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When k is a field, type D structures over the algebra kŒu; v�=.uv/ are equivalent to im-
mersed curves decorated with local systems in the twice-punctured disk. Consequently,
knot Floer homology, as a type D structure over kŒu; v�=.uv/, can be viewed as a set of
immersed curves. With this observation as a starting point, given a knot K in S3, we
realize the immersed curve invariant cHF.S3 X V�.K// of Hanselman, Rasmussen and
Watson by converting the twice-punctured disk to a once-punctured torus via a handle
attachment. This recovers a result of Lipshitz, Ozsváth and Thurston calculating the
bordered invariant of S3 X V�.K/ in terms of the knot Floer homology of K.

57K18, 57K31; 57R58

Recent work interprets relative versions of homological invariants in terms of im-
mersed curves, including Heegaard Floer homology for manifolds with torus boundary
(see Hanselman, Rasmussen and Watson [4]) as well as link Floer homology (see
Zibrowius [23]), singular instanton knot homology (see Hedden, Herald and Kirk [7]),
and Khovanov homology (see Kotelskiy, Watson and Zibrowius [12]) for 4–ended
tangles. In particular, Section 5 of [12] classifies type D structures over a quiver
algebra associated with a surface with boundary in terms of immersed curves on this
surface; compare Haiden, Katzarkov and Kontsevich [2] and Hanselman, Rasmussen
and Watson [4]. Denoting a field by k, perhaps the simplest algebra to illustrate
these classification results is RD kŒu; v�=.uv/. This algebra arises as the path algebra
of a quiver that is associated with the decorated surface shown in Figure 1. Work
of Lekili and Polishchuk [13; 14] describes the role of R, and its relationship with
the twice-punctured disk, in the context of homological mirror symmetry; see in
particular [14, Figures 1 and 2]. The algebra R equipped with the Alexander and ı
gradings gr.u/D .�1; 1/ and gr.v/D .1; 1/ plays a central role in knot Floer homology;
see Dai, Hom, Stoffregen and Truong [1], for instance.
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v u

a

Figure 1: An arc system associated with the algebra R.

Theorem 1 Every bigraded type D structure over R is equivalent to an immersed
curve (decorated with local systems) in the twice-punctured disk , which is unique up
to regular homotopy (and equivalence of local systems).

As stated, this is a special case of a theorem proved in [12, Section 5] appealing to
techniques from [4] (see also [23]). The observation could alternatively be extracted
from [4, Section 3.4] (see the aside starting on page 2527 below accompanying Figure 8),
and also follows from work of Haiden, Katzarkov and Kontsevich [2]; see Section 1.8
of [12] for more discussion. We will review the algebraic objects in Section 1 and,
without reproducing the proof in full, explain some key steps in this special case in
Section 2. Theorem 1 gives rise to a graphical interpretation  for (a variant of) knot
Floer homology RCFK.Y;K/, which is a bigraded type D structure over R. Our proof
is constructive and, in particular, foregrounds the role of vertically and horizontally
simplified bases that arise in knot Floer homology. An explicit example of a curve  in
the twice-punctured disk is shown in Figure 2, left. This particular curve corresponds
to the type D structure associated with the right-hand trefoil T2;3 in S3:

Œ˛1
u
 � ˛2

v
�! ˛3�D

RCFK.S3;T2;3/:

Note that, while the local system in this example is trivial, these are easy to add to
the picture in general, being equivalent to isomorphism classes of flat vector bundles
over the curves in question. There is an obvious handle attachment, identifying the
two punctures in the disk, which yields a once-punctured torus. Denote this handle
attachment by and consider the curve ./. Note that, given a choice of meridian
on the torus, this operation has an inverse, which we will denote by .

Denote by cHF.M / the immersed curve in the once-punctured torus associated with
a manifold M with torus boundary [4]. This is equivalent to the bordered Heegaard
Floer invariant of M ; see Lipshitz, Ozsváth and Thurston [17]. Here is the mnemonic
we propose:

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 2: Adding a handle to the twice-punctured disk results in the
once-punctured torus. This carries immersed curves to immersed curves;
the immersed curve on the left corresponds to the type D structure
RCFK.S3;T2;3/D Œ˛1

u
 � ˛2

v
�! ˛3�, which is carried to the curve cHF.M /,

where M is the trefoil exterior S3 X V�.K/.

Theorem 2 If  is a curve representing the knot Floer invariant RCFK.S3;K/ over
the two-element field , then ./ is equivalent to cHF.M /, where M is the exterior of
the knot K. Conversely, given a meridian for M DS3X V�.K/, the curve .cHF.M //

represents the knot Floer type D structure for K.

Figure 2 illustrates this theorem for the right-hand trefoil knot; the proof is given in
Section 4.

