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On the tangent space of the deformation
functor of curves with automorphisms

Aristides Kontogeorgis

We provide a method to compute the dimension of the tangent space to the
global infinitesimal deformation functor of a curve together with a subgroup
of the group of automorphisms. The computational techniques we developed
are applied to several examples including Fermat curves, p-cyclic covers of the
affine line and to Lehr–Matignon curves.

The aim of this paper is the study of equivariant equicharacteristic infinitesimal
deformations of a curve X of genus g, admitting a group of automorphisms. This
paper is the result of my attempt to understand the work of J. Bertin and A. Mézard
[2000] and of G. Cornelissen and F. Kato [2003].

Let X be a smooth projective algebraic curve, defined over an algebraically
closed field of characteristic p ≥ 0. The infinitesimal deformations of the curve
X , without considering compatibility with the group action, correspond to direc-
tions on the vector space H 1(X,TX ) which constitutes the tangent space to the
deformation functor of the curve X [Harris and Morrison 1998]. All elements in
H 1(X,TX ) give rise to unobstructed deformations, since X is one-dimensional
and the second cohomology vanishes.

In the study of deformations together with the action of a subgroup of the au-
tomorphism group, a new deformation functor can be defined. The tangent space
of this functor is given by Grothendieck’s [1957] equivariant cohomology group
H 1(X,G,TX ); see [Bertin and Mézard 2000, 3.1]. In this case the wild ramifi-
cation points contribute to the dimension of the tangent space of the deformation
functor and also pose several lifting obstructions, related to the theory of deforma-
tions of Galois representations.

Bertin and Ménard [2000], after proving a local-global principle, focused on
infinitesimal deformations in the case G is cyclic of order p and considered liftings
to characteristic zero, while Cornelissen and Kato [2003] considered the case of
deformations of ordinary curves without putting any other condition on the au-
tomorphism group. The ramification groups of automorphism groups acting on

MSC2000: primary 14H37; secondary 14D15, 14B10.
Keywords: automorphisms, curves, deformations.
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120 Aristides Kontogeorgis

ordinary curves have a special ramification filtration, i.e., the p-part of every ram-
ification group is an elementary abelian group, and this makes the computation
possible, since elementary abelian group extensions are given explicitly in terms
of Artin–Schreier extensions.

In this paper we consider an arbitrary curve X with automorphism group G.
By the theory of Galois groups of local fields, the ramification group at every
wild ramified point can break to a sequence of extensions of elementary abelian
groups [Serre 1979, IV]. We will use this decomposition together with the spectral
sequence of Lyndon–Hochschild–Serre in order to reduce the computation to one
involving elementary abelian groups.

We are working over an algebraically closed field of positive characterstic and
for the sake of simplicity we assume that p ≥ 5.

The dimension of the tangent space of the deformation functor depends on the
group structure of the extensions that appear in the decomposition series of the
ramification groups at wild ramified points. We are able to give lower and upper
bounds of the dimension of the tangent space of the deformation functor.

In particular, if the decomposition group G P at a wild ramified point P is the
semidirect product of an elementary abelian group with a cyclic group such that
there is only a lower jump at the i-th position in the ramification filtration, then we
are able to compute exactly the dimension of the local contribution H 1(G P ,TO)

(Proposition 2.9 and Section 3.1).
We begin our exposition in Section 1 by surveying some of the known defor-

mation theory. Next we proceed to the most difficult task, namely the computation
of the tangent space of the local deformation functor, by employing the low terms
sequence stemming from the Lyndon–Hochschild–Serre spectral sequence.

The dimension of equivariant deformations that are locally trivial, i.e., the di-
mension of H 1(X/G, πG

∗
(TX )) is computed in Section 3. The computational

techniques we developed are applied in the case of Fermat curves that are known
to have large automorphism group, in the case of p-covers of P1(k) and in the
case of Lehr–Matignon curves. Moreover, we are able to recover the results of
[Cornelissen and Kato 2003] concerning deformations of ordinary curves. Finally,
we try to compare our result with the results of R. Pries [2002; 2004] concerning
the computation of unobstructed deformations of wild ramified actions on curves.

1. Some deformation theory

There is nothing original in this section, but for the sake of completeness, we
present some of the tools we will need for our study. This part is essentially a
review of [Bertin and Mézard 2000; Cornelissen and Kato 2003; Mazur 1997].
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Let k be an algebraic closed field of characteristic p ≥ 0. We consider the
category C of local Artin k-algebras with residue field k.

Let X be a nonsingular projective curve defined over the field k, and let G be
a fixed subgroup of the automorphism group of X . We will denote by (X,G) the
couple of the curve X together with the group G.

A deformation of the couple (X,G) over the local Artin ring A is a proper,
smooth family of curves

X→ Spec(A)

parametrized by the base scheme Spec(A), together with a group homomorphism
G → AutA(X) such that there is a G-equivariant isomorphism φ from the fibre
over the closed point of A to the original curve X :

φ : X⊗Spec(A) Spec(k)→ X.

Two deformations X1,X2 are considered to be equivalent if there is a G-equivariant
isomorphism ψ , making the diagram

X1
ψ //

##FF
FF

FF
FF

F X2

{{xx
xx

xx
xx

x

Spec A

commutative. The global deformation functor is defined as

Dgl : C→ Sets,A 7→


Equivalence classes
of deformations of
couples (X,G) over A


Let D be a functor such that D(k) is a single element. If k[ε] is the ring of dual
numbers, then the Zariski tangent space tD of the functor is defined by tD :=

D(k[ε]). If the functor D satisfies the “Tangent Space Hypothesis”, i.e., when the
mapping

h : D(k[ε]×k k[ε])→ D(k[ε])× D(k[ε])

is an isomorphism, then the D(k[ε]) admits the structure of a k-vector space [Mazur
1997, p. 272]. The tangent space hypothesis is contained in the hypothesis (H3)
of Schlessinger, which holds for all the functors in this paper, since all the func-
tors admit versal deformation rings [Schlessinger 1968; Bertin and Mézard 2000,
Section 2].

The tangent space tDgl := Dgl(k[ε]) of the global deformation functor is ex-
pressed in terms of Grothendieck’s equivariant cohomology [1957], which com-
bines the construction of group cohomology and sheaf cohomology.
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We recall quickly the definition of equivariant cohomology theory: We consider
the covering map π : X→Y = X/G. For every sheaf F on X we denote by πG

∗
(F)

the sheaf
V 7→ 0(π−1(V ), F)G, where V is an open set of Y.

The category of (G,OX )-modules is the category of OX -modules with an additional
G-module structure. We can define two left exact functors from the category of
(G,OX )-modules, namely

πG
∗

and 0G(X, · ),

where 0G(X, F)= 0(X, F)G . The derived functors RqπG
∗
(X, · ) of the first func-

tor are sheaves of modules on Y , and the derived functors of the second are groups
Hq(X,G, F)= Rq0G(X, F).

Theorem 1.1 [Bertin and Mézard 2000]. Let TX be the tangent sheaf on the
curve X. The tangent space tDgl to the global deformation functor, is given in
terms of equivariant cohomology as tDgl = H 1(X,G,TX ). Moreover the following
sequence is exact:

0→ H 1(X/G, πG
∗
(TX ))→ H 1(X,G,TX )→ H 0(X/G, R1πG

∗
(TX ))→ 0. (1)

For a local ring k[[t]] we define the local tangent space TO, as the k[[t]]-module
of k-derivations. The module TO := k[[t]] d/dt , where δ = d/dt is the derivation
such that δ(t) = 1. If G is a subgroup of Aut(k[[t]]), then G acts on TO in terms
of the adjoint representation. Moreover by [Cornelissen and Kato 2003] there is a
bijection

Dρ(k[ε])
∼=
→ H 1(G,TO).

In order to describe the tangent space of the local deformation space we will com-
pute first the space of tangential liftings, i.e., the space H 1(G,TO).

This problem was solved in [Bertin and Mézard 2000] when G is a cyclic group
of order p, and in [Cornelissen and Kato 2003] when the original curve is ordinary.

We will apply the classification of groups that can appear as Galois groups of
local fields in order to reduce the problem to elementary abelian group case.

1.1. Splitting the branch locus. Let P be a wild ramified point on the special
fibre X , and let σ ∈ G j (P) where G j (P) denotes the j-ramification group at P .
Assume that we can deform the special fibre to a deformation X→ A, where A is a
complete local discrete valued ring that is a k-algebra. Denote by m A the maximal
ideal of A and assume that A/m A = k. Moreover assume that σ acts fibrewise on
X. We will follow [Green and Matignon 1998] in expressing the expansion

σ(T )− T = f j (T )u(T ),
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where f j (T )=
∑ j

ν=0 ai T i (ai ∈m A for ν= 0, . . . , j−1, a j = 1) is a distinguished
Weierstrass polynomial of degree j [Bourbaki 1989, VII, 8, Proposition 6] and
u(T ) is a unit of A[[T ]]. The reduction of the polynomial f j modulo m A gives the
automorphism σ on G j (P) but σ when lifted on X has in general more than one
fixed points, since f j (T ) might be a reducible polynomial. If f j (T ), gives rise to
only one horizontal branch divisor then we say that the corresponding deformation
does not split the branch locus.

Moreover, if we reduce X×A Spec A/m2
A we obtain an infinitesimal extension

that gives rise to a cohomology class in H 1(G(P),TO) by [Cornelissen and Kato
2003, Proposition 2.3].

On the other hand cohomology classes in H 1(X/G, πG
∗
(TX )) induce trivial

deformations on formal neighbourhoods of the branch point P [Bertin and Mézard
2000, 3.3.1] and do not split the branch points. In the special case of ordinary
curves, the distinction of deformations that do or do not split the branch points
does not occur since the polynomials f j are of degree 1.

1.2. Description of the ramification group. The finite groups that appear as Ga-
lois groups of a local field k((t)), where k is algebraically closed of characteristic
p are known [Serre 1979].

Let L/K be a Galois extension of a local field K with Galois group G. We
consider the ramification filtration of G,

G = G0 ⊃ G1 ⊇ G2 ⊇ · · · ⊇ Gn ⊃ Gn+1 = {1}. (2)

The quotient G0/G1 is a cyclic group of order prime to the characteristic, G1 is
p-group and for i ≥ 1 the quotients Gi/Gi+1 are elementary abelian p-groups. If
a curve is ordinary, we know by [Nakajima 1987] that the ramification filtration is
short, i.e., G2 = {1}, and this gives that G1 is an elementary abelian group.

We are interested in the ramification filtrations of the decomposition groups
acting on the completed local field at wild ramified points. To study this question,
we introduce some notation: Consider the set of jumps of the ramification filtration
1= t f < t f−1 < · · ·< t1 = n, such that

G1 = . . .= G t f > G t f+1 = . . .= G t f−1 > G t f−1+1 ≥ . . .≥ G t1 = Gn > {1}, (3)

i.e., G ti > G ti+1. For this sequence it is known that tµ ≡ tν mod p for all µ, ν ∈
{1, . . . , f }; see [Serre 1979, Proposition 10, p. 70].

1.3. Lyndon–Hochschild–Serre spectral sequences. Hochschild and Serre [1953]
considered the following problem: Given the short exact sequence of groups

1→ H → G→ G/H → 1, (4)
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and a G-module A, how are the cohomology groups H i (G, A), H i (H, A) and
H i (G/H, AH ) related? They gave an answer to the above problem in terms of a
spectral sequence. For small values of i this spectral sequence gives us the low-
degree exact sequence

0−→ H 1(G/H, AH )
inf
−→ H 1(G, A)

res
−→ H 1(H, A)G/H

tg
−→ H 2(G/H, AH )

inf
−→ H 2(G, H), (5)

where res, tg, inf denote the restriction, transgression and inflation maps.

Lemma 1.2. Let H be a normal subgroup of G, and let A be a G-module. The
group G/H acts on the cohomology group H 1(H, A) in terms of the conjugation
action given explicitly on the level of 1-cocycles as follows: Let σ = σH ∈ G/H.
The cocycle

d : H → A

x 7→ d(x)

is sent by the conjugation action to the cocycle

dσ : H → A

x 7→ σd(σ−1xσ),

where σ ∈ G is a representative of σ .

Proof. This explicit description of the conjugation action on the level of cocycles
is given in Propostion 2-5-1 (p. 79) of [Weiss 1969]. The action is well defined by
Corollary 2-3-2 of the same reference. �

Our strategy is to use Equation (5) in order to reduce the problem of computation
of H 1(G,TO) to an easier computation involving only elementary abelian groups.

Lemma 1.3. Let A be a k-module, where k is a field of characteristic p. For the
cohomology groups we have H 1(G0, A)= H 1(G1, A)G0/G1 .

Proof. Consider the short exact sequence

0→ G1→ G0→ G0/G1→ 0.

Equation (5) implies the sequence

0→ H 1(G0/G1, AG1)→ H 1(G0, A)→ H 1(G1, A)G0/G1 → H 2(G0/G1, AG1).

But the order of G0/G1 is not divisible by p, and is an invertible element in the
k-module A. Thus the groups H 1(G0/G1, AG1) and H 2(G0/G1, AG1) vanish and
the result follows from [Weibel 1994, Corollary 6.59]. �
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Lemma 1.4. If G = Gi , H = Gi+1 are groups in the ramification filtration of the
decomposition group at some wild ramified point, and i ≥ 1 then the conjugation
action of G on H is trivial.

Proof. Let L/K denote a wild ramified extension of local fields with Galois group
G, let OL denote the ring of integers of L and let mL be the maximal ideal of OL .
Moreover we will denote by L∗ the group of units of the field L . We can define
[Serre 1979, Proposition 7, p. 67; Proposition 9, p. 69] injections

θ0 :
G0

G1
→ L∗ and θi :

Gi

Gi+1
→

mi
L

mi+1
L

,

with the property

θi (στσ
−1)= θ0(σ )

iθi (τ ) for all σ ∈ G0 and τ ∈ Gi/Gi+1.

If σ ∈ G t j ⊂ G1 then θ0(σ ) = 1 and since θi is an injection, the above equation
implies that στσ−1

= τ . Therefore, the conjugation action of an element τ in
Gi/Gi+1 on G j is trivial, and the result follows. �

1.4. Description of the transgression map. In this section we will try to determine
the kernel of the transgression map. The definition of the transgression map given
in (5) is not suitable for computations. We will give an alternative description,
following [Neukirch et al. 2000].

Let A be a k-algebra that is acted on by G so that the G action is compatible
with the operations on A. Let A be the set Map(G, A) of set-theoretic maps of
the finite group G to the G-module A. The set A can be seen as a G-module
by defining the action f g(τ ) = g f (g−1τ) for all g, τ ∈ G. We observe that A
is projective. The submodule A can be seen as the subset of constant functions.
Notice that the induced action of G on the submodule A seen as the submodule of
constant functions of A coincides with the initial action of G on A. We consider
the short exact sequence of G-modules

0→ A→ A→ A1→ 0. (6)

Let H C G. By applying the functor of H -invariants to the short exact sequence
(6) we obtain the long exact sequence

0→ AH
→ A

H
→ AH

1
ψ
→ H 1(H, A)→ H 1(H, A)= 0, (7)

where the last cohomology group is zero since A is projective.
We split this four-term sequence into two short exact sequences

0→ AH
→ A

H
→ B→ 0,

0→ B→ AH
1

ψ
−→ H 1(H, A)→ 0, (8)
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where we have defined B = kerψ . Now we apply the G/H -invariant functor to
these two short exact sequences in order to obtain

H i (G/H, B)= H i+1(G/H, AH ),

0→ BG/H
→ AG

1 → H 1(H, A)G/H δ
→ H 1(G/H, B)

φ
→ H 1(G/H, AH

1 ) · · · (9)

It can be proved (see [Neukirch et al. 2000, Exercise 3, p. 71]) that the composition

H 1(H, A)G/H δ
→ H 1(G/H, B)

∼=
→ H 2(G/H, AH )

is the transgression map.

Lemma 1.5. Assume that G is an abelian group. If the quotient G/H is a cyclic
group isomorphic to Z/pZ and the group G can be written as a direct sum G =
G/H × H then the transgression map is identically zero.

Proof. Notice that if AH
= A then this lemma can be proved by the explicit form

of the transgression map as a cup product; see [Neukirch et al. 2000, Exercise 2,
p. 71; Hochschild and Serre 1953].

The study of the kernel of the transgression is reduced to the study of the kernel
of δ in (9). We will prove that the map φ in (9) is 1-1, and then the desired result
will follow by exactness.

Let σ be a generator of the cyclic group G/H = Z/pZ. We denote by NG/H

the norm map A→ A, sending

A 3 a 7→
∑

g∈G/H

ga =
p−1∑
ν=0

σ νa.

By IG/H A we denote the submodule (σ−1)A and by NG/H A={a∈ A :NG/H a=0}.
Since G/H is a cyclic group we know that

H 1(G/H, B)=
NG/H B
IG/H B

and H 1(G/H, AH
1 )=

NG/H AH
1

IG/H AH
1
; (10)

see [Serre 1979, VIII 4] and [Weibel 1994, Theorem 6.2.2]. Observe that the map
φ defined in (9) can be given in terms of (10) as the map sending

b mod IG/H B 7→ b mod IG/H AH
1 .

The map φ is well defined since IG/H B ⊂ IG/H AH
1 . The kernel of φ is computed:

kerφ =
NG/H B ∩ IG/H AH

1

IG/H B
.

The short exact sequence in (8) is a short exact sequence of k[G/H ]-modules. This
sequence seen as a short exact sequence of k-vector spaces is split, i.e., there is a
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section s : H 1(H, A)→ AH
1 so that ψ ◦ s = IdH1(H,A). This section map is only a

k-linear map and not apriori compatible with the G/H -action.
Let us study the map ψ more carefully. An element x ∈ AH

1 is a class a mod A
where a ∈ A, and since x ∈ AH

1 we have

ah
− a = ha− a = c[h] ∈ A.

It is a standard argument that c[h] is an 1-cocycle c[h] : H → A and the class
of this cocycle is defined to be ψ(x). Since the image of c[h] seen as a cocycle
c[h] : H → A is trivial, c[h] is a coboundary i.e. we can select ac ∈ A so that

c[h] = ah
c − ac. (11)

Obviously ac mod A is H -invariant and we define one section as

s(c[h])= ac mod A.

We have assumed that the group G can be written as G = H ×G/H therefore we
can write the functions ac as functions of two arguments

ac : H ×G/H → A

(h, g) 7→ ac(h, g)

Notice that (11) gives us that the for every h, h1 ∈ H the quantity ac(h1, g1)
h
−

ac(h1, g1) does not depend on g1 ∈ G/H . Using, this independence of ac on the
second argument we can compute that

s(c[h]σ )= s(c[h])σ ,

i.e., the function s is compatible with the G/H -action. But every element a ∈ AH
1

can be written as a = ba+ s(ψ(a)), where ba := a− sψ(a) ∈ B, since ψ(ba)= 0.
An arbitrary element in IG/H AH

1 is therefore written as

(σ − 1)a = (σ − 1)ba + s(σ ·ψ(a)−ψ(a)). (12)

If (σ − 1)a ∈NG/H B ∩ IG/H AH
1 we have, since Im(s)∩ B = {0},

s(σ ·ψ(a)−ψ(a))= 0 if and only if (σ − 1)a = (σ − 1)ba ∈ IG/H B.

Therefore, φ is an injection and the desired result follows. �

1.5. The G-module structure of TO. Our aim is to compute the first order in-
finitesimal deformations, i.e., the tangent space Dρ(k[ε]) to the infinitesimal de-
formation functor Dρ [Mazur 1997, p. 272]. This space can be identified with
H 1(G,TO). The conjugation action on TO is defined as follows:(

f (t)
d
dt

)σ
= f (t)σσ

d
dt
σ−1
= f (t)σσ

(dσ−1(t)
dt

) d
dt
, (13)
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where dσ−1/dt denotes the operator sending an element f (t) to (d/dt) f σ
−1
(t),

i.e. we first compute the action of σ−1 on f and then we take the derivative with re-
spect to t . We will approach the cohomology group H 1(G,TO) using the filtration
sequence given in (2) and the low degree terms of the Lyndon–Hochschild–Serre
spectral sequence.

