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Intrinsically knotted graphs with linklessly embeddable simple minors

THOMAS W MATTMAN

RAMIN NAIMI

ANDREI PAVELESCU

ELENA PAVELESCU

It has been an open question whether the deletion or contraction of an edge in an intrinsically knotted
graph always yields an intrinsically linked graph. We present a new intrinsically knotted graph that shows
the answer to both questions is no.

05C10; 57M15, 57K10

1 Introduction

A graph is intrinsically knotted (resp. intrinsically linked) if every embedding of it in S3 contains a
nontrivial knot (resp. 2–component link). We abbreviate intrinsically knotted (resp. linked) as IK (resp. IL),
and not intrinsically knotted (resp. linked) as nIK (resp. nIL). Robertson, Seymour, and Thomas [12]
showed that every IK graph is IL. It is also known that coning one vertex over an IL graph yields an IK
graph. (This is shown by combining [12] and the work of Foisy [4] and Sachs [13].) However, it has
been difficult to make the relationship between IK and IL graphs stronger. For example, Adams [1] asked
if deleting a vertex from an IK graph always yields an IL graph, but Foisy [5] provided a counterexample.
Deleting a vertex from a graph also deletes all edges incident to that vertex, so it might seem more likely
that deleting, or contracting, a single edge of an IK graph should leave it IL. Naimi, Pavelescu, and
Schwartz [10] tried to show that this is the case when the edge belongs to a 3–cycle, but their proof
contained an error (which we will describe in Section 6). They also asked if deleting or contracting an
edge in an IK graph always yields an IL graph. We verify (using a computer program) that the answer to
this question is yes for graphs of order at most 9, but we show that in general the answer is no. We present
an IK graph G11;35 of order 11 and size 35 with edges e and f such that neither G11;35�e (edge deletion)
nor G11;35=f (edge contraction) is IL. We argue that G11;35 is a minimal-order example of an IK graph
that yields a nIL graph by deleting one edge, and that ten is the smallest order for an IK graph that yields a
nIL graph by contracting one edge. The graph G11;35 is also a counterexample to the main result of [10].

Graphs that are IK but yield a nIL graph by deleting one vertex or edge or by contracting one edge are
intriguing from the perspective of Colin de Verdière’s graph invariant �. This is an integer-valued graph
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rY move
Yr move

Figure 1: rY and Yr moves.

invariant that is difficult to compute in general; its value is known only for certain classes of graphs with
“nice” topological properties. For example, for any graph G, �.G/ � 3 if and only if G is planar (see
Colin de Verdière [2]), and �.G/� 4 if and only if G is nIL; see van der Holst, Lovász, and Schrijver [7].

An important open question is how to characterize graphs G with �.G/� 5. Even though many known
minor-minimal IK (MMIK) graphs have �–invariant 6, intrinsic knottedness is not the answer. A minor
of a graph G is a graph obtained by contracting zero or more edges in a subgraph of G. We’ll say an edge
deletion minor (resp. edge contraction minor) of G is a graph obtained by deleting (resp. contracting)
exactly one edge of G. Both are called simple minors of G. As we explain in Section 5, if an IK graph G

has a nIL simple minor then �.G/D 5. Thus, our graph G11;35, together with other IK graphs obtained
from it (as described in Section 5), join Foisy’s graph as new examples of IK graphs with �–invariant 5.
These examples show that �.G/� 5 is not equivalent to G being nIK.

In the next section we describe the graph G11;35 and we show it is IK and minor-minimal for that property
in Sections 3 and 4, respectively. In Section 5 we make some observations about the Colin de Verdière
invariant and prove that 10 is the least order for an IK graph with an edge-contraction minor that is IL.
Section 6 goes over the error in [10], and we conclude with an appendix that provides edge lists for three
graphs we discuss.

To complete this introduction, we provide several definitions. A graph G is n–apex if one can delete n

vertices from G to obtain a planar graph; G is apex if it is 1–apex, and 0–apex is a synonym for planar. A
graph G is minor minimal with respect to a property if G has that property but no minor of it has that
property. The complete graph on n vertices is denoted by Kn. V .G/ and E.G/ denote the vertex set
and the edge set of G, respectively. A graph G is the clique sum of two subgraphs G1 and G2 over Kn

if V .G/ D V .G1/[ V .G2/, E.G/ D E.G1/[E.G2/, and the subgraphs induced in G1 and G2 by
V .G1/\V .G2/ are both isomorphic to Kn. We use the notation G DG1˚Kn

G2. The rY –move and
Yr–move are defined as shown in Figure 1. The family of a graph G is the set of all graphs obtained
from G by doing zero or more rY and Yr moves. The Petersen family of graphs is the family of the
Petersen graph (which is also the family of K6).