Remark There is an apparent ambiguity in the statement of Theorem 2, namely
the number of twists (along the belt of the handle ) one adds to the noncompact
component of the curve  . However, recall that the curve cHF.M / � @M is null-
homologous in M [4, Sections 5 and 6]; to resolve the ambiguity it is enough to
identify the once-punctured torus obtained after adding the handle with the boundary
of the knot exterior (minus a small disk). We identify the arc a� from Figure 2 with
the meridian �, and the second arc aı with a longitude � of K. This pair provides a
bordered structure, in the sense of Lipshitz, Ozsváth and Thurston [17]. Concerning the
framing �: On one hand, there is a preferred choice given by the Seifert longitude �0,
and the corresponding identification is depicted in Figure 3, right. On the other hand, it
is often easiest to work with the “blackboard framing”, which simply joins the endpoints
of  without new twisting as they run over the handle, as in Figure 2. In general, the
latter gives the 2�.K/–framed longitude �2� D 2� � �C �0, where the value �.K/
is the Ozsváth–Szabó concordance invariant (we describe how to extract this value
below). This choice of longitude is illustrated in Figure 3, left. These choices differ by
Dehn twists along �; note that in both cases Œ ./�D Œ�0� in homology. Different
choices of twisting precisely correspond to different unstable chains appearing in [17,
Theorem A.11], due to Lipshitz, Ozsváth and Thurston, which Theorem 2 recasts.

Algebraic & Geometric Topology, Volume 23 (2023)
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� �2� �
�0

Figure 3: Choices of framing on the right-hand trefoil invariant: �2� D

2�C�0 (left) and the Seifert longitude �0 (right). The resulting curve  on
the boundary of the trefoil exterior coincides with Figure 9 of Hanselman,
Rasmussen and Watson [5].

This result generalizes to knots in arbitrary three-manifolds; see Section 5 for further
discussion.

A graphical interpretation of the family of concordance homomorphism f�ig due to
Dai, Hom, Stoffregen and Truong [1] is given by Hanselman and the second author [6].
This can be read off the current picture: Denote by 0.K/ � .K/ the noncompact
curve in the twice-punctured disk associated with RCFK.S3;K/. (The curve 0.K/

is a concordance invariant [6, Proposition 2].) Orient 0.K/ so that it leaves from the
v–puncture; this is the left-hand puncture in Figure 1, which records the vi coefficient
maps. Contracting the arc a to a point gives a wedge of annuli Av _ Au, and the
oriented segments of 0.K/ around the v–puncture give a collection of homotopy
classes in �1Av Š hti, where the generator t winds counterclockwise. As a result,
given 0.K/, with our choice of orientation we obtain tn1 tn2 � � � tnk for the k oriented
segments winding around the v–puncture, and

�i.K/D
X

njD˙i

sign.nj /; �.K/D

kX
jD1

nj ;

so that �.K/ is simply the winding number of  around the v–puncture. One can check
that this gives �.T2;3/ D �1.T2;3/ D 1. A more complicated example is shown in
Figure 4. The same construction works with the u–puncture instead of the v–puncture,
due to a symmetry interchanging u and v in knot Floer homology; see Ozsváth and
Szabó [18].

Relevant to concordance is the behaviour under connect sum. Denote by RHFK.S3;K/

the knot Floer invariant obtained as the homology of a complex CFK.S3;K/ freely
generated over R. In Section 6 we prove:

Algebraic & Geometric Topology, Volume 23 (2023)
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Figure 4: The curve associated with RCFK.S3;K/ when K is the .2; 1/–
cable of the right-hand trefoil. The vertical and horizontal complexes are
shown beside the relevant annuli; including the diagonal arrows describes the
invariant over kŒu; v�. Applying Theorem 2 results in the curve invariant in
the torus, which can be compared with [6, Figure 1]. Orientating the curve as
shown, we calculate �1.K/D 0, �2.K/D 1 and �.K/D 2.

Theorem 3 The knot Floer homology over R of a connected sum of two knots is equal
to the wrapped Lagrangian Floer homology of the corresponding curves:

RHFK.S3;mK # K0/Š HF..K/;.K0//:

A proof is given in Section 6. As is the case with Theorem 1, the proof appeals to the
techniques in [12, Section 5].

1 Algebraic objects

Let B be a bigraded unital algebra over a field k, with a subring of idempotents I
being equal to kn. The object of interest is a bigraded chain complex over B: Let V

be a finite-dimensional bigraded left I–module, and suppose further that we have a
morphism of I–modules

d W V ! B˝I V

satisfying the compatibility condition

.�˝ idV / ı .idB˝ d/ ı d D 0;

where � denotes multiplication in B. In our setting the morphism d has bidegree
.a; ı/D .0; 1/, and the pair .V; d/ is a bigraded type D structure over B.

A couple of remarks: We work with left actions for consistency with [17], and our
type D structures will always be reduced, which means that d.x/D

P
i bi˝yi , where

Algebraic & Geometric Topology, Volume 23 (2023)
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none of the bi 2 B are invertible. This is justified by the fact that any bigraded type D
structure is homotopy equivalent to a reduced one [12, Lemma 2.16].

Such algebraic structures appear naturally in a variety of settings. For example, given a
knot K in S3, the knot Floer invariant HFK.S3;K/, due to Ozsváth and Szabó [18]
and to Rasmussen [21], can be viewed as a kŒu; v�–module obtained as the homology
of a chain complex CFK.S3;K/ over the ring kŒu; v� [22, Section 3]. This complex is
freely generated as a module over this ring. As such, it is natural to view CFK.S3;K/

as a type D structure over kŒu; v�, which we denote by kŒu;v�CFK.S3;K/.