The study of the cohomology group H 1(G,TO) can be reduced to the study
of the cohomology groups H 1(V,TO), where V is an elementary abelian group.
These groups can be written as a sequence of Artin–Schreier extensions that have
the advantage of the extension and the corresponding actions having a relatively
simple explicit form:

Lemma 1.6. Let L be a an elementary abelian p-extension of the local field K :=
k((x)), with Galois group G =

⊕s
ν=1 Z/pZ, such that the maximal ideal of k[[x]]

is ramified completely and the ramification filtration has no intermediate jumps i.e.
is given by G = G0 = · · · = Gn > {1} = Gn+1. Then the extension L is given by
K (y1, . . . , ys) where 1/y p

i − 1/yi = fi (x), where fi ∈ k((x)) with a pole at the
maximal ideal of order n.

Proof. The desired result follows by the characterization of abelian p-extensions
in terms of Witt vectors [Jacobson 1989, 8.11]. Notice that the exponent of the
group G is p and we have to consider the image of W1(k((x)) = k((x)), where
Wλ( · ) denotes the Witt ring of order λ as is defined in [Jacobson 1989, 8.26]. �

Lemma 1.7. Every Z/pZ-extension L = K (y) of the local field K := k((x)),
with Galois group G = Z/pZ, such that the maximal ideal of k[[x]] is ramified
completely, is given in terms of an equation f (1/y)= 1/xn , where f (z) = z p

− z
is in k[z]. The Galois group of the above extension can be identified with the Fp-
vector space V of the roots of the polynomial f , and the correspondence is given
by

σv : y→
y

1+ vy
for v ∈ V . (14)

Moreover, we can select a uniformization parameter of the local field L such that
the automorphism σv acts on t as follows:

σv(t)=
t

(1+ vtn)1/n .

Finally, the ramification filtration is given by G = G0 = · · · = Gn > {1} = Gn+1,

and n 6≡ 0 mod p.

Proof. By the characterization of abelian extensions in terms of Witt vectors we
have f (1/y)=1/xn , where f (z)= z p

−z∈k[z] (see also [Stichtenoth 1993, A.13]).
Moreover the Galois group can be identified with the one dimensional Fp-vector
space V of roots of f , sending σv : y→ y/(1+ vy).
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The filtration of the ramification group G is given by G ∼= G0 = G1 = · · ·Gn,

Gi ={1} for i ≥n+1 [Stichtenoth 1993, Proposition III.7.10, p. 117]. Computation
yields

xn
= ((1/y)p

− 1/y)−1
=

y p

1− y p−1 , (15)

hence vL(y)= n, i.e., y = εtn , where ε is a unit in OL and t is the uniformization
parameter in OL . Moreover, the polynomial f can be selected so that p does not
divide n; see [Stichtenoth 1993, III. 7.8]. Since k is an algebraically closed field,
Hensel’s lemma implies that every unit in OL is an n-th power, therefore we might
select the uniformization parameter t such that y= tn , and the desired result follows
by (14). �

Lemma 1.8. Let H =
⊕s

ν=1 Z/pZ be an elementary abelian group with ramifica-
tion filtration

H = H0 = · · · = Hn > Hn+1 = {1} and Hκ = {1} for κ ≥ n+ 1.

The upper ramification filtration in this case coincides with the lower ramification
filtration.

Proof. Let m be a natural number. We define the function φ : [0,∞]→Q so that
for m ≤ u < m+ 1,

φ(u)=
1
|H0|

m∑
i=1

|Hi | + (u−m)
|Hm+1|

|H0|
,

and since Hn+1 = {1} we compute

φ(u)=
{

u if m+ 1≤ n,
n+ (u− n− 1)/|H0| if m+ 1> n.

The inverse function ψ is computed by

ψ(u)=
{

u if u ≤ n,
|H0|u+ (−n|H0| + n+ 1) if u > n.

Therefore, by the definition of the upper ramification filtration we have H i
=

Hψ(i) = Hi for i ≤ n, while for u > n we compute ψ(u)= |H0|u−n|H0|+n ≥ n,
thus H u

= Hψ(u) = {1}. �

Lemma 1.9. Let a ∈Q. Then for every prime p and every ` ∈ N we have⌊⌊ a
p`

⌋
/p

⌋
=

⌊ a
p`+1

⌋
.

Proof. This result follows by expressing a as a Laurent p-adic expansion in p,
a =

∑
−1
ν=λ aν pν +

∑
∞

ν=0 aν pν and by noticing that ba/p`c is the power series∑
∞

ν=0 aν+` pν . �
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The arbitrary σv ∈ Gal(L/K ) sends tn
7→ tn/(1+ vtn), so by computation

dσv(t)
dt
=

1
(1+ vtn)(n+1)/n .

Lemma 1.10. We consider an Artin–Schreier extension L/k((x)) and we keep the
notation from Lemma 1.7. Let σv ∈ Gal(L/K ). The corresponding action on the
tangent space TO is given by(

f (t)
d
dt

)σv
= f (t)σv (1+ vtn)(n+1)/n d

dt
.

Proof. We have
dσ−1

v (t)
dt

=
dσ−v(t)

dt
=

1
(1− vtn)(n+1)/n

and by computation

σv

(dσ−v(t)
dt

)
= (1+ vtn)(n+1)/n. �

Letting O= OL , we will now compute the space of “local modular forms”

T
G ti
O = { f (t) ∈ O : f (t)σv = f (t)(1+ vtn)−(n+1)/n for all σv ∈ G ti },

for i ≥ 1. First we do the computation for a cyclic p-group.

Lemma 1.11. Let L/k((x)) be an Artin–Schreier extension with Galois group
H = Z/pZ and ramification filtration

H0 = H1 = . . .= Hn > {1}.

Let t be the uniformizer of L and denote by TO the set of elements of the form
f (t) d/dt , f (t) ∈ k[[t]], equipped with the conjugation action defined in (13). The
space TG

O is G-equivariantly isomorphic to the OK -module consisting of elements
of the form

f (x)xn+1−b(n+1)/pc d
dx
, f (x) ∈ OK .

Proof. Using the description of the action in Lemma 1.10 we see that TO is iso-
morphic to the space of Laurent polynomials of the form { f (t)/tn+1

: f (t) ∈ O},
and the isomorphism is compatible with the G-action. Indeed, we observe first that
tn+1 d/dt is a G-invariant element in TO. Then, for every f (t) d/dt ∈TO, the map
sending

f (t)
d
dt
=

f (t)
tn+1 tn+1 d

dt
7→

f (t)
tn+1 ,

is a G-equivariant isomorphism.



The deformation functor of curves with automorphisms 131

We have

{ f (t)/tn+1, f (t) ∈ O}G = { f (t)/tn+1, f (t) ∈ O} ∩ k((x)),

so the G-invariant space consists of elements g(x) in K such that g seen as an
element in L belongs to TO, i.e., vL(g) ≥−(n+ 1). Consider the set of functions
g(x) ∈ K such that vL(g)= pvK (g)≥−(n+ 1), i.e., vK (g)≥−(n+ 1)/p. Since
vK (g) is an integer the last inequality is equivalent to vK (g)≥−b(n+ 1)/pc.

Now a simple computation with the defining equation of the Galois extension
L/K shows that

tn+1 d
dt
= xn+1 d

dx
,

and the desired result follows. �

Similarly one can prove the following more general lemma:

Lemma 1.12. We are using the notation of Lemma 1.11. Let A be the fractional
ideal k[[t]]ta d/dt , where a is a fixed integer. The G-module A is G-equivariantly
isomorphic to ta−(n+1)k[[t]]. Moreover, the space AG is the space of elements of
the form

f (x)xn+1−b(n+1−a)/pc d
dx
.

Next we proceed to the more difficult case of elementary abelian p-groups.

Lemma 1.13. Let G =
⊕s

i=1 Z/pZ be the Galois group of the fully ramified ele-
mentary abelian extension L/k((x)) and assume that the ramification filtration is
of the form

G = G0 = G1 = · · · = Gn > {1}.

Let t denote the uniformizer of L. Denote by TO the set of elements of the form
f (t) d/dt , f (t) ∈ k[[t]], equipped with the conjugation action defined in (13). The
space TG

O is G-equivariantly isomorphic to the OK -module consisted of elements
of the form

f (x)xn+1−bn+1/ps
c

d
dx
, f (x) ∈ OK ,

where ps
= |G|.

Proof. We will break the extension L/k((x)) to a sequence of extensions L = L0>

L1 > . . . Ls = k((x)), such that L i/L i+1 is a cyclic p-extension. Denote by πi the
uniformizer of L i . According to Lemma 1.8 the ramification extension L i/L i+1 is
of conductor n, i.e. the conditions of Lemma 1.11 are satisfied. We will prove the
result inductively. For the extension L/L1 the statement is true by Lemma 1.11.
Assume that the lemma is true for L/L i so a k[[πi ]] basis of

T
⊕i

ν=1 Z/pZ

O
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is given by the element πn+1−bn+1/pi
c

i d/dπi . Then Lemma 1.11 implies that a
k[[πi+1]] basis for

T
⊕i+1

ν=1 Z/pZ

O =
(
T

⊕i
ν=1 Z/pZ

O

)Z/pZ

is given by the element

π
n+1−

⌊(
n+1−(n+1−bn+1/pi

c)
)
/p

⌋
i+1

d
dπi+1

.

The desired result follows by Lemma 1.9. �

Similarly one can prove the following more general lemma:

Lemma 1.14. We are using the notation of Lemma 1.13. Let A be the fractional
ideal k[[t]]ta d/dt , where a is a fixed integer. The G-module A is G-equivariantly
isomorphic to ta−(n+1)k[[t]]. The space AG is the space of elements of the form

f (x)xn+1−b(n+1−a)/ps
c

d
dx
.

By induction, this computation can be extended to yield:

Proposition 1.15. Let L = k((t)) be a local field acted on by a Galois p-group G
with ramification subgroups

G1 = . . .= G t f > G t f+1 = . . .= G t f−1 > G t f−1+1 ≥ . . .≥ G t1 = Gn > G t0 = {1}.

We consider the tower of local fields

LG0 = LG1 ⊆ LGi ⊆ . . . L{1} = L .

Let us denote by πi a local uniformizer for the field LGi , i.e. LGi = k((πi )). The
extension LG ti+1/LG ti is Galois with Galois group the elementary abelian group
H(i) := G ti /G ti+1. The ramification filtration of the group H(i) is given by

H(i)0 = H(i)1 = . . .= H(i)ti > H(i)ti+1 = {1}

and the conductor of the extension is ti . Let O be the ring of integers of L. The
invariant space T

G ti
O is the OG ti -module generated by

π
µi
i

d
dπi

, (16)

where µ0 = 0 and µi = ti + 1−
⌊
−µi−1+ ti + 1
|G ti |/|G ti−1 |

⌋
.

Proof. The first statements are clear from elementary Galois theory. What needs
a proof is the formula for the dimensions µi . For i = 1, the group G t1 = Gn
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is elementary abelian and Lemma 1.13 applies, under the assumption G t0 = {1}.
Hence

T
G t1
O = π

n+1−
⌊

n+1
|G t1 |/|G t0 |

⌋
1

d
dπ1

.

Assume that the formula is correct for i , so

T
G ti
O = π

µi
d

dπi
.

Then Lemma 1.14 implies that

T
G ti+1
O =

(
T

G ti
O

)G ti+1/G ti = π
µi+1
i+1

d
dπi+1

,

where µi+1 = ni+1+ 1−
⌊
(ni+1+ 1−µi )/|G ti+1/G ti |

⌋
and the inductive proof is

complete. �

Let k((t))/k((x)) be a cyclic extension of local fields of order p, such that the
maximal ideal xk[[x]] is ramified completely. For the ramification groups Gi we
have

Z/pZ= G = G0 = · · · = Gn > Gn+1 = {1}.

Hence, the different exponent is computed d = (n + 1)(p − 1). Let E = tak[[t]]
be a fractional ideal of k((t)). Let N (E) denote the images of elements of E
under the norm map corresponding to the group Z/pZ. It is known that N (E) =
xb(d+a)/pck[[x]], and E ∩ k[[x]] = xda/pek[[x]]. The cohomology of cyclic groups
is 2-periodic and by [Bertin and Mézard 2000, Proposition 4.1.1] we have

dimk H 1(G, E)= dimk H 2(G, E)= E∩k[[x]]
N (E)

=

⌊d+a
p

⌋
−

⌈ a
p

⌉
. (17)

Remark 1.16. The proposition just quoted actually contains the following formula
instead of (17):

dimk H 1(G, k[[x]] d
dx
)=

⌊2d
p

⌋
−

⌈d
p

⌉
.

But k[[x]] d
dx
∼= x−n−1k[[x]], and d = (n+ 1)(p− 1); thus⌊

2d
p

⌋
−

⌈
d
p

⌉
=

⌊
d+(n+1)p−n−1

p

⌋
−

⌈
(n+1)p−n−1

p

⌉
=

⌊
d−n−1

p

⌋
−

⌈
−n−1

p

⌉
,

and the two formulas coincide.
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Corollary 1.17. Let G be an abelian group that can be written as a direct product
G = H1 × H2 of groups H1, H2, and suppose that H2 = Z/pZ. The following
sequence is exact:

0→ H 1(H2, AH1)→ H 1(H1× H2, A)→ H 1(H1, A)H2 → 0

Proof. The group H2 is cyclic of order p so the transgression map is identically
zero by Lemma 1.5 and the desired result follows. �

Remark 1.18. It seems that the result of J. Bertin and A. Mézard, solves the
problem of determining the dimension of the k-vector spaces H 1(Z/pZ, A) for
fractional ideals of k[[x]]. But in what follows we have to compute the G/H -
invariants of the above cohomology groups, therefore an explicit description of
these groups and of the G/H -action is needed.

2. Computing H1(Z/ pZ, A)

We will need the following

Lemma 2.1. Let a be a p-adic integer. The binomial coefficient
(a

i

)
is defined for

a, as usual, by (
a
i

)
=

a(a− 1) · (a− i + 1)
i !

and it is also a p-adic integer [Gouvêa 1997, Lemma 4.5.11]. Moreover, the bino-
mial series is defined

(1+ t)a =
∞∑

i=0

(
a
i

)
t i . (18)

Let i be an integer and let
∑
∞

µ=0 bµ pµ and
∑
∞

µ=0 aµ pµ be the p-adic expansions
of i and a respectively. The p-adic integer

(a
i

)
6≡ 0 mod p if and only if every

coefficient ai ≥ bi .

Proof. The only thing that needs a proof is the criterion of the vanishing of the
binomial coefficient mod p. If a is a rational integer, then this is a known theorem
due to Gauss [Eisenbud 1995, Proposition 15.21]. When a is a p-adic integer we
compare the coefficients mod p of the expression

(1+ t)a = (1+ t)
∑
∞

µ=0 aµ pµ
=

∞∏
µ=1

(1+ t pµ)aµ

and of the binomial expansion in (18) and the result follows. �

Lemma 2.2 (Nakayama map). Let G = Z/pZ be a cyclic group of order p and
let A = tak[[t]] be a fractional ideal of k[[t]]. Let x be a local uniformizer of the
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field k((t))Z/pZ. Let α ∈ H 2(G, A), and let u[σ, τ ] be any cocycle representing the
class α. The map

φ : H 2(G, A)→
xda/pek[[x]]

xb((n+1)(p−1)+a)/pck[[x]]

α 7→
∑
ρ∈G

u[ρ, τ ], τ ∈ G,
(19)

is well defined and is an isomorphism.

Proof. Let A be a G-module. Denote by Ĥ 0(G, A) the zeroth Tate cohomology.
We use Remark 4-5-7 and theorem 4-5-10 from [Weiss 1969] to prove that the map
H 2(G, A) 3 α 7→

∑
ρ∈G u[ρ, τ ] ∈ Ĥ 0(G, A) is well defined and an isomorphism.

This map was introduced by T. Nakayama [1936] and used to give an explicit
formula for the reciprocity law isomorphism for local class field theory.

We will express Ĥ 0(G, A) for G = Z/pZ with generator σ and A = tak[[t]].
We know that

Ĥ 0(Z/pZ, tak[[t]])=
ker(δ)

NZ/pZ(tak[[t]])
,

where δ = σ − 1 and NZ/pZ =
∑p−1

i=0 σ
i . We compute that

ker(δ)= tak[[t]] ∩ k((x))= xda/pek[[x]],

NZ/pZ(tak[[t]])= x
⌊a+(n+1)(p−1)

p
⌋

k[[x]].

This completes the proof. �

Let A = tak[[t]] be a fractional ideal of k[[t]]. We consider the fractional ideal
ta+n+1k[[t]], and we form the short exact sequence

0→ ta+n+1k[[t]] → tak[[t]] → M→ 0, (20)

where M is an (n+ 1)-dimensional k-vector space with basis{ 1
t−a ,

1
t−a−1 , . . . ,

1
t−a−n

}
.

Let σv be the automorphism σv(t) = t/(1+ vtn)1/n , where v ∈ Fp. The action
of σv on 1/tµ is given by

σv :
1
tµ
7→

(1+ vtn)µ/n

tµ
=

1
tµ

( ∞∑
ν=0

(
µ/n
ν

)
vν tνn

)
. (21)

The action of Z/pZ on the basis elements of M is given by

σv(1/tµ)=

{
1/tµ if − a < µ,

1/t−a
−

a
n
v1/t−a−n if µ=−a.

(22)
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We consider the long exact sequence obtained by applying the G-invariants functor
to (20):

0→ ta+n+1k[[t]]G→ tak[[t]]G→ MG δ1
→ H 1(G, ta+n+1k[[t]])

→ H 1(G, tak[[t]])→ H 1(G,M)
δ2
→ H 2(G, ta+n+1k[[t]])→ · · · (23)

Lemma 2.3. Assume that the group G = Z/pZ is generated by σv. The map δ1 in
(23) is onto.

Proof. By (22) we have

dimk MZ/pZ
=

{
n+ 1 if p | a
n if p - a.

Now, if x is a local uniformizer of the field k((t))Z/pZ, then( 1
t−a−(n+1) k[[t]]

)Z/pZ

= xd(a+(n+1))/pek[[x]] =
(1

x

)b(−a−(n+1))/pc
k[[x]],

and similarly ( 1
t−a k[[t]]

)Z/pZ

=

(1
x

)b−a/pc
k[[x]].

The image of δ1 has dimension dimk MZ/pZ
−b−a/pc+b−a− (n+ 1)/pc.More-

over for the dimension of H 1(Z/pZ, (1/(t−a−(n+1)))k[[t]]) we compute

h := dimk H 1(Z/pZ,
1

t−a−(n+1) k[[t]])= (n+ 1)−d−a/pe+ b−a− (n+ 1)/pc.

We now observe that dimk Im(δ1) = h by studying separately the cases p | a and
p - a. This finishes the proof. �

Proposition 2.4. The cohomology group H 1(Z/pZ,M) is isomorphic to

H 1(Z/pZ,M)∼=

{ ⊕
−a
i=−a−n Hom(Z/pZ, k) if p | a,⊕
−a
i=−a−n+1 Hom(Z/pZ, k) if p - a.

Proof. Assume that the arbitrary automorphism σv ∈G=Z/pZ is given by σv(t)=
t/(1+ vtn)1/n where v ∈ Fp. Let us write a cocycle d as

dσv =
−a∑

i=−a−n

αi (σv)
1
t i . (24)

By computation,

d(σv)σ
µ
v =

−a∑
i=−a−n

αi (σv)
1
t i +α−a(σv)

−a
n
µv

1
t−a−n .
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We apply the cocycle condition d(σv+σw)= d(σw)+ d(σv)σw for d(σv) given in
(24) and we obtain the following conditions on the coefficients αi (σv):

αi (σw + σv)= αi (σw)+αi (σv) for i 6= −a− n,

α−a−n(σw + σv)= α−a−n(σw)+α−a−n(σv)+α−a(σv)
−a
n
w.

The last equation allows us to compute the value of α−a−n on any power σ νv of the
generator σv of Z/pZ. Indeed, we have

α−a−n(σ
ν
v )= να−a−n(σv)+ (ν− 1)α−a(σv)

−a
n
v.

This proves that the function α−a−n depends only on the selection of α−a−n(σv)∈k.
We will now compute the coboundaries. Let b =

∑
−a
i=−a−n bi/t i , bi ∈ k be an

element in M . By computation,

bσv − b = b−a
−a
n
v

1
t−a−n .

For the computation of the cohomology groups we distinguish two cases:

• If p | a, the Z/pZ-action on M is trivial, so

H 1(Z/pZ,M)= Hom(Z/pZ,M)=
−a⊕

i=−a−n

Hom(Z/pZ, k).

The dimension of H 1(Z/pZ,M) in this case is n+ 1.

