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We construct and study connective versions of topological modular forms of higher
level like tmf1.n/. In particular, we use them to realize Hirzebruch’s level-n genus as
a map of ring spectra.
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1 Introduction

The basic tenet of Waldhausen’s philosophy of brave new algebra is to replace known
notions for commutative rings by corresponding notions for E1–ring spectra. These
days replacing the integers by the sphere spectrum is no longer so brave and new,
but rather a well-established principle. In extension, we might want to find and study
E1–analogues of other prominent rings as well. The aim of the present paper is to do
this for rings of holomorphic modular forms with respect to congruence subgroups of
SL2.Z/.

Topological analogues of modular forms for SL2.Z/ itself were already introduced
about twenty years ago. Indeed, Goerss, Hopkins and Miller introduced three spectra
TMF, Tmf and tmf of topological modular forms. Recall that the rings M�.SL2.Z/IZ/
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3554 Lennart Meier

and zM�.SL2.Z/IZ/ of holomorphic and meromorphic integral modular forms can
be defined as the global sections H 0.MellI!

˝�/ and H 0.MellI!
˝�/ of powers of a

certain line bundle ! on the compactified and uncompactified moduli stack of elliptic
curves, respectively.1 In analogy, TMF is defined as the global sections of a sheaf Otop

of E1–ring spectra on Mell with �2kOtop Š !˝k and Tmf as the global sections of
an analogous sheaf on Mell. The edge maps of the resulting descent spectral sequences
take the form of homomorphisms

�2�TMF! zM�.SL2.Z/IZ/ and �2�Tmf!M�.SL2.Z/IZ/:

The former morphism is an isomorphism after base change to Z
�

1
6

�
(while taking higher

cohomology of !˝� into account at the primes 2 and 3) and thus TMF can be really
seen as the rightful analogue of zM .SL2.Z/IZ/. In contrast, ��Tmf has torsion-free
summands in negative degree, whereas M�.SL2.Z/;Z/ is concentrated in nonnegative
degrees. The solution is to define tmf simply as the connective cover ��0Tmf, and one
can show that indeed �2�tmf

�
1
6

�
is isomorphic to M�.SL2.Z/;Z

�
1
6

�
/. We mention

that one of the motivations for constructing tmf was lifting the Witten genus to a map
of E1–ring spectra M String ! tmf as achieved in Ando, Hopkins and Rezk [1].
For applications to the stable homotopy groups of spheres and exotic spheres, see for
instance Hopkins and Mahowald [23], Behrens, Hill, Hopkins and Mahowald [3], Wang
and Xu [46] and Isaksen, Wang and Xu [25].

In number theory, it is very common not only to consider modular forms with respect to
SL2.Z/, but also to congruence subgroups of these; the most important being �D�0.n/,
�1.n/ or �.n/. Algebrogeometrically, such modular forms can be defined as sections of
the pullback of!˝� to compactifications M.�/ of stacks classifying generalized elliptic
curves with certain level structures (see eg Deligne and Rapoport [6], Diamond and
Im [7], Conrad [5] and the author’s [36]); for example, M.�1.n// classifies generalized
elliptic curves with a chosen point of order n whose multiples intersect every irreducible
component of every geometric fiber. Hill and Lawson [17] defined sheaves of E1–ring
spectra on these stacks and obtained spectra Tmf.�/, as their global sections, and
TMF.�/, by restriction to the loci of smooth elliptic curves. The latter spectra are good
topological analogues of the rings zM .�IZŒ1=n�/ of meromorphic modular forms in

1The terms meromorphic and holomorphic come from the corresponding analytic definitions, where
one demands that the given function on the upper half-plane can be continued meromorphically and
holomorphically, respectively, to the cusp(s). The former kind of modular form is also sometimes called
weakly holomorphic.
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the sense that ��TMF.�/ is isomorphic to this ring if � is �1.n/ or �.n/ (with n� 2)
and, if we invert 6, also in the case � D �0.n/.

In contrast, neither Tmf.�/ nor its connective cover ��0Tmf.�/ are in general good
analogues of the ring of holomorphic modular forms M.�IZŒ1=n�/, even in the nice
case of � D �1.n/ and n � 2. Writing Tmf1.n/ for Tmf.�1.n//, the reason is that
H 1.M.�1.n//I!/ and thus �1Tmf1.n/ is nontrivial in general (with nD 23 being the
first example), while this contribution does not occur in M.�IZŒ1=n�/. Following an
idea of Lawson, we define a connective version tmf1.n/ by “artificially” removing �1,
while still retaining the E1–structure on tmf1.n/. The following will be proven as
Theorems 2.12 and 2.22.

Theorem 1.1 There is an essentially unique connective E1–ring spectrum tmf1.n/

with an E1–ring map tmf1.n/! Tmf1.n/ that identifies the homotopy groups of the
source with M.�1.n/IZŒ1=n�/.

Moreover , the involution of M.�1.n// sending a point of order n on the universal
elliptic curve to its negative defines on tmf1.n/ the structure of a genuine C2–spectrum.
Its slices in the sense of Hill , Hopkins and Ravenel [16] are trivial in odd degrees and
can be explicitly identified in even degrees.

The analogous theorem also works to define tmf.n/, but tmf0.n/ we define only in
certain cases since in the general case it is not yet clear what the “correct” definition is.
The spectrum tmf.n/ has been further investigated in [21, Theorem 3.14], where a
criterion for the nonvanishing of its Tate spectrum is proven.

One of the principal motivations for the consideration of tmf1.n/ is its connection to
the Hirzebruch level-n genera MU�!M.�1.n/IZŒ1=n�/. They specialize for nD 2

to the classic Ochanine elliptic genus and have similar rigidity properties in general;
see Hirzebruch, Berger and Jung [20]. We will prove the following as Theorem 3.6.

Theorem 1.2 For every n � 2, there is a ring map MU ! tmf1.n/ realizing on
homotopy groups the Hirzebruch level-n–genus. Moreover , this map refines to a map
MUR! tmf1.n/ of C2–spectra.

We have two further classes of results on the spectra tmf1.n/ and their cousins. The
first is the following compactness result, contained in Theorem 4.4 and Corollary 4.6.

Algebraic & Geometric Topology, Volume 23 (2023)
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Theorem 1.3 The tmfŒ1=n�–modules tmf0.n/, tmf1.n/ and tmf.n/ are perfect , ie they
are compact objects in the module category , in the cases they are defined. In particular ,
their Fp–cohomologies are finitely presented over the Steenrod algebra and thus their
p–completions are fp-spectra in the sense of Mahowald and Rezk [33].

By a result of Kuhn [28, Theorem 1.7] this implies, for example, that the Hurewicz image
of ��tmf.�/ Š ���

1tmf.�/ in H�.�
1tmf.�/IFp/ is finite-dimensional, where

tmf.�/ denotes either tmf0.n/, tmf1.n/ or tmf.n/. We also note that in contrast to the
theorem, tmf1.n/ will not be a perfect tmf0.n/–module in general. We also show that
tmf0.n/, tmf1.n/ and tmf.n/ are faithful as tmfŒ1=n�–modules, answering a question
of Höning and Richter [21, page 21].

The second result is a variant of the decomposition results of the author [37], which we
state in this introduction only at the prime 2 and for tmf1.n/, and which will be proven
as Theorem 5.6.

Theorem 1.4 Let n> 1 be odd. If one can lift every weight-1 modular form for �1.n/

over F2 to a form of the same weight and level over Z.2/, we have a C2–equivariant
splitting

tmf1.n/.2/ '
M

i

†ni�tmf1.3/.2/;

where � denotes the real regular representation of C2.

In the author’s earlier work [36, Appendix C], it is shown that for 1 < n < 65 odd
indeed every weight-1 modular form for �1.n/ over F2 lifts to a form of the same
weight and level over Z.2/, while for nD 65 it does not. See also [36, Remark 3.14]
for a further discussion of this condition.

Conventions and notation

All notions are to be understood suitably derived or1–categorical. This means that
pushout means either a pushout in the respective1–category or a homotopy pushout
in the underlying model category. We will use ˝ for the (derived) smash product. Note
that this coincides with the coproduct in the1–category CAlg of E1–ring spectra.

When we use G–spectra, we will always mean genuine G–spectra. The notations ��k

and ��k denote the k–(co)connective cover of a spectrum and we use the same notation
for the slice-(co)connective covers of a G–spectrum. Furthermore, we denote by S

Algebraic & Geometric Topology, Volume 23 (2023)
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the sphere (G–)spectrum. In some parts of this article, we have the opportunity to use
RO.C2/–graded homotopy groups of C2–spectra. We will use the notation � for the
sign representation and � or C for the regular representation of C2.

We will use the notations TMF1.n/ and TMF.�1.n// interchangeably and similarly in
related contexts.

Acknowledgements

I want to thank Tyler Lawson for explaining to me the idea of how to construct a
connective model for TMF1.n/, and for the sketch of an argument that tmf1.3/ is not
perfect as a tmf0.3/–module. It is also a pleasure to acknowledge the influence and
encouragement of Mike Hill. Furthermore I want to thank Eva Höning and Birgit
Richter for their interest and remarks on a preliminary version, and the referee for their
extensive comments.