2 The graph G11;35

We describe a sequence of graphs and graph operations used to construct G11;35. Let H denote the graph
in Figure 2, left. Deleting the vertex labeled 4, one obtains the maximal planar graph H 0, depicted in

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 2: Left: H is apex. Right: H 0 is maximal planar.

Figure 2, right. This implies that H is an apex graph; thus it is nIL by [13]. Similarly, the graph K shown
in Figure 3, left, is nIL since deleting vertex 5 from K yields a maximal planar graph, as in Figure 3, right.

Notice that deleting the vertices 3, 4, 5, and 6 from both H and K produces connected subgraphs. So,
by [9, Lemma 14], the clique sum of H and K over the K4 induced by f3; 4; 5; 6g is a nIL graph, denoted
by M and depicted in Figure 4.

The graph G11;35 is obtained by adding the edge .2; 11/ to the nIL graph M (see Figure 5). We prove in
Section 3 that G11;35 is IK. We have thus obtained an IK graph that has a nIL edge deletion minor. Further,
since the edge .2; 11/ is in a 3–cycle in G11;35, this also gives a counterexample to the main result of [10].
Notice that contracting the edge .2; 3/ in G11;35 yields a graph that is a minor of M , and therefore nIL.
Hence, G11;35 also has a nIL edge contraction minor. The edge list of G11;35 is given in the appendix.

Remark The edge .2; 3/ in G11;35 is triangular (ie it belongs to one or more triangles), so contracting it
results in the deletion of parallel edges. One can ask whether contracting a nontriangular edge in an IK
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Figure 3: Left: K is apex. Right: K0 is maximal planar.
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Figure 4: M 'H ˚K4
K.

graph can result in a nIL graph. The answer is yes: In G11;35, if we do a rY move on the triangle with
vertices 2; 3, and 11, we obtain a new IK graph G0 with a new vertex, denoted by x. Contracting the edge
.x; 3/— which is nontriangular — in G0 yields a graph isomorphic to G11;35� .2; 11/, which is nIL.

Remark The graph G11;35 is a minimal-order IK graph with a nIL edge deletion minor. To verify this, we
took every maxnIL graph of order 10 (there are 107 of them [11]), and checked (with computer assistance)
that adding one edge to it never yields an IK graph. However, 11 is not the smallest order of an IK
graph that has a nIL edge contraction minor. The graph G10;30, depicted in Figure 6, is a minor-minimal
IK graph of order 10. Contracting the edge .2; 6/ gives the nIL minor in Figure 7, left. This graph is
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Figure 5: The graph G11;35.
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Figure 7: Left: the contraction minor of G10;30. Right: H ˚K4
K5.

nIL since adding the edge .8; 9/ produces a graph isomorphic to the clique sum, over the K4 subgraph
induced by f2; 3; 8; 9g, of K5 and a subgraph isomorphic to H , introduced in Figure 2. By the following
proposition, G10;30 is a minimal-order IK graph with a nIL edge contraction minor. In Section 5, we show
that G10;30 has �–invariant 5. Furthermore, according to our computer program, this graph is MMIK.

Proposition 2.1 Ten is the smallest order for an IK graph which admits a nIL edge contraction minor.

We defer the proof to Section 5.

3 G11;35 is IK

We prove G11;35 is IK by showing that the graph G10;26 in Figure 8 is an IK minor of G11;35. (In fact,
G10;26 is MMIK; we show this in the next section.)

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 8: G10;26.

The graph G10;26 is obtained from G11;35 by contracting the edge (2,11) and deleting the edges .2; 3/,
.2; 5/, .2; 6/, .3; 5/, .3; 6/, .4; 10/, and .5; 6/.

To prove G10;26 is IK, we use the technique developed by Foisy in [4], which we explain below. The D4

graph is the (multi)graph shown in Figure 9. A double-linked D4 is a D4 graph embedded in S3 so that
each pair of opposite 2–cycles (C1[C3 and C2[C4) has odd linking number. The following lemma was
proved by Foisy [4]; a more general version was proved independently by Taniyama and Yasuhara [14].

Lemma 3.1 Every double-linked D4 contains a nontrivial knot.

We will also use the following (well known and easy to prove) lemma.

Lemma 3.2 Suppose ˛, ˇ1, and ˇ2 are simple closed curves in S3 such that ˇ1\ˇ2 is an arc and ˛ has
odd linking number with .ˇ1[ˇ2/ n interior.ˇ1\ˇ2/. Then ˛ has odd linking number with ˇ1 or ˇ2.

Theorem 3.3 The graph G10;26 in Figure 8 is IK.

C1

C2

C3

C4

Figure 9: The D4 graph.
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Figure 10: Selected subgraphs of G10;26.

