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We consider mod p modular Galois representations which are unramified at p
such that the Frobenius element at p acts through a scalar matrix. The principal
result states that the multiplicity of any such representation is bigger than 1.

1. Introduction

A continuous odd irreducible Galois representation ρ : Gal(Q/Q)→ GL2(Fp) is
said to be of weight one if it is unramified at p. According to Serre’s conjecture
(with the minimal weight as defined in [Edixhoven 1992]), all such representations
should arise from Katz modular forms of weight 1 over Fp for the group 01(N )
with N the (prime to p) conductor of ρ. Assuming the modularity of ρ, this is
known if p > 2 or if p = 2 and the restriction of ρ to a decomposition group at 2
is not an extension of twice the same character. A weight 1 Katz modular form
over Fp can be embedded into weight p and the same level in two different ways:
by multiplication by the Hasse invariant of weight p−1 and by applying the Frobe-
nius (see [Edixhoven 2006, Section 4]). Hence, the corresponding eigenform(s) in
weight p should be considered as old forms; they lie in the ordinary part.

A modular Galois representation ρ : Gal(Q/Q) → GL2(Fp) of conductor N
can be realised with a certain multiplicity (see Proposition 4.1) on the p-torsion
of J1(N p) or J1(N ). In this article we prove that this multiplicity is bigger than 1
if ρ is of weight one and Frobp acts through a scalar matrix. If p = 2, we also
assume that the corresponding weight 1 form exists. Together with [Buzzard 2001,
Theorem 6.1], this completely settles the question of multiplicity one for modular
Galois representations. Its study had been started by Mazur and continued among
others by Ribet, Gross, Edixhoven and Buzzard. The first example of a modular
Galois representation not satisfying multiplicity one was found in [Kilford 2002].
See [Kilford and Wiese 2006] for a more detailed exposition.

MSC2000: primary 11F80; secondary 11F33, 11F25.
Keywords: Galois representations, multiplicities, modular forms, Hecke algebras.
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A systematic computational study of the multiplicity of Galois representations
of weight one has been carried out in [Kilford and Wiese 2006]. The data gathered
suggest that the multiplicity always seems to be 2 if it is not 1. Moreover, the local
factors of the Hecke algebras are becoming astonishingly large.

Overview. We give a short overview over the article with an outline of the proof.
In Section 2 an isomorphism between a certain part of the p-torsion of a Jacobian
of a modular curve with a local factor of a mod p Hecke algebra is established
(Proposition 2.2). As an application one obtains a mod p version of the Eichler–
Shimura isomorphism (Corollary 2.3). Together with a variant of a well-known
theorem by Boston, Lenstra and Ribet (Proposition 4.1) one also gets an isomor-
phism between a certain kernel in the local mod p Hecke algebra and a part of the
corresponding Galois representation. This gives for instance a precise link between
multiplicities and properties of the Hecke algebra (Corollary 4.2). In Section 3 it
is proved (Theorem 3.1) that under the identification of Section 2, the geometric
Frobenius at p on the part of the Galois representation corresponds to the Hecke
operator Tp in the Hecke algebra. This relation is exploited in Section 4 to obtain
the principal result (Corollary 4.5), a reformulation and a possible application to
weight lowering.

Notation. For integers N ≥ 1 and k ≥ 1, we let Sk(01(N )) be the C-vector space
of holomorphic cusp forms and Sk(01(N ), Fp) the Fp-vector space of Katz cusp
forms on 01(N ) of weight k. Whenever S ⊆ R are rings, m is an integer and M is
an R-module on which the Hecke and diamond operators act, we let T

(m)
S (M) be

the S-subalgebra inside the R-endomorphism ring of M generated by the Hecke
operators Tn with (n,m) = 1 and the diamond operators. If φ : S → S′ is a
ring homomorphism, we let T

(m)
φ (M) := T

(m)
S (M) ⊗S S′ or with φ understood

T
(m)
S→S′(M). If m = 1, we drop the superscript.
Every maximal ideal m ⊆ TZ→Fp(Sk(01(N ))) corresponds to a Galois conju-

gacy class of cusp forms over Fp of weight k on 01(N ). One can attach to m

by work of Shimura and Deligne a continuous odd semisimple Galois represen-
tation ρm : Gal(Q/Q)→ GL2(Fp) which is unramified outside N p and satisfies
Tr(ρm(Frobl))≡ Tl mod m and Det(ρm(Frobl))≡ 〈l〉lk−1 mod m for all primes
l - N p via an embedding TZ→Fp(Sk(01(N )))/m ↪→ Fp. All Frobenius elements
Frobl are arithmetic ones.

For all the article we fix an isomorphism C∼=Qp and a ring surjection Zp→ Fp.
If K is a field, we denote by K (ε)= K [ε]/(ε2) the dual numbers. For a finite flat
group scheme G, the Cartier dual is denoted by t G. The maximal unramified
extension of Qp (inside Qp) is denoted by Qnr

p and its integer ring by Znr
p .

For the conventions on modular curves we follow [Gross 1990]; in particular,
we work with µN -level structures.



Multiplicities of Galois representations of weight one 69

Situations. We shall often assume one of the following two situations. In the ap-
plications, the second part will be taken for p = 2.

Situation I. Let p be an odd prime and N a positive integer not divisible by p.
Define the Hecke algebras

TZp := T
(1)
Z→Zp

(S2(01(N p))), T′Zp
:= T

(p)
Z→Zp

(S2(01(N p))).

Let m be an ordinary (i.e. Tp 6∈ m) maximal ideal of TZp with residue field F =

TZp/m such that the p-diamond operators give a nontrivial character

(Z/pZ)×→ F×, a 7→ 〈a〉p.

