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Unchaining surgery, branched covers,
and pencils on elliptic surfaces

TERRY FULLER

R İnanç Baykur, Kenta Hayano, and Naoyuki Monden used a technique called
unchaining to construct a family of simply connected symplectic 4–manifolds X 0g.i/

for all g � 3 and 0� i � g� 1 (Geom. Topol. 20 (2016) 2335–2395). Among this
family, the manifolds X 0g.g�2/ are shown to be symplectic Calabi–Yau 4–manifolds.
They also showed that each X 0g.i/ # CP 2 admits a pair of inequivalent genus g

Lefschetz pencils. We show how to describe every X 0g.i/ as a 2–fold branched cover
of a rational surface, and use this to prove that each X 0g.i/ is diffeomorphic to the
elliptic surface E.g� i/. This has several notable consequences: each symplectic
Calabi–Yau they construct is diffeomorphic to K3; for each n � 3 and g � n, the
elliptic surface E.n/ admits a genus g Lefschetz pencil; and for each n� 3 and g� n,
the once blown up elliptic surface E.n/ # CP 2 admits a pair of inequivalent genus g

Lefschetz pencils.

57K40, 57K43

1 Introduction

Since the foundational work of Donaldson [6] and Gompf [10] in the 1990s, Lefschetz
pencils and fibrations have been known to characterize symplectic 4–manifolds. In [4],
R İnanç Baykur, Kenta Hayano, and Naoyuki Monden construct a doubly indexed family
of symplectic 4–manifolds X 0g.i/ for all g � 3 and 0� i � g� 1. Their examples are
constructed as the total spaces of symplectic genus g Lefschetz pencils, through explicit
factorizations of their monodromy. We review the specific factorizations which define
X 0g.i/ below, but in the meantime summarize results from [4] about these manifolds:

Theorems [4] For each g � 3 and 0� i � g�1, there is a genus g Lefschetz pencil
on X 0g.i/ with the following properties:
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(a) [4, Lemma 4.7] The manifolds X 0g.i/ are simply connected , with Euler charac-
teristic e.X 0g.i//D 12.g� i/ and signature �.X 0g.i//D�8.g� i/.

(b) [4, Lemma 5.6] The manifolds X 0g.i/ are spin if and only if g� i is even.

(c) [4, Theorem 4.8] The manifolds X 0g.g� 1/ are diffeomorphic to the rational
elliptic surface E.1/.

These statements suggest our main result:

Theorem 1 The manifolds X 0g.i/ are diffeomorphic to the elliptic surface E.g� i/.

This has some immediate corollaries. In [4], Baykur, Hayano, and Monden note that
when g� i is even, X 0g.i/ is irreducible (since it is spin), but the irreducibility of X 0g.i/

for odd g� i is left open.

Corollary 2 X 0g.i/ is irreducible for all g � 3 and 0� i � g� 2.

Additionally, in [4], the Kodaira dimensions of X 0g.i/ are computed only for the special
cases of g� 3� i � g� 1 and g� i even. Our main theorem fills in the missing cases:

Corollary 3 The symplectic Kodaira dimension of X 0g.i/ is

(1) �.X 0g.i//D

8<:
�1 if i D g� 1;

0 if i D g� 2;

1 if 0� i � g� 3:

An additional corollary concerns symplectic Calabi–Yau 4–manifolds. A complex
Calabi–Yau surface is one with a trivial canonical class, and one can likewise define a
symplectic Calabi–Yau 4–manifold to be one with a trivial symplectic canonical class.
All known examples of symplectic Calabi–Yau manifolds are complex K3 surfaces
or torus bundles over tori. Since any symplectic Calabi–Yau manifold must have the
rational homology type of these complex surfaces (see Bauer [2] and Li [13]), it is an
intriguing open question if there exist any symplectic Calabi–Yau 4–manifolds which
are not diffeomorphic to one of these; see Friedl and Vidussi [8] and Li [14]. Baykur,
Hayano, and Monden show that the manifolds X 0g.g� 2/ are symplectic Calabi–Yau
[4, Corollary 4.10], and ask if they are diffeomorphic to the standard K3 surface.

Corollary 4 The symplectic Calabi–Yau manifolds X 0g.g�2/ are diffeomorphic to K3.
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In addition to its relevance to finding examples of symplectic Calabi–Yau manifolds,
this result serves to illustrate the diversity of Lefschetz pencils on fixed 4–manifolds.
The K3 surface is known to admit pencils of every genus (see Smith [15]), and it is
noted in [4] that the diffeomorphism X 0g.g�1/ŠE.1/ implies that the same is true for
the rational elliptic surface E.1/. The author is not aware of any other such examples.

Corollary 5 For all n� 3, the elliptic surface E.n/ admits a genus g Lefschetz pencil
for every g � n.

