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A simplicial version of the 2–dimensional Fulton–MacPherson operad

NATHANIEL BOTTMAN

We define an operad in Top, called FMW
2 . The spaces in FMW

2 come with CW decompositions such that
the operad compositions are cellular. In fact, each space in FMW

2 is the realization of a simplicial set.
We expect, but do not prove here, that FMW

2 is isomorphic to the 2–dimensional Fulton–MacPherson
operad FM2. Our construction is connected to the author’s work on the symplectic .A1; 2/–category, and
suggests a strategy toward equipping the symplectic cochain complex with the structure of a homotopy
Batalin–Vilkovisky algebra.

18M75, 55P48; 53D37

1 Introduction

Getzler and Jones [1994] introduced the Fulton–MacPherson operad

(1) FM2 D .FM2.k//k�1;

where FM2.k/ is the compactification à la Fulton and MacPherson [1994] of the configuration space of
k distinct labeled points in R2, modulo translations and dilations. Getzler and Jones proposed in the
same paper a collection of cellular decompositions of the spaces in FM2, such that these decompositions
are compatible with the operad maps ıi W FM2.k/� FM2.l/! FM2.kC l � 1/. These decompositions
formed the basis for a significant amount of work related to the Deligne conjecture, including a proof in
[Getzler and Jones 1994] of that conjecture.

Unfortunately, Tamarkin found an error in Getzler and Jones’ decomposition. In particular, in the 9–
dimensional space FM2.6/, there are two disjoint open 6–cells C1 and C2 with the property that C1\C2 is
nonempty, as described in [Voronov 2000, Section 1.2.2]. Salvatore [2022] used meromorphic differentials
to construct cellular decompositions of the spaces in FM. His approach is completely different from
Getzler and Jones’.

We construct an operad of CW complexes, which we conjecture to be isomorphic in Top to FM2.
Under this expected isomorphism, our decompositions are refinements of Getzler and Jones’ attempted
decompositions. The context for the current paper is the author’s program (as developed in [Bottman
2015; 2019a; 2019b; 2020; Bottman and Carmeli 2021; Bottman and Oblomkov 2019; Bottman and
Wehrheim 2018]) to construct Symp, the symplectic .A1; 2/–category. Specifically, the author plans to
use the decompositions of FM that we construct here to understand the axioms for identity 1–morphisms
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in an .A1; 2/–category. In the context of Symp, this suggests a strategy toward endowing symplectic
cohomology with a chain-level homotopy Gerstenhaber (and eventually, homotopy BV) algebra structure
that is finite in each arity, thus answering Conjecture 2.6.1 of [Abouzaid 2015]. We note that our approach
is compatible with the operations in Symp, unlike Salvatore’s; in addition, we expect our approach to
generalize to the Fulton–MacPherson operad of any dimension.

1.1 Getzler and Jones’ attempted decomposition

Getzer and Jones’ attempted decomposition is an adaptation to the case of FM2 of Fox and Neuwirth’s
decomposition [1962] of the one-point compactification of the configuration space .R2/k n� of k points
in R2, where � is the fat diagonal. A Fox–Neuwirth cell corresponds to a choice of which subsets of the
points p1; : : : ;pk should be vertically aligned, the left-to-right order in which these subsets of points
should appear, and the top-to-bottom order in which each subset of the points should appear. For instance,
Figure 1 is a real-codimension-3 cell in ..R2/6 n�/�. Getzler and Jones observed that the Fox–Neuwirth
cells are invariant under translations and dilations, and moreover that one can define a similar type of
cell for the boundary locus. The elements in the boundary of FM2.k/ are trees of “screens”, and these
“boundary cells” are defined by partitioning and ordering the points on each of the screen in the same way
as with Fox–Neuwirth cells.

1.2 Tamarkin’s counterexample

As described in [Voronov 2000], Tamarkin observed a way in which Getzler and Jones’ supposed
decomposition fails. Consider FM2.6/, the open locus of which parametrizes configurations of six distinct
points in R2, up to translations and dilations. Next, we consider the two 6–cells C1 and C2 in Figure 2 (we
omit the numberings). The j th bubble in C2 (for j D 1; 2) carries a modulus �j defined in the following
way: by translating and dilating, we can move the left and right lines to x D 0 and x D 1, respectively;
we then denote by �j the position of the middle line. The intersection C1\C2 is the codimension-1 locus
in C2 in which �1 D �2. What Getzler and Jones proposed is therefore not a cellular decomposition,
because the intersection of the closures of two distinct n cells should be contained in the .n�1/–skeleton.
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Figure 2

In our construction, C1, C2, and C1\C2 will each be a union of cells.

