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We compare two combinatorial models for the moduli space of two-dimensional cobordisms (namely
Bödigheimer’s radial slit configurations and Godin’s admissible fat graphs), using a “critical graph” map
to produce an explicit homotopy equivalence. We also discuss natural compactifications of these two
models, the unilevel harmonic compactification and Sullivan diagrams, respectively, and prove that the
homotopy equivalence induces a cellular homeomorphism between these compactifications.
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1 Introduction

In this paper we compare two combinatorial models of the moduli space of cobordisms. We start with
an introduction to moduli space, giving a conformal description of it. After that, we describe various
combinatorial models and how they relate to each other, which includes our main result, Theorem 1.1.
Finally we describe two applications.

1.1 The moduli space of cobordisms

The study of families of surfaces, known as “moduli theory”, goes back to the nineteenth century. One
of the main points of this theory is the construction of a moduli space; informally, this is a space of all
surfaces isomorphic to a given one, characterized by the property that equivalence classes of maps into it
correspond to equivalence classes of families of surfaces. For applications to field theories, the surfaces
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596 Daniela Egas Santander and Alexander Kupers

of interest are two-dimensional oriented cobordisms, an oriented surface S with parametrized boundary
divided into an incoming and an outgoing part. More precisely, there is a pair of maps �inW

Fn
iD1 S

1! @S

and �outW
Fm
jD1 S

1! @S such that �in t �out is a diffeomorphism onto @S .

We will now give a conformal definition of the moduli space of these cobordisms, following work of
Bödigheimer [3, Section 2] and Hamenstädt [24]. Let S be an isomorphism class of connected two-
dimensional oriented cobordisms with nonempty incoming and outgoing boundary. As we will later
endow S with a metric, a parametrization of its boundary is given by a point in each boundary component.
So S D Sg;nCm is a connected oriented surface of genus g with nCm boundary components, each
containing a single point pi for 1 � i � nCm. The marked points are ordered and divided into an
incoming set (which contains the first n� 1 marked points) and an outgoing set (which contains the last
m� 1 marked points).

To define the moduli space, we start by considering the set of metrics g on S . Two metrics are said to be
conformally equivalent if they are equal, up to a pointwise rescaling by a continuous function. This is
equivalent to having the same notion of angle. A diffeomorphism f WS1! S2 between two-dimensional
manifolds .S1; Œg�1/ and .S2; Œg�2/ with conformal classes of metrics such that f �Œg�2 D Œg�1 is said to
be a conformal diffeomorphism. This is equivalent to each of its differentials Dpf for p 2 S1 being a
linear map that preserves angles.

We will restrict our attention to those conformal classes of metrics on S such that each incoming boundary
component has a neighborhood that is conformally diffeomorphic to a neighborhood of the boundary
of fz 2 C j kzk � 1g, and each outgoing boundary component has a neighborhood that is conformally
diffeomorphic to a neighborhood of the boundary of fz 2 C j kzk � 1g. We say that these conformal
classes have good boundary.

The moduli space Mg.n;m/ will have as underlying set the conformal classes of metrics on S with
good boundary, modulo the equivalence relation of conformal diffeomorphism fixing the points pi . To
topologize it, we introduce the Teichmüller metric. With respect to this metric, two equivalence classes of
metrics on S are close if they are related by a homeomorphism that — away from a finite set — is not
only differentiable, but also conformal up to a small error. To make this precise, note that a linear map
DWR2!R2 is conformal if and only if max.kDvk=kvk/Dmin.kDvk=kvk/, with both the maximum
and minimum taken over nonzero vectors. Hence we can quantify the deviation of a linear map from
being conformal by its eccentricity

Ecc.D/ WD
max.kDvk=kvk/
min.kDvk=kvk/

:

If f W .S; Œg�1/! .S; Œg�2/ is a homeomorphism that is continuously differentiable outside a finite set of
points †� S , then its quasiconformal constant Kf is defined to be

Kf WD sup
p2Sn†

Ecc.Dpf /;
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and f is said to be quasiconformal if Kf is finite. If QC.Œg�1; Œg�2/ denotes the set of all quasiconformal
homeomorphisms between .S; Œg�1/ and .S; Œg�2/ fixing the points pi , then we can define the Teichmüller
distance between Œg�1 and Œg�2 as follows:

dT ..S; Œg�1/; .S; Œg�2// WD log inffKf j f 2QC.Œg�1; Œg�2/g:

The moduli space of two-dimensional oriented cobordisms isomorphic to S is then defined to be the
metric space

Mg.n;m/ WD

�
conformal classes of metrics on S with good boundary

conformal diffeomorphisms fixing the points pi
; dT

�
:

For S that are not connected, we take the product of these spaces over all components. An alternative
definition of these spaces is as the quotient of Teichmüller space (the space of quasiconformal maps
modulo conformal equivalence) by the action of the mapping class group Mod.S; @S/, ie the group of
components of the diffeomorphism group Diff.S; @S/. This is a free proper action on a contractible space,
and hence Mg.n;m/' B Mod.S; @S/. All connected components of Diff.S; @S/ are contractible, and
we can thus conclude that

Mg.n;m/' B Mod.S; @S/' BDiff.S; @S/:

This explains why Mg.n;m/ is a model for the moduli space of two-dimensional oriented cobordisms;
any bundle of cobordisms over a paracompact space B with transition functions given by diffeomorphisms
can be obtained up to isomorphism by pulling back a universal bundle over Mg.n;m/ along a map
B !Mg.n;m/. This universal bundle is the quotient of the space consisting of pairs .Œg�; x/ of a
conformal class of metrics and a point x 2 S , by conformal diffeomorphisms acting diagonally.

1.2 Combinatorial models of moduli space

We discuss several combinatorial models of Mg.n;m/, as well as certain compactifications. The following
diagram spells out the relations between them (we fix g, n and m and drop them from the notation):

M

RAD jFat ad j jFat j

Rad Rad� MFat ad MFat

Rad

URad SD

Š

' '

'

'

compactification

Section 4:2
' '

Section 4:5

quotient by slides

'

'

Š

Section 5
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598 Daniela Egas Santander and Alexander Kupers

Each arrow is a continuous map; if decorated by ' it is a homotopy equivalence, if it is double-headed it
is a surjection, and if decorated by Š it is a homeomorphism. The objects that appear in this diagram are
summarized below:

The moduli space M is the archetypical “space of cobordisms”, a conformal model of which was
discussed in Section 1.1. It consists of conformal classes of metrics modulo conformal diffeomorphisms,
with the Teichmüller metric.

The radial slit configurations The model RAD, due to Bödigheimer, consists of gluing data to construct
a conformal class of metrics by gluing together annuli in C. The main theorem of [3] is that there
is a homeomorphism M Š RAD. There is a deformation retraction of RAD onto Rad by fixing the
radii of the annuli. This and related models will be discussed in Section 2, and Rad will be defined in
Definition 2.15.

The fat graphs Fat graphs are graphs with the additional structure of a cyclic ordering of the edges
going into each vertex and data encoding the parametrization of its “boundary components”. Taking as
morphisms maps of fat graphs that collapse a disjoint union of trees defines a category of fat graphs,
denoted by Fat . The space jFat j is the geometric realization of this category. This and related models
will be discussed in Section 3, and Fat will be defined in Definition 3.7.

The admissible fat graphs A fat graph is said to be admissible if its incoming boundary graph embeds
in it, and the category of admissible fat graphs is denoted by Fat ad . The space jFat ad j is the geometric
realization of the full subcategory on the admissible fat graphs. It is defined in Definition 3.7.

The metric fat graphs Closely related to Fat is the space of metric fat graphs, denoted by MFat . This
is the space of fat graphs with the additional data of lengths of their edges. The topology is described in
terms of these lengths, and it contains the realization of Fat as a deformation retract.

The admissible metric fat graphs Just like Fat ad is the subcategory of Fat consisting of fat graphs that
are admissible, MFat ad is the subspace of MFat consisting of metric fat graphs that are admissible. It is
defined in Definition 3.11.

The fattening of the radial slit configurations To discuss the relation between Rad and MFat , we
introduce Rad� as a thicker version of Rad by including resolutions of the critical graph for nongeneric
radial slit configurations. This is done in Section 4.2.

The harmonic compactification Naturally Rad arises as an open subspace of a compact space Rad. In
this compactification we allow identifications of points on the outgoing boundary, and allow handles to
degenerate to intervals. It is defined in Definition 2.15.

The unilevel harmonic compactification The space URad is a deformation retract of Rad obtained by
making all slits equal length. It is defined in Definition 2.21.

The Sullivan diagrams The space of Sullivan diagrams, denoted by SD, is the quotient of MFat ad by
the equivalence relation of slides away from the admissible boundary. It is defined in Definition 3.16.

Algebraic & Geometric Topology, Volume 24 (2024)
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We will focus on the bottom square, that is, the relations between radial slit configurations, admissible
metric fat graphs and their compactifications. Our main result is:

Theorem 1.1 The space Rad� and maps given in Corollaries 4.42 and 4.51, Proposition 5.1 and
Lemma 2.22 form a commutative square

Rad Rad� MFat ad

Rad

URad SD

'

Corollary 4:42 Corollary 4:51
'

'Lemma 2:22

Š

Proposition 5:1

Furthermore , all maps that are decorated by' are homotopy equivalences and the map decorated byŠ is
a cellular homeomorphism.

There exist other combinatorial models related to the moduli space of cobordisms which are not discussed
here. We will describe six such models in the following remarks.

Remark 1.2 To describe an action of the chains of the moduli space of surfaces on the Hochschild
homology of A1–Frobenius algebras, Costello constructed a chain complex that models the homology
of the moduli space [9; 10]. In [43], Wahl and Westerland described this chain complex in terms of fat
graphs with two types of vertices, which they called black and white fat graphs. There is an equivalence
relation of black and white graphs given by slides away from the white vertices. The quotient chain
complex is the cellular chain complex of SD. Furthermore, Egas Santander [14] showed that MFat ad has
a quasicell structure with black and white fat graphs as its cellular complex and where the quotient map
to SD respects this cell structure.

Remark 1.3 In [8], Cohen and Godin defined Sullivan chord diagrams of genus g with p incoming and
q outgoing boundary components, which were also used by Félix and Thomas [16]. These are fat graphs
obtained from gluing trees to circles and comprise a space CF.gIp; q/, which is a subspace of MFat ad .
They are not the same as Sullivan diagrams as in Definition 3.16, though they do admit a map to SD. The
space of metric chord diagrams is not homotopy equivalent to moduli space; see Godin [21, Remark 3].

Remark 1.4 In [38], Poirier defined a space SD.g; k; l/=� of string diagrams modulo slide equivalence
of genus g with k incoming and l outgoing boundary components, and more generally she defined string
diagrams with many levels modulo slide equivalence, LD.g; k; l/=�. Proposition 2.3 of [38] says that
SD.g; k; l/=�' LD.g; k; l/=�. She also defined a subspace SD.g; k; l/ of SD.g; k; l/. Both SD.g; k; l/
and SD.g; k; l/ are subspaces of MFat ad , and by counting components one can see that these inclusions
cannot be homotopy equivalences. However, there is an induced map SD.g; k; l/=�! SD which is a
homeomorphism.
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600 Daniela Egas Santander and Alexander Kupers

Remark 1.5 In [11], Drummond-Cole, Poirier and Rounds defined a space of string diagrams SD which
generalized the spaces of chord diagrams constructed in [38]. They conjectured that this space is homotopy
equivalent to the moduli space of Riemann surfaces. There is an embedding SD ,!MFat ad , but it is not
clear this is a homotopy equivalence. Furthermore, there is an equivalence relation � on SD, which is
not discussed in their paper, and they conjectured that SD=� is homotopy equivalent to the harmonic
compactification.

Remark 1.6 Following the ideas of Wahl, Klamt constructed a chain complex of looped diagrams,
denoted by lD in [31]. This complex gives operations on the Hochschild homology of commutative
Frobenius algebras. Moreover, she gave a chain map from the cellular complex of the space of Sullivan
diagrams to looped diagrams. However, a geometric interpretation of a space underlying the complex lD
and its possible relation to moduli space are still unknown.

Remark 1.7 In [30], Kaufman described a space of open–closed Sullivan diagrams Sullc=o1 in terms of
arcs embedded in a surface. The closed part, Sullc1, is a space whose points correspond to weighted families
of embedded arcs in the surface that flow from the incoming boundary to the outgoing boundary. This
space has a natural cell structure, and there is a cellular homeomorphism Sullc1

Š
�! SD [43, Remark 2.12]

.

1.3 Applications of these models

We will next explain two of the applications of combinatorial models for moduli spaces.

1.3.1 Explicit computations of the homology of moduli spaces Combinatorial models provide cell
decompositions for moduli spaces, allowing for explicit computations of the (co)homology groups of
moduli spaces using cellular (co)homology. Instead of studying Mg.n;m/, it is more convenient to study
the closely related moduli space M1;n

g of surfaces of genus g with one parametrized boundary component
and n permutable punctures. There are variations of Rad and MFat ad that are models for M1;n

g .

Much is known about the homology of M1;n
g and much is unknown about it. Harer stability tells us

that H�.M1;n
g / stabilizes as g!1; see Harer [25] and Wahl [41]. As a consequence of homological

stability for configuration spaces, it also stabilizes as n!1. The Madsen–Weiss theorem gives the
stable homology; see Galatius [19] and Madsen and Weiss [34]. (See Bödigheimer and Tillmann [5] for
increasing the number of punctures.) Less is known outside of the stable range; explicit computations of
H�.M1;n

g / for low g and n can help inform and test conjectures about the homology of moduli spaces.

The computation of the homology of moduli spaces using radial slit configurations, or the closely related
parallel slit configurations, is a long-term project of Bödigheimer and his students. The first example of
this is Ehrenfried’s thesis [15], where he computes M1;0

2 . See Abhau, Bödigheimer and Ehrenfried [1]
for computations of the integral homology of M1;n

g for 2gCn� 5 using parallel slits. An example of an
explicit computation using fat graphs is [22], in which Godin computes the integral homology of M1;0

g

for g D 1; 2 and M2;0
g for g D 1.

Algebraic & Geometric Topology, Volume 24 (2024)



Comparing combinatorial models of moduli space and their compactifications 601

1.3.2 Two-dimensional field theories, in particular string topology Combinatorial models of moduli
spaces have been an important tool in the study of two-dimensional field theories. Two applications are
Kontsevich’s proof of the Witten conjecture [32], and Costello’s classification of topological conformal
field theories [10]. More concretely, combinatorial models for the moduli space of cobordisms play a
role in the construction of string operations; these are operations H�.Mg.n;m/IL˝d /˝H�.LM/˝n!

H�.LM/˝m for compact oriented manifoldsM . Chas and Sullivan thought of the pair of pants cobordism
as a figure-eight graph [7], and many of the constructions of string operations since have used graphs.
An important example is Godin’s work [21], which uses Fat ad . Using Costello’s model for moduli
space together with a Hochschild homology model for H�.LM/, Wahl and Westerland [42; 43] not
only constructed string operations, but showed that these factor through SD. One can also use radial slit
configurations to construct string operations.

A problem in string topology is that there are many constructions but few comparisons between them.
The critical graph equivalence of Section 4 may help to compare constructions involving fat graphs and
Sullivan diagrams to those involving radial slit configurations and the harmonic compactification.

Outline of paper

In Sections 2 and 3 we define radial slit configurations, fat graphs and their compactifications in detail.
In Section 4 we use the critical graph of a radial slit configuration to construct a zigzag of homotopy
equivalences between Rad and MFat ad . In Section 5 we show that this descends to a homeomorphism
between URad and SD.
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2 Radial slit configurations and the harmonic compactification

2.1 The definition

In this subsection we introduce Bödigheimer’s radial slit configuration model for the moduli space of
two-dimensional cobordisms with nonempty incoming and outgoing boundary. All material in this
subsection is due to Bödigheimer, and references include [1; 2; 3; 12] and particularly [4] as it describes,
in a related setting, an elegant alternative to the construction below, using subspaces of bar complexes

Algebraic & Geometric Topology, Volume 24 (2024)



602 Daniela Egas Santander and Alexander Kupers

associated to symmetric groups. It leads, however, to a different compactification of moduli space than
the harmonic compactification, so we use [3].

2.1.1 Spaces of radial slit configurations Before giving a definition of the radial slit configuration
space Rad, we explain how to arrive at it from the perspective of building cobordisms by gluing annuli
along cuts. The reader may prefer to skip this motivation and go directly to Definition 2.1.

