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In general, not much is known about the arithmetic of K3 surfaces. Once the
geometric Picard number, which is the rank of the Néron–Severi group over
an algebraic closure of the base field, is high enough, more structure is known
and more can be said. However, until recently not a single explicit K3 surface
was known to have geometric Picard number one. We give explicit examples
of such surfaces over the rational numbers. This solves an old problem that has
been attributed to Mumford. The examples we give also contain infinitely many
rational points, thereby answering a question of Swinnerton-Dyer and Poonen.

1. Introduction

K3 surfaces are two-dimensional analogues of elliptic curves in the sense that their
canonical sheaf is trivial. However, as opposed to elliptic curves, little is known
about the arithmetic of K3 surfaces in general. It is for instance an open question if
there exists a K3 surface X over a number field such that the set of rational points
on X is neither empty, nor dense (which throughout this paper will always refer
to the Zariski topology). We will answer a longstanding question regarding the
Picard group of a K3 surface. The Picard group of any variety is the group of line
bundles on it, up to isomorphism. For a K3 surface X over a field k this is a finitely
generated free abelian group, the rank of which is called the Picard number of X .
The Picard number of X = X ×k k̄, where k̄ denotes an algebraic closure of k, is
called the geometric Picard number of X . We will give the first known examples
of explicit K3 surfaces shown to have geometric Picard number 1.

Bogomolov and Tschinkel [2000] showed an interesting relation between the
geometric Picard number of a K3 surface X over a number field K and the arith-
metic of X . They proved that if the geometric Picard number is at least 2, then
in most cases the rational points on X are potentially dense, which means that
there exists a finite field extension L of K such that the set X (L) of L-rational
points is Zariski dense in X . However, it is not yet known whether there exists

MSC2000: 14J28, 14C22, 14G05.
Keywords: K3 surface, Néron–Severi group, Picard group, rational points, arithmetic geometry.
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2 Ronald van Luijk

any K3 surface over a number field and with geometric Picard number 1 on which
the rational points are potentially dense. Neither do we know if there exists a K3
surface over a number field and with geometric Picard number 1 on which the
rational points are not potentially dense!

In December 2002, at the AIM workshop on rational and integral points on
higher-dimensional varieties in Palo Alto, Swinnerton-Dyer and Poonen asked a
related question. They asked whether there exists a K3 surface over a number field
and with Picard number 1 that contains infinitely many rational points. In this
article we will show that such K3 surfaces do indeed exist. It follows from our
main theorem.

Theorem 1.1. In the moduli space of K3 surfaces polarized by a very ample divisor
of degree 4, the set of points parametrizing surfaces defined over Q with geometric
Picard number 1 and infinitely many rational points is Zariski dense.

As important as this result is the strategy of its proof. It contains a new way
of finding sharp bounds for the geometric Picard number of a surface. This new
method is widely applicable. It is based on the older idea that the Néron–Severi
group of a surface X defined over a number field injects into the Néron–Severi
group of its reduction Xp at a prime p of good reduction. By the Tate conjecture
(proven in many cases for K3 surfaces), the geometric Picard number of a K3
surface in positive characteristic is even, and therefore at least 2. We will lower
this upper bound for the geometric Picard number of X by comparing the lattice
structure on the geometric Néron–Severi group of the reduction of X at two dif-
ferent primes of good reduction. If these both have rank 2 and their discriminants
do not differ by a square factor, then there is no 2-dimensional lattice that injects
into both, and we may conclude that the geometric Picard number of X equals 1.

Note that a polarization of a K3 surface is a choice of an ample divisor H . The
degree of such a polarization is H 2. A K3 surface polarized by a very ample divisor
of degree 4 is a smooth quartic surface in P3. We will prove the main theorem
by exhibiting an explicit family of quartic surfaces in P3

Q
with geometric Picard

number 1 and infinitely many rational points. Proving that these surfaces contain
infinitely many rational points is the easy part. It is much harder to prove that the
geometric Picard number of these surfaces equals 1. It has been known since Max
Noether that a general hypersurface in P3

C
of degree at least 4 has geometric Picard

number 1. A modern proof of this fact is given in [Deligne and Katz 1973, Theorem
XIX.1.2]. Despite this fact, it has been an old challenge, attributed to Mumford
and disposed of in this article, to find even one explicit quartic surface, defined
over a number field, of which the geometric Picard number equals 1. Deligne’s
result does not actually imply that such surfaces exist, as “general” means “up
to a countable union of closed subsets of the moduli space.” A priori, this could
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exclude all surfaces defined over Q. Although they do not give explicit surfaces
with geometric Picard number 1 over number fields either, Terasoma and Ellenberg
have proved that they do exist.

