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Models for knot spaces and Atiyah duality

SYUNJI MORIYA

Let Emb.S1;M/ be the space of smooth embeddings from the circle to a closed manifold M . We
introduce a new spectral sequence converging to H�.Emb.S1;M// for a simply connected closed
manifold M of dimension 4 or more, which has an explicit E1–page and a computable E2–page. As
applications, we compute some part of the cohomology for M D Sk � S l with some conditions on
the dimensions k and l , and prove that the inclusion Emb.S1;M/! Imm.S1;M/ to the immersions
induces an isomorphism on �1 for some simply connected 4–manifolds. This gives a restriction on a
question posed by Arone and Szymik. The idea to construct the spectral sequence is to combine a version
of Sinha’s cosimplicial model for the knot space and a spectral sequence for a configuration space by
Bendersky and Gitler. The cosimplicial model consists of configuration spaces of points (with a tangent
vector) in M . We use Atiyah duality to transfer the structure maps on the configuration spaces to maps on
Thom spectra of the quotient of a direct product of M by the fat diagonal. This transferred structure is the
key to defining our spectral sequence, and is also used to show that Sinha’s model can be resolved into
simpler pieces in a stable category.
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1 Introduction

In [36; 37] Sinha constructed cosimplicial models of spaces of knots in a manifold of dimension� 4, based
on Goodwillie–Weiss embedding calculus; see Goodwillie and Klein [17], Goodwillie and Weiss [18],
and Weiss [41]. The model was crucially used in the affirmative solution to Vassiliev’s conjecture for a
spectral sequence for the space of long knots in Rd (with d � 4) for rational coefficient by Lambrechts,
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Turchin and Volić in [25] (see Boavida de Brito and Horel [5] for other coefficients). We study a version
of Sinha’s model in stable categories.

Let Emb.S1;M/ be the space of smooth embeddings from the circle S1 to a manifold M (without any
basepoint condition) endowed with the C1–topology. The space Emb.S1;M/ is studied by Arone and
Szymik [1] and Budney [8], and study of embedding spaces including the knot space is a motivation of
Campos and Willwacher [10] and Idrissi [22]

In the rest of the paper, M denotes a connected closed smooth manifold of dimension d . Our knot space
Emb.S1;M/ is slightly different from the one considered by Sinha, but we can construct a cosimplicial
model similar to Sinha’s, which is called Sinha’s cosimplicial model and denoted by C�.M/. Its nth space
is homotopy equivalent to the configuration space of nC1 ordered points in M with a unit tangent vector.

To state our first main theorem, we need some notation. Let SM be the tangent sphere bundle of M . Fix
an embedding e0 W SM!RK , and a tubular neighborhood � of the image e0.SM/ in RK . Let D be the
little interval operad. We use a notion of a D–comodule, which plays a role similar to a simplicial object
but is homotopically more flexible. We work with the category of symmetric spectra SP . For a manifold
N and an integer n� 1, N n denotes the direct product of n copies of N . The fat diagonal of M n is by
definition the union of all the diagonals of M n. We regard the product �n as a disk bundle over SMn via
the obvious identification .e0.SM//n D SMn. The following theorem gives a dual equivalence between
the configuration spaces and quotients by a fat diagonal, which preserves structure necessary to recover
(some part of) the knot space.

Theorem 1.1 (Theorem 4.4 and Lemma 4.7) Under the above notation , there exists a zigzag of weak
equivalences of left D–comodules of nonunital commutative symmetric ring spectra

.CM /_ ' TM ;

where .CM /_ is a comodule whose nth object is the Spanier–Whitehead dual of the configuration space of
n points with a tangent vector in M , and TM is a comodule whose nth object is a natural model of the
Thom spectrum

†�nK Th.�n/=Th.�njFDn/:

Here

� † denotes the suspension equivalence and Th.�/ denotes the associated Thom space ,

� FDn is the preimage of the fat diagonal by (the product of ) the projection SMn
!M n, and

� �njFDn denotes the restriction of the base to FDn.

See Section 2.1 and Definitions 2.10, 4.1, 4.3 and 4.5 for details of the notation. Theorem 1.1 is a
structured version of the Poincaré–Lefschetz duality

(1-1) H�.Cn�1.M//ŠH�.SMn;FDn/;
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deduced from a homotopy equivalence Cn�1.M/' SMn
�FDn. (We are loose on degrees.) If we do not

consider the (nonunital) commutative multiplications, an analogue of Theorem 1.1 holds in the category
of prespectra (in the sense of Mandell, May, Schwede and Shipley [28]), a more naive, nonsymmetric
monoidal category of spectra, and it is enough to prove Theorem 1.2, but the multiplications may be
useful for future study and our construction hardly becomes easier for prespectra.

To state the second main theorem, we need additional notation. For a positive integer n, let G.n/ be the set of
graphsG with set of vertices V.G/DnDf1; : : : ; ng and set of edgesE.G/�f.i; j / j i; j 2n with i < j g.
Let DG be the subspace of SMn consisting of elements whose image by the projection to M n has the
same i th and j th components if i and j are connected by an edge of G (i; j 2 n). The space FDn
in Theorem 1.1 is the union of the spaces DG whose graph G has at least one edge. DG is a rather
comprehensible space compared to the space Cn�1.M/. For example, its cohomology ring is computed
in Lemmas 6.5 and 6.6 under some assumptions. Throughout this paper, we fix a coefficient ring k

and suppose k is either of a subring of the rationals Q or the field Fp of p elements for a prime p. All
normalized singular (co)chains C � and C� and singular (co)homology H� and H� are supposed to have
coefficients in k, unless otherwise stated. As an application of Theorem 1.1, we introduce a new spectral
sequence converging to H�.Emb.S1;M//.

Theorem 1.2 (Theorems 5.16, 5.17 and 6.11) Suppose M is simply connected and of dimension d � 4.
There exists a second-quadrant spectral sequence f LEpqr gr converging to HpCq.Emb.S1;M// such that :

(1) Its E2–page is isomorphic to the total homology of the normalization of a simplicial commutative
differential bigraded algebra A?�

�
.M/ which is defined in terms of the cohomology ring H�.DG/

for various graphs G and maps between them ,

LEpq2 ŠH.NA?�
�
.M//)HpCq.Emb.S1;M//;

where the bidegree is given by � D p and ?�� D q.

(2) If H�.M/ is a free k–module , and the Euler number �.M/ is zero or invertible in k, the object
A?�
�
.M/ is determined by the ring H�.M/.

We call this spectral sequence the Čech spectral sequence, or in short, the Čech s.s. A feature of this
spectral sequence is that its E1 page and differential d1 are explicitly determined by the cohomology
ofM . As spectral sequences forH�.Emb.S1;M// we have the Bousfield–Kan type cohomology spectral
sequence converging to H�.Emb.S1;M//, see Definition 2.7, and Vassiliev’s spectral sequence [40]
converging to the relative cohomologyH�.�f .M/;Emb.S1;M//, where�f .M/ is the space of smooth
maps S1!M . But no small (ie degreewise finite-dimensional) page of these spectral sequences has been
computed in general. The E1–page of the Bousfield–Kan type s.s. is described by the cohomology of the
ordered configuration spaces of points with a vector in M , which is difficult to compute; Vassiliev’s first
term is also interesting but complicated. By this feature, we can compute examples; see Section 7. We
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obtain new computational results in the case of the product of two spheres. While we only do elementary
computation in the present paper, one of potential merits of Čech s.s. is that computation of higher
differentials will be relatively accessible since we deal with the fat diagonals and Čech complex instead
of configuration spaces. The other is that we will be able to enrich it with operations such as the cup
product and square, and relate them to those on H�.M/. We will deal with these subjects in future work.
Precisely speaking, we can also construct the Čech spectral sequence in the 3–dimensional or nonsimply
connected case, where it does not converge to H�.Emb.S1;M// but might have some information about
the knot space; see Remark 5.18.

Arone and Szymik studied Emb.S1;M/ for the case of dimension d D 4 in [1]. Let Imm.S1;M/ be the
space of smooth immersions S1!M with the C1–topology and iM W Emb.S1;M/! Imm.S1;M/ be
the inclusion. Among other results, they proved that iM is 1–connected, so in particular surjective on �1
in general. (They proved interesting results for the nonsimply connected case M D S1 �S3; see also
Budney and Gabai [9].) They asked whether there is a simply connected 4–manifold M such that iM has
nontrivial kernel on �1. Using Theorem 1.2, we give a restriction to this question:

Corollary 1.3 Suppose that M is simply connected , of dimension 4 and satisfies H2.M IZ/¤ 0, and
that the intersection form on H2.M IF2/ is represented by a matrix whose inverse has at least one nonzero
diagonal component. Let iM W Emb.S1;M/! Imm.S1;M/ be the inclusion to the space of immersions.
Then the map iM induces an isomorphism on �1. In particular , �1.Emb.S1;M//ŠH2.M IZ/.

The assumption does not depend on the choice of matrix. For example, M DCP2 # CP2, the connected
sum of complex projective planes, satisfies the assumption, while M D S2 �S2 does not. For the case
of H2.M/ D 0, by Proposition 5.2 of [1], Emb.S1;M/ is simply connected. We can also prove this
similarly to Corollary 1.3. The case of all of the diagonal components of the matrix being zero is unclear
by our method.

Remark 1.4 In the recent preprint [23], Kosanović gave a proof of a complete answer to the question,
which states that the inclusion iM induces an isomorphism of �d�1 if M is simply connected and of
dimension d � 4 by an independent method.

Sinha’s cosimplicial model can be considered as a resolution of Emb.S1;M/ into simpler spaces. We
resolve it into further simpler pieces in the category of chain complexes as an application of Theorems 1.1
and 1.2. To state the result, we need additional notation. We consider a category ‰ of planar rooted
trees and edge contractions. It is equipped with a functor G ıF W‰!�, where � is the category of the
standard simplices. We also use a category G.n/C. Roughly speaking, the objects of G.n/C are a symbol
� and the graphs in G.n/, and the morphisms are the inclusions (of edge sets) and formal arrows �!G

to the graphs having at least one edge. Let z‰ be the Grothendieck construction of a functor from ‰

sending a tree T to the category G.jvr j � 1/
C, where jvr j denotes the valence of the root vertex of T . So
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an object of z‰ is a pair .T;G/ of a tree T and a graph G with exactly jvr j � 1 vertices (or the symbol �).
Let � W z‰!‰ be the projection given by �.T;G/D T .

Theorem 1.5 (Theorem 8.4) Under the above notation , there exists a functor TM W z‰op! SP satisfying
the following conditions:

(1) Its value on .T;G/ 2 z‰ is a natural model of the Thom spectrum

†�mK Th.�mjDG / with mD jvr j � 1

if G is a graph , and the basepoint if G D �.

(2) There exists a zigzag of weak equivalences of functors

.G ıF/�.C�.M/_/' L�ŠTM W‰
op
! SP:

Here the dual of the cosimplicial model is regarded as a functor from �op and L�Š is the (derived )
left Kan extension along �.

(3) Suppose M is simply connected and of dimension d � 4. There exists a zigzag of quasi-
isomorphisms of chain complexes

C �.Emb.S1;M//' hocolim
z‰op

C� ıTM :

Here hocolim denotes the homotopy colimit , and C� on the right-hand side is a certain singular
chain functor from spectra to chain complexes.

See Section 2.1 and Definitions 5.1 and 8.1 for details of the notation. We give an intuitive explanation
for this theorem. We regard G.n/ as the full subcategory of G.n/C. Let ∅ denote the graph with
no edges. There is a standard quasi-isomorphism C�.FDn/ ' hocolimG2C1 C�.DG/, where C1 D
G.n/op � f∅g. Since the relative complex C�.SMn;FDn/ is the homotopy cofiber of the inclusion
C�.FDn/! C�.SMn/D C�.D∅/, we have quasi-isomorphisms

C �.Cn�1.M//' C�.SMn;FDn/' hocolim
G2C2

C�.DG/;

where we set C2 D .G.n/C/op and C�.DG/D 0 for G D �. We regard this presentation as a resolution
of C �.Cn�1.M//. A category of planar rooted trees is a lax analogue of the category of the standard
simplices. Actually, homotopy limits over these categories are weakly equivalent. So, intuitively speaking,
existence of the functor TM means potential compatibility of the resolution and the cosimplicial structure.

We shall explain why we use spectra, which also serves as an outline of our arguments. Our motivation is
to derive a new spectral sequence from Sinha’s cosimplicial model. The idea is to combine the cosimplicial
model and a procedure of constructing a spectral sequence for the cohomology of the configuration space
due to Bendersky and Gitler [3]. So we consider the above duality (1-1), and describe the chain complex
C�.SMn;FDn/ by an augmented Čech complex as follows. Consider

C�.D∅/
@
 �

M
G2G.n;1/

C�.DG/
@
 �

M
G2G.n;2/

C�.DG/
@
 �

M
G2G.n;3/

C�.DG/
@
 � � � � ;
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where G.n; p/� G.n/ denotes the subset of graphs with exactly p edges. We want to extend this to the
following commutative diagram of semisimplicial chain complexes by defining suitable face maps di :

(1-2)

C �.Cn.M//

.d i /�

��

C�.D∅/

di

��

PD
oo

L
G2G.nC1;1/ C�.DG/

oo

di
��

L
G2G.nC1;2/ C�.DG/

oo

di
��

� � �oo

C �.Cn�1.M// C�.D∅/
PD
oo

L
G2G.n;1/ C�.DG/

oo
L
G2G.n;2/ C�.DG/

oo � � �oo

Here d i is the coface map of C�.M/, and PD actually denotes the zigzag

C �.Cn.M//! C�.D∅;FDn/ C�.D∅/

of the cap product with the fundamental class and the quotient map. If we could construct a semisimplicial
double complex in the right-hand side of PD in (1-2), by taking the total complex, we would have a
certain triple complex C�?�, where � (resp. ?, �) denotes the cosimplicial (resp. Čech, singular) degree.
Then by filtering with ?C�, we would obtain a spectral sequence as in Theorem 1.2.

Unfortunately, it is difficult to define degeneracy maps di fitting into (1-2). This difficulty is essentially
analogous to the one in the construction of a certain chain-level intersection product on C�.M/. We shall
explain this point more precisely. The coface map d i W Cn.M/! CnC1.M/ is a deformed diagonal, and
the usual diagonal induces the intersection product on homology. So the maps di should be something
like a deformed intersection product. The simplicial identities for di are analogous to the associativity of
an intersection product. In addition, the map .d i /� on the cochain is analogous to the cup product. So
construction of di is analogous to construction of a chain-level intersection product which is associative
and compatible with the cup product through the duality. We could not find such a product in the literature.

A nice solution is found in a construction due to R Cohen and Jones [11; 12] in string topology. They
used spectra to give a homotopy theoretic realization of the loop product, which led to a proof of an
isomorphism between the loop product and a product on Hochschild cohomology (see Moriya [30]
for a detailed account). Their key notion is the Atiyah duality, which is an equivalence between the
Spanier–Whitehead dualM_ and the Thom spectrumM�TM D†�K Th.�/. To prove their isomorphism,
Cohen [11] introduced a model of M�TM in the category SP , and refined the duality to an equivalence
of (nonunital) commutative symmetric ring spectra. This equivalence can be regarded as a multiplicative
version of the Poincaré duality. In fact, the multiplication on the model of M�TM works as an analogue
of a chain level intersection product in their theory. So is efficient to construct necessary semisimplicial
objects and their equivalence in SP , then take chain complexes of them, and derive a spectral sequence.
This is why we use spectra.

Even if we use spectra, the (co)simplicial object is too rigid, and we use a laxer notion of a left comodule
over an A1–operad.

As we demonstrate, the duality is very useful to transfer structures on the configuration space to the
Thom spectrum of the quotient by the fat diagonal, which is homotopically more accessible, and may be
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applied in much research on configuration spaces. In future work, we will study collapse of Sinha’s (or
Vassiliev’s) spectral sequence for the space of long knots in Rd [36] using the duality.

The organization of the paper is as follows. In Section 2, we introduce basic notions. We define a version
of Sinha’s cosimplicial model and show that its homotopy limit is equivalent to the space Emb.S1;M/.
We define the notions of a (co)module and Hochschild complex of a comodule over the associahedral
operad. These notions are minor variations of ones given by others. Section 3 is the technical heart
of this paper. We introduce a version of Cohen’s model of Thom spectra and use it to construct the
comodule TM in Theorem 1.1. We take care about definitions of parameters such as the radius of tubular
neighborhoods to make structure maps of a comodule compatible with the diagonals. In Section 4, we
prove Theorem 1.1. In Sections 5 and 6, we prove Theorem 1.2. These two sections have a homotopical
and algebraic nature compared to the previous sections, where we give detailed space level constructions.
In Section 5, we define a chain functor for symmetric spectra and construct the spectral sequence filtering
Hochschild complex of the chains of a resolution of the comodule TM . We prove that the E1–page of
the Čech spectral sequence is quasi-isomorphic to the total complex of a simplicial differential bigraded
algebra, and prove the convergence of the Čech spectral sequence. In Sections 3–5 we mainly deal with
comodules, but we need the cosimplicial model in the proof of convergence since we deduce it from
a theorem of Bousfield. In Section 6, we compute the cohomology rings H�.DG/ and maps between
them, and give a description of the simplicial algebra in terms of the cohomology ring H�.M/ under
some assumptions. The computation is standard work based on Serre spectral sequences. In Section 7,
we compute examples and prove Corollary 1.3. In Section 8, we prove Theorem 1.5.

Acknowledgments The author thanks Keiichi Sakai and Tadayuki Watanabe for valuable comments on a
version of this paper. Their comments motivated him to consider the 4–dimensional case. He also thanks
Ryan Budney for pointing out errors in a previous version of this paper, and Dev P Sinha and Victor
Turchin for valuable comments. He is grateful to anonymous referees for reading this paper carefully,
pointing out many errors and typos, and giving many suggestions to improve readability. This work is
supported by JSPS KAKENHI grant numbers 26800037 and JP17K14192.

2 Preliminaries

In this section, we fix notation and introduce basic notions. Nothing is essentially new.

2.1 Notation and terminology

� We denote by� the category of standard simplices. Its objects are the finite ordered sets Œn�Df0; : : : ; ng
for n� 0 and its morphisms are the weakly order-preserving maps. We denote by �n the full subcategory
of � that consists of the objects Œk� with k � n. We define a category (or poset) Pn as follows. The
objects are the nonempty subsets S of n, and there is a unique morphism S ! S 0 if and only if S � S 0.
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Gn WPnC1!�n denotes the functor given in [37, Definition 6.3]. It sends a set S to Œ#S�1� and an inclusion
S � S 0 to the composition Œ#S�1�Š S � S 0Š Œ#S 0�1�, whereŠ denotes the order-preserving bijection.

� For a category C, a morphism of C is also called a map of C. A symmetric sequence in C is a sequence
fXkgk�0 (or fX.k/gk�1) of objects in C equipped with an action of the kth symmetric group †k on Xk
(or X.k/) for each k. The group †k acts from the right throughout this paper.

� Let G.n/ be the set of graphs defined in Section 1. For a graph G 2 G.n/, we regard E.G/ as an
ordered set with the lexicographical order. To ease notation, we write .i; j / with i > j to denote the edge
.j; i/ of a graph in G.n/. For a map f W n!m of finite sets, we denote by the same symbol f the map
G.n/! G.m/ defined by

E.f .G//D f.f .i/; f .j // j .i; j / 2E.G/ with f .i/¤ f .j /g:

Also, f denotes the natural map �0.G/! �0.f .G// between the connected components.

� Our notion of a model category is that of [21]. Ho.M/ denotes the homotopy category of a model
category M.

� We will denote by CG the category of all compactly generated spaces and continuous maps (see
[21, Definition 2.4.21]), by CG� the category of pointed compactly generated spaces and pointed maps,
and by ^ the smash product of pointed spaces.

� For a category C, a cosimplicial object X� in C is a functor �! C. A map of cosimplicial objects is a
natural transformation. Xn denotes the object of C at Œn�. We define maps

d i W Œn�! ŒnC 1� for 0� i � nC 1 and si W Œn�! Œn� 1� for 0� i � n� 1

by

d i .k/D

�
k if k < i;
kC 1 if k � i;

and si .k/D

�
k if k � i;
k� 1 if k > i:

Here d i ; si W Xn ! Xn˙1 denote the maps corresponding to the same symbols. As is well known, a
cosimplicial object X� is identified with a sequence of objects X0; X1; : : : ; Xn; : : : equipped with a
family of maps fd i ; sig satisfying the cosimplicial identity; see [16]. We call a cosimplicial object in
CG a cosimplicial space. Similarly, a simplicial object X� in C is a functor �op ! C. We denote by
di ; si WXn˙1!Xn the maps corresponding to d i and si .

� Our notion of a symmetric spectrum is that of Mandell, May, Schwede and Shipley [28]. A symmetric
spectrum consists of a symmetric sequence fXkgk�0 in CG� and a map �X W S1 ^Xk!XkC1 for each
k � 0 which is subject to certain conditions. The category of symmetric spectra is denoted by SP . We
denote by ^D ^S the canonical symmetric monoidal product on SP given in [28], and by S the sphere
spectrum, the unit for ^. Henceforth the term “spectrum” means symmetric spectrum. For a spectrum,
we refer to the numbering of the underlying sequence as the level.
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� For K 2 CG and X 2 SP , we define a tensor K y̋ X 2 SP by .K y̋ X/k D .KC/^Xk , where KC is
K with disjoint basepoint. This tensor is extended to a functor CG � SP! SP in an obvious manner.
For K;L 2 CG and X; Y 2 SP , we call the natural isomorphisms

K y̋ .L y̋ X/Š .K �L/ y̋ X and K y̋ .X ^Y /Š .K y̋ X/^Y;

the associativity isomorphisms. A natural isomorphism .K �L/ y̋ .X ^ Y / Š .K y̋ X/^ .L y̋ Y / is
defined by successive compositions of the associativity isomorphisms and the symmetry one for ^. We
define a mapping object Map.K;X/ 2 SP by Map.K;X/k DMap�.KC; Xk/, where the right-hand side
is the usual internal hom object (mapping space) of CG�. This defines a functor .CG/op�SP! SP . The
functors K y̋ .�/ and Map.K;�/ form an adjoint pair. We set K_ DMap.K;S/ for K 2 CG.

� We use the stable model structure on SP; see [28]. This is only used in Section 5.1 and Section 8.
Weak equivalences in this model structure are called stable equivalences. Level equivalences and ��–
isomorphisms are more restricted classes of maps in SP; see [28]. The former are the levelwise weak
homotopy equivalences and the latter are the maps which induce an isomorphism between (naive)
homotopy groups defined as the colimit of the sequence of canonical maps �k W ��.Xk/! ��C1.XkC1/.

� We say a spectrum X is semistable if there exists a number ˛ > 1 such that, for any sufficiently large l ,
the map �l W�k.Xl/!�kC1.XlC1/ is an isomorphism for each k�˛l . Semistability in this sense implies
semistability in the sense of [34], so a stable equivalence between semistable spectra (in our sense) is a
��–isomorphism.