Given a type D structure over B, a homomorphism of I–algebras B! B0 gives rise to
an induced type D structure over B0. In particular, the quotient kŒu; v�! kŒu; v�=.uv/

defines a truncated version of the knot Floer type D structure,
RCFK.S3;K/D kŒu;v�CFK.S3;K/juvD0:

The associated module object RCFK.S3;K/ (see [17, Lemma 2.20]) is the knot Floer
complex freely generated over R, which is studied in depth by Dai, Hom, Stoffregen
and Truong [1] and Ozsváth and Szabó [19]. A concise formula connecting the
type D structure and the associated module object uses the box tensor product (see [16,
Section 2.3.2 and Proposition 2.3.18], and also the beginning of Section 4 for a similar
construction):

RCFK.S3;K/D RRR � RCFK.S3;K/:

We note that there are two further type D structures obtained from RCFK.S3;K/ by
setting the appropriate variables equal to zero: the horizontal type D structure C h

and the vertical type D structure C v . For instance, in the case of the type D structure
RCFK.S3;T2;3/ (see Figure 2), we have

C h
D Œ˛1

u
 � ˛2 ˛3�; C v

D Œ˛1 ˛2
v
�! ˛3�:

As the type D structures are reduced, the isomorphisms of vector spaces C hjuD0 Š

bHFK.S3;K/Š C v jvD0 induce an isomorphism

' W C h
juD0! C v

jvD0:

We have:

Proposition 4 The data specified by the triple .C h; C v ; '/ is equivalent to the type D
structure RCFK.S3;K/.

Proof This is immediate from the definitions, but also follows from the discussion in
Section 2 outlining the proof of Theorem 1.

Algebraic & Geometric Topology, Volume 23 (2023)
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2 Geometric objects

Often, when an invariant of a topological object is a type D structure over an algebra B,
the invariant is only well defined up to homotopy equivalence. As such, it is of
general interest to be able to classify homotopy equivalence classes of type D structures.
Such classification turns out to be possible when the algebra B is isomorphic to
an endomorphism algebra of certain objects in the (wrapped) Fukaya category of a
surface †. In this case, homotopy equivalence classes of type D structures over B
correspond to certain curves (decorated with local systems) immersed in †. This is a
powerful structural result allowing us to translate algebra into geometry, something
not so often encountered in mathematics. The classification result is established in [2]
using representations of nets; an alternative, more geometric approach is given in [4],
which appeals to train tracks in a surface. The simplification algorithm proved in [4]
that is central to the classification is further developed and leveraged in [12; 23], where
train tracks reappear as precurves. We focus on this latter approach.

To provide a useful toy model for the classification result, we restrict to type D structures
over R. The algebra R indeed arises as the endomorphism algebra of an object in the
(wrapped) Fukaya category of a surface. The surface is the oriented, twice-punctured
disk D and the object is an arc connecting the two punctures; see Figure 5. More
explicitly, from this figure we can extract a quiver with a single vertex corresponding
to the object in the Fukaya category, and arrows labelled u and v corresponding to the
two paths around the punctures in D:

v ˛ u

It is useful to view this quiver as a deformation retract of the twice-punctured disk.
The algebra R is the path algebra of this quiver modulo the relations uv D 0D vu. In
terms of Figure 5, these relations have the effect that paths that run along the dashed
arc are zero in R, while paths that only wind around a single puncture are nonzero.

v u

Figure 5: A dual arc system associated with the algebra R.

Algebraic & Geometric Topology, Volume 23 (2023)
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To match the setup in [12], a different viewpoint, which is in some sense dual to the
previous one, will be more useful. Namely, choose an arc a that is properly embedded
in .D; @D/ and that divides D into a pair of annuli, as illustrated in Figure 1. From
this, we can also recover the quiver: the vertex corresponds to the arc a and the arrows
correspond to paths on the boundary of D. Again, it is useful to consider the quiver as
a deformation retract that contracts the arc to the quiver vertex. The relations that we
impose on the quiver algebra to obtain R now have a different geometric interpretation:
paths that at an endpoint of the dashed arc continue along the boundary of D are zero
in R, while paths that, at such a point, always choose to follow the dashed arc are
nonzero; see also [12, Section 5.1].

The choice of arc a is an example of an arc system on D, in the sense of Section 5.1
of [12]. In general, an arc system, giving rise to an algebra B, allows for a graphical
representation of type D structures over B as subobjects of the surface. These show
up as train tracks in [4] and precurves in [12]; we describe them explicitly in the
case of R and the twice-punctured disk D. It will be convenient to specify the annuli
D X aDAv tAu; these annuli are called faces.

Let .V; d/ be a type D structure over R. Given a homogeneous basis fx1; : : : ;xng

for V (as a vector space over k, say), we can pick n distinct points on a and label
these with the xi . To describe the morphism d , suppose b˝xj is a summand of d.xi/.
Then, since b is a sum of polynomials, we may assume without loss of generality
that b is �uk or �vk for some � 2 k and k > 0. (The assumption that this power is
nonzero comes from our restriction to reduced type D structures.) There are two cases:
if b D �uk then we connect xi to xj by an oriented arc immersed in Au that winds
algebraically k times in the positive direction; and if bD �vk then we connect xi to xj

by an oriented curve immersed in Av that winds algebraically k times in the positive
direction. In both cases the arc is decorated by the field coefficient �, noting that when
�D 1 our convention is to drop the label. In particular, when k is the two-element field,
only the arcs are needed. Lastly, if an intersection point xi does not have outgoing arcs
in the annulus Au, we connect xi straight to the u–puncture; we do the same for the Av

annulus and the v–puncture. To see that this information, having added all of the arcs
described, can be viewed as an immersed train track in D, we simply require that every
curve is perpendicular to a in a neighbourhood of each xi . An explicit example is given
in Figure 6. Note that in this example there are no arcs going to interior punctures.