• If p - a, the coboundary kills the contribution of the cocycle on the 1/t−a−n

basis element and the cohomology group is

H 1(Z/pZ,M)= Hom(Z/pZ,M)=
−a⊕

i=−a−n+1

Hom(Z/pZ, k). �

Lemma 2.5. Assume that p ≥ 3. Let e = 1 if p - a and e = 0 if p | a. If n ≥ 2 then
an element

−a∑
i=−a−n+e

ai ( · )
1
t i ∈ H 1(Z/pZ,M)

is in the kernel of δ2 if and only if ai ( · )
( i/n

p−1

)
= 0 for all i . If n= 1 then an element

−a∑
i=−a−n+e

ai ( · )
1
t i ∈ H 1(Z/pZ,M)
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is in the kernel of δ2 if and only if ai ( · )
( i/n

p−1

)
= 0 for all −a − n + e ≤ i ≤ −a

and ai ( · )
( i/n

2p−2

)
= 0 for all −a − n + e ≤ i ≤ −a such that 2(p − 1)n − i <

(n+ 1)p+ pba/pc.

Proof. A derivation ai (σv)(1/t i ), −a−n+e≤ i ≤−a representing a cohomology
class in H 1(Z/pZ,M) is mapped to

δ2
(
ai ( · )

1
t i

)
[σw, σv] = ai (σv)

1
t i

σw

− ai (σv + σw)
1
t i + ai (σw)

1
t i

=
ai (σv)

t i

( ∞∑
ν=1

(
i/n
ν

)
wν tnν

)
. (25)

We now consider the map φ defined in (19) in the proof of Lemma 2.2. The map
δ2 : H 1(G,M)→ H 2(G, ta+n+1k[[t]]) is composed with φ and the image of φ ◦δ2

in xd(a+n+1)/pek[[x]]/xb((n+1)p+a)/pck[[x]] is given by

φ ◦ δ2
(
ai ( · )

1
t i

)
=

∑
w∈Z/pZ

ai (σv)

t i

( ∞∑
ν=1

(
i/n
ν

)
wν tnν

)
.

Now recall that ∑
w∈Z/pZ

wν =

{
0 if p−1 - ν,
−1 if p−1 | ν,

and every homomorphism ai : (Z/pZ, · ) → (k,+ ) is given by ai (σw) = λiw,
where λi ∈ k. Therefore,

φ ◦ δ2
(
ai ( · )

1
t i

)
=

∞∑
ν=1,p−1|ν

(
i/n
ν

)
(−1)ai (σv)tnν−i . (26)

Observe that (p − 1) | ν is equivalent to ν = µp − µ, and since ν ≥ 1, we have
µ≥ 1. Thus (26) becomes

∞∑
µ=1

(
i/n

µp−µ

)
(−1)λi t (µp−µ)n−i

=

(
i/n

p− 1

)
(−1)λi t (p−1)n−i

+

(
i/n

2p− 2

)
(−1)λi t (2p−2)n−i

+ higher order terms.

Claim 2.6. If n ≥ 2 and p ≥ 3 then for all a ≤−i ≤ a+ n and for µ≥ 2

µ(p− 1)n− i ≥ p
⌊(n+ 1)p+ a

p

⌋
. (27)
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If n = 1 and p ≥ 3 then (27) holds for a ≤−i ≤ a+ n and for µ≥ 3. Moreover

(p− 1)n− i < p
⌊(n+ 1)p+ a

p

⌋
,

for a ≤−i ≤ a+ n. Indeed, the inequality

µ≥
n+ 1

n
p

p− 1
(28)

holds for p≥ 3, n≥ 2 and µ≥ 2 or for p≥ 3, n= 1, µ≥ 3. Therefore, (28) implies
that

n+ 1+
⌊ a

p

⌋
−

a
p
≤ n+ 1≤ µ

p− 1
p

n

and therefore

(n+ 1)p+
⌊ a

p

⌋
p ≤ µ(p− 1)n+ a ≤ µ(p− 1)n− i

and the first assertion is proved. For the second assertion, we compute

a
p
< 1+

⌊ a
p

⌋
⇒

a
p
+ n < n+ 1+

⌊ a
p

⌋
and thus

(p− 1)n− i < a+ pn < p(n+ 1)+ p
⌊ a

p

⌋
.

Since for elements g ∈ k[[x]] ⊂ k[[t]] we have pvx(g) = vt(g) we observe that
all elements in k[[t]] that have valuation greater or equal to (n+ 1)p+ba/pc are
zero in the lift of the ideal x (n+1+ba/pck[[x]] on k[[t]]. Therefore Claim 2.6 gives
us that for p ≥ 3, n ≥ 2,

φ ◦ δ2(ai ( · )
1
t i )=

(
i/n

p− 1

)
(−1)λi t (p−1)n−i

so
∑
−a
i=−a−n ai ( · )(1/t i ) is in the kernel of δ2 if and only if(

i/n
p− 1

)
(−1)λi = 0 for all i.

The case n = 1 follows by a similar argument. �

Proposition 2.7. The cohomology group H 1(Z/pZ, tak[[t]]) is isomorphic to the
k-vector space generated by{

1
t i , b ≤ i ≤−a, such that

(
i/n

p− 1

)
= 0

}
,

where b =−a− n if p | a and b =−a− n+ 1 if p - a.
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Proof. If n ≥ 2 and p ≥ 3 then the result is immediate by the exact sequence (23),
Lemma 2.3 and Lemma 2.5 and by the computation of H 1(Z/pZ,M) given in
Proposition 2.4.

Assume that n = 1, and let a = a0+ a1 p+ a2 p2
+ · · · be the p-adic expansion

of a. Then the inequality

(n+ 1)p+ p
⌊ a

p

⌋
≤ 2(p− 1)n+ a (29)

holds if a0 6= 0, 1. Indeed, in this case we have 2/p ≤ a/p−ba/pc< 1 and (29)
holds. Therefore, for the case p | a and a = 1+ pb, b ∈ Z we have to check the
binomial coefficients

( i/n
2p−2

)
as well. We will prove that in these cases if

( i/n
p−1

)
= 0

then
( i/n

2p−2

)
= 0 and the proof will be complete.

Assume, first that p | a and n = 1. Then,−a − 1 ≤ i ≤ −a, i.e. i = −a − 1
or i = −a. We compute that

(
−a
p−1

)
= 0 since there is no constant term in the

p-adic expansion of −a. Moreover the p-adic expansion of 2p − 2 is computed
2p−2= p−2+ p, and since p 6= 2 we have

(
−a

2p−2

)
= 0 as well. For i =−a−1 we

have i = p−1+ pb for some b ∈Z; therefore by comparing the p-adic expansions
of −a−1,p−1 we obtain that

(
−a−1
p−1

)
6= 0, and this value of i does not contribute

to the cohomology.
Assume now that a= 1+ pb, b∈Z. We have i =−a and−a= p−1+ p(b+1).

Therefore by comparing the p-adic expansions of−a, p−1 we obtain that
(
−a
p−1

)
6=

0 and this value of i does not contribute to the cohomology. �

Proposition 2.8. Let A = tak[[t]] be a fractional ideal of the local field k((t)).
Assume that H =

⊕s
ν=1 Z/pZ is an elementary abelian group with ramification

filtration H = H0 = · · · = Hn > Hn+1 = {1}. Let πi be the local uniformizer of
the local field k((t))

⊕i−1
ν=1 Z/pZ, and ai = dai−1/pe, a1 = a. The cohomology group

H 1(H, A) is generated as a k-vector space by the basis elements{
s⊕
λ=1

1

π
iλ
i

,
λ= 1, . . . , s

bi ≤ iλ ≤−ai
such that

(
iλ/n
p− 1

)
= 0,

}
where bi = −ai − n if p | ai and bi = −ai − n + 1 if p - ai . Moreover, let
H(i) := H/

⊕i−1
ν=1 Z/pZ. The groups H 1(

⊕i−1
ν=1 Z/pZ, tak[[t]]) are trivial H(i)-

modules with respect to the conjugation action.

Proof. For A = tak[[t]], we compute the invariants

tak[[t]] ∩ k((t))Z/pZ
= xda/pek[[x]],

where x is a local uniformizer for the ring of integers of k((t))Z/pZ. The modules
A

⊕i−1
ν=1 Z/pZ can be computed recursively:

A
⊕i−1

ν=1 Z/pZ
= π

ai
i k[[πi ]],
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where πi is a uniformizer for the local field k((t))
⊕i−1

ν=1 Z/pZ and ai = dai−1/pe,
a1 = a.

To compute the ramification filtration of quotient groups we have to employ the
upper ramification filtration for the ramification group [Serre 1979, IV 3, p. 73-
74]. But according to Lemma 1.8 the upper ramification filtration coincides with
the lower ramification filtration therefore the ramification filtration for the groups
H(i) is H(i)0 = · · · = H(i)n > {1}. For the group Z/pZ⊕Z/pZ Corollary 1.17
implies that

H 1(Z/pZ⊕Z/pZ, tak[[t]])

= H 1
(Z/pZ⊕Z/pZ

Z/pZ
, tak[[t]]Z/pZ

)
⊕ H 1(Z/pZ, tak[[t]])H/(Z/pZ).

By Lemma 1.8 and by the compatibility [Serre 1979, IV 3, p. 73-74] of the upper
ramification filtration with quotients, we obtain that the quotient H/(Z/pZ) has
also conductor n. By Lemma 1.2, Lemma 1.4 and by the explicit description of
the group H 1(Z/pZ, tak[[t]]) of Proposition 2.7 and by the fact H/(Z/pZ) is of
conductor n, the action of H/(Z/pZ) on H 1(Z/pZ, tak[[t]]) is trivial. Thus

H 1(Z/pZ⊕Z/pZ, tak[[t]])= H 1
( H

Z/pZ
, tak[[t]]Z/pZ

)
⊕ H 1(Z/pZ, tak[[t]]).

Moreover the cohomology group H 1(Z/pZ⊕Z/pZ, tak[[t]]) is generated over k
by 〈1/π i

1⊕ 1/π j
2 〉, where b1 ≤ i ≤−a, b2 ≤ j ≤−da/pe and

( i/n
p−1

)
=

( j/n
p−1

)
= 0.

The desired result follows by induction. �

Proposition 2.9. Let A = tak[[t]] be a fractional ideal of the local field k((t)).
Assume that H =

⊕s
ν=1 Z/pZ is an elementary abelian group with ramification

filtration H = H0 = · · · = Hn > Hn+1 = {1}. The dimension of H 1(H, A) can be
computed as

dimk H 1(H, A)=
s∑

i=1

(⌊
(n+1)(p−1)+ai

p

⌋
−

⌈ai

p

⌉)
, (30)

where ai are defined recursively by a1 = a and ai = dai−1/pe. In particular, if
A = k[[t]], we have

dimk H 1(H, k[[t]])= s
⌊
(n+1)(p−1)

p

⌋
. (31)

Proof. By induction on the number of direct summands, Corollary 1.17 and Propo-
sition 2.8 we can prove the formula

H 1(H, A)=
s⊕

i=1

H 1(Z/pZ, A
⊕i−1

ν=1 Z/pZ). (32)
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To compute the dimensions of the direct summands H 1
(
Z/pZ, A

⊕i−1
ν=1 Z/pZ

)
, for

various i we have to compute the ramification filtration for the groups defined as
H(i)= H/

(⊕i−1
ν=1 Z/pZ

)
, since

⊕i−1
ν=1 Z/pZ= H/H(i). But the upper ramifica-

tion filtration coincides with the lower ramification filtration by Lemma 1.8. Thus,
the dimension of H 1(H, A) can be computed as

dimk H 1(H, A)=
s∑

i=1

⌊(n+ 1)(p− 1)+ ai

p

⌋
−

⌈ai

p

⌉
.

In particular if A = k[[t]], then

dimk H 1(H, k[[t]])= s
⌊(n+ 1)(p− 1)

p

⌋
. �

Let κti = dimk ker
(

tg : H 1(G ti+1,TO)→ H 2(G ti /G ti+1,T
G ti+1

O )
)

be the dimen-
sion of the kernel of the transgression map. We have

0≤ κi ≤ dimk H 1(G ti+1,TO)
G ti /G ti+1 ≤ dimk H 1(G ti+1,TO). (33)

This allows us to compute

Proposition 2.10. Let G be the Galois group of the extensions of local fields L/K ,
with ramification filtration Gi and let (tλ)1≤λ≤ f be the jump sequence in (3). For
the dimension of H 1(G1,TO) we have the bound

H 1(G1/G t f−1,T
G t f−1
O )≤ dimk H 1(G1,TO)

≤

f∑
i=1

dimk H 1(G ti /G ti−1,T
G ti−1
O )

G t f /G ti

≤

f∑
i=1

dimk H 1(G ti /G ti−1,T
G ti−1
O ),

(34)

where Gn+1 = {1}. The left bound is best possible in the sense that there are
ramification filtrations such that the first inequality becomes an equality.

Proof. Using the low-term sequence in (5) we obtain the following inclusion for
i ≥ 1:

H 1(G ti ,TO)= H 1(G ti /G ti−1,T
G ti−1
O )+ ker tg

⊆ H 1(G ti /G ti−1,T
G ti−1
O )⊕ H 1(G ti−1,TO)

G ti /G ti−1 . (35)

We start our computation from the end of the ramification groups:

H 1(G t2,TO)⊆ H 1(G t2/G t1,T
G t1
O )⊕ H 1(G t1,TO)

G t2/G t1 . (36)
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Observe here that TO is not G t1-invariant so there in no apriori well defined action
of G t2/G t1 on TO. But since the group G t1 is of conductor n using the explicit
form of H 1(G t1,TO) we see that H 1(G t1,TO) is a trivial G1-module. Of course
this is also clear from the general properties of the conjugation action [Weiss 1969,
Corollary 2-3-2]. We move to the next step:

H 1(G t3,TO)⊆ H 1(G t3/G t2,T
G t2
O )⊕ H 1(G t2,TO)

G t3/G t2 . (37)

The combination of (36) and (37) gives us

H 1(G t3,TO)⊆ H 1
(G t3

G t2
,T

G t2
O

)
⊕ H 1

(G t2

G t1
,T

G t1
O

)G t3/G t2

⊕

(
H 1(G t1,TO)

G t2/G t1

)G t3/G t2
.

Using induction based on (35) we obtain

H 1(G1,TO) ⊆

f⊕
i=1

H 1
(

G ti

G ti−1

,T
G ti−1
O

)G t f /G ti

⊆

f⊕
i=1

H 1
(

G ti

G ti−1

,T
G ti−1
O

)
,

and the desired result follows. �

Notice that in the above proposition G ti−1 appears in the ramification filtration
of G0 thus the corollary to Proposition IV.1.3 in [Serre 1979] implies that the
ramification filtration of G ti /G ti−1 is constant. Namely, if Q = G ti /G ti−1 the
ramification filtration of Q is given by Q0 = Q1 = · · · = Qti > {1}. Therefore,
δt1 = dimk H 1(Gn,TO), and dimk H 1(G ti /G ti−1,T

G ti−1
O ) can be computed explic-

itly by Proposition 2.9 since Gn = G t1 , G ti /G ti−1 , are elementary abelian groups.
Namely we will prove:

Proposition 2.11. Let logp( · ) denote the logarithmic function with base p. Let
s(λ)= logp |G tλ |/|G tλ−1 | and let µi be as in Proposition 1.15. Then

dimk H 1
( G tλ

G tλ−1

,T
G tλ−1
O

)
=

s(λ)∑
i=1

(⌊(tλ+ 1)(p− 1)+ ai

p

⌋
−

⌈ai

p

⌉)
,

where a1 =−tλ− 1+µλ−1, and ai = dai−1/pe.

Proof. The module T
G tλ−1
O is computed in Proposition 1.15 to be isomorphic to

π
µλ−1
λ−1 (d/dπλ−1), which in turn is ((G tλ/G tλ−1))-equivariantly isomorphic to the

module π−tλ−1+µλ−1
λ−1 k[[πλ−1]]. The result follows using Proposition 2.9. �

Remark 2.12. If n= 1 (equivalently, if G2= {1}), the left- and right-hand sides of
(34) are equal and the bound becomes the formula in [Cornelissen and Kato 2003].
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Proposition 2.13. We will follow the notation of Proposition 2.11. Suppose that
for every i , G ti /G ti−1 is a cyclic p-group. Then

dimk H 1(G1,TO)=

f∑
i=1

dimk H 1
( G ti

G ti−1

,T
G ti−1
O

)G t f /G ti

≤

f∑
i=1

(⌊(ti+1)(p−1)− ti − 1+µi−1

p

⌋
−

⌈
−ti − 1+µi−1

p

⌉)
.

Proof. The kernel of the transgression at each step is by Lemma 1.5 the whole
H 1(G ti /G ti−1,T

G ti−1
O )

G t f /G ti . Therefore the right inner inequality in Equation (34)
is achieved. The other inequality is trivial by the computation done in Proposition
2.11 but it is far from being best possible. �

3. Global computations

We consider the Galois cover of curves π : X → Y = X/G, and let b1, . . . , br be
the ramification points of the cover. We will denote by

e(µ)0 ≥ e(µ)1 ≥ e(µ)2 ≥ · · · ≥ e(µ)nµ > 1

the orders of the higher ramification groups at the point bµ. The ramification divisor
D of the above cover is a divisor supported at the ramification points b1, . . . , br

and is equal to

D =
r∑

µ=1

nµ∑
i=0

(e(µ)i − 1)bµ.

Let �1
X , �1

Y be the sheaves of holomorphic differentials at X and Y respectively.
We have

�1
X
∼= OX (D)⊗π∗(�1

Y )

(see [Hartshorne 1977, IV. 2.3]), and, by taking duals,

TX ∼= OX (−D)⊗π∗(TY ).

Thus π∗(TX )∼=TY ⊗π∗(OX (−D)) and πG
∗
(TX )∼=TY ⊗(OY ∩π∗(OX (−D))). We

compute (similarly with [Cornelissen and Kato 2003, Proposition 1.6]):

πG
∗
(TX )= TY ⊗OY

(
−

r∑
µ=1

⌈ nµ∑
i=0

(e(µ)i − 1)

e(µ)0

⌉
bi

)
.

Therefore, the global contribution to H 1(G,TX ) is given by
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H 1(Y, πG
∗
(TX ))∼= H 1

(
Y,TY ⊗OY

(
−

r∑
µ=1

.
⌈ nµ∑

i=0

(e(µ)i − 1)

e(µ)0

⌉
bi .

))
∼= H 0

(
Y, �⊗2

Y

(
−

r∑
µ=1

⌈ nµ∑
i=0

(e(µ)i − 1)

e(µ)0

⌉
bi

))
and, by the Riemann–Roch formula,

dimk H 1(Y, πG
∗
(TX ))= 3gY − 3+

r∑
µ=1

⌈ nµ∑
i=0

(e(µ)i − 1)

e(µ)0

⌉
. (38)

The local contribution can be bounded by Proposition 2.10 and by combining the
local and global contributions, we arrive at the desired bound for the dimension.

3.1. Examples. Let V =Z/pZ⊕· · ·⊕Z/pZ be an elementary abelian group acted
on by the group Z/nZ. Assume that G :=V oZ/nZ acts on the local field k((t)) and
assume that the ramification filtration is given by G0>G1=· · ·=G j >G j+1={1}.
Let H := Z/pZ be the first summand of V . Let σ be a generator of the cyclic
group Z/nZ and assume that σ(t) = ζ t , where ζ is a primitive n-th root of one.
Let A = ta′k[[t](d/dx) and let AH

= xak[[x]](d/dx). The inflation-restriction
sequence implies the short exact sequence

0→ H 1(V/H, xak[[x]] d
dx )→ H 1(V, A)→ H 1(H, A)→ 0.

The group Z/nZ acts on ta′k[[t]] but there is no apriori well defined action of
Z/nZ on xak[[x]] d

dx = (t
a′k[[t]](d/dt))H , since the group H might not be nor-

mal in G. Here by this action of Z/nZ we mean the natural module action and
not the conjugation action on cocycles defined in Lemma 1.2. An element d ∈
H 1(G/H, xak[[x]] d/dx) is sent by the inflation map on the 1-cocycle inf(d) that
is a map

inf(d) : G→ ta′g(t)
d
dt
∈ ta′k[[t]]

d
dt
,

and the action of σ can be considered on the image of the inflation map, sending
inf(d)(g) 7→ σ(inf(d(g)). We observe that σ(infd(g))) is zero for any g ∈ H , by
the definition of the inflation map, therefore there is an element a ∈ ta′k[[t]] d/dt
such that

σ(inf d(g))+ ag
− a ∈ xak[[x]]

d
dx
.