Finally, I want to thank the Hausdorff Institute for hospitality in 2015 when part of this
work was undertaken. Apologies for the subsequent delay in publication.

2 The construction of connective topological modular forms

The aim of this section is to construct connective spectra tmf.�/ of topological modular
forms and thereby prove Theorem 1.1. Here � denotes a congruence subgroup � in
the following sense, which is a bit more restrictive than the standard definition.

Definition 2.1 We call � � SL2.Z/ a congruence subgroup of level n if � D �.n/ or
�1.n/� � � �0.n/.2

As explained in [17; 37, Section 2.1], we can associate with every such � a (non-
connective and nonperiodic) E1–ring spectrum Tmf.�/. (See also [44, Theorem 5.2]
for the case of �.n/.) These arise as global sections of sheaves of E1–ring spectra Otop

on stacks M.�/ classifying generalized elliptic curves with certain level structures;
the details will not be important for the purposes of this article, but see for instance
[6; 5; 45; 36]. Our goal in this section is to construct a nice connective version tmf.�/
for Tmf.�/. For this, we will fix a localization ZS of the integers and restrict mostly
to tame congruence subgroups.

2We refer to [8] for background on the congruence subgroups �1.n/, �.n/ and �0.n/ and their relationship
to moduli of elliptic curves. This material though is barely necessary for the present paper, as we use the
congruence subgroups primarily as notation.
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Definition 2.2 We say that a congruence subgroup � of level n is tame with respect
to ZS if n � 2 and n is invertible in ZS ; in the case �1.n/ � � � �0.n/ we demand
additionally that gcd.6; Œ� W �1.n/�/ is invertible in ZS .3

The definition ensures that the order of every automorphism of a point in M.�/ is
invertible and thus the stack is of cohomological dimension one. As explained in
[37, Section 2.1], in this case ����0Tmf.�/ is concentrated in even degrees except for
�1Tmf.�/, which might be nonzero. (The smallest n for which this happens is 23.)
Moreover, the even homotopy groups of Tmf.�/ are precisely isomorphic to the ring
of holomorphic modular forms M.�IZŒ1=n�/.

Following the lead of [29, Proposition 11.1] (and additional explanations by its author),
we will first describe a general procedure to kill �1 for E1–rings that applies to
��0Tmf.�/ for � tame. We will then present a C2–equivariant refinement that helps
to define a nice version of tmf.�/ also in some nontame cases; see Construction 2.24.
We note that our techniques are only necessary if �1Tmf.�/ is nontrivial as otherwise
the usual connective cover defines a perfectly good version of tmf.�/.

2.1 The nonequivariant argument

Let R be a connective E1–ring spectrum with �0R an étale extension of ZS , a
localization of Z, and � �1D 0; here, �2�1S is the Hopf element and 12�0R the unit.
(The relevant example for us is RD ��0Tmf.�/S with �0RDZS if �1.n/����0.n/

and �0RD ZS Œ�n� if � D �.n/.) We want to construct a map R0!R of E1–ring
spectra which is injective on �� and with cokernel �1R. In the following, we localize
everything implicitly at the set S — so Z really means ZS , etc.

Let A first be a general E1–ring spectrum. For an A–module M , we denote by

PA.M /'A˚M ˚ .M˝A2/h†2
˚ � � �

the free unital E1–A–algebra on M ; cf [32, Example 3.1.3.14].

Definition 2.3 Let x W†kA!A be an A–linear map. We define its E1–cone C A.x/

as the pushout A˝PA.†kA/A of E1–ring spectra. Here, the first map PA.†
kA/!A

is the free E1–map on x, while the second arises from applying PA to the unique map
†kA! 0.
3As the quotient �0.n/=�1.n/ is .Z=n/�, the latter condition reduces to gcd.6; '.n// being invertible in
the case � D �0.n/. Thus we require that 2 is invertible and also 3 if n is divisible by a prime of the form
3kC 1 or by 9.
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Note that if B is an E1–A–algebra, we have C A.x/˝AB'C B.x/. Writing the usual
cone C.x/ as the pushout At†kA˚A A in A–modules produces a map C.x/!C A.x/

via the inclusion A˚†kA!PA.†kA/ of the first two summands and the identity idA.

Lemma 2.4 If x D 0, the canonical map C.x/ ! C A.x/ is split as a map of A–
modules.

Proof The pushout square

.2.5/

A˚†kA //

��

A

��

A // C.0/'A˚†kC1A

arises from the pushout square

.2.6/

†kA //

��

0

��

0 // †kC1A

via the functor ModA! CAlgA of square-zero extension. In particular, it is a diagram
of E1–A–algebras. As the E1–pushout square (P) defining C A.0/ arises from (2.6)
as well, but via PA, we see that the square (2.5) receives a map from the square (P). The
resulting map C A.0/! C.0/ defines a splitting of C.0/! C A.0/ by the universal
property of the pushout square (2.5).

We will apply our general consideration to the connective E1–ring spectrum R we
have fixed. As � is zero in ��R, we obtain an E1–map C S.�/!R. This induces an
E1–map ��1C S.�/! ��1R; see [16, Proposition 4.35].

Lemma 2.7 The 1–coconnective cover ��1C S.�/ is equivalent to HZ.

Proof We claim that the canonical map C.�/ ! C S.�/ is 2–connected. By the
Hurewicz theorem, we can test this after tensoring with HZ and thus it suffices to show
that the resulting map C.�˝HZ/! C H Z.�˝HZ/ is 2–connected. But �˝HZ

agrees with the 0–map †HZ!HZ. Thus, we have to show that

HZ˚†2HZ!C H Z.�˝HZ/'PH Z†2HZ'HZ˚†2HZ˚.†4HZ/hC2
˚� � �

is 2–connected. As noted above, the map is split injective and thus must be indeed an
isomorphism on �i even for i � 3.

Algebraic & Geometric Topology, Volume 23 (2023)
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The inclusion of 1–truncated connective E1–ring spectra into all connective E1–ring
spectra admits a left adjoint by [31, Proposition 5.5.6.18; 32, Proposition 7.1.3.14]. By
[32, Proposition 7.1.3.15(3)], it agrees with ��1 on underlying spectra.

By [32, Theorem 7.5.0.6], we can extend the E1–map HZD ��1C S.�/! ��1R to
an E1–map H�0R! ��1R since the map Z! �0R is étale. Define now R0 via the
homotopy pullback square

.2.8/

R0 //

��

H�0R

��

R // ��1R

This construction provides the existence part of the following proposition.

Proposition 2.9 Let R be a connective E1–ring spectrum such that �0R is an étale
extension of a localization ZS of the integers and � � 1D 0 in �1R. Then there exists a
morphism R0!R of E1–ring spectra inducing an isomorphism on �i for i ¤ 1 and
satisfying �1R0 D 0. Moreover , for every other R00!R with these properties , there is
an equivalence R00!R0 of E1–ring spectra over R.

Proof It remains to show uniqueness. We localize again everything implicitly at S . We
first note that the map HZ! ��1R constructed above is actually the unique E1–map
with this source and target. Indeed, for connectivity reasons, we have an equivalence
of mapping spaces MapCAlg.HZ; ��1R/ ' MapCAlg.C

S.�/; ��1R/. The latter is
equivalent to the space of nullhomotopies of � in ��1R, ie MapSp.†

2S; ��1R/' �.
Using that thus ��1R has an essentially unique structure of an HZ–E1–algebra, we
deduce again from [32, Theorem 7.5.0.6] that the space of E1–maps from H�0R to
��1R is equivalent to the set of ring homomorphisms �0R! �0R.

Given now R00!R as in the proposition, we obtain a map R00! ��1R00'H�0R!

��1R. We see that R00 arises as a pullback of a diagram of the same shape as (2.8), but
possibly with a map H�0R! ��1R inducing a different isomorphism f on �0 than
the identity. The paragraph above implies that using the map f on H�0R we obtain
an equivalence between the cospans constructing R0 and R00 and thus between R0 and
R00 over R.

To apply this to topological modular forms, we need the following two lemmas.

Algebraic & Geometric Topology, Volume 23 (2023)
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Lemma 2.10 Let � be a tame congruence subgroup with respect to a localization ZS .
Then � is zero in �1Tmf.�/S .

Proof According to [37, Proposition 2.5], the descent spectral sequence

H s.M.�/I!˝t /) �2t�sTmf.�/

for Tmf.�/S is concentrated in lines 0 and 1. Thus �1Tmf.�/S Š H 1.M.�/S I!/

and it suffices to show that the image of � in H 1.M.�/S I!/ is trivial. This is the
content of [36, Proposition 2.16] unless �1.n/¨ � ¨ �0.n/. For the remainder of the
proof, assume that we are in this case and set G D �=�1.n/.

We will argue that the map

H 1.M.�/.2/I!/!H 1.M.�1.n/.2/I!/

is isomorphic to the inclusion of G–invariants. As � vanishes in the target, this will
imply the vanishing of � in the source.