These train tracks can be put into a simple form that makes them easier to manage: we
require that they are simply faced in the sense of [12, Definition 5.9]. In the present

Algebraic & Geometric Topology, Volume 23 (2023)
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Av Au

�1

Figure 6: A sample train track representation of a type D structure over R.
Note that every curve segment is oriented so that it runs counterclockwise
around a puncture, so this orientation is omitted. Similarly, unlabelled edges
(of which there are all but one in this example) carry the decoration �D 1.

setting, this amounts to expressing

D DAv [a�f1g .a� Œ�1; 1�/[a�f�1gAu

and requiring that the train track restricted to Au and to Av describes a type D structure
over kŒu� and kŒv�, respectively, with the property that each xi connects to at most
one xj . For an illustration, see Figure 7. All of the interesting switching is confined to
the strip a� Œ�1; 1�, which amounts to a graphical interpretation (reading from right
to left) of an isomorphism ' W Vu! Vv, where Vv and Vu are the underlying vector
spaces associated with the type D structure in each face. As such, the general fact that
we can restrict to simply faced train tracks (see [12, Proposition 5.10]) boils down to
the fact that type D structures over R admit vertically and horizontally simplified bases
[17, Definition 11.23] — though not necessarily one that is simultaneously vertically
and horizontally simplified, whence the choice of isomorphism. This last assertion
explains the presence of '; compare Proposition 4. We remark that this is one step in
which the grading plays a key role.

Aside We make a digression to describe that, in order to classify type D structures
in terms of immersed curves, other choices of surface decomposition are possible.
Namely, another option would be to

(1) cut the annuli Au and Av further, as described in Figure 8;

(2) associate with this new geometric picture a different algebra E ;

Algebraic & Geometric Topology, Volume 23 (2023)
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a� Œ�1; 1�

‚ …„ ƒ
�

0 0 1
�1 1 0

1 0 0

�

�1 1

Figure 7: Expressing the train track from Figure 6 as a simply faced precurve.
The isomorphism described can be read off the tracks in a� Œ�1; 1� from right
to left; in the present setting the resulting matrix block-decomposes into two
3� 3 parts, of which one is shown and the other is the identity matrix.

(3) interpret the type D structure RV as a type D structure EW over the algebra E ;

(4) apply the methods from [4] to interpret EW as an immersed curve.

To describe this in more detail, let us focus first on the annulus Av in step (2).

Consider Figure 8. Any type D structure kŒv�V˛ may be regarded as a type D structure
V˛˚V�˚Vı over the quiver algebra kŒ� a

�! ˛
b
�! ı� together with an isomorphism

between the vector spaces V� and Vı. To repackage the latter into a type D structure
without extra data, we consider a subalgebra generated by idempotents ��C �ı and �˛

v �˛

a

b

�˛

��

�ı

Figure 8: A quiver associated with the annulus describing the algebra kŒv�,
and a quiver for an algebra associated with an additional cut.

Algebraic & Geometric Topology, Volume 23 (2023)
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(because eventually the idempotents �ı and �� are identified). Writing �¯ D ��C �ı, the
subalgebra is equal to

C D kŒ¯
a
�!

b
 � ˛�=.ba/:

The type D structure kŒv�V˛ can now be interpreted as a type D structure C.V˛˚V¯/:
generators ˛ in kŒv�V˛ and C.V˛ ˚ V¯/ are in one-to-one correspondence, while a
differential ˛

vn

�! ˛ in kŒv�V˛ corresponds to the sequence of differentials

˛
b
�!¯

ab
�!¯

ab
�! � � �

ab
�!¯„ ƒ‚ …

n generators

a
�! ˛

in C.V˛˚V¯/. To add the second annulus Au to the picture, given a type D structure RV˛

one translates it into a type D structure EW over the algebra

E D kŒ¯1
a1�!
b1
 � ˛

b2�!
a2
 �¯2�=.b1a1; b2a2; a1b2; a2b2/

via the dictionary

˛
vn

�! ˛ 7�! ˛
b1
�!¯1

a1b1
��!¯1

a1b1
��! � � �

a1b1
��!¯1„ ƒ‚ …

n generators

a1
�! ˛;(1)

˛
un

�! ˛ 7�! ˛
b2
�!¯2

a2b2
��!¯2

a2b2
��! � � �

a2b2
��!¯2„ ƒ‚ …

n generators

a2
�! ˛:(2)

With this type D structure EW in hand, the methods from [4] allow us to interpret EW

as an immersed curve.

A possible difficulty might arise from the following. The passage from RV˛ to EW does
not respect homotopy equivalences: there exist homotopy equivalent type D structures
RV˛ '

RV 0˛ such that the corresponding type D structures EW and EW 0 are not
homotopy equivalent (take for example RV˛D Œ˛

v
 �˛

v
�!˛� and RV 0˛D Œ˛

v
 �˛�˚Œ˛�/.

This problem is mitigated by the fact that the curves associated with EW and EW 0 will
differ only by how many times their ends wrap around the two punctures, and initially
we regard such curves as the same. Another way to mitigate this problem is to find
vertically and horizontally simplified bases f�ig and f�j g for RV˛ at the outset, and apply
the operation (1) to the basis f�ig and the operation (2) to the basis f�ig. This will ensure
that the curve associated with EW will not have extra wrapping around the punctures
(and, of course, there may be nontrivial train tracks in the middle as in Figure 7).