A deeper related application concerns finding inequivalent Lefschetz pencils on a given
4–manifold with the same topological data (ie genus and number of basepoints). By
using the braiding lantern substitution technique of Baykur and Hayano [3], Baykur,
Hayano, and Monden prove:

Theorem [4, Corollary 6.4] For all g�3 and 0� i�g�1, the manifold X 0g.i/#CP2

admits a pair of inequivalent genus g Lefschetz pencils. In particular , the manifold
E.1/ # CP2 admits a pair of inequivalent genus g Lefschetz pencils for all g � 3.

Theorem 1 strengthens this result.

Corollary 6 For all n � 3, the once blown up elliptic surface E.n/ # CP2 admits a
pair of inequivalent genus g Lefschetz pencils for all g � n.

Of course, the conclusions of corollaries 5 and 6 apply to blow ups of E.n/ and
E.n/ # CP2 at basepoints, as well.

The method of proof of Theorem 1 exploits the natural 2–fold symmetry of Baykur,
Hayano, and Monden’s construction. We begin by blowing up the pencil on X 0g.i/

to obtain an associated Lefschetz fibration Xg.i/, and use this symmetry to represent
Xg.i/ as a 2–fold branched cover of a rational surface. A sequence of handle slides
in the base of this cover allows one to find and blow down the required number of
exceptional sections, and we arrive at a branched cover description of X 0g.i/. The
branch surface of this cover is represented as a banded unlink diagram, of the sort
studied by Mark Hughes, Seungwon Kim, and Maggie Miller in [11], with an explicitly
drawn ribbon surface as (most of) the branch locus. We then use various band moves
to obtain an isotopy of the branch surface, yielding a branched cover description that is
recognized as one for elliptic surfaces.
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In Section 2 we discuss banded unlink diagram descriptions of embedded surfaces, and
review the moves on these diagrams that we will employ in the proof. The following
section reviews the topology of Lefschetz pencils and fibrations. Finally, in Section 4,
we define the manifolds X 0g.i/ and Xg.i/, and give the proof of Theorem 1.

2 Banded unlink diagrams

In this section we review the notion of a banded unlink diagram [11]. This describes a
closed surface embedded in a closed 4–manifold X . Banded unlink diagrams can be
defined using any handlebody description for X , but since in our application X will
lack 1– and 3–handles, we only discuss that setting here.

Suppose X is obtained by attaching n 2–handles to a single 0–handle, and then attaching
one 4–handle. The manifold X can be depicted by a Kirby diagram K consisting of
an n–component framed link in S3. Let X0 denote the boundary of the 0–handle, and
X1 the union of the 0– and 2–handles. Of course, both @.X0/ and @.X1/ are S3, and
@.X1/ can be described as the result of a surgery of S3 along the components of K.

Let L be a link in the exterior E.K/. Since L avoids the attaching region of the
2–handles, we can view L as a link in @.X0/ and in @.X1/. In a banded unlink diagram,
we begin with an unlink in E.K/, and form a ribbon surface by attaching a disjoint
collection of bands to the spanning disks of the unlink; L is the link that results from
the band surgery to the unlink, and we may push the interior of the ribbon surface into
X0 to get an embedded surface. In a banded unlink diagram, we also require that L

bounds a collection of disjoint disks in @.X1/. In this way, the ribbon surface that L

bounds can be capped off by these disks, giving a closed surface in X .

In [11], Hughes, Kim, and Miller give a complete set of moves for banded unlink
diagrams of isotopic surfaces in a 4–manifold. As we will apply these to manifolds
without 1–handles, we review only the moves that we use later: band slides, band
swims, 2–handle band swims, and 2–handle band slides. These are shown in Figure 1.
(The 2–handle band slides in Figure 1 can be done with any knotted attaching circle
and any framing, following the usual rules of Kirby calculus; the 0–framed unknot
pictured here is all that will be used later. The strands running through the attaching
circle of the handle can represent other handles, bands, or unlink components.)

Two particular iterations of the swim moves will be used often, and are shown in
Figures 2 and 3. In each figure, a sequence of swims is performed, moving the band
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band slide band swim

0 0

n n
2–handle
band slide 2–handle

band swim

Figure 1: In the two swim moves, the band/attaching circle passes lengthwise
through the interior of the horizontally drawn band.

or attaching circle from the right side of the initial diagram successively through each
of the bands to its left. An intermediate step following the first swim is depicted in
each figure. In later use, the initial ribbon surface from each figure will be replaced by

Figure 2: A band dive.
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n

n

n

Figure 3: A 2–handle band dive.

the final one, and we will refer to these moves as band dives and 2–handle band dives,
respectively.

3 Lefschetz pencils and fibrations

In this section we review the definitions of Lefschetz fibrations and Lefschetz pencils,
and discuss the topology of these structures. A more comprehensive description of the
topology of Lefschetz fibrations and pencils can be found in [10].

We denote a closed oriented genus g surface by †g, and a compact oriented genus g

surface with n boundary components by †n
g. Their mapping class groups will be

denoted by �g and �n
g , respectively. We will also denote a sphere with m marked points

by †0;m, and its mapping class group by �0;m.