The map M.�1.n//.2/!M.�/.2/ induces a map

c W X D ŒM.�1.n//.2/=G�!M.�/.2/

from the stack quotient. Denote the pullback of ! to X also by !. By [37, Lemma A.2],
the induced map H 1.M.�/.2/I!/! H 1.X I!/ is an isomorphism. Moreover, the
descent spectral sequence

H i.GIH j .M.�1.n//.2/I!//)H iCj .X I!/

is concentrated in the zero-line since the order of G is invertible in Z.2/ by the tameness
of � . Thus,

H 1.M.�/.2/I!/ŠH 1.X I!/!H 1.M.�1.n/.2/I!/

is indeed the inclusion of G–invariants.

Lemma 2.11 Let � be a tame congruence subgroup with respect to a localization ZS .
Then �0Tmf.�/Š ZS if �1.n/� � � �0.n/ and �0Tmf.�/Š ZS Œ�n� if � D �.n/.

Proof As recalled above, we have �0Tmf.�/ŠH 0.M.�/IOM.�//. In the cases that
�D�0.n/; �1.n/ or �.n/ the computation of this group is classical and can be found for
instance in [36, Proposition 2.13]. The case of �1.n/¨�¨�0.n/ follows by identifying
H 0.M.�/IOM.�//with H 0.M.�/IOM.�//

�=�1.n/ again using [37, Lemma A.2].
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This allows us to use Proposition 2.9 to define tmf.�/S in the tame case by killing �1

from ��0Tmf.�/S . Summarizing we obtain:

Theorem 2.12 For every set of primes S and every congruence subgroup � that is tame
with respect to ZS , there is up to equivalence a unique connective E1–ring spectrum
tmf.�/S with an E1–ring map tmf.�/S ! Tmf.�/S that identifies the homotopy
groups of the source with the ring of holomorphic modular forms M.�IZS /.

Formally, we could also apply this procedure in some nontame cases (for instance if we
localize away from 2), but the author knows of no reason to regard these constructions
in these cases as “correct”.

Notation 2.13 We will use the abbreviations

tmf1.n/D tmf.�1.n//; tmf0.n/D tmf.�0.n//; tmf.n/D tmf.�.n//;

when these make sense.

Remark 2.14 For every ring spectrum R, we can consider the stack XR associated to
the graded Hopf algebroid .MU2�.R/; .MU˝MU/2�.R//. If R is complex orientable,
this coincides with the stack quotient ŒSpec�2�R=Gm�. In [38, Definition 5.5] we
introduced cubic versions M1.n/cub and M0.n/cub of the moduli stacks M.�1.n//

and M.�0.n//. These come with a finite morphism to the moduli stack Mcub of cubic
curves, where we allow arbitrary Weierstraß equations. In [38, Theorem 5.19] we
showed that M1.n/cub ' ŒM.�1.n/IZŒ1=n�/=Gm� for n� 2. In combination, we see
that Xtmf1.n/ 'M1.n/cub for n� 2. In the case nD 1, the corresponding equivalence
Xtmf 'Mcub has a quite different character and was shown in [34]. Whether there are
equivalences Xtmf0.n/ 'M0.n/cub for a suitable definition of tmf0.n/ remains open,
to the knowledge of the author, even for nD 3.

2.2 The C2–equivariant argument

All the stacks M.�/ come with an involution induced from postcomposing the level
structure with the Œ�1�–automorphism of the elliptic curve. As explained in Remark 2.15,
this induces a C2–action on Tmf.�/. Our goal in this subsection is to define suitable C2–
spectra tmf.�/ in the tame case. This will allow us to construct an E1–ring spectrum
tmf.�/ also if there is just a tame subgroup � 0 � � of index 2; see Construction 2.24.
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Remark 2.15 The goal of this remark is to clarify the construction of the C2–action
on Tmf.�/ sketched above.

Denote the automorphism of M.�/ described above by t . As t commutes with the
forgetful map pr WM.�/!Mell, this defines a C2–action inside the slice category
.Stacks=Mell/

ét;op of stacks étale over Mell. We will use a lax commutative triangle

.Stacks=Mell/
ét;op .Stacks=Mell/

log-ét;op

CAlg.Sp/
Otop

N

Otop

Here, the diagonal arrows are the Goerss–Hopkins–Miller and Hill–Lawson sheaves of
ring spectra. The horizontal arrow N is a normalization construction; see for example
[22, Proposition 2.27]. The canonical map Otop.N.U //! Otop.U / for U !Mell

étale comes from the fact that U � N.U / is an open substack and the Hill–Lawson
sheaf restricts to the Goerss–Hopkins–Miller sheaf.

Applying the left diagonal arrow to .M.�/; t/ gives a C2–action on TMF.�/. Doing the
same with the composite of the right diagonal arrow and the horizontal arrow produces
the C2–action on Tmf.�/. Moreover, we obtain a C2–map Tmf.�/! TMF.�/.

As explained in [37, Example 6.12], the C2–action induced by t on TMF.�/ is
equivalent to the one induced by the C2–action in .Stacks=Mell/

ét;op given by idM.�/

on M.�/, but choosing the Œ�1�–isomorphism between the elliptic curves classified by
pr and pr idM.�/. This C2–action induces multiplication by �1 on the pullback of !
to M.�/: indeed, the Œ�1�–automorphism of an elliptic curve induces multiplication
by �1 on the sheaf of differentials. Moreover, pr classifies precisely the pullback of
the universal elliptic curve Euni and ! is the restriction of �1

Euni=Mell
to Mell along the

zero section.

Thus, if � is tame, it implies that C2 acts by .�1/k on �2kTMF.�/ŠH 0.M.�/I!˝k/.
Since �2kTmf.�/ injects in the tame case into �2kTMF.�/, the same is true for
�2kTmf.�/.

The action t can be trivial, eg for � D �0.n/ or �.2/. This forces �2kTmf.�/D 0 for
k odd in these cases (as t acts both by 1 and �1 and the groups are torsion-free). This
corresponds to the classical fact that there are no modular forms of odd weight if �id
is in � .
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In the following we will use standard notation from equivariant homotopy theory.
In particular, for an inner product space V with G–action, we denote by S.V / the
unit sphere and by SV the 1–point compactification as G–spaces. We denote by
aD a� W S

0! S� the inclusion for � the real sign representation of C2.

The Hopf map defines a C2–map x� W S.C2/! SC , where C2 acts on C via complex
conjugation. This stabilizes to an element in �C2

� S, which restricts to � 2 �e
1
S.

Lemma 2.16 The homotopy groups �C2
� .S/ and �C2

��S are infinite cyclic and gener-
ated by x� and a, respectively.

Proof For �C2
� .S/, this is proven as formula (8.1) in [2]. (Note that they use the nota-

tion �s
p;q for our �C2

p�Cq.S/.) Proposition 7.0 in op. cit. implies that the homomorphism

�
C2
��S! �0S, taking a map S!†�S to its geometric fixed points is an isomorphism.

Taking fixed points of the map a clearly gives the identity map S0! S0, which yields
the result.

In the following, we denote by ��i the slice coconnective cover, by ��i the slice
connective cover and by �i D ��i��i the i th slice for C2–spectra. We refer to [16] for
background about the slice filtration. We denote by HZ the C2–Eilenberg–Mac Lane
spectrum for the constant Mackey functor Z.

Lemma 2.17 We have an equivalence ��1C x�'HZ.

Proof It suffices to show that the first slice of C x� is null and the zeroth slice is HZ. As
shown in [16] and summarized in [18, Section 2.4], this is implied by the calculations
�0C x�Š Z and ��C x�D 0. These follows easily by the long exact sequence arising
from the cofiber sequence

S�
x�
�! S0

! C x�

and the computations of �C2
��S, �C2

0
S and �C2

� .S/ above, using also that �C2

�1
S� D0.

The following lemma is a C2–slice analogue of Lewis’s equivariant Hurewicz theorem
[30, Theorem 2.1]. Recall that a C2–spectrum is k–slice connected if and only if
��kX D 0.

Lemma 2.18 A connective C2–spectrum X is k–slice connected if and only if HZ˝X

is k–slice connected.

Spelled out, the latter condition is equivalent to H V .X IZ/D �V .HZ˝X /D 0 for
all C2–representations V of the form i� or i�� 1 with jV j � k.
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Proof If X is k–slice connected, the same is true for HZ ˝ X . For the con-
verse, assume that H

C2

V
.X IZ/ D 0 for all C2–representations V of the form i�

or i� � 1 with jV j � k. By induction on k, we can assume that X is .k�1/–
slice connected and we need to show that �kX D 0 to deduce that X is indeed
k–slice connected. Let W be 1

2
k� if k is even and 1

2
.k C 1/� � 1 if k is odd. As

��kC1X and its suspension are k–slice connected, the direction discussed above shows
H W .��kC1X IZ/DH W .†��kC1X IZ/D 0. Thus,

0DH W .X IZ/!H W .�kX IZ/

is an isomorphism. As summarized in [18, Section 2.4], the slice �kX is of the
form SW ˝HM for some Mackey functor M and we deduce that H 0.HM IZ/Š

H W .�kX IZ/D 0.

We know that �0SDHZ. As HM is (slice) connective, a similar argument to before
shows that

M Š �0.S˝HM /Š �0.HZ˝HM /DH 0.HM IZ/D 0:

Thus, �kX D 0, as was to be shown.