The simplest cobordism with nonempty incoming and outgoing boundary is the cylinder, with one
incoming and one outgoing boundary component. Using the theory of harmonic functions, one sees that
each annulus is conformally equivalent to one of the following annuli forR2

�
1
2�
;1

�
[24, Corollary 2.13]:

AR WD
n
z 2C

ˇ̌ 1
2�
� jzj �R

o
:

The reason for the choice of 1
2�

is to facilitate comparison with fat graphs later on. We take these as our
basic building blocks. Each of them has an inner boundary @inAR D

˚
z 2 C j jzj D 1

2�

	
and an outer

boundary @outARDfz 2C j jzjDRg. They come with a canonical metric, as subsets of the complex plane.

To construct a cobordism with n incoming boundary components, we start with an ordered disjoint union
of n annuli A.i/Ri

, whose inner boundaries will be the incoming boundary of our cobordism. Next we make
cuts radially inward from the outer boundaries of the annuli. Such cuts are uniquely specified by points
� 2

Fn
iD1A.i/Ri

, which we will call slits. They need not be distinct. As will become clear, the number
of slits must always be an even number 2h, and we thus number them �1; : : : ; �2h. For a total genus g
cobordism with n incoming and m outgoing boundary components we need 2hD 2.2g�2CnCm/ slits.

We want to glue the different sides of the cuts back together. To get a metric on the surface from the metric
on the cut annuli, the two cuts that we glue together must be of the same length. To get an orientation on
the surface from the orientations on the cut annuli, we must glue a side clockwise from a cut to a side
counterclockwise from a cut. To avoid singularities, if one side of the cut corresponding to �i is glued
to a side of the cut corresponding to �j , the same must be true for the other two sides. Thus our gluing
procedure is described by a pairing on f1; : : : ; 2hg, encoded by a permutation

�W f1; : : : ; 2hg ! f1; : : : ; 2hg

consisting of h cycles of length 2. We should demand that if �i lies on the annulus A.j /Rj
and ��.i/ lies on

the annulus A.j
0/

Rj 0
, then Rj � j�i j DRj 0 � j��.i/j. See Figure 1 for an example.

However, several problematic situations could occur. Firstly, if two slits �i and �j lie on the same radial
segment, by definition a subset of the annulus A.j /Rj

of the form

fz 2A.j /Rj
j arg.z/D �g for some �;

then our cutting and gluing procedure is not well defined. We need to keep track of whether �i lies
clockwise or counterclockwise from �j . To do this, we include the data of a successor permutation

!W f1; : : : ; 2hg ! f1; : : : ; 2hg:
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1

1

2

outgoing boundary

incoming boundary

1

1

2

1

1

2

Figure 1: An example of constructing a cobordism by cutting and gluing slits in annuli. We start
with the annulus on the left, cut along the blue lines to obtain the middle figure, and finally glue
both the gray sides and the white sides of the cuts to get the cobordism on the right. In this simple
example, the pairing � and the successor permutation ! are uniquely determined.

This has n cycles, corresponding to the n annuli, and we should demand that each cycle contains the
numbers of the slits in one of the annuli and is compatible with the weak cyclic ordering on these coming
from the argument of the slits. The successor permutation keeps track of the fact that when two slits
coincide, one actually lies “infinitesimally counterclockwise” from the other; see Figure 2.

This is not enough, because if all slits on an annulus lie on the same radial segment we can only deduce
the ordering of the slits up to a cyclic permutation. To amend this, we add additional data: the angular
distance ri 2 Œ0; 2�� counterclockwise from �i to �!.i/. In almost all cases one can deduce this from the

1

1

�4

�3

�2�1

! D .1234/

! D .2134/

1

1

1

1

Figure 2: An example of a radial slit preconfiguration with two slits on the same radial segment;
�1 is the shorter blue slit and �2 is the longer red slit. The successor permutation ! allows us to
think of �1 as either infinitesimally clockwise or counterclockwise from �2.
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locations of the �i and !, but in the case where all slits on an annulus lie on the same radial segment, one
of them will have to be ri D 2� , while the others will have to be rj D 0. This allows one to determine
the ordering of the slits, since the slit �i with ri D 2� should be first in the clockwise direction from the
angular gap between the slits.

We have almost described enough data to construct a cobordism. We can build a possibly degenerate
surface, which has among its boundary components the inner boundaries of the annuli. Since we wanted
m outgoing boundary components, we restrict to the subset of data that gives us m boundary components
in addition to these inner boundaries of annuli. The inner boundaries of the annuli come with a canonical
parametrization, but the outer ones do not. Because they already have a canonical orientation coming
from the orientation of the outer boundary of the annuli, it suffices to add one point Pi in each of them, m
in total. Thus we need to include these new parametrization points in ! and the ri . To do this, we write
�i D �i for 1� i � 2h and �2hCi D Pi for 1� i �m, and expand our definition of ! to a permutation
x! 2S2hCm and add additional r2hCi 2 Œ0; 2�� for 1� i �m. It is also convenient to extend the definition
of � to a permutation N� 2S2hCm by setting N�.2hC i/D 2hC i for 1� i �m.

Now we can state the definition of a radial slit configuration by collecting all the above data, identifying
those configurations yielding the same conformal surface, and discarding those configurations yielding
degenerate surfaces. Actually, it is only necessary to consider configurations with a fixed outer radius; we
will say more on this towards the end of the section. Therefore, from now on we take ERD .R;R; : : : ; R/
and R D 1

2�
C

1
2

unless stated otherwise. This choice of outer radius is arbitrary, but it makes the
connection with metric fat graphs cleanest.

Definition 2.1 The space of possibly degenerate radial slit preconfigurations, denoted by PRadh.n;m/,
is the subspace of

LD .E�; N�; x!; Er/ 2

� nG
jD1

C

�2hCm
�S2hCm �S2hCm � Œ0; 2��

2hCm

with the following properties. For notation, let �i WD �i for 1� i � 2h and Pi WD �2hCi for 1� i �m. Then

� E� 2
�Fn

jD1C
�2h are the endpoints of the slits,

� EP 2
�Fn

jD1C
�m are the parametrization points,

� N� 2S2hCm is the extended slit pairing,

� x! 2S2hCm is the extended successor permutation,

� Er 2 Œ0; 2��2hCm are the angular distances.

These are subject to six conditions:

(i) Each slit �i lies in
Fn
jD1A.j /R �

Fn
jD1C and each parametrization point Pi lies in

Fn
jD1 @outA

.j /
R .

(ii) The extended slit pairing N� consists of h 2–cycles and m 1–cycles. The latter are given by 2hC i for
1� i �m. We demand that j�i j D j� N�.i/j for all 1� i � 2h.

Algebraic & Geometric Topology, Volume 24 (2024)



Comparing combinatorial models of moduli space and their compactifications 605

1

1

2

�1�2

successor permutation !D .12/
angular distances r1 D r2 D �

parametrization points in each
outgoing boundary component

labeled incoming boundary

outer boundary of annulus divided into
two outgoing boundary components
(here solid and dashed)

radial slits with pairing .12/

Figure 3: The configuration of Figure 1 with all its data pointed out.

(iii) The successor permutation x! consists of a disjoint union of n cycles, and these cycles consist exactly
of the indices of the �i lying on each of the annuli. We demand that the permutation action of x! on
these �i preserves the weakly cyclic ordering which comes from the argument (as usual taken in the
counterclockwise direction).

(iv) The boundary component permutation N� ı x! consists of m cycles. We will see that its cycles
correspond to the outgoing boundary components.

(v) We demand that Pi lies in the subset Oi of
Fn
jD1 @outA

.j /
R which we will now define. The m cycles

of N� ı x! allow one to write the outer boundaries of the annuli as a union of m subsets, overlapping only
in isolated points. We demand that each of these contains exactly one Pi , and denote that subset by Oi .
To be precise, each Oi is the union of the parts in the outer boundary between the radial segments �j and
�x!.j / in the counterclockwise direction for all j in a cycle of N� ı x!.

(vi) The angular distances ri must be compatible with the location of the �i and the successor permutation
x! in the following sense. If �i does not lie on an annulus with all slits and parametrization points coinciding,
then ri is equal to the angular distance in counterclockwise direction from �i to �x!.i/. If �i lies on an
annulus with all slits and parametrization points coinciding, then ri is equal to either 0 or 2� and exactly
one �j on that annulus has rj D 2� .

In terms of the previous notation, ! and � are obtained from x! and N� by deleting the elements 2hC i for
1� i �m from the cycles.

We now give a construction of a possibly degenerate cobordism S.L/ for a preconfiguration L. To do so,
we first define the sector space †.L/, the pieces used in the gluing construction. We slightly depart from
our informal discussion by making cuts from the outer boundary to the inner boundary of the annuli and
regluing these later. See Figure 4 for examples of the different types of sectors.

Definition 2.2 Let l be the number of annuli containing no elements of E� . Then†.L/will have 2hCmCl
components Fi for 1� i � 2hCmC l . These come in four types:
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Figure 4: Examples of the different types of radial sectors with subsets ˛˙ and ˇ˙.

Ordinary sectors If arg.�i /¤ arg.�x!.i// and �i lies on the j th annulus A.j /R , then we set

Fi D fz 2A.j /R j arg.�i /� arg.z/� arg.�x!.i//g:

Thin sectors If arg.�i /D arg.�x!.i//, ri D 0 and �i lies on the j th annulus A.j /R , then we set

Fi D fz 2A.j /R j arg.�i /D arg.z/g:

Full sectors If arg.�i /D arg.�x!.i//, ri D 2� and �i lies on the j th annulus A.j /R , then we set Fi to be
the annulus A.j /R cut open along the segment arg.z/D arg.�i /, with that segment doubled so that it is
homeomorphic to a closed rectangle.

Entire sectors If the j th annulus A.j /R does not contain any elements of E� and is j 0th in the induced
ordering on the r annuli that do not contain any slits, we set F2hCmCj 0 DA.j /R .

The surface †.L/ underlying the cobordism S.L/ will be obtained as a quotient space of the sector space
by an equivalence relation that makes identifications on the boundary of the sectors. We next define the
subsets involved in those identifications.

Definition 2.3 If Fi is an ordinary or thin sector corresponding to the element �i on the j th annulus A.j /R ,
then we define the following subspaces of Fi :

˛Ci WD fz 2A.j /R j arg.z/D arg.�x!.i// and jzj � j�x!.i/jg;

˛�i WD fz 2A.j /R j arg.z/D arg.�i / and jzj � j�i jg;

ˇCi WD fz 2A.j /R j arg.z/D arg.�x!.i// and jzj � j�x!.i/jg;

ˇ�i WD fz 2A.j /R j arg.z/D arg.�i / and jzj � j�i jg:
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If Fi is a full sector, then our definitions are different, because the two radial segments in the boundary have
the same argument. Let SCi be the radial segment bounding Fi in the counterclockwise direction and S�i
be the radial segment bounding it in the clockwise direction. Then we define the following subspaces of Fi :

˛Ci WD fz 2 S
C
i j jzj � j�x!.i/jg; ˛�i WD fz 2 S

�
i j jzj � j�i jg;

ˇCi WD fz 2 S
C
i j jzj � j�x!.i/jg; ˇ�i WD fz 2 S

�
i j jzj � j�x!i jg:

These subspaces are empty for entire sectors.

Definition 2.4 The equivalence relation �L on †.L/ is the one generated by identifying

(i) z 2 ˛Ci with z 2 ˛�
x!.i/

, and

(ii) z 2 ˇCi with z 2 ˇ�
N�.i/

.

We define the surface †.L/ to be †.L/=�L.

Definition 2.5 The cobordism S.L/ has underlying surface †.L/. It has a map from each inner
boundary @inA.j /R

�inj WS
1
Š @inA.j /R !†.L/;

and these are inclusions of subspaces if none of the slits lie on the inner boundary of an annulus. One can
define the outgoing boundary components as a subspace of †.L/ by considering the intersection of the
outer boundary of the annuli with the sectors. For each cycle in �ı! these intersections form a circle with
canonical orientation and starting point Pk . This yields, for the cycle � ı! corresponding to Pk , a map

�out
k WS

1
!†.L/;

and these are inclusions of subspaces if none of the slits lie on the outer boundary of an annulus.

As mentioned before, this definition may result in a degenerate cobordism for some L. Moreover, two
different preconfigurations might give the same conformal classes of cobordism. In fact, each conformal
class of cobordisms occurs at least .2h/Š times, because the labeling on the slits does not matter. To see
that degenerate surfaces can occur, consider the example in Figure 5. Now we explain how to resolve
both issues.

We have already explained that one should identify configurations obtained by permuting the labels on
the slits. We only need to make two additional identifications. For the first, instead of doing all the

1

1

� �

Figure 5: An example of a radial slit preconfiguration leading to a degenerate surface. The black
arc connecting two points on the surface on the right was the line segment between the two red slits.
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1

1

�
1

1

Figure 6: A jump of a slit. The pairing � is given by the colors, but is uniquely determined by the configuration.

cutting and gluing simultaneously, do it in order of increasing modulus of the slits. This results in the
same cobordism, but doing so makes clear it that if �i lies on the same radial segment as �j and satisfies
j�i j � j�j j, it might as well be on the other side of ��.j /. That is, it might as well have “jumped” over
the slit �j to ��.j /. For the second, note that if a parametrization point similarly “jumps” over a slit, this
does not change the parametrization of the outgoing boundary. These will turn out to be all required
identifications, and we now use them to define equivalence relations on PRadh.n;m/.

Definition 2.6 Let �0 be the equivalence relation on PRadh.n;m/ generated by:

Relabeling of the slits We identify two preconfigurations if they can be obtained from each other
by relabeling the slits. More precisely, for every permutation � 2 S2h extended by the identity to a
permutation N� 2S2hCm and LD .E�; N�; x!; Er/ 2 PRadh.n;m/, we say that L�0 �.L/ with

�.L/D ..E�/ N� ; . N�/ N� ; .x!/ N� ; .Er/ N� /;

where

� .E�/ N� is given by .�/ N�i D � N�.i/,

� . N�/ N� D N� ı N� ı N��1,

� .x!/ N� D N� ı x! ı N��1,

� .Er/ N� is given by .r/ N�i D r N�.i/.

Let � be the equivalence relation on PRadh.n;m/ generated by relabeling of the slits (as above) and the
following two identifications:

Slit jumps We say L� L0 if L0 can be obtained from L by a slit jump; see Figure 6. More precisely, if
we are given a preconfiguration L and two indices i and j such that j D!.i/, ri D 0 and j�i j � j�j j, then
we can obtain a new preconfiguration L0 as follows. We replace �i by the point �0i D .j�i j=j��.j /j/��.j /
and keep all the other slits the same. We then put i after �.j / in x! to obtain x!0, and set r 0i D r�.j / and
r 0
�.j /
D 0. The rest of the data remains the same.

Parametrization point jumps We sayL�L0 ifL0 can be obtained fromL by a jump of a parametrization
point; see Figure 7. More precisely, if we are given a preconfiguration L in which there is a Pi such that
j D x!.i C 2h/ for some j and riC2h D 0, then we can obtain a new preconfiguration L0 by keeping
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Figure 7: A jump of a parametrization point.

all the data the same, except replacing Pi with P 0i lying at the radial segment through ��.j / and setting
r 0
iC2h

D r�.j / and r 0
�.j /
D 0.

Definition 2.7 We now define certain quotient spaces using these equivalence relations:

� the space QRadh.n;m/ of unlabeled possibly degenerate radial slit preconfigurations, the quotient
of PRadh.n;m/ by �0,

� the space Radh.n;m/ of possibly degenerate radial slit configurations, the quotient of QRadh.n;m/
by �.

We will denote by ŒL� the radial slit configuration represented by a preconfiguration L. We are left to deal
with the problem that certain preconfigurations give cobordisms whose underlying surface is degenerate.
We call such preconfigurations degenerate. In [3], Bödigheimer gave a necessary and sufficient criterion
for a (pre)configuration to lead to a degenerate surface:

Proposition 2.8 The surface underlying the cobordism †.L/ constructed out of a preconfiguration L
is degenerate if and only if it is equivalent under � to a preconfiguration satisfying at least one of the
following three conditions:

� Slit hitting inner boundary There is a slit �i with j�i j D 1
2�

.

� Slit hitting outer boundary There is a slit �i on an annulus A.j /R with j�i j DRj .

� Slits are “squeezed” There is a pair .i; j / such that j D �.i/, �i and �j lie on the same annulus ,
�i D �j and , for all k between i and j in the cyclic ordering coming from !, we have that
j�kj � j�i j D j�j j; see Figure 5 for an example. If all slits on the annulus containing �i and �j lie at
the same point , we additionally require that rk D 0 for all of the k between i and j .

Definition 2.9 A radial slit preconfiguration is said to be generic if it is not equivalent to any other by
slit or parametrization point jumps, ie all the slits are disjoint.

Definition 2.10 We define the following spaces:

� The space PRadh.n;m/ of labeled radial slit preconfigurations is the subspace of PRadh.n;m/
consisting of nondegenerate preconfigurations.
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� The space QRadh.n;m/ of unlabeled radial slit preconfigurations is the subspace of QRadh.n;m/
consisting of equivalence classes with nondegenerate representatives.

� The space Radh.n;m/ of radial slit configurations is the subspace of Radh.n;m/ consisting of
equivalence classes with nondegenerate representatives.

2.1.2 Cell complexes of radial slit configurations Next we give CW–complexes Rad and Rad

homeomorphic to the spaces of radial slit configurations given before. On Rad this is the CW–structure
given in [3, Section 8.2], and on the subspace Rad it coincides with the radial analogue of [4]. The cells
will be indexed by so-called combinatorial types, which we define first.

Definition 2.11 Fix an L in PRadh.n;m/.

� The radial segments of the slits, the parametrization points and the positive real lines divide the
annuli of the preconfiguration L radially into different pieces, which we will call radial chambers;
see Figure 8.

� Each slit �i in L defines a circle of radius j�i j on all of the n annuli. These circles divide the n
annuli into different pieces, which we will call annular chambers; see Figure 8.

Remark 2.12 The orientation of the complex plane endows the radial chambers on each annulus with a
natural ordering, and similarly the modulus endows the annular chambers with a natural ordering; see
Figure 8.

Each of the annular chambers is homeomorphic to a disjoint union of n annuli, while each of the radial
chambers is homeomorphic to a rectangle.

Definition 2.13 Two preconfigurations L and L0 in PRadh.n;m/ are said to have the same combinatorial
data if L0 can be obtained from L by continuously moving the slits and parametrization points in each
complex plane without collapsing any chamber. This defines an equivalence relation on PRadh.n;m/.

A combinatorial type of preconfigurations L is an equivalence class of preconfigurations under this
relation. Informally, a combinatorial type is the data carried over by the picture of a preconfiguration
without remembering the precise placement of the slits. Notice that this equivalence relation is also well
defined on the sets of radial slit configurations ŒL�. Thus one can similarly define a combinatorial type of
configurations ŒL� to be an equivalence class of configurations under this relation. We make a similar
definition for the case of unlabeled radial slit configurations.

We will use ‡ to denote the set of all combinatorial types of configurations.

Remark 2.14 If L is a degenerate (or nondegenerate) preconfiguration, then so is any preconfiguration of
the same combinatorial type. Thus, we can talk about a degenerate or nondegenerate combinatorial type.
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Figure 8: Top left: a configuration L and its radial and annular chambers divided by dotted lines.
The radial chambers are numbered in blue (there are 6 radial chambers on the left annulus and 4
on the right annulus) and the annular chambers are numbered in red (there are 3 annular chambers
consisting of a pair small annuli, one on each of the annuli). This combinatorial type gives an
11–cell in Rad given by �5 ��3 ��3. Top right and bottom: parts of the boundary of L and
their chambers. The modified parts are marked in light yellow.

Now we give definitions of cell complexes of (pre)configurations and their compactifications. Note that
the meaning of p and q is different from their meaning in [3].

Definition 2.15 The multidegree of a combinatorial type ŒL� on n annuli is the .nC1/–tuple of integers
.q1; : : : ; qn; p/, where qiC1 is the number of radial chambers in the i th annulus and pC1 is the number
of annular chambers. For 0� j � qi and 0� i � n, we denote by d ij .ŒL�/ the combinatorial type obtained
by collapsing the j th radial chamber on the i th annulus; see Figure 8. For 0 � j � p, we denote by
dnC1j .ŒL�/ the combinatorial type obtained by collapsing the j th annular chamber; see Figure 8.

The cell complex of possibly degenerate radial slit configurations Radh.n;m/ is the realization of the
multisimplicial set with

� .q1; : : : ; qn; p/–simplices given by

feŒL� j ŒL� is a combinatorial type of multidegree .q1; : : : ; qn; p/g;

� the faces of eŒL� given by d ij .�ŒL�/ WD �d i
j
.ŒL�/.
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Figure 9: A second example of a cell and parts of its boundary. Here all slits have the same length.

That is, Radh.n;m/ is a CW–complex with cells indexed by combinatorial types of radial slits configura-
tions as follows. Let eŒL� WD�q1 � � � � ��qn ��p. Then

Radh.n;m/ WD

F
ŒL�2‡ eŒL�

�
;

where the equivalence relation is generated by

.eŒL�; .Et1; : : : ; ı
j .Eti /; : : : ; EtnC1//� .ed i

j
.ŒL�/; .Et1; : : : ; Eti ; : : : ; EtnC1//:

Here ıj is the map �qi�1!�qi including 0 as the .jC1/st coordinate, and ‡ is the set of combinatorial
types of radial slit configurations.

The cell complexes of possibly degenerate radial slit preconfigurations PRadh.n;m/ and unlabeled
preconfigurations QRadh.n;m/ are defined in similar ways.

Definition 2.16 If a combinatorial type ŒL� is degenerate, then d ij .ŒL�/ is also degenerate. Thus, we define
the cell complex of degenerate radial slit configurations as the subcomplex Radh.n;m/

0 �Radh.n;m/

obtained as the realization of the degenerate simplices. Finally, Radh.n;m/ is the complement. That is,

Radh.n;m/ WDRadh.n;m/ nRadh.n;m/
0:

The spaces PRadh.n;m/ and QRadh.n;m/ are defined in a similar way.

We introduce notation for the image of eŒL� in Rad:

Definition 2.17 Letting ŒL� be a combinatorial type, we define the subspace RadŒL� as the image
of the interior of eŒL�. We also let RadŒL� be the closure of RadŒL� in Rad, and define @RadŒL� D

Rad\ .RadŒL� nRadŒL�/.
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2.1.3 Relationships Our final goal for this section is to explain the relationship between the spaces and
cell complexes of radial slit configurations and the moduli space of cobordisms. The first relationship is
straightforward, as there are continuous bijections

Radh.n;m/!Radh.n;m/; Radh.n;m/!Radh.n;m/;

QRadh.n;m/!QRadh.n;m/; QRadh.n;m/!QRadh.n;m/;

PRadh.n;m/!PRadh.n;m/; PRadh.n;m/!PRadh.n;m/;

compatible with the quotient maps and inclusions. These are given by sending a point to its combinatorial
type and the simplicial coordinates obtained by rescaling the angles of the slits (for the first n coordinates)
and their radii (for the last coordinate). The next lemma follows from [3], and we sketch a proof below.

Lemma 2.18 These maps are homeomorphisms.

Proof We start by noting that PRadh.n;m/ and PRadh.n;m/ are both compact Hausdorff spaces;
the former is a closed subset of a compact Hausdorff space and the latter is a finite CW–complex. A
continuous bijection between compact Hausdorff spaces is a homeomorphism. Next note that the maps
Radh.n;m/!Radh.n;m/ and QRadh.n;m/!QRadh.n;m/ are induced by passing to quotients, as
are their inverses, so they are also homeomorphisms.

Thus the maps on the right are homeomorphisms and the maps on the left are obtained by restricting
these homeomorphisms to open subsets and replacing their codomain with their image. Hence they are
also homeomorphisms.

The relationship to moduli space is less straightforward. In [3, Section 9], Bödigheimer defined a space
RADh.n;m/ of all radial slit configurations with varying inner radii but fixed outer radii, and a subspace
RADh.n;m/ of all nondegenerate radial slit configurations. He also proved a version of the previous
lemma.

Lemma 2.19 There are homotopy equivalences

RADh.n;m/' Radh.n;m/ and RADh.n;m/' Radh.n;m/:

Sketch of proof To explain the existence of these homotopy equivalences, we note that Bödigheimer’s
RAD and RAD differ from Rad and Rad only in the following two ways:

(i) In RAD and RAD the inner radii are allowed to vary in .0; R0/ for some choice of R0 > 0, while
in Rad and Rad they are fixed to 1

2�
.

(ii) In RAD and RAD an exceptional set � is used to remove ambiguity when all slits on an annulus
lie on two segments, while in Rad and Rad this role is played by the angular distances Er .

The second of these encodes equivalent data; given the rest of the data of a radial slit configuration, �
can be reconstructed from Er and vice versa. The first says that the difference between the two spaces
is in the choices of radii. More precisely, there is an inclusion Rad ,! RAD with homotopy inverse
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given by decreasing all radii to min.Ri / and changing the radial coordinates of all the data by an affine
transformation that sends min.Ri / to 1

2�
and fixes 1. This homotopy equivalence restricts to one between

RAD and Rad.

Bödigheimer proved in [3, Section 7.5], with additional details in [12], that a version of RADh.n;m/
without parametrization points on the outgoing boundary is a model for the moduli space of cobordisms
without parametrization of the outgoing boundary. This uses that †.L/ comes with a canonical conformal
structure, being obtained by gluing subsets of C. Adding in the parametrizations for the outer boundary,
this result implies:

Theorem 2.20 (Bödigheimer) The map that assigns to each ŒL� 2 RADh.n;m/ the conformal class of
the cobordism S.L/ gives a homeomorphism

RADh.n;m/Š
G

Mg.n;m/;

where the disjoint union is over triples .g; n;m/ satisfying hD 2g� 2CnCm.

By the remarks above,
Radh.n;m/'

G
Œ†�

BDiff.†; @†/;

where the disjoint union is over two-dimensional cobordisms with n� 1 incoming boundary components,
m� 1 outgoing boundary components and total genus g � 0.

Bödigheimer proved Theorem 2.20 for connected cobordisms with no parametrization of the outgoing
boundary, but this version of the theorem is an easy consequence of his. His proof amounts to checking
that RADh.n;m/ is a manifold of dimension 3hCmCn (see also [13] for remarks on the real-analytic
structure). It sits as a dense open subset in RADh.n;m/. In this way we can think of RADh.n;m/ as
a “compactification” of RADh.n;m/. Informally it is the compactification where handles or boundary
components can degenerate to radius zero, as long as there is always a path from each incoming boundary
component to an outgoing boundary component that does not pass through any degenerate handles or
boundary components. Colloquially, “the water must always be able to leave the tap”. Bödigheimer calls
this the harmonic compactification of moduli space. We now describe a deformation retract of it:

Definition 2.21 The unilevel harmonic compactification URadh.n;m/ is the subspace of Radh.n;m/

given by cells corresponding to configurations satisfying j�i j DR for all i 2 f1; : : : ; 2hg, ie all slits lie on
the outer radius.

In addition to the inclusion �WURadh.n;m/ ,!Radh.n;m/, there is also a projection pWRadh.n;m/!

URadh.n;m/ which makes all slits have modulus R.

Lemma 2.22 The maps � and p are mutually inverse , up to homotopy.
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Proof The map p ı � is equal to the identity on URad. For � ı p, a homotopy from the identity on
Rad to � ı p is given at time t 2 Œ0; 1� by sending each slit �i to

�
..1� t /j�i j CRt/=j�i j

�
�i under the

homeomorphism with Rad.

The spaces constructed in this section fit together in the diagram

PRadh.n;m/ PRadh.n;m/

QRadh.n;m/ QRadh.n;m/

Radh.n;m/ Radh.n;m/ URadh.n;m/

compactification

compactification

compactification '

where all the horizontal maps within the squares are inclusions.

Remark 2.23 One can make sense of gluing of cobordisms on the level of radial slits; see [3]. This
construction gives RADh.n;m/ the structure of a PROP in topological spaces. One of the advantages of
the radial slit configurations over fat graphs is the ease with which one can describe the PROP structure.

2.2 The universal surface bundle

In the previous section, we motivated radial slit configurations by explaining that a preconfiguration
consists of data to construct a cobordism S.L/. The topology on the collection of radial slit configurations
was guided by the idea that this construction produces a conformal family of cobordisms. In this section
we make this precise by defining a universal surface bundle over Rad via its homeomorphism with Rad.

The equivalence relation � on PRadh.n;m/ is such that there is a canonical isomorphism of cobordisms
with conformal structure between S.L/ and S.L0/ if L� L0. Thus we can make sense of the cobordism
S.ŒL�/ for an equivalence class ŒL�. The idea for constructing the universal surface bundle over Radh.n;m/
is to make the construction of S.ŒL�/ continuous in ŒL�. The result is a space over Radh.n;m/, and we
check it is a universal bundle by comparing it to the definition of the universal bundle in the conformal
construction of moduli space.

We first make sense of the radial sectors †.L/ as a space over PRadh.n;m/. This seems obvious; we
think of the sectors as a subspace of a disjoint union of annuli for each L, so one is tempted to just state
that z†.L/ is the relevant subspace of

PRadh.n;m/�
� nG
jD1

A.j /R

�
:

Two minor problems arise:

(i) the full sectors are not actually subspaces of annuli, and

(ii) the number of entire sectors is not constant over PRadh.n;m/.
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Both are relatively harmless. Problem (ii) is solved by noting that the number of entire sectors is locally
constant, so one can work separately over each of the subspaces of components with a fixed number of
entire sectors. Problem (i) is solved by considering a version of PRadh.n;m/ where the preconfigurations
L are endowed with lifts of the slits to elements of

Fn
iD1
QAR, the disjoint union of the universal covers

of the annuli, under the condition that the distances between them are still equal to the angular distances.
Over this version, one has a space with fibers given by

Fn
iD1
QAR, which does contain the full sectors.

One then notes that there is a canonical homeomorphism between the sectors over the same configurations
with different choices of lifts. In the end, we conclude there exists a space QA over PRadh.n;m/ whose
fibers consist of a disjoint union of annuli, and there is a subspace PSh.n;m/� QA whose fiber over L
can be canonically identified with the sector space z†.L/.

Recall that �L is the equivalence relation on †.L/ used when gluing the sectors together to obtain a
surface. Using it fiberwise defines an equivalence relation �:

Definition 2.24 Let � be the equivalence relation on PSh.n;m/ generated by .L; z/� .L0; z0/, where
L;L0 2 PRadh.n;m/, z 2†.L/� PSh.n;m/ and z0 2†.L0/� PSh.n;m/, if LD L0 and z �L z0.

As mentioned before, there is a canonical isomorphism �L;L0 between †.L/ and †.L0/ if L�L0. Using
this, we can define a version of � for PSh.n;m/:

Definition 2.25 Let Š be the equivalence relation on PSh.n;m/ generated by � and by saying that
.L; z/ and .L0; z0/ are equivalent if L� L0 and z0 D �L;L0.z/.

We can now define the surface bundle.

Definition 2.26 We define PSh.n;m/ to be the restriction of PSh.n;m/ to PRadh.n;m/. We then define
Sh.n;m/ as PSh.n;m/=Š, which is a space over Radh.n;m/.

A priori this is a space over Radh.n;m/ with fibers having the structure of cobordisms, but it is in fact a
universal surface bundle. This is implicit in [3], but not explicitly stated there. We explain the reasoning
below:

Proposition 2.27 The space Sh.n;m/ over Radh.n;m/ is a universal surface bundle.

Sketch of proof Varying radii allows one to extend Sh.n;m/ to RADh.n;m/. Theorem 2.20 tells us
that the assignment ŒL� 7! ŒS.ŒL�/� gives a homeomorphism RADh.n;m/!Mg.n;m/. Pulling back
the universal bundle over Mg.n;m/ defined at the end of Section 1.1 exactly gives Sh.n;m/.

There is a universal Mod.Sg;nCm/–bundle over Radh.n;m/ given by the bundle with fiber over ŒL�
the isotopy classes of diffeomorphisms of †.L/ fixing the boundary. We give an alternative explicit
construction of this bundle in Definition 4.46.
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3 Admissible fat graphs and string diagrams

3.1 The definition

Following Strebel [39], Penner, Bowditch and Epstein gave a triangulation of Teichmüller space of surfaces
with decorations, which is equivariant under the action of its corresponding mapping class group [6; 37].
In this triangulation, simplices correspond to equivalence classes of marked fat graphs and the quotient of
this triangulation gives a combinatorial model of the moduli space of surfaces with decorations. These
ideas were studied by Harer for surfaces with punctures and boundary components [26] and used by Igusa
to construct a category of fat graphs that models the mapping class groups of punctured surfaces [29].
Godin extended Igusa’s construction to surfaces with boundary and open–closed cobordisms [21; 22].

In this section we define a category of fat graphs, as well as specific subcategories of it, in the spirit of
Godin. We also define the space of metric fat graphs in the spirit of Harer and Penner, as well as specific
subspaces of these spaces, and show that these are the classifying spaces of these categories. Finally, we
define the space of Sullivan diagrams as a quotient of a certain subspace of the space of metric fat graphs.
It plays the role of a compactification.