Definition Let W be a compact oriented smooth 4–manifold, and C a compact
oriented smooth surface. A proper smooth map f WW ! C is a Lefschetz fibration if

Algebraic & Geometric Topology, Volume 23 (2023)
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(i) the critical points of f lie in the interior of W , and

(ii) for each critical point of f in W , there are complex coordinate charts agreeing
with the orientations on W and C such that locally f can be expressed as
f .z1; z2/D z2

1
C z2

2
.

We will only encounter C D S2 or D2.

Definition Let W 0 be a closed oriented smooth 4–manifold. Let B �W 0 be a finite
set of points. A smooth map f WW 0 nB!CP1 is a Lefschetz pencil if:

(i) For each critical point of f in W 0 n B there are complex coordinate charts
agreeing with the orientations on W 0 and CP1 such that locally f can be
expressed as f .z1; z2/D z2

1
C z2

2
.

(ii) For each point of B there is a complex coordinate chart on W 0 and an identifi-
cation of the base as CP1 such that locally f can be expressed as f .z1; z2/D

Œz1 W z2�.

The existence of a Lefschetz pencil f WW 0 nB! CP1 will be described by saying
that there is a Lefschetz pencil on W 0.

The points of B are called basepoints of the Lefschetz pencil. A Lefschetz pencil with
B D∅ is a Lefschetz fibration over CP1

Š S2. If B ¤∅, we can blow up W 0 at each
basepoint to get W , and the Lefschetz pencil on W 0 becomes a Lefschetz fibration
W !CP1

Š S2.

It is a consequence of these definitions that, for a Lefschetz fibration, a regular fiber
f �1.x/ is a closed genus g surface. For a Lefschetz pencil with n > 0 basepoints,
f �1.x/ is not compact, and we instead consider f �1.x/\ .W 0 n .U1 [ � � � [Un//,
where Ui is an open ball about the basepoint in each coordinate chart with property (ii)
above. This fiber will be a compact genus g surface with n boundary components. We
refer to genus g Lefschetz fibrations or pencils, accordingly.

Lefschetz pencils and fibrations are understood topologically through monodromy
factorizations. Let x1; : : : ;x� be the critical values for f . We assume, without loss
of generality, that each critical point of f lies in a separate fiber. For a pencil, we
select a regular value x0 2 CP1, and a disjoint collection of arcs 
i from x0 to xi

for each i D 1; : : : ; �. (We also assume each 
i avoids the other critical points.) We
further assume the arcs 
1; : : : ; 
� appear in this order as we travel in a small circle
about x0. For each i , we consider a loop that begins at x0, travels along 
i , then
counterclockwise around a small circle centered at xi , and back to x0 along 
i . Using
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an identification of f �1.x0/ with †n
g, the monodromy of f along this loop is known

to be a right-handed Dehn twist tci
along a simple closed curve ci � †

n
g [12]. The

curve ci is called a vanishing cycle. To get a global description of a Lefschetz pencil,
these local models must fit together according to the equation tc1

: : : tc�
D tı1

: : : tın

in �n
g , where ıj denotes a right-handed Dehn twist about a curve parallel to the j th

boundary component of †n
g. Conversely, given any factorization in �n

g of tı1
: : : tın

as a product of right-handed Dehn twists, one can construct a Lefschetz pencil with
monodromy prescribed by the factorization.

When working with Lefschetz fibrations, one has a similar description of the local mon-
odromy about a critical value xi as a right-handed Dehn twist tci

about a simple closed
curve ci �†g. To form a global Lefschetz fibration over S2, the local monodromies
must concatenate to form a relation tc1

: : : tc�
D 1 in �g.

Any particular monodromy description of a Lefschetz pencil is far from unique, as it
depends on a choice of identification of a regular fiber, as well as on a system of arcs 
i .
Modifying these choices translates into a simple set of moves on factorizations in �n

g

(see [10]), and two factorizations related in this way are said to be Hurwitz equivalent.

There is a straightforward relationship between a monodromy factorization of a Lef-
schetz pencil on W 0 and that of the Lefschetz fibration W ! S2 obtained by blowing
up W 0 at all basepoints. Under the homomorphism �n

g ! �g obtained by capping off
each boundary component of †n

g with a disk, Dehn twists about the boundary parallel
curves ıj become trivial in �g. A monodromy factorization tc1

: : : tc�
D tı1

: : : tın

in �n
g for the pencil on W 0 then gives a monodromy factorization tc1

: : : tc�
D 1 in �g

for the fibration W ! S2.