We can consider the element σ(inf(d)) + ag
− a = inf(d ′). This means that al-

though there is no well defined action of Z/nZ on k[[x]] we can define σ(d) =
d ′ modulo cocycles. In what follows we will try to compute the element d ′ ∈
H 1(G/H, xak[[x]] d/dx).
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Assume that the Artin–Schreier extension k((t))/k((x)) is given by the equation
1/y p

− 1/y = 1/x j . Then, we have computed that if g is a generator if H then

g(t)=
t

(1+ t j )1/j and x =
t p

(1− t j (p−1))1/j .

The action of σ on x , where x is seen as an element in k[[t]] is given by

σ(x)= σ
t p

(1− t j (p−1))1/j = ζ
px

(1− t j (p−1))1/j

(1− ζ j (p−1)t j (p−1))1/j = ζ
pxu,

where

u =
(1− t j (p−1))1/j

(1− ζ j (p−1)t j (p−1))1/j

is a unit of the form 1 + y, where y ∈ t2 j (p−1)k[[t]]. The cohomology group
H 1(V/H, xak[[x]]) is generated by the elements {1/xµ, b ≤ µ ≤ a,

(
µ/n
p−1

)
= 0}.

Each element 1/xµ is written as 1/xµx j+1 d/dx and it is lifted to

1/xµt j+1 d
dt

σ
−→ ζ−pµ+ j 1/xµu−µt j+1 d

dt
.

In the above formula we have used the fact that the adjoint action of σ on tr d/dt is
given by σ : tr d/dt→ ζ (r−1)tr d/dt [Cornelissen and Kato 2003, 3.7]. Obviously
the unit u is not H -invariant but we can add to u a 1-coboundary so that it becomes
the H -invariant element inf(d ′). This coboundary is of the form ag

−a, and obvi-
ously ag

− a has to be in t2p−1 j k[[t]]. This gives us that (1/xµ)′ = ζµ1/xµ + o,
where o is a sum of terms 1/xν with −a < ν and therefore o is cohomologous to
zero. Using induction one can prove:

Lemma 3.1. Let 1/π iλ
i , λ = 1, . . . , s, bi ≤ iλ ≤ −ai so that

(iλ/n
p−1

)
= 0 and bi =

−ai − j if p | ai , bi =−ai − j+1 if p - ai be the basis elements of the cohomology
group H 1(V,TO). Then the action of the generator σ ∈ Z/nZ on TO induces the
following action on the basis elements:

σ
( 1
π
µ
i

)
= ζ−piµ+ j 1

π
µ
i
.

The Fermat curve. The curve

F : xn
0 + xn

1 + xn
2 = 0

defined over an algebraically closed field k of characteristic p, such that n−1= pa

is a power of the characteristic is a very special curve. Concerning its automor-
phism group, the Fermat curve has maximal automorphism group with respect to
the genus [Stichtenoth 1973]. Also it leads to Hermitian function fields, that are
optimal with respect to the number of Fp2a -rational points and Weil’s bound.
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It is known that the Fermat curve is totally supersingular, i.e., the Jacobian va-
riety J (F) of F has p-rank zero, so this curve cannot be studied by the tools of
[Cornelissen and Kato 2003]. The group of automorphism of F was computed
in [Leopoldt 1996] to be the projective unitary group G = PGU (3, q2), where
q = pa

= n − 1. H. Stichtenoth [Stichtenoth 1973, p. 535] proved that in the
extension F/FG there are two ramified points P ,Q and one is wildly ramified and
the other is tamely ramified. For the ramification group G(P) of the wild ramified
point P , the group G(P) consists of the 3× 3 matrices of the form1 0 0

α χ 0
γ −χαq χ1+q

 , (39)

where χ, α, γ ∈ Fq2 and γ + γ q
= χ1+q

− 1− α1+q . Moreover Leopoldt proves
that the order of G(P) is q3(q2

− 1) and the ramification filtration is given by

G0(P) > G1(P) > G2(P)= · · · = G1+q(P) > {1},

where

G1(P)= ker(χ : G0(P)→ F∗q2) and G2(P)= ker(α : G1(P)→ Fq2).

In this section we will compute the dimension of tangent space of the global de-
formation functor. Namely, we will prove:

Proposition 3.2. Let p be a prime number, p > 3 let X be the Fermat curve

x1+p
0 + x1+p

1 + x1+p
2 = 0.

Then dimk H 1(X,G,TX )= 0.

Proof. By the assumption q = p and by the computations of Leopoldt mentioned
above we have G2 = · · · = G p+1 = Z/pZ. The different of G p+1 is computed
(p+ 2)(p− 1). Hence, according to (17),

dimk H 1(G p+1,TO)=
⌊(p+ 2)(p− 1)− (p+ 2)

p

⌋
−

⌈
−p− 2

p

⌉
= p

Proposition 2.7 implies that the set{ 1
t i , 2≤ i ≤ p+ 2 where

(
i/(p+ 1)

p− 1

)
= 0

}
is a k-basis of H 1(G p+1,TO). Indeed, the group G1+p has conductor 1+ p and
TO is G1+p-equivariantly isomorphic to t−p−2k[[t]]. Thus following the notation
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of Proposition 2.7 −a = p+ 2 and b = 2. The rational number (1+ p)−1 has the
following p-adic expansion:

1
1+ p

= 1+ (p− 1)p+ (p− 1)p3
+ (p− 1)p5

+ . . .

and using Lemma 2.1 we obtain that for 2≤ i ≤ p+ 2 the only integer i such that(i/(p+1)
p−1

)
6= 0 is i = p− 1. Thus, the elements{ 1

t i

∣∣∣ 2≤ i ≤ p+ 2, i 6= p− 1
}

form a k-basis of H 1(G p+1,TO).
Leopoldt in [Leopoldt 1996, 4.1] proves that the G0(P) acts faithfully on the

k-vector space L((p + 1)P) that is of dimension 3 with basis functions 1, v, w
and the representation matrix is given by (39). Moreover, the above functions
have t-expansions v = 1/t pu, where u is a unit in k[[t]] and w = 1/t p+1, for
a suitable choice of the local uniformizer t at the point P . The functions v,w
generate the function field corresponding to the Fermat curve and they satisfy the
relation vn

= wn
− (w + 1)n , therefore one can compute that the unit u can be

written as
u = 1+ t p+1g, g ∈ k[[t]].

Let σ be an element given by a matrix as in Equation (39). The action of σ ∈G1=

G1(P) on powers of 1/t is given by

1
t i =

(1+ γ t p+1
− aqut)i/(p+1)

t i , (40)

and the action on the basis elements {1/t i , 2≤ i ≤ p+ 2, i 6= p− 1} is given by

1
t i 7→

1
t i +

i−2∑
ν=1

aqν
(

i/(p+ 1)
ν

)
1

t i−ν .

The matrix of this action is given by

Aσ =



1 0 0 0 0
2

p+1 1 0 0 0
3

p+1 1 0 0

∗ ∗
. . . 1 0

∗ ∗ ∗
p+2
p+1 1


.

We observe that σ(1/t2) = 1/t2 and σ(1/t p) = 1/t p, and moreover that all ele-
ments below the diagonal of the matrix Aσ are i/(p+ 1) and are nonzero unless



The deformation functor of curves with automorphisms 149

i = p. Therefore the eigenspace of the eigenvalue 1 is 2-dimensional,

H 1(G1+p,TO)
G1/G1+p =k

〈 1
t2 ,

1
t p

〉
is a basis for it. To compute H 1(G1(P),TO) we consider the exact sequence

1→ G2→ G1
α
−→ G1/G2 ∼= Z/pZ×Z/pZ→ 1

and the corresponding low-degree-term Lyndon–Hochschild–Serre sequence. The
group G2 is of conductor p + 1 thus TG2

O = T
Z/pZ

O is given by Proposition 1.15
(p > 2):

TG2
O = x p+2−b(p+2)/pck[[x]]

d
dx
= x p+1k[[x]]

d
dx
,

where x is a local uniformizer for OG2 . By [Serre 1979, Corollary p. 64] the rami-
fication filtration for G2/G1 is

G0/G2 > G1/G2 > {1},

hence the different for the subgroup Z/pZ of G2/G1 is 2(p−1), and the conductor
equals 1. Lemma 1.14 implies x p+1k[[x]] d/dx is G1/G2-equivariantly isomorphic
to x p+1−2k[[[x]]. Therefore,

H 1(G1/G2,TG2
O )= H 1(Z/pZ, x p−1k[[x]])⊕ H 1(Z/pZ, (x p−1k[[x]])Z/pZ)

We compute

dimk H 1(Z/pZ, x p−1k[[x]])=
⌊2(p− 1)+ p− 1

p

⌋
−

⌈ p− 1
p

⌉
= 1.

At the same time, if π is a local uniformizer for k((x))Z/pZ then

(x p−1k[[x]])Z/pZ
= π d(p−1)/pek[[π ]] = πk[[π ]]

and the dimension of the cohomology group is computed:

dimk H 1(Z/pZ, (x p−1k[[x]])Z/pZ)= dimk H 1(Z/pZ, πk[[π ]])

=

⌊2(p− 1)+ 1
p

⌋
−

⌈ 1
p

⌉
= 0.

Using the bound for the kernel of the transgression we see that

1= dimk H 1
(

G1

G2
,TG2

O

)
≤ dimk H 1(G1,TO)

≤ dimk H 1
(

G1

G2
,TG2

O

)
+ dimk H 1(G2,TO)

G1/G2 = 3. (41)
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To compute the action of G0 on G1/G2 we observe that1 0 0
a χ 0
∗ −χa p χ1+p


1 0 0

b 1 0
∗ −bp 1


1 0 0

a χ−1 0
∗ χa p χ−1−p

=
 1 0 0
χb 1 0
∗ −χ p+1bp 1

. (42)

If the middle matrix 1 0 0
b 1 0
∗ −bp 1


is an element of Z/pZ ∼= Fp ⊂ Fp2 then bp

= b. By looking at the computation
of (42) we see that the conjugation action of G0/G1 to Fp is given by multi-
plication b 7→ χ1+qb. Observe that (χ1+p)p−1

= χ p2
−1
= 1, thus χ1+p

∈ Fp.
The action on the cocycles is given by sending the cocycle d(τ ) to d(στσ−1)σ

−1

therefore the basis cocycle 1/x1−p of the one dimensional cohomology group
H 1(Z/pZ, x p−1k[[x]]) d goes to χ p(p−1)+1+1+pd = χ−p2

d under the conjugation
action, as one sees by applying Lemma 3.1. Lemma 1.3 implies that

H 1(G1/G2,TG2
O )G0/G1 = 0.

Similarly the conjugation action of G0/G1 on an element of G2 can be com-
puted to be multiplication of τ by χ1+p

∈ Fp, and the same argument shows that
H 1(G1+p,TO)

G1/G1+p G0/G1
= 0.

Finally the global contribution is computed by formula (38)

dimk H 1(FG, π∗(TF ))=−3+
⌈ p+2∑

i=0

|G(P)i | − 1
|G(P)|

⌉
+

⌈
1−

1
|G(Q)|

⌉
=−3+ 2+ 1= 0.

The fact that the tangent space of the deformation functor is zero dimensional is
compatible with the fact that there is only one isomorphism class of curves C such
that |Aut(C)| ≥ 16g4

C [Stichtenoth 1973]. �

p–Covers of P1(k). We consider curves C f of the form

C f : w
p
−w = f (x),

where f (x) is a polynomial of degree m. We will say that such a curve is in reduced
form if the polynomial f (x) is of the form

f (x)=
m−1∑

i=1,(i,p)=1

ai x i
+ xm .
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Two such curves C f , Cg in reduced form are isomorphic if and only if f = g.
The group G :=Gal

(
C f /P

1(k)
)
∼= Z/pZ acts on C f . The number of independent

monomials 6= xm in the sums above is given by

m−
⌊m

p

⌋
− 1, (43)

since #{1≤ i ≤ m, p | i} = bm/pc.
We will compute the tangent space of the deformation functor of the curve C f

together with the group C f . Let P be the point above ∞ ∈ P1(k). This is the
only point that ramifies in the cover C f → P1(k), and the group G admits the
ramification filtration

G0 = G1 = G2 = · · · = Gm > Gm+1 = {1}.

The different is computed (p− 1)(m + 1) and TO
∼= t−m−1k[[t]]. Thus the space

H 1(G,TO) has dimension

d =
⌊
(p−1)(m+1)−(m+1)

p

⌋
−

⌈
−(m+1)

p

⌉
= m+ 1−

⌈2m+2
p

⌉
+

⌊m+1
p

⌋
.

Let a0+ a1 p+ a2 p2
+ · · · be the p-adic expansion of m+ 1. We observe that⌈2m+2

p

⌉
−

⌊m+1
p

⌋
=

⌈2a0
p
+

∑
i≥1

2ai pi−1
⌉
−

∑
i≥1

ai pi−1,

therefore, if p - m+ 1⌈2m+2
p

⌉
−

⌊m+1
p

⌋
=

⌊m+1
p

⌋
+ δ, where δ =

{
2 if 2a0 > p,
1 if 2a0 < p.

Thus, we have for the dimension

d =
{

m+ 1−b(m+1)/pc if p | m+ 1,
m−b(m+1)/pc− δ otherwise.

Finally, we compute that

dimk H 1(Y, πG
∗
(TX ))=−3+

⌈
(m+1)(p−1)

p

⌉
= m− 2−

⌊m+1
p

⌋
.

Lehr–Matignon curves. Consider the curve

C : y p
− y =

m−1∑
i=0

ti x1+pi
+ x1+pm

(44)

defined over an algebraically closed field k of characteristic p > 2. Such curves
were examined in [van der Geer and van der Vlugt 1992] in connection with coding
theory, and their automorphism group was studied in [Lehr and Matignon 2005],
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(The extreme Fermat curves studied in example 1 can be written in this form after
a suitable transformation; see [Stichtenoth 1993, VI.4.3, p. 203].)

Let n = 1+ pm denote the degree of the right-hand side of (44), and set H =
Gal(C/P1(k)). The automorphism group G of C can be expressed in the form

1→ H → G→ V → 1,

where V is the vector space of roots of the additive polynomial∑
0≤i≤m

(
t pm−i

i Y pm−i
+ t pm

i Y pm+i )
(45)

[Lehr and Matignon 2005, Proposition 4.15]. Moreover there is only one point
P ∈ C that ramifies in the cover C→ CG , namely the point above∞∈ P1(k).

In order to simplify the calculations we assume that t0 = · · · = tm−1 = 0 so the
curve is given by

y p
− y = x pm

+1. (46)

The polynomial in (45) is given by Y p2m
+ Y and the vector space V of the roots

is 2m-dimensional. Moreover, according to [Lehr and Matignon 2005] any auto-
morphism σv corresponding to v ∈ V is given by

σv(x)= x + v, σ (y)= y+
m−1∑
κ=0

v pm+k
x pk
.

Observe that w and x have a unique pole of order pm
+ 1 and p, respectively, at

the point above∞, so we can select the local uniformizer π so that

y =
1

π pm+1 , x =
1
π

u,

where u is a unit in k[[π ]]. By replacing x, y in (46) we observe that the unit u is
of the form u = 1+π pm

.
A simple computation based on the basis {1, x, . . . , x pm−1

, y}, of the vector
space L

(
(1+ pm)P

)
given in [Lehr and Matignon 2005, Proposition 3.3]. shows

that the ramification filtration of G is G = G0 = G1 > G2 = . . . = G pm+1 > {1},
where G2 = H and G1/G2 = V . Using Proposition 2.7 we obtain the basis{

1
π i

1

∣∣∣∣ 2≤ i ≤ pm
+ 2 and

(
i/(pm

+ 1)
p− 1

)
= 0

}
for H 1(G2,TO). We have to study the action of G1/G2 on H 1(G2,TO). From the
action of σv on y we obtain that the action on the basis elements of H 1(G pm+1,TO)
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is given by

σv

( 1
π i

)
=

1
π i +

(∑m−1
κ=0 u pk

v pm+κ
π pm

+1−pk+1)i/(pm
+1)

π i

=
1
π i +

i
pm + 1

v p2m−1 1
π i−1 + . . . .

If p | i , all binomial coefficients
(i/(pm

+1)
κ

)
that contribute a coefficient 1/πκ , 2 ≤

κ ≤ pm
+2 are zero. Therefore, the elements 1/π2, 1/πνp are invariant. Moreover,

by writing down the action of σv as a matrix we see that there are no other invariant
elements, so the dimension is computed (p > 2):

dimk H 1(G pm+1,TO)
G1/G pm+1 = 1+

⌊ pm
+ 2
p

⌋
= 1+ pm−1.

This dimension coincides with the computation done on the Fermat curves m = 1.
We proceed by computing H 1(V,TH

O ). The space TH
O is computed by Propo-

sition 2.9

x pm
+2−b(pm

+2)/pck[[x]]
d

dx
= x pm

+2−pm−1
k[[x]]

d
dx
.

Thus,

dimk H 1(V,TH
O )=

2m∑
ν=1

(⌊2(p− 1)+ ai

p

⌋
−

⌈ai

p

⌉)
,

where a1 = pm
− pm−1, and ai = dai−1/pe. By computation aν = pm−ν+1

− pm−ν

for 1≤ ν ≤ m, and aν = 1 for ν > m. Moreover, an easy computation shows that

⌊2(p− 1)+ ai

p

⌋
−

⌈ai

p

⌉
=


1 if 1≤ ν < m,
2 if ν = m,
0 if m < ν,

thus the dimension of the tangent space is m+ 1.
We have proved that the dimension of H 1(G1,TO) is bounded by

m+ 1= dimk H 1(G1/G2,TG2
O )≤ H 1(G1,TO)

≤ dimk H 1(G1/G2,TG2
O )+ H 1(G2,TO)

G1/G2 = 2+m+ pm−1.

Unfortunately we cannot be more precise here: an exact computation involves the
computation of the kernel of the transgression and such a computation requires
new ideas and tools.
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To this dimension we must add the contribution of

dimk H 1(Y, πG
∗
(TX ))= 3gY − 3+

r∑
κ=1

⌈ nκ∑
i=0

(e(κ)i − 1)

e(κ)0

⌉

=−3+
⌈

2
pm+1

− 1
pm+1 +m

pm
− 1

pm+1

⌉
=−1+

⌈
m
p
−

2+m
pm+1

⌉
.

The latter contribution is strictly positive if m� p.

Elementary abelian extensions of P1(k). Consider the curve C so that G0 =

(Z/pZ)s o Z/nZ is the ramification group of wild ramified point, and moreover
the ramification filtration is given by

G0 > G1 = . . .= G j > G j+1 = {1}. (47)

An example of such a curve is provided by the curve defined by

C :
s∑

i=0

ai y pi
= f (x), (48)

where f is a polynomial of degree j and all monomial summands ak xk of f have
exponent congruent to j modulo n. Let V be the Fp-vector space of the roots of
the additive polynomial

∑s
i=0 ai y pi

. Assume that the automorphism group of the
curve defined by (48) is G := V oZ/nZ. Thus C→P1(k) is Galois cover ramified
only above ∞, with ramification group G and ramification filtration is computed
to be as in (47).

Let us now return to the general case. Let us denote by V the group (Z/pZ)s .
The group V admits the structure of a Fp vector space, where Fp is the finite field
with p elements. The conjugation action of Z/nZ on V implies a representation

ρ : Z/nZ→ GL(V ).

Since (n, p) = 1, Mascke’s Theorem gives that V is the direct sum of simple
Z/nZ-modules, i.e., V =

⊕r
i=1 Vi . On the other hand, Lemma 1.2 implies that

the conjugation action is given by multiplication by ζ j , where ζ is an appropriate
primitive n-th root of one and j is the conductor of the extension. If ζ j

∈ Fp

then all the Vi are one dimensional. In the more general case one has to consider
representations

ρi : Z/nZ→ GL(Vi ),

where dimFp Vi = d . The dimension d is the degree of the extension Fq/Fp, where
Fq is the smallest field containing ζ j . Let e(i)1 , . . . , e(i)d be an Fp-basis of Vi , and
denote by (a(i)µν) the entries of the matrix corresponding to ρi (σ ), where σ is a
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generator of Z/nZ. The conjugation action on the arbitrary

v =

r∑
i=1

d∑
µ=1

λ(i)µ e(i)µ ∈ V (49)

is described by

σe(i)µ σ
−1
=

d∑
ν=1

a(i)µνe
(i)
ν . (50)

For the computation of H 1(G,TO), we notice first that the group H 1(V,TO) can
be computed using Proposition 2.8 and the isomorphism TO

∼= t− j−1k[[t]].
Next we consider the conjugation action of Z/nZ on H 1(V,TO), in order to

compute H 1(G,TO)= H 1(V,TO)
Z/nZ. By (32) we have

H 1(V,TO)=

s⊕
λ=1

H 1(Z/pZ,T
⊕λ−1

ν=1 Z/pZ

O

)
, (51)

i.e., the arbitrary cocycle d representing a cohomology class in H 1(V,TO) can be
written as a sum of cocycles dν representing cohomology classes in

H 1(Z/pZ,T
⊕i−1

ν=1 Z/pZ

O

)
.