� A nonunital commutative symmetric ring spectrum (in short, NCRS ) is a spectrumAwith a commutative
associative multiplication A^A! A (but possibly without a unit). A map of NCRS is a map of spectra
preserving the multiplication.

� CHk denotes the category of (possibly unbounded) chain complexes over k and chain maps. Differentials
raise the degree (see the next item for our degree rule). We endow CHk with the model structure where
weak equivalences are quasi-isomorphisms and fibrations are surjections. We denote by ˝ D ˝k the
standard tensor product of complexes.

� We deal with modules with multiple degrees (or gradings). For modules having superscript(s) and/or
subscript(s), their total degree is given by the formula

.total degree/D .sum of superscripts/� .sum of subscripts/:

For example, singular chains inCp.M/ have degree�p, and the total degree of a triply graded moduleA?�
�

is �C?��. We denote by jaj the (bi)degree of a. We sometimes omit super- or subscripts if unnecessary.

� For a simplicial chain complexC �
�

(ie a functor�op!CHk), the normalized complex (or normalization)
NC �

�
is a double complex defined by taking the normalized complex of a simplicial k–module in each

chain degree.

� For a small category C and a cofibrantly generated model category M (in the sense of [21]), we denote
by Fun.C;M/ the category of functors C !M and natural transformations, which is endowed with
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the projective model structure; see [20]. The colimit functor colimC W Fun.C;M/!M is a left Quillen
functor. Its left derived functor is denoted by hocolimC and called the homotopy colimit over C .

� A commutative differential bigraded algebra (in short, CDBA) is a bigraded module A?� equipped
with a unital multiplication which is graded commutative for the total degree and preserves the bigrading,
and a differential @ WA?�!A?C1;� which satisfies the Leibniz rule for the total degree. A map of CDBA
is a map of differential graded algebras preserving bigrading.

2.2 Čech complex and homotopy colimit

Definition 2.1 Let M be a cofibrantly generated model category. We define a functor

LC W Fun.Pop
nC1;M/! Fun.�op;M/ by LCXŒk�D

G
f W Œk�!nC1

Xf .Œk�/;

where f runs through the weakly order-preserving maps. For an order-preserving ˛ W Œl �! Œk�2�, the map
LCXŒk�! LCXŒl� is the sum of the maps Xf .Œk�/!Xf ı˛.Œl�/ induced by the inclusion f ı˛.Œl�/� f .Œk�/.

Lemma 2.2 We use the notation of Definition 2.1. Let X 2 Fun.Pop
nC1;M/ be a functor.

(1) There exists an isomorphism hocolimPop
nC1

X Š hocolim�op LCX in Ho.M/ which is natural for X .

(2) X is cofibrant in Fun.Pop
nC1;M/ if the following canonical map is a cofibration in M for each

S 2 PnC1:
colim
S 0©S

XS 0 !XS :

Proof Let .in ıGn/� W Fun.�op;M/! Fun.Pop
nC1;M/ be the pullback by the composition of Gn and

the inclusion in W�n!�. Clearly the pair . LC; .in ı Gn/�/ is a Quillen adjoint pair, and it is also clear
that colimPop

nC1
X and colim�op LCX are naturally isomorphic. Part (1) follows from these observations.

Part (2) is a special case of [21, Theorem 5.1.3].

2.3 Goodwillie–Weiss embedding calculus and Sinha’s cosimplicial model

In this subsection, we give the definition of the cosimplicial space C�.M/ modeling Emb.S1;M/, and
state its property. This is a minor variation of the model given in [37]. In [37], models of a space of
embeddings from the interval Œ0; 1� to a manifold with some endpoint condition, while we consider
embeddings S1 ! M without any basepoint condition. The difference which needs care is that the
homotopy limit of our cosimplicial model on the subcategory�n need not to be weak homotopy equivalent
to the nth stage of the corresponding Taylor tower, while Sinha’s original one is. At the1–stage, they are
equivalent, which is sufficient for our purpose. We begin with an analogue of the punctured knot model
in [37, Definition 3.4], which is an intermediate object between Emb.S1;M/ and C�.M/.

Definition 2.3 � Let S1D Œ0; 1�=0�1 and Ji�S1 be the image of the interval .1�1=2i�1=10i;1�1=2i /
by the quotient map Œ0; 1�! S1.
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� We fix an embedding M !RNC1 for sufficiently large N . We endow M with the Riemannian metric
induced by the Euclidean metric on RNC1 via this embedding. Let SM denote the total space of the unit
tangent sphere bundle of M .

� For a subset S � nC 1, let ES .M/ be the space of embeddings S1�
S
i2S Ji!M of constant speed.

� Define a functor En.M/ W PnC1! CG by assigning to a subset S the space ES .M/, and set

Pn Emb.S1;M/ WD holim
PnC1

En.M/:

Let ˛n W Emb.S1;M/! Pn Emb.S1;M/ be the map induced by restriction of the domain. The category
Pn is regarded as a subcategory of PnC1 via the standard inclusion n! nC 1. By our choice of Ji , we
have a canonical restriction map rn W Pn Emb.S1;M/! Pn�1 Emb.S1;M/. The maps ˛n induce a map

˛1 W Emb.S1;M/! holim
n

Pn Emb.S1;M/;

where the right side is the homotopy limit of the tower � � � rnC1���!Pn Emb.S1;M/
rn
�!Pn Emb.S1;M/

rn�1
���!

� � �
r2
�! P1 Emb.S1;M/.

Remark 2.4 Our choice of Ji is different from [37], since we adopt the reverse labeling of coface and
codegeneracy maps of the cosimplicial model to [37], for the author’s preference. This does not cause
any new problem.

Lemma 2.5 Suppose d � 4. The map ˛n W Emb.S1;M/! Pn Emb.S1;M/ is .n�1/.d�3/–connected.
In particular , ˛1 is a weak homotopy equivalence.

Proof Let p W Emb.S1;M/! SM be the evaluation of value and tangent vector at 0 2 S1. As is well
known, p is a fibration. Let D be a closed subset on M diffeomorphic to a closed d–dimensional disk.
Let Emb.Œ0; 1�;M � Int.D// be the space of embeddings Œ0; 1�!M � Int.D/ whose value and tangent
vector at endpoints are a fixed value in @D and vector. If we take a point of SM, for some choice of
the disk D, fixed endpoints and embedded path between the points in D, we have the inclusion from
Emb.Œ0; 1�;M � Int.D// to the fiber of p at the point. This inclusion is a weak homotopy equivalence. Its
homotopy inverse is given by shrinking the disk D to the point. Thus, we have a homotopy fiber sequence

Emb.Œ0; 1�;M � Int.D//! Emb.S1;M/! SM:

Restricting the domain, we have a similar fiber sequence ES .M � Int.D//!ES .M/! SM, where the
left-hand side is the space defined in [37, Definition.3.1] with the obvious modification for Ji . (In [37], M
denotes a manifold with boundary, so we apply the definitions to M � Int.D/ instead of our closed M .)
Passing to homotopy limits, we have the diagram

Emb.Œ0; 1�;M � Int.D// //

��

Emb.S1;M/ //

˛n
��

SM

id
��

Pn Emb.Œ0; 1�;M � Int.D// // Pn Emb.S1;M/ // SM
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where both horizontal sequence are homotopy fiber sequences and the left bottom corner is the punctured
knot model in [37, Definition.3.4] (with the obvious modification for Ji ). As in [37, Theorem.3.5], by
theorems of Goodwillie, Klein, and Weiss, the left vertical arrow is .n�1/.d�3/–connected, and so is
the middle.

Remark 2.6 Let Tn Emb.S1;M/ be the nth stage of the Taylor tower (or polynomial approximation).
Restriction of the domain induces a map Pn Emb.S1;M/! Tn Emb.S1;M/ which is compatible with
canonical maps from Emb.S1;M/, but the author does not know whether this map is a weak homotopy
equivalence.

Our cosimplicial space is analogous to the well-known cosimplicial model of a free loop space, just like
Sinha’s original space is analogous to that of a based loop space. So the space Cn.M/ is related to a
configuration space of nC 1 points (not n points).

Definition 2.7 Let k�k denote the standard Euclidean norm in RNC1.

� Let Cn.M/Df.x0; : : : ; xn�1/2M
n j xk ¤ xl if k¤ lg be the ordered configuration space of n points

in M . Similarly, we set C2.Œn�/D f.k; l/ 2 Œn��2 j k ¤D lg.

� Let Cn.M/ be the closure of the image of the map

Cn.M/!M n
� .SN /�C2.Œn�1�/; .xk/k 7! .xk; ukl/kl ;

where ukl D .xl � xk/=kxl � xkk. Cn.M/ is the same as the space in Definition 4.1(6) of [37], though
our labeling of points begins with 0. Define a space Cn.M/ by the following pullback diagram:

Cn.M/ //

��

SMnC1

��

CnC1.M/ // M nC1

Here the right vertical arrow is the product of standard projection and the bottom horizontal one is the
composition of the canonical inclusion CnC1.M/!M�nC1 � .SN /�C2.Œn�/ and the projection.

� Let � W TxM !RNC1 be the linear monomorphism from the tangent space induced by the differential
of the embedding fixed in Definition 2.3 and the identification TxRNC1 ŠRNC1 by the standard basis.
Set A0nC1.M/ WDM�nC1 � .SN /�.Œn�

�2/. Let ˇ0nC1 W C
n.M/! A0nC1.M/ be the map given by

ˇ0nC1.xk; ukl ; yk/D .xk; u
0
kl/ and u0kl D

�
ukl if k ¤ l;
�.yk/ if k D l;

where yk is a unit tangent vector at xk . This is clearly a monomorphism. For an integer i with 0� i �nC1,
we define a map di W ŒnC 1�! Œn� by

di .k/D

�
k if k � i;
k� 1 if k > i;

for 0� i � n and dnC1 D d0 ı �;
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ui;iC1 D yi

d i

7�!
M

i
i C 1

xi

yi

Figure 1: Intuition of the coface map d i . Here yi is the vector at xi .

where � is the cyclic permutation �.k/D kC 1 .mod nC 2/. (This di is the same as si in Section 2.1,
but we use the different notation to avoid confusion.) We define a map d i W A0nC1.M/! A0nC2.M/ by

d i .xk; ukl/0�k;l�n D .xf .k/; uf .k/;f .l//0�k;l�nC1 with f D di :

This map restricts to the map d i W Cn.M/! CnC1.M/ via ˇ0nC1, ˇ0nC2. Similarly, we define a map
si W Cn.M/! Cn�1.M/ for 0� i � n� 1 as the pullback by the map

si W Œn� 1�! Œn�; si .k/D

�
k if k � i;
kC 1 if k > i:

The collection C�.M/D fCn.M/; d i ; sig forms a cosimplicial space. Well-definedness of this is verified
in Lemma 2.8.

� We call the Bousfield–Kan type cohomology spectral sequence associated to C�.M/ the Sinha spectral
sequence for M , in short, the Sinha s.s., and denote it by fErgr .

Intuitively, an element of Cn.M/ is a configuration of n points in M , some points of which are allowed to
collide, or in other words, to be infinitesimally close, and the direction of collision is recorded as the unit
vector ukl if the kth and l th points collide. An element of Cn.M/ is an element of CnC1.M/, each point
of which has a unit tangent vector. For 0 � i � n, the map d i replaces the i th point in a configuration
with the two points colliding at the point along its vector. These points are labeled by i and i C 1. Their
vectors are copies of the original vector (see Figure 1). The map dnC1 replaces the 0th points with two
points similarly, and labels them by nC 1 and 0 (and slides other labels). The map si forgets the .iC1/th

point and vector.

Lemma 2.8 (1) The map Cn.M/ ! M n � .SN /�C2.Œn�1�/ given in Definition 2.7 restricts to a
homotopy equivalence Cn.M/! Cn.M/.

(2) The cosimplicial space C�.M/ is well defined.

Proof Part (1) is proved in [35, Corollary 4.5 and Theorem. 5.10]. For (2), by [35, Proposition 6.6]
the image of d i and si is contained in Cn˙1.M/—C 0nhŒM �i in the proposition is the same as Cn�1.M/

in our notation. Confirmation of the cosimplicial identities is routine work. For example, to confirm
dnC2d i D d idnC1 W Cn.M/ ! CnC2.M/ for i < n C 2, it is enough to confirm the dual identity
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didnC2 D dnC1di W ŒnC 2�! Œn�. Both sides are equal to the map

k 7!

8<:
k if k � i;
k� 1 if i < k < nC 2;
0 if k D nC 2;

if i < nC 1; k 7!

�
k if k � n;
0 if k D nC 1; nC 2;

if i D nC 1:

Lemma 2.9 Let G�nC�.M/ be the composition functor PnC1
Gn
�!�n

C�.M/
����! CG.

(1) The homotopy limits of En.M/ and G�nC�.M/ are connected by a zigzag of weak homotopy
equivalences which are compatible with the inclusion n! nC 1.

(2) The homotopy limit of C�.M/ over �n and that of G�nC�.M/ over PnC1 are connected by a zigzag
of weak homotopy equivalences which are compatible with the inclusion n! nC 1.

(3) If d � 4, the homotopy limit of C�.M/ over � and Emb.S1;M/ are connected by a zigzag of
weak homotopy equivalences.

Proof The proof of (1) is completely analogous to the proof of [37, Lemma 5.19] so we omit details.
The idea of the proof is to consider the two space C#S�1.M/ and ES .M/ as subspaces of a common
space, where one can “shrink components of embeddings until they become tangent vectors”, as in
[37, Definition 5.14]. The space is a subspace of the space of compact subspaces of C#S�1.M/ with the
Hausdorff metric. This space and the inclusions can be chosen to be compatible with maps in PnC1. For
example, the restriction ES .M/! ES 0.M/ corresponding to the inclusion S D nC 1 � S 0 D nC 2
divides the component including the image of 0 2 S1 into two components, since the image of JnC2
is removed. At the limit of shrinking components, this is consistent with the coface map dnC1. These
inclusions to the common space give rise to a zigzag of natural transformations which is a weak homotopy
equivalence at each set S � nC 1. This induces the claimed zigzag. Part (2) follows from the fact that
the functor Gn is left cofinal; see Theorem 6.7 of [37]. Part (3) follows from (1), (2) and Lemma 2.5.

2.4 Operads, comodules and the Hochschild complex

The term operad means nonsymmetric (or non–†) operad; see [24; 31]. An operad OD fO.n/gn�1 in a
symmetric monoidal category .C;˝/ is a sequence of objects equipped with maps

.�ıi �/ WO.m/˝O.n/!O.mCn� 1/ for 1� i �m

in C, called partial compositions, which are subject to certain conditions. O.n/ is called the object at
arity n. More precisely, our notion of an operad is different from the one in [24; 31] only in that we do
not consider the object at arity 0, so conditions on partial compositions given in [24; 31] are imposed only
in the ranges of all involved arities being 1 or more. We mainly consider operads in CG (resp. in CHk),
which are called topological operads (resp. chain operads), where the monoidal product is the standard
cartesian product (resp. tensor product). Let O be a topological operad. C�.O/ denotes the chain operad
given by C�.O/.n/ D C�.O.n// with the induced structure. We equip the sequence fO.n/ y̋ Sgn of
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spectra with a structure of an operad in SP as follows. The i th partial composition is given by

.O.m/ y̋ S/^.O.n/ y̋ S/Š .O.m/�O.n// y̋ .S^S/Š .O.m/�O.n// y̋ S
.�ıi�/ y̋ id
�������!O.mCn�1/ y̋ S:

See Section 2.1 for the isomorphisms. The action of †n is the naturally induced action. We denote this
operad by the same symbol, O. We let A denote both of the (discrete) topological and k–linear versions
of the associative operad by abuse of notation. For the k–linear version, we fix a generator � 2 A.2/
throughout this paper. K denotes the Stasheff associahedral operad, and A1 the cellular chain operad
of K. Precisely speaking, A1 is generated by a set f�k 2A1.k/gk�2 with j�kj D �kC 2, with partial
compositions. The differential is given by the formula

d�k D
X
l;p;q

lCqDkC1

.�1/��l ıpC1 �q;

where � D �.l; p; q/D pC q.l �p� 1/.

In the following definition, we adopt the point–set description, as if a category C were the category of
sets, for simplicity.

Definition 2.10 � Let O be an operad over a symmetric monoidal category C. A (left) O–comodule in
C is a symmetric sequence X D fX.n/gn�1 in C equipped with maps

.�ıi �/ WO.m/˝X.mCn� 1/!X.n/ 2 C

for m� 1, n� 1 and 1� i � n, called partial compositions, which satisfy the following conditions:

(1) For a 2O.m/, b 2O.l/ and x 2X.l CmCn� 2/,

a ıi .b ıj x/D

8<:
b ıj .a ıiCl�1 x/ if j < i;
.a ıj�iC1 b/ ıi x if i � j � i Cm� 1;
b ıj�mC1 .a ıi x/ if i Cm� 1 < j:

(2) For the unit 1 2O.1/ and x 2X.n/, we have 1 ıi x D x.

(3) For a 2O.m/, x 2X.mCn� 1/ and � 2†n,

.a ıi x/
�
D a ı��1.i/ .x

�1/;

where �1 2†mCn�1 is the permutation induced by � , replacing the letter ��1.i/ with the m letters
��1.i/; : : : ; ��1.i/Cm� 1. In other words,

�1.k/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�.k/ if k < ��1.i/ and �.k/ < i;
�.k/Cm� 1 if k < ��1.i/ and �.k/ > i;
i C k� ��1.i/ if ��1.i/� k � ��1.i/Cm� 1;
�.k�mC 1/ if k > ��1.i/Cm� 1 and �.k�mC 1/ < i;
�.k�mC 1/Cm� 1 if k > ��1.i/Cm� 1 and �.k�mC 1/ > i:

A map f W X1 ! X2 of O–comodules is a sequence of maps in C ffn W X1.n/ ! X2.n/gn which is
compatible with the actions of symmetric groups and the partial compositions.
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� A (right) O–module in C is a symmetric sequence Y D fY.n/gn�1 equipped with a set of partial
compositions Y.n/˝O.m/! Y.mCn� 1/ which satisfy the following conditions:

(1) For a 2O.m/, b 2O.l/ and y 2 y.n/,

.y ıj a/ ıi b D

8<:
.y ıi b/ ıjCl�1 a if i < j;
y ıj .a ıi�jC1 b/ if j � i � j Cm� 1;
.y ıiCm�1 b/ ıj a if i > j Cm� 1:

(2) For the unit 1 2O.1/ and y 2X.n/, we have y ıi 1D y.

(3) For a 2O.m/, y 2X.n/ and � 2†n,

y� ıi aD .y ı�.i/ a/
�2 ;

where �2 2 †mCn�1 is the permutation induced by � , replacing the letter i with the m letters
i; : : : ; i Cm� 1. In other words,

�2.k/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�.k/ if k < i and �.k/ < �.i/;
�.k/Cm� 1 if k < i and �.k/ > �.i/;
�.i/C k� i if i � k � i Cm� 1;
�.k�mC 1/ if k > i Cm� 1 and �.k�mC 1/ < �.i/;
�.k�mC 1/Cm� 1 if k > i Cm� 1 and �.k�mC 1/ > �.i/:

A map of modules is defined similarly to that of comodules.

� For a topological operad O (regarded as an operad in SP), an O–comodule of NCRS is an O–comodule
X in SP such that each X.n/ is equipped with a structure of an NCRS and the action of †n on X.n/ and
the partial composition .a ıi �/ WX.nCm� 1/!X.n/ is a map of NCRS for each a 2O.m/. A map of
comodules of NCRS is a map of comodules which is also a map of NCRS at each arity.

� For a topological operad O and an O–module Y , we define an O–comodule Y _ of NCRS as follows:

(1) We set Y _.n/D Y.n/_ (see Section 2.1).

(2) For f 2 Y _.n/ and � 2†n, we define an action f � by f � .y/D f .y�
�1

/ for each y 2 Y.n/.

(3) For a2O.m/ and f 2Y _.mCn�1/, we define a partial composition aıif by aıif .y/Df .yıia/
for each y 2 Y.n/.

(4) We define a multiplication Y _.n/^ Y _.n/! Y _.n/ as the pushforward by the multiplication
of S. (This is actually unital.)

This construction is natural for maps of O–modules.

� An A–comodule X of CDBA is an A–comodule (in CHk) such that each X.n/ is a CDBA, and the
partial composition � ıi .�/ W X.n/! X.n� 1/— with the fixed generator � 2 A.2/— and action of
� 2†n preserve the differential, bigrading, multiplication and unit.

The axioms for the partial compositions of modules (Definition 2.10) are the standard ones, which are
naturally interpreted in terms of concatenation of trees. The action of � 2†n is interpreted as replacement
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of labels i on leaves with labels ��1.i/, and the axiom is the natural one with this interpretation. The
axioms for a comodule are simply dual to those for a module. The comodule in Example 2.14 may give
some intuition for it.

Remark 2.11 The notion of a right module in Definition 2.10 is similar to the one in [26]. A right
O–module is also essentially the same as a topological contravariant functor from the PROP of †O to
spaces (or spectra), and a left O–comodule is a covariant functor. Here †O is the standard symmetrization
of O, ie †O.n/DO.n/�†n; see [29].

Composing the unity and associativity isomorphisms, we get a natural isomorphismK y̋ X Š .K y̋ S/^X

in SP . Let O be a topological operad. Via this isomorphism, a structure of an O–comodule in SP on a
symmetric sequence X is equivalent to a set of maps

O.m/ y̋ X.mCn� 1/!X.n/

which satisfy conditions completely similar to those given in Definition 2.10. We also call these maps
partial compositions, and henceforth will define comodules in SP with these maps.

Remark 2.12 Precisely speaking, comodules in Definition 2.10 should be called contracomodules,
because our comodules are to modules as contramodules are to comodules in [32], but for simplicity we
adopt our terminology.

The following definition is essentially due to [16], though we adopt a different sign rule.

Definition 2.13 Let X� be an A1–comodule in CHk. We define a chain complex .CH�X�; Qd/, called
the Hochschild complex of X , as follows. Set CHnX� DX�.nC 1/. By our convention, the total degree
is ���. The differential Qd is given as a map

Qd D d � ı W
M
a�nDk

CHnXa!
M

a�nDkC1

CHnXa:

Here d is the internal (original) differential on Xa.nC 1/ and ı is given by

ı.x/D

nX
iD0

n�iC1X
kD2

.�1/��k ıiC1 xC

nX
sD1

nC1X
kDsC1

.�1/��k ı1 x
s

for x 2 Xa.nC 1/, where � D �.a; i; k/ D .aC i/.kC 1/, � D �.s; n; k; a/ D snC .kC 1/a and xs

denotes the image of x by the action of the permutation in †nC1 which transposes the first n� sC 1
letters and the last s letters.

The following example gives some intuition for the definitions of a comodule and the Hochschild complex,
but is not used later.