A monodromy factorization of a genus g Lefschetz fibration f WW ! S2 also leads
to a handlebody description of W in a well-understood way [10]. One begins with
a handlebody description of †g �D2 consisting of a 0–handle, 1–handles, and 2–
handles. Given a factorization tc1

: : : tc�
D 1 in �g, we form †g �D2[

�S�
iD1

H 2
i

�
,

where each H 2
i is a 2–handle attached along the vanishing cycle ci in a separate

fiber †g � fpointg � †g � S1 D †g � @D
2. The 2–handles are attached along the

S1 factor in the order they appear in the factorization, and they have framing �1

relative to the framing on ci induced by the product †g �S1. Following these handle
attachments, we have a handlebody describing a Lefschetz fibration over D2 with
the prescribed monodromy factorization. The boundary of †g �D2[

�S�
iD1

H 2
i

�
is

†g–bundle over S1 with monodromy tc1
: : : tc�

; because this is isotopic to the identity,
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this boundary is diffeomorphic to†g�S1. Hence we can extend the Lefschetz fibration
to be one over S2 by attaching the trivial fibration †g �D2! D2 along †g � S1.
This final attachment adds one or more 2–handles, 3–handles, and a 4–handle.

A technique for constructing new Lefschetz pencils or fibrations from old is monodromy
substitution. Given a monodromy factorization, a monodromy substitution swaps a
subword of the factorization with a different (but equal, in �n

g or �g) product of right-
handed Dehn twists. In [4], Baykur, Hayano, and Monden employ this operation using
the odd chain relation: suppose c1; c2; : : : ; c2hC1 are simple closed curves on†n

g or†g

that form a chain; that is, ci and ciC1 intersect in one point for all i , and ci and cj

are disjoint otherwise. A regular neighborhood of c1[ � � � [ c2hC1 is a subsurface S

homeomorphic to †2
h
. The chain relation is .tc1

tc2
: : : tc2hC1

/2hC2 D tb1
tb2

, where b1

and b2 are the boundary components of S . Using this relation to replace a subword in
a monodromy factorization given by the left-hand side of the chain relation with the
two Dehn twists on the right is referred to as unchaining.

Realizing hyperelliptic Lefschetz fibrations as branched covers Let � W†g!†g

be the hyperelliptic involution, and � W†g!†0;2gC2 the branched covering that is
the quotient of �. A Lefschetz fibration on W ! S2 is hyperelliptic if it is Hurwitz
equivalent to one with a monodromy factorization where each vanishing cycle ci

satisfies �.ci/D ci . If all ci are nonseparating, then W is a 2–fold branched cover of an
S2–bundle over S2, with the Lefschetz fibration map obtained as the composition of
this cover with the bundle projection [9]. This cover is crucial to the proof of Theorem 1,
and we review the details.

Since all ci are nonseparating and symmetric, the factorization tc1
: : : tc�

D 1 is the
lift of the relation h�.c1/ : : : h�.c�/ D 1 in �0;2gC2, where h�.ci / is a right-handed
disk twist about the arc �.ci/ in †0;2gC2. The factorization h�.c1/ : : : h�.c�/ can be
used to construct a ribbon surface in S2 �D2, for which the cover branched over that
surface is a Lefschetz fibration over D2 with the required monodromy factorization.
The Birman–Hilden theorem (see [5; 7]) then implies that we can always extend this
cover by attaching a trivial covering of†g�D2 over S2�D2, resulting in W covering
an S2–bundle over S2 branched over a closed surface.

In practice, the base and branch set of this cover can be explicitly drawn as a banded
unlink diagram. In S2 �D2, represented as a Kirby diagram by a 0–framed unknot,
we begin with 2g C 2 disks representing fpointg �D2, drawn as meridians to the
unknot, with their interiors pushed into the 0–handle. The branched cover of S2 �D2
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over these disks is †g �D2, restricting to the hyperelliptic quotient in each fiber. A
ribbon surface is then constructed by attaching left-handed half-twisted bands so that
the core of each band is the arc �.ci/ in S2 � fpointg. By the method in [1], in the
2–fold cover of S2 �D2 branched over this ribbon surface, each added band lifts
to a 2–handle attached along ci , with relative framing �1. Thus the lift of S2 �D2

branched over the ribbon surface is the total space of a Lefschetz fibration over D2,
with monodromy factorization tc1

: : : tc�
. On the boundary, we have a †g–bundle

over S1 covering an S2–bundle over S1, each with monodromy isotopic to the identity.
To extend the branched covering over W , it is necessary to find a fiber-isotopy of the
factorization tc1

: : : tc�
to the identity (ie an isotopy through homeomorphisms which

are all fiber-preserving with respect to �): using a given fiber-isotopy to the identity, we
can then identify the branched covering on the boundary as �� id W†g�S1!S2�S1

and extend the covering as � � id W†g �D2! S2 �D2. The attachment of S2 �D2

to the base matches the boundary of disks fpointg �D2 to the boundary of the ribbon
surface, and in this way we get a closed surface as branch set. The extension attaches
a 2–handle union a 4–handle to the diagram of the base, with the 2–handle attached
as a meridian to the 0–framed 2–handle. When working with examples, the braid
factorization h�.c1/ : : : h�.c�/ plays a valuable role. The necessary fiber-isotopy to the
identity can often be seen by simply observing that the braid factorization is isotopic to
the identity by an isotopy that fixes the branch points at all times, in which case one
obtains a fiber-isotopy of tc1

: : : tc�
to the identity as its lift. We can also use the braid

factorization to compute the framing of the second attached 2–handle and to see how
the attaching circle links the boundary of the branch surface. To do this, we select a
reference point � 2 †0;2gC2 nB2

2gC2
, where B2

2gC2
is a disk containing the branch

points, and track a framed neighborhood of � through the isotopy of dh.c1/ : : : dh.c�/

to the identity.