Theorem 1.2 [Terasoma 1985]. For any positive integers (n; a1, . . . , ad) not equal
to (2; 3), (n; 2), or (n; 2, 2), and with n even, there is a smooth complete intersec-
tion X over Q of dimension n defined by equations of degrees a1, . . . , ad such that
the middle geometric Picard number of X is 1. �

Theorem 1.3 [Ellenberg 2004]. For every even integer d there exists a number field
K and a polarized K3 surface X/K of degree d , with geometric Picard number 1.

�

The proofs of Terasoma and Ellenberg are ineffective in the sense that they
do not give explicit examples. In principle it might be possible to extend their
methods to test whether a given explicit K3 surface has geometric Picard number
1. In practice however, it is an understatement to say that the amount of work
involved is not encouraging. The explicit examples we will give to prove the main
theorem also prove the case (n; a1, . . . , ad) = (2; 4) of Theorem 1.2 and the case
d = 4 of Theorem 1.3.

Shioda did find explicit examples of surfaces with geometric Picard number 1.
In fact, he has shown [1981] that for every prime m ≥ 5 the surface in P3 given by

wm
+ xym−1

+ yzm−1
+ zxm−1

= 0

has geometric Picard number 1. However, for m = 4 this equation determines a
K3 surface with maximal geometric Picard number 20, i.e., a singular K3 surface.

Before we prove the main theorem in Section 3, we will recall some definitions
and results in Section 2.

The author thanks the American Institute of Mathematics (Palo Alto) and the
Institut Henri Poincaré (Paris) for inspiring working conditions. The author also
thanks Bjorn Poonen, Arthur Ogus, Jasper Scholten, Bert van Geemen, and Hen-
drik Lenstra for very useful discussions, Brendan Hassett for pointing out a mistake
in the first version of this article, and the referee for some useful comments.

2. Prerequisites

A lattice is a free Z-module L of finite rank, endowed with a symmetric, bilinear,
nondegenerate map 〈 , 〉 : L × L → Q, called the pairing of the lattice. An
integral lattice is a lattice with a Z-valued pairing. A lattice L is called even if
〈x, x〉 ∈ 2Z for every x ∈ L . A sublattice of L is a submodule L ′ of L , such that
the induced bilinear pairing on L ′ is nondegenerate. The Gram matrix of a lattice L
with respect to a given basis x = (x1, . . . , xn) is Ix = (〈xi , x j 〉)i, j . The discriminant
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of L is defined by disc L =det Ix for any basis x of L . For any sublattice L ′ of finite
index in L we have disc L ′

= [L : L ′
]
2 disc L . The image of disc L and disc L ′ in

Q∗/Q∗2 is the discriminant of the inner product space LQ, where the inner product
is induced by the pairing of L .

Let X be a smooth, projective, geometrically integral surface over a field k
and set X = X ×k k̄, where k̄ denotes an algebraic closure of k. As mentioned
in the introduction, the Picard group Pic X of X is the group of line bundles on
X up to isomorphism, or equivalently, the group of divisor classes modulo linear
equivalence. The divisor classes that become algebraically equivalent to 0 over
k̄ (see [Hartshorne 1977, exercise V.1.7]) form a subgroup Pic0 X of Pic X . The
quotient is the Néron–Severi group NS(X) = Pic X/ Pic0 X , which is a finitely
generated abelian group, see [Hartshorne 1977, exercise V.1.7–8], or [Milne 1980,
Theorem V.3.25], for surfaces or [Grothendieck et al. 1971, exposé XIII, théorème
5.1] in general. The intersection pairing endows the group NS(X)/ NS(X)tors with
the structure of a lattice. Its rank is called the Picard number of X . The Picard
number of X is called the geometric Picard number of X .

By definition a smooth, projective, geometrically integral surface X is a K3
surface if the canonical sheaf ωX on X is trivial and H 1(X , OX ) = 0. Examples of
K3 surfaces are smooth quartic surfaces in P3. The Betti numbers of a K3 surface
are b0 = 1, b1 = 0, b2 = 22, b3 = 0, and b4 = 1.

Lemma 2.1. If X is a K3 surface, then Pic0 X is trivial, the Néron–Severi group
NS(X) ∼= Pic X is torsion free, and the intersection pairing on NS(X) is even.