Let m′=m∩T′Zp
and, more generally, m(m)

=m∩T
(m)
Z→Zp

(S2(01(N p))) for m ∈N.
Let TFp := TZp ⊗Zp Fp and T′Fp

:= T′Zp
⊗Zp Fp. Denote the image of m in TFp by m

and similarly for m′. Assume that ρm is irreducible.
Let furthermore K = Qp(ζp) and O = Zp[ζp] with a primitive p-th root of

unity ζp. Also let J := J1(N p)Q be the Jacobian of X1(N p) over Q.

Situation II. Let p be any prime and N a positive integer not divisible by p. Define
the Hecke algebras

TZp := T
(1)
Z→Zp

(S2(01(N ))), T′Zp
:= T

(p)
Z→Zp

(S2(01(N ))).

Let m be an ordinary maximal ideal of TZp with residue field F= TZp/m. Let
m′ =m∩T′Zp

and, more generally for m ∈ N, let

m(m)
=m∩T

(m)
Z→Zp

(S2(01(N ))).

Let TFp := TZp ⊗Zp Fp and T′Fp
:= T′Zp

⊗Zp Fp. Denote the image of m in TFp by m

and similarly for m′. Assume that ρm is irreducible.
Let furthermore K =Qp and O= Zp. Also let J := J1(N )Q be the Jacobian of

X1(N ) over Q.

2. Hecke algebras, Jacobians and p-divisible groups

Assume we are in Situation I or II. The maximal ideal m of TZp corresponds to an
idempotent em ∈ TZp , in the sense that applying em to any TZp -module is the same
as localising the module at m. Let G be the p-divisible group J [p∞]Q over Q. Con-
sider the Tate module Tp J = TpG= lim

←−
J [pn
](Q). It is a TZp [Gal(Q/Q)]-module.

The Hecke algebra TZp acts on Tp J and on G, hence so does the idempotent em.
We put G = emG and say that this is the p-divisible group over Q attached to m.
We shall mainly be interested in the p-torsion of G. However, making the detour
via p-divisible groups allows us to quote the following theorem by Gross.



70 Gabor Wiese

Theorem 2.1 (Gross). Assume we are in Situation I or II. Let G be the p-divisible
group over Q attached to m, as explained above. Let h = rkZp TZp,m, where TZp,m

denotes the localisation of TZp at m.

(a) The p-divisible group G acquires good reduction over O. We write GO for the
corresponding p-divisible group over O. It sits in the exact sequence

0→ G0
O→ GO→ Ge

O→ 0,

where Ge
O is étale and G0

O is of multiplicative type, i.e. its Cartier dual is étale.
The exact sequence is preserved by the action of the Hecke correspondences.

(b) Over O[ζN ] the p-divisible group GO[ζN ] is isomorphic to its Cartier dual
t GO[ζN ]. This gives isomorphisms of p-divisible groups over O[ζN ]

Ge
O[ζN ]
∼=

t G0
O[ζN ]

and G0
O[ζN ]
∼=

t Ge
O[ζN ]

.

(c) We have Ge
Fp
[p] ∼= (Z/pZ)h

Fp
and G0

Fp
[p] ∼= µh

p,Fp
.

Proof. The references in this proof are to [Gross 1990].

(a) The statement on the good reduction is Propositions 12.8 (1) and 12.9 (1).
The exact sequence is proved in Propositions 12.8 (4) and 12.9 (3). That it is
preserved by the Hecke correspondences is a consequence of the fact that there are
no nontrivial morphisms from a connected group scheme to an étale one, whence
any Hecke correspondence on G can be restricted to G0.

(b) The Cartier self-duality of G over K (ζN ) is also proved in Propositions 12.8 (1)
and 12.9 (1). It extends to a self-duality over O[ζN ]. The second statement follows
as in (a) from the nonexistence of nontrivial morphisms from G0 to Ge over O[ζN ];
this argument gives G0 ∼= t Ge. Applying Cartier duality to this, we also get Ge ∼=
t G0.

(c) By part (b), Ge and G0 have equal height. That height is equal to h by Propo-
sitions 12.8 (1) and 12.9 (1). The statement is now due to the fact that up to
isomorphism the given group schemes are the only ones of rank ph which are
killed by p and which are étale or of multiplicative type, respectively. �

The last point makes the ordinarity of m look like the ordinarity of an abelian
variety.

Proposition 2.2. Assume we are in Situation I or II and let G be the p-divisible
group attached to m. Then we have an isomorphism G0

[p](Qp)∼= TFp,m of TFp,m-
modules.
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Proof. Taking the p-torsion of the p-divisible groups in Theorem 2.1 (a), one
obtains the exact sequence

0→ G0
O[p](Qp)→ GO[p](Qp)→ Ge

O[p](Qp)→ 0 (1)

of TFp,m-modules with Galois action. We also spell out the dualities in part (b) of
Theorem 2.1, restricted to the p-torsion on Qp-points:

G0
O[ζN ]
[p](Qp)∼= Homgr.sch./Qp

(Ge
[p]Qp

, µp,Qp
)

Ge
O[ζN ]
[p](Qp)∼= Homgr.sch./Qp

(G0
[p]Qp

, µp,Qp
).

(2)

These are isomorphisms of TFp,m-modules, i.e. in particular of Fp-vector spaces.
We will from now on identify µp,Qp

(Qp) with Fp and the group homomorphisms
on Qp-points above with Fp-linear ones.

The final ingredient in the proof is that Ge(Qp)[m] = Ge
[p](Qp)[m] is a one-

dimensional L := TFp/m-vector space; see [Gross 1990, Propositions 12.8 (5) and
12.9 (4)]. We quotient the first isomorphism of Equation (2) by m and obtain

G0
[p](Qp)/m∼= HomFp(G

e
[p](Qp)[m], Fp)∼= HomFp(L , Fp),

which is a 1-dimensional L-vector space. Consequently, Nakayama’s Lemma ap-
plied to the finitely generated TFp,m-module G0

[p](Qp) yields a surjection TFp,m �

G0
[p](Qp). Next we invoke a result from Section 3 of [Kilford and Wiese 2006].