Proof We shall prove that every embedding of G10;26 has a double-linked D4 minor. It then follows
from Lemma 3.1 that G10;26 is IK. For the remainder of this proof, we will say two disjoint simple closed
curves ˛ and ˇ in S3 are linked, or ˛ links ˇ, if ˛[ˇ has odd linking number.

In G10;26 we select the subgraphs A, B, C , D, E, and F shown in Figure 10 (these are not induced
subgraphs). All these subgraphs are either in the Petersen family of graphs or have minors in this family,
and are therefore intrinsically linked: A contains a K3;3;1 minor obtained by contracting the edge (4,6); B

is isomorphic to K�
4;4

; C and F contain K�
4;4

minors obtained by contracting the edges .8; 9/ and .1; 9/,
respectively; D and E contain G7 minors obtained by contracting the edges .6; 7/ and .5; 7/, respectively.

We organize the proof into several cases and subcases, according to which two cycles of each subgraph
are linked. We start with the subgraph A. The vertices of G10;26 can be partitioned into six equivalence
classes up to symmetry: f1; 8g, f2; 3g, f4g, f5; 6g, f7; 10g, and f9g. All of these except vertex 9 are in A.
This gives, up to symmetry, four different pairs of cycles in A:

.A1/ .4; 1; 5/[ .2; 7; 3; 10/; .A3/ .4; 6; 7; 5/[ .2; 1; 3; 10/;

.A2/ .4; 1; 2/[ .3; 7; 5; 10/; .A4/ .4; 6; 7; 2/[ .3; 1; 5; 10/:

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 11: Diagrams for the subcase (A1)-(B1).

Since A is intrinsically linked, given any embedding of G10;26, we can relabel (if necessary) the vertices
of G10;26 within each equivalence class so that at least one of these four pairs of cycles is linked. We
subdivide each of the four cases (A1)–(A4): (A1) is split into subcases according to which two cycles of
B are linked, (A2) according to C , (A3) according to D, and (A4) according to B. For each subcase a
diagram is drawn with the nontrivial link in A drawn in red. The two cycles in each of the subgraphs B

through F are drawn in blue. Each diagram contains some marked edges; contracting these marked edges
in G10;26 gives a double-linked D4 minor.

Case (A1) Assume .4; 1; 5/[.2; 7; 3; 10/ is a nontrivial link of A. We identify a nontrivial link in B and
show the existence of a double-linked D4 in every subcase. Based on the symmetries of G10;26, B has
four different types of pairs of cycles. We match the link in (A1) with each of the four types of links in B:

.B1/ .8; 2; 4; 3/[ .7; 5; 10; 6/; .B3/ .8; 2; 7; 6/[ .4; 5; 10; 3/;

.B2/ .8; 2; 7; 3/[ .4; 5; 10; 6/; .B4/ .8; 2; 4; 6/[ .7; 5; 10; 3/:

Subcase (A1)-(B1) From this point forward, we abbreviate “the cycles X and Y are linked” as just
“X [Y ”. Assume .8; 2; 4; 3/[ .7; 5; 10; 6/. Since .4; 1; 5/[ .2; 7; 3; 10/, by Lemma 3.2 we have either
(i) .4; 1; 5/[ .2; 7; 6; 10/ or (ii) .4; 1; 5/[ .3; 7; 6; 10/. See Figure 11.

Subcase (A1)-(B2) Assume .8; 2; 7; 3/[ .4; 5; 10; 6/. See Figure 12, left.
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Figure 12: Diagrams for subcases. Left: (A1)-(B2). Center: (A1)-(B3). Right: (A1)-(B4).
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Figure 13: Diagrams for the subcase (A2)-(C1).

Subcase (A1)-(B3) Assume .8; 2; 7; 6/[ .4; 5; 10; 3/. See Figure 12, center.

Subcase (A1)-(B4) Assume .8; 2; 4; 6/[ .7; 5; 10; 3/. See Figure 12, right.

Case (A2) Assume .4; 1; 2/[ .3; 7; 5; 10/ is a nontrivial link of A. We identify a nontrivial link in C

and show the existence of a double-linked D4. We note that vertices 8 and 9 and the edge between them
act as one vertex of the K�

4;4
. Based on the symmetries of G, C has four different types of pairs of cycles.

Since in the (A2) link of A vertices 2 and 3 are distinguished, they need also be distinguished within the
linked cycles of C . We match the link in (A2) with each link of C :

.C1/ .6; 7; 2; 10/[ .1; 5; 9; 8; 3/; .C4/ .6; 7; 2; 8; 9/[ .1; 3; 10; 5/;

.C2/ .6; 7; 3; 10/[ .1; 5; 9; 8; 2/; .C5/ .6; 7; 3; 8; 9/[ .1; 2; 10; 5/;

.C3/ .6; 7; 5; 10/[ .1; 2; 8; 3/; .C6/ .6; 7; 5; 9/[ .1; 2; 10; 3/:

Subcase (A2)-(C1) Assume .6; 7; 2; 10/[ .1; 5; 9; 8; 3/. Since .4; 1; 2/[ .3; 7; 5; 10/, by Lemma 3.2
we have either (i) .4; 1; 2/[ .3; 7; 6; 10/ or (ii) .4; 1; 2/[ .5; 7; 6; 10/. See Figure 13.