Let us follow a similar to (49) notation for the decomposition of d , and write
d =

∑r
i=1

∑d
ν=1 b(i)ν d(i)ν , where d(i)ν (e

( j)
µ )= 0 if i 6= j or ν 6= µ. Therefore,

d(σe(i)µ σ
−1)= d

( d∑
ν=1

a(i)µνe
(i)
ν

)
=

d∑
ν=1

b(i)ν a(i)µνd
(i)
ν (e

(i)
ν ). (52)

We have now to compute the Z/nZ-action on d(i)k . By Lemma 3.1 the element σ
acts on the basis elements 1/πµi of H 1(V,TO) as follows

σ
( 1
π
µ
i

)
= ζ−piµ+ j 1

πµ
. (53)

By the remarks above we arrive at

σ(d)(e(i)µ ) := d(σe(i)µ σ
−1)σ

−1
=

d∑
ν=1

b(i)ν a(i)µνζ
−c(ν,i)d(i)ν (e

(i)
ν ), (54)

where c(ν, i) is the appropriate exponent, defined in (53). Let us denote by A(i) the
d×d matrix (a(i)νµ). By (54) σ(d)(e(i)µ )= d(e(i)µ ) if and only if b := (b(i)1 , . . . , b(i)d )

is a solution of the linear system

(A(i) · diag−1(ζ c(1,i), ζ c(2,i), . . . , ζ c(d,i))− Id)b = 0.
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This proves that the dimension of the solution space is equal to the dimension of the
eigenspace of the eigenvalue 1 of the matrix: A(i) diag−1(ζ c(1,i), ζ c(2,i), . . . , ζ c(d,i)).

Moreover using a basis of the form 1, ζ, ζ 2, . . . , ζ d−1 for the simple space V (i),
we obtain that

A(i) =



0 0 · · · 0 −a0

1 0 −a1

0 1
. . .

...

0 1 0 −ad−1

0 1 −ad


It can be proved by induction that the characteristic polynomial of A(i) is xd

+∑d−1
ν=0 aνxν , and under an appropriate basis change A(i) can be a written in the

form diag(ζ j , ζ 2 j , . . . , ζ j (d−1)). Moreover, the characteristic polynomial of the
matrix A(i) diag−1(ζ c(1,i), ζ c(2,i), . . . , ζ c(d,i)) can be computed inductively to be

fi (x) := xd
+ ζ c(d,i)ad−1xd−1

+ ζ c(d,i)+c(d−1,i)ad−1

+ · · ·+ ζ
∑d
ν=2 c(ν,i)x + ζ

∑d
ν=1 c(ν,i)a0.

If, fi (1) 6= 0, then we set δ(i) = 0. If fi (1) = 0 we set δ(i) to be the multiplicity
of the root 1. The total invariant space has dimension

dimk H 1(G,TO)=
∑

i

δ(i).

Comparison with the work of Cornelissen–Kato. We will apply the previous cal-
culation to the case of ordinary curves j = 1 and we will obtain the formulas in
[Cornelissen and Kato 2003]. We will follow the notation of Proposition 2.8. The
number a1 = − j − 1 = −2. Thus, a2 = d−2/pe = −b2/pc = 0 (recall that we
have assumed that p ≥ 5). Furthermore ai = 0 for i ≥ 2. For the numbers bi we
have b1 = −a1 − j + 1 = 2, and b1 ≤ i1 ≤ −a1, so there is only one generator,
namely 1/π2

1 . Moreover, for i ≥ 2 we have bi =−a j − j =−1 and there are two
possibilities for −1 ≤ iλ ≤ 0 = −ai , namely −1, 0. But only

( 0/n
p−1

)
= 0, and we

finally obtain

H 1(V,TO)∼=

〈 1
π2

1

〉
k
×〈1〉k × · · ·× 〈1〉k,

a space of dimension logp |V |.
Let d be the dimension of each simple direct summand of H 1(V,TO) considered

as a Z/nZ-module. Of course d equals the degree of the extension Fp(ζ )/Fp, where
ζ is a suitable primitive root of 1. For the matrix diag(ζ c(1,i), . . . , ζ c(d,i)) we have

diag(ζ c(1,i), . . . , ζ c(d,i))=

{
diag(ζ 2, ζ, . . . , ζ ) if i = 1,
ζ · Id if i ≥ 2.
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The characteristic polynomial in the first case is computed to be

f1(x)= xd
+

d−1∑
ν=1

ζ d−νaνxν + a0ζ
1+d .

Setting x = ζ y this becomes

ζ d
(

yd
+

d−1∑
ν=0

aν yν
)
+ (ζ d+1

− ζ d)a0.

Therefore y = ζ for x = 1, so f1(1)= (ζ d+1
− ζ d)a0 6= 0, therefore δ(1)= 0.

In the second case, we observe that

fi (x)= xd
+

d−1∑
ν=0

ζ d−νaνxν .

If we set x = y/ζ , we obtain that 1 is a simple root of fi , so δ(i)= 1 for i ≥ 2.
Thus, only the s/d − 1 blocks i ≥ 2 admit invariant elements and

dimk H 1(V o Z/nZ,TO)= s/d − 1.

The global contribution can be computed in terms of (38) and gives us that

dimk H 1(Y, πG
∗
(TX ))= 3gY − 3+ 2rw + rt −

r∑
µ=1

⌈
1
ni

(
1+

1
psi

)⌉
,

where ni is the order of the prime to p part and psi is the order of the p-part of the
decomposition group at the i-th ramification point of the cover X → X/G = Y .
The numbers rw, rt are the number of wild,tame ramified points of the above cover,
respectively.

Comparison with the work of R. Pries. Consider the curve

C : y p
− y = f (x),

where f (x) is a polynomial of degree j , ( j, p)= 1. This, gives rise to a ramified
cover of P1(k) with∞ as the unique ramification point. Moreover if all the mono-
mial summands of the polynomial f (x) have exponents congruent to j mod m,
then the curve C admits the group G :=Z/pZoZ/mZ as a subgroup of the group
of automorphisms. R. Pries [2002] constructed a configuration space C of deforma-
tions of the above curve and computed the dimension C . More precisely by the term
configuration space we mean a k-scheme C that represents a contravariant functor
F from the category of irreducible k-schemes S to the category of sets so that, there
is a morphism T : Hom( ·,C)→ F( · ) so that it induces a bijection between the
k-points of the configuration space C and F(Spec(k)), and if φS ∈ F(S) then there
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is a finite radical morphism i : S′→ S and a unique morphism f : S′→C such that
T ( f ) = i∗φS . Pries considered the functor FG, j from irreducible k-schemes S to
sets, defined as follows: FG, j is the set of equivalence classes of G–Galois covers
φS : YS→ Spec(OS[[u−1

]]) ramified only above the horizontal divisor∞S defined
by u−1

= 0 and with constant jump j . Two such covers φS, φ
′

S are considered to
be equivalent if they are isomorphic after pullback by a finite radical morphism
S′→ S. We refer the reader to the article of Pries for more information about this
configuration space C . Pries [2002] proved that C is of dimension

r := #{e ∈ E0 : for all ν ∈ N+, pνe 6∈ E0} (55)

where E0 := {e : 1 ≤ e ≤ j, e ≡ j mod m}. Notice that by considering equiva-
lence classes of G-covers we state a local version of the G-deformation problem.
Moreover since we assume that the jump remains constant we are considering
deformations that do not split the branch locus. It would be interesting to compare
the result of Pries to our computation of H 1(G,TO) at a wild ramified point.

We calculate dimk(G,TO) as follows: According to Proposition 2.7 the tangent
space of the deformation space is generated as a k-vector space by the elements of
the form 1/x i where b ≤ i ≤ j + 1 and

b =
{

1 if p | − j − 1,
2 if p -− j − 1.

By Lemma 1.4 the Z/mZ-action on Fp is given by multiplication by ζ j where ζ
is an appropriate primitive m-th root of unity. This gives us that ζ j p

= ζ j , i.e.
j p ≡ j mod m. If di is the cocycle corresponding to the element 1/x i then

di (στσ
−1)σ

−1
= ζ j di (τ )

σ−1
.

But the element 1/x i corresponds to the element x j+1−i d/dx . The ζ−1-action is
given by

x j+1−i d
dx
7→ ζ i− j x j+1−i d

dx
.

Therefore, the action of σ on the cocycle corresponding to 1/x i is given by 1/x i
7→

ζ i (1/x i ). Thus, dimk H 1(G,TO)= dimk H 1(Z/pZ,TO)
Z/pZ is equal to

#
{

i : b ≤ i ≤ j + 1,
(

i/j
p− 1

)
= 0, i ≡ 0 mod m.

}
(56)

By (38) we have

dimk H 1(Y, πG
∗
(TX ))= 3gY − 3+

r∑
κ=1

⌈ nκ∑
i=0

(e(κ)i − 1)

e(κ)0

⌉
,
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and by computation we get

dimk H 1(Y, πG
∗
(TX ))=−3+

⌈
1+ −1

mp
+

j (p−1)
mp

⌉
.

The dimension formulas of (55) and (56) look quite different, but using Maple1 we
computed the table

p j m r dimk H 1(G,TO) dimk H 1(Y, πG
∗
(TX )) dimk D(k[ε])

13 19 6 3 3 1 4
13 35 6 5 4 9 13
13 51 6 8 8 6 14
13 36 3 12 11 10 21

7 81 3 24 23 22 45
7 90 3 26 26 24 50

We observe that r+a=dimk H 1(G,TO), where a=1, 0, and also the dimension of
H 1(Y, πG

∗
(TX )) is near the two values above. By the difference of the formulas and

by the fact that all infinitesimal deformations in H 1(Y, πG
∗
(TX )) are unobstructed

we obtain that the difference in the dimensions r and dimk D(k[ε]) can be explained
either as obstructed deformations or as deformations splitting the branch points; see
Section 1.1.
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Surfaces over a p-adic field with infinite
torsion in the Chow group of 0-cycles

Masanori Asakura and Shuji Saito

We give an example of a projective smooth surface X over a p-adic field K
such that for any prime ` different from p, the `-primary torsion subgroup of
CH0(X), the Chow group of 0-cycles on X , is infinite. A key step in the proof
is disproving a variant of the Bloch–Kato conjecture which characterizes the
image of an `-adic regulator map from a higher Chow group to a continuous
étale cohomology of X by using p-adic Hodge theory. With the aid of the theory
of mixed Hodge modules, we reduce the problem to showing the exactness of
the de Rham complex associated to a variation of Hodge structure, which is
proved by the infinitesimal method in Hodge theory. Another key ingredient is
the injectivity result on the cycle class map for Chow group of 1-cycles on a
proper smooth model of X over the ring of integers in K , due to K. Sato and the
second author.

1. Introduction

Let X be a smooth projective variety over a base field K and let CHm(X) be the
Chow group of algebraic cycles of codimension m on X modulo rational equiv-
alence. In case K is a number field, there is a folklore conjecture that CHm(X)
is finitely generated, which in particular implies that its torsion part CHm(X)tor

is finite. The finiteness question has been intensively studied by many authors,
particularly for the case m = 2 and m = dim(X); see the nice surveys [Otsubo
2001; Colliot-Thélène 1995].

When K is a p-adic field (namely the completion of a number field at a finite
place), Rosenschon and Srinivas [2007] have constructed the first example where
CHm(X)tor is infinite. They prove that there exists a smooth projective fourfold
X over a p-adic field such that the `-torsion subgroup CH1(X)[`] (see Notation
on p. 166) of CH1(X), the Chow group of 1-cycles on X , is infinite for each
` ∈ {5, 7, 11, 13, 17}.

This paper gives an example of a projective smooth surface X over a p-adic
field such that for any prime ` different from p, the `-primary torsion subgroup

MSC2000: primary 14C25; secondary 14G20, 14C30.
Keywords: Chow group, torsion 0-cycles on surface.
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CH0(X){`} (see Notation on p. 166) of CH0(X), the Chow group of 0-cycles on
X , is infinite. Here we note that for X as above, CH0(X){`} is known to always be
of finite cotype over Z`, namely the direct sum of a finite group and a finite number
of copies of Q`/Z`. This fact follows from Bloch’s exact sequence (2-3). Thus
our example presents infinite phenomena of different nature from the example in
[Rosenschon and Srinivas 2007]. Another noteworthy point is that the phenomena
discovered in our example happen rather generically.

To make it more precise, we prepare a notion of “generic surfaces” in P3. Let

M ⊂ P
(
H 0(P3

Q,OP(d)
)
∼= P

(d+3)(d+2)(d+1)/6−1
Q

be the moduli space over Q of the nonsingular surfaces in P3
Q

(the subscript Q

indicates the base field), and let

f : X−→ M

be the universal family over M . For X ⊂ P3
K , a nonsingular surface of degree d

defined over a field K of characteristic zero, there is a morphism t : SpecK → M
such that X ∼= X×M SpecK . We call X generic if t is dominant, that is, t factors
through the generic point of M . In other words, X is generic if it is defined by an
equation

F =
∑

I

aI z I , (aI ∈ K )

satisfying the following condition:

(∗) aI 6= 0 for all I and {aI /aI0}I 6=I0 are algebraically independent over Q where
I0 = (1, 0, 0, 0).

Here [z0 : z1 : z2 : z3] is the homogeneous coordinate of P3, I = (i0, . . . , i3) are
multiindices and z I

= zi0
0 · · · z

i3
3 .

The main theorem is

Theorem 1.1. Let K be a finite extension of Qp and X ⊂P3
K a nonsingular surface

of degree d ≥ 5. Suppose that X is generic and has a projective smooth model
XOK ⊂ P3

OK
over the ring OK of integers in K . Let r be the Picard number (that is

the rank of the Néron–Severi group) of the smooth special fiber of XOK . Then we
have

CH0(X){`} ∼= (Q`/Z`)
⊕r−1
⊕ (finite group)

for ` 6= p.

One can construct a surface with infinite torsion in the Chow group of 0-cycles
in the following way. Let k be the residue field of K . Let Y be a smooth surface
of degree d ≥ 5 in P3

k defined by an equation
∑

I cI z I (cI ∈ k) such that the Picard
number r ≥ 2. There exist such surfaces for each d . (For example if (p, d) = 1,
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one may choose a Fermat type surface defined by zd
0 − zd

1 + zd
2 − zd

3 . Then the
intersection of Y with the hyperplane H ⊂P3

k defined by z0− z1 is not irreducible,
so r ≥ 2.) Take any lifting c̃I ∈ OK and choose aI ∈ OK with ord(aI ) > 0 for
each index I such that {aI }I are algebraically independent over Q(c̃I ), the subfield
of K generated over Q by c̃I for all I . Let X ⊂ P3

K be the surface defined by
the equation

∑
I c̃I z I

+
∑

I aI z I . Then it is clear that X is generic and has a
smooth projective model over OK whose the special fiber is Y . Since Y has the
Picard number r ≥ 2, CH0(X) has an infinite torsion subgroup by Theorem 1.1.
It is proved in [Raskind 1989] that if the special fiber satisfies the Tate conjecture
for divisors, the geometric Picard number is congruent to d modulo 2. Thus if d
is even, CH0(X) has an infinite torsion subgroup after a suitable unramified base
change. Theorem 1.1 may be compared with the finiteness results [Colliot-Thélène
and Raskind 1991] and [Raskind 1989] on CH0(X)tor for a surface X over a p-adic
field under the assumption that H 2(X,OX )= 0 or, more generally, that the rank of
the Néron–Severi group does not change by reduction. For a nonsingular surface
X ⊂P3

K of degree d ≥ 1, the last condition is satisfied if d ≤ 3. Hence Theorem 1.1
leaves us an interesting open question whether there is an example of a nonsingular
surface X ⊂ P3

K of degree 4 for which CH0(X){`} is infinite.
A distinguished role is played in the proof of Theorem 1.1 by the `-adic regulator

map

ρX : CH2(X, 1)⊗Q` −→ H 1
cont

(
Spec(K ), H 2(X K ,Q`(2))

)
(X K = X ×K K )

from higher Chow group to continuous étale cohomology [Jannsen 1988], where
K is an algebraic closure of K and ` is a prime different from ch(K ). It is known
that the image of ρX is contained in the subspace

H 1
g (Spec(K ), V )⊂ H 1

cont(Spec(K ), V )
(
V = H 2(X K ,Q`(2))

)
introduced by Bloch and Kato [1990]. If ` 6= p this is obvious since H 1

g = H 1 by
definition. For `= p this is a consequence of a fundamental result in p-adic Hodge
theory, which confirms that every representation of G K =Gal(K/K ) arising from
the cohomology of a variety over K is a de Rham representation; see the discussion
after [Bloch and Kato 1990, (3.7.4)].

When K is a number field or a p-adic field, it is proved in [Saito and Sato 2006a]
that in case the image of ρX coincides with H 1

g (Spec(K ), V ), CH2(X){`} is finite.
Bloch and Kato conjecture that it should be always the case if K is a number field.

The first key step in the proof of Theorem 1.1 is to disprove the variant of the
Bloch–Kato conjecture for a generic surface X ⊂ P3

K over a p-adic field K (see
Theorem 3.6). In terms of Galois representations of G K = Gal(K/K ), our result
implies the existence of a 1-extension of Q`-vector spaces with continuous G K -
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action
0→ H 2(X K ,Q`(2)

)
→ E→Ql→ 0, (1-1)

such that E is a de Rham representation of G K but that there is no 1-extension of
motives over K ,

0→ h2(X)(2)→ M→ h
(
Spec(K )

)
→ 0,

which gives rise to (1-1) under the realization functor. The rough idea of the proof
of the first key result is to relate the `-adic regulator map to an analytic regulator
map by using the comparison theorem for étale and analytic cohomology and then
to show that the analytic regulator map is the zero map. With the aid of the theory
of mixed Hodge modules [Saito 1990], this is reduced to showing the exactness
of the de Rham complex associated to a variation of Hodge structure, which is
proved by the infinitesimal method in Hodge theory. This is done in Section 3
after in Section 2, we review some basic facts on the cycle class map for higher
Chow groups.

Another key ingredient is the injectivity result on the cycle class map for the
Chow group of 1-cycles on a proper smooth model of X over the ring OK of
integers in K due to Sato and the second author [Saito and Sato 2006b]. It plays
an essential role in deducing the main result, Theorem 1.1 from the first key result,
which is done in Section 4.

Finally, in the Appendix, we will apply our method to produce an example of a
curve C over a p-adic field such that SK1(C)tor is infinite.

Notation. For an abelian group M , we denote by M[n] (respectively M/n) the
kernel (respectively cokernel) of multiplication n. For a prime number ` we put

M{`} :=
⋃

n

M[`n
], Mtor :=

⊕
`

M{`}.

For a nonsingular variety X over a field, CH j (X, i) denotes Bloch’s higher Chow
groups. We write CH j (X) := CH j (X, 0) for the (usual) Chow groups.

2. Review of the cycle class map and `-adic regulator

In this section X denotes a smooth variety over a field K and n denotes a positive
integer prime to ch(K ).

By [Geisser and Levine 2001] we have the cycle class map

ci, j
ét : CHi (X, j,Z/nZ)→ H 2i− j

ét

(
X,Z/nZ(i)

)
,

where the right hand side is the étale cohomology of X with coefficients µ⊗i
n , Tate

twist of the sheaf of n-th roots of unity. The left hand side is Bloch’s higher Chow
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group with finite coefficient which fits into the exact sequence

0→ CHi (X, j)/n→ CHi (X, j,Z/nZ)→ CHi (X, j − 1)[n] → 0. (2-1)

In this paper we are only concerned with the map

cét = c2,1
ét : C H 2(X, 1,Z/nZ)→ H 3

ét
(
X,Z/nZ(2)

)
. (2-2)

By [Bloch and Ogus 1974] it is injective and its image is equal to

N H 3
ét(X,Z/nZ(2)

)
= Ker

(
H 3

ét
(
X,Z/nZ(2)

)
→ H 3

ét(Spec(K (X)
)
,Z/nZ(2)

))
,

where K (X) is the function field of X . In view of (2-1) it implies an exact sequence

0−→ CH2(X, 1)/n
cét
−→ N H 3

ét
(
X,Z/nZ(2)

)
−→ CH2(X)[n] −→ 0. (2-3)

We also need the cycle map to the continuous étale cohomology group

ccont : CH2(X, 1)−→ H 3
cont

(
X,Z`(2)

)
(see [Jannsen 1988]), where ` is a prime different from ch(K ). In case K is a
p-adic field, we have

H 3
cont

(
X,Z`(2)

)
= lim
←−

n
H 3

ét
(
X,Z/`nZ(2)

)
and ccont is induced by cét by passing to the limit. We have the Hochschild–Serre
spectral sequence

E i, j
2 = H i

cont
(
Spec(K ), H j (X K ,Z`(2))

)
⇒ H i+ j

cont (X,Z`(2)). (2-4)

If K is finitely generated over the prime subfield and X is proper smooth over K ,
the Weil conjecture proved by Deligne implies that

H 0(Spec(K ), H 3(X K ,Q`(2))
)
= 0.