Proof. See [Barth et al. 1984, p. 21 and Proposition VIII.3.2] for characteristic 0
and [Bombieri and Mumford 1977, Theorem 5] for positive characteristic. �

For any scheme Z over Fq , any prime l - q, and any integer m, we will use
the étale cohomological groups H i

ét(Z , Ql) and their Tate twists H i
ét(Z , Ql)(m) as

defined in for instance [Tate 1965, p. 94], Proposition 2.2 describes the behavior of
the Néron–Severi group under good reduction. Its corollary will be used to show
that the geometric Picard number of a certain surface is equal to 1.

Proposition 2.2 [van Luijk 2007, Proposition 6.2]. Let A be a discrete valuation
ring of a number field L with residue field k ∼= Fq . Let S be an integral scheme with
a morphism S → Spec A that is projective and smooth of relative dimension 2.
Assume that the surfaces S = SL and S̃ = Sk̄ are integral. Let l - q be a prime
number. Then there are natural injective homomorphisms

NS(S) ⊗ Ql ↪→ NS(S̃) ⊗ Ql ↪→ H 2
ét(S̃, Ql)(1) (1)

of finite dimensional inner product spaces over Ql . The first injection is induced
by a natural injection NS(S) ⊗ Q ↪→ NS(S̃) ⊗ Q. The second injection respects
the Galois action of G(k̄/k).
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Recall that for any scheme Z over Fq with q = pr and p prime, the absolute
Frobenius FZ : Z → Z of Z acts as the identity on points, and by f 7→ f p on the
structure sheaf. Set 8Z = Fr

Z and Z = Z × Fq . Let 8∗

Z denote the automorphism
on H 2

ét(Z , Ql) induced by 8Z × 1 acting on Z × Fq = Z .

Corollary 2.3. With the notation as in Proposition 2.2, the ranks of NS(S̃) and
NS(S) are bounded from above by the number of eigenvalues λ of 8∗

Sk
for which

λ/q is a root of unity, counted with multiplicity.

Proof. By Proposition 2.2 any upper bound for the rank of NS(S̃) is an upper
bound for the rank of NS(S). Let σ denote the q-th power Frobenius map, i.e.,
the canonical topological generator of G(k̄/k). For any positive integer m, let σ ∗

and σ ∗(m) denote the automorphisms induced on NS(S̃) ⊗ Ql and H 2
ét(S̃, Ql)(m)

respectively. As all divisor classes are defined over some finite extension of k,
some power of Frobenius acts as the identity on NS(S̃), so all eigenvalues of σ ∗

acting on NS(S̃) are roots of unity. It follows from Proposition 2.2 that the rank
of NS(S̃) is bounded from above by the number of roots of σ ∗(1) that are a root
of unity. As the eigenvalues of σ ∗(0) differ from those of σ ∗(1) by a factor of q ,
this equals the number of roots λ of σ ∗(0) for which λq is a root of unity. The
Corollary follows from the fact that 8∗

Sk
acts on H 2

ét(Z , Ql) as the inverse of σ ∗(0).
See also [van Luijk 2007, Corollary 6.3]. �

Remark 2.4. Tate’s conjecture [1965] states that the upper bound mentioned is
actually equal to the rank of NS(S̃). Tate’s conjecture has been proven for ordinary
K3 surfaces over fields of characteristic p ≥ 5; see [Nygaard and Ogus 1985,
Theorem 0.2].

To find the characteristic polynomial of Frobenius as in Corollary 2.3, we will
compute the traces of powers of Frobenius and use Newton’s identities, which for
convenience we state here (see [Borwein and Erdélyi 1995, p. 5]):

Lemma 2.5 (Newton’s identities). Let V be a vector space of dimension n and
T a linear operator on V . Let ti denote the trace of T i . Then the characteristic
polynomial of T is equal to

fT (x) = det(x · Id −T ) = xn
+ c1xn−1

+ c2xn−2
+ · · · + cn,

with the ci given recursively by

c1 = −t1 and − kck = tk +

k−1∑
i=1

ci tk−i .
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3. Proof of the main theorem

First we will give a family of smooth quartic surfaces in P3 with Picard number
1. Let R = Z[x, y, z, w] be the homogeneous coordinate ring of P3

Z. Throughout
the rest of this article, for any homogeneous polynomial h ∈ R of degree 4, let Xh

denote the scheme in P3
Z given by

w f1 + 2z f2 = 3g1g2 + 6h, (2)

with f1, f2, g1, g2 ∈ R equal to

f1 = x3
− x2 y − x2z + x2w − xy2

− xyz + 2xyw + xz2
+ 2xzw + y3

+ y2z − y2w + yz2
+ yzw − yw2

+ z2w + zw2
+ 2w3,

f2 = xy2
+ xyz − xz2

− yz2
+ z3,

g1 = z2
+ xy + yz,

g2 = z2
+ xy.