Subcase (A2)-(C2) Assume .6; 7; 3; 10/[ .1; 5; 9; 8; 2/. See Figure 14, left.

Subcase (A2)-(C3) Assume .6; 7; 5; 10/[ .1; 2; 8; 3/. See Figure 14, center.

Subcase (A2)-(C4) Assume .6; 7; 2; 8; 9/[ .1; 3; 10; 5/. See Figure 14, right.
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Figure 14: Diagrams for subcases. Left: (A2)-(C2). Center: (A2)-(C3). Right: (A2)-(C4).
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Figure 15: Diagrams for subcases. Left: (A2)-(C5). Right: (A2)-(C6).

Subcase (A2)-(C5) Assume .6; 7; 3; 8; 9/[ .1; 2; 10; 5/. See Figure 15, left.

Subcase (A2)-(C6) Assume .6; 7; 3; 8; 9/[ .1; 2; 10; 5/. See Figure 15, right.

Case (A3) Assume .4; 6; 7; 5/[ .2; 1; 3; 10/ is a nontrivial link of A. We identify a nontrivial link in D

and show the existence of a double-linked D4 for all cases except one. We then identify a nontrivial link
in F and show the existence of a double-linked D4 for all cases except one. If both exceptional cases
occur at the same time, the existence of a double-linked D4 is shown.

We note that if the edge .6; 7/ is contracted in the graph D, a G7 graph is obtained. Based on the
symmetries of G, D has four different types of pairs of cycles. Since the (A3) link of A contains vertex 1
but does not contain vertex 8, vertices 1 and 8 need also be distinguished within the linked cycles of D.
We match the link in (A3) with each link type of D:

.D1/ .7; 2; 4; 3/[ .1; 8; 9/; .D4/ .7; 2; 1; 9; 6/[ .4; 3; 8/;

.D2/ .7; 2; 1; 3/[ .4; 8; 9/; .D5/ .7; 2; 8; 9; 6/[ .4; 3; 1/;

.D3/ .7; 2; 8; 3/[ .4; 1; 9/; .D6/� .7; 2; 4; 9; 6/[ .1; 3; 8/:

Subcase (A3)-(D1) Assume .7; 2; 4; 3/[ .1; 8; 9/. Then (i) .7; 6; 4; 2/[ .1; 8; 9/ or (ii) .7; 6; 4; 3/[
.1; 8; 9/. See Figure 16.
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Figure 16: Diagrams for the subcase (A3)-(D1).
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Figure 17: Diagrams for the subcase (A3)-(D2).
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Figure 18: Diagrams for the subcase (A3)-(D3).

Subcase (A3)-(D2) Assume .7; 2; 1; 3/[ .4; 8; 9/. Then (i) .7; 2; 1; 5/[ .4; 8; 9/ or (ii) .7; 3; 1; 5/[
.4; 8; 9/. See Figure 17.

Subcase (A3)-(D3) Assume .7; 2; 8; 3/[ .4; 1; 9/. Then (i) .7; 2; 10; 3/[ .4; 1; 9/ or (ii) .8; 2; 10; 3/[

.4; 1; 9/. See Figure 18.

Subcase (A3)-(D4) Assume .7; 2; 1; 9; 6/[ .4; 3; 8/. See Figure 19, left.

Subcase (A3)-(D5) Assume .7; 2; 8; 9; 6/[ .4; 3; 1/. See Figure 19, right.

If none of the five D-subcases above occurs, then there exists a nontrivial link (D6) .7; 2; 4; 9; 6/[.1; 3; 8/.
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Figure 19: Diagrams for subcases. Left: (A3)-(D4). Right: (A3)-(D5).
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Figure 20: Diagrams for subcases. Left: (A3)-(F1). Center: (A3)-(F2). Right: (A3)-(F3).

We now match the link in (A3) with each link type of F :

.F1/ .5; 7; 2; 10/[ .3; 1; 9; 6; 8/; .F4/ .5; 7; 6; 10/[ .2; 1; 3; 8/;

.F2/ .5; 7; 2; 1/[ .3; 10; 6; 8/; .F5/ .5; 7; 6; 9; 1/[ .2; 10; 3; 8/;

.F3/ .5; 10; 2; 19/[ .3; 7; 6; 8/; .F6/� .5; 10; 6; 9; 1/[ .2; 7; 3; 8/:

Subcase (A3)-(F1) Assume .5; 7; 2; 10/[ .3; 1; 9; 6; 8/. See Figure 20, left.