The same conclusion holds if K is a p-adic field and X is proper smooth having
good reduction over K . (If ` 6= p this follows from the proper smooth base change
theorem for étale cohomology. If ` = p one uses comparison theorems between
p-adic étale and crystalline cohomology and the Weil conjecture for crystalline
cohomology) Thus we get under these assumptions the map

ρX : CH2(X, 1)−→ H 1
cont

(
Spec(K ), H 2(X K ,Q`(2))

)
(2-5)

as the composite of ccont⊗Q` and an edge homomorphism

H 3
cont(X,Q`(2))→ H 1

cont
(
Spec(K ), H 2(X K ,Q`(2))

)
.
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For later use, we need an alternative definition of cycle class maps. For an integer
i ≥ 1, we denote by Ki the sheaf on XZar, the Zariski site on X , associated to the
presheaf U 7→ Ki (U ). By [Landsburg 1991, 2.5], we have canonical isomorphisms

CH2(X, 1)' H 1
Zar(X,K2), CH2(X, 1,Z/nZ)' H 1

Zar(X,K2/n). (2-6)

Let ε ét
: X ét→ XZar be the natural map of sites and put

Hi
ét(Z/nZ(r))= Riε ét

∗
µ⊗r

n .

The universal Chern classes in the cohomology groups of the simplicial classifying
space for GLn (n ≥ 1) give rise to higher Chern class maps on algebraic K -theory;
see [Gillet 1981; Schneider 1988]. It gives rise to a map of sheaves

Ki/n −→Hi
ét(Z/nZ(i)). (2-7)

By [Merkurjev and Suslin 1982] it is an isomorphism for i = 2 and induces an
isomorphism

H 1
Zar(X,K2/n)

∼=
−→ H 1

Zar
(
X,H2

ét(Z/nZ(2))
)
. (2-8)

By the spectral sequence

E pq
2 = H p

Zar

(
X,H

q
ét(Z/nZ(2))

)
H⇒ H p+q

ét (X,Z/nZ(2)),

together with the fact
H p

Zar

(
X,H

q
ét(Z/nZ(2))

)
= 0

for p > q shown by Bloch and Ogus [1974], we get an injective map

H 1
Zar

(
X,H2

ét(Z/nZ(2))
)
−→ H 3

ét(X,Z/nZ(2)).

Again by the Bloch–Ogus theory the image of the above map coincides with the
coniveau filtration N H 3

ét(X,Z/nZ(2)). Combined with (2-6) and (2-8) we thus get
the map

cét : CH2(X, 1,Z/nZ)
∼=
−→ H 1

Zar(X,K2/n)
∼=
−→ N H 3

ét
(
X,Z/nZ(2)

) ⊂
−→ H 3

ét
(
X,Z/nZ(2)

)
.

This agrees with the map (2-2); see [Colliot-Thélène et al. 1983, Proposition 1].

Now we work over the base field K = C. Let Xan be the site on the underlying
analytic space X (C) endowed with the ordinary topology. Let εan

: Xan→ XZar be
the natural map of sites and put

H i
an(Z(r))= Riεan

∗
Z(r)

(
Z(r)=

(
2π
√
−1

)r
Z
)
.
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The higher Chern class map then gives a map of sheaves

Ki −→Hi
an(Z(i)). (2-9)

By the same argument as before, it induces a map

can : CH2(X, 1)
∼=
−→ H 1

Zar(X,K2)−→ H 3
an(X (C),Z(2)).

Lemma 2.1. The image of can is contained in F2 H 3
an(X (C),C), the Hodge filtra-

tion defined in [Deligne 1971]. In particular if X is complete, the image is the
torsion.

Proof. Let Hr
D(Z(i)) be the sheaf on XZar associated to a presheaf

U 7→ H r
D(U,Z(i))

where H•D denotes Deligne–Beilinson cohomology; see [Esnault and Viehweg
1988, 2.9]. Higher Chern class maps to Deligne–Beilinson cohomology give rise
to the map K2→H2

D(Z(2)) and can factors as in the commutative diagram

H 1
Zar(X,K2) −−−→ H 1

Zar

(
X,H2

D(Z(2))
)
−−−→ H 1

Zar

(
X,H2

an(Z(2))
)

a
y y

H 3
D(X,Z(2))

b
−−−→ H 3

an(X (C),Z(2)).

Here the map a is induced from the spectral sequence

E pq
2 = H p

Zar

(
X,H

q
D(Z(2))

)
H⇒ H p+q

D (X,Z(2))

in view of the fact that H p
Zar(X,H1

D(Z(2))) = 0 for all p > 0, since H1
D(Z(2)) ∼=

C/Z(2) (constant sheaf). Since the image of b is contained in F2 H 3
an(X (C),C)

(see [Esnault and Viehweg 1988, 2.10]), so is the image of can. �

Lemma 2.2. We have the diagram

CH2(X, 1)
can
−−−→ H 3

an
(
X (C),Z(2)

)y y
CH2(X, 1,Z/nZ)

cét
−−−→ H 3

ét

(
X,Z/nZ(2)

)
.

Here the right vertical map is the composite

H 3
an

(
X (C),Z(2)

)
→ H 3

an
(
X (C),Z(2)⊗Z/nZ

) ∼=
−→ H 3

ét
(
X,Z/nZ(2)

)
and the isomorphism comes from the comparison isomorphism between étale co-
homology and ordinary cohomology (SGA 41/2 = [Deligne 1977], Arcata, 3.5)
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together with the isomorphism

Z(1)⊗Z/nZ' (εan)∗µn

given by the exponential map.

Proof. This follows from the compatibility of (2-7) and (2-9), namely the commu-
tativity of the diagram

Ki −−−→ Hi
an

(
Z(i)

)y y
Ki/n −−−→ Hi

ét

(
Z/nZ(i)

)
,

and it follows from the compatibility of the universal Chern classes [Gillet 1981;
Schneider 1988]. �

3. Counterexample to the Bloch–Kato conjecture over p-adic field

In this section K denotes a p-adic field and let X be a proper smooth surface over
K . We fix a prime ` (possibly `= p) and consider the map (2-5)

ρX : CH2(X, 1)−→ H 1
cont(Spec(K ), V )

(
V = H 2

ét(X K ,Q`(2))
)
. (3-1)

Define the primitive part Ṽ of V by

Ṽ := H 2
ét(X K ,Q`(2))/V0, V0 = [HX ]⊗Q`(1), (3-2)

where [HX ] ∈ H 2
cont(X K ,Q`(1)) is the cohomology class of a hyperplane section.

With the notation

Ṽ ' Ker
(
H 2

ét(X K ,Q`(2))
∪[HX ]
−→ H 4

ét(X K ,Q`(3))
)
,

we get a decomposition as G K -modules:

V = Ṽ ⊕ V0. (3-3)

Let ρ̃ : CH2(X, 1)−→ H 1
cont(Spec(K ), Ṽ ) be the induced map.

Theorem 3.1. Let X ⊂P3
K be a generic smooth surface of degree d ≥ 5. Then ρ̃ is

the zero map for arbitrary `.

Remark 3.2. (1) This is an analogue of [Voisin 1995, 1.6], where she worked on
Deligne–Beilinson cohomology.

(2) Bloch and Kato [1990] considers regulator maps such as (3-1) for a smooth
projective variety over a number field and conjectures that its image coincides
with H 1

g . We will see later (see Theorem 3.6) that the variant of the conjecture
over a p-adic field is false in general.
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(3) The construction of a counterexample mentioned in (2) hinges on the assump-
tion that the surface X ⊂P3

K is generic. One may still ask whether the image
of l-adic regulator map coincides H 1

g for a proper smooth variety X over a
p-adic field when X is defined over a number field.

Proof. Let f : X→ M be as in the introduction and let t : Spec(K )→ M be a
dominant morphism such that X ' X×M Spec(K ). For a morphism S → M of
smooth schemes over Q, let fS : X S = X×M S→ S be the base change of f . The
same construction of (2-5) gives rise to the regulator map

ρS : CH2(X S, 1)→ H 1
cont(S, VS),

where VS = R2( fS)∗Ql(2) is a smooth Ql-sheaf on S. Define the primitive part of
VS ,

ṼS = R2( fS)∗Ql(2)/[H ]⊗Ql(1),

where [H ] ∈ H 0(S, R2( fS)∗Ql(1)) is the class of a hyperplane section. Let

ρ̃S : CH2(X S, 1)→ H 1
cont(S, ṼS)

be the induced map. Note that

CH2(X, 1)= lim
−→

S

CH2(X S, 1),

where S→ M ranges over the smooth morphisms which factor t : Spec(K )→ M .
We have for such S the commutative diagram

CH2(X S, 1)
ρ̃S
−−−→ H 1

cont(S, ṼS)y y
CH2(X, 1)

ρ̃
−−−→ H 1

cont(Spec(K ), Ṽ ).

Thus it suffices to show
H 1

cont(S, ṼS)= 0.

Without loss of generality we suppose S is an affine smooth variety over a finite
extension L of Q.

Claim 3.3. Assume d ≥ 4. The natural map

H 1
cont(S, ṼS)−→ H 1

ét(SQ, ṼS) (SQ := S×L Spec(Q))

is injective.

Indeed, by the Hochschild–Serre spectral sequence, it is enough to see

H 0
ét(SQ, ṼS)= 0,

which follows from [Asakura and Saito 2006b, Theorem 6.1(2)].
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By SGA 41/2, Arcata, Cor. (3.3) and (3.5.1), we have

H 1
ét(SQ, ṼS)∼= H 1

ét(SC, ṼS)' H 1
an(S(C), Ṽ an

S )⊗Ql (SC := S×L Spec(C)),

where Ṽ an
S is the primitive part of V an

S = R2( f an
S )∗Q(2)with f an

S : (X SC
)an→ (SC)an,

the natural map of sites. By definition Ṽ an
S is a local system on S(C) whose fiber

over s ∈ S(C) is the primitive part of H 2
an(Xs(C),Q(2)) for Xs , the fiber of X S→ S

over s. Due to Lemma 2.2, it suffices to show the triviality of the image of the map

ρ̃an
S : CH2(X SC

, 1)−→ H 1
an(S(C), Ṽ an

S )

which is induced from

can : CH2(X SC
, 1)−→ H 3

an(X S(C),Q(2))

by using the natural map

H 3
an(X S(C),Q(2))→ H 1

an(S(C), V an
S )

arising from the Leray spectral sequence for f an
S : (X SC

)an→ (SC)an and the van-
ishing R3( f an

S )∗Q(2)= 0.

Claim 3.4. The image of ρ̃an
S is contained in the Hodge filtration

F2 H 1
an(S(C), Ṽ an

S ⊗C)

defined by the theory of Hodge modules [Saito 1990, §4].

This follows from the functoriality of Hodge filtrations and Lemma 2.1.
It is quite complicated to describe the Hodge filtration on H 1

an(S(C), Ṽ an
S ⊗C)

precisely. However, all that we need is the following property:

Claim 3.5. For integers m, p ≥ 0 there is a natural injective map

F p H m
an(S(C), Ṽ an

S ⊗C)→ H m
Zar(SC,G p DR(Ṽ an

S ))

where G p DR(Ṽ an
S ) is the complex of Zariski sheaves on SC

F p H 2
dR(X S/S)prim⊗OSC

→ F p−1 H 2
dR(X S/S)prim⊗�

1
SC/C
→

· · · → F p−r H 2
dR(X S/S)prim⊗�

r
SC/C
→ F p−r H 2

dR(X S/S)prim⊗�
r+1
SC/C
→ · · · .

Here H•dR(X S/S) denotes the de Rham cohomology of X S/S, and H•dR(X S/S)prim

is its primitive part defined by the same way as before, and the maps are induced
from the Gauss–Manin connection thanks to Griffiths transversality.

This follows from [Asakura 2002, Lemma 4.2]. We note that its proof hinges
on the theory of mixed Hodge modules. The key points are Deligne’s compari-
son theorem [1970, §6] for algebraic and analytic cohomology of a vector bundle



p-adic surfaces with infinite torsion in the Chow group of 0-cycles 173

with integrable connection with regular singularities and the degeneration of Hodge
spectral sequence for cohomology with coefficients; see [Saito 1990, (4.1.3)].

By the above claims we are reduced to showing the exactness at the middle term
of the complex

F2 H 2
dR(X S/S)prim⊗OSC

−→ F1 H 2
dR(X S/S)prim⊗�

1
SC/C

−→ H 2
dR(X S/S)prim⊗�

2
SC/C

. (3-4)

This is proved by the infinitesimal method in Hodge theory. We sketch the proof.
Let f : X S→ S be the natural morphism. The assertion follows from the exactness
at the middle term of the complex

f∗�2
X S/S ⊗OSC

−→ (R1 f∗�1
X S/S)prim⊗�

1
SC/C
−→ R2 f∗OX S ⊗�

2
SC/C

(3-5)

and the injectivity of the complex

f∗�2
X S/S ⊗�

1
SC/C
−→ (R1 f∗�1

X S/S)prim⊗�
2
SC/C

. (3-6)

These complexes are induced by the complex (3-4) by Griffiths transversality. If

S = M ⊂ P
(
H 0(P3

Q,OP(d))
)
,

these assertions are proved as follows. Let P = C[z0, z1, z2, z3], and Pn
⊂ P

be the subspace of the homogeneous polynomials of degree n. Take a point x ∈
M(C) and choose F ∈ Pd which defines the surface corresponding to x . Let
R = C[z0, z1, z2, z3]/(∂F/∂z0, · · · , ∂F/∂z3) be the Jacobian ring and Rn

⊂ R be
the image of Pn in R. Then the fibers over x of (3-5) and (3-6) are identified with
the Koszul complexes

Rd−4
−→ R2d−4

⊗ (Rd)∗ −→ R3d−4
⊗

2
∧(Rd)∗, (3-7)

Rd−4
⊗ (Rd)∗ −→ R2d−4

⊗
2
∧(Rd)∗ (3-8)

where (Rd)∗ denotes the dual space of R and the maps are induced from the mul-
tiplication R⊗ R→ R. Then the Donagi symmetrizer lemma [Green 1994, p. 76]
implies that (3-7) is exact at the middle term if d ≥ 5 and (3-8) is injective if
d ≥ 3, which proves the desired assertion in case S=M . The assertion in case S is
dominant over M is reduced to the case S=M by an easy argument; see [Asakura
and Saito 2006a, §9]. This completes the proof of Theorem 3.1. �

Let OK ⊂ K be the ring of integers and k be the residue field. In order to construct
an example where the image of the regulator map

ρX : CH2(X, 1)
ρX
−→ H 1

cont(Spec(K ), V )
(
V = H 2

ét(X K ,Q`(2))
)
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is not equal to H 1
g (Spec(K ), V ), we now take a proper smooth surface X having

good reduction over K so that X has a proper smooth model XOK over Spec(OK ).
We denote the special fiber by Y . By [Langer and Saito 1996, p. 341, diagram
below 5.7], there is a commutative diagram

CH2(X, 1)
ρ̃

−−−→ H 1
g (Spec(K ), V )y∂ y

CH1(Y )
α

−−−→ H 1
cont(Spec(K ), V )/H 1

f (Spec(K ), V )

(3-9)

where H 1
f ⊂ H 1

g ⊂ H 1
cont are the subspaces introduced by Bloch and Kato [1990]

and ∂ is a boundary map in localization sequence for higher Chow groups.

Theorem 3.6. Let X ⊂ P3
K be a generic smooth surface of degree d ≥ 5. Assume

that X has a projective smooth model XOK ⊂ P3
OK

over OK and let Y ⊂ P3
k be its

special fiber.

(1) The image of ∂⊗Q is contained in the subspace of CH1(Y )⊗Q generated by
the class [HY ] of a hyperplane section of Y .

(2) Let r be the Picard number of Y . Then

dimQ`

(
H 1

g (Spec(K ), V )/Image(ρX )
)
≥ r − 1.

Proof. Recall V = Ṽ ⊕ V0, a decomposition as G K -modules; see (3-3). Let W ⊂
C H 2(X, 1) be the image of Z·[HX ]⊗K× under the product map CH1(X)⊗K×→
CH2(X, 1). Then it is easy to see ρX induces an isomorphism

W ⊗Q` ' H 1
g (Spec(K ), V0)= H 1

cont(Spec(K ), V0)

and that ∂(W )=Z·[HY ]⊂CH1(Y ). Hence (1) follows from Theorem 3.1 together
with injectivity of α in (3-9), proved by [Langer and Saito 1996, Lemma 5–7].

As for (2) we first note from [Bloch and Kato 1990, 3.9] that

dimQ`

(
H 1

cont(Spec(K ), V0)/H 1
f (Spec(K ), V0)

)
= 1.

Moreover the same argument (except using the Tate conjecture) in the last part of
[Langer and Saito 1996, §5] shows

dimQ`
(CH1(Y )⊗Q`)≤ dimQ`

(H 1
g (Spec(K ), V )/H 1

f (Spec(K ), V )).

Hence (2) follows from (1). �

Remark 3.7. Let the assumption be as in Theorem 3.6. Then

dimQ`

(
H 1

g (Spec(K ), V )/Image(ρX )
)
≥

{
r−1, ` 6= p,

r−1+(h0,2
+h1,1

−1)[K :Qp], `= p,
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where h p,q
:=dimK Hq(X, �p

X/K ) denotes the Hodge number. Moreover the equal-
ity holds if and only if the Tate conjecture for divisors on Y holds. This follows
from Theorem 3.1 and the computation of dimQ`

H 1
g (Spec(K ), V ) using [Bloch

and Kato 1990, 3.8 and 3.8.4]. The details are omitted.

4. Proof of Theorem 1.1

Let K be a p-adic field and OK ⊂ K the ring of integers and k the residue field.
Let us consider schemes

X
j

−−−→ XOK ←−−−
i

Yy y y
Spec(K ) −−−→ Spec(OK ) ←−−− Spec(k)

where all vertical arrows are projective and smooth of relative dimension 2 and
the diagrams are Cartesian. We have a boundary map in localization sequence for
higher Chow groups with finite coefficients

∂ : CH2(X, 1,Z/nZ)→ CH1(Y )/n.

For a prime number `, it induces

∂` : CH2(X, 1,Q`/Z`)→ CH1(Y )⊗Q`/Z`,

where CH2(X, 1,Q`/Z`) := lim
−→

n
CH2(X, 1,Z/`nZ).

Theorem 4.1. For ` 6= p := ch(k), ∂` is surjective and has finite kernel. Hence we
have

CH2(X, 1,Q`/Z`)∼= (Q`/Z`)
⊕r
+ (finite group),

where r is the rank of CH1(Y ).

Theorem 1.1 is an immediate consequence of Theorem 3.6(1), Theorem 4.1, and
the exact sequence (2-1)

0→ CH2(X, 1)⊗Q`/Z`→ CH2(X, 1,Q`/Z`)→ CH2(X){`} → 0.