For an element x 2 �
C2

k
S, we can define a (naive) C2–equivariant E1–cone C S.x/

as in the nonequivariant situation in the preceding subsection. The arguments for the
following two results are quite analogous to those of the preceding section, so we allow
ourselves to be brief.

Lemma 2.19 The map C.x�/! C S.x�/ is slice-2–connected.

Proof By Lemma 2.18 it suffices to check that C.x�/ ˝ HZ ! C S.x�/ ˝ HZ is
slice-2–connected. Since ��HZD 0 and thus x� becomes zero in HZ, this agrees with

HZ˚†�HZ! C H Z.†HZ/' PH Z†�HZ

'HZ˚†�HZ˚ .†2�HZ/hC2
˚ � � � :

Analogously to Lemma 2.4, the map is split injective and thus indeed slice-2–connected
(even slice-3–connected).

Together with Lemma 2.17 this implies that ��1C S.x�/'HZ. To deduce the analogue
of Proposition 2.9, we will need one more categorical result.
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Lemma 2.20 Let G be a finite group and SpG be the 1–category of G–spectra.
Denote by Sp�0

G
the full subcategory of connective G–spectra and by SpŒ0;k�

G
that of

connective and slice-k–truncated G–spectra. Then the inclusion

CAlg.SpŒ0;k�
G

/! CAlg.SpG/

admits for every k � 0 a left adjoint , which agrees on the level of underlying G–spectra
with the slice truncation ��k .

Proof Connective G–spectra form a presentable1–category with compact generators
the †1G=HC. We obtain SpŒ0;k�

G
by localizing Sp�0

G
at the collection S of maps

C ! 0 for C a slice cell of dimension greater than k. By [31, Proposition 5.5.4.15],
SpŒ0;k�

G
is presentable again.

If X is connective and Y � kC 1 in the slice filtration, then by [16, Proposition 4.26]
X ˝ Y � kC 1. Thus, ��k is compatible with ˝ in the following sense: if X ! Y

in Sp�0
G

induces an equivalence ��kX ! ��kY , then ��k.X ˝Z/! ��k.Y ˝Z/ is
an equivalence for every Z 2 Sp�0

G
. By [32, Proposition 2.2.1.9], SpŒ0;k�G inherits the

structure of a symmetric monoidal1–category from Sp�0
G

and ��k is strong symmetric
monoidal, while the inclusion SpŒ0;k�

G
! Sp�0

G
is lax symmetric monoidal. The same

proposition gives that the resulting maps

.SpŒ0;k�
G

/˝! .Sp�0
G
/˝ and .Sp�0

G
/˝! .SpŒ0;k�

G
/˝

of1–operads are adjoint. Since commutative algebras in such an1–operad C˝ are
defined as sections of C˝ ! NFin� as maps of operads, we see that the resulting
maps between CAlg.SpŒ0;k�

G
/ and CAlg.Sp�0

G
/ are indeed adjoint. Here, we use the

characterization of an adjunction given by [42], namely the existence of a unit and
counit, satisfying the triangle identities up to homotopy.

Proposition 2.21 Let R be a connective E1–ring C2–spectrum with �C2

0
DZS being

a localization of Z and x� D 0 2 �
C2
� R. Then there is an E1–ring C2–spectrum R0

with an E1–map R0!R inducing an equivalence on slices in degree 0 and degrees
at least 2 and such that �1R0 D 0. Moreover , for every other R00 ! R with these
properties , there is an equivalence R00!R0 of E1–ring C2–spectra over R.

Proof Since x� is zero in R, we obtain a map C S.x�/S ! R! ��1R of E1–ring
C2–spectra, which factors over HZS D ��1C S.x�/S . Define now R0 via the homotopy
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pullback square
R0 //

��

HZS

��

R // ��1R

The proof of uniqueness is analogous to Proposition 2.9.

To formulate the consequences for tmf.�/, we want to recall from [18] that a C2–
spectrum E is strongly even if its odd slices vanish and its even slices are of the form
Sk�˝HA or, equivalently, if �k�E is constant and �k��1E D 0.

Theorem 2.22 For every set of primes S and every congruence subgroup �1.n/ �

� � �0.n/ that is tame with respect to ZS , we can define a strongly even connective
E1–ring C2–spectrum tmf.�/S with an E1–ring C2–map tmf.�/S ! Tmf.�/S that
identifies the underlying homotopy groups of the source with M.�IZS /.

Proof Equip Tmf.�/' Tmf.�/E.C2/C with the cofree structure of a C2–spectrum.
We claim that

(1) x� 2 �C2
� ��0Tmf.�/ is zero,

(2) the only odd slice of ��0Tmf.�/ is �1, and

(3) the even slices of Tmf.�/ are of the form Sk�˝HA.

Given these claims, applying Proposition 2.21 to R D ��0Tmf.�/ yields the C2–
spectrum R0 D tmf.�/ with the required properties: the first claim implies that we can
apply Proposition 2.21, while the other two ensure that tmf.�/ is strongly even.

For proving the claims, we will distinguish the (overlapping) cases that 1
2
2 ZS and

that � is tame for Z.2/.

For the first claim, note that �C2
� ��0Tmf.�/ Š �C2

� Tmf.�/ (eg since S� is a slice
cell). The restriction map �C2

� Tmf.�/! �1Tmf.�/ is an injection: if 1
2
2 ZS , this

follows from the homotopy fixed points spectral sequence; else, use the line after (6.15)
in [37]. Since x� restricts to � 2 �1Tmf.�/, Lemma 2.10 implies thus the vanishing
of x�.

If � is tame for Z.2/, Theorem 6.16 of [37] yields the last two claims. If 1
2
2 S ,

we obtain �C2

k��1
Tmf.�/ D 0 by the homotopy fixed point spectral sequence since
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�2k�1Tmf.�/ D 0 for k > 1 by [37, Section 2.1]. This yields the second claim by
[18, Proposition 2.9]. For the third claim it is enough to show that �k�Tmf.�/ are
constant Mackey functors; see [18, Proposition 2.13]. This follows again from the
homotopy fixed point spectral sequence and the fact that the C2–action on �k�Tmf.�/
is trivial: indeed, C2 acts by .�1/k on �2kTmf.�/ (see Remark 2.15) and the presence
of k� twists the action by the same sign.

Remark 2.23 The case that � D �0.n/ is not excluded in the previous theorem, but
one easily checks that �0.n/ can only be tame if 1

2
2ZS . In this case, we obtain simply

the cofree C2–spectrum of tmf0.n/S with the trivial action.

Construction 2.24 Given � 0 � � � �0.n/ with � 0 tame with respect to ZS and
�=� 0 Š C2, we can extend our previous definition by defining tmf.�/S as tmf.� 0/C2

S

(so for example tmf0.3/D tmf1.3/
C2 as in [18]). If � itself is already tame, then 1

2
2ZS .

One then easily computes (eg with the slice spectral sequence) that ��tmf.� 0/C2

S
Š

��tmf.�/S and one can use the uniqueness part of Theorem 2.12 to identify our new
definition with the previous one.

Remark 2.25 In the setting of Construction 2.24, the map tmf.�/! ��0Tmf.�/ is
an isomorphism in �� for �� 2 even if � is not tame. Indeed, the cofiber of tmf.� 0/!
��0Tmf.� 0/ is the target’s first slice and thus by [37, Theorem 6.16] equivalent to
†�HM , where M is the constant Mackey functor on H 1.M.� 0/S I!/Š �1Tmf.� 0/.
We directly observe that the nonequivariant homotopy groups of †�HM vanish in
degrees at least 2. Moreover the cofiber sequence .C2/C! S0! S� induces a long
exact sequence

�e
kHM ! �

C2

k
HM ! �

C2

k��
HM ! �e

k�1HM
tr
�! �

C2

k�1
HM;

which implies that �C2

k
†�HM D�

C2

k��
HM D 0 for k � 2 and actually also for kD 1

if tr is injective, ie if �1Tmf.� 0/ has no 2–torsion. Thus, tmf.�/! ��0Tmf.�/ is
indeed an isomorphism in �� for � � 2, and even for � D 1 if �1Tmf.� 0/ has no
2–torsion.

3 Realization of Hirzebruch’s level-n genus

In the previous section we defined ring spectra tmf1.n/ D tmf.�1.n//. The spectra
tmf1.n/ are even for n� 2 and thus complex orientable. We want to show that there is
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a complex orientation for tmf1.n/ such that the corresponding map

MU2�! tmf1.n/2� ŠM.�1.n/IZŒ1=n�/

agrees with the level-n genus introduced by Hirzebruch [19] and Witten [48] and
studied for instance in [27; 11; 15; 47]. We recall its definition below. For this purpose
it will be convenient to use algebrogeometric language, for which we recall first the
following set of definitions.

Definition 3.1 A formal group over a base scheme S is a Zariski sheaf F WSchop
S
!Ab

that Zariski locally on an affine open U DSpec R�S is isomorphic to Spf RŒŒt ��. The R–
modules RŒŒt �� glue to the structure sheaf OF on S and the R–modules .RŒŒt ��=t/�dt glue
to the line bundle !F=S .4 An invariant differential of a formal group F is a trivialization
of !F=S . A coordinate is a section s of OF that is of the form a0t C a1t2C � � � with
a0 2R� for every local trivialization F jSpec R Š Spf RŒŒx��.