1.3 An overview of our construction

We construct a collection of CW complexes FMW
2 .k/ and maps

(2) ıi W FMW
2 .k/�FMW

2 .l/! FMW
2 .kC l � 1/ for 1� i � k:

Here is our main result:

Main Theorem The spaces .FMW
2 .k//k�1 together with the composition operations ıi form a non-†

operad , and the composition maps

(3) ıi W FMW
2 .k/�FMW

2 .l/! FMW
2 .kC l � 1/

are cellular.

We will now give a brief overview of the definition of FMW
2 .k/.

(i) First, we define a “W –version” W W
n of the 2–associahedra by the analogy

(4) Kr WW .Ass/ :: Wn WW
W

n :

Here Kr is the .r�2/–dimensional associahedron, and W .Ass/ is the Boardman–Vogt W –construction
applied to the associative operad, which is defined in terms of metric stable trees and yields an operad of
CW complexes that is isomorphic to the associahedral operad K in Top. Wn is an .jnjCr�3/–dimensional
2–associahedron, and W W

n is a CW complex that we define in Section 2 in terms of metric stable tree-pairs
and which we expect to be homeomorphic to Wn. We then refine the CW structure on W W

n to a simplicial
decomposition.

(ii) Toward our construction of FMW
2 .k/, we decompose FM2.k/ into Getzler–Jones cells, then identify

each open Getzler–Jones cell with a product of open 2–associahedra. We then replace each such product
by the corresponding product of interiors of the spaces W W

n described in the previous step. This product

Algebraic & Geometric Topology, Volume 24 (2024)
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comes with a decomposition into products of simplices, and we refine this to a simplicial structure.
Finally, we attach these decomposed Getzler–Jones cells together to produce FMW

2 .k/. This part of the
construction appears in Section 3.

The essential property of FMW
2 .k/ that we must verify is that our CW decomposition is valid. It is clear

that our putative open cells disjointly decompose our space, and that they are homeomorphic to open balls.
The only nontrivial check we need to make is that the n–cells are attached to the .n�1/–skeleton. This is
where Getzler and Jones’ attempted decomposition fails: the 6–cell C1 that we described in Section 1.2
is not attached to the 5–skeleton. Our decomposition satisfies this property by construction: we attach a
given n–cell by taking a closed n–simplex, then attaching it to the existing skeleton via quotient maps
from the boundary .n�1/–simplices to the .n�1/–skeleton. In fact, the boundary of an n–cell is a union
of cells of dimension at most n� 1.

1.4 The relationship between our construction and Symp

The genesis of the construction of FMW
2 was a connection between the symplectic .A1; 2/–category

Symp and E2 suggested by Jacob Lurie in 2016. (The construction of Symp is a long-term project of
the author, building on work of Ma’u, Wehrheim, and Woodward; see [Bottman 2015; 2019a; 2019b;
2020; Bottman and Carmeli 2021; Bottman and Wehrheim 2018; Ma’u et al. 2018].) We can express this
connection concretely, via a collection of maps

(5) f W
� WW

W
n ! FMW

2 .jnj/;

where � is a 2–permutation, as defined in Section 3.2. The idea of this map is very simple. The map f�
forgets the data of the lines, then labels the points according to the 2–permutation � . Then f� extends
continuously to the boundary of Wn; it is an embedding on the interior of its domain, but contracts some
boundary cells.

Example 1.1 In Figure 3, we depict W111 and its image under an appropriate map f� . More precisely,
we depict their nets — to “assemble” both CW complexes, one would cut them out, then glue together
like-numbered edges. As is evident, most of the 2–cells of W111 are contracted by f� .

While it would take us too far afield to explain the relationship between FM2 and Symp (and their
W –counterparts) in detail, let us indicate the basic idea. Symp, being an .A1; 2/–category, assigns to a
chain in a 2–associahedron Wn an operation on 2–morphisms. (For instance, the objects of Symp are
symplectic manifolds, and given two objects M0 and M1, the 1–morphism category is Fuk.M�

0
�M1/;

2–associahedra Wn, where n is a single positive integer, act on this Fukaya category by the usual A1–
operations.) The current definition of an .A1; 2/–category, appearing in [Bottman and Carmeli 2021],
does not equip identity 1–morphisms with all the possible structure. Indeed, when defining operations
on 2–morphisms in the situation where some of the 1–morphisms are identities, those 1–morphisms
should be allowed to be “moved past” the other 1–morphisms. To make this precise, one exactly needs to
understand the maps f� , and to equip their targets with a CW structure so that f� is cellular. One way to

Algebraic & Geometric Topology, Volume 24 (2024)
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proceed toward this goal is to first decompose FMW
2 so that f W

� is cellular, and next construct coherent
homeomorphisms Wn ŠW W

n and FM2.k/Š FMW
2 .k/.

The following result therefore shows the way toward a connection between the symplectic .A1; 2/–
category and FMW

2 . It is an immediate consequence of our construction of W W
n and FMW

2 .k/, and it
forms the content of Remark 3.14.