Proof of Theorem 4.1. Write 3=Q`/Z`. We have a commutative diagram

CH2(X, 1,3)
∂

−−−→CH1(Y )⊗3
i∗
−−−→CH2(XOK )⊗3

j∗
−−−→CH2(X)⊗3yc1

yc2

yc3

yc4

H 3
ét(X,3(2))

∂ét
−−−→H 2

ét(Y,3(1))
i∗
−−−→H 4

ét(XOK ,3(2))
j∗ét

−−−→H 4
ét(X,3(2)).
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Here the upper exact sequence arises from the localization theory for higher Chow
groups with finite coefficient, as in [Levine 2001, Theorem 1.7], and the lower
from the localization theory for étale cohomology together with absolute purity
[Fujiwara 2002]. The vertical maps are étale cycle class maps. By Equation (2-3),
c1 is injective. Since

CH1(Y )= H 1(Y,Gm),

c2 is injective by the Kummer theory. It is shown in [Saito and Sato 2006b] that
c3 is an isomorphism. Hence the diagram reduces the proof of Theorem 4.1 to
showing that Ker(∂ét) and Ker( j∗ét) are finite. This is an easy consequence of the
proper base change theorem for étale cohomology and the Weil conjecture [Deligne
1980]. For the former we also use an exact sequence

H 3
ét(XOK ,3(2))→ H 3

ét(X,3(2))
∂ét
−→ H 2

ét(Y,3(1)). �

Appendix. SK1 of curves over p-adic fields

Let C be a proper smooth curve over a field K and consider CH2(C, 1). By [Lands-
burg 1991, 2.5], we have an isomorphism

CH2(C, 1)' H 1
Zar(C,K2)' SK1(C).

By definition

SK1(C)= Coker
(

K2(K (C))
δ
−→

⊕
x∈C0

K (x)×
)
,

where K (C) is the function field of C , C0 is the set of the closed points of C , and
K (x) is the residue field of x ∈C0, and δ is given by the tame symbols. The norm
maps K (x)×→ K× for x ∈ C0 induce

NC/K : SK1(C)→ K×.

We write V (C)= Ker(NC/K ).
When K is a p-adic field, it is known by class field theory for curves over a local

field [Saito 1985] that V (C) is a direct sum of its maximal divisible subgroup and a
finite group. An interesting question is whether the divisible subgroup is uniquely
divisible, or equivalently whether SK1(C)tor is finite. In case the genus g(C)= 1,
confirmative results have been obtained in [Sato 1985; Asakura 2006]. The purpose
of this section is to show that the method in the previous sections gives rise to an
example of a curve C of g(C)≥ 2 such that SK1(C)tor is infinite.

Let C be as in the beginning of this section and let n be a positive integer prime
to ch(K ). We have the cycle class map

cét : CH2(C, 2,Z/nZ)→ H 2
ét(C,Z/nZ(2)).
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The main result of [Merkurjev and Suslin 1982] implies that the above map is an
isomorphism. In view of the exact sequence (compare (2-1))

0→ CH2(C, 2)/n→ CH2(C, 2,Z/nZ)→ SK1(C)[n] → 0,

we get the exact sequence

0→ CH2(C, 2)/n→ H 2
ét(C,Z/nZ(2))→ SK1(C)[n] → 0; (A-2)

see [Suslin 1985, 23.4]. We will also use cycle class map to continuous étale
cohomology

ccont : CH2(C, 2)⊗Q`→ H 2
cont(C,Q`(2))

where ` is any prime number different from ch(K ). When K is a p-adic field, one
easily shows

H 2
cont(C,Q`(2))' H 1

cont
(
Spec(K ), H 1

ét(CK ,Q`(2))
)

(A-3)

by using the Hochschild–Serre spectral sequence (2-4). Hence we get the map

ρC : CH2(C, 2)⊗Q`→ H 1
cont

(
Spec(K ), H 1

ét(CK ,Q`(2))
)
. (A-4)

Note that ρC is trivial if C has good reduction and ` 6= p, since the group on the
right hand side is trivial. The last fact is a consequence of the proper smooth base
change theorem for étale cohomology and the weight argument.

Let Mg be the moduli space of tricanonically embedded projective nonsingular
curves of genus g ≥ 2 over the base field Q (compare [Deligne and Mumford
1969]), and let f : C→ Mg be the universal family.

Definition A.2. Let C be a proper smooth curve over a field K of characteristic
zero. We say C is generic if there is a dominant morphism Spec(K )→ Mg such
that C ∼= C×Mg Spec(K ).

Theorem A.3. Let K be a p-adic field and let C be a generic curve of genus g ≥ 2
over K . Then ρC is the zero map for all `. We have an isomorphism

SK1(C)tor ∼= H 2
ét(C,Q/Z(2))

(
:= lim
−→

n
H 2

ét(C,Z/nZ(2))
)
.

Remark A.4. Theorem A.3 is comparable with the main result of [Green and
Griffiths 2002] where they worked on Deligne–Beilinson cohomology.

Proof. The second assertion follows easily from the first in view of Equation (A-2).
The first assertion is shown by the same method as the proof of Theorem 3.1, with
the following fact from [Green and Griffiths 2002, §3] noted. Let S→ Mg be a
dominant smooth morphism, and put f : CS := C×Mg S→ S, then the map

f∗�1
CS/S −→ R1 f∗OCS ⊗�

1
S/Q
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induced from the Gauss–Manin connection is injective. �

Corollary A.5. Let C be as in Theorem A.3. Assume the Jacobian variety J (C)
has semistable reduction over K . Let J be the Néron model of J with Js , its special
fiber. Let r be the dimension of the maximal split torus in Js . For a prime `, we
have

SK1(C){`} ' (Q`/Z`)
r` ⊕ (finite group),

where r` = r for ` 6= p and rp = r + 2g[K :Qp].

For example, SK1(C){`} is infinite for any ` if C is a Mumford curve (a proper
smooth curve with semistable reduction over K such that the irreducible compo-
nents are isomorphic to P1

k and intersect each other at k-rational points, where k is
the residue field of K ), which is generic in the sense of Definition A.2.

Corollary A.5 follows from Theorem A.3 and the next result:

Lemma A.6. Let C be proper smooth curve over a p-adic field K . Assume J (C)
has semistable reduction over K and let r` be as above. Then

dimQ`
H 2

cont(C,Q`(2))= dimQ`
H 1

cont(Spec(K ), V )= r`.
(
V = H 1

ét(CK ,Q`(2))
)
.

Proof. The first equality follows from (A-3). By [Jannsen 1989, p. 354–355, Th. 5
and Cor. 7], we have

H 0
cont(Spec(K ), V )= 0, dimQ`

H 2
cont(Spec(K ), V )= r.

Lemma A.6 now follows from the computation of Euler–Poincaré characteristic
given in [Serre 1965, II 5.7]. �

Remark A.7. Using [Bloch and Kato 1990, 3.8.4] and the Gal(K/K )-module
structure of the Tate module of an abelian variety over K (see [Grothendieck 1972,
exposé IX]), one can show that

H 1
cont(Spec(K ), V )= H 1

g (Spec(K ), V ).

Hence, if C is a generic curve of genus greater than or equal to 2, then the map
ρC in Equation (A-4) does not surject onto H 1

g if r` ≥ 1. This gives another coun-
terexample to a variant of the Bloch–Kato conjecture for p-adic fields.
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Singular homology of arithmetic schemes
Alexander Schmidt

We construct a singular homology theory on the category of schemes of finite
type over a Dedekind domain and verify several basic properties. For arithmetic
schemes we construct a reciprocity isomorphism between the integral singular
homology in degree zero and the abelianized modified tame fundamental group.

1. Introduction

The objective of this paper is to construct a reasonable singular homology theory
on the category of schemes of finite type over a Dedekind domain. Our main
criterion for “reasonable” was to find a theory which satisfies the usual properties of
a singular homology theory and which has the additional property that, for schemes
of finite type over Spec(Z), the group h0 serves as the source of a reciprocity map
for tame class field theory. In the case of schemes of finite type over finite fields
this role was taken over by Suslin’s singular homology; see [Schmidt and Spieß
2000]. In this article we motivate and give the definition of the singular homology
groups of schemes of finite type over a Dedekind domain and we verify basic
properties, e.g. homotopy invariance. Then we present an application to tame class
field theory.

The (integral) singular homology groups h∗(X) of a scheme of finite type over
a field k were defined by A. Suslin as the homology of the complex C∗(X) whose
n-th term is given by

Cn(X)= group of finite correspondences 1n
k −→ X,

where 1n
k = Spec(k[t0, . . . , tn]/

∑
ti = 1) is the n-dimensional standard simplex

over k and a finite correspondence is a finite linear combination
∑

ni Zi where
each Zi is an integral subscheme of X ×1n

k such that the projection Zi → 1n
k

is finite and surjective. The differential d : Cn(X)→ Cn−1(X) is defined as the
alternating sum of the homomorphisms which are induced by the cycle theoretic
intersection with the 1-codimensional faces X ×1n−1

k in X ×1n
k . This definition

(see [Suslin and Voevodsky 1996]) was motivated by the theorem of Dold–Thom
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in algebraic topology. If X is an integral scheme of finite type over the field C

of complex numbers, then Suslin and Voevodsky show that there exists a natural
isomorphism

h∗(X,Z/nZ)∼= H sing
∗ (X (C),Z/nZ)

between the algebraic singular homology of X with finite coefficients and the topo-
logical singular homology of the space X (C). If X is proper and of dimension d,
singular homology is related to the higher Chow groups of [Bloch 1986] by the
formula hi (X) = CHd(X, i) [Voevodsky 2000]. A sheafified version of the pre-
ceding definition leads to the “triangulated category of motivic complexes” (ibid.),
which, mainly due to the work of Voevodsky, Suslin and Friedlander, has become
a powerful categorical framework for motivic (co)homology theories.

If the field k is finite and if X is an open subscheme of a projective smooth
variety over k, then we have the following relation to class field theory: there
exists a natural reciprocity homomorphism

rec : h0(X)−→ π t
1(X)

ab

from the 0-th singular homology group to the abelianized tame fundamental group
of X . The homomorphism rec is injective and has a uniquely divisible cokernel (see
[Schmidt and Spieß 2000] or Theorem 8.7 below for a more precise statement).

This connection to class field theory was the main motivation of the author to
study singular homology of schemes of finite type over Dedekind domains. Let
S = Spec(A) be the spectrum of a Dedekind domain and let X be a scheme of
finite type over S. The naive definition of singular homology as the homology of
the complex whose n-th term is the group of finite correspondences 1n

S → X is
certainly not the correct one. For example, according to this definition, we would
have h∗(U ) = 0 for any open subscheme U $ S. Philosophically, a “standard
n-simplex” should have dimension n but 1n

S is a scheme of dimension (n+ 1).
If the Dedekind domain A is finitely generated over a field, then one can define

the homology of X as its homology regarded as a scheme over this field.
The striking analogy between number fields and function fields in one variable

over finite fields, as it is known from number theory, led to the philosophy that it
should be possible to consider any Dedekind domain A, i.e. also if it is of mixed
characteristic, as a curve over a mysterious “ground field” F(A). In the case A=Z

this “field” is sometimes called the “field with one element” F1. A more pre-
cise formulation of this idea making the philosophy into real mathematics and, in
particular, a reasonable intersection theory on “Spec(Z⊗F1 Z)” would be of high
arithmetic interest. With respect to singular homology, this philosophy predicts
that, for a scheme X of finite type over Spec(A), the groups h∗(X) should be the
homology groups of a complex whose n-th term is given as the group of finite
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correspondences 1n
F(A)→ X . Unfortunately, we do not have a good definition of

the category of schemes over F(A). To overcome this, let us take a closer look on
the situation of schemes of finite type over a field.

Let k be a field, C a smooth proper curve over k and let X be any scheme of
finite type over k together with a morphism p : X → C . Consider the complex
C∗(X;C) whose n-th term is given as

Cn(X;C)= free abelian group over closed integral subschemes Z ⊂ X ×1n
k =

X×C 1
n
C such that the restriction of the projection X×C 1

n
C→1n

C
to Z induces a finite morphism Z→ T ⊂1n

C onto a closed integral
subscheme T of codimension 1 in1n

C intersecting all faces1m
C ⊂1

n
C

properly.

Then we have a natural inclusion

C∗(X) ↪−→ C∗(X;C)

and the definition of C∗(X;C) only involves the morphism p : X→ C but not the
knowledge of k. Moreover, if X is affine, then both complexes coincide.

So, in the general case, having no theory of schemes over “F(A)” at hand, we use
the above complex in order to define singular homology. With the case S=Spec(Z)
as the main application in mind, we define the singular homology of a scheme of
finite type over the spectrum S of a Dedekind domain as the homology h∗(X; S)
of the complex C∗(X; S) whose n-th term is given by

Cn(X; S)= free abelian group over closed integral subschemes Z⊂ X×S1
n
S such

that the restriction of the projection X ×S 1
n
S→1n

S to Z induces a
finite morphism Z → T ⊂ 1n

S onto a closed integral subscheme T
of codimension 1 in 1n

S intersecting all faces 1m
S ⊂1

n
S properly.

In this paper we collect evidence that the so-defined groups h∗(X; S) establish a
reasonable homology theory on the category of schemes of finite type over S.

The groups h∗(X; S) are covariantly functorial with respect to scheme mor-
phisms and, on the category of smooth schemes over S, they are functorial with
respect to finite correspondences. If the structural morphism p : X → S factors
through a closed point P of S, then our singular homology coincides with Suslin’s
singular homology of X considered as a scheme over the field k(P).

In Section 3, we calculate the singular homology h∗(X; S) if X is regular and of
(absolute) dimension 1. The result is similar to that for smooth curves over fields.
Let X be a regular compactification of X over S and Y = X − X . Then

hi (X; S)∼= H 1−i
Zar (X ,GX ,Y ),

where GX ,Y = ker(Gm,X → i∗Gm,Y ).
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In Section 4, we investigate homotopy invariance. We show that the natural
projection X ×S A1

S→ X induces an isomorphism on singular homology. We also
show that the bivariant singular homology groups h∗(X, Y ; S) (see Section 2 for
their definition) are homotopy invariant with respect to the second variable.

In Section 5, we give an alternative characterization of the group h0, which
implies, when X is proper over S, a natural isomorphism h0(X; S) ∼= CH0(X),
where CH0(X) is the group of zero-cycles on X modulo rational equivalence.
Furthermore, we can verify the exactness of at least a small part of the expected
Mayer–Vietoris sequence associated to a Zariski-open cover of a scheme X .

For a proper, smooth (regular?) scheme X of absolute dimension d over the
spectrum S of a Dedekind domain, singular homology should be related to motivic
cohomology, defined for example by [Voevodsky 1998], by the formula

hi (X; S)∼= H 2d−i
Mot (X,Z(d)).

For schemes over a field k, this formula has been proven by Voevodsky under the
assumption that k admits resolution of singularities. In the situation of schemes
over the spectrum of a Dedekind domain it is true if X is of dimension 1 (Section 3).
For a general X it should follow from the fact that each among the following
complex homomorphisms is a quasi-isomorphism. The occurring complexes are
in each degree the free group over a certain set of cycles and we only write down
this set of cycles and also omit the necessary intersection conditions with faces.

C∗(X; S)y(1)
(Z ⊂ X ×Ad

×1n projects finitely onto a codimension 1 subscheme in Ad
×1n)x(2)

(Z ⊂ X ×Ad
×1n projects finitely onto a codimension 1 subscheme T ⊂ Ad

×1n

such that the projection T →1n is equidimensional of relative dimension (d − 1))y(3)
(Z ⊂ X ×Ad

×1n equidimensional of relative dimension (d − 1) over 1n)x(4)
(Z ⊂ X ×Ad

×1n projects quasifinite and dominant to X ×1n)y(5)
HMot(X,Z(d)[2d])
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It follows from the homotopy invariance of the bivariant singular homology groups
in the second variable, proven in Section 4, that (1) is a quasi-isomorphism. The
statement that the other occurring homomorphisms are also quasi-isomorphisms is
completely hypothetical at the moment. However, it is, at least partly, suggested
by the proof of the corresponding formula over fields; see [Voevodsky 2000, The-
orem 4.3.7; Friedlander and Voevodsky 2000, Theorems 7.1 and 7.4].

We give the following application of singular homology to higher dimensional
class field theory. Let X be a regular connected scheme, flat and of finite type
over Spec(Z). Sending a closed point of x of X to its Frobenius automorphism
Frobx ∈ π

et
1 (X)

ab, we obtain a homomorphism

r : Z0(X)−→ π et
1 (X)

ab

from the group Z0(X) of zero-cycles on X to the abelianized étale fundamental
group π et

1 (X)
ab. The homomorphism r is known to have dense image. Assume for

simplicity that the set X (R) of real-valued points of X is empty. If X is proper,
then r factors through rational equivalence, defining a reciprocity homomorphism
rec :CH0(X)−→ π et

1 (X)
ab. The main result of the so-called unramified class field

theory for arithmetic schemes of Bloch and Kato–Saito [Kato and Saito 1983; Saito
1985] states that rec is an isomorphism of finite abelian groups.

If X is not proper, r no longer factors through rational equivalence. However,
consider the composite map

r ′ : Z0(X)
r
−→ π et

1 (X)
ab
−→−→ π t

1(X)
ab,

where π t
1(X)

ab is the quotient of π et
1 (X)

ab which classifies finite étale coverings of
X with at most tame ramification “along the boundary of a compactification” (see
Section 6). We show that r ′ factors through h0(X)= h0(X;Spec(Z)), defining an
isomorphisms

rec : h0(X)−→∼ π t
1(X)

ab

of finite abelian groups. Hence the singular homology group h0(X) takes over the
role of CH0(X) if the scheme X is not proper.

This article was motivated by the work of A. Suslin, V. Voevodsky and E.M.
Friedlander on algebraic cycle theories for varieties over fields. The principal ideas
underlying this paper originate from discussions with Michael Spieß during the
preparation of our article [Schmidt and Spieß 2000]. The analogy between number
fields and function fields in one variable over finite fields predicted that there should
be a connection between the, yet to be defined, singular homology groups of a
scheme of finite type over Spec(Z) and its tame fundamental group, similar to that
we had proven for varieties over finite fields. The author wants to thank M. Spieß
for fruitful discussions and for his remarks on a preliminary version of this paper.
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The bulk of this article was part of the author’s Habilitationschrift at Heidelberg
University, seven years ago. However, I could not decide on publishing the material
before the envisaged application to class field theory was established. This is the
case now.

2. Preliminaries

Throughout this article we consider the category Sch(S) of separated schemes of
finite type over a regular connected and Noetherian base scheme S. Quite early,
we will restrict to the case that S is the spectrum of a Dedekind domain, which is
the main case of our arithmetic application. We write X×Y = X×S Y for the fibre
product of schemes X, Y ∈ Sch(S). Unless otherwise specified, all schemes will
be assumed equidimensional.

Slightly modifying the approach of [Fulton 1998, Section 20.1], we define the
(absolute) dimension of an integral scheme X ∈ Sch(S) in the following way. Let
d be the Krull dimension of S, K (X) the field of functions of X and T the closure
of the image of X in S. Then we put

dim X = trdeg(K (X)|K (T ))− codimS(T )+ d.

Examples 2.1. (1) Let S = Spec(Zp) and consider X = Spec(Zp[T ]/pT − 1)∼=
Spec(Qp), a divisor on A1

S = Spec(Zp[T ]). Then dim X = 1 in our terminol-
ogy, while dimKrull X = 0.

(2) The above notion of dimension coincides with the usual Krull dimension if
• S is the spectrum of a field,
• S is the spectrum of a Dedekind domain with infinitely many different

prime ideals (e.g. the ring of integers in a number field).

Note that this change in the definition of dimension does not affect the notion
of codimension. For a proof of the following lemma we refer to [Fulton 1998,
Lemma 20.1].

Lemma 2.2. (i) Let U ⊂ X be a nonempty open subscheme. Then

dim X = dim U.

(ii) Let Y be a closed integral subscheme of the integral scheme X over S. Then

dim X = dim Y + codimX (Y ).

(iii) If f : X→ X ′ is a dominant morphism of integral schemes over S, then

dim X = dim X ′+ trdeg(K (X)|K (X ′)).

In particular, dim X ′ ≤ dim X with equality if and only if K (X) is a finite
extension of K (X ′).
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Recall that a closed immersion i : Y −→ X is called a regular imbedding of
codimension d if every point y of Y has an affine neighbourhood U in X such that
the ideal in OU defining Y ∩U is generated by a regular sequence of length d. We
say that two closed subschemes A and B of a scheme X intersect properly if

dim W = dim A+ dim B− dim X

(or, equivalently, codimX W = codimX A+ codimX B) for every irreducible com-
ponent W of A ∩ B. In particular, an empty intersection is proper. Suppose that
the immersion A → X is a regular imbedding. Then an inductive application
of Krull’s principal ideal theorem shows that every irreducible component of the
intersection A ∩ B has dimension greater or equal to dim A+ dim B − dim X . In
this case improper intersection means that one of the irreducible components of the
intersection has a too large dimension. If B is a cycle of codimension 1, then the
intersection is proper if and only if B does not contain an irreducible component
of A.