3.1.1 Fat graphs We start with precise definitions of graphs and fat graphs:

Definition 3.1 A combinatorial graph G is a tuple G D .V;H; s; i/ with a finite set of vertices V , a
finite set of half-edges H , a source map s WH ! V and an edge pairing involution i WH !H without
fixed points.

The source map s ties each half-edge to its source vertex, and the edge pairing involution i attaches
half-edges together. The set E of edges of the graph is the set of orbits of i . The valence of a vertex
v 2 V is the cardinality of the set s�1.v/. A leaf of a graph is a univalent vertex and an inner vertex is a
vertex that is not a leaf. The geometric realization of a combinatorial graph G is the CW–complex jGj
with one 0–cell for each vertex, one 1–cell for each edge and attaching maps given by s and s ı i . A tree
is a graph whose geometric realization is a contractible space and a forest is a disjoint union of trees.

Definition 3.2 A fat graph � D .G; �/ is a combinatorial graph together with a cyclic ordering �v of the
half-edges incident at each vertex v. The fat structure of the graph is given by the data � D .�v/, which
is a permutation of the half-edges.

	

Figure 10: Two different fat graphs — the fat structure is given by the orientation of the plane,
here denoted by the circular arrow — with the same underlying combinatorial graph.
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Figure 11: An example of a closed fat graph which is not admissible. The incoming and outgoing
leaves are marked by incoming or outgoing arrows.

From a fat graph � D .G; �/ one can construct a surface with boundary †� by thickening the edges and
the vertices. More explicitly, one can construct this surface by replacing each edge with a strip and gluing
these strips to a disk at each vertex according to the fat structure. The cyclic ordering exactly gives the
data required to do this. Notice that there is a strong deformation retraction of †� onto jGj, so one can
think of jGj as the skeleton of the surface.

Definition 3.3 The boundary cycles of a fat graph are the cycles of the permutation of half-edges given
by ! D � ı i . Each cycle � of ! gives a list of edges of the graph � and thus determines a subgraph
�� � � , which we call the boundary graph corresponding to � .

Remark 3.4 The fat structure of � is completely determined by !. Moreover, one can show that the
boundary cycles of a fat graph � D .G; !/ correspond to the boundary components of †� ; see [22].
Therefore the surface †� is completely determined up to topological type by the combinatorial graph and
its fat structure.

A fat graph gives one a surface, but not yet a cobordism. The difference is that it does not distinguish
between incoming and outgoing boundary components, nor do these come with canonical parametrizations.
Note that after deciding whether a boundary component is incoming or outgoing, a parametrization is
uniquely determined once we pick a marked point and edge lengths. Thus it suffices to add to each
boundary component a leaf labeled either “incoming” or “outgoing”.

Definition 3.5 A closed fat graph � D .�;Lin; Lout/ is a fat graph with an ordered set of leaves and a
partition of this set of leaves into two sets Lin and Lout such that:

(i) All inner vertices are at least trivalent.

(ii) There is exactly one leaf on each boundary cycle. Given a leaf li we denote its corresponding
boundary graph by �li � � .

Leaves in Lin or in Lout, are called incoming or outgoing respectively.

Note that the previous definition also removed unnecessary bivalent and univalent vertices. It turns out
that one can consider an even more restricted type of fat graph, which reflects that (like in radial slits) we
can decide to arrange the incoming boundary in a special way.
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Figure 12: Two examples of admissible fat graphs. The first graph has the topological type of the
pair of pants, and second graph that of a surface of genus 1 with 5 boundary components.

Definition 3.6 Let � be a closed fat graph. Let li denote a leaf of � and �li � � be its corresponding
boundary graph. � is called admissible if the subgraphs �li � li for all incoming leaves li are disjoint
embedded circles in � . We refer to these boundary cycles as admissible cycles (see Figure 12).

We organize fat graphs into a category. The idea is that when we use fat graphs to construct surfaces, we
should be able to pick different lengths for the edges to obtain different conformal classes. Furthermore,
if the length of an edge goes to zero, we expect the two disks corresponding to the vertices to be glued
together. This makes sense as long as the edge is not a loop. The morphisms in the category of fat graphs
encode this relationship between graphs. Recall that a tree is a graph whose geometric realization is
contractible, and a forest is a disjoint union of trees.

Definition 3.7 We define two categories:

� The category of closed fat graphs Fat is the category with objects isomorphism classes of closed
fat graphs and morphisms Œ��! Œ�=F � given by collapsing to a point in each tree in a subforest
of � that does not contain any leaves.

� The category of admissible fat graphs Fat ad is the full subcategory of Fat with objects isomorphism
classes of admissible fat graphs.

The compositions in Fat and Fat ad , and hence the categories themselves, are well defined. The category
Fat was introduced by Godin in [22], and Fat ad is a slight variation, introduced by the same author in [21].

Note that the collapse of a subforest which does not contain any leaves induces a surjective homotopy
equivalence upon geometric realizations and does not change the number of boundary components.
Therefore, if there is a morphism 'W Œ��! Œz�� between isomorphism classes of fat graphs, then the
surfaces †Œ�� and †

Œz��
are homeomorphic.
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From a closed fat graph we can construct a two-dimensional cobordism. The underlying surface of the
cobordism is the oriented surface †� . This gives an orientation of the incoming and outgoing boundary
component, so it is enough to give a labeled marked point in each boundary component. Note that each
of the boundary components corresponds to exactly one leaf in the graph, which gives a marked point in
the boundary component. We label this according to the labeling of its leaf. This gives a cobordism, well
defined up to isomorphism.

3.1.2 Metric fat graphs We motivated the morphisms in the category of fat graphs by thinking about
lengths of edges. This is made more concrete in the space of metric fat graphs, which we describe now.
This space has a deformation retraction onto the classifying space of the category of fat graphs, but we
feel metric fat graphs are more intuitive and hence discuss them first. Several equivalent versions of this
space and its dual concept (using weighted arc systems instead of fat graphs) have been studied by Harer,
Penner, Igusa and Godin [20; 27; 29; 37].

The idea is simple: a metric fat graph is a fat graph with lengths assigned to its edges. We need a bit
more care to make this interact well with the additional data and properties of admissible fat graphs.

Definition 3.8 A metric admissible fat graph is a pair .�; �/ where � is an admissible fat graph and � is
a length function, ie a function �WE� ! Œ0; 1� where E� is the set of edges of � and � satisfies:

(i) �.e/D 1 if e is a leaf.

(ii) ��1.0/ is a forest in � and �=��1.0/ is admissible.

(iii) For any admissible cycle C in � , we have
P
e2C �.e/D 1.

We will call the value of � on e the length of the edge e in � .

Definition 3.9 Suppose � is an admissible fat graph with p admissible cycles. Let .n1; n2; : : : ; np/ be
the number of edges on each admissible cycle and set n WD

P
i ni . The space of length functions on � is

given as a set by
M .�/ WD f�WE� ! Œ0; 1� j � is a length functiong:

There is a natural inclusion

M .�/ ,!�n1�1 ��n2�1 � � � � ��np�1 � .Œ0; 1�/#E��n:

We give M .�/ the subspace topology via this inclusion.

Definition 3.10 Two metric admissible fat graphs .�; �/ and .z�; Q�/ are called isomorphic if there is an
isomorphism of admissible fat graphs ' W �! z� such that �D Q� ı'�, where '� is the map induced by '
on E� .

Definition 3.11 The space of metric admissible fat graphs is defined as

MFat ad
WD

F
� M .�/

�
;
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where � runs over all admissible fat graphs and the equivalence relation � is given by

.�; �/� .z�; Q�/ () .�=��1.0/; �jE����1.0//Š .z�=
Q��1.0/; Q�j

Ez��
Q��1.0/

/:

In other words, we identify isomorphic admissible fat graphs with the same metric, and we identify a
metric admissible fat graph with some edges of length 0 with the metric fat graph in which these edges
are collapsed and all other edge lengths remain unchanged.

Lemma 3.12 There is a deformation retraction of the space of metric admissible fat graphs MFat ad onto
the geometric realization of the nerve of Fat ad .

Proof We will first give a continuous map �W jFat ad j !MFat ad . A point x 2 jFat ad j is represented by
xD .Œ�0�! Œ�1�!� � �! Œ�k�; s0; s1; : : : ; sk/2NkFat ad ��k , where Nk denotes the set of k–simplices
of the nerve. Choose representatives �i for 0 � i � k, and for each i let C ij denote the j th admissible
cycle of �i , nij denote the number of edges in C ij and mi denote the number of edges that do not belong
to the admissible cycles. Each graph �i naturally defines a metric admissible fat graph .�0; �i / where �i
is given as follows:

�i WE�0
! Œ0; 1�; e 7!

8<:
0 if e is collapsed in �i ;
1=nij if e 2 C ij ;
1=mi otherwise.

Then define �.x/ WD .�0;
Pk
iD0 si�i /. It is easy to show that this assignment is well defined and respects

the simplicial relations of the geometric realization, and thus defines a continuous map. Moreover, it is an
injective map between Hausdorff spaces with compact image, and so is a homeomorphism onto its image.
Note that the image of � is the subspace of metric graphs where the sum of the lengths of the edges that
do not belong to the admissible cycles is 1.

We now construct a continuous map r WMFat ad
� Œ0; 1�!MFat ad which is a strong deformation retraction

of MFat ad onto the image of �, by rescaling. Since all the graphs we are considering are finite, we can
define a continuous function g by

gWMFat ad
!R>0; .�; �/ 7!

X
e2 zE�

�.e/;

where zE� is the set of edges that do not belong to the admissible cycles. We then define r by linear
interpolation as r..�; �/; t/ WD .�; .1� t /�C t�g/, where �g is the rescaled length function given by

�g WE� !R�0; e 7!

�
�.e/ if e belongs to an admissible cycle,
�.e/=g.�; �/ if e does not belong to an admissible cycle.

Remark 3.13 The space MFat ad and the category Fat ad split into components indexed by the topological
type of the graphs as two-dimensional cobordisms. That is,

MFat ad
Š

G
g;n;m

MFat ad
g;nCm and Fat ad

Š

G
g;n;m

Fat ad
g;nCm;
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Figure 13: Three equivalent metric admissible fat graphs. On the last two graphs the lengths of
the edges of the admissible cycle have been left out; they equal those of the first graph.

where MFat ad
g;nCm and Fat ad

g;nCm are the connected components corresponding to admissible fat graphs
with n admissible cycles which are homotopy equivalent to a surface of total genus g with nCm boundary
components.

3.1.3 Sullivan diagrams We now define a quotient space SD of MFat ad , which we will see in Section 5
is the analogue of the harmonic compactification for admissible fat graphs. To define it, we first describe
an equivalence relation �SD on metric admissible fat graphs.

Definition 3.14 We say �1 �SD �2 if �2 can be obtained from �1 by

� slides, ie sliding vertices along edges that do not belong to the admissible cycles, and

� forgetting lengths of nonadmissible edges, ie changing the lengths of the edges that do not belong
to the admissible cycles.

Definition 3.15 A metric Sullivan diagram is an equivalence class of metric admissible fat graphs under
the relation �SD.

We can informally think of a Sullivan diagram as an admissible fat graph where the edges not belonging
to the admissible cycles are of length zero.

Definition 3.16 The space of Sullivan diagrams SD is the quotient space SDDMFat ad =�SD.
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Remark 3.17 A path in SD is given by continuously moving the vertices on the admissible cycles. This
space splits into connected components given by topological type.

Remark 3.18 In Section 5 we show that SD has a canonical CW–complex structure. Its cellular chain
complex is the complex of (cyclic) Sullivan chord diagrams introduced by Tradler and Zeinalian. They,
and later Wahl and Westerland, used it to construct operations on the Hochschild chains of symmetric
Frobenius algebras [40; 43].

3.2 The universal mapping class group bundle

In this section we describe the universal mapping class group bundles over Fat ad and MFat ad . Recall that
from an admissible fat graph we can construct a cobordism which contains the graph as a deformation
retract, though this depends on some choices. The idea for the construction of the universal mapping
class group bundle is that its fiber over an admissible fat graph � consists of all ways that � can sit in a
fixed standard cobordism.

For each topological type of cobordism fix a representative surface Sg;nCm of total genus g with n
incoming boundary components and m outgoing boundary components. Fix a marked point xk in the kth

incoming boundary for 1� k � n and a marked point xkCn in the kth outgoing boundary for 1� k �m.

Definition 3.19 Suppose � is an admissible fat graph of topological type Sg;nCm. Let vin;k denote
the kth incoming leaf and vout;k denote the kth outgoing leaf. A marking of � is an isotopy class of
embeddings H W j�j ,! Sg;nCm such that H.vin;k/D xk , H.vout;k/D xkCn and the fat structure of �
coincides with the one induced by the orientation of the surface. We will call a pair .�; ŒH�/ a marked fat
graph and denote by Mark.�/ the set of markings of � .

Lemma 3.20 Any marking H W j�j ,! Sg;nCm is a homotopy equivalence , and the map on �1 induced
by H sends the i th boundary cycle of � to the i th boundary component of Sg;nCm.

Proof Since the fat structure of � coincides with the one induced by the orientation of the surface, we
can thicken � inside Sg;nCm to a subsurface S� of the same topological type as Sg;nCm. Moreover, by
the definition of a marking, each boundary component of S� meets a boundary component of Sg;nCm.
Thus, there is a deformation retraction of Sg;nCm onto this subsurface and onto � .

Lemma 3.21 Let � be an admissible fat graph and F be a forest in � which does not contain any leaves
of � . Then there is a bijection Mark.�/!Mark.�=F / denoted by ŒH � 7! ŒHF �.

This identification depends on the map connecting both graphs , ie given ŒH � a marking of � , if z� D
�=F1 D �=F2 then ŒHF1

� and ŒHF2
� can be different markings of z� . Figure 14 gives an example of this

in the case of the cylinder.

Proof Let H be a representative of a marking ŒH � of � . The image of H jF (the restriction of H to jF j)
is contained in a disjoint union of disks away from the boundary. Therefore the marking H induces a
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z� D �=e1 D �=e2

� � 1��2

H
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� � 1��2

He2

� � 1��2

Figure 14: Two different embeddings of z� in the cylinder differing by a Dehn twist and
corresponding to the same marking of � .

marking HF W j�=F j ,! Sg;nCm given by collapsing each of the trees of F to a point of the disk in which
their image is contained. Note that HF is well defined up to isotopy and it makes the following diagram
commute up to homotopy:

j�j j�=F j

Sg;nCm

H
HF

In fact, up to isotopy, there is a unique embedding of a tree with a fat structure into a disk, in which the
fat structure of the tree coincides with the one induced by the orientation of the disk and the endpoints
are fixed points on the boundary. This can proven by induction. Start with the case where F is a single
edge. Up to homotopy, there is a unique embedding of an arc in a disk where the endpoints of the arc
are fixed points on the boundary. Then by [17], there is also a unique embedding up to isotopy. For the
induction step, let ˛ be an arc embedded in the disk with its endpoints at the boundary and let a and b be
fixed points in the boundary of a connected component of D n˛. Then we have a map

Emba;b.I;D n˛/! Emba;b.I;D/;

where Emba;b.I;D n ˛/ is the space of embeddings of a path in D n ˛ which start at a and end at b,
with the C1–topology, and similarly for Emba;b.I;D/. By [23], this map induces injective maps in all
homotopy groups, in particular in �0, which gives the induction step.

It then follows that, given ŒHF � a marking of �=F , there is a unique marking ŒH � of � such that the
above diagram commutes up to homotopy.

Algebraic & Geometric Topology, Volume 24 (2024)



Comparing combinatorial models of moduli space and their compactifications 625

Definition 3.22 Define the category EFat ad to be the category with objects isomorphism classes of
marked admissible fat graphs .Œ��; ŒH �/ (where two marked admissible fat graphs are isomorphic if
their underlying fat graphs are isomorphic and they have the same marking) and morphisms given by
morphisms in Fat ad where the map acts on the marking as stated in the previous lemma. We denote
by EFat ad

g;nCm the full subcategory with objects marked admissible fat graphs whose thickening give a
cobordism of topological type Sg;nCm.

Definition 3.23 The space of marked metric admissible fat graphs EMFat ad is defined to be

EMFat ad
WD

F
� M .�/�Mark.�/

�E
;

where � runs over all admissible fat graphs, and the equivalence relation is given by

.�; �; ŒH�/�E .z�; Q�; Œ zH�/ () .�; �/Š .z�; Q�/ and ŒH��D Œ zHQ��:

Here Š denotes isomorphism of metric fat graphs, H� is the induced marking H� W j�=F�j ,! Sg;nCm

where F� is the subforest of � of edges of length zero ie F� D ��1.0/ and HQ� is defined analogously.