Example 2.14 Let C be the category of k–modules and A be a k–algebra. Let mn 2A.n/ be the element
defined by successive partial compositions of the generator � 2A.2/. Define an A–comodule XA by

XA.n/DA
˝n; mk ıi .x1˝� � �˝xkCn�1/D x1˝� � �˝xi�1˝.xi � � � xiCk�1/˝xiCk˝� � �˝xkCn�1;
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where xi � � � xiCk�1 is the product in A. We regard XA as an A1–comodule via a map A1 ! A
of operads. The Hochschild complex of XA is the usual (unnormalized) Hochschild complex of the
associative algebra A.

Lemma 2.15 With the notation of Definition 2.13, . Qd/2 D 0.

Proof Roughly,

. Qd/2.x/D Qd.dx� ıx/D ddx� dıx� ıdx� ııx

D d.�k ıiC1 xC�k ı1 x
s/C .�k ıiC1 dxC�k ı1 dx

s/

��l ıjC1 .�k ıiC1 x/C�l ı .�k ı1 x
s/C�l ı1 .�k ıiC1 x/

t
C�l ı1 .�k ı1 x

s/t

D .d�k/ ıiC1 xC .d�k/ ı1 x
s

��l ıjC1 .�k ıiC1 x/C�l ı .�k ı1 x
s/C�l ı1 .�k ıiC1 x/

t
C�l ı1 .�k ı1 x

s/t :

(Here we already canceled the terms containing dx, since the cancellation of signs is obvious.) So we
have six types of terms. To see which terms cancel with each other, we divide these terms into the
following smaller classes:

(1) .d�k/ ıiC1 x, d�k D
P
�l ıpC1 �q ,

(2) .d�k/ ı1 x
s , d�k D

P
�l ıpC1 �q:

(a) s < pC 1,

(b) pC q � s,

(c) p D 0 and q > s,

(d) p > 0 and pC q > s � pC 1,

(3) �l ıjC1 .�k ıiC1 x/:

(a) i < j ,

(b) j C l � 1 < i ,

(c) j � i � j C l � 1,

(4) �l ıjC1 .�k ı1 x
s/:

(a) j D 0,

(b) j > 0,

(5) �l ı1 .�k ıiC1 x/
t :

(a) i C 1 < n� k� t C 3 and l < sC i C 1,

(b) i C 1 < n� k� t C 3 and l � sC i C 1,

(c) i C 1� n� k� t C 3,

(6) �l ı1 .�k ı1 x
s/t .
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Now we claim that the terms in (1) cancel with the terms in (3c), (2a) with (5b), (2b) with (5c), (2c) with
(4a), (2d) with (6), (3a) with (3b) and (4b) with (5a).

We shall verify the first and third parts of the claim. Other verification is similar and omitted. For the first
one, the coefficient of a term .�l ıpC1 �q/ ıiC1 x in (1) is .�1/˛1 , where

˛1 D �.l; p; q/C �.a; i; l C qC 1/C 1:

For a term in (3-c), by the rules of the partial composition, �l ıjC1 .�k ıiC1x/D .�l ıi�jC1�k/ıjC1x.
In order to match this term with a term in (1), we set q0 D k, p0C 1 D i � j C 1 and i 0C 1 D j C 1.
This change of subscripts implies �l ıjC1 .�k ıiC1 x/ D .�l ıp0C1 �q0/ ıi 0C1 x. Clearly j D i 0 and
i D p0C i 0. The coefficient of �l ıjC1 .�k ıiC1 x/ in (3-c) is .�1/˛2 , where

˛2 D �.a; i; k/C 1C �.aC k� 2; j; l/C 1D �.a; p
0
C i 0; q0/C �.a� q0C 2; i 0; l/C 2:

When we substitute q0 D q, p0 D p and i 0 D i in the last expression, elementary computation shows
˛1C˛2 � 1 .mod 2/. Thus the terms in (1) cancel with the terms in (3-c).

For the third part, the coefficient of a term .�l ıpC1 �q/ ı1 x
s in (2-b) is .�1/ˇ1 , where

ˇ1 D �.l; p; q/C �.s; n; l C q� 1; a/C 1:

For a term in (5-c), the condition i C 1� n� k� t C 3 implies that �k acts on a part of the last t letters.
By this, and the rule of the partial composition, we have

�l ı1 .�k ıiC1 x/
t
D �l ı1 .�k ıi�nCkCt�1 .x

tCk�1//D .�l ıi�nCkCt�1 �k/ ı1 x
tCk�1:

In order to match this term with a term in (2-b), we set p0C1D i�nCkCt�1, q0D k and s0D tCk�1.
This change of subscripts implies �l ı1 .�k ıiC1 x/t D .�l ıp0C1�q0/ı1 xs

0

. Clearly t D s0�q0C1 and
i D p0Cn� s0C 1. The coefficient of �l ı1 .�k ıiC1 x/t is .�1/ˇ2 , where

ˇ2 D �.a; i; k/C 1C �.t; a� kC 2; n� kC 1; l/C 1

D �.a; p0Cn� s0C 1; q0/C �.s0� q0C 1; n� q0C 1; a� q0C 2; l/C 2:

When we substitute q0 D q, p0 D p and s0 D s in the last expression, elementary computation shows
ˇ1Cˇ2 � 1 .mod 2/. Thus the terms in (2-b) cancel with the terms in (5-c).

3 The comodule TM

The purpose of this section is to define the comodule TM .

3.1 A model of a Thom spectrum

We introduce a model of a Thom spectrum in the category of symmetric spectra. This model is essentially
due to Cohen [11], and is slightly different from Cohen’s original nonunital model, mainly in that we use
expanding embeddings.
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Definition 3.1 Let N be a closed manifold. We fix a Riemannian metric on N and denote by dN .�;�/
the distance on N induced by the metric. The standard Euclidean norm on Rk is denoted by k�k. The
distance in Rk is induced by k�k.

� For a smooth embedding e WN ! L to a Riemannian manifold L, we set a number

r.e/D inf
�
dL.e.x/; e.y//

dN .x; y/

ˇ̌̌
x; y 2N with x ¤ y

�
:

It is easy to see r.e/ > 0. We say e is expanding if the inequality r.e/� 1 holds. Embex.N;L/ denotes
the space of all expanding embeddings from N to L with the topology induced by the C1–topology.

� For a smooth embedding e WN !Rk , we define a number jej by

jej D

kX
iD1

maxfjei .y/j j y 2N g;

where ei WN !R is the i th component of e and j � j is the absolute value.

� Let e W N ! Rk be a smooth embedding. For � > 0, we denote by ��.e/ the open subset of Rk

consisting of the points whose Euclidean distance from e.N / is smaller than �. Let L.e/ denote the
minimum of 1 and the least upper bound of � > 0 such that there exists a retraction �e W ��.e/! e.N /

satisfying the following conditions:

– For any u 2 ��.e/ and any y 2N we have k�e.u/�uk � ke.y/�uk, and equality holds if and
only if �e.u/D e.y/.

– For any y 2N we have ��1e .fe.y/g/DB�.e.y//\ .e.y/C .TyN/
?/. Here B�.e.y// is the open

ball with center e.y/ and radius �.

– The closure N��.e/ of ��.e/ is a smooth submanifold of Rk with boundary.

(Such a retraction exists for a sufficiently small � > 0 by a version of the tubular neighborhood theorem;
see [27].) The retraction �e satisfying the above conditions is unique. We regard the map �e W��.e/!e.N /

as a disk bundle over N , identifying N and e.N / via e.

� Let zN��
k

be the subspace of Embex.N;Rk/�R�Rk consisting of the triples .e; �; u/with 0<�<L.e/.
Define a subspace @ zN��

k
� zN��

k
by .e; �; u/ 2 @ zN��

k
if and only if u … ��.e/. We put

N��k D
zN��k =@ zN��k :

We define a structure of a symmetric spectrum on N�� as follows:

– We let †k act on Rk and Embex.N;Rk/ by the standard permutation on components. The action
of †k on N��

k
is given by Œe; �; u�� D Œe� ; �; u� �.

– The map S1 ^N��
k
! N��

kC1
is given by t ^ Œe; �; u� 7! Œ0� e; �; .t; u/�, where we regard S1 as

R[f1g, and 0� e WM !RkC1 is given by .0� e/.x/D .0; e.x//.
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� We shall define a structure of NCRS on N�� . An element of .N�� ^N�� /k is represented by data
hŒe1; �1; u1�; Œe2; �2; u2�I �i consisting of Œei ; �i ; ui � 2 N��ki for i D 1; 2 and k1C k2 D k, and � 2 †k .
We define a commutative associative multiplication � WN�� ^N�� !N�� by

�.hŒe1; �1; u1�; Œe2; �2; u2�I �i/D Œe12; �12; .u1; u2/�
� :

Here we set e12 D .e1 � e2/ ı�, where � WN !N �N is the diagonal map, and set

�12 Dmin
�
�1

8je2j
;
�2

8je1j
; L.e12/;

L.e01/

8je12j�je
0
1j
; : : : ;

L.e0m/

8je12j�je
0
mj

ˇ̌̌
m� 2; e01 WN !Rl1 ; : : : ; e0m WN !Rlm

�
;

where the finite sequence .e01; : : : ; e
0
m/ runs through the sequences of expanding embeddings satisfying

.e01 � � � � � e
0
m/ ı�

m D .e12/
� for a permutation � 2†k1Ck2 and the diagonal map �m WN !Nm.

Lemma 3.2 The structure of NCRS on N�� given in Definition 3.1 is well defined

Proof Most of the proof is the same as the proof of [11, Theorem 3]. We shall only verify the associativity
of the number �12. Let Œei ; �i ; ui � be an element of N��

ki
for i D 1; 2; 3. We denote by �.12/3 (resp. �1.23/)

the number in the second entry of the product of the three elements where the elements labeled by i D 1; 2
(resp. i D 2; 3) are multiplied at first. By definition,

�.12/3 Dmin
�
�12

8je3j
;
�3

8je12j
; L.e123/;

L.e01/

8je123j�je
0
1j
; : : : ;

L.e0m/

8je123j�je
0
mj

ˇ̌̌
m� 2; e01; : : : ; e

0
m

�
;

where e123 D .e1 � e2 � e3/ ı�3, and the finite sequence .e01; : : : ; e
0
m/ runs through the sequences of

expanding embeddings satisfying .e01 � � � � � e
0
m/ ı�

m D .e123/
� for some � 2 †k1Ck2Ck3 . By the

obvious equality je12j D je1jC je2j, we have

�.12/3Dmin
�

�1

8je2jCje3j
;

�2

8je1jCje3j
;

�3

8je1jCje2j
;L.e123/;

L.e01/

8je123j�je
0
1j
; : : : ;

L.e0m/

8je123j�je
0
mj

ˇ̌̌
m�2;e01; : : : ; e

0
m

�
;

where the finite sequence .e01; : : : ; e
0
m/ runs through the same set as above. The number �1.23/ is also

seen to be equal to the value of the right-hand side.

3.2 Construction of a comodule zTM

Definition 3.3 � For a closed interval c D Œa; b�, we set jcj D b�a, and call the point 1
2
.aCb/ 2 c the

center of c.

� We define a version of the little interval operad, denoted by D, as follows. For n� 1, let D.n/ be the
set of n–tuples .c1; c2; : : : ; cn/ of closed subintervals ci �

�
�
1
2
; 1
2

�
such that c1[ � � �[ cn D Œ�12 ;

1
2
� and

ci \ cj is a one-point set, or empty if i ¤ j , and the labeling of 1; : : : ; n is consistent with the usual
order of the real line R (so �1

2
2 c1 and 1

2
2 cn). D.1/ is understood as the one-point set consisting of

the interval
�
�
1
2
; 1
2

�
. We topologize D.n/ as a subspace of Rn by the inclusion sending each interval

to its center. The partial composition is given in a way that is completely analogous to the usual little
interval operad.
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c

c1 c2 c3
.x2; y2/

.x3; y3/

7!

.x1; y1/

.x; y/

M

�jdi j

Figure 2: The map �0. The geodesic segment is divided into the pieces of rate of length jc1j W jc2j W jc3j.

� We identify H0.D.2// with A.2/ by sending the generator represented by a topological point to the
generator �.

Recall that we fixed a Riemannian metric on M in Definition 2.3. Henceforth we equip the space SM
with the Sasaki metric, and the product SMn of n copies of SM with the product metric. We assume
the maximum of the distance between two points in SM is larger than 1. This is clearly possible by
modifying the embedding used in the definition of the metric on M . This assumption is used in the proof
Lemma 3.11(2). We fix a positive number � small enough that a geodesic of length � exists for any initial
value in M . After Lemma 3.7, we impose an additional assumption on �.

Definition 3.4 We define a map

�0 D�Œd; cI i � W SM! SMm

for each d D .d1; : : : ; dn/ 2 D.n/, c D .c1; : : : ; cm/ 2 D.m/ and 1 � i � n. Let .x; y/ denote a point
of SM with x 2 M and y 2 SxM , where SxM denotes the fiber of the sphere bundle over x. Let
s W
�
�
1
2
�; 1
2
�
�
!M denote the geodesic segment with length parameter such that s.0/D x and the tangent

vector of s at 0 is y. Let tj 2
�
�
1
2
; 1
2

�
be the center of cj , put xj D s.� � jdi j � tj / and set yj to be the

tangent vector of s at � � jdi j � tj . We set �0.x; y/D ..x1; y1/; : : : ; .xm; ym//; see Figure 2.

The following lemma is clear from the definition of �Œd; cI i �.

Lemma 3.5 For any configurations d, c1 and c2 and numbers i and j , the following equality holds:

�Œd; c1 ıj c2I i �D .1j�1 ��Œd ıi c1; c2I i C j � 1�� 1m�j / ı�Œd; c1I i �:

Here m is the arity of c1, and 1l is the identity on SMl .

Lemma 3.6 For any sufficiently small positive number �, the map�Œd; cI i � is expanding for any numbers
n� 1, m� 1 and i with 1� i � n, and elements d 2 D.n/ and c 2 D.m/.

Proof It is enough to prove the case of mD 2, since for m� 3, �0 is equal to a successive composition
of copies of �0 of arity 2 by Lemma 3.5. We set �0 D jdi j�. We shall consider the case that M is a
metric vector space V as a local model. Take points .x; y/; .v; w/ 2 yV D V �SV , where SV is the unit
sphere in V . Put cD .c1; c2/. Let �s and t be the centers of c1 and c2, respectively, with 0 < s; t < 1

2
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and sC t D 1
2

. By definition, �0.x; y/D Œ.x� �0sy; y/; .xC �0ty; y/�. When we set aD kx� vk and
b D ky �wk, we easily see

k�0.x; y/��0.v; w/k2 � 2a2� �0js� t jabC
˚
1
4
�20.s

2
C t2/C 2

	
b2

� 2a2� 1
2
�0js� t j.a

2
C b2/C

˚
1
4
�20.s

2
C t2/C 2

	
b2:

So

(3-1)
k�0.x; y/��0.v; w/k

k.x; y/� .v; w/k
�

p
7

2
for � < 1:

We shall consider the case of a general manifoldM . There exists a number r > 0 such that, for sufficiently
small �, for any point p 2M and any pair .x; y/; .v; w/ 2 TpM � STpM with kxk; kvk � r , we have
the inequality

(3-2)
d.�0M .exp x; exp0 y/;�0M .exp v; exp0w//

d.�0TpM .x; y/;�
0
TpM

.v; w//
> 1� 1

100
;

where exp is the exponential map at p and exp0 is its differential. Combining (3-1) and (3-2), for
.x; y/; .v; w/ 2 SM, we see dSM2.�

0.x; y/;�0.v; w// > dSM..x; y/; .v; w// if dM .x; v/ � r . For the
case of dM .x; v/ > r , if we take � sufficiently small relative to r , the following inequality holds:

d.�0.x; y/;�0.v; w//

d.�.x; y/;�.v;w//
> 1� 1

100
for .x; y/; .v; w/ 2 SM with d.x; v/ > r:

Here � W SM! SM�2 is the usual diagonal. Then, if dM .x; v/ > r , we have the inequality

d.�0.x; y/;�0.v; w// >
�
1� 1

100

�p
2 d..x; y/; .v; w//:

Thus, we have shown the lemma.

The following lemma is an exercise of Riemannian geometry:

Lemma 3.7 For any sufficiently small positive number �, the following condition holds. For any n� 2,
G 2 G.n/ and set of positive numbers f�ij j i < j for .i; j / 2E.G/g satisfying

P
.i;j /2E.G/ �ij < �, the

inclusion of subspaces of M n

f.x1; : : : ; xn/ j 8.i; j / 2E.G/; xi D xj g ! f.x1; : : : ; xn/ j 8.i; j / 2E.G/; d.xi ; xj /� �ij g

is a homotopy equivalence.

Assumption In the rest of paper, we fix the number � so that Lemmas 3.6 and 3.7 hold.

We define a D–comodule zTM of NCRS. We set

SM�� .n/D .SMn/�� I

see Definition 3.1. We first define a subspectrum zTM .c/� SM�� .n/ as follows:

zTM .c/k D
˚
Œe; �; u� 2 SM�� .n/k j � <

1
2
�minfjc1j; : : : ; jcnjg

	
:
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We define a subspectrum zTM .n/�Map.D.n/; SM�� .n// as follows:

� 2 zTM .n/k () �.c/ 2 zTM .c/k for all c 2 D.n/:

It is clear that the inclusion zTM .n/!Map.D.n/; SM�� .n// is a level-equivalence for any n � 1. We
denote the sequence fzTM .n/g by zTM .

We shall define an action of †n on zTM .n/, with which we regard zTM as a symmetric sequence. For
cD .c1; : : : ; cn/ 2 D.n/ and � 2†n, we define c� 2 D.n/ to be the configuration of the subintervals of
length jc�.1/j; jc�.2/j; : : : ; jc�.n/j placed from the side of �1

2
to the side of 1

2
. For Œe; �; u� 2 SM�� .n/k

and � 2 †n, we set Œe; �; u�� D Œe ı �; �; u� where � W SMn
! SMn is given by .z1; : : : ; zn/ 7!

.z��1.1/; : : : ; z��1.n//. (To distinguish the action of †k which is a part of the structure of the spectrum,
we use the subscript Œ��� .)

Definition 3.8 With the above notation, for �2 zTM .n/k and � 2†n we define an element �� 2 zTM .n/k by

�� .c/D f�.c�
�1

/g� :

Clearly � 7! �� gives a †n–action on zTM .n/.

In order to define a partial composition on zTM , we shall define a map

„D„Œd; cI i � W SM�� .nCm� 1/! SM�� .n/:

For an element Œe; �; u� 2 SM�� .nCm� 1/k , we put

� e0 D e ı .1i�1 ��
0 � 1n�i / W SMn

!Rk , where �0 D�Œd; cI i � and 1l is the identity on SMl , and

� �0D .1=8m�1/minf�; L.e; dıi c/g, whereL.e; c0/ is the minimum of the numbersL.eı�Œc1; c2I j �/
over all triples .c1; c2; j / satisfying c0 D .c1 ıj c2/ ıl c3 for some configuration c3 and number l .

By Lemma 3.6, e0 is expanding. We set„.Œe; �; u�/D Œe0; �0; u�. Clearly„ is a well-defined map of spectra.

Definition 3.9 Using the above notation:

� We define a partial composition

.�ıi �/ W D.m/ y̋ zTM .nCm� 1/! zTM .n/
on zTM by setting

.c ıi �/.d/D„.�.d ıi c// where „D„Œd; cI i �;

for elements � 2 zTM .nCm� 1/, c 2 D.m/ and d 2 D.n/.
� We define a multiplication Q� W zTM .n/^ zTM .n/! zTM .n/ by

Q�.h�1; �2I �i/.d/D �.h�1.d/; �2.d/I �i/;

where � denotes the multiplication given in Definition 3.1.

With these operations and the action of †n in Definition 3.8, we regard zTM as a D–comodule of NCRS.
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Lemma 3.10 The structure of a D–comodule of NCRS on zTM given in Definition 3.9 is well defined.

Proof By Lemma 3.5, we see the equality in Definition 2.10(1) holds. The equality in (2) in the same
definition is clear.

We shall prove the equality in (3). Take elements c 2 D.m/, d 2 D.n/, � 2 zTM .mCn� 1/ and � 2†n.
By definition,

.c ıi �/
� .d/D fc ıi �.d

��1/g� D f„1.�.d
��1
ıi /
�
g� ;

c ı��1.i/ .�
�1/.d/D„2f�..d ı��1.i/ c/

��11 /�1g;

where „1 D„Œd�
�1

; cI i � and „2 D„Œd; cI ��1.i/�. It is easy to check the equalities

d�
�1

ıi cD .d ı��1.i/ c/
��11 and f„1.x/g� D„2.x�1/:

These verify the desired equality. Compatibility of the multiplication with the partial composition
is obvious.

3.3 Construction of the comodule TM

Let p and q be two different integers with 1� p; q � n, and c 2 D.n/ be an element. We set a number
ıpq.c; �/ by

ıpq.c; �/D
1
2
�.jcpjC jcqj/� �

for a number �. We define a subspectrum Tpq.c/� zTM .c/ by the following equivalence. For each k � 0,

Œe; �; u� 2 Tpq.c/k () Œe; �; u�D � or dM .xp; xq/� ıpq.c; �/;

where xi 2 M is the image of the i th component of �e.u/ by the standard projection SM ! M for
i D p; q. On the right-hand side, ıpq.c; �/ is positive by the definition of zTM .c/. Define a subspectrum
Tpq.n/� zTM .n/ by

� 2 Tpq.n/k () �.c/ 2 Tpq.c/k for all c 2 D.n/:

Clearly we have Tpq.n/D Tqp.n/. The following lemma is the key to defining the comodule TM . Most
of the preceding technical definitions are necessary to make this lemma hold.

Lemma 3.11 (1) For any numbers n� 1 and m� 2 and element c 2D.m/, let c ıi Tpq.nCm� 1/�
zTM .n/ denote the image of Tpq.nCm� 1/ by the map c ıi .�/. We have the following inclusion
at each level k:

c ıi Tpq.nCm� 1/�

8̂̂̂̂
<̂̂
ˆ̂̂̂:

f�g if i � p < q � i Cm� 1;
Tpi .n/ if p < i � q � i Cm� 1;
Tp;q�mC1.n/ if p < i; i Cm� 1 < q;
Ti;q�mC1.n/ if i � p � i Cm� 1 < q;
Tp�mC1;q�mC1.n/ if i Cm� 1 < p < q:

More precisely, for example , the second inclusion means cıi Tpq.nCm�1/k � Tpi .n/k for each k.

(2) The image of Tpq.n/^ zTM .n/ by the multiplication Q� given in Definition 3.9 is contained in Tpq.n/.
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x0

y0

ıi;iC1.d ıi c; �/
1

4
� 1

4
�

2�0 2�0

x0

i
x0

iC1

1

2
�jdi j.jc1j C jc2j/

Figure 3: The first inclusion of Lemma 3.11(1) with nD 2. The bold line is a part of the geodesic
segment used to define �0, .x0; y0/ is the i th component of �e0.u/ 2 SMn, and xi and xiC1 exist
in the interior of the disks at x0i and x0iC1 if .c ıi �/.d/¤ �.