Proposition Fix r � 1, n 2 Zr
�0
n f0g, and a 2–permutation � of type n. Then the associated map

(6) f W
� WW

W
n ! FMW

2 .jnj/

is cellular.

1.5 Future directions

The author plans to develop several aspects of the current paper. In particular:

� With several collaborators, the author plans to extend this work to produce cellular decompositions
of FMW

k
for all k � 1, and to show that FMW

k
is isomorphic to FMk in Top.

� This paper can be construed as a way of incorporating identity 1–morphisms into the symplectic
.A1; 2/–category. The author plans to formalize this in future work on the algebra of .A1; 2/–
categories.

Algebraic & Geometric Topology, Volume 24 (2024)
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� We plan to upgrade this work to give a cellular model for the framed analogue of the Fulton–
MacPherson operad. This suggests a way of endowing symplectic cohomology with a chain-level
BV algebra structure, which is the subject of Conjecture 2.6.1 of [Abouzaid 2015].
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2 A “W –version” of the 2–associahedra

In this section, we construct a “W –version” of the 2–associahedra. (The 2–associahedra were originally
defined in [Bottman 2019a].) This is an essential ingredient in our definition of FMW

2 .k/, which will
appear in Section 3.

2.1 A warm-up: K W , ie W.Ass/, ie a W –version of the associahedra

In this subsection, we recall a certain operad, which we will denote by KW D .KW
r /r�1. This is simply

the Boardman–Vogt W –construction applied to the associative operad Ass. We construct only KW rather
than recalling the general definition of the W –construction, because this one-off construction will be
a useful warm-up to our construction of W W later in this section. As noted in [Barber 2013], KW is
isomorphic in Top to the associahedral operad K.

The following proposition summarizes what we will prove about KW :

Proposition 2.1 The spaces .KW
r /r�1 form a non-† operad of CW complexes , and the composition maps

(7) ıi WK
W
r �KW

s !KW
rCs�1

defined in Definition 2.11 are cellular.

We will prove Proposition 2.1 at the end of the current subsection.

Algebraic & Geometric Topology, Volume 24 (2024)
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We begin with a definition of rooted ribbon trees. Stable rooted ribbon trees with r leaves index the strata
of the associahedron Kr , and they will be an integral part of the definition of KW

r .

Definition 2.2 [Bottman 2019a, Definition 2.2] A rooted ribbon tree (RRT) is a tree T with a choice of
a root ˛root 2 T and a cyclic ordering of the edges incident to each vertex; we orient such a tree toward
the root. We say that a vertex ˛ of an RRT T is interior if the set in.˛/ of its incoming neighbors is
nonempty, and we denote the set of interior vertices of T by Tint. An RRT T is stable if every interior
vertex has at least two incoming edges. We define Ktree

r to be the set of all isomorphism classes of stable
rooted ribbon trees with r leaves.

We denote the i th leaf of an RRT T by �T
i . For any ˛; ˇ 2 T , T˛ˇ denotes those vertices  such that the

path Œ˛;  � from ˛ to  passes through ˇ. We define T˛ WD T˛root˛.

Remark 2.3 Ribbon trees (resp. rooted ribbon trees) are often referred to as planar trees (resp. planted
trees).

Next, we define a version of RRTs with internal edge lengths:

Definition 2.4 A metric RRT .T; .`e// is the data of

� an RRT T , and

� for every edge e of T not incident to a leaf (but possibly incident to the root), a length `e 2 Œ0; 1�.

We call this a metric RRT of type T .

Now we will define a “dimension” function d on stable RRTs:

Definition 2.5 [Bottman 2019a, Definition 2.4] For T a stable RRT in Ktree
r , we define its dimension

d.T / 2 Œ0; r � 2� like so:

(8) d.T / WD r � #Tint� 1:

Definition 2.6 Given a stable tree T , the cell associated to T is denoted by CT and is defined to consist
of all metric RRTs of type T .

Note that we can canonically identify CT with the closed cube of dimension equal to the number of
internal edges of T . That is:

(9) CT Š Œ0; 1�
#Tint�1

D Œ0; 1�r�2�d.T /:

As we will see, KW
r is .r�2/–dimensional; it follows that d.T / is the codimension of CT in KW

r . (The
unfortunate clash of terminology between “dimension” and “codimension” is due to the fact that, in Kr ,
the cell indexed by T has dimension d.T /.)

We now define KW
r by taking the union of the cells CT for T any stable RRT with r leaves, then

collapsing edges of length 0.

Algebraic & Geometric Topology, Volume 24 (2024)
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Definition 2.7 Given r � 1, we define KW
r to be the following quotient:

(10) KW
r WD

� G
T2K tree

r

CT

�.
�:

Here � identifies .T; .`e// and .T 0; .`0e// if, after collapsing all edges e of T with `e D 0 and all edges e

of T 0 with `0e D 0, both metric RRTs reduce to the same metric RRT .T 00; .`00e//.