Remark 3.2 There are different ways to state the definition of a formal group, for
example as an abelian group object in one-dimensional formal Lie varieties; see
[12, Definitions 1.29 and 2.2]. To compare them, note that our formal groups are
automatically fpqc sheaves since Spf RŒŒt �� is an fpqc sheaf. On the other hand, a
trivialization of the sheaf of differentials of a one-dimensional formal Lie variety over
Spec R determines an equivalence to Spf RŒŒt ��, and such trivializations exist Zariski
locally.

We note that the differential ds of a coordinate s of a formal group F is an invariant
differential of F , sending a0tCa1t2C� � � to a0 dt locally. If S DSpec R, a coordinate
of F is equivalent datum to an isomorphism F Š Spf RŒŒs��.

Recall that given an arbitrary even ring spectrum E, a complex orientation is an element
in zE2.CP1/ restricting to 12 zE2.CP1/ after a homeomorphism CP1

ŠS2 is chosen.
The formal spectrum Spf E2�.CP1/ is a formal group over Spec E2�.pt/ and the
line bundle ! corresponds to zE�.CP1/; it thus comes with a canonical invariant
differential corresponding to 1 2 zE2.CP1/. A complex orientation is thus a coordi-
nate of Spf E2�.CP1/ in degree � D 1 whose differential is the canonical invariant
differential.

4If p W C ! S is a (generalized) elliptic curve and F is the formal completion of E , this agrees with
!C=S D p��

1
C=S

.
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We want to apply this to E D tmf1.n/ for n� 2. Essentially by construction, the maps

�2�tmf1.n/! �2�Tmf1.n/!H 0.M1.n/I!
˝�

C=M1.n/
/

are isomorphisms, where C is the universal generalized elliptic curve over M1.n/. For
convenience, let M1

1
.n/ be the relative spectrum

SpecM1.n/

�M
!˝�C=M1.n/

�
;

which is the total space of the Gm–torsor associated with !C=M1.n/
, ie classifies

generalized elliptic curves with a point of exact order n and an invariant differential.
The resulting morphism

M1
1.n/! Spec H 0.M1

1IOM1
1
.n//Š Spec H 0.M1I!

˝�

C=M1.n/
/Š Spec�2�tmf1.n/

is an open immersion, whose image is covered by the nonvanishing loci of c4 and �;
see [38, Proposition 3.5]. We denote by C the pullback of C to M1

1
.n/. Since

tmf1.n/Œc4�
�1
' Tmf1.n/Œc

�1
4 � and tmf1.n/Œ�

�1�' Tmf1.n/Œ�
�1�

are elliptic cohomology theories, their formal groups are identified with the restric-
tions of yC to the nonvanishing loci of c4 and �, respectively, and as a result yC be-
comes identified with the restriction of Spf tmf1.n/

2�.CP1/ to M1
1
.n/. As M1

1
.n/�

Spec�2�tmf1.n/ induces an isomorphism on global sections of the structure sheaf,
coordinates on Spf tmf1.n/

2�.CP1/ are in bijection with those on yC and one checks
that the canonical invariant differential on the former corresponds to the canonical
invariant differential on the latter. Summarizing we obtain:

Lemma 3.3 Complex orientations MU! tmf1.n/ are in bijection with coordinates
of yC, which are homogeneous of degree one and have the canonical invariant differential
as differential.

The Hirzebruch genus relies on a specific such coordinate, which we will construct
momentarily. Basically we will follow [20, Chapter 7], but present a more algebro-
geometric approach and give an independent treatment. The key point is the existence of
a certain meromorphic function on a cover of a given generalized elliptic curve. To the
purpose of constructing this function, recall that every section P into the smooth part
of a generalized elliptic curve C !S is an effective Cartier divisor [26, Lemma 1.2.2],
ie the kernel OC .�.P // of OC!P�OS is a line bundle. Given any linear combination
of sections Pi , we denote by OC

�P
i ni.Pi/

�
the corresponding tensor product of line

bundles.
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Lemma 3.4 Let n� 2 and S be a ZŒ1=n�–scheme. Furthermore let C=S be a general-
ized elliptic curve with zero-section e W S ! C and a chosen point P W S ! C of exact
order n in the smooth locus.

(a) The pullback of e�OC ..P /� .e// to S is canonically isomorphic to !C=S D

e��1
C=S

.

(b) Let � be an invariant differential on C . Then there exists a unique meromorphic
function h on C with an n–fold zero at e and an n–fold pole at P as the only
pole whose restriction along e coincides with �n under the identification of the
previous part.

(c) There exists a degree-n étale cover q W C 0! C by a generalized elliptic curve
and a meromorphic function f on C 0 with f n D q�h.

Proof (a) Note that OC .�.e// is the ideal sheaf associated to the closed immersion e

and the pullback e�OC ..P /�.e// coincides with OC .�.e//=OC .�.e//
2 viewed as an

OS –module. Indeed, we can cover S by opens of the form U \S , where U Š Spec R

is an affine open in C not intersecting the image of P . The section e corresponds
to an element s 2 R and U \S Š Spec S=s. Then e�OC ..P /� .e//.U \S/ is the
S=s–module sS˝S S=s, which is canonically isomorphic to the S=s–module sS=s2S .

For example, by [14, Proposition II.8.12], we obtain a canonical surjective map

OC .�.e//=OC .�.e//
2
! e��1

C=S D !C=S

between line bundles, which is hence an isomorphism.

(b) Consider the line bundle OC .n.P / � n.e//. Note that n � P � n � e D e as
points on C . By [26, Theorem 2.1.2] in the case that C is an elliptic curve, and by
[6, Proposition II.2.7] for generalized elliptic curves, we deduce that OC .n.P /�n.e//

is the pullback of a line bundle L on S . By part (a), L D e�p�L D !˝n
C=S

. By
[6, Proposition II.1.6], we see that the canonical map

!˝n
C=S
! p�p

�!˝n
C=S
Š p�OC .n.P /� n.e//

is an isomorphism. Thus

�.OC .n.P /� n.e///Š �.!˝n
C=S

/;

where the isomorphism can be identified with the pullback along e. Thus, there is a
unique section h of OC .n.P /� n.e// whose image is �n.

(c) Consider the �n–torsor q WC 0!C associated with the problem of extracting an nth

root out of q�h as a section of q�OC ..P /�.e//, in other words the�n–torsor associated
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with the pair (h, OC ..P /� .e//) in the sense of [39, page 125]. By construction, the
required root f exists on C 0. By [6, Proposition II.1.17], C 0 has the structure of a
generalized elliptic curve provided that we can lift e to C 0 and C 0!S has geometrically
connected fibers. For the first point, it suffices to provide a section of C 0 �C S ! S ,
ie to provide an nth root of e�h. Under the identification of part (a), this is provided
by �. For the second point, we assume that S D Spec K with K algebraically closed
of characteristic not dividing n and that C 0 is not connected. The stabilizer of a
component C 0

0
must be of the form �m with m< n, and thus C 0 Š C 0

0
��m

�n. The
�m–torsor C 0

0
is hence associated with a pair .g;OC ..P /� .e/// such that gn=m D h.

The section g provides a trivialization of OC .m.P /�m.e//. This implies m �P D e

on C 0 [6, Corollaire II.2.4], in contradiction with P being of exact order n.

Construction 3.5 Let C be the universal generalized elliptic curve with a point of exact
order n over M1

1
.n/. It comes, by definition, with a canonical invariant differential �.

From the preceding lemma, we obtain an n–fold étale cover q W C0! C together with a
meromorphic function f on C0 whose pullback along a lift of e agrees with �. This
function f provides a coordinate for yC0 Š yC. Moreover, note that f is uniquely
determined by the requirements in the lemma because C0 is irreducible (since M1

1
.n/

is irreducible and the locus of smoothness of C0 in it is dense) and thus every other
nth root of h would have to differ by a root of unity, resulting in a different pullback
to M1

1
.n/.

Pulling the orientation induced from f back along a map Spec C!M1.n/ classifying
.C=ƒ; 1=n; dz/ results exactly in the coordinate and orientation chosen in [20].

Theorem 3.6 For every n� 2, there is a unique complex orientation of MU! tmf1.n/

realizing on homotopy groups the Hirzebruch genus. Moreover , this can be uniquely
refined to a morphism MUR! tmf1.n/ of C2–ring spectra.

Proof The first part follows from Lemma 3.3 as the Hirzebruch genus is given by a
coordinate on the formal group associated with the universal generalized elliptic curve
on M1

1
.n/. For the second point, we recall from [24, Theorem 2.25] that C2–ring

morphisms MUR! tmf1.n/ are in bijection with Real orientations of tmf1.n/, ie a lift
of a complex orientation to a class tmf1.n/

�
C2
.CP1/. As CP1 can be built by cells

in dimensions k�, the strong-evenness of tmf1.n/ from Theorem 2.22 implies that the
forgetful map

tmf1.n/
�
C2
.CP1/! tmf1.n/

2.CP1/
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is an isomorphism; thus every complex orientation of tmf1.n/ refines to a unique Real
orientation.