In [9], it was shown how to modify this branched covering description of a hyperelliptic
Lefschetz fibration to accomplish an unchaining monodromy substitution. Although
the procedure in [9] was described only for even unchaining substitutions, the method
applies equally well to the odd unchaining substitutions considered here.

4 The proof of Theorem 1

We are now ready to describe the manifolds X 0g.i/ constructed by Baykur, Hayano,
and Monden, and prove that they are diffeomorphic to the elliptic surfaces E.g� i/.
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4.1 The manifolds X 0
g.i / and Xg.i /

In [4], Baykur, Hayano, and Monden construct their infinite family of Lefschetz pencils
by explicit monodromy factorization. Their factorizations use Dehn twists about the
curves on †2.iC1/

g shown in Figure 4. We abbreviate the product of boundary curve
twists as � D tıiC1

: : : tı2
tı1

tı0
iC1

: : : tı0
2
tı0

1
, and also let Dg D td4

td5
: : : td2gC1

and
Eg D te2gC1

: : : te5
te4

.

Theorem [4, Theorem 4.6] For each g � 3 and 0� i � g� 1, there are symplectic
genus g Lefschetz pencils on X 0g.i/ with monodromy factorizations in �2.iC1/

g ,

�D

(
DgEgtxiC1

: : : tx2
tx1

tx0
iC1

: : : tx0
2
tx0

1
.tc1

tc2
tc3
/4.g�i/; g odd;

DgEgtxiC1
: : : tx2

tx1
tx0

iC1
: : : tx0

2
tx0

1
.tc1

tc2
tc3
/4.g�1�i/C2.tc3

tc2
tc1
/2; g even:

(Here we have cyclically permuted the right-hand side from its expression in [4].)

If we cap off each boundary component of †2.iC1/
g with a disk, each of the curves

xj and x0j become parallel copies of a curve x and x0, respectively, on †g. From the
previous equation we see that the monodromy factorization of the Lefschetz fibration
Xg.i/! S2 is

(2) 1D

(
DgEg.tx/

iC1.tx0/iC1.tc1
tc2

tc3
/4.g�i/ if g is odd;

DgEg.tx/
iC1.tx0/iC1.tc1

tc2
tc3
/4.g�1�i/C2.tc3

tc2
tc1
/2 if g is even:

...

...

...

... ...

......

... ...

ıiC1 ık ı1

ı0
iC1 ı0

k
ı0

1

xk

x0
k c1 c2 c3 c4 c2gC1

d4 d5
d2gC1

e4 e5 e2gC1

Figure 4: Curves on †2.iC1/
g .
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......
c1 c2 c3

c2gC1
x0

x

Figure 5: Curves on †g.

As it will play a role later, we review Baykur, Hayano, and Monden’s derivation of this
monodromy factorization. They begin with the full chain relation

tı1
tı0

1
D .tc1

tc2
: : : tc2gC1

/2gC2

in �2
g . This is well known to be the monodromy of a pencil with two basepoints on a

complex surface Z0g of general type. Through a series of lemmas, they show this is
Hurwitz equivalent to the factorization

(3) tı1
tı0

1
D

�
DgEg.tc1

tc2
tc3
/4g.tc5

tc6
: : : tc2gC1

/2g�2; g odd;
DgEg.tc1

tc2
tc3
/4.g�1/C2.tc3

tc2
tc1
/2.tc5

tc6
: : : tc2gC1

/2g�2; g even:

They then apply unchaining monodromy substitutions to this factorization, i times
to the subword .tc1

tc2
tc3
/4, and once to .tc5

tc6
: : : tc2gC1

/2g�2. In addition, a clever
inductive use of the lantern relation shows that this relation has a lift from �2

g to �2.iC1/
g ,

providing enough sections of the pencil to allow for the computation of the symplectic
Kodaira dimension for some of the resulting 4–manifolds, and giving the factorization
in the above theorem.

We give separate proofs that X 0g.i/ŠE.g�i/ for g odd and even. Each proof will have
two stages: representing X 0g.i/ as a 2–fold branched cover, followed by modifications
of the base that realize the diffeomorphism.