We point out explicitly that all of that section is independent of Section 2 of the
same paper, in which Corollary 2.3 is used. From Proposition 3.7 of that paper, it
follows that

2 dimFp TFp,m = dimFp H 1
par(0, Fp)m

with 0 = 01(N p) in Situation I and 0 = 01(N ) in Situation II. At the same time,

H 1
par(0, Fp)m ∼= J (C)[p]m ∼= G[p](Qp)

(see [Wiese 2007, Proposition 5.3], for example), so we obtain dimFp TFp,m =

dimFp G0
[p](Qp) and, thus, TFp,m

∼= G0
[p](Qp). �

The following result, together with very helpful hints on its proof (amounting to
the preceding proposition), was suggested by Kevin Buzzard. See also the discus-
sion before [Emerton 2002, Proposition 6.3] and the letter by Mazur reproduced
in the Appendix to [Tilouine 1997].

Corollary 2.3. Assume we are in Situation I or II and let G be the p-divisible
group attached to m. Then there is an exact sequence

0→ TFp,m→ G[p](Q)→ T∨Fp,m
→ 0

of TFp,m-modules, where the dual is the Fp-linear dual.
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Proof. Substituting the isomorphism of Proposition 2.2 into the second isomor-
phism of Equation (2) gives

Ge
[p](Qp)∼= Hom(TFp,m, Fp)

as TFp,m-modules, whence the corollary follows from Equation (1). �

The following proposition is similar in spirit to Proposition 2.2. It will not be
needed in the sequel.

Proposition 2.4. Assume we are in Situation I or II and let G = GO be the p-
divisible group over O attached to m. Then G0

[p](Fp(ε)) and TFp,m are isomorphic
as TFp,m-modules.

Proof. We only give a sketch. Since G0
[p](Fp) consists of the origin as unique

point, G0
[p](Fp(ε)) coincides with the tangent space at 0 of G0

Fp
[p]. The latter,

however, is equal to the tangent space at 0 of GFp [p]. On the other hand, its
dual, the cotangent space at 0 of GFp [p], is isomorphic to Sk(01(N ), Fp)m for
some k ∈ {2, . . . , p + 1}. In Situation II, k = 2 and this result is well-known.
In Situation I, we quote [Edixhoven 1992, Equations 6.7.1 and 6.7.2], as well as
[Gross 1990, Proposition 8.13] (note that the ordinarity assumption kills the second
summand in that proposition). Consequently, G0

[p](Fp(ε)) is isomorphic to the
Hecke algebra on Sk(01(N ), Fp)m as a Hecke module. In [Kilford and Wiese 2006,
Proposition 2.3], it is shown that this algebra is TFp,m. �

From Proposition 2.2 and part of the direct proof of Theorem 3.1 we can also
derive an isomorphism between TFp,m and the image of the reduction map (4).

3. Comparing Frobenius and the Hecke operator Tp

The aim of this section is to discuss and prove the following theorem, which turns
out to be an important key to the principal result of this article.

Theorem 3.1. Assume we are in Situation I or II and let G0
=G0

O be the p-divisible
group of Theorem 2.1. The action of the geometric Frobenius on the points

G0
O[p](Q

nr
p (ζp))

is the same as the action of the Hecke operator Tp.

This result is in fact contained in [Gross 1990]. Apart from giving the appropri-
ate citations, we include two more proofs, in the hope that the chosen approaches
may find applications in other contexts, too. Due to the Eichler–Shimura congru-
ence relation in Situation II and the reduction of a well-known semistable model
of the modular curve in Situation I, for both of these proofs it suffices to compare
the geometric Frobenius and Verschiebung on the special fibre of G0

[p]. For the
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first alternative proof, such a comparison is carried out elementarily — roughly
speaking — by working with the tangent space at 0 over Fp, in order to have an
injective reduction map from characteristic zero to the finite field. On the special
fibre elementary computations then suffice. For the second alternative proof, a
comparison between geometric Frobenius and Verschiebung has been worked out
conceptually by Niko Naumann in the Appendix in the context of Fontaine’s theory
of Honda systems.

Proof by citation. In Situation I, we cite [Gross 1990, Proposition 12.9 (3)], which
says that Gal(Qp/Qp) acts on the Tate module of G0 through the p-adic cyclotomic
character times λ(T−1

p ), where λ(T−1
p ) is the character sending Frobp to T−1

p . As
we are restricting to Gal(Qp/Qp(ζp)) and to G0

[p], the cyclotomic character is
trivial and the Galois action on

G0
[p](Qp)= Hom(t G0

[p]×Qp, µp,Qp
)

is unramified since t G0
[p] is étale.

In Situation II, we cite [Gross 1990, Proposition 12.8 (4)], and argue as above.
Note that by the Eichler–Shimura congruence relation (see the end of the direct
proof) the unit u in the citation equals Tp divided by the diamond operator 〈p〉N .

�

Direct proof. In the proof we prefer to work with the étale Cartier dual of G0
[p]

since we find it more convenient for making formulae explicit. So, t G0
[p] =

Spec(A) is a finite étale group scheme over O such that

t G0
[p]×O Znr

p [ζp] ∼= (Z/pZ)hZnr
p [ζp]

,

i.e. A⊗O Znr
p [ζp]

α
∼=

∏
Znr

p [ζp]. If p = 2, we put ζ2 = −1. We consider the com-
mutative diagram

Znr
p [ζp][X ]/(X p

− 1) oo
ζp←[Y

��

Znr
p [X, Y ]/(X p

− 1, Y p
− 1)Y 7→1+ε //

��

Fp(ε)[X ]/(X p
− 1)

��∏
Znr

p [ζp] oo
ζp←[Y ∏

Znr
p [Y ]/(Y

p
− 1) Y 7→1+ε // ∏ Fp(ε).