Remark 3.7 In [11], Franke already gave a related but different algebrogeometric
treatment of the Hirzebruch genus.

Remark 3.8 After the first version of this article became available, Senger has shown
in [43] that the map MU! tmf1.n/ actually refines to one of E1–ring spectra. He
also gives a reformulation of our treatment above in terms of ‚1–structures.

4 Compactness, formality and faithfulness of tmf.�/

Given a (tame) congruence subgroup of level n, we will show that tmf.�/ is a faithful
and perfect tmfŒ1=n�–module. In contrast, for example, tmf1.3/ will not be a perfect
tmf0.3/–module, not even rationally. The latter result relies on tmf0.3/Q being formal
(ie multiplicatively a graded Eilenberg–Mac Lane spectrum), a result we prove in greater
generality in a subsection on its own.

4.1 All tmf.�/ are perfect

Recall that for an A1–ring spectrum R, a perfect R–module is a compact object in the
1–category of left R–modules. Equivalently, the1–category of perfect R–modules
is the smallest stable 1–subcategory of all left R–modules that contains R and is
closed under retracts. The goal of this section is to show that the spectra tmf.�/, in the
cases we defined them, are perfect tmfŒ1=n�–modules. The key technical tool is the
following proposition.

Proposition 4.1 Let R be an A1–ring spectrum such that

(1) �0R is regular noetherian ,

(2) all �nR are finitely generated �0R–modules , and

(3) H�0R is perfect as a ��0R–module.

Let furthermore M be a perfect R–module. Then ��kM is a perfect ��0R–module for
every k 2 Z.

Lemma 4.2 With notation as in the statement of the proposition , let X be a ��0R–
module with only finitely many nontrivial homotopy groups , all finitely generated
over �0R. Then X is a perfect ��0R–module.
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Proof By induction, we can reduce to the case that ��X is concentrated in a single
degree n. Then X DH�nX acquires the structure of a H�0R–module and it is perfect
as such because �0R is regular noetherian and �nX is finitely generated. As H�0R

is perfect over ��0R, the same is thus true for X .

Proof of Proposition 4.1 Let M be a perfect R–module. As the truth of the conclusion
of the proposition is clearly preserved under retracts in M and also clear for M D 0,
we can assume by induction that we have a cofiber sequence

†lR!N !M !†lC1R

where ��kN is a perfect ��0R–module for all k 2 Z. Taking ��l on the first two
objects gives a diagram

†l��0R

��

// ��lN

��

// M 0

��

// †lC1��0R

��

†lR // N // M // †lC1R

of cofiber sequences. As ��lN is a perfect ��0R–module, so is M 0. Clearly, we have
��lC1M 0 ' ��lC1M . As the fiber of ��lC1M 0!M 0 fulfills the conditions of the
previous lemma, ��lC1M is perfect as a ��0R–module.

For a general k 2 Z, we make a case distinction: assume first that k � l C 1. Then the
fiber of ��kM ! ��lC1M is perfect by the previous lemma; hence ��kM is perfect
as well. If k � l C 1, consider the fiber of ��lC1M ! ��kM instead.

To apply Proposition 4.1 to topological modular forms, we need the following lemma.

Lemma 4.3 For every n � 1, the tmfŒ1=n�–module H�0tmfŒ1=n� D HZŒ1=n� is
perfect.

Proof If 2jn, there is a 3–cell complex X such that tmfŒ1=n�˝X ' tmf1.2/Œ1=n�;
see [34, Theorem 4.13]. We have ��tmf1.2/Œ1=n�D ZŒ1=n�Œb2; b4�. Killing b2 and b4

gives HZŒ1=n�. Thus, HZŒ1=n� is a perfect tmf1.2/Œ1=n�–module and hence also a
perfect tmfŒ1=n�–module.

If 3jn, there is an 8–cell complex X such that tmfŒ1=n�˝ X ' tmf1.3/Œ1=n�; see
[34, Theorem 4.10]. We have ��tmf1.3/Œ1=n� D ZŒ1=n�Œa1; a3�. Killing a1 and a3

gives HZŒ1=n� and thus HZŒ1=n� is also a perfect tmfŒ1=n�–module in this case.
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For the general case, let Xi be a collection of tmfŒ1=n�–modules. Consider

ˆk W

M
i

HomtmfŒ1=n�

�
HZ

h
1

n

i
;Xi

h
1

k

i�
! HomtmfŒ1=n�

�
HZ

h
1

n

i
;
M

i

Xi

h
1

k

i�
:

If k D 2; 3 or 6, then ˆk is an equivalence by the previous results. As for every
spectrum X , there is a cofiber sequence

†�1X
�

1
6

�
!X !X

�
1
2

�
˚X

�
1
3

�
!X

�
1
6

�
and there is a cofiber sequence of maps between mapping spectra

†�1 fib.ˆ6/! fib.ˆ1/! fib.ˆ2˚ˆ3/! fib.ˆ6/:

It follows that ˆ1 is an equivalence as well and that HZŒ1=n� is a perfect tmfŒ1=n�–
module.

Theorem 4.4 Let � be a congruence subgroup of level n, which is tame or has a
subgroup � 0 � � of index 2 with � 0 tame. Then tmf.�/ is a perfect tmfŒ1=n�–module.

The same conclusion holds without the tameness hypothesis for any tmfŒ1=n�–module R

with a map R ! ��0Tmf.�/ whose fiber has finitely generated homotopy groups
over ZŒ1=n�, concentrated in finitely many degrees.

Proof According to [37, Proposition 2.12] the TmfŒ1=n�–module Tmf.�/ is perfect.
All �kTmfŒ1=n� are finitely generated ZŒ1=n�–modules. Furthermore, H�0tmfŒ1=n�D

HZŒ1=n� is a perfect tmfŒ1=n�–module by the previous lemma. This implies that
��0Tmf.�/ is a perfect tmfŒ1=n�–module by Proposition 4.1.

For any R as in the statement of the theorem, R is thus perfect as well, by Lemma 4.2.
To see that tmf.�/ satisfies the hypotheses on R, note first that every H s.M.�/I!˝t / is
a finitely generated ZŒ1=n�–module for every s and t since M.�/ is proper over ZŒ1=n�.
If � is tame, the cofiber of tmf.�/! ��0Tmf.�/ is by construction H�1Tmf.�/ and
�1Tmf.�/ŠH 1.M.�/I!/. If there is a tame subgroup � 0�� of index 2, the cofiber
tmf.�/! ��0Tmf.�/ agrees with †�HM for M the constant Mackey functor on
H 1.M.� 0/I!/ by Remark 2.25. The exact sequence given in the same remark implies
that the homotopy groups of †�HM are concentrated in degrees 0 and 1 and are
finitely generated ZŒ1=n�–modules.

We recall from [33] that a connective p–complete spectrum X is called an fp-spectrum
if H�.X IFp/ is finitely presented as a comodule over the dual Steenrod algebra. They
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show in [33, Proposition 3.2] that, equivalently, there is a finite spectrum F with
nontrivial Fp–homology such that the total group ��.X ˝F / is finite. The following
proposition can be deduced from the known Fp–(co)homology of tmf (see for example
[41, Section 21]) and was already noted in [33] for p D 2. We prefer to give a less
computational proof though.

Proposition 4.5 The p–completion of tmf is an fp-spectrum for all primes p.

Proof We implicitly p–localize. For p ¤ 3, [34, Theorem 4.10] implies the existence
of a finite spectrum W with nontrivial Fp–homology such that tmf˝W ' tmf1.3/.
Choose a complex V such that BP�V Š BP�=.p

k0 ; v
k1

1
; v

k2

2
/ with k0; k1 and k2

positive integers. As TMF1.3/ is Landweber exact, the sequence p; v1; v2 and hence
the sequence pk0 ; v

k1

1
; v

k2

2
is regular on ��TMF1.3/. Since ��tmf1.3/DZ.p/Œa1; a3�

is an integral domain, the sequence is also regular on ��tmf1.3/. Thus,

��tmf˝W ˝V Š ��tmf1.3/˝V Š ��tmf1.3/=.p
k0 ; a

k1

1
; a

k2

3
/

is a finitely generated Z=pk0–algebra and of Krull dimension 0. Hence it is of finite
length as a Z=pk0–module, and thus finite.

Essentially the same argument works for p D 3 if we choose instead a complex W 0

with tmf˝W 0 ' tmf1.2/ as in [34, Theorem 4.13].

Corollary 4.6 The p–completion of tmf.�/ for a congruence subgroup � of level n

and p not dividing n is an fp-spectrum.

For implications involving duality we refer to [33] and for an implication for the
Hurewicz image in H�.�

1tmf.�/IFp/ to [28, Theorem 1.7].

4.2 All tmf.�/Q are formal

The goal of this section is to show that the E1–rings tmf.�/Q are formal. While this
statement is interesting in its own right, we also need it for further pursuing compactness
questions in the following subsection. We begin with the following consequence of
Goerss–Hopkins obstruction theory.