Proof We shall show (1). Let c 2 D.m/, d 2 D.n/ and � 2 Tpq.nCm� 1/k be elements. Let .e; �; u/
be a representative of �.d ıi c/. Write

�e.u/D ..x1; y1/; : : : ; .xnCm�1; ynCm�1//;

f.1i�1/��
0
� .1n�i /g.�e0.u//D ..x

0
1; y
0
1/; : : : ; .x

0
nCm�1; y

0
nCm�1//;

with xj ; x0j 2M , yj 2 SxjM and y0j 2 Sx0jM . Here we use the notation given in the paragraph above
Definition 3.9. We shall show the first inclusion, the case of i � p < q � i Cm� 1.

The situation of the case nD 2 is as in Figure 3 (so pD i and qD iC1). We first give a sketch of the proof
for nD 2. We suppose .c ıi �/.d/¤ � and will show a contradiction. Since the map �0 arranges points
along a geodesic and the length of the geodesic segment between x0i and x0iC1 is 1

2
�jdi j.jc1jC jc2j/, we

have dM .x0i ; x
0
iC1/ > ı.d ıi c; �/. As we have taken �0 in the definition of „ sufficiently small, xi and x0i

(resp. xiC1 and x0iC1) are sufficiently close. These observations imply dM .xi ; xiC1/ > ı.d ıi c; �/, or,
equivalently, �.d ıi c/ … Tpq.d ıi c/.

We shall give the formal proof. We assume .c ıi �/.d/¤ �. Since the image of e0 is contained in the
image of e and the map �e sends u to its closest point in e.M/DM , we have

ku� e.�e.u//k � ku� e
0.�e0.u//k< �

0:

So
ke0.�e0.u//� e.�e.u//k � ke

0.�e0.u//�ukCku� e.�e.u//k< 2�
0:

As e0 D e ı .1i�1/��0 � .1n�i / and e is expanding,

df..x01; y
0
1/; : : : ; .x

0
nCm�1; y

0
nCm�1//; ..x1; y1/; : : : ; .xnCm�1; ynCm�1//g< 2�

0;

where d denotes the distance in SMnCm�1. So

dM .xj ; x
0
j /� dSM..xj ; yj /; .x

0
j ; y
0
j // < 2�

0 for j D 1; : : : ; nCm� 1:
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By this inequality, and the definition of the map �0, we have the inequality

dM .xp; xq/� dM .x
0
p; x
0
q/� dM .xp; x

0
p/� dM .xq; x

0
q/� dM .x

0
p; x
0
q/� 4�

0

�
1
2
�jdi j.jcp�iC1jC jcq�iC1j/� 4�

0
D

1
2
�.j.d ıi c/pjC j.d ıi c/qj/� 4�

0

�
1
2
�.j.d ıi c/pjC j.d ıi c/qj/� �=2 > ıpq.d ıi c; �/:

This inequality implies �.d ıi c/ … Tpq.d ıi c/, which is a contradiction. So .c ıi �/.d/D �, and we have
proved the first inclusion.

We shall show the second inclusion, the case of p < i � q � i Cm� 1. Let .x0; y0/ 2 SM be the i th

component of �e0.u/. Clearly,

..x0i ; y
0
i /; : : : ; .x

0
iCm�1; y

0
iCm�1//D�

0.x0; y0/:

By an argument similar to the above, we have the inequality

dM .x
0
p; x
0/�dM .x

0
p; xp/CdM .xp; xq/CdM .xq; x

0
q/CdM .x

0
q; x
0/

�2�0Cıpq.dıi c; �/C2�
0
C
1
2
�jdi j.1�jcq�iC1j/

D
1
2
�.jdpjCjdi jjcq�iC1j/��C4�

0
C
1
2
�jdi j.1�jcq�iC1j/�

1
2
�.jdpjCjdi j/�

1
2
�<ıpq.d; �

0/:

This implies the second inclusion. The other cases are similar to the first and second cases. The proof
of (2) is similar in view of the assumption on the metric given in the paragraph after Definition 3.3, and
so is omitted.

Let Tfat.n/ be the subspectrum of zTM .n/ whose space at level k is given by

Tfat.n/k D
[

1�p<q�n

Tpq.n/k :

Since fTpq.n/g� D T��1.p/;��1.q/.n/, we have that Tfat.n/ is stable under the action of †n. By
Lemma 3.11, the sequence fTfat.n/gn�0 is stable under partial compositions and is an ideal for the
multiplication Q�. So the sequence fTfat.n/gn�0 inherits a structure of a comodule from zTM , and we can
define the quotient comodule as follows:

Definition 3.12 We define a spectrum TM .n/ by the quotient (collapsing to �)

TM .n/k D zTM .n/k=Tfat.n/k

for each k � 0 and n � 2, and by TM .1/ D zTM .1/. We regard the sequence TM D fTM .n/gn�1 as a
comodule of NCRS with the structure induced by that on zTM .

4 Atiyah duality for comodules

Definition 4.1 We define the following zigzag consisting of D–comodules of NCRS and maps between
them:

.CM /_
.i0/
_

 ��� . zFM /
_ .i1/

_

���! .FM /
_ q�
 � F 0M

p�
��! F

�
M

ˆ
 � TM :
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� Set CM .n/D Cn�1.M/. When we regard a configuration as an element of CM .n/, we label its points
by 1; : : : ; n instead of 0; : : : ; n�1. We give the sequence CM D fCM .n/gn�1 a structure of an A–module
as follows. For the unique element � 2A.2/ and an element x 2 CM .n/, we set x ıi �D d i�1.x/, where
d i�1 is the coface operator of C�.M/. The action of †n on CM .n/ is given by permutation of labels and
.CM /_ is the A–comodule of NCRS given in Definition 2.10. By pulling back the action by the unique
operad morphism D!A, we also regard .CM /_ as a D–comodule.

� Let FM .n/ be the subspace of D.n/ � SMn defined by the following condition. For an element
.cI .x1; y1/; : : : ; .xn; yn// 2 D.n/� SMn with xi 2M and yi 2 SxiM ,

.cI .x1; y1/; : : : ; .xn; yn//2FM .n/ () d.xi ; xj /�
1
2
�.jci jCjcj j/ for each pair .i; j / with i¤j;

where � is the number fixed in Section 3.2.

� The sequence fFM .n/g has a structure of a D–module. For c 2D.n/ and .dI z1; : : : ; zn/ 2 FM .n/, we
set .dI z1; : : : ; zn/ ıi cD .d ıi cI z1; : : : ; �0.zi /; : : : ; zn/, where �0 D�Œd; cI i � is given in Definition 3.4.
The symmetric group acts on FM .n/ by permutation of little intervals and components. The D–comodule
of NCRS .FM /_ is the one induced by FM .

� We shall define a symmetric sequence of spectra fSM .n/gn. Set zSM .n/k D zN��k for N D SMn (see
Definition 3.1). Define a subspace @.zSM .n//k � zSM .n/k by .e; �; v/ 2 @zSM .n/k if and only if kvk � �.
We put

SM .n/k D zSM .n/k=@zSM .n/k :

We regard SM .n/ as an NCRS by a multiplication defined similarly to that ofN�� , given in Definition 3.1.

� Set F �M .n/ WDMap.FM .n/;SM .n//. We give the sequence fF �M .n/gn a structure of a D–comodule
as follows. For c 2 D.n/ and f 2 F �M .nCm� 1/, set c ıi f to be the composition

FM .m/
.�ıi c/
����! FM .nCm� 1/

f
�! SM .nCm� 1/

˛
�! SM .n/:

Here ˛ is given by
˛.Œe; �; v�/D Œe0; �0; v�;

where e0 and �0 are as defined in the paragraph above Definition 3.9. Similarly to .CM /_, we define a
multiplication on F �M .n/ as the pushforward by the multiplication on SM .n/.

� We define a map ẑn W zTM .n/! F
�
M .n/ of spectra by

ẑ
n.�/..cI z1; : : : ; zn//D Œe; N�; u� e.z1; : : : ; zn/�:

Here we write �.c/ D Œe; �; u� and we set N� D 1
4
�. Lemma 4.2 proves that ẑn induces a morphism

ˆn W TM .n/! F
�
M .n/ which forms a morphism of comodules.

� We shall define a D–module zFM . Set

zFM;1.n/D Œ0; 1��D.n/� CM .n/=�;
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where the equivalence relation is generated by the relation .t; c; z/� .s; d; z0/ if and only if sD t D 0 and
zD z0. zFM .n/ is the subspace of zFM;1.n/ consisting of elements .t; c; z/ with zD .xk; ukl ; yk/ satisfying

t ¤ 0 D) z 2 Int.CM .n// and dM .xi ; xj /� t �
1
2
�.jci jC jcj j/:

Here Int.CM .n// is the subspace consisting of the elements .xk; ukl ; yk/ such that xk ¤ xl if k ¤ l , or
equivalently, .xk; ukl/ belongs to Cn.M/ via the canonical inclusion Cn.M/� Cn.M/. We endow the
sequence f zFM .n/gn with a structure of a D–module analogous to that of FM . The difference is that we
use the number t� instead of � in the definition of �0 for t > 0, and use the module structure on CM
for t D 0. The obvious inclusions i0 W CM .n/! zFM .n/ and i1 W FM .n/! zFM .n/ to t D 0; 1 give rise to
morphisms of D–modules i0 W CM ! zFM and i1 W FM ! zFM .

� To define F 0M , p� and q�, we shall define a symmetric sequence of spectra fS0M .n/gn. Let zS0M .n/ be
the subspace of Emb..SM/n;Rk/�R�Sk consisting of triples .e; �; v/ with 0 < � < L.e/. We put

S0M .n/k D zS
0
M .n/k=f.e; �;1/ j e; � arbitraryg;

where we regard Sk D Rk [ f1g. We regard S0M .n/ as a spectrum analogously to SM .n/. Let
p W S0M .n/! SM .n/ be the map induced by the collapsing map Sk!Rk=fv j kvk � �g and q W S0M ! S

be the map forgetting the data .e; �/. Set F 0M .n/ D Map.FM .n/;S0M .n//. We regard fF 0M .n/g as a
D–comodule of NCRS analogously to F �M . The pushforwards p� and q� are clearly morphisms of
comodules of NCRS.

Verification of well-definedness of the objects defined in Definition 4.1 is routine work. For example, the
associativity of the composition of CM follows from the cosimplicial identities of C�.M/, and that of FM
can be verified similarly to the associativity of little cubes operads. We omit details.

Remark Right modules similar to FM are used in [2; 6].

Lemma 4.2 The map ẑn uniquely factors through a map ˆn W TM .n/! F
�
M .n/, and the sequence fˆng

is a map of D–comodules of NCRS.

Proof We shall show that ẑn.�/D � for any element � 2 Tpq.n/. Suppose that there exists an element
.cI z1; : : : ; zn/ 2 FM .n/ such that ẑn.�/.cI z1; : : : ; zn/ ¤ � 2 SM .n/. If we put �.c/ D Œe; �; u�, the
inequality ku� e.z1; : : : ; zn/k< 1

4
� holds. So ku� e.�eu/k< 1

4
�. Thus,

ke.�eu/� e.z1; : : : ; zn/k � ke.�eu/�ukCku� e.z1; : : : ; zn/k<
1
2
�:

As e is expanding, we have d.�e.u/; .z1; : : : ; zn// < 1
2
� where d denotes the distance in SMn. If we

write zi D .xi ; yi / and �e.u/D .. Nx1; Ny1/; : : : ; . Nxn; Nyn// as pairs of a point of M and a tangent vector, it
follows that dM . Nxi ; xi / < 1

2
�, and

d. Nxp; Nxq/� d.xp; xq/� d.xp; Nxp/� d.xq; Nxq/ >
1
2
�.jcpjC jcqj/� � D ıpq.c; �/:

This inequality contradicts the assumption � 2 Tpq.n/. Thus we have proved ẑn.Tpq.n// D �. This
implies the former part of the lemma. The latter part is obvious.
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Definition 4.3 A D–comodule of NCRS is semistable if the spectrum X.n/ is semistable for each n.
A map f WX ! Y of D–comodules of NCRS is a ��–isomorphism if each map fn WX.n/! Y.n/ is a
��–isomorphism (see Section 2.1).

The notion of a ��–isomorphism in Definition 4.3 is what we call “weak equivalence” in Theorem 1.1.
Since a ��–isomorphism of spectra is a stable equivalence, a ��–isomorphism of D–comodules gives a
stable equivalence at each arity. The following is a version of Atiyah duality which respects our comodules.
We devote the rest of this section to its proof.

Theorem 4.4 As D–comodules of nonunital commutative symmetric ring spectra , .CM /_ and TM are
��–isomorphic. Precisely speaking , all the comodules in the zigzag in Definition 4.1 are semistable and
all the maps in the same zigzag are ��–isomorphisms.

Definition 4.5 � For G 2 G.n/ and c 2 D.n/, we define two subspectra TG.c/; Tfat.c/� zTM .c/ by

TG.c/D
�T

.p;q/2E.G/ Tpq.c/ if G ¤∅;
zTM .c/ if G D∅;

and Tfat.c/D
[

1�p<q�n

Tpq.c/:

Similarly, we define a subspectrum TG � zTM .n/ by

TG D
�T

.p;q/2E.G/ Tpq if G ¤∅;
zTM .n/ if G D∅:

Here the union and intersections are taken in the levelwise manner.

� We fix an expanding embedding e0 W SM! RK , a positive number �0 < L.e0/ and a configuration
c0 2 D.n/ such that �0 < 1

4
minfjc1j; : : : ; jcnjg. We set � D ��0.e0/. We impose an additional condition

on �0 in Definition 5.8, which is satisfied by any sufficiently small �0, and we will assume K is a multiple
of 4 in the proof of Theorem 5.16. (We may impose the assumption on K from the beginning, but for the
convenience of verification of signs we do not do so.)

� For a graph G 2G.n/, let M�0.G/ be the space of maps �0.G/!M with the product topology, where
�0.G/ is the set of connected components of G. Let DG be the pullback of the diagram

SMn projection
������!M n

 M�0.G/;

where the right arrow is the pullback by the quotient map n! �0.G/. DG is naturally regarded as
a subspace of SMn via the projection of the pullback. This subspace is the same as the one given in
Section 1. We define the subspace FDn � SMn as the unions of the spaces DG whose graph G has at
least one edge.

� Consider �n � RnK as a disk bundle over SMn and denote by �G be the preimage of DG by the
projection �n! SMn. Let �G W Th.�G/! TG.c0/nK be the map Œu� 7! Œ.e0/

n; �0; u�. Then �G induces
a morphism �G W†

nK Th.�G/! TG.c0/ in Ho.SP/, where † denotes the suspension.

Lemma 4.6 For a closed smooth manifold N and k� 1, the inclusion I WEmbex.N;Rk/!Emb.N;Rk/
is a homotopy equivalence.
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Proof Let f WR>0!R be a C1–function which satisfies the following inequalities:

f .x/ >
1

x
for x < 1; f .x/� 1 for x � 1:

We define a continuous map F W Emb.N;Rk/! Embex.N;Rk/ by e 7! f .r.e// � e, where r.e/ is the
number given in Definition 3.1, and � denotes componentwise scalar multiplication. A homotopy from
F ı I to id is given by .t; e/ 7! ftC .1� t /f .r.e//g � e, and a homotopy from I ıF to id is also given by
the same formula.

Lemma 4.7 We use the notation in Definition 4.5. For each n � 1 and G 2 G.n/, TM .n/ and TG are
semistable , and each map in the following zigzags in Ho.SP/ is an isomorphism.

†nK Th.�G/
�G
��! TG.c0/ TG ;

†nKfTh.�n/=Th.�njFDn/g
�G
��! T∅.c0/=fTfat.c0/g  TM .n/:

Here , see Section 1 for FDn, and the right maps are the evaluations at c0.

Proof For simplicity, we shall prove the claim for the maps in the first line for the case of G D∅. The
same proof works for general G thanks to the assumptions on � given in Section 3.2. Set N D .SM/n.
The evaluation at c0 and the inclusion T∅.c0/�N�� are clearly level equivalences. So all we have to
prove is that T∅ is semistable and that the composition of �G and the inclusion, which is also denoted by
�G W†

nK Th.�G/!N�� , is an isomorphism in Ho.SP/. We define a space Ek by

Ek D f.e; �/ j e 2 Embex.N;Rk/ and 0 < � < L.e/g:

By Lemma 4.6 and Whitney’s theorem, Ek is
�
1
2
k�n.2d�1/�1

�
–connected. Let P WN��

k
! Ek be the

fiber bundle obtained from the obvious projection zN��
k
! Ek by collapsing the complements of the ��.e/

in a fiberwise manner (see Definition 3.1). So each fiber of the map P is a Thom space homeomorphic to
Th.�G/. P has a section s W Ek!N��

k
to the basepoints, and there is an obvious homeomorphism

N��k =s.Ek/ŠN��k :

With this, by observing the Serre spectral sequence for P , we see that the composition

Sk�nK ^Th.�G/
�G
��! Sk�nK ^N��nK

action of S
������!N��k

is
�
3
2
k�2n.2d�1/�2

�
–connected. This implies N�� is semistable and �G is an isomorphism.

Proof of Theorem 4.4 Similarly to the proof of Lemma 4.7, it is easy to see SM and S0M are semistable,
which implies each comodule in the zigzag in Definition 4.1 is semistable, combined with the fact that the
spaces FM .n/, zFM .n/ and CM .n/ have homotopy types of finite CW complexes. It is clear that p and q
are ��–isomorphisms, and so are p� and q�. Then i0 and i1 are homotopy equivalences for each n, since
zFM .n/ is homotopy equivalent to the mapping cylinder of the inclusion Cn.M/� Cn.M/, which is also

a homotopy equivalence. So .i0/_ and .i1/_ are ��–isomorphisms. Finally ˆn is a ��–isomorphism
since it reduces to the equivalence of the original Atiyah duality in the (homotopy) category of classical
spectra via Lemma 4.7; see [7].
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5 Spectral sequences

5.1 A chain functor

Definition 5.1 � For a chain complex C�, C Œk�� is the chain complex given by C Œk�l D CkCl with the
same differential as C� (without extra sign).

� Fix a fundamental cycle wS1 2 C1.S
1/. Let C�.U / denote the reduced singular chain complex of

a pointed space U . We shall define a chain complex C�.X/ for a spectrum X . Define a chain map
iX
k
WC�.Xk/Œk�!C�.XkC1/ŒkC1� by iX

k
.x/D .�1/l��.wS1�x/ for x 2Cl.Xk/, where � WS1^Xk!

XkC1 is the structure map of X . We define C�.X/ as the colimit of the sequence fC�.Xk/Œk�I iXk gk�0.
Clearly the procedure X 7! C�.X/ is extended to a functor SP! CHk in an obvious manner.

� For a spectrum X , we denote by H�.X/ the homology group of C�.X/.

� Let f CW denote the full subcategory of CG spanned by finite CW complexes. We define a functor
C �S W .f CW/op! CHk by C qS .X/D C�q.X

_/.

The proofs of the following two lemmas are very standard, so we omit them.

Lemma 5.2 If f W X ! Y is a stable equivalence between semistable spectra , the induced map
f� W C�.X/! C�.Y / is a quasi-isomorphism.

Lemma 5.3 There exists a zigzag of natural transformations between C � and C �S W .f CW/op! CHk, in
which each natural transformation is an objectwise quasi-isomorphism.

Remark 5.4 The functor C� does not have any compatibility with symmetry isomorphisms of the
monoidal products ^ in SP and ˝k in CHk, so the multiplication on TM .n/ defined in Section 3 does
not straightforwardly induce a multiplication on C�.TM .n//. To enrich the Čech spectral sequence
with multiplicative operations, we will need some extra work as in [33], which is not dealt with here.
The E2–term of the spectral sequence has a multiplication induced by a simplicial CDBA given in
Definition 5.14, but its topological meaning is unclear at present.

The functor C� W SP! CHk has some compatibility with the tensor y̋ with a space.

Lemma 5.5 (1) For U 2 CG and X 2 SP , the collection of Eilenberg–Zilber shuffle maps

fEZ W C�.U /˝C�.Xk/Œk�! C�..UC/^Xk/Œk�gk

induces a quasi-isomorphism

C�.U /˝C�.X/! C�.U y̋ X/:
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(2) Let O be a topological operad and Y be an O–comodule in SP . A natural structure of a chain
C�.O/–comodule on the collection C�Y D fC�.Y.n//gn is defined as follows. The partial compo-
sition is given by the composition

C�.O.m//˝C�.Y.mCn� 1//! C�.O.m/ y̋ Y.mCn� 1//! C�.Y.n//;

where the left map is the one defined in (1) and the right map is induced by the partial composition
on Y . The action of †n on C�.Y /.n/ is the one induced naturally.

Proof The cross product wS1 � x is equal to EZ.wS1 ˝ x/ by definition, and the shuffle maps are
associative and compatible with the symmetry isomorphisms of monoidal products without any chain ho-
motopy for normalized singular chains, so the maps EZ are compatible with the maps iX

k
in Definition 5.1

(the sign commuting an element of C�.U / and wS1 is canceled with the sign attached in the definition
of iX

k
). This implies the first part. The second part follows from commutativity of the following diagram,

which is clear from the property of the shuffle map mentioned above:

C�.U /˝C�.V /˝C�.X/ //

��

C�.U /˝C�.V y̋ X/

��

C�.U �V /˝C�.X/ // C�..U �V / y̋ X/

Here U; V 2 CG, X 2 SP , the left vertical arrow is induced by the EZ shuffle map and other arrows are
given by (1).

5.2 Construction of the Čech spectral sequence

Definition 5.6 We define a C�.D/–comodule {TM?� of double complexes consisting of the following data:

� a sequence of double complexes f{TM?�.n/gn�1 with two differentials d and @ of degree .0; 1/ and
.1; 0/, respectively,

� an action of †n on {TM?�.n/ which preserves the bigrading, and

� a partial composition .�ıi �/ W Ck.D.m//˝ {TM?�.mCn� 1/! {TM?;�Ck.n/.