Example 2.8 In Figure 4, we depict the CW complex KW
4

. Note that this is a refinement of K4, which
(as a CW complex) is a pentagon. We have labeled the open top cells by the metric stable RRTs that
they parametrize, where each a and b is allowed to vary in Œ0; 1�. The closed top cells are glued together
along the cells where some of the edge lengths are 0 — for instance, we have indicated how the top and
top-right cubes are joined along the internal edge of the pentagon where the edge length b in both cells
becomes 0. The boundary of KW

r is the union of cells where at least one edge length is 1.

Finally, we define a simplicial refinement of the CW structure on KW
r . To approach this, we note that if

P is the poset f0; 1gk , where �1 < �2 if �2 can be gotten by changing some of the 0s of �1 to 1s, then
the nerve of P is a simplicial decomposition of the cube Œ0; 1�k . More concretely, the top simplices are
the sets of the form

(11) f.x1; : : : ;xk/ 2 Œ0; 1�
k
j 0< x�.1/ < � � �< x�.k/ < 1g;

where � is a permutation on k letters. The remaining simplices are the result of replacing some of these
inequalities by equalities.

Definition 2.9 We refine the CW structure on KW
r by decomposing each cell CT in KW

r like so: we
make the identification CT Š Œ0; 1�

r�2�d.T /, then perform the simplicial decomposition described in the
previous paragraph. This refinement equips KW

r with a simplicial decomposition.

Algebraic & Geometric Topology, Volume 24 (2024)
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Example 2.10 In Figure 5, we depict the simplicial complex KW
4

. This is the refinement of our initial
cubical CW decomposition of KW

r gotten by subdividing each of the five squares into two triangles. We
indicate the new edges by coloring them blue.

Now that we have constructed the spaces KW
r , we can prove Proposition 2.1, which states that .KW

r / is
a non-† operad and that the operad maps are cellular.

Definition 2.11 Fix r , s, and i 2 Œ1; r �. We wish to define the composition map

(12) ıi WK
W
r �KW

s !KW
rCs�1:

We do so cell by cell. That is, fix cells CT �KW
r and CT 0 �KW

s . Define T 00 to be the result of grafting
T 0 to the i th leaf of T . Then we define ıi on CT �CT 0 like so: given collections of edge lengths on
T and T 0, combine them to produce a collection of edge lengths on T 00, where we assign to the single
newly formed interior edge the length 1.

Proof of Proposition 2.1 Fix r , s, and i 2 Œ1; r �, and consider the composition map

(13) ıi WK
W
r �KW

s !KW
rCs�1:

To show that ıi is cellular, let’s consider the restriction of ıi to a product CT �CT 0 of closed cubes, for
T 2Kr and T 0 2Ks . Denote by T 00 the tree obtained by grafting the root of T 0 to the i th leaf of T . Then
ıi includes CT �CT 0 into CT 00 as the face gotten by requiring the outgoing edge of the root of T 0 to have
length 1. The CW structure of this face of CT 00 is finer than that of CT �CT 00 , so ıi is indeed cellular.
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2.2 Metric tree-pairs and the definition of W W
n

Just as we defined KW
r to be the parameter space of metric stable RRTs, we will define W W

n to parametrize
metric stable tree-pairs. The definition of metric stable tree-pairs is somewhat involved, so we devote the
current subsection to this definition.

Before defining metric stable tree-pairs, we recall the definition of stable tree-pairs:

Definition 2.12 [Bottman 2019a, Definition 3.1] A stable tree-pair of type n is a datum 2T D Tb
f
�! Ts ,

with Tb , Ts , and f described below:

� The bubble tree Tb is an RRT whose edges are either solid or dashed, which must satisfy these
properties:

– The vertices of Tb are partitioned as V .Tb/D Vcomp tVseam tVmark, where

� every ˛ 2 Vcomp has at least 1 solid incoming edge, no dashed incoming edges, and either a
dashed or no outgoing edge;

� every ˛ 2 Vseam has zero or more dashed incoming edges, no solid incoming edges, and a solid
outgoing edge; and

� every ˛ 2 Vmark has no incoming edges and either a dashed or no outgoing edge.

We partition Vcomp DW V
1

comp tV �2
comp according to the number of incoming edges of a given vertex.

– Stability If ˛ is a vertex in V 1
comp and ˇ is its incoming neighbor, then #in.ˇ/� 2; if ˛ is a vertex

in V �2
comp and ˇ1; : : : ; ˇl are its incoming neighbors, then there exists j with #in. ǰ /� 1.

� The seam tree Ts is an element of Ktree
r .

� The coherence map is a map f W Tb! Ts of sets having these properties:

– f sends root to root, and if ˇ 2 in.˛/ in Tb , then either f .ˇ/ 2 in.f .˛// or f .˛/D f .ˇ/.

– f contracts all dashed edges, and every solid edge whose terminal vertex is in V 1
comp.