Any morphism of group schemes t G0
[p] ×O Znr

p [ζp] → µp,Znr
p [ζp] corresponds to

a Hopf algebra homomorphism as in the left column. Suppose that it maps X to
(ζ i1

p , . . . , ζ
ihp
p ) for i j ∈ {0, . . . , p−1}. It has a unique lifting to a Hopf algebra ho-

momorphism as in the central column if we impose that X maps to (Y i1, . . . , Y ihp).
As the referee pointed out, this lift gives the first map in the exact sequence

0→ G0
[p](Znr

p [ζp])→ G0
[p](Znr

p [Y ]/(Y
p
− 1))→ G0

[p](Znr
p ).
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From the homomorphism in the centre of the diagram we obtain a Hopf algebra
homomorphism in the right column, which sends X to (1+ i1ε, . . . , 1+ ihpε). It
should be said that the detour via the central column is only necessary for p = 2,
as for p> 2 one can pass directly from the left hand side column to the right hand
side via the map Znr

p [ζp] → Fp(ε), sending ζp to 1+ ε.
This process gives us an injective reduction map

Homgr.sch./Znr
p [ζp](

t G0
[p]×O Znr

p [ζp], µp,Znr
p [ζp])

→ Homgr.sch./Fp(ε)
(t G0
[p]×O Fp(ε), µp,Fp(ε)

). (3)

In terms of points of G0
[p], the reduction map is the composition

G0
[p](Znr

p [ζp]) ↪→ G0
[p](Znr

p [Y ]/(Y
p
− 1))→ G0

[p](Fp[ε]). (4)

The reduction map is compatible for the action induced by the Hecke correspon-
dences.

Next, we describe the geometric Frobenius on the points G0
[p](Qnr

p (ζp)) and
G0
[p](Fp(ε)). We consider the commutative diagram

Homgr.sch./Znr
p [ζp](

t G0
[p]×Znr

p [ζp], µp,Znr
p [ζp])

∼ //

∼

��

(A⊗Znr
p [ζp])

gl ∼ //
?�

��

G0
[p](Znr

p [ζp])
?�

��

HomZnr
p [ζp]−HA(Z

nr
p [ζp][X ]/(X p

− 1), A⊗Znr
p [ζp])

W7

**UUUUUUUUUUUUUUUUU

A⊗Znr
p [ζp]

∼ ev // HomO(
t A,Znr

p [ζp]).

It is well-known that a Hopf algebra homomorphism

ψ : Znr
p [ζp][X ]/(X p

− 1)→ A⊗O Znr
p [ζp]

is uniquely given by the “group-like element” ψ(X)=
∑

ai ⊗ si , giving the upper
left bijection. On the bottom right, we have the evaluation isomorphism

A⊗O Znr
p [ζp] → HomO(HomO(A,O),Znr

p [ζp])

which is defined by ev(a ⊗ s)(ϕ) = ϕ(a)s. We use that as O-modules t A =
HomO(A,O) with G0

[p] = Spec(t A), as well as the freeness of A. It is also well-
known that the evaluation map gives rise to the upper right bijection.

Let now φ be the geometric Frobenius in Gal(Qnr
p (ζp)/Qp(ζp)). Its action on

HomO(
t A,Znr

p [ζp]) is by composition. Via the evaluation map it is clear that φ acts
on an element a⊗ s ∈ A⊗O Znr

p [ζp] by sending it to a⊗ φ(s). Consequently, the
morphism ψφ which is obtained by applying φ to ψ is uniquely determined by
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ψφ(X)=
∑

ai ⊗φ(si ). A similar statement holds for the reduction. We note that
this implies the compatibility of the reduction map with the φ-action.

Next we show that the action of geometric Frobenius on the image of (4) inside
the tangent space G0

[p](Fp(ε)) coincides with the action induced by Verschiebung
on G0

Fp
[p]. The étale algebra A⊗O Fp can be written as a product of algebras of

the form Fp[X ]/( f ) with f an irreducible polynomial. An elementary calculation
on the underlying rings gives the commutativity of the diagram

Fp[X ]/( f )⊗Fp Fp(ε)
F⊗1 //

α

��

Fp[X ]/( f )⊗Fp Fp(ε)
1⊗φ−1

// Fp[X ]/( f )⊗Fp Fp(ε)

α

��∏d
i=1 Fp(ε)

∏
φ−1

// ∏d
i=1 Fp(ε),

(5)

where F denotes the absolute Frobenius on t G0
Fp
[p] (defined by X 7→ X p), which

by duality gives the Verschiebung on G0
Fp
[p]. We point out that φ leaves ε invariant.

Let now ψ : Fp(ε)[X ]/(X p
− 1)→ A⊗O Fp(ε) be an Fp(ε)-Hopf algebra ho-

momorphism in the image of (3). It is uniquely given by ψ(X)=
∑

i ai ⊗ si , and
under the identification

A⊗O Fp(ε)
α
∼=

hp∏
j=1

Fp(ε)

we get ψ(X) = (1 + i1ε, . . . , 1 + ihpε) with i j ∈ Fp as we have seen above,
which is invariant under the arithmetic Frobenius of the bottom row of (5). Hence,
φ−1(F(

∑
i ai ⊗ si )) =

∑
i ai ⊗ si , so that F(

∑
i ai ⊗ si ) =

∑
i ai ⊗ φ(si ). This

proves that the geometric Frobenius and Verschiebung coincide on the image of (4)
inside G0

[p](Fp(ε)).
We now finish the proof. In Situation II, the Eichler–Shimura relation Tp =

〈p〉F+V holds on the special fibre of G[p] (see the proof of [Gross 1990, Propo-
sition 12.8 (2)]). Since F is zero on G0

Fp
[p], we get Tp = V on it. We obtain the

theorem in this situation since V coincides with φ on the image of (4), as we just
saw.