The following result is proven in [14], in fact in more generality, for a category modeling open–closed
cobordism and not only closed cobordisms.

Theorem 3.24 The projection jEFat ad
g;nCmj ! jFat ad

g;nCmj is a universal Mod.Sg;nCm/–bundle.

The proof follows the original ideas of Igusa [29] and Godin [22]. Since all spaces involved are CW–
complexes, one first shows that jEFat ad

g;nCmj is contractible, which follows from contractibility of the arc
complex [28]. Second, one proves that the action of the mapping class group Mod.Sg;nCm/ on EFat ad

g;nCm

is free and transitive. That is, for any two markings ŒH1� and ŒH2�, there is a unique Œ'� 2Mod.Sg;nCm/
such that Œ' ıH1� D ŒH2�. This proof in particular gives rise to an abstract homotopy equivalence
M' Fat ad .

By Lemma 3.21, as a set EMFat ad is given by f.Œ�; ��; ŒH �/ j Œ�; �� 2MFat ad and ŒH � 2Mark.Œ��/g. As
before, let EMFat ad

g;nCm denote the subspace of marked metric admissible fat graphs whose thickenings
give an open–closed cobordism of topological type Sg;nCm. Then Mod.Sg;nCm/ acts on EMFat ad

g;nCm

by composition with the marking, and it follows that:

Corollary 3.25 The projection EMFat ad
g;nCm!MFat ad

g;nCm is a universal Mod.Sg;nCm/–bundle.

Proof This is clear since we have a pullback diagram

EMFat ad
g;nCm jEFat ad

g;nCmj

MFat ad
g;nCm jFat ad

g;nCmj

'

r.�;1/�id

'

r.�;1/

The horizontal maps are the homotopy equivalences given by r , the map constructed in Lemma 3.12.
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4 The critical graph equivalence

In this section we construct the space Rad� as well as the maps in Corollaries 4.42 and 4.51, and prove
these are homotopy equivalences.

4.1 Lacher’s theorem

The idea for proving that certain maps f WX! Y are homotopy equivalences is to show that they are nice
enough maps between nice enough spaces with contractible fibers. This is made precise by [33, Theorem,
page 510].

Definition 4.1 (i) A subspace X of a space Y is a neighborhood retract if there exists an open subset
U of Y containing X and a retraction r WU !X .

(ii) A space X is an ANR if, whenever X is a closed subspace of a metric space Y , X is a neighborhood
retract of Y .

Definition 4.2 (i) A subset A of a manifold M is cellular if it is the intersection
T
nEn of a nested

sequence E1 �E2 � � � � of n–cells Ei in M , ie subsets homeomorphic to Dn.

(ii) A space X is cell-like if there is an embedding (ie a continuous map that is a homomorphism onto
its image) �WX !M of X into a manifold M such that �.X/ is cellular.

(iii) A map f WX ! Y is cell-like if for all y 2 Y the point inverse f �1.fyg/ is cell-like.

Theorem 4.3 (Lacher) A proper map f WX ! Y between locally compact ANRs is cell-like if and
only if , for all open U � Y , the restriction f jf �1.U /Wf

�1.U /! U is a proper homotopy equivalence.

The conditions in the above definitions are difficult to verify, so we will provide criteria which imply
them. Our main reference are [35] for ANRs, [18, Chapter 3] for polyhedra and [33] for cell-like spaces.

Proposition 4.4 The following are properties of ANRs:

(i) For all n� 0, the closed n–disk Dn is an ANR.

(ii) An open subset of an ANR is an ANR.

(iii) If X is a space with an open cover by ANRs , then X is an ANR.

(iv) If X and Y are compact ANRs , A � X is a compact ANR and f WA! Y is continuous , then
X [f Y is an ANR.

(v) Any locally finite CW–complex is an ANR.

(vi) Any locally finite polyhedron is an ANR.

(vii) A product of finitely many ANRs is an ANR.

(viii) A compact ANR is cell-like if and only if it is contractible.

Proof Properties (i), (ii), (iii) and (iv) follow from Corollary 5.4.6 and Theorems 5.4.1, 5.4.5 and 5.6.1
of [35], respectively. These combine to prove (v) by noting that by (ii) and (iii) one can reduce to the case
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of finite CW–complexes, and since by definition these can be obtained by gluing closed n–disks together,
(i) and (iv) prove that finite CW–complexes are ANRs. Property (vi) follows from (v), but is also [35,
Theorem 3.6.11]. Property (vii) is [35, Proposition 1.5.7]. Finally, (viii) follows from Theorem 4.3 by
considering the map to a point.

4.2 The fattening of the radial slit configurations and the critical graph map

There is a natural admissible metric fat graph associated to a radial slit configuration: the unstable critical
graph obtained by taking the inner boundaries of the annuli and the complements of the slit segments,
and gluing these together according to the combinatorial data. The inner boundaries of the annuli give
the admissible cycles of the graph and the incoming leaves are placed at the positive real line of each
annulus. The outgoing leaves are obtained from marked points on the outgoing boundary components.
This graph gets a canonical fat graph structure as a subspace of the surface S.L/.

We now make this definition precise. Because we fixed the outer radii of the annuli, we shorten A.i/Ri

to Ai . Recall the subsets ˛˙i and ˇ˙i in the sector Fi , from Definition 2.3. These lie in a pair of distinct
radial segments of Fi , unless it is a thin sector in which case they lie in a single radial segment. To a
radial slit configuration L 2QRad we associate a space EL, defined as follows:

Definition 4.5 The space EL is given by

EL WD

� G
1�j�n

@inAj

�
t

� G
1�j�2hCm

Ej

�
t

� G
1�j�n

Ij

�
;

where each of the terms is defined as follows:

� Admissible boundaries For each annulus Aj we take the inner boundary @inAj .

� Radial segments for slits and outgoing leaves For 1 � j � 2hCm with �j 2 Ak we take
Ej D fz 2Ak j arg.z/D arg.�j / or arg.z/D arg.�x!.j //g.

� Incoming leaves For each annulus Aj we take Ij D
˚
z 2Cj j arg.z/D 0 and 0� jzj � 1

2�

	
.

The equivalence relation �L on EL is that generated by:

� Attaching incoming leaves We set
�
1
2�
2 Ij

�
�L

�
1
2�
2 @inAj

�
for j D 1; 2; : : : ; n.

� Attaching radial segments For r 2 @inAk and e 2Ej , we set r �L e if r D e.

� Identifying coinciding segments Defining subsets ˛˙i and ˇ˙i of Ei as in Definition 2.3, we let
�L identify z 2 ˛Ci with z 2 ˛�

x!.i/
and z 2 ˇCi with z 2 ˇ�

N�.i/
.

Note that each of the terms in EL can be considered as a subspace of †.L/; recalling Definition 2.4, one
observes that �L identifies those points on EL that are identified by �L on †.L/. As a consequence, the
quotient space EL=�L is invariant under the slit jump relation. Thus for a configuration ŒL� 2Rad, we
obtain a well-defined graph �ŒL� if we demand it has no bivalent vertices. Some of its leaves are labeled
by the incoming or outgoing boundary components; the remaining ones we will remove.
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Figure 15: Critical graphs for different configurations. Edge lengths of the critical graphs are not to scale.

Definition 4.6 For L 2QRad, the corresponding critical graph �L is the graph obtained from EL=�L

by removing those leaves that do not correspond to incoming or outgoing boundary cycles; see Figure 15.

By construction, this graph comes embedded in the surface†ŒL� and thus inherits a fat structure. Moreover,
it inherits a metric �ŒL� from the standard metric in C. In it, the incoming leaves have fixed length 1

2�
and

the outgoing leaves have strictly positive length. Because, for our purposes, the lengths of the outgoing
leaves are superfluous information, we set �ŒL�.e/ to be given by the standard metric in C if e is not a
leaf and �ŒL�.e/D 1 if e is a leaf. This makes .�ŒL�; �ŒL�/ a metric admissible fat graph.

Notation 4.7 We will just write �L when it is clear from context that we consider it as a metric admissible
fat graph.

The construction of the critical graph gives a function

Rad!MFat ad ; ŒL� 7! .�ŒL�; �ŒL�/:

However, this function is not continuous at nongeneric configurations. For an example, consider the path
in Rad given by continuously varying the argument of a slit as in Figure 16; when the moving slit reaches
a neighboring one, the associated metric graph jumps.

To solve this problem we enlarge Rad at nongeneric configurations by a contractible space, by “opening
up” the edges EL. To do this, we first need to introduce some notation. We can think of the thin sector

Fi D fz 2Aj j arg.�i /D arg.z/g

as being obtained by identifying two copies of Fi , which we will denote by ECi and E�i , along the
equivalence relation that identifies z 2ECi with z 2E�i . Let us extend this notation to ordinary and full
sectors: if Fi is ordinary then

ECi WD fz 2 Fi j arg.z/D arg.�x!.i//g and E�i WD fz 2 Fi j arg.z/D arg.�!.i//g;

Algebraic & Geometric Topology, Volume 24 (2024)



Comparing combinatorial models of moduli space and their compactifications 629

1

2
3

3

1

2

1

2
3

3

1

2

1

2
3

D

3

1

2

1

2
3

1

2
3

3

1

2

Figure 16: An example of a path in Rad which leads to a path in MFat ad that is not continuous.
Labelings have been left out for the sake of clarity.

and if Fi is full then ECi D S
C
i and E�i D S

�
i . Let us also generalize Definition 2.3 to this section by

taking ˛Ci ; ˇ
C
i �E

C
i and ˛�i ; ˇ

�
i �E

C
i . Then we can also write EL=�L as E 0L=�

0
L with

E 0L WD

� G
1�j�n

@inAj

�
t

� G
1�j�2hCm

ECj tE
�
j

�
t

� G
1�j�n

Ij

�
and �0L the equivalence relation on E 0L generated by replacing Ej with E˙j in the three operations
generating �L and adding a fourth one:

� Identifying thin sectors If Fi is thin, we let �0L identify z 2ECi with z 2E�i .

The idea is now to vary the extent to which we identify ECi with E�i in the last of these:

Definition 4.8 Let thin.L/ be the set of thin sectors of L and let t W thin.L/! Œ0; 1� be a function. The
equivalence relation �0t on the space

E 0L D

� G
1�j�n

@inAj

�
t

� G
1�j�2hCm

ECj tE
�
j

�
t

� G
1�j�n

Ij

�
is the one generated by:

� Attaching incoming leaves We set
�
1
2�
2 Ij

�
�0t

�
1
2�
2 @inAj

�
for j D 1; 2; : : : ; n.

� Attaching radial segments For r 2 @inAk and e 2E˙j , we set r �0t e if r D e.

� Identifying coinciding segments With ˛˙i and ˇ˙i of the E˙j as above, we let�0t identify z 2˛Ci
with ˛�

x!.i/
and z 2 ˇCi with z 2 ˇ�

N�.i/
.

� Partially identifying thin sectors If Fi is thin, we let �0t identify z 2ECi with z 2E�i as long
as jzj � t .Fi /C 1

2�
.

Definition 4.9 We define �L;t to be obtained from E 0L=�
0
t by removing those leaves that do not

correspond to incoming or outgoing boundary cycles.

Algebraic & Geometric Topology, Volume 24 (2024)



630 Daniela Egas Santander and Alexander Kupers

1

1

23

4

l

s

r

2l

2s

2r

t D .0; 0/

l

l

s
s� l

2r � s
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Figure 17: A configuration ŒL� on the top and several graphs obtained from it using different
functions t W thin.ŒL�/ ! Œ0; 1�, here written as a pair of real numbers. The leaves have been
omitted to make the graphs more readable, but they are all located along the admissible cycles
according to the positions of the marked points in ŒL�. The edges are not to scale.

Example 4.10 When t is a constant function equal to 1, �L;t is the critical graph �L, which is invariant
under slit and parametrization points jumps. However, for most other t , the graph �L;t is not invariant
under slit jumps.

Notation 4.11 If t is constant equal to 0, we will call this the unfolded graph of L and denote it by �L;0;
see Figure 17.

Just like the critical graph, the graph �L;t has a natural metric making .�L;t ; �L;t / an admissible metric
fat graph. Figure 17 shows examples of unfolded and partially unfolded metric admissible fat graphs.

Remark 4.12 Two preconfigurations with the same combinatorial type have the same underlying
admissible fat graphs, but with different metric. Thus it makes sense to talk about �L;t as an admissible
fat graph. Similarly, it makes sense to talk about the critical graph of a combinatorial type, which we
denote by �ŒL�.
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Definition 4.13 Letting ŒL� 2Rad, we define a subspace of MFat ad

G.ŒL�/ WD fŒ�Li ;t ; �Li ;t � j ŒL�D ŒLi � and t W thin.Li /! Œ0; 1�g:

We define the fattening of Rad to be the space

Rad� D f.ŒL�; Œ�; ��/ 2Rad�MFat ad
j Œ�; �� 2 G.ŒL�/g:

For simplicity, we will just write �Li ;t or � when it is clear from the context that we are talking about
metric graphs.

We will see that Rad� is constructed by replacing the point ŒL� 2Rad by a contractible space G.ŒL�/,
which is a space of graphs which interpolate between the critical graph of ŒL� and the unfolded graphs of
the different representatives L1; L2; : : : ; Lk of ŒL� in QRad.

The fattening of Rad splits into connected components given by the topological type of the cobordism
they describe:

Rad� WD
G
h;n;m

Rad�h .n;m/:

Moreover, it comes with two natural maps

Rad
�1��Rad�

�2
�!MFat ad :

We call �1 the projection map and �2 the critical graph map. The goal of the remaining subsections is
to prove that these are homotopy equivalences. The next section is the main input for proving �1 is a
homotopy equivalence.

4.3 The space G.ŒL�/ is contractible

Proposition 4.14 G.ŒL�/ is contractible for any radial slit configuration ŒL�.

We prove this inductively by removing parametrization points or slits. In particular, we allow radial slit
configurations without parametrization points; all relevant definitions may be extended to this case in a
straightforward manner.

Notation 4.15 For a radial slit configuration L1, we denote by L the radial slit configuration obtained
from L1 by removing all parametrization points.

If L is not empty, then it has m� 1 shortest pairs of slits of L. That is, L has pairs of slits .�ij , ��.ij //
for 1� j �m, which are all of the same length and are the shortest in the sense that

� j�ij j D j��.ij /j D j�il j D j��.il /j for all 1� j; l �m, and

� j�ij j> j�sj for any s … fij ; �.ij / j 1� j �mg.

We denote by L the configuration obtained from L by forgetting the shortest slit pair(s).

Note that if L1 is not degenerate, then L and L are also not degenerate. The induction step in the proof
of Proposition 4.14 is provided by:
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Lemma 4.16 There are homotopy equivalences

�1LWG.ŒL
1�/! G.ŒL�/ and �LWG.ŒL�/! G.ŒL�/:

Informally, the map �1L removes the leaves of �1 2 G.ŒL1�/ corresponding to the outgoing boundary
components. Similarly, the map �L removes the edges of � 2 G.ŒL�/ corresponding to the shortest pair(s)
of slits in ŒL�. Assuming Lemma 4.16, we now prove Proposition 4.14.

Proof of Proposition 4.14 By the first part of Lemma 4.16, it is enough to show that G.ŒL�/ is contractible,
where ŒL� a radial slit configuration without parametrization points. We will prove this by induction on h,
the number of pairs of slits of ŒL�. If hD 0, then G.ŒL�/ is a point and therefore contractible. Assume
that G.ŒL�/ is contractible when h < k for some fixed k. Now let hD k and consider the map

�LWG.ŒL�/! G.ŒL�/:

Given that ŒL� has Nh < k pairs of slits, it is contractible by the induction hypothesis. Thus by the second
part of Lemma 4.16, G.ŒL�/ is also contractible.

4.3.1 Proof of Lemma 4.16 To prove Lemma 4.16 we will show that the spaces involved are compact
ANRs and the maps involved are cell-like, and invoke Theorem 4.3. We start by considering the domain
and target of the maps.

Lemma 4.17 For all configurations ŒL�, with or without parametrization points , the space G.ŒL�/ is a
compact polyhedron and thus a compact ANR.

Proof We give the proof only when ŒL� has parametrization points; the other case is similar.