Its base extensions to Q and Q are denoted Xh and Xh respectively.

Theorem 3.1. Let h ∈ R be a homogeneous polynomial of degree 4. Then the
quartic surface Xh is smooth over Q and has geometric Picard number 1. The
Picard group Pic Xh is generated by a hyperplane section.

Proof. For p = 2, 3, let X p/Fp denote the fiber of Xh → Spec Z over p. As they
are independent of h, one easily checks that X p is smooth over Fp for p = 2, 3. As
the morphism Xh → Spec Z is flat and projective, it follows that the generic fiber
Xh of Xh → Spec Z is smooth over Q as well; compare [Hartshorne 1977, exercise
III.10.2].

We will first show that X2 and X3 have geometric Picard number 2. For p =2, 3,
let 8p denote the absolute Frobenius of X p. Set X p = X p×Fp and let 8∗

p(i) denote
the automorphism on H i

ét(X p, Ql) induced by 8p × 1 acting on X p = X p ×Fp Fp.
Then by Corollary 2.3 the geometric Picard number of X p is bounded from above
by the number of eigenvalues λ of 8∗

p(2) for which λ/p is a root of unity. We will
find the characteristic polynomial of 8∗

p(2) from the traces of its powers. These
traces we will compute with the Lefschetz formula

#X p(Fpn ) =

4∑
i=0

(−1)i Tr(8∗

p(i)
n), (3)

for which see [Milne 1980, Theorem VI.12.3]. Since X p is a smooth hypersurface
in P3 of degree 4, it is a K3 surface and its Betti numbers are b0 = 1, b1 = 0,
b2 = 22, b3 = 0, and b4 = 1. It follows that Tr(8∗

p(i)
n) = 0 for i = 1, 3, and for

i = 0 and i = 4 the automorphism 8∗
p(i)

n has only one eigenvalue, which by the
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Weil conjectures equals 1 and p2n respectively (see [Deligne 1974, théorème 1.6]).
From the Lefschetz formula (3) we conclude Tr(8∗

p(2)n) = #X p(Fpn ) − p2n
− 1.

After counting points on X p over Fpn for n = 1, . . . , 11, this allows us to compute
the traces of the first 11 powers of 8∗

p(2). With Lemma 2.5 we can then compute
the first coefficients of the characteristic polynomial f p of 8∗

p(2), which has degree
b2 =22. We write f p = x22

+c1x21
+· · ·+c22, which by construction is independent

of the choice of h, and find this table:

p c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

2 −3 −2 12 0 −32 64 −128 128 256 0 −2048

3 −5 −6 72 27 −891 0 9477 −4374 −78732 19683 708588

The Weil conjectures give a functional equation p22 f p(x) = ±x22 f p(p2/x). As
in our case (both for p = 2 and p = 3) the middle coefficient c11 of f p is nonzero,
the sign of the functional equation is positive. This functional equation allows us
to compute the remaining coefficients of f p.

If λ is a root of f p then λ/p is a root of f̃ p(x) = p−22 f p(px). Hence, the
number of roots of f̃ p(x) that are also a root of unity gives an upper bound for the
geometric Picard number of X p. After full factorization, we find

f̃2 =
1
2(x −1)2

(
2x20

+x19
−x18

+x16
+x14

+x11
+2x10

+x9
+x6

+x4
−x2

+x +2
)
,

f̃3 =
1
3(x − 1)2

(
3x20

+ x19
− 3x18

+ x17
+ 6x16

− 6x14
+ x13

+ 6x12
− x11

− 7x10
− x9

+ 6x8
+ x7

− 6x6
+ 6x4

+ x3
− 3x2

+ x + 3
)
.

When p = 2, 3, the roots of the irreducible factor of f̃ p of degree 20 are not
integral. Therefore these roots are not roots of unity and we conclude that f̃ p has
only two roots that are roots of unity, counted with multiplicities. By Corollary 2.3
this implies that the geometric Picard number of X p is at most 2.