These satisfy the following compatibility conditions in addition to the conditions in Definition 2.10:

d@D @d; d.˛ ıi x/D d˛ ıi xC .�1/
j˛j˛ ıi dx; @.˛ ıi x/D ˛ ıi @x:

We define the double complex {TM?�.n/ by

{TMp�.n/D
M

G2G.n;p/

C�.TG/

for p � 0 and {TMp;�.n/D 0 for p < 0, where G.n; p/� G.n/ is the set of graphs with exactly p edges (see
Definition 4.5 for TG). The differential d is the original differential of C�.TG/. The other differential @
is given by the signed sum

@D

pX
tD1

.�1/tC1@t ;
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where @t is the standard pushforward by the inclusion TG ! TGt where the graph Gt is defined by
removing the t th edge from G (in the lexicographical order). The action of � on zTM .n/ restricts to a map
� WTG!T��1.G/; see Section 2.1 for ��1.G/. This map induces a chain map �� WC�.TG/!C�.T��1.G//
by the pushforward of chains. For G 2G.n; p/, let �G 2†p denote the composition

p ŠE.��1.G//!E.G/Š p;

whereŠ denotes the order-preserving bijection and the middle map is given by .i; j / 7! .�.i/; �.j //. We
define the action of � on {TM .n/ as sgn.�G/ ��� on each summand. We now define the partial composition.
Let fi WmCn� 1!n be the order-preserving surjection which satisfies fi .iCt /D i for t D 1; : : : ; m�1.
For elements ˛2C�.D.m// and x2C�.TG/withG2G.nCm�1/, if #E.fi .G//D#E.G/ then the partial
composition ˛ıix2C�.TfiG/ is defined similarly to Lemma 5.5 with the map .�ıi�/ WD.m/ y̋ TG!TfiG ,
and if #E.fi .G// < #E.G/ then ˛ ıi x is zero. This partial composition is well defined by Lemma 3.11.
The compatibility between d; @ and .�ıi �/ is obvious. We have completed the definition of {TM .

Let Tot {TM?�.n/ denote the total complex. Its differential is given by d C .�1/q@ on {TM?q.n/. We regard
the sequence Tot {TM?� D fTot {TM?�.n/gn as a chain C�.D/–comodule with the induced structure. We fix
an operad map f W A1! C�.D/, and regard Tot {TM as an A1–comodule by pulling back the partial
compositions by f . We consider the Hochschild complex CH�.Tot {TM?�/ associated to this A1–comodule;
see Definition 2.13. The total degree of elements of CH�.Tot {TM?�/ is ���?��. We define two filtrations
fF�pg and fF�pg on this complex as follows. F�p (resp. F�p) is generated by the homogeneous parts
whose degree satisfies ?C� � p (resp. �� p). We call the spectral sequence associated to fF�pg the
Čech spectral sequence, in short, Čech s.s., and denote it by f LE�p;qr gr . The spectral sequence associated
to fF�pg is denoted by fxE�p;qr gr .

Lemma 5.7 The spectral sequence xEr in Definition 5.6 and Sinha spectral sequence Er in Definition 2.7
are isomorphic after the E1–page.

Proof Put N0D #f.i; j / j i; j 2 n with i < j g and let X W PN0 D G.n/�f∅g! SP be the functor given
by XG D TG . By applying Lemma 2.2 to this functor, we see that the map Tot {TM?�.n/! C�.TM .n//
induced by the collapsing (quotient) map zTM .n/! TM .n/ is a quasi-isomorphism. Combining this with
Theorem 4.4 and Lemma 5.2, the two comodules C�.C_M / and Tot {T?� are quasi-isomorphic. Clearly
CH� C�.CM / is quasi-isomorphic to the normalized complex of C�.C�.M/_/, which is quasi-isomorphic
to the normalized total complex of C �.C�.M// by Lemma 5.3. Thus, CH� Tot {TM?� and the normalized
total complex of C �.C�.M// are connected by a zigzag of quasi-isomorphisms which preserve the
filtration. This zigzag induces a zigzag of morphisms of spectral sequences which are isomorphisms after
the E1–page because the homology of Tot {T?�.nC 1/ is isomorphic to H�.Cn.M// under the zigzag.

5.3 Convergence

In this subsection, we assume M is orientable. We shall prepare some notation and terminology which is
necessary to analyze the E1–page of the Čech s.s.
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Definition 5.8 � We fixed an embedding e0 W SM! RK and a number �0 in Definition 4.5. We also
fix an isotopy �t W SM! R2K with �0 D 0� e0 and �1 D�RK ı e0, where 0� e0 W SM! R2K is given
by .0� e0/.z/D .0; e0.z// and �RK is the diagonal map on RK . We impose the additional condition
that �0 is smaller than minfL.�t / j 0 � t � 1g. We also fix a 1–parameter family of bundle maps
�t W ��0.0� e0/! ��0.�t / with �0 D id.

� We fix the following classes:

yw 2H2d�1.SM/; !� 2H
2d�1.SM� SM; �.SM/c/; wSK 2HK.S

K/; !SK 2H
K.SK/;

!� 2H
K�2dC1.Th.�//; !.n/ 2Hn.K�2dC1/.Th.�n//; 
 2Hd .SM� SM; .SM�M SM/c/:

Here yw is a fundamental class of SM, �.SM/c is the complement of the tubular neighborhood of the
(standard, nondeformed) diagonal, !� is the diagonal class satisfying the equality

. yw� yw/\!� D��. yw/ 2H2d�1.SM2/;

wSK is the cross product .wS1/
�n of K copies of the class wS1 fixed in Definition 5.1, !SK is the class

such that wSK \!SK is the class represented by a point, and !� is the Thom class satisfying the equality

��1 .!� � .!� �!�//D !SK �!� :

Here !� �.!��!�/ is naturally regarded as a Thom class for the bundle ��0.�RK ıe0/. We set !.n/D!�n� .
The class 
 is a Thom class of a tubular neighborhood of SM�M SM in SM� SM.

� We call a graph in G.n/ which does not contain a cycle (a closed path) a tree. For a graph G 2 G.n/,
vertices i and j are said to be disconnected inG if i and j belong to different connected components ofG.

� For i < j , let �ij W SMn
! SM�2 be the projection given by �ij .z1; : : : ; zn/D .zi ; zj /. Set Dij DDG

for E.G/D f.i; j /g, and

ij D �

�
ij .
/ 2H

d .SMn; .Dij /
c/:

For a tree G 2 G.n/, write E.G/ as f.i1; j1/ < � � �< .ir ; jr/g with it < jt for t D 1; : : : ; r . We put

wG D yw
�n
\ 
i1;j1 � � � 
ir ;jr 2Hn.2d�1/�rd .DG/:

Clearly wG is a fundamental class of DG .

� Let G 2 G.n; r/ be a tree. Suppose i and i C 1 are disconnected in G. Let di W n! n� 1 be the map
given by

di .j /D

�
j if j � i;
j � 1 if j � i C 1;

and set H D di .G/ 2 G.n� 1/. We define maps

�G WH�.Th.�G//!H��nK.TG/; �G WH�.TG/!H���dr.DG/;

�i WH�.TG/!H�.TH /; mi WH
�.DG/!H�.DH /:
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The map �G is the composition

H�.Th.�G//
.�G/�
����!H�.TG.c0/nK/!H��nK.TG.c0//!H��nK.TG/;

where �G is the map defined in Definition 4.5, the second map is the canonical one and the third
is the inverse of evaluation at c0. Clearly �G is an isomorphism. The map �G is the composition
.wG \�/

�1 ı .�\!.n// ı��1G consisting of

H�.TG/
��1G
���!H�CnK.Th.�G//

�\!.n/
�����!H�Cn.2d�1/.DG/

.wG\�/
�1

�������!H���dr.DG/:

The map �i is induced by the partial composition � ıi �, where � 2 H0.D.2// D A.2/ is the fixed
generator. The map mi is given by .�1/A��i , where AD �C dr Cn with r D #E.G/, and ��i denotes
the pullback by the restriction to DH of the diagonal

�i W SMn�1
! SMn; .z1; : : : ; zn�1/ 7! .z1; : : : ; zi ; zi ; : : : ; zn�1/:

� We denote by H {TM?�.n/ the bigraded chain complex obtained by taking the homology of {TM?�.n/ for
the differential d ; see Definition 5.6. Its differential is induced by the differential .�1/q@ on {TM?q.n/.
We regard the collection H {TM D fH {TM .n/g as an A–comodule with the structure induced by {TM . As
a k–module, H {TM .n/ is the direct sum

L
G2G.n/H�.TG/. We denote by aG the element of H {TM .n/

corresponding to a 2H�.TG/.

� The homology of the Hochschild complex CH�.H {TM?�/ has the bidegree .� ��?;��/. We denote the
homogeneous part of bidegree .p; q/ by H�p;�q.CH.H {TM //.

� For two graphs G;H 2 G.n/ with E.G/\E.H/D∅, the product GH 2 G.n/ denotes the graph with
E.GH/ D E.G/[E.H/. Let i; j; k 2 n be distinct vertices, and Œijk� 2 G.n/ denote the graph with
E.Œijk�/Df.i; j /; .j; k/g. For a graph G 2G.n/, the products GŒijk�, GŒjki� and GŒkij � have the same
connected component (if they are defined), so �GŒijk� D �GŒjki� D �GŒkij �. Using these equalities, and
the isomorphisms �G0 for G0 DGŒijk�; GŒjki� and GŒkij �, we identify the three groups H�.TGHŒijk�/,
H�.TGŒjki�/ and H�.TGŒkij �/ with one another. Under this identification, let I.n/ � H {TM .n/ be the
submodule generated by

– summands of graphs which are not trees, and

– elements of the form aGŒjki�C.�1/saGŒijk�C.�1/sCtaGŒkij � for .i; j /; .j; k/; .i; k/…E.G/,
where a 2H�.TGŒijk�/, sC 1 is the number of edges of G between .i; j / and .i; k/, and t C 1 is
the number of edges between .i; k/ and .j; k/.

� We say a graph G 2 G.n/ with an edge set E.G/D f.i1; j1/ < � � � < .ir ; jr/g is distinguished if the
following inequalities hold:

i1 < j1; : : : ; ir < jr ; i1 < � � �< ir :

We denote by G.n/dis � G.n/ the subset of the distinguished graphs.
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The following lemma is obvious by the definition of the Čech s.s.

Lemma 5.9 With the notation in Definition 5.8, the E2–page of Čech s.s. is isomorphic to the homology
of the Hochschild complex of H {TM?�. More precisely, there exists an isomorphism of k–modules

LEpq2 ŠH�p;�q.CH.H {TM // for each .p; q/:

Lemma 5.10 With the notation in Definition 5.8, I.n/ is acyclic , ie H@.I.n//D 0, and the sequence
fI.n/gn is closed under the partial compositions and symmetric group actions.

Proof Since G.n/dis is stable under removing edges, the submodule
L
G2G.n/dis H�.TG/ of H {TM .n/ is

a subcomplex. By an argument similar to (the dual of) [14], the inclusion

{T.G.n/dis/ WD
M

G2G.n/dis

H�.TG/�H {TM .n/

is a quasi-isomorphism. We easily see that the map {T.G.n/dis/! {T.n/=I.n/ induced by the inclusion is
an isomorphism (see the proof of Lemma 6.9).

Lemma 5.11 Let Net WSM!R2K be an isotopy with Ne0D0�e0 and Ne1De0�0, and Ft W��0. Ne0/!��0. Net /
be an isotopy which is also a bundle map covering Net satisfying F0 D id. Then

.F1/
�.!� �!SK /D .�1/

K!SK �!� :

Here !� �!SK is considered as a class of H 2K�2dC1.Th.��0. Ne1/// via the map collapsing the subset
��0.e/�RK � ��0. Ne1/, and !SK �!� is similarly understood.

Proof Since the only problem is the orientation, it is enough to see a variation of a basis via a local
model. Let e0 W R2d�1! RK be the inclusion to the subspace of elements with the last K � 2d C 1
coordinates being zero. A covering isotopy is given by Ft .u; v/ D ..1� t /u� tv; tuC .1� t /v/ for
u; v 2 RK . Since F1.u; v/ D .�v; u/, the derivative .F1/� maps a basis fa;bg of the tangent space
of R2K to fb;�ag, where a and b denote bases of TRK � 0 and 0�TRK , respectively. This implies
.F1/

�.!� �!SK /D .�1/
K.�1/K.K�2dC1/!SK �!� D .�1/

K!SK �!� .

Lemma 5.12 We use the notation in Definition 5.8. Let G 2 G.n; r/ be a tree whose vertices i and i C 1
are disconnected in G. Set H D di .G/ 2 G.n� 1/. Then the diagram

H�.TG/
�i

//

�G
��

H�.TH /

"1�H
��

H���dr.DG/
mi
// H���dr.DH /

is commutative , where "1 D .�1/B with B DK
�
�C 1C 1

2
.K � 1/

�
.
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Proof The claim follows from the commutativity of the following diagram:

(5-1)

H�.TG/
�i

// H�.TH /

H�CnK.Th.�G//
�0

//

�G

OO

!.n/

��

H�CnK.Th.�0//

�0H

OO

!0

��

H�C.n�1/K.Th.�H //

�H

jj

˛
oo

"1!.n�1/tt

H�Cn.2d�1/.DG/
�00
// H�C.n�1/.2d�1/.DH /

H���dr.DG/

wG

OO

mi
// H���dr.DH /

wH

OO

Here:

� �0 is the disk bundle over DH of fiber dimension nK � .n� 1/.2d � 1/ defined by

�0 D ��0.e
n
0 ı�i /jDH ;

where the restriction is taken as a disk bundle over SMn�1; see Definition 5.8 for �i .

� !0 2HnK�.n�1/.2d�1/.Th.�0// is given by

!0 D .�1/C .!�/
�i�1

�!� � .!� �!�/� .!�/
�n�i�1 with C D .nC i C 1/K:

� �0H is defined by using the following map �0H similarly to �H :

�0H W �
n
3 u 7! .en0 ı�i ; �0; u/ 2 T .c0/nK :

� �0 is the map collapsing the subset �G � �0, where �0 and �G are regarded as subsets in RnK .

� �00 is the composition

H�.DG/!H�.DG ; �i .DH /
c/!H��2dC1.�i .DH //ŠH��2dC1.DH /;

where the first map is the standard quotient map, the third is the inverse of the diagonal and the second is
the cap product with the class

.�1/iC1Cn1� � � � �!� � � � � � 1 with !� in the i th factor :

� ˛ is the composition .1� �1 � 1/� ıT ı ."2wSK ��/ of the maps

H�0.Th.�H //
"2wSK���������!H�0CK.S

K
^Th.�H //

T
�!H�0CK.Th.�00// .1��1�1/��������!H�0CK.Th.�0//;

where �00 is the disk bundle over DH of the same fiber dimension as �0 given by

�00 D ��0.e
00/jDH with e00 D e�i�10 � .0� e/� e�n�i0 W SMn�1

!RnK ;

T is the composition of the transposition of SK from the first to the i th component with the map induced
by the map collapsing the subset .��i�1 �RK � ��n�iC1/jDH � �

00,

"2 D .�1/
D; D DK

�
�
0
C
1
2
.K � 1/C i C 1

�
;
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and 1� �1 � 1 is induced by the restriction of the product map

1� �1 � 1 WR
.i�1/K

� ��0.0� e0/�R.n�i�1/K !R.i�1/K � ��0.�RK ı e0/�R.n�i�1/K

with �1 in the i th component.

� The arrows with a (co)homology class denote the map given by taking the cap product with the class.
For example, the right vertical arrow of the middle square denotes the map x 7! x\!0.

Our sign rules for graded products are the usual graded commutativity, except for the compatibility of
cross and cap products, for which we use the rule

.a� b/\ .x �y/D .�1/.jaj�jxj/jyj.a\ x/� .b\y/:

These are the rules based on the definitions in [19]. More precisely, we use the homology cross product
induced by the simplicial cross product in [19, page 277] (or equivalently, the Eilenberg–Zilber shuffle
map) and the cohomology cross product defined by a�bDp�1a[p

�
2b where pi is the projection to the i th

component of the product and the cup product is given in [19, page 215]. We also use the cap product given
in [19, page 239]. (This irregular sign rule is caused by absence of sign in the definition of cup product,
as is standard.) With these rules, the commutativity of the squares in (5-1) is clear since the map �0

defined in Section 3.2 is isotopic to the usual diagonal. We shall prove commutativity of the two triangles.
The commutativity of the upper triangle follows from the commutativity of the following diagram:

Hl.Th.�/H /
T ı."2wSK��/

//

.�G/�
��

HlCK.Th.�00//
.1��1�1/�

//

.�00H /�

**

HlCK.Th.�0//

.�0H /�
��

Hl.TH .c0/.n�1/K/
"2wSK�

// HlCK.TH .c0/nK/

Here �00H is given by u 7! .e�i�10 � .0� e0/� e
�n�i
0 ; �0; u/. Commutativity of the left trapezoid follows

from Lemma 5.11 (the sign "2 is the product of the sign in iX
k

in Definition 5.1 and the sign in Lemma 5.11),
and that of the right triangle follows from the homotopy between �0H ı �1 and �00H constructed from the
isotopy �t in Definition 5.6. We shall show that the lower triangle is commutative. We see

"1˛.x/\!
0
D f.�1/�T�.wSK � x/g\ .! � � � � �!�.! �!/� � � � �!/

D f.�1/�T�.wSK � x/g\ .! � � � � � .�
�1
1 /�.!SK �!/� � � � �!/

D .�1/�fT�.wSK � x/\ .! � � � � � .!SK �!/� � � � �!/g

D .�1/�T�f.wSK � x/\T
�.! � � � � � .!SK �!/� � � � �!/g

D .�1/�T�f.wSK � x/\!SK �! � � � � �!/g

D .wSK � x/\ .!SK �! � � � � �!/D x\!.n� 1/:

Here .�1/� is an abbreviation of .1� �1 � 1/� and ! of !� . All the capped classes are considered as
elements of the homology of the base space DH of involved disk bundles by projections. The second
equality follows from the definition of !� . As endomorphisms on the base space, T� and .1� �1 � 1/�
are the identity, and hence the sixth equality holds.
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The following lemma is easily verified and a proof is omitted.

Lemma 5.13 Let G 2 G.n; r/ be a tree and K 2 G.n; r � 1/ be the tree made by removing the t th edge
.i; j / from G. Under the notation in Definition 5.8, the diagram

H�.TG/

�G
��

// H�.TK/

�K
��

H���dr.DG/ // H���d.r�1/.DK/

is commutative , where the top horizontal arrow is induced by the inclusion and the bottom one is given by
.�1/.r�t/d�Šij with �Šij .x/D 
ij � x.

Definition 5.14 � In the following, for a module X with a decomposition X D
L
G2G.n/XG , we denote

by X tr �X the direct sum of the summands XG labeled by a tree G.

� We define an A–comodule A?�M of CDBA (see Definition 2.10). Put H�G D H
�.DG/. Let ^.gij /

be the free bigraded commutative algebra generated by elements gij for 1 � i < j � n, with bidegree
.�1; d/. For notational convenience, we set gij D .�1/dgj i for i > j and gi i D 0. For G 2 G.n/ with
E.G/D f.i1; j1/ < � � �< .ir ; jr/g, we set gG D gi1;j1 � � �gir ;jr . Put

zA?�M .n/D
M

G2G.n/

H�GgG :

Here H�GgG is a copy of H�G with degree shift. For G 2 G.n; r/ and a 2H l
G , the bidegree of the element

agG 2 zAM .n/ is .�r; l C dr/. We give a graded commutative multiplication on zAM .n/ as follows. For
a 2H l

G and b 2Hm
H , we set

.agG/ � .bgH /D

�
.�1/mr.d�1/Cs.a � b/gGH 2H

lCm
GH gGH if E.G/\E.H/D∅;

0 otherwise:

Here we set r D #E.G/, a is regarded as an element ofH�GH by pulling back by the map iG W�GH!DG

induced by the quotient map �0.G/!�0.GH/, and similarly for b, and the product a �b is taken inH�GH .
Also, s is the number determined by the equality gG �gH D .�1/sgGH for the product in ^.gij /.

Let J.n/� zAM .n/ be the ideal generated by the elements

a.gijgjkCgjkgki Cgkigij /gG and bgK ;

where G;K 2 G.n/, a 2H�
GŒijk�

and b 2H�K are elements such that .i; j /; .j; k/; .k; i/ …E.G/, and K
is not a tree. Here by definition, DG depends only on �0.G/, so �GŒijk� D �GŒjki� D �GŒkij �. With
these identities, we regard a as an element of HGŒjki� D HGŒkij �, and the first type of generators as
elements of

HGŒijk�gGŒijk�˚HGŒjki�gGŒjki�˚HGŒkij �gGŒkij �:

We define an algebra A?�M .n/ as the following quotient:

A?�M .n/D
zA?�M .n/=J.n/:
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Since the restriction of the quotient map zAM .n/tr! AM .n/ is surjective, we may define a differential, a
partial composition and an action of †n on the sequence AM D fAM .n/gn through zAM .n/tr. We define
a map Q@ W zAM .n/tr! zAM .n/

tr by

Q@.agG/D

rX
tD1

.�1/.lCt�1/.d�1/�Šit ;jt .a/gi1;j1 � � � Lgit ;jt � � �gir ;jr for G 2 G.n/ and a 2H l
G ;

where�Šij .a/D 
ij �a and Lgij means removing gij . It is easy to see Q@. zAM .n/tr\J.n//� zAM .n/tr\J.n/.
We define the differential @ on AM .n/ to be the map induced by Q@. For the generator � 2A.2/ fixed in
Definition 5.8 and an element agG 2 zAM .n/tr, we define the partial composition � ıi .agG/ by

� ıi .agG/D

�
��i .a/gH if i and i C 1 are disconnected in G,
0 otherwise;

where H D di .G/; see Definition 5.8. The action of � 2†n on zAM .n/tr is given by .agG/� D a� .gG/� ,
where a� is the pullback of a by .�G/�1 (see Definition 5.6) and .gG/� denotes g�.i1/�.j1/ � � �g�.ir /�.jr /
with � D ��1. The partial composition and the action of †n on f zAM .n/trgn are easily seen to preserve
the submodule fJ.n/\ zAM .n/trgn and induce a structure of an A–comodule on AM .

� Let si W n! nC 1 denote the order-preserving monomorphism skipping i C 1 for 1 � i � n. Then
si naturally induces a monomorphism si W �0.G/! �0.siG/ (see Section 2.1), which in turn induces
.si /
� WDsiG!DG . Let si also denote the induced map .s�i /

� WH�.DG/!H�.DsiG/. By further abuse
of notation, we also denote by si the map AM .n/! AM .nC 1/ given by si .agG/D si .a/gsiG .

� Define a simplicial CDBA A?�
�
.M/ (a functor from �op to the category of CDBAs) as follows. We set

A?�n .M/D A?�M .nC 1/:

If we consider an element of AM .nC1/ as an element of An.M/, we relabel its subscripts with 0; 1; : : : ; n
instead of 1; 2; : : : ; nC 1. For example, g01 2 An.M/ corresponds to g12 2 AM .nC 1/. The partial
compositions and the maps si (defined in the previous item) are also considered as beginning with .�ı0�/
and s0 (originally written as .�ı1�/ and s1). The face map di W An.M/! An�1.M/ for 0� i � n is
given by di D � ıi .�/ for i < n and dn D � ı0 .�/� , where � D .n; 0; 1; : : : ; n� 1/. The degeneracy
map si W An.M/! AnC1.M/ for 0� i � n is the map defined in the previous item.

Lemma 5.15 Let i , j and k be numbers with i < j < k. The equalities 
ij 
ik D 
ij 
jk D 
ik
jk hold.

Proof The three classes are Thom classes in H�.SMn; �c
Œijk�

/. So to prove the equality, it is enough to
identify the corresponding orientations. This is easily done by observing the corresponding bases.

Theorem 5.16 Suppose M is orientable.

(1) The two A–comodulesH {TM?� and A?�M of differential bigraded k–modules are quasi-isomorphic in a
manner whereH {TM�p;�q and Ap;qM correspond for integers p and q. (ForH {TM , see Definition 5.8.)

(2) TheE2–page of the Čech s.s. in Definition 5.6 is isomorphic to the total homology of the normalized
complex NA?�

�
.M/. Under this isomorphism , the homogeneous part LEpq2 consists of the classes
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represented by a sum of elements in the complex , whose triple degree .��; ?;�/ satisfies pD ?��
and q D �.

The latter part of (2) of this theorem may need some care. It does not mean that the E2–page is generated
by the classes which are represented by elements of NA.M/ which are homogeneous for each of the
three degrees, since the differential of the E1–page of the Čech s.s. corresponds to the total differential of
NA.M/ and changes both of the degrees ? and �.

Proof For (1), we consider the composition

H��.TG/
�G
��!H��drG !H��drG gG :

The right map is given by a 7! "3agG with the sign

"3 D .�1/
E where E DE.�0; n; r/D �0.nC dr/C drnC 1

2
n.nC 1/C 1

2
dr.r C 1/

on H�
0

G . This composition defines an isomorphism as bigraded k–modules between H {TM .n/tr and
zAM .n/

tr. By Lemma 5.15, this isomorphism maps H {TM�?;��.n/
tr \ I.n/ into zA?�M .n/

tr \ J.n/ isomor-
phically. A quasi-isomorphism H {TM .n/! AM .n/ is defined by the composition

H {TM�?;��.n/!H {TM�?;��.n/=I.n/ŠH {T
M
�?;��.n/

tr=fH {TM�?;��.n/
tr
\ I.n/g

Š zA?�M .n/
tr=f zA?�M .n/

tr
\J.n/g Š A?�M .n/;

where the first map is the quotient map, which is a quasi-isomorphism by Lemma 5.10, the second and
fourth maps are induced by inclusions, and the third map is the isomorphism defined above. For the
above number E, we see

E.�0; n� 1; r/�E.�0; n; r/� �0C dr Cn and E.�0C d; n; r � 1/�E.�0; n; r/� .�0C 1/d

modulo 2. Now we may assume the integer K is a multiple of 4. With this assumption and the
above equalities for E, compatibility of the quasi-isomorphism with the partial composition follows
from Lemma 5.12 as "1 D 1. Compatibility with the (Čech) differentials follows from Lemma 5.13.
Compatibility with the actions of †n is clear. The sign sgn.�G/ in Definition 5.6, the sign occurring in
permutations of 
ij and the sign occurring in permutations of gij are canceled. Thus the isomorphism
is a morphism of A–comodules. For (2), by (1), the E2–page is isomorphic to the homology of the
Hochschild complex CH�.AM /, which is isomorphic to the unnormalized total complex of A�.M/, and
so is quasi-isomorphic to the normalized complex.

Sinha proved the convergence of his spectral sequences using the Cohen–Taylor spectral sequence. Here we
prove the convergence of the Čech and Sinha spectral sequences simultaneously by an independent method.

Theorem 5.17 If M is simply connected and of dimension d � 4, both the Čech s.s. and Sinha s.s. for
M converge to H�.Emb.S1;M//.

Proof We set a number sd by sd Dmin
˚
1
3
d; 2

	
. If d � 4, clearly sd > 1. Recall that f LErgr denotes the

Čech s.s. By Lemma 5.7, we identify the Sinha s.s. with the spectral sequence xEr . We shall first show the
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claim that LE�p;q2 D 0 if q=p < sd . If a graphG 2G.nC1/ has k discrete vertices, H�.DG/ is isomorphic
toH�.SM/˝k˝H�.DG0/˝ftorsionsg, where G0 2G.nC1�k/ is the graph made by removing discrete
vertices. With this observation, and simple connectivity of M , we see that generators of the normalization
NAn.M/ are presented as a1 � � � akbgG whereG is a graph in G.nC1/ with r edges and k discrete vertices
except for the vertex 0, at belongs to the t th discrete tensor factor H�2.SM/, and b 2 H�G0 . We may
ignore the torsion part in estimation of degree by the universal coefficient theorem. The bidegree .�p; q/
of this element satisfies p D nC r and q � 2kC rd . Clearly we have kC 2r � nC �, with � D 0 or 1
according to whether the vertex 0 has valence 0 in G. With this, if d � 5, we have the following estimate:

q

p
�
1
3
d �

6kC .3r �p/d

3.nC r/
�
.6� d/kC d�

3.nC r/
� 0:

If d � 6, we have the following estimate:

q

p
� 2D

2�C .d � 6/r

nC r
� 0:

We have shown the claim. Since the filtration fF�pg of the Čech s.s. is exhaustive, and the total homology
of each F�p is of finite type, the Čech s.s. f LErgr converges to the total homology H.NA�.M// of
the normalized complex. By the same reasoning, fxErg also converges to H.NA�.M//. We shall show
xE�p;qr D 0 if q=p < sd , for sufficiently large r . Suppose there exists a nonzero element x 2 xE�p;q1

with q=p < sd . We consider x as an element of .F�p=F�pC1/H.NA�.M//. Take a class x0 in
F�pH.NA�.M// representing x. Take the smallest p0 such that F�p

0

H.NA�.M// contains x0. Then
LE�p

0;qCp0�p
1 is not zero and p0 � p as F�p � F�p. In the coordinate plane of bidegree, x0 and x are

on the same line of the form �pC q D constant. This and p0 � p imply that the “slope” of x0 is smaller
than sd , which contradicts to the claim. This vanishing result on xEr and (the cohomology version of)
[4, Theorem 3.4] imply the convergence of xEr and LEr to H�.Emb.S1;M//.

Remark 5.18 If the dimension of the target manifold M is 3, or if M is not simply connected, the
Čech s.s. does not converge to the cohomology of the knot space but it does to the same target as the
Sinha s.s. (see the proof of Theorem 5.17). The diagonal of the Sinha s.s. for long knots converges to the
universal finite type invariants at least in the rational coefficient. So the Čech s.s. in dimension 3 may
contain some information about knot invariants.

6 Algebraic presentations of the E2–page of the Čech spectral sequence

In this section, we assume M is oriented and simply connected and H�.M/ is a free k–module.

Definition 6.1 � A Poincaré algebra of dimension d is a graded commutative algebra H� with a linear
isomorphism � WHd ! k such that the bilinear form defined as the composition

H�˝H� multiplication
��������!H� projection

������!Hd �
�! k

induces an isomorphism H� Š .Hd��/_. We call � the orientation of H.
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� For a Poincaré algebra H�, we denote by �H the diagonal class for H� given byX
i

.�1/ja
�
i
jai ˝ a

�
i 2 .H˝H/d ;

where faig and fa�i g are two bases of H� such that �.ai � a�j /D ıij , the Kronecker delta. This definition
does not depend on a choice of a basis faig.

� Let H be a Poincaré algebra H of dimension d with H1 D 0. We set H�d�2 D
L
p�d�2Hp and

H�2 D
L
p�2Hp, and define a graded k–module H�2Œd � 1� by .H�2Œd � 1�/p D Xp�dC1 with

X� DH�2. We denote by Na the element in .H�2Œd � 1�/p corresponding to a 2Hp�dC1. We define a
Poincaré algebra SH of dimension 2d � 1 as follows. As a graded k–module, we set

SH� DH�d�2˚H�2Œd � 1�:

For a; b 2 H�d�2, the multiplication a � b in SH is the one in H except for the case jaj C jbj D d , in
which we set a � b D 0. We set a � Nb D Sab for a 2H�d�2 and b 2H�2, and Na � Nb D 0 for a; b 2H�2. We
give the same orientation on SH as the one on H via the identity SH2d�1 DHd .

� We regard HDH�.M/ as a Poincaré algebra with the orientation

Hd .M/
wM\
����!H0.M/Š k;

where wM is the fundamental class of M determined by the orientation on M , and the isomorphism
sends the class represented by a point to 1.

The following lemma is obvious:

Lemma 6.2 With the notation of Definition 6.1, let .bij /ij denote the inverse of the matrix .�.ai � aj //ij .
Then

�H D
X
i;j

.�1/jaj jbj iai ˝ aj :

Under some assumptions, SH is isomorphic to H�.SM/ (see the proof of Lemma 6.6), and the algebras
A�H;G and B�H;G defined as follows are isomorphic to H�.DG/.

Definition 6.3 For a Poincaré algebra H of dimension d and graphG2G.n/, define a graded commutative
algebra AH;G by

AH;G DH˝�0.G/˝
^
fy1; : : : ; yng; degyi D d � 1:

Here we regard �0.G/ as an ordered set by the minimum in each component, and the tensor product is
taken in this order. Furthermore, we also define a graded commutative algebra BH;G by

BH;G D SH˝n˝
^
fyij j 1� i; j � n and i �G j g=JG ; degyij D d � 1:
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Here i �G j means that the vertices i and j belong to the same connected component of G, and JG is
the ideal generated by the following relation:˚
ei .a/� ej .a/; ei . Na/� ej . Na/� ayij ; ei . Nb/� ej . Nb/; yi i ; yij Cyjk �yik

j a 2H�d�2; b 2Hd ; 1� i; j; k � n; i �G j �G k
	
:

Here ej . Na/ is regarded as 0 if a 2H0.

For i < j , let fij WH˝2!H˝n denote the map given by

fij .a˝ b/D 1˝ � � �˝ a˝ � � �˝ b˝ � � �˝ 1

(a is the i th factor, b is the j th factor and the other factors are 1). We set

�
ij
H D fij .�H/ 2H˝n:

We sometimes regard �ijH as an element of .SH/˝n via the projection and inclusion H!H�d�1 � SH.
We also regard it as an element ofAH;G for a graphG via the map H˝n!H˝�0.G/ given by multiplication
of factors in the same components with the standard commuting signs. We also set

�
ij
SH D f

0
ij .�SH/ 2 SH

˝n;

where�SH is the diagonal class for the Poincaré algebra SH and f 0ij WSH
˝2!SH˝n is the map defined

by the same formula as fij . We regard �ijH and �ijSH as elements of BH;G , similarly to the case of AH;G .

As a graded algebra, B�H;G is isomorphic to .SH/˝�0.G/
V
fyij j i �G j g=.yi i ; yij C yjk � yik/, but

we need the presentation to describe maps induced by identifying vertices and removing edges.

The proof of the following lemma is easy and omitted.

Lemma 6.4 Consider the Serre spectral sequence for a fibration

F !E! B

with the base simply connected and the cohomology groups of the fiber and base finitely generated in each
degree. If for each k there is at most a single p such that Ep;k�p1 ¤ 0, the quotient map F p!F p=F pC1

has a unique section which preserves cohomological degree. Gathering these sections for all p, one can
define an isomorphism of graded algebra E1!H�.E/, which we call the canonical isomorphism. The
canonical isomorphisms are natural for maps between fibrations satisfying the above assumption.

Henceforth we regard the Euler number �.M/ as an element of the base ring k via the ring map Z! k,
and k� � k denotes the subsets of the invertible elements.

Lemma 6.5 We use the notation di , �i , si and �Šij given in Definitions 5.8 and 5.14. Suppose
�.M/D 0 2 k. Set H� DH�.M/. There exists a family of isomorphisms of graded algebras

f'G W AH;G
Š
�!H�.DG/ j n� 1;G 2 G.n/g

which satisfies the following conditions:
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(1) Let G 2 G.n/ be a tree with i and i C 1 disconnected. Set H D di .G/. The following diagram
is commutative:

A�H;G
'G
//

�i
��

H�.DG/

��
i

��

A�H;H
'H
// H�.DH /

Here the algebra map �i is defined as follows. For a1˝ � � �˝ ap 2H˝�0.G/, we set

�i .a1˝ � � �˝ ap/D˙a1˝ � � �˝ as � at ˝ � � �˝ ap and �i .yj /D yj 0 with j 0 D di .j /:

Here s; t 2 �0.G/ are the connected components containing i and i C 1, respectively, and ˙ is the
standard sign in transposing graded elements.

(2) For a graph G 2 G.n/, set S D si .G/. The following diagram is commutative:

A�H;G
'G
//

Nsi

��

H�.DG/

si

��

A�H;S
'S
// H�.DS /

Here Nsi is given by inserting the unit 1 as the factor of H˝�0.G/ which corresponds to the component
containing i C 1, and by skipping the subscript i C 1, ie by the equality Nsi .yj /D ysi .j /.

(3) For a graph G 2 G.n/ and a permutation � 2†n, the following diagram is commutative:

A�H;G
'G

//

N�

��

H�.DG/

�

��

A�H;�.G/
'�.G/

// H�.D�.G//

Here � D ��1, the right vertical arrow is induced by the natural permutation of factors of the product
D�.G/!DG and the left vertical arrow N� is the algebra map given by the permutation of tensor factors
and subscripts.

(4) For an edge .i; j / of a tree G 2 G.n/ with i < j , we define K 2 G.n/ by E.K/DE.G/�f.i; j /g.
The following diagram is commutative:

A�H;G
'G

//

�ij
��

H�.DG/

�Š
ij

��

A�CdH;K
'K
// H�Cd .DK/

Here�ij is the right A�H;K–module homomorphism determined by�ij .1/D�
ij
H , and A�H;G is considered

as an A�H;K–module via the natural algebra map A�H;K ! A�H;G .
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Proof In this proof we fix a generator y of Hd�1.Sd�1/, and we denote by yi (or Nyi ) the image of y
by the inclusion to the i th factor, Hd�1.Sd�1/!Hd�1.Sd�1/˝n. We consider Serre spectral sequence
for the fibration

.Sd�1/n!DG!M�0.G/;

where the projection is the restriction of that of the tangent sphere bundle. The first possibly nontrivial
differential is dd WHd�1..Sd�1/n/DE

0;d�1
d

!E
d;0
d
DHd .M/, where d in the super- and subscripts

is the dimension of M . This differential takes yi to the generator of Hd .M/ multiplied by �.M/. As
�.M/ D 0, we have dd D 0. Since the this differential on yi is zero for degree reasons, yi survives
eternally, which implies E2 ŠE1. Clearly E1 satisfies the assumption of Lemma 6.4. We define 'G as
the composition

AH;G!E2 DE1!H�.DG/;

where the left map is the isomorphism given by identifying yi in both of the sides and H˝�0.G/ with
H�.M��0.G// by the Künneth isomorphism, and the right map is the canonical isomorphism defined in
Lemma 6.4. Parts (1), (2) and (3) obviously follow from naturality of the canonical isomorphisms. For (4),
H�.DG/ is regarded as aH�.DK/–module via the pullback��ij WH

�.DK/!H�.DG/ by the inclusion
DG!�K . This module structure is compatible with the A�H;K–module structure on A�H;G via 'G and
'K by naturality of the canonical isomorphism. By a general property of a shriek map, the map �Šij is a
H�.DK/–module homomorphism. So to prove the compatibility, we have only to check the image of 1.
For simplicity, we may assume nD 2 and .i; j /D .1; 2/. We may write DG as SM�M SM. The diagram

Hd��.M/
PD

//

��
��

H�.M/
proj�

//

�Š
��

H�.SM�M SM/

�Š12
��

Hd��.M �M/
PD
// H�Cd .M �M/

proj�
// H�Cd .SM� SM/

is commutative, where PD denotes the cap product with the fundamental class. By the commutativity
of the left square, we see that �Š.1/ is the Poincaré dual class in H�.M �M/ of the diagonal �.M/,
which corresponds to �H by the Künneth isomorphism. By the commutativity of the right square, we
see that �Š12.1/ corresponds to fij�H. This completes the proof.

Lemma 6.6 We use the notation di ,�i , si and �Šij given in Definitions 5.8 and 5.14. Suppose �.M/2k�.
Set HDH�.M/. There exists a family of isomorphisms of graded algebras

f'G W BH;G
Š
�!H�.DG/ j n� 1;G 2 G.n/g

which satisfies the following conditions:

(1) Let G and H be trees given in Lemma 5.12(1). The following diagram is commutative:

BH;G
'G
//

�i
��

H�.DG/

��
i

��

BH;H
'H
// H�.DH /
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Here �i is defined by

�i .ej .x//D ej 0.x/ for x 2 SH and �i .yjk/D yj 0k0 ;

where we set j 0 D di .j / and k0 D di .k/.

(2) For a graph G 2 G.n/, set S D si .G/. The following diagram is commutative:

B�H;G
'G
//

Nsi
��

H�.DG/

si

��

B�H;S
'S
// H�.DS /

Here Nsi is given by inserting 1 in the .iC1/th factor of SH˝n and skipping the subscript i C 1.

(3) For a graph G 2 G.n/ and a permutation � 2†n, the following diagram is commutative:

B�H;G
'G

//

N�

��

H�.DG/

�

��

B�H;�.G/
'�.G/

// H�.D�.G//

Here � and the right vertical arrow are defined as in Lemma 6.5, and N� is the algebra homomorphism
defined by the permutation of the tensors and subscripts.

(4) For an edge .i; j /2E.G/ of a treeG 2G.n/with i <j , defineK 2G.n/ byE.K/DE.G/�f.i; j /g.
The following square is commutative:

B�H;G
'G

//

�ij
��

H�.DG/

�Š
ij

��

B�CdH;K
'K
// H�Cd .DK/

Here �ij is the right B�H;K–module homomorphism determined by �ij .1/D�
ij
H and �ij .yij /D�

ij
SH,

and B�H;G is considered as a B�H;K–module via the algebra map f GK W B
�
H;K ! B�H;G given by

f GK .ek.x//D ek.x/ for x 2 SH and f GK .ykl/D

�
0 if .k; l/D .i; j /;
ykl if otherwise:

Proof As in the proof of Lemma 6.5, we fix a generator y 2 Hd�1.Sd�1/. Note that d is even as
�.M/ ¤ 0. We first show an isomorphism of algebras SH� Š H�.SM/. Consider the Serre spectral
sequence for the tangent sphere fibration

Sd�1! SM!M:

The only nontrivial differential is dd W E0;d�1 D Hd�1.Sd�1/ ! Hd .M/. As �.M/ is invertible,
dd is an isomorphism. Since all other differentials vanish by degree reasons, E1 Š EdC1 Š SH,
where the second isomorphism is given by Ep;0

dC1
D Hp.M/ � H�d�2 � SH for p � d � 2 and

Ep;d�1 DHd�1.Sd�1/˝Hp.M/ 3 y˝ a 7! Na 2 SH for p � 2. Since H 1.M/D 0 and H�.M/ is
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free, Hd�1.M/D 0, which implies the fibration satisfies the conditions of Lemma 6.4. Composing this
isomorphism with the canonical isomorphism E1!H�.SM/, we have an isomorphism

(6-1) SH� ŠH�.SM/:

If necessary, we modify y so that the composition SH2d�1!H 2d�1.SM/! k of (6-1) and the cap
product with the fundamental class yw in Definition 5.8 coincides with the orientation given in Definition 6.1
by multiplying by a scalar.

We shall define the isomorphism 'G . We may assume that G 2 G.n/ is connected, as in the disconnected
case everything involved is a tensor product of the objects corresponding to connected subgraphs. Consider
the Serre spectral sequence for the fibration

.Sd�1/n�1!DG! SM

given by projection to the first component. AsEd;02 DSH
dD0, elements inE0;d�12 ŠHd�1.Sd�1/˝n�1

survive eternally. As in the proof of Lemma 6.5, yj denotes the copy of y living in the j th factor of
H�.Sd�1/˝n�1, which is also regarded as a generator of E0;d�12 . We construct an isomorphism
 G W SH� ˝

V
.y1; : : : ; yn�1/ Š E1 Š H�.DG/ using (6-1) similarly to the construction of (6-1).

Consider the Serre spectral sequence fEp;qr g for the fibration

.Sd�1/n!DG!M

given by the projection of the sphere bundle. Let Nyj be the copy of y in the j th factor of E0;d�12 Š

.H�.Sd�1/˝n/�Dd�1. For any i and j , since dd . Nyi /D dd . Nyj /D (a multiple of)�.M/wM , the element
Nyi � Nyj survives eternally by degree reasons. Clearly E1 satisfies the assumption of Lemma 6.4, so we
can take the canonical isomorphism E

�;�
1 !H�.DG/. We define an algebra map

'0G W .SH/
˝n
˝

^
fyij j 1� i; j � ng !E�;�1

by ei .a/ 7! a 2 E
�;0
1 for a 2H�d�2, ei . Nb/ 7! b Nyi 2 E

�;d�1
1 for b 2H�2, and yij 7! Nyi � Nyj . We see

'0G.JG/D 0, where JG is the ideal in Definition 6.3. For example, since dd . Nyi Nyj /D �.M/. Nyj � Nyi /wM

(up to k�) and �.M/ is invertible, . Nyi � Nyj /wM D 0 in Ed;d�1
dC1

, which implies '0G.ei .
Nb/� ej . Nb//D 0

for b 2Hd . Annihilation of other elements in JG is obvious. We define 'G to be the unique map which
makes the following diagram commutative:

.SH/˝n˝
V
fyij g //

'0G
��

.SH/˝n˝
V
fyij g=JG B�H;G

'G

��

E
�;�
1

canonical isomorphism
// H�.DG/

Since G is connected, e1 W SH! SH˝n induces an isomorphism ˛G W SH˝
V
fy12; : : : ; y1ng Š B

�
H;G .

It is easy to see that the composition

SH˝
^
fy12; : : : ; y1ng

˛G
Š B�H;G

'G
��!H�.DG/

 �1G
Š SH˝

^
fy1; : : : ; yng

Algebraic & Geometric Topology, Volume 24 (2024)



232 Syunji Moriya

identifies the subalgebra SH in both sides and the sub-k–module khy12; : : : ; y1ni with khy1; : : : ; yni

(since these are both isomorphic to Hd�1.DG/), which implies the composition is an isomorphism and
we conclude that 'G is an isomorphism.