4.2 The proof for odd g

4.2.1 Representing X 0
g.i / as a branched covering Let Fn denote the nth Hirzebruch

surface. We begin by discussing how to represent X 0g.i/ for odd g as the 2–fold branched
cover of the rational surface FiC1, branched over an embedded surface. The base of
the covering and the branch surface will be represented as a banded unlink diagram.

Recalling the derivation of the factorization in the theorem of Section 4.1, we discuss
first the Lefschetz fibration Zg! S2 that comes from blowing up the Lefschetz pencil
defined by (3). This Lefschetz fibration on Zg has monodromy given by the relation

(4) DgEg.tc1
tc2

tc3
/4i.tc5

tc6
: : : tc2gC1

/2g�2.tc1
tc2

tc3
/4.g�i/

D 1

Algebraic & Geometric Topology, Volume 23 (2023)



Unchaining surgery, branched covers, and pencils on elliptic surfaces 2879

...

0

�1

D2gC2

C i
4 C

g�i
4

C2g�2

[ 4–handle

Figure 6: The 2–fold branched cover is Zg.

in �g. This is a hyperelliptic Lefschetz fibration, and from the discussion in Section 3,
we see that Zg can be described as the 2–fold cover of F1 branched over the surface
described in Figure 6. The visible part of the branch surface is the ribbon surface
consisting of 2gC 2 horizontal disks together with the collection of bands C4, C2g�2,
and D2gC2 defined in Figures 7 and 8. (The exponents for C4 denote repeated copies.)
The branched cover of the 0–handle union the 0–framed 2–handle branched over the
ribbon surface is a Lefschetz fibration over D2 with monodromy given by (4). It can
be checked directly using the Alexander method (see [7]) that the projection of (4)

...

...

...

...

...

...

n columns

n strands

Figure 7: The braid Cn.
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Figure 8: The braid Dn, with n strands.

to a homeomorphism of †0;2gC2 equals a right-handed Dehn twist about a circle
which encloses all marked branch points. This is isotopic to the identity by an isotopy
that fixes all branch points throughout, providing a fiber-isotopy to the identity, as
required. This isotopy also fixes a reference point � 2†0;2gC2 nB2

2gC2
, and rotates a

framed neighborhood of � once in a left-handed direction. Thus if we attach the second
2–handle as shown in Figure 6, along a meridian with framing �1, we match 2gC 2

disks to the boundary of the ribbon surface, and we see Zg as the cover of the surface
given as a banded unlink diagram, as claimed.

We now consider unchaining substitutions on (4), i times on the subword .tc1
tc2

tc3
/4i

and once on .tc5
tc6
: : : tc2gC1

/2g�2. Doing so yields Baykur, Hayano, and Monden’s
relation (2) that defines the Lefschetz fibration Xg.i/. As described in [9], we can
realize this substitution pictorially by “blowing up” the chain boxes in Figure 6, that
is, by replacing them with �1–framed 2–handles, as shown in Figure 9. Each of the
newly introduced 2–handles will lift to two 2–handles with relative product framing �1,
attached along the pair of vanishing cycles x and x0. This figure still represents a
banded unlink diagram, with 2gC 2 disks in the 4–handle, attached to the boundary of
the ribbon surface. Thus Xg.i/ is the 2–fold cover of F1 # .i C 1/CP2 branched over
the surface shown in Figure 9.

We next execute a series of moves to the base of the branched covering. We begin by
isotoping the newly added 2–handles by swinging them around the back of the ribbon
surface so that they appear on the left, as in Figure 10.

We next slide the upper left �1–framed 2–handle over the lower one, producing
Figure 11. Next the �2–framed 2–handle is slid over the parallel 0–framed one, giving
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{

...

...
0

�1

D2gC2

C
g�i
4

�1

�1 �1

i

[ 4–handle

Figure 9: The 2–fold branched cover is Xg.i/.

Figure 12, and then slid over the �1–framed 2–handle that links it as a meridian. The
result is Figure 13.

...

{

...

0
�1 i � 1

�1

�1

�1 �1
D2gC2

C
g�i
4

[ 4–handle

Figure 10
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{

...

...

0
�1 i � 1�2

�1
�1 �1

D2gC2

C
g�i
4

[ 4–handle

Figure 11

We repeat this series of slides for each of the remaining �1–framed 2–handles at the
top of the picture, resulting in Figure 14.

{

...

...

0

�1

�2

i � 1

�1
�1 �1 D2gC2

C
g�i
4

[ 4–handle

Figure 12
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{

...

...

0

�1

�1

i � 1

�1
�1 �1 D2gC2

C
g�i
4

[ 4–handle

Figure 13

Next we slide the lower �1–framed 2–handle over the blue 0–framed 2–handle, then
slide the result over the (blue) �1–framed 2–handle, giving Figure 15. Finally, we blow

{

... ...

...

0

�1

�1

�1

i

D2gC2

C
g�i
4

[ 4–handle

Figure 14
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{

... ...

...