Subcase (A3)-(F2) Assume .5; 7; 2; 1/[ .3; 10; 6; 8/. See Figure 20, center.

Subcase (A3)-(F3) Assume .5; 10; 2; 19/[ .3; 7; 6; 8/. See Figure 20, right.

Subcase (A3)-(F4) Assume .5; 7; 6; 10/[ .2; 1; 3; 8/. See Figure 21, left.

Subcase (A3)-(F5) Assume .5; 7; 6; 9; 1/[ .2; 10; 3; 8/. See Figure 21, center.

If none of the five F-subcases solved above occurs, then we have (F6) .5; 10; 6; 9; 1/[ .2; 7; 3; 8/. This
coupled with the remaining (D6) subcase gives:

Subcase (D6)-(F6) Assume .7; 2; 4; 9; 6/[.1; 3; 8/ and .5; 10; 6; 9; 1/[.2; 7; 3; 8/. See Figure 21, right.

Case (A4) Assume .4; 6; 7; 2/[ .3; 1; 5; 10/ is a nontrivial link. We look at possible nontrivial links in
the graph B. Based on the symmetries of G10;26, B has four different types of pairs of cycles. Since
vertices 2 and 3 and vertices 7 and 10, respectively, are distinguished in the link A4, they need to be
distinguished within the cycles of B. We match the link in (A4) with each link in B. There is one
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Figure 21: Diagrams for subcases. Left: (A3)-(F4). Center: (A3)-(F5). Right: (D6)-(F6).
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Figure 22: Diagrams for subcases. Left: (A4)-(B1). Center: (A4)-(B2). Right: (A4)-(B3).

exceptional case which cannot be solved this way. Then we look at possible nontrivial links in the graph
E and we match the link in (A4) with each link in E. There are two exceptional cases which cannot be
solved this way. We match the two pairs of exceptional cases to complete the proof.

.B1/ .8; 2; 4; 3/[ .7; 5; 10; 6/; .B6/ .8; 3; 10; 6/[ .4; 5; 7; 2/;

.B2/ .8; 2; 7; 3/[ .4; 5; 10; 6/; .B7/� .8; 2; 10; 6/[ .4; 5; 7; 3/;

.B3/ .8; 2; 10; 3/[ .4; 5; 7; 6/; .B8/ .8; 2; 4; 6/[ .7; 5; 10; 3/;

.B4/ .8; 2; 7; 6/[ .4; 5; 10; 3/; .B9/ .8; 3; 4; 6/[ .7; 5; 10; 2/;

.B5/ .8; 3; 7; 6/[ .4; 5; 10; 2/:

Subcase (A4)-(B1) Assume .8; 2; 4; 3/[ .7; 5; 10; 6/. See Figure 22, left.

Subcase (A4)-(B2) Assume .8; 2; 7; 3/[ .4; 5; 10; 6/. See Figure 22, center.

Subcase (A4)-(B3) Assume .8; 2; 10; 3/[ .4; 5; 7; 6/. See Figure 22, right.

Subcase (A4)-(B4) Assume .8; 2; 7; 6/[ .4; 5; 10; 3/. See Figure 23, left.

Subcase (A4)-(B5) Assume .8; 3; 7; 6/[ .4; 5; 10; 2/. See Figure 23, center.

Subcase (A4)-(B6) Assume .8; 3; 10; 6/[ .4; 5; 7; 2/. See Figure 23, right.

Subcase (A4)-(B8) Assume .8; 2; 4; 6/[ .7; 5; 10; 3/. See Figure 24, left.

Subcase (A4)-(B9) Assume .8; 3; 4; 6/[ .7; 5; 10; 2/. See Figure 24, center.
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Figure 23: Diagrams for subcases. Left: (A4)-(B4). Center: (A4)-(B5). Right: (A4)-(B6).
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Figure 24: Diagrams for subcases. Left: (A4)-(B8). Center: (A4)-(B9). Right: (A4)-(E1).

We look at possible nontrivial links in the graph E and we match the link in (A4) with each link in E:

.E1/ .7; 2; 4; 3/[ .1; 9; 8/; .E6/ .7; 2; 1; 9; 5/[ .4; 3; 8/;

.E2/ .7; 2; 1; 3/[ .4; 9; 8/; .E7/ .7; 2; 8; 9; 5/[ .4; 3; 1/;

.E3/ .7; 2; 8; 3/[ .4; 9; 1/; .E8/� .7; 3; 8; 9; 5/[ .4; 2; 1/;

.E4/ .7; 2; 4; 9; 5/[ .3; 1; 8/; .E9/� .7; 3; 1; 9; 5/[ .4; 2; 8/;

.E5/ .7; 3; 4; 9; 5/[ .2; 1; 8/:

Subcase (A4)-(E1) Assume .7; 2; 4; 3/[ .1; 9; 8/. See Figure 24, right.