Note that besides the hyperplane section H , the surface X2 also contains the
conic C given by w = g2 = z2

+ xy = 0. We have H 2
= deg X2 = 4 and H · C =

deg C = 2. As the genus g(C) of C equals 0 and the canonical divisor K on X2 is
trivial, the adjunction formula 2g(C)− 2 = C · (C + K ) yields C2

= −2. Thus H
and C generate a sublattice of NS(X2) with Gram matrix(

4 2
2 −2

)
.

We conclude that the inner product space NS(X2)Q has rank 2 and discriminant
−12 ∈ Q∗/Q∗2. Similarly, X3 contains the line L given by w = z = 0, also with
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genus 0 and thus L2
= −2. The hyperplane section on X3 and L generate a sub-

lattice of NS(X3) of rank 2 with Gram matrix(
4 1
1 −2

)
.

We conclude that the inner product space NS(X3)Q also has rank 2, and discrimi-
nant −9 ∈ Q∗/Q∗2.

Let ρ denote the geometric Picard number ρ = rk NS(Xh). It follows from
Proposition 2.2 that there is an injection NS(Xh)Q ↪→ NS(X p)Q of inner product
spaces for p = 2, 3. Hence we get ρ ≤ 2. If equality held, then both these injections
would be isomorphisms and NS(X2)Q and NS(X3)Q would be isomorphic as inner
product spaces. This is not the case because they have different discriminants. We
conclude ρ ≤ 1. As a hyperplane section H on Xh has self intersection H 2

= 4 6= 0,
we find ρ = 1. Since NS(Xh) is a 1-dimensional even lattice (see Lemma 2.1), the
discriminant of NS(Xh) is even. The sublattice of finite index in NS(Xh) generated
by H gives

4 = disc〈H〉 = [NS(Xh) : 〈H〉]
2
· disc NS(Xh).

Together with disc NS(Xh) being even this implies [NS(Xh) : 〈H〉] = 1, so H
generates NS(Xh), which is isomorphic to Pic Xh by Lemma 2.1. �

Remark 3.2. Corollary 2.3 was pointed out to the author by Jasper Scholten and
people have used it before to bound the geometric Picard number of a surface.
However, since all nonreal roots of the characteristic polynomial of Frobenius come
in conjugate pairs, the upper bound has the same parity as the second Betti number
of the surface. For K3 surfaces this means that the upper bound is even, and
therefore at least 2. Note that by Tate’s conjecture (see Remark 2.4) the actual
geometric Picard number of any K3 surface over a field of positive characteristic
is at least 2. It is a complete mystery where this second cycle should come from.
The strategy of the proof of Theorem 3.1 allows us to sharpen the upper bound in
characteristic zero. If the reductions modulo two different primes give the same
upper bound r , but the corresponding Néron–Severi groups have discriminants that
do not differ by a square factor, then in fact r − 1 is an upper bound.

Kloosterman [2005] has used our method to construct an elliptic K3 surface with
Mordell–Weil rank 15 over Q. In the proof of Theorem 3.1 we were able to com-
pute the discriminant up to squares of the Néron–Severi lattice of X p because we
knew a priori a sublattice of finite index. Kloosterman realized that it is not always
necessary to know such a sublattice. For an elliptic surface Y over Fp, the image in
Q∗/Q∗2 of the discriminant of the Néron–Severi lattice can also be deduced from
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the Artin–Tate conjecture, which has been proved for ordinary K3 surfaces in char-
acteristic p ≥5; see [Nygaard and Ogus 1985, Theorem 0.2] and [Milne 1975, The-
orem 6.1]. It allows one to compute the ratio disc NS(Y ) · # Br(Y )/(# NS(Y )tors)

2

from the characteristic polynomial of Frobenius acting on H 2
ét(Y, Ql). For an el-

liptic surface the Brauer group has square order, so this ratio determines the same
element in Q∗/Q∗2 as disc NS(Y ). Of course this relies on heavy machinery, while
our method is essentially elementary.

Remark 3.3. In the proof we counted points over Fpn for p =2, 3 and n =1, . . . , 11
in order to find the traces of powers of Frobenius up to the 11-th power. We could
have got away with less counting. In both cases p = 2 and p = 3 we already know
a 2-dimensional, Frobenius stable subspace W of NS(X p)Ql ⊂ H 2

ét(X p, Ql)(1),
generated by the hyperplane section H and another divisor class. Therefore it
suffices to find out the characteristic polynomial of Frobenius acting on the quotient
V = H 2

ét(X p, Ql)(1)/W . This implies it suffices to know the traces of powers of
Frobenius acting on V up to the 10-th power.