We now return to the main text and make some comments about our conventions,
reviewing [12, Section 5.6]. The object appearing in the strip a� Œ�1; 1� represents an
invertible matrix, where the i th column records the edges leaving the point labelled xi on
a�f�1g (a is oriented from top to bottom in our figures, so that f�1g is the right-most

Algebraic & Geometric Topology, Volume 23 (2023)
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�
0 1
1 0

� �
1 �
0 1

� �
� 0
0 1

��

�

� ��

�
1
�

Figure 9: A crossing, a crossover switch, and a passing loop, each with the
elementary matrix they represent by reading paths right to left. To declutter
pictures, we will be using the pictures in the lower row, where the arrows
pointing left to right are dropped.

edge of the strip). Using the row-reduction algorithm, this matrix can be factorized
into elementary matrices corresponding to three geometric subobjects, as shown in
Figure 9. These subobjects differ from the ones in [4], where the coefficients are
restricted to the two-element field. New in the context of general fields are the nonzero
coefficients � 2 k, recorded on the crossover switches (these correspond to crossover
arrows from [4]), as well as the passing loops, which introduce coefficients at various
points. The main point is that, when two coefficients appear consecutively on one edge
connecting the source and the target, the coefficients multiply, while if two edges share
a common source and a common target, the coefficients on those edges add. We note
that the geometric objects contain not only the information encoding ' (reading right
to left) but also the information about the inverse '�1 (reading left to right). As such,
some of the data in the crossover switches and in the passing loops is superfluous. In
particular, to simplify pictures here, we will record only the arrows running right to left.

It is convenient to put the matrix representing ' into a normal form, namely the LPU
normal form: any invertible matrix can be written as a product of a lower triangular
matrix, a permutation matrix (which may be multiplied, additionally, by a diagonal
matrix to change coefficients), and an upper triangular matrix. For example, the matrix�
� 1
1 0

�
may be expressed as�

1 �

0 1

��
0 1

1 0

�
D

�
1 0

��1 1

��
� 0

0 ���1

��
1 ��1

0 1

�
and this identity has the geometric interpretation

D�
1
�

�

�
1
�

1
�
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Figure 10: Arrows running counterclockwise can be removed.

More generally, writing the matrix for ' in LPU normal form corresponds to modifying
the train track in the region a� Œ�1; 1� so that the downward arrows are on the left, the
upward arrows are on the right, and there is a permutation in the middle. A complete list
of geometric moves corresponding to different factorizations into elementary matrices
is given in [12, Figure 23]. As an example, the reader should compare Figures 7 and 11.

The reason this form is useful is that it allows us to remove arrows and simplify. This is
possible in general, by appealing to an algorithm given in [4], and ultimately gives rise
to the proof of Theorem 1; see [12, Section 5] for details. The main point is that arrows
winding counterclockwise around a puncture can be removed. Namely, suppose there
is an arrow near an edge of the strip a� Œ�1; 1� that, when pushed into the relevant
annulus, runs counterclockwise between curve segments with different amounts of
wrapping. Then there is a homotopy equivalence that produces a new train track — with
the counterclockwise arrow removed — representing the same type D structure; see
Figure 10. This is described in detail in [12, Lemma 5.11]. The result of this procedure,
applied to the example described in Figure 11, is shown in Figure 12.

Recall that a local system over an immersed curve is a vector bundle over the curve.
In general, all of our curves carry local systems, but when the associated bundle is
one-dimensional and trivial we drop it from the notation. When working with signs,
one-dimensional local systems are quite common as the coefficients along any given
curve component multiply. Of course, noncompact curves do not carry interesting local
systems since all vector bundles are trivial in this case. On the other hand, for compact
curves it should be clear from the construction described above where a local system
can arise: if two compact curves run parallel, then a crossover switch running between
them cannot be removed by a chain isomorphism of type D structures. In general, local
systems provide a clean way of presenting the relevant invariants, while the formalism
expressing curves with local systems in terms of train tracks gives a concrete means
of working with these objects. An example is shown in Figure 13; notice that, by
replacing ' with '�1 in this example, one can obtain a vertically simplified basis or
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‚ …„ ƒ
�

1 0 0
0 1 0
0 �1 1

��
0 0 1
�1 0 0

0 1 0

��
1 �1 0
0 1 0
0 0 1

�

�1

�1

1
�1

Figure 11: Modifying the train track from Figure 7 according to an LPU
decomposition of the matrix.

.�1/

Figure 12: Modifying the train track from Figure 11 by removing the coun-
terclockwise arrows. This produces an immersed curve — an object that
is equivalent to the train track from Figure 6, and which carries a one-
dimensional local system with automorphism that multiplies by �1.

�
k2;

�
1 0
� 1

��
�

Figure 13: An arrow that cannot be cancelled gives rise to a nontrivial local system.
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a horizontally simplified basis, but not both simultaneously. It appears to still be an
open question if such phenomena arise for invariants associated with knots; see [11,
Remark 2.9].

3 Adding a handle

We now introduce the second algebra: the extended torus algebra zA. This algebra is
introduced in [4], and is also the algebra arising naturally in our setting. By construction,
the map takes the twice-punctured disk to the once-punctured torus T. An arc
system for the latter is shown in Figure 14, from which the associated quiver

� ı
�1

�3

�0

�2

can be extracted — as before, we contract the arcs to the quiver vertices. Consulting
Figure 16, note that a� is identified with the meridian � and aı is identified with the
choice of longitude �. With this arc system we associate an algebra zA. Analogous to
the relation uv D 0 from Figure 1, the algebra zA has relations

�iC1�i D 0

(indices interpreted modulo 4), as explained in Section 2. Note that the products
�i�iC1 D �i.iC1/ are nonzero. For consistency with [4, Section 3.1] we would need
to add an additional relation �0�1�2�3�0 D 0, but this is not necessary in the present
setting.

The arc system associated with zA decomposes the torus into a single disk, so type D
structures associated with compact train tracks will be curved. We fix the curvature

A A

�0 �3

�1 �2

a�

aı

Figure 14: An arc system for the extended algebra zA. The two discs are
identified, producing a handle.
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term c D �0123C�1230C�2301C�3012. Recall that a curved type D structure over zA
satisfies the compatibility condition

.�˝ idV / ı .id zA˝ d/ ı d D c � id zA

and that, in this setting, the underlying k–vector space decomposes so that V DV�˚Vı

as an I–module.

The torus algebra is the quotient AD zA=.�0/. Notice that in this quotient the curvature
vanishes and the compatibility condition for type D structures given in Section 1 is
recovered. This algebra is explored in depth in [17, Section 11; 4].

4 The proof of Theorem 2

To set the stage, we first describe three general constructions. First, given a type D
structure kŒu�N over the polynomial ring kŒu�, there is a natural way to produce a dg
module/chain complex over kŒu�: substitute each generator ˛ in kŒu�N with a copy
of the ring kŒu�, producing a free kŒu�–module, and then endow this module with a
differential by substituting every arrow ˛

`un

��! ˛ in kŒu�N with a map kŒu�
�.`un/
��! kŒu�

(where `2k). We denote the resulting dg module by kŒu��kŒu�N, because it coincides
with the result of box tensoring the type D structure with the module kŒu� viewed as a
bimodule over itself [16, Section 2.3.2]. Note that this operation respects homotopy
equivalences and also can be reversed [16, Proposition 2.3.18], albeit in a less than
straightforward way.

For the second construction, let kŒv� be the graded polynomial ring in one variable
with grading a.v/D 1. (Below, a will be the Alexander grading.) Suppose kŒv�N DL

a2Z
kŒv�N a is a graded type D structure over kŒv� such that the differential preserves

the grading a. We can then produce a complex kŒv�N jvD1 by substituting arrows
˛
`vn

��! ˛ in kŒv�N by arrows ˛
`
�! ˛. Clearly, this amounts to passing to the quotient

kD kŒv�=.v� 1/. However, since a.v/D 1, all the differentials in kŒv�N that involved
vn for n ¤ 0 now change the grading in kŒv�N jvD1 by n. Thus, we can consider
kŒv�N jvD1 as a filtered chain complex, where the filtration levels are Fj D

L
a�j N a.

As a category, type D structures over kŒv� are equivalent to filtered chain complexes via
the construction above. In particular, type D structure homomorphisms and homotopies
between them precisely correspond to filtered chain maps and filtered homotopies
between them.
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The third construction is similar to the second. Given, a graded type D structure kŒv�N

over kŒv� whose differential preserves the grading a, we define a complex kŒv�N jvD0

by removing all arrows ˛
`vn

��! ˛ for n > 0 in kŒv�N. This amounts to passing to the
quotient kD kŒv�=.v/ or, equivalently, to passing to the associated graded complex of
the filtered complex kŒv�N jvD1.

We can now provide a dictionary between the knot Floer structures used here and those
in [17]. In this paper, the most general knot Floer invariant is the type D structure
kŒu;v�CFK.S3;K/. In [17], two kinds of invariants appear. The first is the filtered
chain complex CFK�.S3;K/ over kŒu�, which is a dg module over kŒu� filtered with
respect to the Alexander grading. It is obtained from kŒu;v�CFK.S3;K/ by applying
the first construction to the variable u and the second construction to the variable v:

CFK�.S3;K/D kŒu�� kŒu��kŒu;v�CFK.S3;K/jvD1

�
:

The second invariant used in [17] is gCFK�.S3;K/, the associated graded complex of
CFK�.S3;K/. It is obtained from kŒu;v�CFK.S3;K/ by applying the first construction
to the variable u and the third construction to the variable v:

gCFK�.S3;K/D kŒu�� kŒu��kŒu;v�CFK.S3;K/jvD0

�
:

Example Consider the right-hand trefoil and its knot Floer invariants. The type D
structure invariant is

kŒu;v�CFK.S3;T2;3/D Œ˛
1
1

u
 � ˛0

1
v
�! ˛�1

1 �;

where the superscripts and subscripts indicate the Alexander and ı gradings, respectively.
Recall that the Alexander and ı gradings are gr.u/ D .�1; 1/ and gr.v/ D .1; 1/, so
that the differential in the type D structure is of bidegree .a; ı/D .0; 1/. The filtered
chain complex over kŒu� now becomes

CFK�.S3;K/DkŒu��kŒu��kŒu;v�CFK.S3;K/jvD1

�
D
�
kŒu�11

�u
 �kŒu�01

1
�!kŒu��1

1

�
;

while the associated graded chain complex over kŒu� is equal to

gCFK�.S3;K/DkŒu��kŒu��kŒu;v�CFK.S3;K/jvD0

�
D
�
kŒu�11

�u
 �kŒu�01

�
˚ŒkŒu��1

1 �:

We now proceed to the proof. We start with the knot Floer type D structure

RCFK.S3;K/D F Œu;v�CFK.S3;K/jvuD0;

and then homotope it to a representative (following the steps from Section 2) from
which the curve invariant  can be extracted. With the dictionary above in mind,
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Theorem A.11 of [17] describes in detail how to pass from RCFK.S3;K/ to the type D
structure A bCFD.M /, which then produces a curve cHF.M / in the punctured torus @M.
Our task is to prove that the resulting curve coincides with ./.