Subcase (A4)-(E2) Assume .7; 2; 1; 3/[ .4; 9; 8/. See Figure 25, left.

Subcase (A4)-(E3) Assume .7; 2; 8; 3/[ .4; 9; 1/. See Figure 25, center.

Subcase (A4)-(E4) Assume .7; 2; 4; 9; 5/[ .3; 1; 8/. See Figure 25, right.

Subcase (A4)-(E5) Assume .7; 3; 4; 9; 5/[.2; 1; 8/. Then (i) .7; 5; 10; 3/[.2; 1; 8/ or (ii) .5; 10; 3; 4; 9/[

.2; 1; 8/. See Figure 26.

Subcase (A4)-(E6) Assume .7; 2; 1; 9; 5/[ .4; 3; 8/. Then (i) .5; 7; 6; 9/[ .4; 3; 8/ or (ii) .7; 6; 9; 1; 2/[
.4; 3; 8/. See Figure 27.

Subcase (A4)-(E7) Assume .7; 2; 8; 9; 5/[ .4; 3; 1/. See Figure 28, left.

Subcase (B7)-(E8) Assume .8; 2; 10; 6/[ .4; 5; 7; 3/ and .7; 3; 8; 9; 5/[ .4; 2; 1/. See Figure 28, center.

Subcase (B7)-(E9) Assume .8; 2; 10; 6/[.4; 5; 7; 3/ and .7; 3; 1; 9; 5/[.4; 2; 8/. See Figure 28, right.
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Figure 25: Diagrams for subcases. Left: (A4)-(E2). Center: (A4)-(E3). Right: (A4)-(E4).
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Figure 26: Diagrams for the subcase (A4)-(E5).
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Figure 27: Diagrams for the subcase (A4)-(E6).
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Figure 28: Diagrams for subcases. Left: (A4)-(E7). Center: (B7)-(E8). Right: (B7)-(E9).

4 G10;26 is MMIK

In this section we prove G10;26 is MMIK by showing that each of its simple minors is nIK. The graph
G10;26 has ten vertices, labeled 1; 2; : : : ; 10. Due to the symmetries of the graph, the vertices can be
partitioned into six equivalence classes: f1; 8g, f2; 3g, f4g, f5; 6g, f7; 10g, and f9g. Up to symmetry,
G10;26 has eleven types of edges. Representatives for each possible type of edge are listed in the first
column of Table 1. For each such edge type, we constructed two graphs, one by deleting the edge and
one by contracting the edge. The graph obtained by deleting the edge is 2–apex, since the removal of the
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edge deletion contraction

.1; 2/ 4; 7 1; 3

.1; 4/ 2; 6 1; 7

.1; 5/ 2; 3 1; 2

.1; 8/ 2; 3 1; 4

.1; 9/ 2; 5 2; 3

.2; 4/ 5; 6 2; 3

.2; 7/ 3; 4 2; 4

.4; 5/ � 2; 4

.4; 9/ 2; 3 4; 7

.5; 7/ 2; 4 2; 4

.5; 9/ 2; 6 2; 5

Table 1: The graph obtained by deleting the edge in the first column becomes planar when deleting
the two vertices in the second column. The graph obtained by contracting the edge in the first
column becomes planar when deleting the two vertices in the second column.

two vertices listed in the second column gives a planar graph. There is one exception: the graph obtained
by deleting the edge .4; 5/ is not 2–apex. This graph is shown to be nIK in the next paragraph. The graph
obtained by contracting the edge listed in the first column is 2–apex, since the removal of the two vertices
listed in the third column gives a planar graph. When contracting an edge e, the new vertex inherits the
smaller label among the endpoints of e, and all vertices not incident to e maintain their labels.

The graph G0 obtained from G10;26 by deleting the edge .4; 5/ is not 2–apex. We show it is nIK. Denote
by G00 the graph obtained from G0 through a rY –move on the triangle .1; 5; 9/. Call the new vertex 11;
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Figure 29: Left: the graph G00 obtained from G10;26 by removing the edge .4; 5/ followed by a
rY –move on the triangle .1; 5; 9/. Center: the graph G000 obtained from G00 by deleting vertices
2 and 11. Right: the planar embedding of G000.
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see Figure 29. Delete vertices 2 and 11 of G00 to obtain a planar graph. This proves G00 is 2–apex, and
thus nIK. Sachs [13] showed that the rY –move preserves intrinsic linking. Essentially the same argument
shows that the rY –move also preserves intrinsic knotting. So the graph G0 is nIK.