– For any ˛ 2 V �2
comp, f maps the incoming edges of ˛ bijectively onto the incoming edges of f .˛/,

compatibly with <˛ and <f .˛/.

– f sends every element of Vmark to a leaf of Ts , and if �Ts

i is the i th leaf of Ts , then f �1f�
Ts

i g

contains ni elements of Vmark, which we denote by �Tb

i1
; : : : ; �

Tb

ini
.

We denote by W tree
n the set of isomorphism classes of stable tree-pairs of type n. Here an isomorphism

from Tb
f
�! Ts to T 0

b

f 0
�! T 0s is a pair of maps 'b W Tb! T 0

b
and 's W Ts! T 0s that fit into a commutative

square in the obvious way and that respect all the structure of the bubble trees and seam trees.

Next, we define metric stable tree-pairs. This notion is more subtle than that of metric stable RRTs,
because we must impose conditions on the edge-lengths. (This should be compared to Bottman and
Oblomkov’s similar constraints [2019, Section 3], imposed in order to define local charts on a complexified
version of Wn.)

Algebraic & Geometric Topology, Volume 24 (2024)
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Definition 2.13 A metric stable tree-pair .2T; .Le/; .`e// is the following data:

� 2T is a stable tree-pair.

� We have, for every interior dashed edge e of Tb , a length Le 2 Œ0; 1�, and, for every interior edge e of Ts ,
a length `e 2 Œ0; 1�, subject to the following coherence conditions (where for convenience we set L˛ WDLe

for ˛ 2 Vcomp.Tb/ n f˛rootg and e the outgoing edge of ˛, and similarly for the edge-lengths in Ts):

– For every ˛1; ˛2 2 V �2
comp.Tb/ and ˇ 2 V 1

comp.Tb/ with f .˛1/D f .˛2/D f .ˇ/, we require

(14) max
2Œ˛1;ˇ/

L D max
2Œ˛2;ˇ/

L :

– For every � 2 Vint.Ts/ n f�rootg and ˛ 2 V �2
comp.Tb/ with f .˛/D �, we require

(15) `� D max
2Œ˛;ˇ˛/

L ;

where we define ˇ˛ to be the first element of V �2
comp.Tb/ that the path from ˛ to ˛root passes through.

Finally, we recall the dimension of a stable tree-pair. Similarly to the dimension of a stable RRT, this will
be the codimension in W W

n of the cell corresponding to the stable tree-pair in question.

Definition 2.14 [Bottman 2019a, Definition 3.3] For 2T a stable tree-pair, we define the dimension
d.2T / 2 Œ0; jnjC r � 3� like so:

(16) d.2T / WD jnjC r � #V 1
comp.Tb/� #.Ts/int� 2:

We are now prepared to define W W
n , the “W –version” of the 2–associahedron. We will define W W

n by
attaching together the cells C2T , which consist of metric stable tree-pairs.

Definition 2.15 Given a stable tree-pair 2T , the cell associated to 2T is the collection of all metric
stable tree-pairs of type 2T . We denote this cell by C2T .

Note that we can identify C2T with the subset of the cube Œ0; 1�k defined by the equalities (14) and (15),
where k is the number of interior dashed edges of Tb plus the number of interior edges of Ts .

Definition 2.16 Fix r � 1 and n 2 Zr
�0
n f0g. We define W W

n similarly to how we defined KW
r in

Definition 2.7:
W W

n WD

� G
2T2W tree

n

C2T

�.
�:

The quotient here is somewhat subtler than the quotient that appeared in Definition 2.7, specifically
when it comes to Tb . In Ts , we simply contract any edges of length 0. We indicate in Figure 6 how to
perform the necessary contractions in Tb when some edge-lengths are 0. The reader should think of
the left contraction as undoing a type-1 move (as in [Bottman 2019a, Section 3.1]), whereas the right
contraction undoes either a type-2 or a type-3 move. Note that we are using the coherences enforced in
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Definition 2.13 — for instance, these mean that we do not have to consider a situation as in the right-hand
side of the above figure, but where only some of the edge-lengths in this portion of Tb are 0.

Example 2.17 In Figure 7, we depict the CW complex W W
21

. Each of the parameters a and b lie in Œ0; 1�;
they do not have the same meaning across different cells. The eight interior edges (resp. sixteen boundary
edges) correspond to the loci in the top cells where a parameter goes to 0 (resp. to 1).

Finally, we refine the CW structure on W W
n to a simplicial decomposition.

Lemma 2.18 Fix a stable tree-pair 2T . For every simplex S in the standard simplicial decomposition of
Œ0; 1�k � C2T , S is either contained in C2T or disjoint from it. The collection of such simplices that are
contained in C2T form a simplicial decomposition of C2T .