Parts (1), (2) and (3) obviously follow from naturality of the canonical isomorphism. We shall show (4).
Since 'G is an isomorphism, we may define �ij to be the map which makes the square in (4) commute.
As in the proof of Lemma 6.5, �ij is a B�H;K–module homomorphism and we have �ij .1/D fij .�H/.
We shall show the equality �ij .yij /D fij .�SH/. We may assume nD 2 and G D .1; 2/. In this case,
clearly DG D SM�M SM. We consider the commutative diagram

H 0.Sd�1/

�Š1
��

H 0.SM/ PD
//oo

�Š2
��

H2d�1.SM/

.�2/�

��

Hd�1.Sd�1 �Sd�1/ Hd�1.SM�M SM/

�Š12
��

PD
//oo H2d�1.SM�M SM/

.�12/�

��

H 2d�1.SM� SM/ PD
// H2d�1.SM� SM/

where the left horizontal arrows are induced by the fiber restriction, the right ones are capping with the
fixed fundamental classes, and �Š1 and �Š2 are the shriek maps induced by the diagonals. As d is even,
�Š1.1/D Ny1� Ny2. As Ny1� Ny2 coincides with the image of 'G.y12/ by the fiber restriction which induces
an isomorphism in degree d � 1, we have �Š2.1/D 'G.y12/. So �Š12.'G.y12//D .�12 ı�2/

Š.1/. By
the commutativity of the right-hand square, .�12 ı�2/Š.1/ is the diagonal class for SM. Thanks to the
modification of y after the definition of (6-1), the diagonal class corresponds to �SH by 'G . This implies
�12.y12/D�SH.

Definition 6.7 Let H be a Poincaré algebra of dimension d .

� We define a CDBA A?�H .n/ by the equality

A?�H .n/DH˝n˝
^
fyi ; gij j 1� i; j � ng=I:

Here, for the bidegrees, we set jaj D .0; l/ for a 2 .H˝n/�Dl , jyi j D .0; d �1/ and jgij j D .�1; d/. The
ideal I is generated by the elements

gij�.�1/
dgj i ; .gij /

2; gi i ; .ei .a/�ej .a//gij ; gijgjkCgjkgkiCgkigij for 1� i; j; k�n and a2H:

We call the last relation the 3–term relation for gij . The differential is given by @.a/D 0 for a 2H˝n

and @.gij /D�
ij
H ; see Definition 6.3.

� Suppose d is even. We define a CDBA B?�H .n/ by the equality

B?�H .n/D .SH/˝n˝
^
fgij ; hij j 1� i; j � ng=J
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Here, for the bidegrees, we set jaj D .0; l/ for a 2 .H˝n/�Dl , jgij j D .�1; d/ and jhij j D .�1; 2d � 1/.
The ideal J is generated by the elements

gij �gj i ; .gij /
2; gi i ; hij C hj i ; .hij /

2; hi i ; eij .a/gij ; eij .a/hij ; eij . Nb/gij � ei .b/hij ; eij . Nb/hij ;

gijgjkCgjkgki Cgkigij ; hijhjkC hjkhki C hkihij ; .hij C hki /gjk � .hij C hjk/gki

for 1 � i; j; k � n, a 2H�d�2 and b 2H�2, where we regard ei .b/ as 0 for b 2Hd , and eij W SH!
.SH/˝n is the map given by eij D ei � ej . The differential is given by @.x/ D 0 for x 2 SH˝n,
@.gij /D�

ij
H and @.hij /D�

ij
SH; see Definition 6.3.

� We equip the sequences AH D fAH.n/gn and BH D fBH.n/gn with the structures of A–comodules of
CDBA as follows. For BH, we define a partial composition and an action of †n by the equalities

� ıi ej .x/D ej 0.x/; � ıi .hjk/D hj 0k0 ; � ıi .gjk/D gj 0k0 ; ej .x/
�
D e�.j /.x/;

h�jk D h�.j /;�.k/; g�jk D g�.j /;�.k/; for x 2 SH and � 2†n;

where j 0 and k0 are the numbers given by j 0 D di .j / and k0 D di .k/, and we set � D ��1 (see
Definition 5.8 for di and �). The definition of AH is similar.

� We define simplicial CDBAs A?�
�
.H/ and B?�

�
.H/ as follows. For B?�

�
.H/, we set

B?�n .H/D B?�H .nC 1/:

As in Definition 5.14, we relabel the involved subscripts with 0; : : : ; n. The face map di W B?�n .H/!
B?�n�1.H/ is given by di D � ıi .�/ for i < n and dn D � ı0 .�/� where � D .n; 0; 1; : : : ; n� 1/. The
degeneracy map si W B?�n .H/! B?�nC1.H/ is given by inserting 1 as the .iC1/th factor of SH˝nC1 and
skipping the subscript i C 1. A?�

�
.H/ is defined similarly using A?�H .

Remark 6.8 An algebra similar to the algebras A?�H .n/ and B?�H .n/ has already appeared as the E2–page
of Totaro’s spectral sequence defined in [39].

In the rest of this section, we prove that AH and BH are isomorphic to AM as A–comodules of CDBA
under different assumptions, and also prove similar statements for the simplicial CDBAs. We mainly deal
with the case of BH. The case of AH is similar.

Lemma 6.9 The map M
G2G.n/dis

H�GgG! AM

defined by the composition of the inclusion and quotient map is an isomorphism of k–modules (see
Definition 5.8 for G.n/dis).

Proof Let … be the set of partitions of n. The ideal J.n/ in Definition 5.14 has a decomposition
J.n/D

L
�2… J.n/� such that J.n/� �

L
�0.G/D�

HG , since generators of J.n/ are sums of monomials
which have the same connected components. If �0.G/D �0.H/D � , clearly H�G DH

�
H . We denote this

module byH�� . We have
L
�0.G/D�

HGgG DH�˝.
L
�0.G/D�

kgG/. Similarly J.n/� DH�˝J.n/0�
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where J.n/0� is the sub-k–module of
L
�0.G/D�

kgG generated by multiples of 3–term relations, g2ij and
gij � .�1/

dgj i . We have

A�M D
M
�2…

�� M
�0.G/D�

HGgG

�
=J.n/�

�
D

M
�2…

H� ˝

�� M
�0.G/D�

kgG

�
=J.n/0�

�
:

Note that
L
�2…f.

L
�0.G/D�

kgG/=J.n/
0
�g is isomorphic to the cohomology group of the configuration

space H�.Cn.Rd //, whose basis is fgG j G 2 G.n/disg. So then .
L
�0.G/D�

kgG/=J.n/
0
� has a basis

fgG jG 2 G.n/
dis; �0.G/D �g, which implies the lemma.

Under the assumptions and notation of Lemma 6.6, we identify H�G with BH;G by the isomorphism 'G ,
so A�M .n/ is regarded as a quotient of

L
G2G.n/B

�
H;GgG . With this identification, we set Nhij D yijgij 2

AM .n/. AM .n/ contains SH˝n as the subalgebra H∅g∅, the summand corresponding to the graph
∅ 2 G.n/. We regard AM .n/ as a left SH˝n–module via the multiplication by H∅g∅. In the following
lemma and its proof, hG , NhG and yG are defined similarly to gG . For example, hG D hi1;j1 � � � hir ;jr for
E.G/D f.i1; j1/ < � � �< .ir ; jr/g.

Lemma 6.10 Under the assumptions of Lemma 6.6 and the above notation , as an SH˝n–module ,
AM .n/ is generated by the set S D fgG NhH j G;H 2 G.n/; E.G/\E.H/ D ∅; GH 2 G.n/disg, and
BH.n/ is generated by the set S 0 D fgGhH jG;H 2 G.n/; E.G/\E.H/D∅; GH 2 G.n/disg.

Proof AM .n/ is generated by the elements yHgG , for graphs G and H , such that each connected
component of H is contained in some connected component of G. We can express gG as a sum of
monomials gG1 withG12G.n/dis and �0.G/D�0.G1/ using the 3–term relation and the relation gij Dgj i
(this is standard procedure in the computation ofH�.Cn.Rd /). So we may assumeG is distinguished. For
a sequence of edges .i; k1/; .k1; k2/; : : : ; .ks; j / in G, we have yij D yi;k1 C � � �C yks ;j . By successive
application of this equality, yH is expressed as a sum of monomials yH1 with H1 being a subgraph
of G. Thus any element of AM .n/ is expressed as a SH˝n–linear combination of monomials yHgG
with G 2 G.n/dis and E.H/� E.G/. Clearly yHgG D˙gG�H NhH . Thus the set S generates AM .n/.
A proof for the assertion for BH.n/ is similar when one use 3–term relations for gij and hij , and the last
relation for gij and hij in the ideal J in Definition 6.7.

To prove that BH.n/ and AM .n/ are isomorphic, we define a structure of a BH;G–module on BH.n/ as
follows. We first define two graded algebras zBH;G and zBH.n/. For a graph G 2 G.n/, we set

zBH;G D SH˝n˝T fyij j i < j and i �G j g and zBH.n/D SH˝n˝
^
fgij ; hij j 1� i < j � ng;

where T fyij g denotes the tensor algebra generated by the yij . For convenience, we set yij D �yj i ,
gij D gj i and hij D�hj i for i > j . The degrees are the same as the elements of the same symbols in
BH;G and BH.n/. We shall define a map of graded k–modules

.� ��/ W zBH;G ˝k
zBH.n/! BH.n/:
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We define yij � xgGhH for x 2 SH˝n and G;H 2 G.n/ as follows. If E.G/ \ E.H/ ¤ ∅, we set
yij � xgGhH D 0. Suppose E.G/\E.H/D∅. If .i; j / 2E.G/ is the t th edge (in the lexicographical
order), we set yij � xgGhH D .�1/tC1CjxjhijxgKhH with E.K/D E.G/� f.i; j /g. If .i; j / 2 E.H/
is an edge, we set yij � xgGhH D 0. If i �GH j , we take a sequence of edges .k0; k1/; : : : ; .ks; ksC1/
of GH with k0 D i and ksC1 D j and set yij � xgGhH D

Ps
lD0 ykl ;klC1 � xgGhH . This does not

depend on the choice of the sequence, because gGhH D 0 if GH is not a tree, which is proved by
using the last three relations in the definition of J in Definition 6.7. If i and j are disconnected
in GH , we set yij � xgGhH D 0. For z 2 SH˝n, we set z � xgGhH D zxgGhH , the multiplication
in BH.n/. We shall show that the map .� � �/ annihilates the elements of J (we regard J as an
ideal in zBH.n/). Direct computation shows that the generators of J are annihilated by any elements
of zBH;G . For example, yij � .gijgjk C gjkgki C gkigij / D .hij C hik/gjk � .hij C hjk/gki D 0

and yjk � f.hij C hki /gjk � .hij C hjk/gkig D hijhjk C hjkhki C hkihij D 0. We also easily see
yij �xgGhH D˙.yij �xgG0hH 0/gG�G0hH�H 0 for subgraphs G0 �G and H 0 �H such that i �G0H 0 j .
These observations imply the assertion, and we see that .���/ factors through zBH;G˝kBH.n/!BH.n/,
which is also denoted by .� ��/. Clearly the map .� ��/ annihilates JG in the definition of BH;G . It
also annihilates the commutativity relation yijykl Cyklyij . If two paths connecting i and j or k and l
have a common edge, both of the actions of yijykl and yklyij are zero, and otherwise the commutativity
in BH.n/ implies the annihilation. Annihilation of these relations implies that the map .� ��/ factors
through a map .� ��/ W BH;G ˝BH.n/! BH.n/, which defines a structure of BH;G–module on BH.n/.

Theorem 6.11 Suppose M is simply connected and oriented , and H�.M/ is a free k–module. Set
HDH�.M/.

(1) Suppose �.M/ D 0 2 k. The two A–comodules of CDBA A?�M and A?�H are isomorphic , and
the two simplicial CDBAs A?�

�
.M/ and A?�

�
.H/ are isomorphic. In particular , the E2–page of

the Čech s.s. is isomorphic to the total homology of the normalization NA?�
�
.H/ as a bigraded

k–module. The bigrading is given by .?� �;�/.

(2) Suppose �.M/ 2 k�. The two A–comodules of CDBA A?�M and B?�H are isomorphic , and the two
simplicial CDBAsA?�

�
.M/ and B?�

�
.H/ are isomorphic. In particular , theE2–page of the Čech s.s.

is isomorphic to the total homology of the normalization NB?�
�
.H/ as a bigraded k–module. The

bigrading is given by .?� �;�/.

Proof Part (1) obviously follows from Theorem 5.16 and Lemma 6.5. We shall prove (2). We define a
map ˆn W BH.n/! AM .n/ of algebras by identifying the subalgebra SH˝n and elements gij in both
sides, and taking hij to Nhij (see the paragraph above Lemma 6.10). We easily verify that ˆn is well
defined. Then ˆn fits into the following commutative diagram:L

G2G.n/dis HGgG

((��

BH.n/
ˆn

// AM .n/
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Here the vertical arrow is induced by the inclusion of a submodule HGgG DBH;GgG �BH.n/ given by
the isomorphism 'G in Lemma 6.6 and the module structure defined above, and the slanting arrow is
given in Lemma 6.9. The vertical arrow and ˆn are epimorphisms by Lemma 6.10, and the slanting arrow
is an isomorphism by Lemma 6.9, so ˆn is an isomorphism. By the definition of ˆn and Lemma 6.6, the
collection fˆngn commutes with the structures of an A–comodule and degeneracy maps. The assertion
for the E2–page immediately follows from the isomorphism of simplicial objects.

Remark 6.12 The Euler number �.M/ can be recovered from the Poincaré algebra H� DH�.M/. It is
the image of �H by the composition

.H˝2/�Dd multiplication
��������!Hd �

�! k:

So under the assumptions of Theorem 6.11, the E2–page of the Čech s.s. is determined by the cohomology
algebra H�.M/. (Different orientations give apparently different presentations, but they are isomorphic.)

7 Examples

In this section, we compute some of the E2–page of Čech s.s. for the spheres and products of two spheres
Sk �S l with .k; l/D .odd; even/ or .even; even/, and deduce some results on cohomology groups for
the products of spheres. We also prove Corollary 1.3. Our computation is restricted to low degrees and
consists of only elementary linear algebra on differentials and degree argument based on Theorem 6.11.
We briefly state the results for the cases of spheres since, in these cases, the Čech s.s. only gives less
information than the combination of Vassiliev’s (or Sinha’s) spectral sequence for long knots and the
Serre spectral sequence for a fibration Emb.S1; Sd /! STSd (see the proof of Proposition 7.2), at least
in the degrees where we have computed. We give concrete descriptions of the differentials in the case of
M DSk�S l with k odd and l even. In the rest of this section, we set HDH�.M/ for a fixed orientation.

7.1 The case of M D S d with d odd

In this case A?�
�
.H/ is described as

A?�n .H/D
^
fxi ; yi ; gij j 0� i; j � ng=I;

where jxi j D .0; d/, jyi j D .0; d � 1/, jgij j D .�1; d/ and I is the ideal generated by

.xi /
2; .yi /

2; .gij /
2; gi i ; gij Cgj i ; .xi � xj /gij and the 3–term relation for gij :

The diagonal class is given by �H D x0� x1 2H˝H.

Proposition 7.1 Consider the Čech s.s. LEpqr for the sphere Sd with odd d � 5. We abbreviate LEpq2 as
.p; q/. The following equalities hold :

.�3; d/D khg12i; .�1; d � 1/D khy1i; .0; d � 1/D khy0i; .0; d/D khx0i;
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.�6; 2d/D khg13g24;�g12g34Cg14g23i; .�4; 2d � 1/D khy1g23�y2g13Cy3g12i;

.�5; 2d/D khg01g23Cg02g13Cg13g23i; .�3; 2d � 1/D khy0g12i;

.�3; 2d/D khx0g12i; .�1; 2d � 1/D khx0y1; x1y0; x1y1i; .0; 2d � 1/D khx0y0i:

For other .p; q/ with pC q � 2d � 1, we have .p; q/D 0.

Proposition 7.2 Let d be an odd number with d � 5.

(1) Emb.S1; Sd / is .d�2/–connected.

(2) The Čech s.s. for Sd does not collapse at the E2–page in any coefficient ring.

Proof For (1), consider the fiber sequence

Embc.R;Rd /! Emb.S1; Sd /! STSd ;

where STSd is the tangent sphere bundle of Sd , the left map is given by taking the tangent vector at a
fixed point, and the right space is the space of long knots. As is well known, STSd is .d�2/–connected
and Embc.R;Rd / is .2d�7/–connected. As d � 5, we have the claim. Part (2) follows from (1) and
Proposition 7.1. (There are nonzero elements in the total degrees d � 3 and d � 2.)

Remark 7.3 The reader may find inconsistency between [8, Proposition 3.9(3)] and Proposition 7.2(1).
This is just a typo; n� j � 2 should be replaced with n� j � 1 (and n� j � 1 with n� j ) in the former
proposition (see its proof).

7.2 The case of M D S d with d even

In this subsection, we assume 2 2 k�. B?�
�
.H/ is described as

B?�n .H/D
^
fzi ; gij ; hij j 0� i; j � ng=J ;

where jzi j D .0; 2d � 1/, jgij j D .�1; d/, jhij j D .�1; 2d � 1/ and J is the ideal generated by

.zi /
2; .gij /

2; .hij /
2;gi i ;hi i ;gij�gj i ;hijChj i ; .zi�zj /gij ; .zi�zj /hij ; .hijChki /gjk�.hijChjk/gki ;

and the 3–term relation for gij and hij . The diagonal classes are given by �H D 0 2 SH˝ SH and
�SH D z0� z1 2 SH˝SH.

Proposition 7.4 Suppose 2 2 k�. Consider the Čech s.s. LEpqr for Sd with even d � 4. We abbreviate
LEpq2 as .p; q/. The following equalities hold :

(� 6; 2d/D khg13g24i; .�5; 2d/D khg01g23C 3g02g13Cg03g12i;

(� 3; 2d � 1/D khh12i; .0; 2d � 1/D khz0i:

For other .p; q/ with pC q � 2d � 1, we have .p; q/D 0.

For the case of kD F2, the same statement as in Proposition 7.1 holds, except that “odd d � 5” is replaced
with “even d � 4”.
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7.3 The case of M D S k �S l with k odd and l even

We fix generators a 2Hk.Sk/ and b 2H l.S l/. H is presented as ^fa; bg. We fix an orientation � on H
by �.ab/D 1. We write ai for ei .a/ and bi for ei .b/, and An.H/ is presented as

An.H/D
^
fai ; bi ; yi ; gij j 0� i; j � ng=I;

where jyi j D .0; kC l � 1/, jgij j D .�1; kC l/ and I is the ideal generated by

.ai /
2; .bi /

2; .yi /
2; .gij /

2; gi i ; gij Cgj i ; .ai � aj /gij ; .bi � bj /gij and the 3–term relation for gij :

The diagonal class is given by �H D a0b0 � a1b0 C a0b1 � a1b1 2 H˝H. The module NAn.H/ is
generated by the monomials of the form ap1 � � � apsbq1 � � � bqtgi1j1 � � �girjr such that the set of subscripts
fp1; : : : ; ps; q1; : : : ; qt ; i1; : : : ; ir ; j1; : : : ; jrg contains the set f1; : : : ; ng.

We shall present the total differential Qd on

LEpq1 D
M
?��Dp

NA?;q
�
.H/

up to pCq �maxf2kC l; kC2lg. For .p; q/D .�1; k/, .�1; l/, .�1; kC l �1/, .�1; kC l/, .�1; 2k/,
.�1; 2l/, .�1; 2kC l/, .�1; kC 2l/, .�1; 2kC l � 1/, .�1; kC 2l � 1/, .�2; 2k/, .�2; 2l/, .�2; 3k/ or
.�2; 3l/, Qd is zero.

For .p; q/D .�3; kC l/, Qd is presented by the following matrix

g12

g01 0

a1b2 1

a2b1 �1

This is read as Qd.g12/D a1b2� a2b1. For .p; q/D .�2; kC l/,

g01 a1b2 a2b1

a0b1 1 1 1

a1b0 �1 1 1

a1b1 �1 �1 �1

For .p; q/D .�4; 2kC l/,
a1g23 a2g13 a3g12

a0g12 1 0 �1

a1g02 1 1 0

a1g12 �1 0 1

a2g01 0 1 1

a1a2b3 �1 1 0

a1a3b2 1 0 1

a2a3b1 0 1 �1
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For .p; q/D .�3; 2kC l/,

a0g12 a1g02 a1g12 a2g01 a1a2b3 a1a3b2 a2a3b1

a0g01 0 0 0 0 0 0 0

a0a1b2 �1 1 0 0 �1 �1 0

a0a2b1 1 0 0 1 0 �1 �1

a1a2b0 0 1 0 �1 1 0 �1

a1a2b1 0 0 1 �1 0 1 1

a1a2b2 0 1 1 0 �1 �1 0

For .p; q/D .�2; 2kC l/,

a0g01 a0a1b2 a0a2b1 a1a2b0 a1a2b1 a1a2b2

a0a1b0 1 �1 �1 0 �1 1

a0a1b1 1 1 1 0 1 �1

For .p; q/D .�2; 2kC l � 1/,
a1y2 a2y1

a0y1 1 1

a1y0 1 1

a1y1 �1 �1

For .p; q/D .�4; kC 2l/,
b1g23 b2g13 b3g12

b0g12 �1 0 1

b1g02 �1 �1 0

b1g12 1 0 �1

b2g01 0 �1 �1

a1b2b3 0 1 1

a2b1b3 1 0 �1

a3b1b2 �1 �1 0

For .p; q/D .�3; kC 2l/,

b0g12 b1g02 b1g12 b2g01 a1b2b3 a2b1b3 a3b1b2

b0g01 0 0 0 0 0 0 0

a0b1b2 0 1 0 1 1 0 �1

a1b0b2 1 0 0 �1 �1 1 0

a1b1b2 0 0 1 �1 �1 �1 0

a2b0b1 �1 �1 0 0 0 �1 1

a2b1b2 0 �1 �1 0 0 1 1

For .p; q/D .�2; kC 2l/,

b0g01 a0b1b2 a1b0b2 a1b1b2 a2b0b1 a2b1b2

a0b0b1 1 2 1 1 1 1

a1b0b1 �1 0 �1 1 �1 1
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For .p; q/D .�2; kC 2l � 1/,
b1y2 b2y1

b0y1 �1 �1

b1y0 1 1

b1y1 1 1

By direct computation based on the above presentation we obtain the following result. Let k2 (resp. k2)
denote the module k=2k (resp. k˚ k).

Proposition 7.5 Suppose k is either of Z or Fp where p is prime. Let k be an odd number and l be an
even numbers with kC 5� l � 2k � 4 and j3k � 2l j � 2, or l C 7� k � 2l � 7 and j3l � 2kj � 2. We
abbreviate LEpq2 for Sk �S l as .p; q/. We have the following isomorphisms:

(0; k/D .�1; k/D .0; l/D .�1; l/D .�1; 2k/D .�2; 2k/D .�1; 2l/D .�2; 2l/D k

(� 2; 3k/D .�3; 3k/D .�2; 3l/D .�3; 3l/D .0; kC l � 1/D .�1; kC l � 1/D k;

(0; kC l/D k; .�1; kC l/D k˚ k2 or k2; .�2; kC l/D 0 or k;

(0; 2kC l � 1/D k; .�1; 2kC l � 1/D k2; .�2; 2kC l � 1/D k;

(� 1; 2kC l/D k2 or k; .�2; 2kC l/D k2 or k2; .�3; 2kC l/D k2 or k2;

(� 4; 2kC l/D 0 or k; .0; kC 2l � 1/D k; .�1; kC 2l � 1/D k2;

(� 2; kC 2l � 1/D k; .�1; kC 2l/D k2 or k; .�2; kC 2l/D k or k2;

(� 3; kC 2l/D k2; .�4; kC 2l/D k:

Here “.p; q/DA or B” means .p; q/DA if kDZ or Fp with p¤ 2 and .p; q/DB if kD F2. For other
.p; q/ with pC q �maxfkC 2l; 2kC lg we have .p; q/D 0.