In Situation I, we know that G0
Fp
[p] is naturally part of the p-torsion of the

Jacobian of the Igusa curve I1(N )Fp ; but on the Igusa curve Verschiebung acts
as Tp (see the proof of [Gross 1990, Proposition 12.9 (2)] for both these facts).
Hence, we can argue as above and get the theorem also for p > 2. �

More conceptual proof. In both situations, Theorem A.1 of Naumann gives an
isomorphism between G0

[p](Qnr
p (ζp)) and the Dieudonné module M attached to

the special fibre G0
Fp
[p]. Under this isomorphism the geometric Frobenius φ ∈

Gal(Qnr
p (ζp)/Qp(ζp)) on G0

[p](Qnr
p (ζp)) is identified with Verschiebung on the

Dieudonné module. The isomorphism is compatible with the Hecke action. Using
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the same citations as at the end of the direct proof one immediately concludes that
the equality Tp = V holds on the Dieudonné module M , finishing the proof. �

Remark 3.2. (a) Conceptually, taking Znr
p [ζp]-points is the same as taking Znr

p -
points of the Weil restriction from O to Zp and similarly for Qnr

p (ζp). So, we
could have formulated Theorem 3.1 in terms of the Weil restriction.

(b) We point out again that we are using the conventions of [Gross 1990]. Hence,
the representation on the Jacobian must be tensored by the corresponding
Dirichlet character ε (the nebentype) in order to obtain ρm (see [Gross 1990,
p. 486]).

(c) A theorem by Deligne (see, for instance, [Edixhoven 1992, Theorem 2.5] or
[Gross 1990, Proposition 12.1]) describes the restriction of ρm to a decompo-
sition group at p in the ordinary case as(

χ k−1
p λ(ε(p)/ap) ∗

0 λ(ap)

)
,

where χp is the mod p cyclotomic character, λ(u) is the unramified character
sending the arithmetic Frobenius Frobp to u and ap ≡ Tp mod m. When we
restrict to Gal(Qp/Qp(ζp)), the cyclotomic character acts trivially and we see
that Theorem 3.1 is in accordance with Deligne’s description.

Let f be a Katz eigenform of weight 1 over Fp with eigenvalue a(1)p for the
weight 1 Hecke operator T (1)

p . As explained in [Edixhoven 2006, Section 4],
one can embed f into weight p in two different ways. On the span in weight p,
the Hecke operator Tp has the eigenvalues ap and ε(p)/ap and they satisfy
a(1)p = ap + ε(p)/ap (see [Wiese 2007, Proposition 8.4]). The mod p Galois
representation attached to f coincides with the one attached to a weight p
form. We suppose that this representation is of weight one, which is known
for p > 2 and for many cases with p = 2 and is expected to be true without
any exception. Then the characteristic polynomial of Frobp acting on that
representation equals X2

− a(1)p X + ε(p) and is thus like any characteristic
polynomial of a modular Galois representation at any unramified prime.

4. Application to multiplicities

We first state a slight strengthening of a well-known theorem by Boston, Lenstra
and Ribet.

Proposition 4.1 (Boston, Lenstra, Ribet). Assume we are in Situation I or II. Let m
be an integer. Then the F[Gal(Q/Q)]-module J (Q)[m(m)

] is the direct sum of r
copies of ρm⊗ ε

−1 for some r ≥ 1 and Dirichlet character ε corresponding to m.
The integer r is called the multiplicity of ρm on J (Q)[m(m)

].
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Proof. The same proof as in the original proposition works. More precisely, one
considers the two representations ρm :Gal(Q/Q)→GL2(F) and σ :Gal(Q/Q)→
Aut(J (Q)[m(m)

]). By Chebotarev’s density theorem we know that every conjugacy
class of Gal(Q/Q)/ ker(σ⊗ε) is hit by a Frobenius element Frobl for some l - N pm.

The Eichler–Shimura congruence relation Tl = 〈l〉F+V holds on JFl (taking J
here over Z[ 1

N p ]) for all primes l - N pm. Hence, the minimal polynomial of Frobl

on the Jacobian divides X2
− Tl/〈l〉 · X + l/〈l〉. But Tl acts as al on J (Q)[m(m)

]

and X2
− al X + ε(l)l (with Tl ≡ al mod m) is the characteristic polynomial of

ρm(Frobl). Consequently, (σ ⊗ ε)(g) is annihilated by the characteristic polyno-
mial of ρm(g) for all g ∈ Gal(Q/Q). Hence, Theorem 1 of [Boston et al. 1991]
gives the result. �

The notion of multiplicity is sometimes formulated in a way only depending on
the representation and not on a particular piece of one Jacobian; see for example
[Ribet and Stein 2001, Definition 3.3]. The next corollary says that one can read
off multiplicities from properties of Hecke algebras.

Corollary 4.2. Assume we are in Situation I or II. Let r be the multiplicity of ρm

on J (Q)[m]. Then
r = 1

2(dimF TFp,m[m] + 1).

Proof. Buzzard [2001] explains the exactness of the sequence

0→ G0(Qp)[m] → G(Qp)[m] → Ge(Qp)[m] → 0.

Via Corollary 2.3 we obtain the exact sequence

0→ TFp,m[m] → J (Qp)[m] →
(
TFp,m/m

)∨
→ 0,

from which one reads off the claim by counting dimensions. �

In [Buzzard 2001] Buzzard proved that the multiplicity on J (Q)[m] of ρm of
weight one is 1 if ρm(Frobp) is nonscalar. We include this as a lemma.

Lemma 4.3. Assume we are in Situation I or II and ρm is of weight one.
If ρm(Frobp) is not a scalar matrix, the multiplicity of ρm on J (Q)[m] is 1.