Proof Fix a simplex S . S is defined by a collection of equalities and inequalities of the form

(17) 0�x�.1/ � � � � �x�.k/ � 1;

where each “�” is either a “<” or an “D” and where � is a permutation on k letters. After imposing
these (in)equalities, the left- and right-hand sides of the equalities (14) and (15) become single variables.
This collection of equalities will either be always satisfied or never satisfied, depending on the constraints
in (17). Depending on which of these is the case, S is either contained in C2T or disjoint from it.

It follows immediately that the collection of simplices that are contained in C2T form a simplicial
decomposition of C2T .
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Example 2.19 In Figure 8, we illustrate the closed cell in W W
40

associated to the underlying tree-pair of
the (top-dimensional) metric tree-pair shown on the right. The restriction on the lengths a; b; c; d 2 Œ0; 1�

is that they must satisfy max.a; b/Dmax.c; d/; as a result, this cell has the CW type of a square pyramid.

We indicate the simplicial refinement of this cell: the square pyramid is subdivided into eight 3–simplices,
which are defined by imposing inequalities and equalities as shown in this figure.

a< c < b D d

c < a< b D d

c < b < aD d

b < c < aD d b < d < aD c

d < b < aD c

d < a< b D c

a< d < b D c

d db b

a c

Figure 8
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3 The construction of FMW
2

In this final section, we will construct a collection of CW complexes .FMW
2 .k//k�1 and a collection of

operations

(18) ıi W FMW
2 .k/�FMW

2 .l/! FMW
2 .kC l � 1/

such that these data form an operad.

We will now give an overview of our construction of FMW
2 .k/. This is an expansion of step (ii) in the

overview we gave in Section 1.3, and we label the parts accordingly:

(iia) Each open Getzler–Jones cell in FM2.k/ can be identified with a product of open 2–associahedra,
ie a product of the form VWm1 � � � � � VWma (where “ VX ” is our notation for the interior of a space X ).
For each such open cell, we replace these 2–associahedra by their W –construction equivalents thusly:
VW W

m1 � � � � �
VW W

ma . This product comes with the product CW structure, and we refine this in a way that
endows VW W

m1 � � � � �
VW W

ma with the structure of a simplicial complex.

(iib) While an open Getzler–Jones cell can be identified with a product VWm1�� � �� VWma of 2–associahedra,
their compactifications (in FM2.k/ and Wm1�� � ��Wma , respectively) are different: the compactification
of the former is smaller than the compactification of the latter. This is reflected in how we glue our products
VW W

m1�� � ��
VW W

ma together. Specifically, we perform this gluing by applying a quotient map to each simplex
in the boundary of W W

m1�� � ��W W
ma . This quotient map is closely related to the maps f� WWn! FM2.k/

that we described in Section 1.4: they reflect the fact that the compactification used to define Wn allows
lines with no marked points, whereas the compactification of a Getzler–Jones cell does not allow this.

The following is the main result of this section, which we stated in the introduction and record again here:

Main Theorem The spaces .FMW
2 .k//k�1 together with the composition operations ıi defined in

Definition 3.11 form a non-† operad , and the composition maps

(19) ıi W FMW
2 .k/�FMW

2 .l/! FMW
2 .kC l � 1/

are cellular.

Proof Combine Lemmata 3.12 and 3.13 below.

3.1 Quotient maps on 2–associahedra

Before we can define the quotient involved in (24), we will define for every cell F in @W W
n a map qF

from F to a certain product of 2–associahedra, where this target will vary for difference choices of F .
We begin with two preliminary definitions:

Definition 3.1 Fix r � 1 and n 2 Zr
�0
n f0g, and fix i 2 Œ1; r � such that ni D 0. Define Qn WD

.n1; : : : ; ni�1; niC1; : : : ; nr /. We then define a map of posets � tree
i W W

tree
n ! W tree

Qn
by applying the

following procedure to 2T D Tb
f
�! Ts 2W tree

n :
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(i) Denote by e0 the edge in Ts incident to the i th leaf �Ts

i . If e is a solid edge in Tb that is mapped
identically under f to e0, then we delete e. Next, we delete e0. We modify f in the obvious way.

(ii) After performing these deletions, our tree-pair may no longer be stable. We rectify this in Tb

(resp. Ts) by performing the contractions indicated on the left (resp. right):

Specifically, we perform these contractions as many times as necessary for the tree-pair to be stable.

Denoting the end result of this procedure by f2T , we define � tree
i .2T / WD f2T .

Next, we define another map of posets. Fix r � 1 and n 2 Zr
�0
n f0g. Denote by Qn the result of deleting

all the zeroes from n, and set Qr to be the length of Qn. We define � tree WW tree
n !W tree

Qn
by applying the

map � tree
i once for each i with ni D 0.

It is not hard to check that the choices implicit in this definition do not matter, and that the resulting maps
are indeed maps of posets.