An extra trick was used for p = 3. The family of planes through the line L given
by w = z = 0 cuts out a fibration of curves of genus 1. We can give all nonsingular
fibers the structure of an elliptic curve by quickly looking for a point on it. There
are efficient algorithms available in for instance MAGMA to count the number of
points on these elliptic curves.

Using these few speed-ups we let a computer run to compute the characteristic
polynomial of several random surfaces given by an equation of the form w f1 = z f2

over F3 or w f1 = g1g2 over F2, as in (2). If the middle coefficient of the charac-
teristic polynomial was zero, no more effort was spent on trying to find the sign of
the functional equation (see proof of Theorem 3.1) and the surface was discarded.
After one night two examples over F3 were found with geometric Picard number 2
and one example over F2. With the Chinese Remainder Theorem this allows us to
construct two families of surfaces with geometric Picard number 1. One of these
families consists of the surfaces Xh . A program written in MAGMA that checks
the characteristic polynomial of Frobenius on X2 and X3 is electronically available
from the author upon request.

Remark 3.4. For p = 2, 3, let Ap ⊂ NS(X p) denote the lattice as described in the
proof of Theorem 3.1, i.e., A2 is generated by a hyperplane section and a conic,
and A3 is generated by a hyperplane section and a line. Then in fact Ap equals
NS(X p) for p = 2, 3. Indeed, we have

disc Ap = [NS(X p) : Ap]
2
· disc NS(X p).

For p = 2 this implies disc NS(X2) = −12 or disc NS(X2) = −3. The latter
is impossible because modulo 4 the discriminant of an even lattice of rank 2 is
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congruent to 0 or −1. We conclude disc NS(X2) = −12, and therefore [NS(X2) :

A2] = 1, so A2 = NS(X2).
For p = 3 we find disc NS(X3) = −9 or disc NS(X3) = −1. Suppose the

latter equation held. By the classification of even unimodular lattices we find that
NS(X3) is isomorphic to the lattice with Gram matrix(

0 1
1 0

)
.

By a theorem of Van Geemen [2005, 5.4], this is impossible. From this contradic-
tion we conclude disc NS(X3) = −9 and thus [NS(X3) : A3] = 1, so A3 = NS(X3).

Since there are
(4+3

3

)
= 35 monomials of degree 4 in Q[x, y, z, w], the quartic

surfaces in P3
Q

are parametrized by the space P34
Q

, which we will denote by M .
More explicitly, with these 35 monomials as coordinates, the surface given by
F = 0 with F a homogeneous quartic in Q[x, y, z, w] corresponds to the point in
M whose coordinates are the coefficients in F of the corresponding monomials. Let
M ′ ∼= P27

⊂ M denote the subvariety of those surfaces X for which the coefficients
of the monomials x4, x3 y, x3z, y4, y3x , y3z, and x2z2 in the defining polynomial
of X are all zero. Note that the vanishing of the coefficients of the first six of these
monomials is equivalent to the tangency of the plane Hw given by w = 0 to the
surface X at the points P =[1 : 0 : 0 : 0] and Q =[0 : 1 : 0 : 0]. Thus, the vanishing of
these coefficients yields a singularity at P and Q in the plane curve CX = Hw ∩ X .
If the singularity at P in CX is not worse than a double point, then the vanishing
of the coefficient of x2z2 is equivalent to the fact that the line given by y = w = 0
is one of the limit-tangent lines to CX at P .

Proposition 3.5. There is a nonempty Zariski open subset U ⊂ M ′ such that every
surface X ∈ U defined over Q is smooth and has infinitely many rational points.

Proof. The singular surfaces in M ′ form a closed subset of M ′. So do the surfaces
X for which the intersection Hw ∩ X has worse singularities than just two double
points at P and Q. Leaving out these closed subsets we obtain an open subset
V of M ′. Let X ∈ V be given. The plane quartic curve CX = X ∩ Hw has two
double points, so the geometric genus g of the normalization C̃X of CX equals
pa − 2, where pa is the arithmetic genus of CX ; see [Hartshorne 1977, exercise
IV.1.8]. As we have pa =