The isomorphisms of Proposition 7.5 hold under milder conditions on k and l . It suffices to ensure the
bidegrees presented above are pairwise distinct. By degree argument, we obtain the following corollary:

Corollary 7.6 Suppose k is either Z or Fp where p is a prime. Let k be an odd number and l be an even
number with kC 5 � l � 2k � 4 and j3k � 2l j � 2, or l C 7 � k � 2l � 7 and j3l � 2kj � 2. We set
H� DH�.Emb.S1; Sk �S l//.

(1) We have isomorphisms

H i
D k for i D k� 1; k; 2k� 2; 2k� 1; l � 1; l; 2l � 2; 2l � 1; kC l:

(2) If kD Fp with p¤ 2, we have isomorphisms

H i
D

8<:
k if i D kC l � 2; 2kC l � 3; 2kC l � 1;
k2 if i D kC l � 1; 2kC l � 2;
0 if i D 2kC l � 4:
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(3) If kD Z, we have isomorphisms

H i
D

8̂̂̂<̂
ˆ̂:
k if i D kC l � 2;
k2˚ k2 if i D kC l � 1; 2kC l � 2;
k˚ k2 if i D 2kC l � 3;
0 if i D 2kC l � 4:

(4) We have H i D 0 for an integer i that satisfies i �maxfkC 2l; 2kC lg and is different from any of
the following integers:

k� 1; k; l � 1; l; 2k� 2; 2k� 1; 2l � 2; 2l � 1; 3k� 3; 3k� 2; 3l � 3; 3l � 2; kC l � 2; kC l � 1;

kC l; 2kC l �4; 2kC l �3; 2kC l �2; 2kC l �1; kC2l �4; kC2l �3; kC2l �2; kC2l �1:

Proof By an argument similar to the proof of Theorem 5.17, LE�p;q2 D 0 if q=p< 1
3
.kCl/. We shall show

that any differential dr W LE
.�p�r;qCr�1/
r ! LE�p;qr going into the term contained in the cohomology of the

claim is zero. It is enough to show this for the case of .�p; q/D .0; 2kC l�1/ and qCr�1� kC2l�1
since other cases are obvious, or follow from this case. We see

qC r � 1

pC r
D
q� 1

r
C 1�

2kC l � 2

l � kC 1
C 1D

kC 2l � 1

l � kC 1
< 1
3
.kC l/:

So E.�p�r;qCr�1/r D 0 and dr D 0.

7.4 The case of M D S k �S l with k; l even

We fix generators a 2Hk.Sk/ and b 2H l.S l/. H is presented as ^fa; bg. We fix an orientation � on H
by �.ab/D 1. We set c D Na 2 SH and d D Nb 2 SH. We write ai for ei .a/, bi for ei .b/, etc, and Bn.H/
is presented as

Bn.H/D
^
fai ; bi ; ci ; di ; gij ; hij j 0� i; j � ng=J

where jgij j D .�1; kC l/, jhij j D .�1; 2.kC l/� 1/ and J is the ideal generated by

.ai /
2; .bi /

2; .ci /
2; .di /

2; aibi ; aici ; bidi ; cidi ; aidi � bici .gij /
2; .hij /

2; gi i ; hi i ; gij �gj i ; hij C hj i ;

.ai�aj /gij ; .bi�bj /gij ; .ci�cj /gij�aihij ; .di�dj /gij�bihij ; .ai�aj /hij ; .bi�bj /hij ; .ci�cj /hij ;

.di � dj /hij ; .hij C hik/gjk � .hij C hjk/gki and the 3–term relations for gij and hij :

The diagonal classes are given by

�H D a0b1C a1b0 2 SH˝SH and �SH D a0d0C a1d0C b1c0� b0c1� a0d1� a1d1:

By an argument similar to the proof of Corollary 7.6, we obtain the following corollary:

Corollary 7.7 Suppose 2 2 k�. Let k and l be two even numbers with k C 2 � l � 2k � 2 and
j3k� 2l j � 2. We set H� DH�.Emb.S1; Sk �S l//. We have isomorphisms

H i
D k for i D k� 1; k; l � 1; l; kC l � 3; kC l � 2; kC l � 1; 3k:

For any other degree i � 2kC l , we have H i D 0.
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7.5 The case of 4–dimensional manifolds

In this subsection, we prove Corollary 1.3. We assume that M is a simply connected 4–dimensional
manifold. So, as is easily observed, H is a free k–module for any k.

Definition 7.8 Set �D �.M/. We define a map ˛ W .H2/˝2˚ kg01! .H2/˝2˚H4=�H4 by

˛.a˝ b/D .�a˝ b� b˝ a/C ab; ˛.g01/D pr1.�H/:

Here g01 is a formal free generator (which will correspond to the element of the same symbol in LE�2;41 )
and pr1 is the projection

.H˝2/�D4! .H2/˝2˚ .1˝H4/! .H2/˝2˚H4=�H4:

The next proposition follows from direct computation and degree argument based on Theorem 6.11.

Lemma 7.9 We use the notation in Definition 7.8. Suppose k is a field and H2 is not zero.

(1) When pC q D 1, LEp;qr is stationary after E2. In particular , LEp;q2 Š LEp;q1 . We have isomorphisms

LEp;q2 Š

�
H2 if .p; q/D .�1; 2/;
0 otherwise:

(2) There exists an isomorphism

LE�2;42 Š Ker.˛/=k.pr2.�H/C 2g01/:

Here pr2 is the projection .H˝2/�D4! .H2/˝2. The differential dr coming into this term is zero
for r � 2.

Remark 7.10 Actually, Lemma 7.9 holds even when k is a not a field since torsion in the Künneth
theorem does not affect the range.

Proof of Corollary 1.3 In this proof, we suppose k is a field. Set HZ
2 D H2.M IZ/. As is well

known, there is a weak homotopy equivalence between Imm.S1;M/ and the free loop space LSM,
and there is an isomorphism �1.LSM/ Š �1.SM/˚ �2.SM/. As M is simply connected, we have
�1 Imm.S1;M/Š �2.SM/Š �2.M/ŠHZ

2 .

By the Goodwillie–Weiss convergence theorem, connectivity of the standard projection holim� C�.M/!

holim�n C�.M/ increases as n increases. Since �n is a compact category in the sense of [13] and Cn.M/

is simply connected for any n, by [13, Theorem 2.2] we see that Emb.S1;M/ is Z–complete. In particular,
�1.Emb.S1;M// is a pro-nilpotent group. So, by a theorem of Stallings [38], we only have to prove that
the composition

Emb.S1;M/
iM
��! Imm.S1;M/ '�! LSM cl1

��!K.HZ
2 ; 1/

induces an isomorphism on H1.�IZ/ and a surjection on H2.�IZ/. Here the rightmost map cl1 is the
classifying map; see [15].
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Consider the spectral sequence Ep;qr associated to the Hochschild complex of C�.zTM /. This spectral
sequence is isomorphic to the Bousfield–Kan type cohomology spectral sequence associated to the
well-known cosimplicial model for LSM given by Œn� 7! SMnC1. The quotient map zTM ! TM induces
a map fr W E

pq
r !

LEpqr of spectral sequences. For r D1, this map is identified with the map on the
associated graded induced by the inclusion iM . For pC q D 1, by Lemma 7.9 (and similar computation
for Epqr ), f2 is an isomorphism for any field k. Since �1.Emb.S1;M// is the same as �1 of a finite
stage of Taylor tower which is the finite homotopy limit of a simply connected finite cell complex, it
is finitely generated, and so is H1. By the universal coefficient theorem, iM induces an isomorphism
on H1.�IZ/. For the part of pC q D 2, we see Epq2 D 0 for p < �2 and E�2;4 Š Ker.˛/\ .H2/˝2.
Consider the zigzag

LSM L.cl2/
����! LK.HZ

2 ; 2/
iK
 ��K.HZ

2 ; 2/;

where the left map is induced by the classifying map cl2 W SM ! K.HZ
2 ; 2/ and the right one is the

inclusion from the based loop space. Clearly the composition cl1 ı iK W�K.HZ
2 ; 2/! K.HZ

2 ; 1/ is a
weak homotopy equivalence. Observe spectral sequences associated to the standard cosimplicial models
of the above three spaces. Since the maps L.cl2/ and iK are induced by cosimplicial maps, they induce
maps on spectral sequences. In the part of total degree 2, we see that the filtration level F�2 for each of
the three spectral sequences is the entire cohomology group, and the filtration level F�1 for the one for
�K.HZ

2 ; 2/ is zero. With these observations, we see that the image of H 2.K.HZ
2 ; 1// in H 2.LSM/ by

the map cl1 is sent to a subspace V of F�2=F�1 ŠE�2;41 �E
�2;4
2 isomorphically, and a basis of V is

given by fai ˝ aj � aj ˝ ai j i < j g as elements of E�2;42 , where faigi denotes a basis of H2. (We also
see that these elements must be stationary.) If k¤ F2, or if kD F2 and the inverse of the intersection
matrix has at least one nonzero diagonal component, the restriction of f2 to V is a monomorphism by
Lemmas 6.2 and 7.9. (Otherwise, the elements of the basis of V have the relation pr0.�H/D 0.) This
implies iM induces a surjection on H2 for any field k under the assumption of the theorem. By the
universal coefficient theorem, we obtain the desired assertion on H2.�IZ/.

Remark 7.11 If all of the diagonal components of the inverse of the intersection matrix on H2.M IF2/
are zero, the map f2 W V ! LE

�2;4
2 in the proof is not a monomorphism for k D F2, but this does not

necessarily imply the original (nonassociated graded) map is not a monomorphism. So in this case, it is
still unclear whether iM is an isomorphism on �1.

8 Precise statement and proof of Theorem 1.5

Definition 8.1 � Fix a coordinate plane with coordinates .x; y/. A planar rooted n–tree .T; e/ consists
of a 1–dimensional finite cell complex T and a continuous monomorphism e from its realization jT j to
the half plane y � 0 such that:

– T is connected and �1.T / is trivial.
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– The intersection of the image of e and the x–axis consists of the image of n univalent vertices
called leaves. These vertices are labeled by 1; : : : ; n in the manner consistent with the standard
order on the axis.

– T has a unique distinguished vertex, called the root, which is at least bivalent.

– Any vertex except for the leaves and root is at least trivalent.

An isotopy between n–trees .T1; e1/! .T2; e2/ is an isotopy of the half plane onto itself which maps
e1.jT1j/ onto e2.jT2j/ and the root to the root. (So an isotopy preserves the leaves, including the labels.)
We will denote an isotopy class of planar rooted n–trees simply by T . The root vertex of a tree is usually
denoted by vr . For a vertex v of a tree, jvj denotes the number which is the valence minus 1 if v ¤ vr ,
and equal to the valence if v D vr (jvj is the number of the “out-going edges”).

� Let ‰n be a category defined as follows. An object of ‰n is an isotopy class of planar rooted n–trees.
There is a unique morphism T ! T 0 if T 0 is obtained from T by successive contractions of internal edges
(ie edges not adjacent to leaves).

� Let Cat be the category of small categories and functors. Let in W ‰n ! ‰nC1 be a functor which
sends T to the tree made from T by attaching two edges to the nth leaf of T and labeling the new leaves
with n and nC 1. We define a category ‰ as the colimit of the sequence ‰1

i1
�!‰2

i2
�! � � � taken in Cat.

Fn W‰nC1! Pn denotes the functor given in [37, Definition 4.14], which sends a tree T 2‰nC1 to the
set of numbers i such that the shortest paths from i and i C 1 to the root in T intersect only at the root.
For the functor Gn W PnC1!�n, see Section 2.1. The square

‰nC2

in
��

GnC1ıFn
// �n

in
��

‰nC3
GnC2ıFnC1

// �nC1

is clearly commutative, where the right vertical arrow is the natural inclusion, so we have the induced
functor G ıF W‰!�.

� Henceforth, for a symmetric sequence X and a vertex v of a tree in ‰, we denote X.jvj/, X.jvj � 1/
and jvj � 1 by X.v/, X.v� 1/ and v� 1, respectively.

� For a K–comodule X in SP , we shall define a functor FnX W‰op
nC2! SP . The definition is similar to

(a dual of) the construction of DnŒM � in [37, Definition 5.6]. For a tree T 2‰nC2, define a space Knr
T by

Knr
T D

Y
v

K.v/:

Here v runs through all the nonroot and nonleaf vertices of T . This is denoted by Knr
T in [37]. We set

FnX.T /DMap.Knr
T ; X.vr � 1//:

For a morphism T ! T 0 given by the contraction of a nonroot edge e (an edge not adjacent to the root),
the map e� W FnX.T 0/! FnX.T / is the pullback by the inclusion Knr

T ! Knr
T 0 to a face corresponding to
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the edge contraction (see [37, Definition 4.26]). For the i th root edge e, the corresponding map is given
by the following composition:

Map
� Y
v2T 0

K.v/; X.v0r�1/
�
DMap

� Y
v2T
v¤vt

K.v/; X.v0r�1/
�
!Map

� Y
v2T
v¤vt

K.v/;Map.K.vt /; X.vr�1//
�

ŠMap
�� Y

v2T
v¤vt

K.v/
�
�K.vt /; X.vr�1/

�
DMap

� Y
v2T

K.v/; X.vr�1/
�
:

Here vt is the vertex of e which is not the root. For 1� i � jvr j � 1, the arrow is the pushforward by the
adjoint of the partial composition .�ıi �/ W K.vt / y̋ X.v0r � 1/! X.vr � 1/, and for i D jvr j it is the
pushforward by the adjoint of the composition

K.vt / y̋ X.v0r � 1/
id˝.�/�
������! K.vt / y̋ X.v0r � 1/

.�ı1�/
�����!X.vr � 1/;

where � is the transposition of the first jv0r j�jvt j and last jvt j�1 letters. The functors fFngn are compatible
with the inclusions in W ‰nC2 ! ‰nC3. Precisely speaking, there exists an obviously defined natural
isomorphism jn W F

nX Š FnC1X j‰nC2 because the inclusion does not change jvr j. We define a functor
FX W‰! SP by FX.T / being the colimit of the sequence FnX.T /

Š
�! FnC1X.T /

Š
�! FnC2X.T /

Š
�! � � � .

� We define a category G.n/C for an integer n� 1 as follows. Its objects are a symbol � and the graphs
G with set of vertices V.G/D n and set of edges E.G/� f.i; j / j i; j 2 n with i � j g. There is a unique
morphism G!H if and only if either both of G and H are graphs and E.G/�E.H/, or G D � and
H ¤ ∅, where ∅ denotes the graph with no edges. As in the definition, we allow graphs in G.n/C to
have loops, ie edges of the form .i; i/ for i 2 n.

� We define a functor ! W‰op
nC2!Cat by !.T /DG.jvr j�1/

C. For the contraction T !T 0 of an edge e,
we define a map e� W v0r � 1! vr � 1 as follows. If e is a nonroot edge, e� is the identity. If e is the i th

root edge for 1� i � jvr j�1, e� is the order-preserving surjection with e�.j /D i for i � j � iCjvt j�1.
For i D jvr j, e� is the composition

v0r � 1
.�/�
���! v0r � 1

.e0/�
���! vr � 1; where .e0/�.j /D

�
1 if 1� j � jvt j;
j � jvt jC 1 if jvt jC 1� j � jv0r j � 1;

and � is the permutation given in the previous item. For G 2 G.jv0r j � 1/
C, we define an object

e�.G/ 2 G.jvr j � 1/
C by

e�.G/D

�
� if G D �;

the graph with the edge set f.e�.s/; e�.t// j .s; t/ 2E.G/g otherwise.

� We define a category z‰nC2 as the Grothendieck construction for the (nonlax) functor !

z‰nC2 D

Z
‰nC2

!:
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An object of z‰nC2 is a pair .T;G/ with T 2 ‰nC2 and G 2 !.T /. A map .T;G/! .T 0; G0/ is a pair
of maps e W T ! T 0 2‰nC2 and G! e�.G0/ 2 !.T /. The functor in W‰nC2!‰nC3 and the identity
!.T / D !.in.T // naturally induce a functor in W z‰nC2 ! z‰nC3. We denote by z‰ the colimit of the
sequence f z‰nC2I ing.

� We fix a map K! D of operads and regard zTM as a K–comodule via this map.

� We shall define a functor TnM W z‰
op
nC2! SP . We set

TnM .T;G/D

�
� if G has at least one loop or G D �;

Map.Knr
T ; TG/ otherwise:

For a map .T;G/! .T 0; G0/, we set

Map
� Y
v2T 0

K.v/; TG0
�
!Map

� Y
v2T
v¤vt

K.v/;Map.K.vt /; TG/
�
ŠMap

�� Y
v2T
v¤vt

K.v/
�
�K.vt /; TG

�

DMap
� Y
v2T

K.v/; TG
�
:

Here the arrow is the adjoint of the map K.vt / y̋ TG0 ! TG which is the composition of the map
K.vt / y̋ TG0 ! Te�.G0/ defined in view of Lemma 3.11 and the inclusion Te�G0 � TG coming from
G � e�.G0/. The collection fTnM gn naturally induces a functor TM W z‰! SP with natural isomorphism
TM jz‰nC2 Š TnM .

� Let M be a model category. Let � W z‰!‰ be the functor given by the projection �.T;G/D T . Let
�Š W Fun.z‰op;M/! Fun.‰op;M/ be the left Kan extension along �, ie

.�ŠX/.T /D colim
!.T /

XT

for X 2 Fun.z‰op;M/. Here abusing notation, for T 2 ‰ we denote by !.T / the full subcategory
f.T;G/ jG2!.T /g of z‰, and byXT the restriction ofX to!.T /. Let �� WFun.‰op;M/!Fun.z‰op;M/

be the pullback, ie ��.Y /D Y ı �.

Remark 8.2 The category ‰n is equivalent to the category ‰on given in [37, Definition 4.12].

Notation Henceforth we omit .�/op under .ho/colim. For example, hocolim‰ denotes hocolim‰op .

In the rest of this section, as before, all functor categories are endowed with the projective model structure
(see Section 2.1).

Lemma 8.3 Let M be a cofibrantly generated model category.

(1) The pair .�Š; ��/ is a Quillen adjoint pair.

(2) The restriction
Fun.z‰op;M/! Fun.!.T /op;M/; X 7!XT ;
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preserves weak equivalences and cofibrations. In particular , the natural map hocolim!.T /XT !
L�ŠX.T / 2Ho.M/ is an isomorphism.

(3) For any functor X 2 Fun.z‰op;M/, there is a natural isomorphism in Ho.M/

hocolim
‰

L�ŠX Š hocolim
z‰

X:

Proof Part (1) is straightforward. We shall prove (2). Let I be a set of generating cofibrations of M. Let
C be a category. For objects a 2 C and A 2M, the functor sending b 2 C to the coproduct of copies of
A labeled by morphisms from b to a is denoted by F a

A 2 Fun.C op;M/. A set of generating cofibrations
of Fun.C;M/ is given by

IC D fF
a
f W F

a
A ! F a

B j a 2 C and f W A! B 2 I g:

See [20, Theorem 11.6.1] for details. Since !.T / is a full subcategory of z‰, the restriction functor sends
Iz‰ into I!.T /. Since the restriction preserves colimits, it preserves relative cell objects with respect to
these generating sets. As any cofibration is a retract of a relative cell object, we have proved (2). Part (3)
follows from (2) and a standard property of colimits.

Theorem 8.4 (1) There exists an isomorphism in Ho.Fun.‰op;SP//

.G ıF/�.C�.M/_/Š L�ŠTM :

(2) If M is simply connected and of dimension � 4, there exists an isomorphism in Ho.CHk/

C �.Emb.S1;M//Š hocolim
z‰

C� ıTM :

Proof Let T 2 ‰ be an object and set m D jvr j � 1, where vr is the root vertex of T . By definition
TM .m/D colimG2!.T / TG . We shall show that the natural map

hocolim
G2!.T /

TG! colim
G2!.T /

TG D TM .m/ 2Ho.SP/

is an isomorphism. Put N1 D #f.i; j / j i; j 2 m with i � j g. By abuse of notation, we denote by
PN1 the subcategory of !.T / consisting of nonempty graphs, which is actually isomorphic to PN1 .
The functor Pop

N1
3 G 7! TG 2 SP satisfies the assumption of Lemma 2.2(2), so the natural map

hocolimPN1 TG! colimPN1 TG is an isomorphism. More precisely, for each k, Pop
N1
3G 7! .TG/k 2 CG�

satisfies the assumption for MD CG�. Since a trivial fibration in SP is a level equivalence and a finite
homotopy colimit is obtained by successive applications of a homotopy pushout, the finite homotopy
colimit of a diagram of semistable connective spectra is ��–isomorphic to the levelwise homotopy
colimit. As TM .m/ is a cofiber of the natural map colimPN1 TG ! zTM , which is also a (levelwise)
homotopy cofiber, we have the assertion. We define a natural transformation TM ! �� ı F.TM / by
the pushforward by the constant map TG ! f�g � TM .m/ for G ¤ ∅ 2 !.T /, and by the quotient
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map T∅! TM .m/ for G D ∅. By the assertion and Lemma 8.3(2), the derived adjoint of the natural
transformation L�ŠTM ! FTM is an isomorphism in Ho.Fun.‰op;SP//. It is clear that F preserves
weak equivalences, so by Theorem 4.4 we have isomorphisms in Ho.Fun.‰op;SP//

F.C_M /Š FTM Š L�ŠTM :

We define a natural transformation .G ıF/�.C�.M/_/! F.C_M / by the inclusion Cm�1.M/D CM .m/�
Map.Knr

T ; CM .m// onto constant maps. This is clearly a weak equivalence, so we have proved (1).

For (2), since the functor C� W SP! CHk preserves homotopy colimits (of semistable spectra), by (1),
Lemma 8.3(3) and Lemma 5.3, we have isomorphisms in Ho.CHk/

hocolim
‰

.G ıF/�C�.C�.M/_/Š hocolim
‰

L�ŠC� ıTM Š hocolim
z‰

C� ıTM :

By Lemma 5.3, Theorem 5.17 and the fact that G ı F W ‰op ! �op is (homotopy) right cofinal (see
Proposition 4.15 and Theorem 6.7 of [37]), we have isomorphisms in Ho.CHk/

C �.Emb.S1;M//Š hocolim
�

C �.C�.M//Š hocolim
�

C�.C�.M/_/Š hocolim
‰

.G ıF/�C�.C�.M/_/:

Thus, we have an isomorphism C �.Emb.S1;M//Š hocolimz‰ C� ıTM .
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