0

�1

�1

0

i

D2gC2

C
g�i
4

[ 4–handle

Figure 15

down each of the �1–framed 2–handles that link the 0–framed 2–handle, to arrive at
Figure 16.

We pause here for an important observation: in this last step, each of the 2–handles
that we are blowing down are attached along meridians to the 0–framed 2–handle.

...

0 i C 1

C
g�i
4

[ 4–handle

Figure 16: The 2–fold branched cover is X 0g.i/.
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...

...
0 n

S

T bands

[ 4–handle

Figure 17: The ribbon surface F.R;S;T / has R horizontal disks.

Retracing the diffeomorphism that goes between Figures 16 and 9, we see that the
spheres given by these handles will each lift to two sections of the Lefschetz fibration
on Xg.i/, of square �1. Because we have blown down 2.iC1/ sections of the fibration
Xg.i/ with square �1, it follows that the 2–fold branched cover of FiC1 branched over
the embedded surface described in Figure 16 is X 0g.i/.

We next show that description of X 0g.i/ as the branched cover in Figure 16 can be used
to show that it is diffeomorphic to E.g� i/. This relies on a key lemma.

4.2.2 A key lemma To set up the statement, let F.R;S;T / denote any ribbon
surface in the 4–manifold Fn of the form shown in Figure 17. The box can represent

...

0 n

S C 1

Figure 18
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...

...

0 n

Figure 19

any collection of bands, with the condition that any bands located there are attached to
the top four horizontal disks, and avoid the disks below.

The notation records that

� the ribbon surface has R horizontal disks,

� the n–framed attaching circle links the horizontal disks S times positively in the
indicated region, and

� there are T trivial bands attached to the top four horizontal disks.

In applications of Lemma 7, T will be divisible by four, and the trivial bands will be
distributed evenly among the top four horizontal disks.

...

...

0 n

Figure 20
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...

...

0 n

Figure 21

Lemma 7 For R� 8, the ribbon surface F.R;S;T / is isotopic to the ribbon surface
F.R� 4;S C 1;T C 4/.

Proof Beginning with F.R;S;T / as shown in Figure 17, we obtain Figure 18 by a
2–handle band dive of the n–framed 2–handle. This increases the linking in the upper
left of the picture to S C 1. A band slide results in Figure 19, and a band dive of that
same band gives Figure 20.

At this point, we may cancel the bottom horizontal disk with the remaining attached
band. In addition, we do a 2–handle band slide over the 0–framed 2–handle, using
a band indicated by the gray arrow; the slide disengages the band from the top four
horizontal disks, and it can be isotoped to the trivial band shown in Figure 21.

The transition from Figure 18 to Figure 21 resulted in the cancellation of the bottom
horizontal disk, and added a trivial band in the process. We can repeat these steps three

{... {...

{

0 n
T C 4 bands

S C 1

Figure 22
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...

...{

0 i C 1

kC 1
[ 4–handle

C
g�i
4

Figure 23

times to remove the bottom three horizontal disks, as shown in Figure 22. In this figure,
we have moved the trivial bands from their position in Figure 21, by sliding them over
the long bands to their right, so that they are now attached to the top four disks. In total
we have removed the four bottom horizontal disks, and added four trivial bands; thus
the values of R and T change to R� 4 and T C 4, respectively.

4.2.3 An isotopy of the branch surface Let g D 2k C 1. Returning to the proof
of Theorem 1, Figure 16 shows that X 0g.i/ is diffeomorphic to the 2–fold branched
cover of FiC1 branched over a surface of the form F.2gC 2; 0; 0/D F.4kC 4; 0; 0/.
Then k iterations of Lemma 7 give that X 0g.i/ is diffeomorphic to the 2–fold branched
cover branched over a surface of the form F.4; k; 4k/. Recall that the full surface
in Figure 16 includes 2g C 2 unseen disks attached to the boundary of the ribbon
surface, with their interiors in the 4–handle. Using 4k D 2g�2 of these disks to cancel
the trivial bands, we have that X 0g.i/ is diffeomorphic to the cover of the manifold
in Figure 23. (Note that four disks remain in the 4–handle.) We arrive at Figure 24
by sliding the .iC1/–framed 2–handle over the 0–framed one kC 1 times. The new
framing is .i C 1/� 2.kC 1/D i � 2k � 1D�.g� i/, as shown.

The proof for odd g is completed by recognizing that the branched cover of Fg�i

over the surface in Figure 24 is E.g � i/. This is immediate from the discussion

0 �.g� i/

[ 4–handle

C
g�i
4

Figure 24
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...
0

�1

D2gC2

C i
4 C

g�i�1
4

C2g�2

E

[ 4–handle

Figure 25

in Section 3. The lift of the branched cover of the 0–handle union the 0–framed 2–
handle branched over the ribbon surface is a genus 1 Lefschetz fibration over D2 with
monodromy .tc1

tc2
tc3
/4.g�i/. The braid .d�.c1/d�.c2/d�.c3//

4.g�i/ is equal to g � i

full right-handed Dehn twists about a circle enclosing all branch points. This isotopy
of this to the identity fixes a reference point in †0;4 n B2

4
while rotating a framed

neighborhood g� i times in a left-handed direction. Thus adding a 2–handle with the
indicated location and framing shows that the branched cover of Fg�i over the rest
of the surface extends to a total space which is a genus 1 Lefschetz fibration over S2,
whose monodromy matches a well-known factorization of E.g� i/.