The space G.ŒL�/ is a subspace of MFat ad
g;nCm. The latter is contained in the larger compact polyhedron

given by
Pg;nCm WD

F
� �

n1�1 ��n2�1 � � � � ��np�1 � .Œ0; 1�/#E��n

�
;

with � indexed by the objects of Fat ad
g;nCm and the equivalence relation � given by Definition 3.7. This

is compact because Fat ad
g;nCm has finitely many objects.

The subspace G.ŒL�/ can be characterized as the union of the images of maps from the cubes Œ0; 1�thin.Li /

to MFat ad
g;nCm for all representatives Li of ŒL�. Each map is piecewise linear between polyhedra, which

implies that their image is a subpolyhedron. This is true because a piecewise linear map by definition can
be made simplicial with respect to some triangulation, and the images of simplicial maps are polyhedra.
Note that there are only finitely many representatives for ŒL�, so G.ŒL�/ is a union of finitely many compact
polyhedra, which implies it is a polyhedron by [18, Corollary 3.1.27]. The last claim then follows from
Proposition 4.4(vi).

We now define the maps �1L and �L. We start with the former, which “removes leaves corresponding to
the parametrization points”.
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Definition 4.18 Let ŒL1� be a radial slit configuration and let ŒL� be the configuration obtained from
ŒL1� by removing the parametrization points. We define the function

�1LWG.ŒL
1�/! G.ŒL�/

by sending � to the metric fat graph obtained from � by

(1) removing all leaves corresponding to outgoing boundary components,

(2) removing all bivalent vertices, ie if there is a bivalent vertex we replace the two edges attached to
it by a single edge whose length is the sum of the lengths of both.

Let ŒL� be a radial slit configuration without parametrization points and assume it is nonempty, that is, ŒL�
has at least one pair of slits. We now define the function �L, which “removes the edges corresponding to
the longest slit pair(s) of ŒL�”.

Definition 4.19 For any � 2 G.ŒL�/, the continuous function dadW� ! R�0 is defined by sending a
point x in a leaf of � to 0 and any other point x 2 � to its path distance to the admissible cycles. By the
extreme value theorem it attains a maximum dmax. We denote by � 0 the fat graph with unlabeled leaves
obtained by removing from � the preimage of dmax. That is, we set � 0 WD ��d�1ad .dmax/� � . We define
the function

�LWG.ŒL�/! G.ŒL�/

by sending � to the metric fat graph � obtained from � 0 by recursively

(1) removing all unlabeled leaves of � 0,

(2) removing all bivalent vertices from to obtain a fat graph � 00,

(3) repeating if � 00 has unlabeled leaves.

Note that the only leaves of �L.�/ are the ones corresponding to the admissible cycles.

We will focus on �L first, leaving �1L to the end of this subsection. We start with some properties of �L:

Lemma 4.20 (i) �L is well defined.

(ii) �L is continuous.

(iii) The fibers of �L are compact ANRs.

Proof Let � 2 G.ŒL�/, so that there is a representative L and function t W thin.L/! Œ0; 1� such that
� D �L;t . Let L be the configuration obtained from L by removing the shortest pair(s) of slits. To prove
that �L.�/ is well defined, we exhibit a function Nt W thin.L/! Œ0; 1� such that �L.�/D �L.�L;t /D �L;Nt .
Note that any thin sector F of L is of one of two kinds:

(1) The sector F corresponds uniquely to a sector in L. In this case we define Qt .F / WD t .F /.
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(2) The sector F corresponds to several thin sectors F1; F2; : : : ; Fs in L. This happens when, in
between the slits defining the sector F in L, there are one or more slits in L which have been
removed. In this case, we define

Nt .F / WDminft .F1/; t.F2/; : : : ; t .Fs/g:

Then �L.�/D �L;Nt . This completes the proof of (i).

For (ii), it suffices to prove �L is continuous on each of the finitely many closed subsets of the form
fŒ�Li ;t ; �Li ;t � j t W thin.Li /! Œ0; 1�g, that is, fixing the representative Li of ŒL�. This is clear from the
construction of Nt , and hence of �L;Nt .

As in the proof of Lemma 4.17, for (iii) it suffices to prove the fibers are compact polyhedra by proving
each fiber is the union of the images of finitely many piecewise linear maps with compact domain. But
this follows once more from the construction of Nt , and hence of �L;Nt .

We now state the main ingredient for the proof of Lemma 4.16:

Lemma 4.21 For � 2 G.ŒL�/, the preimage ��1L .�/� G.ŒL�/ is contractible.

By construction, any � 2 ��1L .�/ can be built from � by attaching to it a graph. We will show that the
space of graphs that can be attached to � is contractible, and that there is a contractible space of ways to
attach each of these. Before doing so, we give two illustrative examples:

Example 4.22 (single pair of shortest slits) Consider the configurations L and L obtained by deleting
the shortest pair of slits shown in Figure 18, top left. The other representatives L0 of ŒL� are given by
letting the purple or green slit on the right jump; for any such representative, deleting its shortest pairs of
slits also yields a representative of L.

Figure 18, bottom left, shows two different graphs in G.ŒL�/: �1, the unfolded graph of L, and �2, a
partially folded graph of L. The map �LWG.ŒL�/! G.ŒL�/ is given by removing the point marked by an
� in the green arc — which in the case of �1 is the midpoint of the green arc — and deleting the resulting
leaves. In particular, �L.�i /D �i for i D 1; 2, where the graphs �i are shown in Figure 18, top right.
Note that �1 is the unfolded graph of L, and �2 is the critical graph of L. Therefore, in either case
��1L .�i / is not empty.

The entire preimage ��1L .�i / is given by the locations for attaching a chord to �i . This may be done
along the dashed green segments for one end of the chord and the fixed point marked in green for the
other, as in Figure 18, top right. Thus the preimages are homeomorphic to intervals. In either case, the
endpoints of the interval correspond to the unfolded graphs of L and the radial slit configuration obtained
from L by letting the shortest segment jump. In fact, the preimages ��1L .�/ are homeomorphic to an
interval for all � 2 G.ŒL�/.

The reason the second end of the chord could only be attached to a single point is because its corresponding
slit is isolated, ie it is the only slit on its radial segment. If this were not the case, then the other end of
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Figure 18: Top left: a configuration L and the configuration L obtained from it by deleting the
shortest pair of slits (that is, those where dmax is attained). Top right: graphs in G.ŒL�/; �1 is the
unfolded graph of L and �2 is the critical graph of L. The green dotted lines trace the boundary
interval defined by the open chord corresponding to the deleted green slit, and thus describe the
places where one endpoint of the new chord can be attached. Bottom left: graphs in G.ŒL�/ such
that �L.�i /D �i . In both cases �i is the maximally unfolded graph of L relative to �i . The points
marked with an � denote the points in � at which the maximum of dad is attained. Bottom right:
the open graphs of the maximally unfolded graphs relative to � given in the bottom left.

this chord could also be attached to an interval. The intervals at which both endpoints of the chord can
be attached must be disjoint, otherwise there would be a sequence of jumps that would bring both slits
together and thus L would be degenerate. So in this more generic case, ��1L .�/ is homeomorphic to a
square. Finally, there is another simple generalization of this case: there are several pairs of shortest slits
in L, but the intervals describing the endpoints where their corresponding chords can be attached are all
disjoint. In this case, the preimage is homeomorphic to a higher-dimensional cube.

In the previous example we considered the case where there is exactly one pair of slits which is the
shortest pair, as well as some simple generalizations. On the other end of the spectrum there is the case
where all slits are of equal size:

Example 4.23 (all slits of equal size) In the following radial slit configuration L, the configuration L
obtained by deleting all shortest slit pairs is empty:

LD 1
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The configuration ŒL� has three representatives, and G.ŒL�/, which is the preimage over the unique point
in GŒL�, is homeomorphic to the cone on three points. These three points are represented by the unfolded
graphs of the three representatives, and the cone point by the critical graph.

The general case is an amalgamation of these two cases. More precisely, in the first case — where there
is exactly one pair of slits which is the shortest — the preimage is homeomorphic to an interval or to
a cube arising from the choices of where to attach the endpoints of the attached chord. In the second
case — where all slits are of the same length — the preimage is a cone on three points corresponding
to the unfolded representatives. In general, the preimage is homeomorphic to a product of “cones on
cubes”. We will show this by going through an intermediary subspace of metric fat graphs corresponding
to attaching trees on chords.

Definition 4.24 Let � 2 G.ŒL�/. By definition, there is a representative L and a function Nt such that
� D �L;Nt .

Let L1; L2; : : : ; Lr be all the radial slit configurations that can obtained from L by adding slits such that
each Li is equivalent to L by slit jumps. For any i , there is at least one function t W thin.Li /! Œ0; 1� such
that �L.�Li ;ti /D � . Let ti be the minimal one among such functions, ie the one that takes the smallest
possible values for every element of thin.Li /.

� The maximally unfolded graph of Li relative to � is the fat graph �i WD �Li ;ti .

� The open graph of Li relative to � is the fat graph with unlabeled leaves � 0i WD �i � d
�1
ad .dmax/,

where dmax is the maximum of the distance from any point in �i to the admissible cycles.

Examples of maximally unfolded graphs relative to some graph can be seen in Figure 18, bottom left.
Their corresponding open graphs are given in Figure 18, bottom right.

Remark 4.25 Any maximally unfolded graph relative to � , say �i , is obtained from � by attaching
a chord for each pair of slits deleted in Li . In particular, if � is an unfolded graph then each �i is an
unfolded graph as well. Furthermore, the preimage d�1ad .dmax/ consists of exactly one point in each of
these chords: that point at which the half-edges corresponding to each slit pair are glued to each other.
Therefore, each leaf in the open graph of Li relative to � corresponds precisely to a slit deleted from Li .

Moreover, for any graph � 2 G.ŒL�/, there is at least one Li and a function t W thin.Li /! Œ0; 1� such
that � D �Li ;t and t � ti . Thus any graph in G.ŒL�/ can be thought of as a “folding” of a maximally
unfolded graph relative to � , say �i , where we only “fold” the chords that have been attached to � in the
construction of �i . In particular, this shows that any such � can be obtained from � by attaching to it a
forest along its leaves.

A special example of this is the case of the critical graph �crit 2 G.ŒL�/. It can be constructed from �

by attaching corollas to � . This graph can be obtained by “completely folding” any of the maximally
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unfolded graphs relative to � . Furthermore, the preimage d�1ad .dmax/ consist exactly of the central vertices
of the corollas attached.

Informally, one can think of ��1L .�/ as a space of graphs that interpolates the maximally unfolded graphs
relative to � with the critical graph. At one extreme we attach chords, at the other we attach corollas, and
in between we attach forests that arise as all possible foldings of these chords on their way to the corollas.

We now show that these forests can be attached to boundary intervals (possibly of length 0, so points)
in the outgoing boundary of the metric fat graph � . Those boundary intervals that are not points are
described combinatorially as follows:

Definition 4.26 Let � be a metric (admissible) fat graph and let � be a boundary cycle of � . We can
think of � as a set of half-edges of � together with a cyclic order. A boundary interval in � , denoted by B,
is a proper subset of the half-edges of � which can be written as

B D fh1; h2 D �.h1/; h3 D �2.h1/; : : : ; hn D �n�1.h1/g

for some half-edge h1 in � . In particular, B is an ordered set.

A boundary interval determines an ordered list of edges in � in which an edge can appear at most twice.
Consecutive edges in this list share a vertex and thus define a path in � between s.h1/ and s.�.hn//,
where s and � are the source and involution maps in the definition of the graph � . Up to scaling there is a
canonical map from the unit interval to � which traces this path and sends 0 to s.h1/ and 1 to s.�.hn//.
By scaling the unit interval, we can construct a canonical map which is an isometry when restricted to the
edges of the path. We do this below.

Definition 4.27 Let B be a boundary interval in a boundary cycle � . We denote by IB an oriented interval
whose length is the length of the path in � determined by B. More precisely, IB can be subdivided into
consecutive subintervals Ii for 1 � i � jBj. The length of the i th subinterval Ii is the length of the i th

edge ei D fhi ; �.hi /g on the path determined by B. We denote by x�i and xCi the boundary points of Ii ,
using its orientation.

The parametrization map of B is the unique map

fBW IB! �

given by x�1 7! s.h1/ and xCn 7! s.�.hn// that, for all i , restricts to an isometry fBjW Ii! ei WD fhi ; �.hi /g

that sends x�i to s.hi /.

The map fB is a parametrization of an interval in the boundary component corresponding to � . Thus a
point in x 2 IB uniquely determines a way in which a leaf can be attached to � such that the leaf is in the
boundary interval defined by B.

We now describe the boundary intervals that will arise, given � 2 G.ŒL�/.
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Definition 4.28 Let � 0i denote the open graph of Li relative to � for 1� i � r . Let l be an unlabeled
leaf of � 0i . This leaf defines a boundary cycle �l in � 0i . We define Bl to be the subset of the half-edges of
�l given by

Bl WD f�
j

l
.l/ j j 2 Z; j ¤ 0 and �j

l
.l/ is not part of an edge in an admissible cycleg:

Note in particular that Bl could be empty, and this indeed happens when l is attached to a vertex v which
is essentially trivalent in the sense that it has valence four if it is also attached to an admissible leaf but
trivalent otherwise.

An example of this construction can be seen in Figure 18, top right, where the dotted lines in �i for
i D 1; 2 correspond precisely to the boundary intervals defined by the leaves of the open graph. The sets
Bl have the following properties:

Lemma 4.29 For 1 � i � r , let � 0i denote the open graphs of Li relative to � 2 Im.�L/, as in
Definition 4.24. Recall that each unlabeled leaf of �i , say l , corresponds precisely to a shortest slit of Li ,
and thus it has a “pair” leaf which we denote by �.l/. Then:

(i) For any unlabeled leaf l of � 0i , the set Bl is either empty or it is a boundary interval in � .

(ii) For any unlabeled leaf l of � 0i , the sets Bl and B�.l/ are disjoint.

(iii) For any pair of unlabeled leaves l1 and l2 in � 0i such that Bl1 ¤∅¤ Bl2 , either

Bl1 \Bl2 D∅ or Bl1 D Bl2 :

(iv) For any open graphs relative to � , say � 0i and � 0j , the set of boundary intervals defined by their
unlabeled leaves coincide.

Proof We first show (i) holds. Let �l denote the slit corresponding to the unlabeled leaf l in � 0i . Then Bl
is the section of the outgoing boundary along which the leaf l can move around, given by slit jumps of �l .
In particular, if �l is isolated, that is, it is the only slit on its radial segment, then this is a single point
and Bl is empty. If Bl is not empty, it is enough to show that Bl is not the entire boundary cycle that
corresponds to l . Assume, for contradiction, that Bl is the entire boundary cycle. Then there must be a
set of slits f�1; �.�1/; �2; �.�2/; : : : ; �s; �.�s/g in Li for some s � 1 such that the following hold:

(1) The slit �l lies between �1 and �.�s/. More precisely, �.�s/, �l and �1 all lie in the same radial
segment, !.�1/D �l and !.�l/D �.�s/.

(2) For each 1� i < s, the slits �.�i / and �iC1 lie in the same radial segment and !.�iC1/D �.�i /.

Let �� be a slit in f�1; : : : ; �sg of largest modulus, ie a shortest slit in that set. Then �� and �.��/ can
jump along the other slits. In particular, Li is equivalent via slit jumps to a configuration L� where �.��/,
�� and �l lie in the same radial segment and

!.��/D �l ; !.�l/D �.��/ and j�l j � j��j:

So L� and Li are degenerate configurations, which is not possible.
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��

��

��

��

Figure 19: Two of the eight configurations of chords for k D 4. The green line segments are the
intervals, the vertices are the marked points in these intervals and the red arcs are the chords.

Statement (ii) follows in a similar way. More precisely, if Bl and B�.l/ are not disjoint, then Li is
equivalent via slit jumps to a configuration where �l and �.�l/ lie next to each other, and thus Li is
degenerate.

Statements (iii) and (iv) follow by construction.

Definition 4.30 (attaching intervals) Let � 2 G.L/. We define IL;� to be the set of oriented metric
intervals (possibly of length zero) corresponding to the parametrization of the boundary intervals and
isolated points in � along which a graph can be attached to obtain an element in its preimage.

That is, IL;� is given by those IBl
such that l is an unlabeled leaf of � 0, an open graph relative to � , as

in Definition 4.24. This interval is of length zero if its corresponding boundary interval is empty. Recall
that this happens precisely when there is a leaf in � corresponding to an isolated slit, ie a slit that is the
only one in its radial segment. Note in particular that, by Lemma 4.29(iv), this definition does not depend
on the choice of � 0 but only on the class ŒL� and the metric fat graph � .