5 �D 5 IK graphs

In this section we describe what is known about graphs G with Colin de Verdière invariant 5. We begin
with some basic observations. Let K1 �G denote the graph obtained by coning a vertex over G, ie we
add a vertex a to G along with edge av for every v 2 V .G/.

Lemma 5.1 [7] Let G be a graph.

(1) If G has at least one edge , then �.K1 �G/D �.G/C 1.

(2) If G0 is a minor of G, then �.G0/� �.G/.

Lemma 5.2 [2; 7] (1) �.G/� 3 if and only if G is planar.

(2) �.G/� 4 if and only if G is nIL.

Lemma 5.3 [7] If �.G/� 4 and a rY move on G produces G0, then �.G/D �.G0/.

For v 2 V .G/, let G � v denote the graph that results after deleting v and all its edges.

Lemma 5.4 If G is n–apex for n� 0, then �.G/� nC 3.

Proof We use induction on n. If nD 0, the result follows from Lemma 5.2. Suppose G is .nC1/–apex
and v 2 V is such that G � v is n–apex. Then G is a subgraph of K1 � .G � v/, and, by Lemma 5.1,
�.G/� �.G � v/C 1� .nC 1/C 3.

Lemma 5.5 If G is IK and there is a vertex v such that G � v is nIL , then �.G/D 5.

Proof Robertson, Seymour, and Thomas [12] established that G being IK implies G is IL. By Lemma 5.2,
�.G/� 5 and �.G � v/� 4. Since G is a subgraph of K1 � .G � v/, using Lemma 5.1, �.G/� 5.

For e 2E.G/, let G � e denote the edge deletion minor and G=e the edge contraction minor of G.

Lemma 5.6 If G is IK and has a nIL simple minor , then �.G/D 5.

Proof The proof is similar to that of the previous lemma. In particular �.G/� 5. By definition, there is
an edge e such that G � e or G=e is nIL. Suppose first that G � e is nIL. By Lemma 5.2, �.G � e/� 4.
We can form a graph G0 homeomorphic to G by adding a degree-two vertex between a and b, the vertices
of e. Then G0 is a subgraph of K1 � .G � e/, and, using Lemma 5.1, �.G0/ � 5. Since G is a minor
of G0, by Lemma 5.1, �.G/� 5.

Next, suppose G=e is nIL, so that �.G=e/� 4. We can again recognize G as a subgraph of K1 � .G=e/,
which implies �.G/� 5.
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Figure 30: Left: the graph G9;28. Right: the complement of a 7–cycle.

We remark that many of the known MMIK graphs have �D 6. In [3], the authors provide a listing of
264 MMIK graphs, of which 105 are in the families of K7, K3;3;1;1, and E9C e. We will now verify
that each of these three graphs has �D 6. By Lemma 5.3, all 105 graphs have �–invariant 6. As shown
in [2], �.Kn/D n� 1 when n > 1, so �.K7/D 6. The graph K3;3;1;1 is K1 �K3;3;1. Since K3;3;1 is
an obstruction for intrinsic linking [12], by Lemma 5.2, �.K3;3;1;1/D �.K3;3;1/C 1� 6. On the other
hand, K3;3;1;1 is 3–apex, which, by Lemma 5.4, shows �.K3;3;1;1/� 6. Since E9 is in the K7 family, by
Lemma 5.3, �.E9/D �.K7/D 6. By Lemma 5.1, �.E9C e/� �.E9/D 6. On the other hand, E9C e

is 3–apex, so, by Lemma 5.4, �.E9C e/� 6. By Lemma 5.3, all 110 graphs in the E9C e family have
�D 6 (not just the 33 that are MMIK). Note that these 110 graphs are all IK [6].

In contrast, here we have introduced several new examples of IK graphs with � D 5. Such examples
were known previously. For example, Foisy [5] provided an example of an MMIK graph F that becomes
nIL on deletion of a vertex. By Lemma 5.5, �.F /D 5. By Lemma 5.6, �.G11;35/D 5 as it is IK with
both a nIL edge deletion minor as well a nIL edge contraction minor. Similarly, �.G10;30/D 5 since it is
IK with a nIL edge contraction minor. Finally, we argue that �.G10;26/D 5. Since G10;26 is a minor of
G11;35, we have �.G10;26/ � �.G11;35/D 5. On the other hand, as we proved in Section 3, G10;26 is
IK, hence IL [12], and �.G10;26/� 5 by Lemma 5.2. By Lemma 5.3, graphs in the families of G10;26,
G10;30, and G11;35 also have �D 5. Using computers, the G10;26 family alone provides more than 600

new examples of IK graphs with Colin de Verdière invariant 5.