The group of cycles Z r (X) (resp. Zr (X)) of a scheme X is the free abelian group
generated by closed integral subschemes of X of codimension r (resp. of dimension
r ). For a closed immersion i : Y → X , we have obvious maps i∗ : Zr (Y )→ Zr (X)
for all r . If i is a regular imbedding, we have a pullback map

i∗ : Z r (X)′ −→ Z r (Y ),

where Z r (X)′ ⊂ Z r (X) is the subgroup generated by closed integral subschemes
of X meeting Y properly. The map i∗ is given by

i∗(V )=
∑

i

ni Wi ,

where the Wi are the irreducible components of i−1(V ) = V ∩ Y and the ni are
the intersection multiplicities. For the definition of these multiplicities we refer to
[Fulton 1998, Section 6] (or, alternatively, one can use Serre’s Tor-formula [Serre
1965]).

The standard n-simplex1n
=1n

S over S is the closed subscheme in An+1
S defined

by the equation t0+· · ·+ tn = 1. We call the sections vi : S→1n
S corresponding to

ti = 1 and t j = 0 for j 6= i the vertices of 1n
S . Each nondecreasing map ρ : [m] =

{0, 1, . . . ,m} −→ [n] = {0, 1, . . . , n} induces a scheme morphism

ρ :1m
−→1n

defined by ti 7→
∑

ρ( j)=i t j . If ρ is injective, we say that ρ(1m
S )⊂1

n
S is a face. If

ρ is surjective, ρ is a degeneracy. In this way 1•S becomes a cosimplicial scheme.
Further note that all faces are regular imbeddings.

The following definition was motivated in the introduction.
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Definition 2.3. For X in Sch(S) and n ≥ 0, the group Cn(X; S) is the free abelian
group generated by closed integral subschemes Z of X×1n such that the restriction
of the canonical projection

X ×1n
→1n

to Z induces a finite morphism p : Z→T ⊂1n onto a closed integral subscheme T
of codimension d = dim S in 1n which intersects all faces properly. In particular,
such a Z is equidimensional of dimension n.

Remarks 2.4. (1) If the structural morphism X → S factors through a finite
morphism S′→ S with S′ regular, then Cn(X; S)= Cn(X; S′). In particular,
if S′ = {P} is a closed point of S, i.e. if X is a scheme of finite type over
Spec(k(P)), then Cn(X; S) = Cn(X; k(P)) is the n-th term of the singular
complex of X defined by Suslin.

(2) If S is of dimension 1 (and regular and connected), then a closed integral
subscheme T of codimension d = 1 in 1n

S intersects all faces properly if and
only if it does not contain any face. If the image of X in S omits at least one
closed point of S, then this condition is automatically satisfied.

Let Z be a closed integral subscheme of X ×1n which projects finitely and
surjectively onto a closed integral subscheme T of codimension d in 1n . Assume
that T has proper intersection with all faces, i.e. Z defines an element of Cn(X; S).
Let 1m ↪→1n be a face. Since the projection

Z ×1n
X
1m

X −→ T ×1n 1m

is finite, each irreducible component of Z ∩ X×1m has dimension at most m. On
the other hand, a face is a regular imbedding and therefore all irreducible compo-
nents of Z ∩ X ×1m have exact dimension m and project finitely and surjectively
onto an irreducible component of T ∩1m . Thus the cycle theoretic inverse image
i∗(Z) is well defined and is in Cm(X; S). Furthermore, degeneracy maps are flat,
and thus we obtain a simplicial abelian group C•(X; S). We use the same notation
for the associated chain complex which (in the usual way) is constructed as follows.

Consider the 1-codimensional face operators

d i
:1n−1

−→1n, i = 0, . . . , n,

defined by setting ti = 0, and define the complex (concentrated in positive homo-
logical degrees)

C•(X; S), dn =

n∑
i=0

(−1)i (d i )∗ : Cn(X; S)→ Cn−1(X; S).
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Definition 2.5. We call C•(X; S) the singular complex of X . Its homology groups
(or likewise the homotopy groups of C•(X; S) considered as a simplicial abelian
group)

hi (X; S)= Hi (C•(X; S))
(
= πi (C•(X; S))

)
are called the (integral) singular homology groups of X .

From Remark 2.4(1) above, we obtain:

Lemma 2.6. Assume that the structural morphism X → S factors through a finite
morphism S′→ S with S′ regular. Then for all i ,

hi (X; S)= hi (X; S′).

Examples 2.7. (1) If k is a field and S = Spec(k), then the above definition of
hi (X) coincides with that of the singular homology of X defined by Suslin.

(2) C•(X; S) is a subcomplex of Bloch’s complex zr (X, •), where r = dim X ,
and C•(S; S) coincides with the Bloch complex zd(S, •). In particular,

hi (S; S)= CHd(S, i),

where the group on the right is the higher Chow group defined by Bloch.
Note that in [Bloch 1986], Bloch defined his higher Chow groups only for
equidimensional schemes over a field, but there is no problem with extending
his construction at hand.

The push-forward of cycles makes C•(X; S) and thus also hi (X; S) covari-
antly functorial on Sch(S). Furthermore, it is contravariant under finite flat mor-
phisms. Given a finite flat morphism f : X ′ → X , we thus have induced maps
f∗ : h•(X ′; S)→ h•(X; S) and f ∗ : h•(X; S)→ h•(X ′; S), which are connected
by the formula

f∗ ◦ f ∗ = deg( f ) · idh•(X;S).

In addition, we introduce bivariant homology groups. Let Y be equidimensional,
of finite type and flat over S. If X × Y is empty, we let C•(X, Y ; S) be the triv-
ial complex. Otherwise, X × Y it is a scheme of dimension dim X + dim Y − d
(as before, d = dim S) and we consider the group Cn(X, Y ; S) which is the free
abelian group generated by closed integral subschemes in X × Y ×1n such that
the restriction of the canonical projection

X × Y ×1n
→ Y ×1n

to Z induces a finite morphism p : Z → T ⊂ Y ×1n onto a closed integral sub-
scheme T of codimension d in Y ×1n which intersects all faces Y ×1m properly.
In particular, such a Z is equidimensional of dimension dim Y+n−d . Further, for
a closed subscheme Y ′ ⊂ Y , consider the subgroup CY ′

n (X, Y ; S) ⊂ Cn(X, Y ; S),
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which is the free abelian group generated by closed integral subschemes of X ×
Y ×1n such that the restriction of the canonical projection

X × Y ×1n
→ Y ×1n

to Z induces a finite morphism p : Z → T ⊂ Y × 1n onto a closed integral
subscheme T of codimension d in Y ×1n which intersects all faces Y ×1m and
all faces Y ′×1m properly.

In the same way as before, we obtain the complex C•(X, Y ; S), which contains
the subcomplex CY ′

•
(X, Y ; S).

Definition 2.8. We call C•(X, Y ; S) the bivariant singular complex and its homol-
ogy groups

hi (X, Y ; S)= Hi (C•(X, Y ; S))

the bivariant singular homology groups.

Note that C•(X, S; S)=C•(X; S) and hi (X, S; S)= hi (X; S). By pulling back
cycles, a flat morphism Y ′→ Y induces a homomorphism of complexes

C•(X, Y ; S)−→ C•(X, Y ′; S).

If Y ′ ↪→ Y is a regular imbedding, we get a natural homomorphism

CY ′
•
(X, Y ; S)−→ C•(X, Y ′; S).

Consider the complex of presheaves C•(X; S) which is given on open subschemes
U ⊂ S by

U 7−→ C•(X,U ; S).

This is already a complex of Zariski-sheaves on S.

Definition 2.9. By hi (X; S) we denote the cohomology sheaves of the complex
C•(X; S). Equivalently, hi (X; S) is the Zariski sheaf on S associated to

U 7−→ hi (X,U ; S).

(The sheaves hi play a similar role as Bloch’s higher Chow sheaves [Bloch 1986].)

Now assume that X and Y are smooth over S. By c(X, Y ) we denote the free
abelian group generated by integral closed subschemes W ⊂ X × Y which are
finite over X and surjective over a connected component of X . An element in
c(X, Y ) is called a finite correspondence from X to Y . If X1, X2, X3 is a triple
of smooth schemes over S, then, by [Voevodsky 2000, Section 2], there exists a
natural composition c(X1, X2)×c(X2, X3)→ c(X1, X3). Therefore one can define
a category SmCor(S) whose objects are smooth schemes of finite type over S and
morphisms are finite correspondences. The category Sm(S) of smooth schemes of
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finite type over S admits a natural functor to SmCor(S) by sending a morphism to
its graph.

Let X and Y be smooth over S, let φ ∈ c(X, Y ) be a finite correspondence and
let ψ ∈ Cn(X, S). Consider the product X × Y × 1n and let p1, p2, p3 be the
corresponding projections. Then the cycles (p1× p3)

∗(ψ) and (p1× p2)
∗(φ) are

in general position. Let ψ∗φ be their intersection. Since φ is finite over X and ψ is
finite over1n , we can define the cycle φ ◦ψ as (p2× p3)∗(φ∗ψ). The cycle φ ◦ψ
is in Cn(Y ; S), and so we obtain a natural pairing c(X, Y )×C•(X; S)→C•(Y ; S).
We obtain the following:

Proposition 2.10. For schemes X , Y that are smooth over S, there exist natural
pairings for all i

c(X, Y )⊗ hi (X; S)−→ hi (Y ; S)

making singular homology into a covariant functor on the category SmCor(S).

3. Singular homology of curves

We start this section by recalling some notions and lemmas from [Suslin and Vo-
evodsky 1996]. Let X be a scheme and let Y be a closed subscheme of X . Set
U = X −Y and denote by i : Y −→ X , j :U −→ X the corresponding closed and
open embeddings.

We denote by Pic(X, Y ) (the relative Picard group) the group whose elements
are isomorphism classes of pairs of the form (L , φ), where L is a line bundle on
X and φ : L|Y ∼= OY is a trivialization of L over Y , and the operation is given by
the tensor product. There is an evident exact sequence

0(X,O×X )−→ 0(Y,O×Y )−→ Pic(X, Y )−→ Pic(X)−→ Pic(Y ). (1)

We also use the notation GX (or Gm) for the sheaf of invertible functions on X and
we write GX,Y for the sheaf on X which is defined by the exact sequence

0−→ GX,Y −→ GX −→ i∗(GY )−→ 0.

By [Suslin and Voevodsky 1996, Lemma 2.1], there are natural isomorphisms

Pic(X, Y )= H 1
Zar(X,GX,Y )= H 1

et(X,GX,Y ).

Assume that X is integral and denote by K the field of rational functions on X .
A relative Cartier divisor on X is a Cartier divisor D such that supp(D)∩ Y =∅.
If D is a relative divisor and Z = supp(D), then OX (D)|X−Z = OX−Z . Thus D
defines an element in Pic(X, Y ). Denoting the group of relative Cartier divisors by
Div(X, Y ), we get a natural homomorphism Div(X, Y )→ Pic(X, Y ). The image
of this homomorphism consists of pairs (L , φ) such that φ admits an extension to
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a trivialization of L over an open neighbourhood of Y . In particular, this map is
surjective provided that Y has an affine open neighbourhood. Furthermore, we put

G = { f ∈ K× : f ∈ ker(O×X,y −→ O×Y,y) for any y ∈ Y }
= { f ∈ K× : f is defined and equal to 1 at each point of Y },

The following lemmas are straightforward; see [Suslin and Voevodsky 1996, 2.3,
2.4, 2.5].

Lemma 3.1. Assume that Y has an affine open neighbourhood in X. Then the
following sequence is exact:

0−→ 0(X,GX,Y )−→ G −→ Div(X, Y )−→ Pic(X, Y )−→ 0.

Lemma 3.2. Assume that U is normal and every closed integral subscheme of
U of codimension one which is closed in X is a Cartier divisor (this happens for
example when U is factorial). Then Div(X, Y ) is the free abelian group generated
by closed integral subschemes T ⊂U of codimension one which are closed in X.

Lemma 3.3. Let X be a scheme. Consider the natural homomorphism

p∗ : Pic(X)−→ Pic(A1
X )

which is induced by the projection p :A1
X→ X. If X is reduced, then p∗ is injective.

If X is normal, it is an isomorphism.

Proof. Since X is reduced, we have p∗GA1
X
=GX . Therefore the spectral sequence

E i j
2 = H i (X, R j p∗GA1

X
)H⇒ H i+ j (A1

X ,GA1
X
)

induces a short exact sequence

0−→ Pic(X)−→ Pic(A1
X )→ H 0(X, R1 p∗(GA1

X
)).

This shows the first statement. The stalk of R1 p∗(GA1
X
) at a point x ∈ X is the

Picard group of the affine scheme Spec(OX,x [T ]). If X is normal, then this group
is trivial by [Bass and Murthy 1967, Proposition 5.5]. This concludes the proof. �

Corollary 3.4. Assume that X is normal and Y is reduced. Then

Pic(X, Y )∼= Pic(A1
X ,A1

Y ).

Proof. Using the five-lemma, this follows from Lemma 3.3 together with the exact
sequence (1). �

In the case that S = Spec(k) is the spectrum of a field k, our singular homol-
ogy coincides with that defined by Suslin. For a proof of the next theorem, see
[Lichtenbaum 1993].
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Theorem 3.5. Let X be a smooth, geometrically connected curve over k, let X be
a smooth compactification of X and let Y = X− X. Then hi (X; k)= 0 for i 6= 0, 1
and

h0(X; k) = Pic(X , Y ),

h1(X; k) =
{

0 if X is affine,
k× if X is proper.

Corollary 3.6. Let X be a smooth curve over a field k, X a smooth compactification
of X over k and Y = X − X. Then for all i ,

hi (X; k)∼= H 1−i
Zar (X ,GX ,Y )

∼= H−i
Zar

(
X , cone

(
GX −→ iY∗(GY )

))
,

where HZar denotes Zariski hypercohomology.

This corollary is a special case of a general duality theorem proven in [Voevod-
sky 2000, Theorem 4.3.7] over fields that admit resolution of singularities.

We now consider the case that S is the spectrum of a Dedekind domain, which
is the case of main interest for us. The proof of the following theorem is parallel
to the proof of Theorem 3.1 of [Suslin and Voevodsky 1996], where the relative
singular homology of relative curves was calculated.

Theorem 3.7. Assume that S is the spectrum of a Dedekind domain and let U
be an open subscheme of S. Let Y ∈ Sch(S) be regular and flat over S. Setting
YU = Y ×U , suppose that Y − YU has an affine open neighbourhood in Y . Then
hi (U, Y ; S)= 0 for i 6= 0, 1 and

h0(U, Y ; S) = Pic(Y, Y − YU ),

h1(U, Y ; S) = 0(Y,GY,Y−YU ).

Proof. We may assume that Y is connected. If YU = Y , then C•(U, Y ; S) coincides
with the Bloch complex z1(Y, •). By [Bloch 1986, Theorem 6.1] (whose proof
applies without change to arbitrary regular schemes), we have hi (U, Y ; S)= 0 for
i 6= 0, 1 and

h0(U, Y ; S) = Pic(Y ),
h1(U, Y ; S) = 0(Y,GY ).

Suppose that YU $ Y . Then an integral subscheme Z ⊂ YU ×1
n is in Cn(U, Y ; S)

if and only if it is closed and of codimension 1 in Y ×1n . Since Y is regular,
such a Z is a Cartier divisor and it automatically has proper intersection with all
faces (see Remark 2.4(2)). Thus Cn(U, Y ; S) = Div(Y, T ) (see Lemma 3.2). Let
T = Y − YU . If V is an open affine neighbourhood of T in Y , then V ×1n is an
open affine neighbourhood of T ×1n in Y ×1n . According to Lemma 3.1, we
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have an exact sequence of simplicial abelian groups:

0→ A•→ G•→ C•(U, Y ; S)→ Pic(1•Y ,1
•

T )→ 0, (2)

where

Gn = { f ∈ k(1n
Y )
×
: f is defined and equal to 1 at each point of 1n

T },

An = 0(1
n
Y ,G1n

Y ,1
n
T
).

For each n, we have An = A0 = 0(Y,GY,T ) and by Corollary 3.4, we have
Pic(1n

Y ,1
n
T ) = Pic(Y, T ). Let us show that the simplicial abelian group G• is

acyclic, i.e. π∗(G•)= 0. It suffices to check that for any f ∈Gn such that δi ( f )= 1
for i = 0, . . . , n, there exists a g ∈ Gn+1 such that δi (g) = 1 for i = 0, . . . , n and
δn+1(g)= f . Define functions gi ∈Gn+1 for i = 1, . . . , n by means of the formula

gi = (ti+1+ · · ·+ tn+1)+ (t0+ · · ·+ ti )si ( f ).

These functions satisfy the following equations:

δ j (gi )=


1 if j 6= i, i + 1,
(ti + · · ·+ tn)+ (t0+ · · ·+ ti−1) f if j = i,
(ti+1+ · · ·+ tn)+ (t0+ · · · ti ) f if j = i + 1.

In particular, δ0(g0)= 1, δn+1(gn)= f . Finally, we set

g = gng−1
n−1gn−2 · · · g

(−1)n
0 .

This function satisfies the conditions we need. Evaluating the 4-term exact se-
quence (2) above, we obtain the statement of the theorem. �

Corollary 3.8. Assume that S is the spectrum of a Dedekind domain. Let X be
regular and quasifinite over S, X a regular compactification of X over S and
Y = X − X. Then for all i ,

hi (X; k)∼= H 1−i
Zar (X ,GX ,Y )

∼= H−i
Zar

(
X , cone

(
GX −→ iY∗(GY )

))
,

where HZar denotes Zariski hypercohomology.

Proof. We may assume that X is connected. By Zariski’s main theorem, X is an
open subscheme of the normalization S′ of S in the function field of X . As is well
known, S′ = X is again the spectrum of a Dedekind domain and the projection
S′ → S is a finite morphism. Therefore the result follows from Lemma 2.6 and
from Theorem 3.7 applied to the case Y = S. �



Singular homology of arithmetic schemes 197

Corollary 3.9. Let S be the spectrum of a Dedekind domain. Assume that X is
regular and that the structural morphism p : X → S is quasifinite. Let p : X → S
be a regular compactification of X over S and Y = X− X. Then there is a natural
isomorphism

C•(X; S)∼= p∗GX ,Y [ 1 ]

in the derived category of complexes of Zariski-sheaves on S.

Proof. We may assume that X is connected and we apply the result of Theorem 3.7
to open subschemes Y ⊂ S. Note that X is the normalization of S in the function
field of X . The stalk of h1(X; S) at a point s ∈ S is the relative Picard group of the
semilocal scheme X ×S Ss with respect to the finite set of closed points not lying
on X . A semilocal Dedekind domain is a principal ideal domain, and the exact
sequence (1) from the beginning of this section shows that also the corresponding
relative Picard group is trivial. Therefore, the complex of sheaves C•(X; S) has
exactly one nontrivial homology sheaf, which is placed in homological degree 1
and is isomorphic to p∗GX ,Y . �

Let us formulate a few results which easily follow from Theorem 3.7. We hope
that these results are (mutatis mutandis) true for regular schemes X of arbitrary
dimension. We omit S from the notation, writing h∗(X) for h∗(X; S) and h∗(X, Y )
for h∗(X, Y ; S)

Theorem 3.10. Let S be the spectrum of a Dedekind domain. Assume that X is
regular and quasifinite over S (in particular, dim X =1). Then the following holds.

(i) hi (X)= H−i
Zar(S,C•(X; S)) for all i .

(ii) (Local to global spectral sequence) There exists a spectral sequence

E i j
2 = H−i

Zar(S, h j (X))⇒ hi+ j (X).

(iii) (Mayer–Vietoris sequence) Let X1, X2 ⊂ X be open with X = X1 ∪ X2. Then
there is an exact sequence

0→ h1(X1 ∩ X2)→ h1(X1)⊕ h1(X2)→ h1(X)

→ h0(X1 ∩ X2)→ h0(X1)⊕ h0(X2)→ h0(X)→ 0.

(iv) (Mayer–Vietoris sequence with respect to the second variable)
Let U, V ⊂ S be open. Then there is an exact sequence

0→ h1(X,U ∪ V )→ h1(X,U )⊕ h1(X, V )→ h1(X,U ∩ V )

→ h0(X,U ∪ V )→ h0(X,U )⊕ h0(X, V )→ h0(X,U ∩ V )→ 0.

Proof. We may assume that X is connected. Let S′ be the normalization of S in
the function field of X , and we denote by jX : X → S′ the corresponding open
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immersion (compare the proof of Corollary 3.8). