suspension homotopy of 6-manifolds 439
Ruizhi Huang
Time-periodic solutions of Hamiltonian PDEs using pseudoholomorphic curves461
Oliver Fabert and Niek Lamoree

[^0]: © 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.