Proof of Proposition 2.1 Assume there exists an IK graph G of order less than 10 which admits a nIL
edge contraction minor. As such, by Lemma 5.6, �.G/D 5. Since � is minor monotone (Lemma 5.1),
any MMIK minor of G must have �D 5. By work of Goldberg, Mattman, and Naimi [6], and Mattman,
Morris, and Ryker [8], the MMIK graphs of order at most 9 are known. With the exception of G9;28,
depicted in Figure 30, left, all the others are either in the K7 family, the K3;3;1;1 family, or the E9+e
family, and thus have �D 6. It follows that G must have order 9 and that G9;28 is a subgraph of G. If
contracting an edge e of G produces a nIL minor, then deleting either endpoint of e must also produce
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a nIL minor (subgraph). Since G9;28 is a subgraph of G, deleting the same vertex must produce a nIL
subgraph of G9;28. The graph G9;28 is highly symmetric, having a rich automorphism group, and it is
structured as two nonadjacent cones over the complement of a 7–cycle (the graph depicted in Figure 30,
right). Up to isomorphism, there are only two induced subgraphs of order 8 inside G9;28: the graph
obtained by deleting the vertex labeled 9, and the graph obtained by deleting the vertex labeled 7. Neither
of these are nIL, since they both have a K6 minor. For the first graph, contracting the edges .4; 7/ and
.2; 6/ produces a complete minor on the 6 vertices. For the second graph, contracting the edges .4; 9/
and .2; 6/ also produces a complete minor on the 6 vertices.

6 Erratum

In this section we discuss an error in the proof of [10, Proposition 2]. The proposition asserts that if a
graph G has a paneled embedding, and an edge is added to G between two vertices a and b that have a
common adjacent vertex v, then GC ab has a knotless embedding.

In the proof of Proposition 2, it is first shown that one can assume there is a path Pab � G from a to
b disjoint from v. Next, the proof claims that, in any paneled embedding � of G, if D is a panel for
the cycle Pab [ av[ vb in � , then embedding the new edge ab in D yields a knotless embedding � 0 of
GC ab. Figure 31 shows a counterexample to this claim, and will be used to explain where the error in
the proof of Proposition 2 lies.

It is not difficult to see that in Figure 31, left, every cycle in � is paneled. In particular, the cycle acdbva

bounds a panel D such that vc and vd lie below and above D, respectively, in the figure. If we embed
the edge ab in D as in Figure 31, right, we see that the cycle abcvda is a trefoil, and hence � 0 isn’t a
knotless embedding as claimed.

The error is specifically in the last few sentences of the penultimate paragraph in the proof, where it
mentions a type 1 Reidemeister move on P1 [ feg. The proof overlooks the possibility that Pbv may
prevent this Reidemeister move, as is the case in Figure 31, right (for reference, the paths acdb, adv, and
bcv in Figure 31 represent the paths Pab , Pav, and Pbv, respectively, in the proof of Proposition 2).

a bv

c d

a bv

c d� � 0

Figure 31: Left: every cycle in � is paneled. Right: � 0 contains a trefoil.
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Appendix

We give edge lists for the graphs G11;35, G10;30, and G10;26:

E.G11;35/

D f.1; 2/; .1; 3/; .1; 4/; .1; 5/; .1; 8/; .1; 9/; .2; 3/; .2; 4/; .2; 8/; .3; 4/; .3; 5/; .3; 6/;

.3; 7/; .3; 8/; .3; 10/; .3; 11/; .4; 5/; .4; 6/; .4; 8/; .4; 9/; .4; 10/; .5; 6/; .5; 7/; .5; 9/;

.5; 10/; .5; 11/; .6; 7/; .6; 8/; .6; 9/; .6; 10/; .6; 11/; .7; 11/; .8; 9/; .10; 11/; .2; 11/g

E.G10;30/

D f.1; 5/; .1; 7/; .1; 8/; .1; 9/; .1; 10/; .2; 3/; .2; 4/; .2; 5/; .2; 6/; .2; 7/; .2; 10/; .3; 4/; .3; 6/; .3; 8/; .3; 9/;

.3; 10/; .4; 6/; .4; 8/; .4; 9/; .5; 6/; .5; 7/; .5; 8/; .5; 10/; .6; 7/; .6; 8/; .6; 9/; .7; 9/; .7; 10/; .8; 10/; .9; 10/g

E.G10;26/

D f.1; 2/; .1; 3/; .1; 4/; .1; 5/; .1; 8/; .1; 9/; .2; 4/; .2; 7/; .2; 8/; .2; 10/; .3; 4/; .3; 7/; .3; 8/;

.3; 10/; .4; 5/; .4; 6/; .4; 8/; .4; 9/; .5; 7/; .5; 9/; .5; 10/; .6; 7/; .6; 8/; .6; 9/; .6; 10/; .8; 9/g
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