Proposition 4.7 Let A and B be E1–HQ–algebras such that ��A is smooth as a
Q–algebra. Then

�i MapCAlg.A;B/Š

�
HomgrCRings.��A; ��B/ if i D 0;

Hom��A.�
1
��A=Q; ��CiB/ if i > 0;

where for �i with i > 0 a basepoint is chosen if a map A! B exists.
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Proof According to [13, Section 4] or [40, Section 6] with E D HQ, there is an
obstruction theory for lifting a morphism ��A!��B to a morphism A!B, where the
obstructions lie in ExtnC1;n

��A
.LE1
��A=Q; ��B/, where LE1 denotes the E1–cotangent

complex. As we are working rationally, this coincides with other forms of the cotangent
complexes. In particular, we obtain from the smoothness of ��A that LE1

��A=Q is
isomorphic to �1

��A=Q concentrated in degree 0, which again by smoothness is a
projective ��A–module. Thus the Ext-groups vanish and there is no obstruction to
lifting a morphism ��A! ��B to a morphism A! B. The same sources provide
a spectral sequence computing ��MapCAlg.A;B/, which collapses by a similar Ext-
calculation and gives the result.

Proposition 4.8 Let X be a smooth Deligne–Mumford stacks over Q and O an
even-periodic sheaf of E1–ring spectra on X such that �0O Š OX and the �iOX

are quasicoherent. Assume further that H iC1.X I�iO/D 0 for all even i � 1. Then
O is formal , ie equivalent to the (sheafification of the pre)sheaf H��O of graded
Eilenberg–Mac Lane spectra.

Proof Note first that .X ;O/ actually defines a nonconnective spectral Deligne–
Mumford stack and in particular O is hypercomplete; see eg [37, Lemma B.2]. Set
O0 D H��O. Choosing an étale hypercover U� ! X by affines, we can compute
MapCAlgX .O;O

0/ as the totalization of the cosimplicial diagram

M �
DMapCAlg.O.U�/;O

0.U�//:

We observe using Proposition 4.7 that �0�0M � agrees with the set of ring morphisms
��O! ��O0, in which we can pick an isomorphism f0. By [4, Sections 5.2 and 2.4],
the vanishing of � iC1�iM

� ŠH iC1.X ; �iO/ for i � 1 suffices to lift f0 to a multi-
plicative map O!O0, which is automatically an equivalence.

Corollary 4.9 For all M.�/ the rationalized Goerss–Hopkins–Miller–Hill–Lawson
sheaf Otop is formal.

Proof We can apply the previous proposition, as M.�/Q has cohomological dimen-
sion one. (See eg [36, Proposition 2.4(4)].)

Remark 4.10 In the original account of the construction of Otop on Mell in [9], Otop
Q is

actually formal by construction. Our argument shows that this choice was necessary,
not only for Mell, but also for M.�/. (The former was shown in a different manner
already in [17, Proposition 4.47].)
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Proposition 4.11 Let � be a congruence group. Then the E1–rings tmf.�/Q are
formal.

Proof Set RDH.H 0.M.�/; ��O
top
Q //. We want to construct an equivalence between

R and tmf.�/Q. By the preceding corollary, we know that Otop
Q on M.�/ is formal.

In particular this provides us with compatible maps R!Otop.U /Q for all affines U

étale over M.�/. Taking the homotopy limit, we obtain a map R! Tmf.�/Q. The
uniqueness part of Theorem 2.12 identifies R with tmf.�/Q.

4.3 Not all tmf.�/ are perfect

While we have seen above that tmf.�/ for a congruence group of level n is always
perfect as a tmfŒ1=n�–module, we will see in this subsection that it is not necessarily
compact as a tmf.� 0/Œ1=n�–module for � � � 0. The author learned this argument from
Tyler Lawson.

Lemma 4.12 For RD tmf.�/Q, the R–module H�0R can only be perfect if ��R is
regular.

Proof By [10, Theorem 19.1, Corollary 19.5 and Theorem 19.12], ��R is regular if
and only if the graded Q–vector space Tor��R

� .�0R; �0R/ is concentrated in finitely
many dimensions. Because R is formal by Proposition 4.11, this Tor agrees with
��.H�0R˝R H�0R/. Clearly, H�0R being a perfect R–module would imply the
finite-dimensionality of this quantity.

It is actually very rare that ��tmf.�/Q ŠM�.�IQ/ is regular. One of the few ex-
ceptions is � D �1.3/, where we obtain the ring QŒa1; a3�. In contrast for � D �0.3/,
we obtain its C2–fixed points, ie QŒa2

1
; a2

3
; a1a3�ŠQŒx;y; z�=xz � y2, which is not

regular. Thus, HQ is a perfect tmf1.3/–module, but is by the previous lemma not a
perfect tmf0.3/Q–module. We obtain:

Proposition 4.13 The tmf0.3/–module tmf1.3/ is not perfect , not even rationally.

4.4 All tmf.�/ are faithful

The goal of this section is to show that if � is a congruence subgroup of level n, then
tmf.�/ is (if defined) a faithful tmfŒ1=n�–module, ie tensoring with it is conservative.
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Lemma 4.14 For every congruence subgroup � of level n, the TmfŒ1=n�–module
Tmf.�/ is faithful.

Proof By [35], the derived stack .Mell;Otop/ is 0–affine, ie the global sections functor

� W QCoh.Mell;Otop/!ModTmf

is a symmetric monoidal equivalence and the same holds after inverting n. Thus our
claim is equivalent to showing that tensoring with f�O

top
M.�/

for f WM.�/!Mell;ZŒ1=n�

is conservative on QCoh.Mell;Otop/. This can be checked étale locally, where f�O
top
M.�/

is free of positive rank as f is finite and flat (see eg [36, Proposition 2.4]) and of
positive rank everywhere (as Mell;ZŒ1=n� is irreducible and M.�/ not empty).

In the following we fix a congruence subgroup � and a multiplicatively closed subset
S of Z such that tmf.�/S is defined (ie � is tame or of index 2 in a tame �).

Proposition 4.15 The tmfS –module tmf.�/S is faithful for every congruence sub-
group � .

Proof Let M 2ModtmfS
with M˝tmfS

tmf.�/S D0. It suffices to show that M.p/D0

for all p not in S . Consider the case p D 2 and localize everything implicitly at 2.
As tmf1.3/ is faithful over tmf (see [34, Theorem 4.10]), it suffices to show that
M 0 DM ˝tmf tmf1.3/ vanishes. Our assumption implies

.M ˝tmf Tmf/˝Tmf Tmf.�/D 0;

so by the faithfulness of Tmf.�/ also M˝tmfTmfD0. Thus, M 0˝tmf1.3/ Tmf1.3/D 0.
Moreover, tmf.�/˝tmf HZ is a faithful HZ–module as its �0 is a faithful Z–module.
Thus M 0˝tmf1.3/HZ'M ˝tmf HZD 0.

Recall now that ��tmf1.3/Š ZŒa1; a3�. The map tmf1.3/Œa
�1
i �! Tmf1.3/Œa

�1
i � is an

equivalence for i D 1; 3 since the cofiber of tmf1.3/! Tmf1.3/ is coconnective. Thus
the considerations above imply that M 0Œa�1

1
�;M 0Œa�1

3
� and M 0=.a1; a3/ all vanish,

which implies the vanishing of M 0.

The argument for p D 3 is similar with tmf1.2/ in place of tmf1.3/ and for p > 3 we
can use tmf itself as ��tmf

�
1
6

�
Š Z

�
1
6

�
Œc4; c6� is a polynomial ring.
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5 Splittings

Our goal in this setting is to show that tmf1.n/ often splits p–locally into small pieces.

Fixing a natural number n� 2 and a prime p not dividing n, we will work throughout
this section implicitly p–locally. We demand that M.�1.n/;Z.p//!M.�1.n/IFp/ is
surjective. In general, this is a subtle condition, but it is for example always fulfilled
if n � 28; see [36, Remark 3.14]. Equivalently, we can ask that H 1.M1.n/I!/ Š

�1Tmf1.n/ does not have p–torsion. We note that this leaves plenty of cases where
�1Tmf1.n/¤ 0 and hence tmf1.n/ is not the naive connective cover of Tmf1.n/, of
which the smallest is nD 23.

By Theorem 1.3 of [37], we have a splitting

.5.1/ Tmf1.n/'
M

i

†2ni R

of Tmf–modules, where R is Tmf1.3/, Tmf1.2/ or Tmf, depending on whether the
prime p is 2, 3 or bigger than 3. In this splitting all ni are nonnegative.

Theorem 5.2 Under the conditions as above , we have a splitting

tmf1.n/'
M

i

†2ni r;

where r D ��0R.

Proof Consider the composition

f W
M

i

†2ni r !
M

i

��0†
2ni R! ��0Tmf1.n/:

Here, the second map is just the connective cover of (5.1) (using that ��0 commutes
with direct sums) and the first map is the direct sum of the maps

†2ni r ' ��2ni
†2ni R! ��0†

2ni R:

Since all negative homotopy of R is in odd degrees, we see that f is an isomorphism
on even homotopy groups. Moreover, the source has only homotopy groups in even
degrees.