Any point in the preimage can be obtained by attaching a forest to � along the parametrization intervals
in IL;� . To make this precise, we define certain spaces of forests attached to intervals, which will use the
following combinatorial definition:

Definition 4.31 Let I WD I1 t I2 t � � � t Ik denote a disjoint union of k compact intervals of a given
length. We allow intervals to have length zero. Let D denote a family of piecewise linear functions
D WD fdi W Ii !R>0 j 1� i � kg whose derivative is ˙1 outside a finite set. Then we define maxD WD
max1�i�kfmaxxi2Ii

di .xi /g.

Notation 4.32 (configurations of chords) We will consider the set of all possible configurations of
k� 1 chords attached by their endpoints to the intervals in I such that the resulting graph is connected,
planar and has no loops; we denote this set by ConfI . See Figure 19 for examples of configuration of
chords. We will construct a space of metric planar forests attached to these intervals and we will use
the configurations above to restrict which metrics are allowed. For this, we will use the path distance
function in a metric graph, which we denote by dpath.

Definition 4.33 Let I and D be as in the previous definition and d 2R>0 such that 2d >maxD. Denote
by FI;D;d those metric graphs obtained by attaching a metric forest F with at most 2.k�1/ leaves to the
intervals I such that:
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� The graph obtained, denoted by G, is planar, connected and has no loops.

� There is a configuration C 2 ConfI such that, for any pair of intervals Ii and Ij connected by a
chord in C , the path distance in G from xi to xj (two attaching points of leaves of the forest F ) is

dpath.xi ; xj /D 2d � di .xi /� dj .xj /:

Note that FI;D;d is a subset of the space of metric fat graphs. We consider it as a space using the subspace
topology.

Lemma 4.34 The topological space FI;D;d is contractible.

Proof Fix a marked point �i 2 Ii for all 1 � i � k such that �i is a local maximum for di . Let
FI;D;d;� � FI;D;d be the subspace where the forest is attached to the marked points in the intervals I.
We will construct a deformation retraction onto a point in two steps.

Step 1 We will construct a deformation retraction of FI;D;d onto FI;D;d;�. Intuitively, we slide the
endpoints along I towards the marked points, but some care is require to make sure the conditions on the
metric remain satisfied. By definition, each Ii can be subdivided into finitely many intervals on which di
is linear. Let Ni be the number of these in a uniquely minimal such subdivision. Our argument will be by
induction over N DN1C � � �CNk .

In the initial case N D 0 there is nothing to prove. For the induction step, let I 0 � Ij be an interval in the
aforementioned minimal subdivision such that Ij D I 0[ I 0j where I 0\ I 0j is a point and �j 2 I 0j . Let I 0

be obtained from I by replacing Ij with I 0j and let D0 be obtained by replacing dj by d 0j WD dj jI 0j . We
will show that FI;D;d deformation retracts onto a space homeomorphic to FI0;D0;d . There are two cases:

(A) The point I 0 \ I 0
j

is a local minimum of dj In this case we “open” along the edge I 0 towards I 0j :

I 0

I 0j

I 0

I 0j

I 0

I 0j

t D 0 t D 1

The precise construction is as follows. If I 0 has length `, we linearly identify the interval I 0 with Œ0; `�,
with I 0 \ I 0j corresponding to `. Suppose that s 2 Œ0; `� is the unique smallest value at which an edge
is attached to I 0 Š Œ0; `�. Then on a metric graph G, the deformation retraction at time t 2 Œ0; 1� is the
identity for t` < s, and for t`� s replaces I 0 Š Œ0; `� with Œ0; `�[t` Œs`; t`�; note that we may identify
Œt`; `�[t` Œs`; t`�� Œ0; `�[t` Œs`; t`� with Œs`; t`�. We attach the edges originally attached to Œs`; t`�� I 0

to this new interval. The result has a canonical metric.
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(B) The point I 0 \ I 0
j

is a local maximum on dj In this case we “fold” along the edge I 0 towards I 0j :

I 0
I 0j

I 0
I 0j

I 0
I 0j

t D 0 t D 1

The precise construction is as follows. Let us linearly identify the interval I 0 with Œ0; `�, as in (A). Then
consider the subtree of G given by points that are distance t` from 0 2 I 0 2 Œ0; `�. We identify this
subtree with the interval Œ0; t`� by identifying all points with distance s to s 2 Œ0; t`�. The result has a
canonical metric.

Step 2 We will prove that FI;D;d;� is contractible by a variation of the Alexander trick. To do so, we
replace the metric tree .T; dT / attached to the marked points by .T; .1� t /dT / and add edges of length
t .d �di .�i // connecting �i to the endpoint in this scaled tree originally attached to �i (the circles contain
the rescaled graphs):

��

��

��

��

��

��

t D 0 t D 1

The resulting metric graphs are still planar, connected, without loops and satisfy the metric condition. At
t D 1 we obtain the k–valent corolla attached to all intervals, with the edge between the vertex of the
corolla and �i given by d � di .�i /.

Lemma 4.35 Let � 2 G.ŒL�/. There is a positive real number d 2R>0 and a finite collection of sets of
intervals I and sets of functions D such that there is a homeomorphism

(4-1) ��1L .�/Š FI;D;d � � � � �FI0;D0;d :

The intuition behind this homeomorphism is as follows. In the simplest scenario, there is only one term in
the product of the right-hand side of (4-1). On the one hand, the critical graph corresponds to the unique
point in FI;D;d given by a single corolla. On the other hand, the maximally unfolded graphs relative to �
correspond to elements in ConfI , that is, to arrangements of k� 1 chords attached to the intervals (where
k�1 is the number of pairs of shortest slits of L). Finally, an arbitrary point in FI;D;d is a “folding” of a
configuration in ConfI , and an arbitrary point in ��1L .�/ is a “folding” of a maximally unfolded graph
relative to � .
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Proof Given ŒL� and � , the set of intervals will be IDIL;� ; see Definition 4.30. Recall that there is a map

f W IL;� ! �;

which is an isometry when restricted to edges of � that are in the image. Moreover, we have a canonical
embedding � ,! � for which � �� D F is a forest and such that � is obtained from � by attaching
the leaves of F to IL;� ; see Remark 4.25.

For a choice of � in the preimage, we denote by G� the subgraph of � that is given by the union of
the forest F and the boundary intervals in IL;� along which F is attached. The number of components
of G� is independent from the choice of � in the preimage of � , and it corresponds to the number of
elements in the product of the right-hand side of (4-1). An intuitive way to think about this is that the
slits which are deleted from L to obtain L come in clusters, collections of slits which map to the same
point in the glued surface †.ŒL�/, and each of these clusters contributes a single term in the product.

We will assume for the sake of simplicity that there is a single component in G� or a single cluster of
slits, thought the argument easily generalizes to the case of several components. The functions di 2D are
induced by the modulus in C. That is, they are determined by the path distance to the admissible cycles
of � . More precisely, for any x 2 Ii 2 IL;� we set di .x/D dad.x/. This yields a well-defined piecewise-
linear function on each Ii . The real number d is the common modulus of all slits which are deleted from
L to obtain L. Then there is a continuous map FI;D;d ! ��1L .L/ given by gluing the forest F into �
according to the intervals Ii . This has an inverse given by the continuous map that sends � to G� .

Putting together these results, we prove that the preimages of �L are contractible.

Proof of Lemma 4.21 Let � 2 G.ŒL�/. By Lemma 4.35, ��1L .�/ is homeomorphic to a product of
spaces of forests attached at intervals. These are contractible by Lemma 4.34.

The proofs given above for �L can be adapted to the simpler case of �1L, and we will spare the reader the
technical details. The result is:

Lemma 4.36 (i) �L is well defined.

(ii) �L is continuous.

(iii) The fibers of �L are compact contractible ANRs.

We now finish the proof of Lemma 4.16, which said �L and �1L are homotopy equivalences:

Proof of Lemma 4.16 We apply Theorem 4.3. By Lemma 4.17, the domain and targets of the maps �L
and �1L are compact ANRs, so it suffices to prove the fibers of both maps are cell-like. This follows by
combining Proposition 4.4(viii) with Lemmas 4.20, 4.21 and 4.36.
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4.4 The projection map is a homotopy equivalence

Our next goal is to check that the spaces Rad and Rad� are ANRs, and that the map �1WRad�!Rad

is proper and cell-like. For the remainder of this section we fix g, n and m.

Proposition 4.37 The space Rad is a locally compact ANR.

Proof The space Rad is a smooth manifold, so it is locally compact and has an open cover by copies
of Rn. These are ANRs by Proposition 4.4(v), so Rad is an ANR by Proposition 4.4(iii). (Alternatively,
one can argue that Rad is an open subspace of the finite CW–complex Rad and use properties (ii) and (v)
of Proposition 4.4.)

To prove that Rad� is an ANR and that �1 is a proper cell-like map, we will write Rad� as an open
subspace of a space .Rad/� obtained by gluing together finitely many compact ANRs. By Definition 2.16,
Rad nRad D Rad0 is a CW–complex, and in fact a subcomplex of Rad. Then .Rad/� is defined by
adding a boundary to the blowup Rad� in the most naive way. In the proof of Lemma 4.17, we saw that
MFat ad

g;nCm is a subspace of a compact polyhedron Pg;nCm, which we abbreviate to P here.

Definition 4.38 The space .Rad/� is the subspace of Rad�P consisting of all .ŒL�; �; �/ such that either

(i) ŒL� 2Rad and .�; �/ 2 G.L/, or

(ii) ŒL� 2Rad nRad and .�; �/ 2 P .

Lemma 4.39 The topological space .Rad/� is a compact ANR.

Proof Fix a representative ŒL� for each combinatorial type ŒL�, and note that, if ŒL� and ŒL0� have the
same combinatorial type, there is a canonical homeomorphism G.ŒL�/Š G.ŒL0�/. The space G.ŒL�/ is
then by definition G.ŒL�/ for the representative ŒL� of ŒL�. We remark that .Rad/� is obtained by gluing
together .Rad nRad/�P and RadŒL� �G.ŒL�/ for all combinatorial types ŒL� along @RadŒL� �G.ŒL�/.

Note that .Rad nRad/�P is the product of a subcomplex of the finite complex Rad with a compact
polyhedron. Thus parts (v) and (vii) of Proposition 4.4 say it is a compact ANR. Similarly, by Lemma 4.17
RadŒL� � G.ŒL�/ and @RadŒL� � G.ŒL�/ are each a product of a finite CW–complex with a compact
polyhedron, and thus compact ANRs by parts (v), (vi) and (vii) of Proposition 4.4. Attaching cells RadŒL�
one at a time in order of dimension and repeatedly applying Proposition 4.4(iv), one proves inductively
over k that

..Rad nRad/�P /[

� [
dimRadŒL��k

RadŒL� �G.ŒL�/
�

is a compact ANR. This uses that Rad has finitely many cells after fixing g, n and m. In particular this
process has to end at some k � 0, and hence .Rad/� is also a compact ANR.

Proposition 4.40 The topological space Rad� is an ANR.

Proof Rad� is an open subspace of .Rad/�, so by Proposition 4.4(ii) we conclude it is an ANR.
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Proposition 4.41 The map �1WRad�!Rad is proper and cell-like.

Proof Observe that �1 extends to a continuous map �1W .Rad/� ! Rad. If K � Rad is compact,
then it is also compact considered as a subset of Rad, and thus closed. By continuity ��11 .K/ is closed
in .Rad/�, and since the latter is a compact space it must be compact. But ��11 .K/ � Rad� and
��11 .K/\Rad� D ��11 .K/, so �1 is proper.

That �1 is cell-like is a consequence of Lemmas 4.14 and 4.17, which say that the point inverses of �1
are contractible compact polyhedra, and Proposition 4.4(viii), which implies that contractible compact
polyhedra are cell-like.

Corollary 4.42 The projection �1WRad�!Rad is a homotopy equivalence.

Proof We may fix g, n andm. Then we can simply apply Theorem 4.3 to Propositions 4.37, 4.40 and 4.41.
The domain is locally compact because it is an open subspace of a compact space by Lemma 4.39, and
the target is locally compact by Proposition 4.37.

4.5 The critical graph map is a homotopy equivalence

We now show that the critical graph map Rad�!MFat ad is a homotopy equivalence using the relation
between the universal bundles over Rad and MFat ad . We start by recalling some well-known results
regarding universal bundles:

Proposition 4.43 Given a two-dimensional cobordism Sg;nCm and a paracompact base space B , there
are bijections natural in B between

(i) isomorphism classes of smooth Sg;nCm–bundles over B , that is , the transition functions lie in
Diff.Sg;nCm/,

(ii) isomorphism classes of principal Diff.Sg;nCm/–bundles over B , and

(iii) isomorphism classes of principal Mod.Sg;nCm/–bundles over B .

Sketch of proof For one direction of the first bijection, for a principal Diff.Sg;nCm/–bundle pWW !B ,
its corresponding Sg;nCm–bundle is given by taking Sg;nCm �Diff.Sg;nCm/W .

For the other direction of the first bijection, suppose that � WE! B is a smooth Sg;nCm–bundle. Each
fiber Eb WD��1.b/ is a Riemann surface with boundary with a marked point in each boundary component.
These marked points are ordered and labeled as incoming or outgoing. Let xb

k
denote the marked point

in the kth incoming boundary component for 1 � k � n and xb
kCn

denote the marked point in the kth

outgoing boundary for 1� k �m. Its corresponding Diff.Sg;nCm/–bundle is given by taking fiberwise
orientation-preserving diffeomorphisms, ie it is the bundle pWW ! B whose fibers are given by

Wb WD p
�1.b/D f'WSg;nCm!Eb j ' is a diffeomorphism and '.xi /D xbi g:

These constructions are mutually inverse.
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Because each connected component of Diff.Sg;nCm/ is contractible, taking �0 gives a homotopy equiva-
lence Diff.Sg;nCm/!Mod.Sg;nCm/. Thus there is a bijection between principal Diff.Sg;nCm/–bundles
and principal Mod.Sg;nCm/–bundles, where one can obtain the Mod.Sg;nCm/–bundle corresponding to
pWW ! B by taking �0 fiberwise.

We now construct a space ERad that maps to Rad and use the previous proposition to show that
ERad! Rad is a universal Mod.Sg;nCm/–bundle. To construct this space we use the ideas of the
construction of EMFat ad in Definition 3.23. That is, as a set we define

ERad WD f.ŒL�; ŒH �/ j ŒL� 2Rad and ŒH � is a marking of �ŒL�g:

We will topologize ERad so that the map ERad!Rad is a covering map. Then a path in ERad will
be given by a path  W t! ŒL.t/� in Rad together with a marking H0W�ŒL.0/� ,! Sg;nCm. Hence we must
describe how H0 and the path  uniquely determine a sequence of markings Ht W�ŒL.t/� ,! Sg;nCm. To
make this precise, we will give a procedure to obtain a well-defined marking of �ŒzL� from a combinatorial
type ŒL�, a marking of �ŒL� and a configuration ŒzL� 2 @RadŒL�, where ŒzL� is the combinatorial type
of ŒzL�. To describe this procedure, notice that if ŒL� and ŒzL� are related in this manner, then ŒzL� must be
obtained from ŒL� by collapsing radial and annular chambers. Hence we will start by analyzing these
cases separately.

Definition 4.44 (annular chamber collapse map) Let ŒL� and ŒL0� be two nondegenerate combinatorial
types such that ŒL0� can be obtained from ŒL� by collapsing the annular chambers Ai1 ; Ai2 ; : : : ; Aik and
let A WD

S
i Ai . We will define a map in Fat ad ,

�W�ŒL�! �ŒL0�;

which we will call the annular chamber collapse map; see Figure 20.

Choose a representative ŒL� of ŒL�. Then, following the construction of �ŒL�, we can define a subgraph FA
which is given by the intersection of EL and A. The subgraph FA must be a forest inside �ŒL�. To see this,
assume there is a loop in FA. Then there must be a loop in �ŒL�, and hence there are two paired slits �i and
��.i/ which lie on the same radial segment. Since ŒL� is nondegenerate there must be slits �i1 ; �i2 ; : : : ; �ij
such that ij � 1 and j�il j < j�i j for all il . Finally, since the loop is in FA, A must contain the radial
segment between �i and �il for some il . But then collapsing A will give a degenerate configuration, and
we assumed ŒL0� is nondegenerate. Therefore FA is a forest in �ŒL�, and since �ŒL� D �ŒL� this description
gives a well-defined subforest of �ŒL�, giving with a well-defined map on Fat ad .