1
2(4 − 1)(4 − 2) = 3, we get g = 1. Now assume X is

defined over Q. One of the limit-tangents to CX at P is given by w = y = 0. Its
slope, being rational, corresponds to a rational point P ′ on C̃X above P . Fixing this
point as the unit element O = P ′, the curve C̃X obtains the structure of an elliptic
curve. Let D ∈ Pic0(C̃X ) be the pull back under normalization of the divisor
P − Q ∈ Pic0(CX ). By the theory of elliptic curves there is a unique point T on
C̃X such that D is linearly equivalent to T − O; see [Silverman 1986, Proposition
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III.3.4]. As D is defined over Q, so is T . By Mazur’s theorem (see [Silverman
1986, Theoremm III.7.5] for statement and [Mazur 1977, Theorem 8] for a proof),
the point T has finite order if and only if mT = O for some m ∈ {1, 2, . . . , 10, 12}.
Note that we have lcm(1, 2, . . . , 10, 12) = 2520. Take for U the complement in V
of the closed subset of those X for which we have 2520T = O for the corresponding
point T on C̃X . Then each X ∈ U contains an elliptic curve with infinitely many
rational points. By choosing a Weierstrass equation, one verifies easily that if we
take X = Xh with h = 0, then the corresponding point T on C̃X satisfies mT 6= O

for m ∈ {1, 2, . . . , 10, 12}. Therefore, we find X ∈ U , so U is nonempty. �

Remark 3.6. If C̃X is the normalization of CX as in the proof of Proposition 3.5,
then generically there is another rational point P ′′ on C̃X above P , besides P ′.
Generically this point also has infinite order and the Mordell–Weil rank of C̃X is
at least 2 with independent points P ′′ and T as in the proof of Proposition 3.5. For
X = Xh with h = 0 however, the curve C̃X is given by

3x2 y2
+ xy2z + 4xyz2

+ 2xz3
+ 5yz3

+ z4
= 0.

As the point P = [1 : 0 : 0] is a cusp, there is only one point above P on C̃X

here. The conductor of this elliptic curve equals 686004. Both points on C̃X above
Q = [0 : 1 : 0] are rational and we have an extra rational point [1 : 1 : −1]. These
generate the full Mordell–Weil group of rank 3.

Remark 3.7. Besides the family Xh (with h ∈ U as in Proposition 3.5) of surfaces
containing an elliptic curve with positive Mordell–Weil rank, we can also find
surfaces with infinitely many points on some curve of genus 0. By requiring other
coefficients to vanish than is required for M ′, we can find quartic surfaces Y for
which the plane Hw given by w = 0 is tangent at [1 : 0 : 0 : 0], [0 : 1 : 0 : 0],
and [0 : 0 : 1 : 0]. Then the intersection Hw ∩ Y has geometric genus 0 and if its
normalization has a point defined over Q, then this intersection is birational to P1.
The quartic surface Z given by

w(x3
+ y3

+ z3
+ x2z + xw2) = 3x2 y2

−4x2 yz + x2z2
+ xy2z + xyz2

− y2z2 (4)

is an example of such a surface. As in the proof of Theorem 3.1, modulo 3 the
surface Z contains the line z = w = 0. Also, the reduction of Z at p = 2 contains a
conic again, as the right-hand side of (4) factors over F4 as (xy + xz + ζ yz)(xy +

xz+ζ 2 yz), with ζ 2
+ζ +1 = 0. An argument very similar to the one in the proof of

Theorem 3.1 then shows that Z also has geometric Picard number 1 with the Picard
group generated by a hyperplane section. The only difference is that Frobenius
does not act trivially on the conic w = xy + xz + ζ yz = 0. The hyperplane section
Hw ∩ Z is a curve of geometric genus 0, parametrized by

[x : y : z :w]= [−(t2
+t −1)(t2

−t −3) : 2(t +2)(t2
+t −1) : 2(t +2)(t2

−t −3) : 0].
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The Cremona transformation [x : y : z : w] 7→ [yz : xz : xy] gives a birational map
from this curve to a nonsingular plane curve of degree 2. Coincidentally, it turns
out that the curve on Z given by x = 0 has a triple point at [0 : 0 : 0 : 1], so it is
birational to P1 as well. It can be parametrized by

[x : y : z : w] = [0 : 1 + t3
: t (1 + t3) : −t2

].

From the local and global Torelli theorem for K3 surfaces [Pyatetskii-Shapiro
and Shafarevich 1971] one can find a very precise description of the moduli space
of polarized K3 surfaces in general; see [Beauville 1985]. A polarization of a K3
surface Z by a very ample divisor of degree 4 gives an embedding of Z as a smooth
quartic surface in P3 with the very ample divisor corresponding to a hyperplane
section. An isomorphism between two smooth quartic surfaces in P3 that sends one
hyperplane section to an other hyperplane section comes from an automorphism
of P3. As any two hyperplane sections are linearly equivalent, we conclude that
the moduli space of K3 surfaces polarized by a very ample divisor of degree 4 is
isomorphic to the open subset in M = P34 of smooth quartic surfaces modulo the
action of PGL(4) by linear transformations of P3. We are now ready to prove the
main theorem of this article.