Definition 3.2 Fix r � 1 and n 2 Zr
�0
n f0g. We define a map �W WW W

n !W W
Qn

in the same fashion
as � tree, with the provision that when we contract adjacent edges of lengths `1 and `2 (whether in Tb

or Ts) we equip the resulting edge with length max.`1; `2/.

Next, we recall a W –version analogue of two properties of the 2–associahedra:

W –version analogue of the forgetful property of [Bottman 2019a, Theorem 4.1] Fix r � 1 and n 2

Zr
�0
nf0g. There is a surjection W W

n !KW
r which sends a metric stable tree-pair .Tb

f
�! Ts; .Le/; .`e//

to the metric stable RRT .Ts; .`e//.

W –version analogue of the recursive property of [Bottman 2019a, Theorem 4.1] Fix a stable tree-pair
2T D Tb

f
�! Ts 2W tree

n . There is an inclusion of CW complexes

(20) �2T W

Y
˛2V 1

comp.Tb/

in.˛/D.ˇ/

W W
#in.ˇ/ �

Y
�2Vint.Ts/

K W
#in.�/Y

˛2V�2
comp.Tb/\f

�1f�g

in.˛/D.ˇ1;:::;ˇ#in.�//

W W
#in.ˇ1/;:::;#in.ˇ#in.˛//

,!W W
n ;

where the superscript on one of the product symbols indicates that it is a fiber product with respect to the
maps in the description of the forgetful property above.

The map �2T defined in [Bottman 2019a], which is defined for the posets W tree
n , is defined by attaching

stable tree-pairs together in a way specified by the stable tree-pair 2T . This map is similar, but we are
attaching together metric stable tree-pairs. We assign the length 1 to the edges along which we attach the
trees. (The image of �2T is a union of cells in @W W

n .)
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We can now define the quotient maps qF on W W
n :

Definition 3.3 Fix r � 1, n 2 Zr
�0
n f0g, a stable type-n tree-pair f2T , and a face F of the associated

cell Ce2T
in W W

n with the property that F lies in @W W
n . (Equivalently, the metric tree-pairs in F have at

least one length that is identically equal to 1.) The quotient map associated to F is a map qF from F to a
product of 2–associahedra. Given a metric stable tree-pair .2T; .Le/; .`e//, we define its image under �
in the following fashion:

(i) Break up Tb and Ts along the edges that are identically 1 in F . Equivalently, choose 2T of minimal
dimension with the property that F lies in the image of �2T , then identify F as a top cell in a product of
fiber products of the following form:

(21)
Y

˛2V 1
comp.Tb/

in.˛/D.ˇ/

W W
#in.ˇ/ �

Y
�2Vint.Ts/

K W
#in.�/Y

˛2V�2
comp.Tb/\f

�1f�g

in.˛/D.ˇ1;:::;ˇ#in.�//

W W
#in.ˇ1/;:::;#in.ˇ#in.˛//

:

As a result, we obtain a list of metric stable tree-pairs, which we can regard as lying inside a product
W W

m1 � � � � �W W
ma .

(ii) We then apply the map �W to each of the factors in the product just recorded, hence producing an
element of W W

zm1 � � � � �W W
zma . (As in Definitions 3.1 and 3.2, zmi denotes the result of removing the 0s

from mi .)

Note that for two cells F1 and F2 in the boundary of W W
n , the targets of qF1

and qF2
are typically different.

Example 3.4 In Figure 9, we illustrate several things about W W
21

. Initially, W W
21

is an octagon, decom-
posed into eight squares; this is indicated by the black lines. The simplicial refinement divides each
square into two 2–simplices. We have indicated the metric tree-pairs that correspond to each of the eight
squares, as well as those corresponding to the sixteen 1–simplices that comprise @W W

21
. (Some dashed

edges are not labeled; these should be interpreted as having length max.a; b/.)

Finally, we have indicated the behavior of the quotient maps on W W
21

. These maps are the identity on every
edge except for those indicated in red. Each pair of red edges is contracted to a point. One reflection of
this is that in Example 1.1, the octagons in W111 are taken to the (cellular) hexagons in the Getzler–Jones
cell indicted on the right.

3.2 The construction of FMW
2

.k/

In this subsection, we tackle the construction of FMW
2 .k/. First, we will describe our version of the

Getzler–Jones cells. Next, we will explain how to glue these spaces together.

To define the Getzler–Jones cells, we must introduce 2–permutations, which will allow us to enforce the
alignment and ordering of special points on screens as in Figure 1.
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Definition 3.5 Fix a finite set A. A 2–permutation � on A is the data

� an ordered decomposition

(22) ADA1 t � � � tAr ;

where Ar is allowed to be empty, and

� for each i , a linear order on Ai .

We define the type of � to be the vector n WD .jA1j; : : : ; jAr j/. If � is a 2–permutation whose type n has
no zero entries, then we say that � has no empty part.
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Remark 3.6 A type-.

r‚ …„ ƒ
1; : : : ; 1/ 2–permutation is exactly the data of a permutation on r letters. The same

is true of a type-.n/ 2–permutation.