Definition 4.45 (radial chamber collapse zigzag) Let ŒL� and ŒL00� be two nondegenerate combinatorial
types such that ŒL00� can be obtained from ŒL� by collapsing radial chambers. We will define an admissible
fat graph �.ŒL�; ŒL00�/ together with a zigzag in Fat ad

�ŒL�
�1
�! �.ŒL�; ŒL00�/ �2

 � �ŒL0�;

which we will call the radial chamber collapse zigzag; see Figure 21.
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1

1

23

4

L

annular chamber collapse
1

1

23

4

L0

�L

edge collapse

�L0

Figure 20: An example of the annular chamber collapse map. The leaves have been omitted
from the graphs to make them more readable. The annular chambers are marked with dotted
lines. The yellow radial sector is collapsed in L and the annular chamber collapse map is given by
contracting the edge shown in red.

Choose a representative L 2QRad of combinatorial type ŒL� and let L00 2QRad be the preconfiguration
of combinatorial type ŒL00� obtained by collapsing radial chambers. We will call the radial segments

1

1

2

3

L

radial chamber collapse

�L

1

1

2

3L00

�L00

edge collapse

edge collapse

�.L;L00/

Figure 21: An example of the radial chamber collapse zigzag. The radial chambers are marked
with dotted lines. The yellow radial chamber is collapsed in L and the radial chamber collapse
zigzag is given by collapsing the edges shown in orange.
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onto which the radial chambers have been collapsed the special radial segments. Notice that L00 is well
defined up to a choice of L, and slit jumps and parametrization point jumps away from the special radial
segments. Thus the idea is to define �.ŒL�; ŒL00�/ as a partially unfolded graph of L00 which is unfolded at
the special radial slit segments and folded everywhere else. This gives a well-defined isomorphism class
of admissible fat graphs.

To make this precise, let Sk1
; Sk2

; : : : ; Skr
denote the special radial segments of L00. We define

�.ŒL�; ŒL00�/D �L00;t where t 2 Œ0; 1�d.L
00/ is defined as follows:

t˛ WD

�
0 if ˛ D ki C j for 1� i � r and 1� j � ski

� 1;

1 otherwise:

This is a well-defined isomorphism class of admissible fat graphs, since the graph is folded in all radial
segments in which jumps are allowed. Let FL be the subgraph of �L obtained by the intersection of EL
with the collapsing chambers. Then �1W�ŒL�D�L!�L=FLD�.ŒL�; ŒL00�/ is a well-defined map in Fat ad .
Similarly, let FL00 be the subgraph of �L00 obtained from the intersection of EL00 and the special radial
segments. Then �2W�ŒL00� D �L00 ! �L00=FL00 D �.ŒL�; ŒL00�/ is a well-defined map in Fat ad .

For the general case, consider any ŒzL� 2 @RadŒL�\RadŒzL�. Then ŒzL� is obtained from ŒL� by collapsing
chambers. If we let ŒL0� be the configuration obtained from collapsing only the annular chambers, then
the previous construction gives a well-defined zigzag in Fat ad :

(4-2) �ŒL�
�
�! �ŒL0�

�1
�! �.ŒL0�; ŒL�/ �2

 � �ŒL0�:

Note that if ŒzL� is obtained by only collapsing annular chambers then �1 D idD �2, and if ŒzL� is obtained
by only collapsing radial chambers then �D id.

Definition 4.46 We define the space ERad by

ERad WD

F
ŒL�RadŒL� �Mark.�ŒL�/

�
;

where the disjoint union runs over all nondegenerate combinatorial types ŒL� and the equivalence relation
� is generated by saying that .ŒzL�; ŒH�/� .ŒzL�; Œ zH�/ if, given ŒzL�2 @RadŒL�\RadŒzL�, ŒH �2Mark.�ŒL�/
and Œ zH� 2Mark.�ŒzL�/, we have that Œ zH� D .�2�/�1 ı .�1�/ ı ��.ŒH�/. Here �, �1 and �2 are given as
in (4-2), and the induced maps are the ones constructed in Lemma 3.21.

Proposition 4.47 The projection ERad!Rad is a universal Mod.Sg;nCm/–bundle over Rad.

Proof It is enough to show that ERad ! Rad is the Mod.Sg;nCm/–bundle corresponding to the
universal surface bundle pWSh.n;m/! RadŠRad. Recall that the universal surface bundle has fibers
pŒL� D S.ŒL�/, a surface with boundary with a marked point in each boundary component. These marked
points are ordered, and labeled as incoming or outgoing.

Let xL
k

denote the marked point in the kth incoming boundary component for 1� k � n and xL
kCn

denote
the marked point in the kth outgoing boundary component for 1� k �m. Following the description in
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the beginning of this subsection, the Diff.Sg;nCm/–bundle W ! Rad corresponding to the universal
surface bundle is given by taking fiberwise orientation-preserving diffeomorphisms. That is, we have

WŒL� WD f'WSg;nCm! S.ŒL�/ j ' is an orientation-preserving diffeomorphism with '.xi /D xLi g:

Furthermore, its corresponding Mod.Sg;nCm/–bundle Q!Rad, has fibers QŒL� WDWŒL�=isotopy. This
amounts to passing to connected components of the group of diffeomorphisms.

Note that QŒL� is discrete, and thus by the description of ERad it is enough to show that there is a
bijection between Mark.�ŒL�/ and QŒL�. We define inverse maps

ˆWQŒL� � Mark.�ŒL�/ W‰

By construction there is a canonical embedding HŒL�W�ŒL� ,! S.ŒL�/, and this embedding is a marking
of �ŒL� in S.ŒL�/. Given Œ'� 2QŒL� we define ˆ.Œ'�/ WD Œ'�1 ıHŒL��; this is a well-defined map.

To go back, let ŒH � 2Mark.�ŒL�/ and choose a representative H W�ŒL� ,! Sg;nCm. We will construct an
orientation-preserving homeomorphism f WSg;nCm! S.ŒL�/ such that Œf ıH�D ŒHŒL��, which we can
approximate by a diffeomorphism ' using Nielsen’s approximation theorem [36]. To do so, we use that
the complements of the markings are disks: we construct the homeomorphism first on markings, and then
extend it to the disks.

By Lemma 3.20, the complement Sg;nCm nH.� n leaves of �/ is a disjoint union of nCm cylinders.
For all 1� i � nCm, one of the boundary components of the i th cylinder consists of the i th boundary of
Sg;nCm. The other boundary component consists of the image of the i th boundary cycles of � under H .
The leaf corresponding to the i th boundary component is embedded in the cylinder and connects both
boundary components. We conclude that Sg;nCm nH.�ŒL�/Š

FnCm
iD1 Di , where each Di is a disk.

Let xi denote the marked point of the i th boundary component of Sg;nCm. The boundary of Di has
two copies of xi . Connecting these on one side is the i th boundary component of Sg;nCm and on the
other side is the embedded image of the i th boundary cycle of �ŒL�. The orientation of the i th boundary
component of Sg;nCm allows us to order the two copies of xi and label them as xi;1 and xi;2. Similarly,
S.ŒL�/ nHŒL�.�ŒL�/Š

FnCm
iD1

zDi where each zDi is a disk. Let xLi;j for j D 1; 2 denote the two copies
of the marked point on the i th boundary component of S.ŒL�/ that lie on the boundary of zDi . Take
fi j@Di

W @Di! @ zDi to be an orientation-preserving homeomorphism satisfying f .xi;j /DxLi;j for j D 1; 2.
Let fi be an extension of fi j@Di

to the entire disk. One can choose the maps fi j@Di
consistently so

that they glue together to a homeomorphism f WSg;nCm! S.ŒL�/. Since the maps fi are unique up to
homotopy, f is also unique up to homotopy.

We define ‰.ŒH�/D Œ'�, where ' is a diffeomorphism approximating f . The map ‰ is well defined and
by construction it is inverse to ˆ.

We now extend this to Rad� by defining a fattening of ERad as follows:
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Definition 4.48 The fattening ERad� is defined as

ERad� WD f..ŒL�; ŒH �/; Œ�; �; zH�/ j Œ�; �� 2 G.ŒL�/g �ERad�EMFat ad ;

where G.ŒL�/ is the space given in Definition 4.13.

Recall that ERad consists of pairs .ŒL�; ŒH �/ of a radial slit configuration and a marking, and that
EMFat ad consists of isomorphism classes of triples Œ�; �;H� of an admissible fat graph, a metric and a
marking.

Corollary 4.49 The projection ERad�!Rad� is a universal Mod.Sg;nCm/–bundle over Rad�.

Proof Consider the diagram below, in which �1 is a homotopy equivalence by Corollary 4.42:

ERad� ERad

Rad� Rad

�1�id

'

�1

It suffices to prove this is a pullback diagram. To do so, observe that the path from Œ�; �� 2 G.ŒL�/ to the
critical graph Œ�ŒL�� described in Proposition 4.14 determines a zigzag in jFat ad j under the composite

G.ŒL�/ �
,!MFat ad r.�;1/

����! jFat ad
j;

where � is the inclusion and r is the map given in Lemma 3.12. Moreover, since G.ŒL�/ is contractible, � is
an inclusion and r.�; 1/ is a homotopy equivalence, there is a contractible choice of zigzags representing
paths from Œ�; �� to Œ�ŒL�� in G.ŒL�/. Therefore, by Lemma 3.21, a marking of Œ�ŒL�� uniquely determines
a marking of Œ�� and vice versa. Thus, for Œ�; �� 2 G.ŒL�/, giving a tuple ..ŒL�; ŒH �/; Œ�; �; zH�/ 2
ERad�EMFat ad is equivalent to giving either a triple ..ŒL�; ŒH �/; Œ�; ��/ or a triple .ŒL�; Œ�; �; zH�/.

We now describe a general result on universal bundles, which we use to conclude that �2 is a homotopy
equivalence.

Proposition 4.50 Let E!B and E 0!B 0 be universal principal G–bundles with B and B 0 paracompact
spaces. Let f WB!B 0 be a continuous map. If f �.E 0/ is isomorphic to E as a bundle over B , then f is
a homotopy equivalence.

Proof For any paracompact space X , there is a diagram

ŒX; B� fprincipal G–bundles over Xg

ŒX; B 0�

f ı�

Š

Š

which commutes since f �.E 0/ŠE. ForXDB 0, one finds there is a Œg�2 ŒB 0; B� such that Œf ıg�D ŒidB 0 �.
Then g�.E/Š g�.f �.E 0//DE 0, so we can repeat the argument and obtain that there is an h 2 ŒB; B 0�
such that Œg ı h�D ŒidB �. Finally, since Œh�D Œf ıg ı h�D Œf �, f and g are mutually inverse homotopy
equivalences.
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Corollary 4.51 The projection �2WRad�!MFat ad is a homotopy equivalence.

Proof This follows from Proposition 4.50, as there is a pullback diagram

ERad� EMFat ad

Rad� MFat ad

�2�id

�2

5 Sullivan diagrams and the harmonic compactification

We now compare the harmonic compactification of radial slit configurations Rad and the space of Sullivan
diagrams SD, as in Definitions 2.15 and 3.16, respectively. To do this, we observe that URad is the
subcomplex of Rad consisting of cells indexed by the subset ‡U of ‡ made up of all combinatorial types
of unilevel radial slit configurations. As a consequence, the projection pWRad! URad is cellular.

Proposition 5.1 The space SD is homotopy equivalent to Rad. In fact , there is a cellular homeomorphism
between URad and SD.

Proof It is enough to show this for connected cobordisms. Recall that the harmonic compactification
of the space of radial slit configurations Rad is homotopy equivalent to the space of unilevel radial slit
configurations URad by Lemma 2.22, so it suffices to prove the second stronger statement.

Since in URad all annuli have the same outer and inner radius and all slits sit in the outer boundary, the
annular chambers are superfluous information. Thus, the combinatorial type of a unilevel configuration is
determined only by its radial chamber configuration. More precisely, two univalent configurations ŒL�
and ŒL0� have the same combinatorial type if and only if they differ from each other only by the size of
the radial chambers. Finally, the orientations of the complex plane and the positive real line induce a total
ordering of the radial chambers on each annulus.

Similarly, on a Sullivan diagram the leaves of the boundary cycles and the fat structure at the vertices
where they are attached give a total ordering of the edges on the admissible cycles. We say two Sullivan
diagrams Œ�� and Œ� 0� have the same combinatorial data if they differ from each other only on the lengths
of the edges on the admissible cycles. A (nonmetric) Sullivan diagram G is an equivalence class of
Sullivan diagrams under this relation. We will first show that a radial slit configuration and a Sullivan
diagram are given by the same combinatorial data. That is, that there is a bijection

‡U WDfcombinatorial types of unilevel radial slit configurationsg$ƒWDfnonmetric Sullivan diagramsg:

We define a map f W‡U ! ƒ by ŒL� 7! GŒL�;0, where GŒL�;0 is the underlying (nonmetric) Sullivan
diagram of a unfolded graph of ŒL�. This map is well defined, since a slit or a parametrization point
jumping along another slit corresponds to a slide of a vertex along an edge not belonging to the admissible
cycle. For example, the configurations in Figure 9 are mapped to the graphs in Figure 22.
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1 21
0

1

2

3
4

0

1
ŒG�

1 21
01

2 3

0

1
d01 ŒG�

1 21
01

2 3

0

1

d23 ŒG�

Figure 22: The top depicts a 5–cell which is a product �1 ��4 of simplices in SD, and the
bottom two parts of its boundary. The edges are numbered in gray.

We next construct the inverse map gWƒ ! ‡U. Notice that any nonmetric Sullivan diagram has a
canonically associated metric Sullivan diagram by assigning all the edges in an admissible cycle the
same length. Moreover, any Sullivan diagram has a fat graph representative with all its vertices on the
admissible cycles. A representative of a metric Sullivan diagram with all its vertices on the admissible
cycles is given by the following data:

(i) C1; C2; : : : ; Cn are parametrized circles which are disjoint, ordered and of length 1.

(ii) l1; l2; : : : ; ls are a finite number of chords, where a chord is a graph which consists of two vertices
connected by an edge. Let V denote the set of vertices of such chords.

(iii) zV � V is a subset such that zV contains at least one vertex of each chord and jV n zV j Dm.

(iv) ˛W zV !
F
i Ci is an assignment which will indicate how to attach the chords onto the n circles. Two

or more chords may be attached on the same circle and even on the same point. The assignment ˛
should attach at least one chord on each circle.

(v) For each x in the image of ˛, we have an ordering of the subset of chords attached to x, that is, an
ordering of the set ˛�1.x/.

From this data one can construct a metric fat graph with inner vertices of valence greater or equal to 3.
The chords are attached onto the n circles using ˛. This gives the circles the structure of a graph by
considering the attaching points as vertices and the intervals between them as edges. It just remains to
give a fat structure at the attaching points. To do this, let x be in the image of ˛. The parametrization
of the circles gives a notion of incoming and outgoing half-edges on x, say e�x and eCx , respectively.
Moreover, there is an ordering of the chords attached on x, say .lx;1; lx;2; : : : ; lx;s/. The cyclic ordering
at x is given by .e�x ; lx;1; lx;2; : : : ; lx;s; e

C
x / as is shown in Figure 23. Informally, all chords are attached

on the outside of the circles according to the order given by the data. The chords that are attached only at
one vertex give the leaves of the Sullivan diagram.
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�x

eCx

e�x

lx;1
lx;2

lx;3

lx;s

Figure 23: The fat structure induced at vertex x where the cyclic ordering is given by the
orientation on the plane.

From this it is clear what the inverse map g should be. Given a Sullivan diagram G, its associated metric
Sullivan diagram gives the data (i)–(v) listed above. Then g.G/D .�; �; Q!; Er; EP / where � is given by ˛
on the chords attached at both ends, � is given by those chords (ie �.i/D k if and only if there is a chord
attached on both ends connecting i and k), EP is given by ˛ on the chords attached only at one vertex,
and Q! and Er are completely determined by the ordering of the chords at each attaching point. This map is
well defined since slides along chords correspond to jumps along slits, and it is an inverse to f .

We will show that URad and SD have homeomorphic CW–structures, where the cells are indexed by
‡U Šƒ, by giving cellular homeomorphisms

URad
'
 �

F
ŒL�2‡U

eŒL�

�

 
�! SD:

We already saw the map ' in Definition 2.15. To construct the map  , one first observes that any Sullivan
diagram Œ�� in SD is uniquely determined by its nonmetric underlying Sullivan diagram G and a tuple
.Et1; : : : ; Etnp

/, where tij is the length of the j th edge of the i th admissible cycle. Using this we can define

 .eŒL�; .Et1; : : : ; Etnp
//D Œ��D .f .ŒL�/; .Et1; : : : ; Etnp

//:

It is easy to show that the map  is continuous, and by construction the homeomorphism ' ı �1 is
cellular with respect to the CW–structures on URad and SD.
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