We focus on segments of the curve  in each of the annuli Av and Au, and consider
their images under the map . Starting with an illustrative example, the image of a
curve segment corresponding to the arrow ˛

v3

�! ˛ is drawn in thick in Figure 15, left,
relative to the arc system of the algebra zA. Focussing on the first part of this segment,
shown are the two ways in can be retracted to the boundary of the torus union the
two arcs: in one case the homotoped path runs along �1, and in the other case it runs
along �2 then �3 then �0. In the type D structure language, then, according to [4] and
the discussion in Section 2, this part of the curve results in � ı

�1

�230
. Similarly, the

whole thick curve segment depicted in Figure 15, left, corresponds to the following
part of a type D structure over zA:

� ı ı ı �

�1

�230

�01

�23

�01

�23

�0

�123

More generally, the image of a curve segment corresponding to the arrow ˛
vi

�! ˛ is

� ı ı ı ı �

�1

�230

�01

�23

�01

�23

� � �

�0

�123

‚ …„ ƒdim VıDi

Analogously, the image of a curve segment corresponding to the arrow ˛
ui

�! ˛ is

� ı ı ı ı �

�3

�012

�23

�01

�23

�01

� � �

�2

�301

‚ …„ ƒdim VıDi

Passing to the quotient algebra A by setting �0D 0 simplifies the above two images to

� ı ı ı ı �
�1 �23 �23

� � �
�123

‚ …„ ƒdim VıDi

and

� ı ı ı ı �
�3 �23 �23

� � �
�2

‚ …„ ƒdim VıDi

These are precisely the two stable chains appearing in the statement of Theorem A.11
of [17]; according to their result, these are the parts of A bCFD.M / that correspond to
the differentials ˛

vi

�! ˛ and ˛
ui

�! ˛ in RCFK.S3;K/.
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A A

�0 �3

�1 �2

A A

�0 �3

�1 �2

Figure 15: Sample parts of the curve corresponding to a stable chain (left)
and an unstable chain (right) from [17, Theorem A.11].

The main subtlety is the appearance of the unstable chain, which we have already
touched on. Defining in such a way that there is no extra twisting introduced (see
Figure 3, left), the straight segment running over the handle in Figure 15, right, retracts
in the two ways shown, producing the final part of the type D structure, � �

�12
�30

.
Setting �0 D 0 results in � �12

�! �, which is precisely the unstable chain from [17,
Theorem A.11]; according to their result, this is the final piece (in addition to the
stable chains) in A bCFD.M / (computed relative to the parametrization .�; 2�/ of the
torus T 2 D @M ). In [17, Theorem A.11], this final piece connects the distinguished
generators �0 and �0 in the vertically and horizontally simplified bases of CFK�.K/.
It is left to note that the two generators in Figure 15, right, are precisely �0 and �0,
because each is incident to only one arrow vi

�! or uj

�! in the complex RCFK.S3;K/.
We also remark that, while the unstable chain � �12

�! � corresponds to the 2�–framing
of the knot K, there are other type D structure presentations of the unstable chain in
[17, Theorem A.11], and those would correspond to other choices of twisting in .

w

z

�1

�0

�3

�2

v

u

� �

Figure 16: Both algebras R and zA in context.
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The statement about the reverse operation follows from the discussion above. Namely,
its clear that . .// D  , and, since we proved ./ D cHF.M /, we obtain

.cHF.M //D  .

5 Comments on generalizations and related work

Perhaps the most interesting step in this constructive review of the Lipshitz–Ozsváth–
Thurston correspondence comes about when the endpoints of the noncompact compo-
nent 0 �  are identified to give a new compact component in the once-punctured
torus. Note that the output of is always a compact curve, and this is consistent
with the observation that cHF.M / is a compact curve. The latter, in turn, follows from
the fact that bCFD.M / is an extendable type D structure [4, Appendix].

Joining the endpoints of the immersed curve 0 associated with a knot K requires a
choice of automorphism of kn where n is the number of components in 0. Denote
the horizontal homology by H h DH�.C

hjuD1/ and the vertical homology by H v D

H�.C
v jvD1/. Then, in Theorem 2, because the knot is in S3, it follows that nD 1 and

the automorphism is given, tautologically, by

H v.CFK�.S3;K//ŠH h.CFK�.S3;K//Š cHF.S3/Š k;

as explained in [17, Section 11.5]. Thus, the operation is defined over any field
provided that we choose a coefficient a 2 k when we identify the ends of 0 along a
handle. We choose this coefficient to be C1 so that the bordered invariant for the solid
torus is a circle with the trivial local system. We note that bordered Floer homology is
only defined over the two-element field F . As such, the map and Theorem 2 gives
a candidate bordered invariant for the knot exterior when k¤ F .