Proof. We first record that Tp acts as a scalar (in F) on TFp,m[m]. Suppose that the
multiplicity r of ρm on J (Q)[m] is greater than 1. Then TFp,m[m] =G0

[p](Q)[m]
has dimension 2r −1> 1 by (the proof of) Corollary 4.2. Hence, ρm(Frobp) does
not act as a scalar on TFp,m[m], as it is nonscalar on J (Q)[m] ∼= ρr

m by assumption.
From Theorem 3.1 we obtain a contradiction, since it implies that Tp does not act
as a scalar on TFp,m[m] either. �

Theorem 4.4. Assume we are in Situation I or II and ρm has weight one and
ρm(Frobp) is conjugate to

( a ∗
0 a

)
. The following statements are equivalent:
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(a) The representation ρm comes from a Katz cusp form of weight 1 on 01(N )
over Fp and the multiplicity of ρm on J (Q)[m] is 1.

(b) TFp,m[m]$ TFp,m[m
′
].

(c) Tp does not act as a scalar on TFp,m[m
′
] (inside J (Q)[m′] ∼= ⊕ρm as an

F-vector space).

(d) The multiplicity of ρm on J (Q)[m] is 1, its multiplicity on J (Q)[m′] is 2, and
ρm(Frobp) is nonscalar.

Proof. (a)⇒ (b): By Corollary 4.2, the F-dimension of TFp,m[m] is 1, hence, so is
the dimension of T∨

Fp,m
/m. Thus, Nakayama’s Lemma yields that TFp,m is Goren-

stein, i.e. that it is isomorphic to its dual as a module over itself. By the q-expansion
principle, the dual is Sp(01(N ), Fp)m. By [Edixhoven 2006, Propostion 6.2] or
[Wiese 2007, Proposition 8.4] the existence of a corresponding weight 1 form is
equivalent to Sp(01(N ), Fp)m[m

′
] being 2-dimensional. This establishes (b), since

Sp(01(N ), Fp)m[m], which is isomorphic to (TFp,m/m)
∨, is 1-dimensional as an

F-vector space.

(b)⇒ (c): This is evident.

(c)⇒ (d): First of all, TFp,m[m
′
] is at least 2-dimensional (as an F-vector space).

From Theorem 3.1 we know that Tp acts as the inverse of Frobp on G0
[p](Q).

We conclude that ρm(Frobp) cannot be scalar. Hence, Lemma 4.3 yields that the
multiplicity r of ρm on J (Q)[m] is equal to 1. If the multiplicity s of ρm on
J (Q)[m′] were bigger than 2, then TFp,m[m

′
] would be at least 4-dimensional by

an argument as in the proof of Corollary 4.2. Then it follows that it must contain
at least two linearly independent eigenvectors for Tp corresponding to at least two
copies of ρm, contradicting the fact that TFp,m[m] is 1-dimensional.

(d)⇒ (a): Clearly, m 6= m′. Hence, TFp,m/m 6= TFp,m/m
′ and, dually,

Sp(01(N ), Fp)m[m]$ Sp(01(N ), Fp)m[m
′
],

which implies the existence of a corresponding weight 1 form, again by [Edixhoven
2006, Proposition 6.2] or [Wiese 2007, Proposition 8.4]. �

We now state and prove the principal result of this article.

Corollary 4.5. Assume we are in Situation I or II and ρm is of weight one. If p= 2,
also assume that a weight 1 Katz form of level N exists which gives rise to ρm.

Then the multiplicity of ρm on J (Q)[m] is 1 if and only if ρm(Frobp) is non-
scalar.

Proof. By [Edixhoven 1992, Theorem 4.5] together with the remark at the end of
the introduction to that article, the existence of the corresponding weight 1 form
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is also guaranteed for p > 2. First suppose that the multiplicity is 1. If ρm(Frobp)

has two distinct eigenvalues, then it clearly is nonscalar. If ρm(Frobp) is conjugate
to

( a ∗
0 a

)
, then Theorem 4.4 shows that ρm(Frobp) is nonscalar. On the other hand,

if ρm(Frobp) is nonscalar, Lemma 4.3 implies that the multiplicity is 1. �

The following corollary gives a different, somewhat cleaner formulation of the
results on multiplicities. It suggests that instead of working with the full Hecke
algebra, one should restrict to the prime-to-p one.

Corollary 4.6. Assume we are in Situation I or II. If p = 2, also assume that ρm is
of weight one if and only if there exists a weight 1 Katz form of level N which gives
rise to ρm.

Then the multiplicity of ρm on J (Q)[m′] is 1 if and only if ρm is ramified at p.

Proof. As in the previous proof, for p > 2 by [Edixhoven 1992, Theorem 4.5],
together with the remark at the end of the introduction to that article, the existence
of a weight 1 form is equivalent to the attached representation being of weight one.
If ρm is ramified at p, the result follows from Theorem 6.1 of [Buzzard 2001]. For,
it gives that J (Q)[m] is isomorphic to precisely one copy of ρm. Moreover, the
localisation at m′ of TFp (as a T′Fp

-module) is equal to T′
Fp,m

′ , as otherwise a weight
one form would exist e.g. by [Wiese 2007, Proposition 8.1]. Hence, m = m′ and
J (Q)[m] = J (Q)[m′].

Suppose now that ρm is unramified at p. If ρm(Frobp) is scalar, it suffices to
apply Corollary 4.5. If ρm(Frobp) is conjugate to

(
a b
0 a

)
with b 6= 0, then the result

is obtained from Corollary 4.5 together with the implication (a)⇒ (d) of Theorem
4.4. If, finally, ρm(Frobp) has two distinct eigenvalues, then there are two maximal
ideals m=m1,m2 with ρm1

∼= ρm2 , since the operator Tp has two distinct eigenval-
ues on Sp(01(N ), Fp)[m

′
] by the formula in [Wiese 2007, Proposition 8.4], namely

the same as ρm(Frobp)
−1. Consequently, J (Q)[m1] ⊕ J (Q)[m2] = J (Q)[m′],

finishing this proof. �

Corollary 4.7. Assume we are in Situation I or II and ρm is of weight one. Assume
also that the multiplicity of ρm on J (Q)[m′] is 2. Then the following statements
are equivalent.

(a) The multiplicity of ρm on J (Q)[m] is 1 and a weight 1 Katz form of level N
exists which gives rise to ρm.

(b) ρm(Frobp) is nonscalar.

Proof. We have seen the implication (a)⇒ (b) in Corollary 4.5. By Lemma 4.3,
we obtain from ρm(Frobp) being nonscalar that the multiplicity of ρm on J (Q)[m]
is 1. From the assumption the inequality m 6=m′ follows, implying the existence of
the weight 1 form as above by [Edixhoven 2006, Proposition 6.2] or [Wiese 2007,
Proposition 8.4]. �
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If one could prove that the multiplicity of ρm on J (Q)[m′] is always equal to 2
in the unramified situation, Corollary 4.7 would extend weight lowering for p = 2
to ρm(Frobp) being nonscalar.

Appendix

by Niko Naumann

Let p be a prime, A := Zp, A′ := Zp[ζp], K := Qp, K ′ := Qp(ζp) and K ′ ⊆
K an algebraic closure. We have the inertia subgroup I ⊆ G K ′ := Gal(K/K ′)
and for a G K ′-module V we denote by τ the geometric Frobenius acting on the
inertia invariants V I . If G/A′ is a finite flat group-scheme, always assumed to be
commutative, we denote by M the Dieudonné module of its special fiber and by
V : M→ M the Verschiebung.

Theorem A.1. Let G/A′ be a finite flat group-scheme which is connected with étale
Cartier dual and annihilated by multiplication with p. Then G(K )I

= G(K ) and
there is an isomorphism φ :G(K )I

→M of Fp-vector spaces such that φ◦τ =V ◦φ.

The assumption that pG = 0 cannot be dropped:

Proposition A.2. For every n ≥ 2 there is a finite flat group-scheme G/A′ of order
pn which is connected with an étale dual and such that G(K )I

' Z/pZ with τ
acting trivially and V 6= 1 on the Dieudonné module of the special fiber of G.

Proof of Theorem A.1. Denoting by G ′ the Cartier dual of G/A′ we have an iso-
morphism of G K ′-modules

G(K )' Hom(G ′(K ), µp∞(K ))
(pG ′=0)
= Hom(G ′(K ), µp(K )).

Since G ′(K ) is unramified because G/A′ is étale and µp(K ) is unramified be-
cause ζp ∈ K ′ we see that G(K )I

= G(K ). Letting pn denote the order of G we
have dimFp G(K )I

= dimFp G(K )= n = dimFp M .
In the rest of the proof we use the explicit quasi-inverse to J.-M. Fontaine’s

functor associating with G a finite Honda system in order to determine the action
of τ on G(K )I [Fontaine 1977; Conrad 1999].

Let (M, L) be the finite Honda system over A′ associated with G/A′. Recall
that M is the Dieudonné module of the special fiber of G and L ⊆ MA′ is an A′-
submodule where MA′ is an A′-module functorially associated with M [Fontaine
1977, Chapter IV, Section 2]. We claim that L = MA′ : Let m ⊆ A′ denote the
maximal ideal. Using the notation of [Conrad 1999, Section 2], the defining
epimorphism of A′-modules MA′ → coker(FM) factors through an epimorphism
MA′/mMA′→ coker(FM) because m ·coker(FM)= 0 [Conrad 1999, Lemma 2.4].
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Denoting by l the length of a module we have

lA′(coker(FM))= lA(ker F)= lA(ker(p : M→ M))= lA(M)= n

where the first equality follows from [Conrad 1999, 2.4], the second because
ker F = ker(p : M → M) since V is bijective, and the third since pM = 0. On
the other hand, the canonical morphism of A′-modules ιM : M⊗A A′→ MA′ is an
isomorphism by [Fontaine 1977, Chapter IV, Proposition 2.5] using again that V
is bijective. Thus

lA′(MA′/mMA′)= lA′(M ⊗A A′/m)= lA′(M/pM)= lA(M)= n

and MA′/mMA′
'
→ coker(FM). Since L/mL

'
→ coker(FM) holds for every fi-

nite Honda system we see that the inclusion L ⊆ MA′ induces an isomorphism
L/mL

'
→MA′/mMA′ and Nakayama’s lemma implies that L = MA′ .

Fix π ∈ K with π p−1
= −p, then K ′ = K (π): This is obvious for p = 2

and for p 6= 2 it follows from local class field theory and the norm computation
NK ′

K (ζp − 1) = NK (π)
K (π) = p. Note that π ∈ A′ is a local uniformizer. Let K ′ur

denote the completion of the maximal unramified extension of K ′ inside K and
O⊆ K ′ur its ring of integers.

By [Fontaine 1977, Remarque on p. 218] and the fact that L = MA′ we see that
reduction induces an isomorphism

G(K )I
= G(K ′ur )= G(O)

'
→

{
φ ∈ HomDFp

(M,CWFp(πO/π2O)) |w′c ◦φA′ = 0
}

(1)

where DFp =Fp[F, V ] is the Dieudonné ring, CW denotes Witt covectors [Fontaine
1977, Chapter II, Section 1],

w′c : CWFp(πO/π2O)A′→ K ′ur/π2O

is as in [Fontaine 1977, Chapter IV, Section 3] and φA′ :MA′→CWFp(πO/π2O)A′ is
induced by φ. By construction ofw′c we have for φ∈HomDFp

(M,CWFp(πO/π2O))

a commutative diagram

MA′
φA′ // CWFp(πO/π2O)A′

w′c // K ′ur/π2O

CWFp(πO/π2O)⊗A A′

ιCWFp (πO/π2O)