Proof Theorem 1.1. By the description of the moduli space of K3 surfaces polarized
by a very ample divisor of degree 4 given above, it suffices to prove that the set
S ⊂ M(Q) of smooth surfaces with geometric Picard number 1 and infinitely many
rational points is Zariski dense in M .

We will first show that S ∩ M ′ is dense in M ′. Note that the coefficients of the
monomials x4, x3 y, x3z, y4, y3x , y3z, and x2z2 in w f1 + 2z f2 − 3g1g2 in (2) are
zero, so if the coefficients of these monomials in a homogeneous polynomial h ∈ R
of degree 4 are all zero, then Xh is contained in M ′. It follows that the set

T = M ′
∩ {Xh : h ∈ R, h homogeneous of degree 4}

is dense in M ′. Let U be as in Proposition 3.5. Then U is a dense open subset
of M ′, so T ∩ U is also dense in M ′. By Theorem 3.1 and Proposition 3.5 every
surface in T ∩U has geometric Picard number 1 and infinitely many rational points.
Thus we have an inclusion T ∩ U ⊂ S ∩ M ′, so S ∩ M ′ is dense in M ′ as well.

Let W denote the vector space of 4 × 4–matrices over Q and let T denote the
dense open subset of P(W ) corresponding to elements of PGL(4). Let ϕ : T ×

M ′
→ M be given by sending (A, X) to A(X). Note that T (Q) × (S ∩ M ′) is

dense in T × M ′ and ϕ sends T (Q) × (S ∩ M ′) to S. Hence, in order to prove
that S is dense in M , it suffices to show that ϕ is dominant, which can be checked
after extending to the algebraic closure. A general quartic surface in P3 has a one-
dimensional family of bitangent planes, i.e., planes that are tangent at two different
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points. This is closely related to the theorem of Bogomolov and Mumford; see the
appendix to [Mori and Mukai 1983]. In fact, for a general quartic surface Y ⊂ P3,
there is such a bitangent plane H , for which the two tangent points are ordinary
double points in the intersection H ∩ Y . Let Y be such a quartic surface and H
such a plane, say tangent at P and Q. Then there is a linear transformation that
sends H , P , and Q to the plane given by w = 0, and the points [1 : 0 : 0 : 0] and
[0 : 1 : 0 : 0]. Also, one of the limit-tangent lines to the curve Y ∩ H at the singular
point P can be sent to the line given by y =w = 0. This means that there is a linear
transformation B that sends Y to an element X in M ′. Then ϕ(B−1, X) = Y , so ϕ

is indeed dominant. �

Remark 3.8. The explicit polynomials f1, f2, g1, g2 for Xh in (2) were found by
letting a computer pick random polynomials modulo p = 2 and p = 3 such that
the surface Xh with h = 0 is contained in M ′ as in Proposition 3.5. The computer
then computed the characteristic polynomial of Frobenius and tested if there were
only 2 eigenvalues that were roots of unity, see Remark 3.3.

Remark 3.9. In finding the explicit surfaces Xh not much computing power was
needed, as we constructed the surface to have good reduction at small primes p so
that counting points over Fpn was relatively easy. Based on ideas of for instance
Alan Lauder, Daqing Wan, Kiran Kedlaya, and Bas Edixhoven, it should be possi-
ble to develop more efficient algorithms for finding characteristic polynomials of
(K3) surfaces. Together with these algorithms, the method used in the proof of
Theorem 3.1 becomes a strong tool in finding Picard numbers of K3 surfaces over
number fields.

4. Open problems

We end with the remark that still very little is known about the arithmetic of K3
surfaces, especially those with geometric Picard number 1. We reiterate three ques-
tions that remain unsolved.

Question 1. Does there exist a K3 surface over a number field such that the set of
rational points is neither empty nor dense?

Question 2. Does there exist a K3 surface over a number field with geometric
Picard number 1, such that the set of rational points is potentially dense?

Question 3. Does there exist a K3 surface over a number field with geometric
Picard number 1, such that the set of rational points is not potentially dense?

The surfaces exhibited in this paper are candidates to yield affirmative answers to
all of these questions, most notably Questions 2 and 3.
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