4.3 The proof for even g

The proof for even g is essentially the same as for odd g. However, because 2gC 2 is
no longer divisible by four, we must include two additional iterations of the basic moves
used in the proof of Lemma 7. Also, because the different form of the monodromy
of X 0g.i/ makes for a different ribbon branch surface, the final step of recognizing the
total space of the cover as an elliptic surface is somewhat different.

Figure 26: The ribbon surface E.
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{

...

...
0

�1

D2gC2

C
g�i�1
4 E

[ 4–handle

�1

�1 �1

i

Figure 27

As a starting point for even g, we begin with the Lefschetz fibration on Zg, which
from (3) has a monodromy factorization given by the relation

(5) DgEg.tc1
tc2

tc3
/4i.tc5

tc6
:::tc2gC1

/2g�2.tc1
tc2

tc3
/4.g�i�1/.tc1

tc2
tc3
/2.tc3

tc2
tc1
/2

D 1:

As before, this hyperelliptic Lefschetz fibration can be described as the 2–fold cover
of F1 branched over the surface described in Figures 25 and 26. Once again, it can
be checked that the projection of (5) to a homeomorphism of †0;2gC2 equals a right-
handed Dehn twist about a circle that encloses all marked branch points. The unseen
part of the branch surface is 2gC2 disks attached to the boundary of the ribbon surface,

...

0
i C 1

C
g�i�1
4 E

[ 4–handle

Figure 28
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{
{

...

...

0
i C 1

k

4k bands

Figure 29

with interiors in the 4–handle, exactly as in the odd g case. Thus Figure 25 depicts a
banded unlink diagram, as before.

Performing unchaining monodromy substitutions gives that Xg.i/ is the 2–fold cover
of F1 # .i C 1/CP2, branched over the surface in Figure 27. Mimicking the 2–handle
slides from the odd case yields 2.i C 1/ sections which are blown down to give X 0g.i/

as the 2–fold cover of FiC1 branched over the surface in Figure 28.

Let g D 2kC 2. The ribbon surface in Figure 28 is of the form

F.2gC 2; 0; 0/D F.4kC 6; 0; 0/:

Then k iterations of Lemma 7 give that X 0g.i/ is diffeomorphic to the cover of FiC1

branched over F.6; k; 4k/, shown in Figure 29.

We next cancel the bottom two horizontal disks as follows. A 2–handle band dive
gives Figure 30. We can then twice more use the sequence of moves in the proof of
Lemma 7: a band slide, followed by a band dive, followed by a 2–handle band slide.
(See the transition from Figure 18 to Figure 21.) This adds two more trivial bands to

{...

{ ...

0 i C 1

kC 1

4k bands

Figure 30
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...

...{

0 i C 1

C
g�i�1
4 E

[ 4–handle
kC 1

Figure 31

the picture, but we cancel all 4kC 2D 2g� 2 of them using disks from the 4–handle.
This results in Figure 31.

We next slide the .iC1/–framed 2–handle kC 1 times over the 0–framed handle. The
new framing is .i C 1/� 2.kC 1/D i � 2k � 1D�.g� i � 1/. This is Figure 32.

It remains to see that the branched cover described by Figure 32, right, is E.g � i/.
The lift of the branched cover of the 0–handle union the 0–framed 2–handle branched
over the ribbon surface is a genus 1 Lefschetz fibration over D2 with monodromy

.tc1
tc2

tc3
/4.g�i�1/.tc1

tc2
tc3
/2.tc3

tc2
tc1
/2:

The location and framing of the other attaching circle is explained by tracking a framed
neighborhood of a reference point � 2†0;2gC2 nB2

2gC2
through an isotopy from the

braid

.d�.c1/d�.c2/d�.c3//
4.g�i�1/.d�.c1/d�.c2/d�.c3//

2.d�.c3/d�.c2/d�.c1//
2

to the identity. This isotopy first undoes g � i � 1 right-handed Dehn twists, which
fixes � while rotating its neighborhood g � i � 1 times oppositely, followed by an
isotopy that pushes � around a circle passing through the middle two marked points
without twisting its neighborhood. Thus the branched cover of Fg�i�1 extended over
the rest of the surface gives a total space which is a genus 1 Lefschetz fibration over S2.
Finally, we note that the monodromy factorization of this fibration is easily seen to be
equivalent to other well-known factorizations for elliptic fibrations on E.g� i/.

0 �.g� i � 1/

C
g�i�1
4 E

[ 4–handle

Figure 32
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