OOOO
w̃

55kkkkkkkkkkkkkkk
CWFp(πO/π2O)oo

wc

OO

M ⊗A A′

ιM '

OO

φ⊗1
66lllllllllllll

M

φ

55kkkkkkkkkkkkkkkkkkoo
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in which

wc((x−n)n≥0)=

∞∑
n=0

p−n x̂ pn

−n

with x̂−n ∈ πO lifting x−n , w̃ = wc
⊗ 1 is the A′-linear extension of wc and

ιCWFp (πO/π2O) is surjective by [Fontaine 1977, Chapter IV, Proposition 2.5] since
CWFp(πO/π2O) is V -divisible. It is easy to see that we have

w′c ◦φA′ = 0⇔ wc
◦φ = 0. (2)

Combining (2) and (1) we obtain an isomorphism

G(K )I '
→ {φ ∈ HomDFp

(M,CWFp(πO/π2O)) |wc
◦φ = 0}. (3)

Now we need to study ker(wc). We will use the isomorphism of Fp-vector spaces

πO/π2O
:π
→ O/πO' Fp (4)

to describe elements of CWFp(πO/π2O) as covectors (y−n)n≥0 with y−n ∈ Fp. Of
course, since (4) is not multiplicative, some care has to be taken with this. We
denote by σ : Fp→ Fp , σ (x)= x p the absolute Frobenius and claim that

ker(wc)= {(y−n)n | y−n ∈ Fp , y−1 = yσ
−1

0 }. (5)

To see this, let (x−n)n ∈ CWFp(πO/π2O) be given, choose x̂−n ∈ πO lifting x−n

and write x̂−n = π ŷ−n with ŷ−n ∈ O. Then we compute in K ′ur/π2O:

wc((x−n))=

∞∑
n=0

p−n(π ŷ−n)
pn (π p−1

=−p)
=

∞∑
n=0

(−1)nπ pn
−n(p−1) ŷ pn

−n = π(ŷ0− ŷ p
−1),

using that pn
− n(p− 1)≥ 2 for all n ≥ 2. Now (5) is obvious.

Next, we claim that the subset

CWFp(πO/π2O)⊇M := {(yσ
−n

0 )n≥0 | y0 ∈ Fp} (6)

is a DFp -submodule. First note that F = 0 on CWFp(πO/π2O) so we will consider
it as a DFp/F = Fp[V ]-module in the following. Since all products in πO/π2O are
zero we have

(x−n)+ (y−n)= (x−n + y−n)

in CWFp(πO/π2O) and M is indeed a Fp-submodule, visibly stable under V .
We claim that the inclusion (6) induces an isomorphism

HomFp[V ](M,M)
'
→ {φ ∈ HomDFp

(M,CWFp(πO/π2O)) |wc
◦φ = 0}. (7)
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Since M⊆ ker(wc) by (5) we only need to see that an Fp[V ]-linear morphism

φ : M→ CWFp(πO/π2O)

with φ(M) ⊆ ker(wc) factors through M: For every m ∈ M and n ≥ 0 we have,
writing φ(m)=: (y−n) with y−n ∈ Fp,

0= wc(φ(V nm))= wc(V n(φ(m)))= wc((. . . , y−n−1, y−n)),

thus y−n−1 = yσ
−1

−n by (5) and as this is true for every n ≥ 0 we get φ(m) ∈M.
To proceed, note that

M→ Fp , (yσ
−n

0 ) 7→ y0 (8)

is an isomorphism of Fp[V ]-modules if one defines V (α) := ασ
−1

for α ∈ Fp. De-
noting by 8 : G(K )I '

→HomFp[V ](M, Fp) the isomorphism obtained by combining
(3), (7) and (8), by construction we have a commutative diagram

G(K )I 8 //

τ

��

HomFp[V ](M, Fp)

Hom(V,Fp)

��

G(K )I 8 // HomFp[V ](M, Fp).

(9)

Let ei (resp. φi ) (1≤ i ≤n) be an Fp-basis of M (resp. HomFp[V ](M, Fp)) and define
V ei =:

∑
j ai j e j , hence A := (ai j )∈Gln(Fp), ψi :=Hom(V, Fp)(φi )=:

∑
j bi jφ j ,

hence B := (bi j ) ∈ Gln(Fp) and C := (φi (e j )) ∈ Gln(Fp). By definition, A is a
representing matrix of V : M→ M and by (9) B is a representing matrix for τ . So
we will be done if we can show that A and B are conjugate over Fp.

From the computation ψi (e j ) = φi (V e j ) =
∑

k a jkφi (ek) =
∑

k bikφk(e j ) we
obtain t A = C−1 BC . Now recall that over every field κ two square matrices with
coefficients in κ which are conjugate over an algebraic closure of κ are conjugate
over κ and, furthermore, that every square matrix with coefficient in κ is conjugate,
over κ , to its transpose. Hence A is indeed conjugate to B over Fp. �

Remark A.3. Inspecting the proof we see that for G/A′ connected with étale dual
(not necessarily annihilated by p) we have a commutative diagram

G(K )I 8

'

//

τ

��

HomFp[V ](M/F M, Fp)

Hom(V,Fp)

��

G(K )I 8

'

// HomFp[V ](M/F M, Fp).
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Proof of Proposition A.2. Define a finite Honda system over A′ by

M := Z/pnZ, 1 6= V ∈ 1+ p(Z/pnZ)⊆ (Z/pnZ)∗ = AutZp(M),
F := pV−1,

L := MA′ .

It is easy to see that this is indeed a finite Honda system. For the corresponding
group G/A′ we have by Remark A.3

G(K )I
' HomFp[V ](M/F M, Fp)= FV=1

p = Fp

with trivial geometric Frobenius. Note that V is the identity on M/F M , but V 6= 1.
�
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