Recall that we defined tmf1.n/ as a pullback

tmf1.n/ //

��

HZ

��

��0Tmf1.n/ // �Œ0;1�Tmf1.n/
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where we still localize implicitly everywhere at p. This implies a fiber sequence

tmf1.n/! ��0Tmf1.n/!†H�1Tmf1.n/:

To factor f over tmf1.n/, it is enough to show that H 1.†2ni r IA/ D 0 with any
coefficients A. This is clear anyhow for ni � 1, so assume ni D 0. We know that
�Œ0;1�r 'HZ and we have H 1.HZIA/ŠH 1.SIA/D 0 (as the cofiber of S!HZ

is 1–connected).

Now ��tmf1.n/ is concentrated in even degrees and tmf1.n/! ��0Tmf1.n/ induces
a ��–isomorphism in even degrees. In total, we see that f induces an isomorphism
on ��.

Remark 5.3 The condition that �1Tmf1.n/ŠH 1.M1.n/I!/ does not have p–torsion
is actually necessary in the preceding theorem. One can indeed show that Tmf1.n/

can be recovered as tmf1.n/˝tmf Tmf. Thus a p–local tmf–linear splitting of tmf1.n/

into shifted copies of r implies a p–local splitting of Tmf1.n/ into copies of R. As the
latter has torsion-free homotopy groups, such a splitting can indeed only occur if the
homotopy groups of Tmf1.n/ are p–torsion-free as well.

We now fix p D 2 and are thus assuming that �1Tmf1.n/ Š H 1.M1.n/I!/ does
not have 2–torsion — this is true for all odd 2 � n < 65 by [36, Remark 3.14], for
example. In this setting we also want to prove connective versions of the C2–equivariant
refinement

.5.4/ Tmf1.n/.2/ 'C2

M
i

†ni�Tmf1.3/.2/

of (5.1) given in [37, Theorem 6.19], where � is the regular representation of C2. We
need the following lemma:

Lemma 5.5 Let A be an abelian group without 2–torsion , and denote by A the
corresponding constant C2–Mackey functor. Then �C2

��HAŠA˝Z=2, and the map

ŒHZ; †�HA�C2
�C2

0
��!A˝Z=2

is an isomorphism.

Proof Smashing the fundamental cofiber sequence

.C2/C! S0
! S� !†.C2/C
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with S�� and mapping out of it yields an exact sequence

�e
�1HA �C2

��HA �
C2

0
HA �e

0HA:

The rightmost arrow can be identified with the transfer trD 2 WA!A of the constant
Mackey functor, while �e

�1
HAD 0. We obtain �C2

��HAŠA˝Z=2 as claimed.

To finish the proof, we recall from Section 2.2 that ��1C x�'HZ. As †�HA� 1 in
the slice filtration, this implies that ŒHZ; †�HA�C2 Š ŒC x�;†�HA�C2 . This sits in a
long exact sequence

0D �
C2

1
HA! ŒC x�;†�HA�! �C2

��HA! �
C2

0
HADA:

As A does not have 2–torsion and we have shown above that �C2
��HAŠA˝Z=2, the

result follows.

Theorem 5.6 Assuming that n� 3 is odd and H 1.M1.n/I!/ does not have 2–torsion ,
we have 2–locally a C2–equivariant splitting

tmf1.n/'
M

i

†ni�tmf1.3/:

Proof We localize everywhere implicitly at 2 and consider the mapM
i

†ni�tmf1.3/!
M

i

��0†
ni�Tmf1.3/

��0ˆ
���! ��0Tmf1.n/;

for a chosen C2–equivalence ˆ between
L

i †
ni�Tmf1.3/ and Tmf1.n/. We have a

fiber sequence
tmf1.n/! ��0Tmf1.n/!†�HA;

where A D H 1.M1.n/I!/ since by [37, Theorem 6.16], †�HA is the 1–slice of
Tmf1.n/. On �C2

0
this induces (using Lemma 5.5) a short exact sequence

.5.7/ 0! Z! �
C2

0
Tmf1.n/

r
�!A˝Z=2! 0:

The composite
L
†ni�tmf1.3/!†�HA factors over the 1–slice coconnective cover

of the source, which agrees with HZ since there is precisely one ni equaling 0 (by
considering nonequivariant homotopy groups). Using Lemma 5.5 again, the resulting
map HZ!†�HA is null if and only if the image r.ˆ.1// of ˆ.1/ in A˝Z=2 is 0.

We want to show that we can change ˆ so that this is true. Using ˆ, the C2–spectrum
Tmf1.n/ gets the structure of a Tmf1.3/–module. Thus, Tmf1.3/–module maps
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LN
iD0†

ni�Tmf1.3/!Tmf1.n/ correspond to a sequence of classes xi 2�
C2
ni�Tmf1.n/

by considering the images of 12�
C2
ni�†

ni�Tmf1.3/. Denote the sequence corresponding
to ˆ by e0; : : : ; eN . By possibly reordering, we can assume n0 D 0. We construct a
new map ˆ0 W

LN
iD0†

ni�Tmf1.3/! Tmf1.n/ corresponding to x0;x1; : : : ;xN with
xi D ei for i > 0, and x0 corresponding to the image of u 2 Z in (5.7), where u maps
to resC2

e .e0/ along the isomorphism Z Š �e
0

tmf1.n/ ! �e
0

Tmf1.n/. As ˆ0 and ˆ
induce the same map on underlying homotopy groups, the map ˆ0 is an equivalence.
By construction, r.x0/D 0.

Thus the mapM
i

†ni�tmf1.3/!
M

i

��0†
ni�tmf1.3/

��0ˆ
0

���! ��0Tmf1.n/

factors indeed over tmf1.n/. As before, the map †ni�tmf1.3/! tmf1.n/ induces an
isomorphism on underlying homotopy groups. Both source and target are strongly even
and thus the map is a C2–equivariant equivalence by [18, Lemma 3.4].
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[40] P Pstrągowski, P VanKoughnett, Abstract Goerss–Hopkins theory, Adv. Math. 395
(2022) art. id. 108098 MR Zbl

[41] C Rezk, Supplementary notes for Math 512 (version 0.18), lecture notes (2002) Avail-
able at https://rezk.web.illinois.edu/512-spr2001-notes.pdf

[42] E Riehl, D Verity, Homotopy coherent adjunctions and the formal theory of monads,
Adv. Math. 286 (2016) 802–888 MR Zbl

[43] A Senger, Obstruction theory and the level n elliptic genus, Compos. Math. 159 (2023)
2000–2021 MR Zbl

Algebraic & Geometric Topology, Volume 23 (2023)

http://dx.doi.org/10.1515/9781400881710
http://msp.org/idx/mr/0772569
http://msp.org/idx/zbl/0576.14026
http://mi.mathnet.ru/mzm3166
http://msp.org/idx/mr/1048541
http://msp.org/idx/zbl/0692.57014
https://dx.doi.org/10.1007/BF01156822
https://dx.doi.org/10.1007/BF01156822
http://dx.doi.org/10.1007/s00222-018-0814-0
http://msp.org/idx/mr/3867633
http://msp.org/idx/zbl/1403.55007
http://dx.doi.org/10.1017/fms.2015.1
http://msp.org/idx/mr/3324940
http://msp.org/idx/zbl/1318.55010
http://dx.doi.org/10.2307/2153946
http://msp.org/idx/mr/1049614
http://msp.org/idx/zbl/0769.54042
http://dx.doi.org/10.1515/9781400830558
http://msp.org/idx/mr/2522659
http://msp.org/idx/zbl/1175.18001
https://url.msp.org/Lurie-HA
https://url.msp.org/Lurie-HA
http://dx.doi.org/10.1353/ajm.1999.0043
http://msp.org/idx/mr/1719751
http://msp.org/idx/zbl/0942.55012
http://dx.doi.org/10.4310/HHA.2016.v18.n2.a1
http://msp.org/idx/mr/3515195
http://msp.org/idx/zbl/1357.55002
http://dx.doi.org/10.1112/jtopol/jtv005
http://msp.org/idx/mr/3356769
http://msp.org/idx/zbl/1325.55004
http://dx.doi.org/10.4171/dm/874
http://msp.org/idx/mr/4424026
http://msp.org/idx/zbl/1498.11117
http://dx.doi.org/10.1090/tran/8514
http://msp.org/idx/mr/4369249
http://msp.org/idx/zbl/1493.55006
http://dx.doi.org/10.1007/s00029-019-0532-5
http://msp.org/idx/mr/4054878
http://msp.org/idx/zbl/1437.55008
https://www.jstor.org/stable/j.ctt1bpmbk1
http://msp.org/idx/mr/0559531
http://msp.org/idx/zbl/0433.14012
http://dx.doi.org/10.1016/j.aim.2021.108098
http://msp.org/idx/mr/4363589
http://msp.org/idx/zbl/1484.55022
https://rezk.web.illinois.edu/512-spr2001-notes.pdf
http://dx.doi.org/10.1016/j.aim.2015.09.011
http://msp.org/idx/mr/3415698
http://msp.org/idx/zbl/1329.18020
http://dx.doi.org/10.1112/S0010437X23007406
http://msp.org/idx/mr/4623016
http://msp.org/idx/zbl/07727391


3586 Lennart Meier

[44] V Stojanoska, Duality for topological modular forms, Doc. Math. 17 (2012) 271–311
MR Zbl
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