We now consider the general case of a knot K in Y. Decomposing along spinc–
structures, the same strategy as above works if Y is an L–space [8]. More generally,
however, one needs to know the isomorphism

H v.CFK�.Y;K//ŠH h.CFK�.Y;K//Š cHF.Y /

(which may be block-decomposed according to spinc–structures). This recovers a
generalization of [17, Theorem A.11], which may be found in forthcoming work of
Hockenhull [9] building on his invariant Poly.L; ƒ/ [10]. From our perspective, the
passage from the knot Floer homology of a knot K in Y to the bordered invariants
of Y X V�.K/ requires the isomorphism shown above. As there is a decomposition
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.kn;  /

Figure 17: A sample hypothetical local system, where nD dim cHF.Y /.

according to spinc–structures, there is no loss of generality in considering the case
where Y is an integer homology sphere. When such a Y is not an L–space, we
have that dim cHF.Y / > 1 and, in principle, the automorphism  induced by the
isomorphism between the homologies H h and H v can be interesting. In particular,
while all components of 0.K/ carry trivial local systems, the new compact object

.0.K// obtains an additional local system .kn;  /; see Figure 17. The key point of
difference is that the output will be equivalent to a simply faced precurve (in the torus)
in general, and a further application of the arrow sliding algorithm may be required
to obtain immersed curves. The algebraic side of this story is laid out carefully by
Hockenhull [9; 10].

Finally, Hanselman gives another approach [3]: his construction takes the complex
CFK�.K/ and outputs an immersed curve in the strip covering the twice-punctured
disk D, containing a countable set of pairs of punctures. This cover of the disk is
useful for recording the Alexander grading, and also works with general fields (hence
producing candidate bordered invariants). We advertise that Hanselman’s construction
has a different aim in mind, namely a candidate bordered-minus invariant obtained by
promoting the curves to describe type D structures over kŒu; v�.

6 The proof of Theorem 3

For simplicity we first focus on the case of the two-element field k D F. A few
properties of the invariant RCFK.S3;K/ are needed for the proof. First, given two
type D structures over the polynomial algebra kŒu; v� or its quotient R, their tensor
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product is another type D structure

.V; d/˝ .V 0; d 0/D .V ˝k V 0; d ˝ idC id˝ d 0/:

Now, reformulating [18, Theorem 7.1], the behaviour of knot Floer homology under
taking the connected sum can be described as

RCFK.S3;K # K0/' R.RCFK.S3;K/˝RCFK.S3;K0//:

The mirroring operation is also well understood — see [18, Proposition 3.7] —

RCFK.S3;mK/' RCFK.S3;K/;

where the latter is the dual type D structure, equal to the original one but with all
differentials reversed [15, Definition 2.5] (since R is commutative, the fact that dualizing
turns left type D structure to right ones is not a problem). Finally, we need an algebraic
relationship between morphism spaces of type D structures [16, Section 2.2.3] and their
tensor products. Given any two type D structures, the definitions imply the isomorphism
of chain complexes

R� R.RN ˝RN 0/ŠMor.RN;RN 0/:

With the properties above in place, the proof of Theorem 3 is the sequence of isomor-
phisms

RHFK.S3;mK # K0/ŠH�.R� RCFK.S3;mK # K0//

ŠH�
�
R� RŒRCFK.S3;mK/˝RCFK.S3;K0/�

�
ŠH�

�
R� RŒRCFK.S3;K/˝RCFK.S3;K0/�

�
ŠH�

�
Mor.RCFK.S3;K/;RCFK.S3;K0//

�
Š HF..K/;.K0//;

where the final isomorphism follows from the general description of morphism spaces
between type D structures over surface algebras [12, Theorem 1.5].

The recipe for adding signs follows the Koszul sign rule, which is discussed in Section 12
of [20] in detail. We find that the resulting signs are a bit more natural if one considers
right type D structures [12, Example 2.10], rather than left ones [20, Section 12.3],
as then there are no extra signs when box tensoring with �� RRR; this is explained
in [12, page 19]. Now, since the algebra R is commutative, our left type D structures
can be viewed as right type D structures, and after that filling in the signs becomes
straightforward. We refer the reader to [12, Sections 2 and 5].
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.U /

.T2;3/

Figure 18: Illustrating Theorem 3 in the case of the unknot K D U and the
right-hand trefoil K0 D T2;3. The curve .U / is a horizontal arc connecting
the punctures, but because we are in the wrapped setting, one needs to wrap
.U / infinitely many times around the punctures when pairing with another
curve.

To illustrate this gluing result, suppose K D U and K0 D T2;3. Then the knot Floer
homology of the connected sum is equal to

RHFK.S3;T2;3/DH�.R �v
 �R �u

�!R/

D Œ � � � v
 � ˛

v
 � ˛

v
 � ˛

u
�! ˛

v
 � ˛

u
�! ˛

u
�! ˛

u
�! � � � �;

where the arrows indicate the R–action. The corresponding wrapped Lagrangian Floer
homology HF..U /;.T2;3// is illustrated in Figure 18. Note that in this example
the R–action can be seen geometrically by counting Maslov index 2 disks covering the
punctures; one of these is shaded in the picture. The same is true for the kŒH �–action
on Bar-Natan homology, viewed as wrapped Lagrangian Floer homology of immersed
curves in [12, Example 7.7]. In general, to recover these module-structures, only some
of the Maslov index 2 disks should be counted — we will investigate this in future work.
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