Next, we define a Getzler–Jones datum, the set of which indexes the Getzler–Jones cells in FMW
2 .k/.

Definition 3.7 Fix k � 2. A Getzler–Jones datum consists of

� a stable rooted tree T with k leaves, together with a numbering of its leaves from 1 through k, and

� for every interior vertex v 2 Tint, a 2–permutation � on its incoming vertices Vin.T / such that �
has no empty part.

We denote the type of the 2–permutation associated to v by n.v/. We will abuse notation and denote the
entire Getzler–Jones datum by T .

Finally, we can define the Getzler–Jones cells of type k:

Definition 3.8 Fix k � 2 and a Getzler–Jones datum T . Then we define

(23) GJT WD

Y
v2Tint

VW W
n.v/ and �GJT WD

Y
v2Tint

W W
n.v/:

We call GJT the Getzler–Jones cell GJT associated to T , and refer to GJT as a type-k Getzler–Jones cell.

In Lemma 2.18 we equipped W W
n with the structure of a simplicial complex, which induces a CW

structure on GJT and �GJT . We refine these to equip GJT and �GJT with simplicial decompositions, in the
fashion of Lemma 2.18.

Remark 3.9 The reason why we do not refer to �GJT as a “closed Getzler–Jones cell” is because it is not
the closure in FMW

2 .k/ of GJT . In fact, it is larger than this closure. Our reason for making this second
definition is that �GJT will be an integral part of our definition of FMW

2 .k/.

We will define FMW
2 .k/ as a quotient of the following form, where T varies over type-k Getzler–Jones

data:

(24) FMW
2 .k/ WD

�a
T

�GJT

�.
�:

The remaining ingredient is the collection of maps that we will use to attach these spaces. As a consequence
of the definition of these maps, FMW

2 .k/will decompose as a set into the union of all type-k Getzler–Jones
cells.

Finally, we come to the definition of FMW
2 .k/:

Definition 3.10 Fix k � 2. We construct FMW
2 .k/ like so:

(i) Begin with the following disjoint union, where T varies over type-k Getzler–Jones data:

(25)
a
T

�GJT :
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(ii) Fix a type-k Getzler–Jones datum T , and fix a cell F in the boundary of �GJT D
Q
v2Tint

W W
n.v/

.
F lies inside a product of cells in the 2–associahedra that comprise �GJT — that is, we may write
F �

Q
v2Tint

Fv �
Q
v2Tint

W W
n.v/

, where Fv is a cell in W W
n.v/

. For every v, we have a map qv from
W W

n.v/
to a product of 2–associahedra; by combining these, we obtain a map from F to a product of

2–associahedra. In fact, we can regard the target of this map as a Getzler–Jones cell.

(iii) We take the quotient of the disjoint union in (25) by attaching the constituent spaces together via
the maps we defined in the last step.

We define FMW
2 .1/ to be a point.

It is a consequence of the simplicial structure of the �GJT that each FMW
2 .k/ has the structure of a

CW complex. As noted above, a result of our definition is that FMW
2 .k/ decomposes as a union of

Getzler–Jones cells, over all Getzler–Jones data of type k.

3.3 The operad structure on FMW
2

Definition 3.11 Fix k, l , and i 2 Œ1; k�. We wish to define the map

(26) ıi W FMW
2 .k/�FMW

2 .l/! FMW
2 .kC l � 1/:

To do so, fix Getzler–Jones data T and T 0 of types k and l , respectively, and fix cells F � GJT and
F 0 � GJT 0 . We will define ıi on

(27) GJT �GJT 0 D

Y
v2TinttT 0int

W W
n.v/:

Define T 00 to be the result of grafting T 0 to the i th leaf of T , and completing it to a Getzler–Jones datum
in the obvious way. We define ıi on GJT �GJT 0 to be the identification of GJT �GJT 0 with GJT 00 .

Lemma 3.12 Taken together , the spaces .FMW
2 .k//k�1 together with the composition operations ıi

form a non-† operad.

Proof This is immediate from the definition.

Lemma 3.13 The composition maps

(28) ıi W FMW
2 .k/�FMW

2 .l/! FMW
2 .kC l � 1/

are cellular.

Proof This is similar to the proof of Proposition 2.1.

Remark 3.14 Fix r �1, n2Zr
�0
nf0g, and a 2–permutation � of type n. Then the associated forgetful map

(29) f W
� WW

W
n ! FMW

2 .jnj/
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is cellular. This map is defined in the obvious way: we first identify W W
n with the corresponding �GJT ,

where T is a Getzler–Jones datum whose associated tree T is a corolla with jnj leaves. Then, we include�GJT into the disjoint union
F

T
�GJT , and finally take the quotient to land in FMW

2 .jnj/.
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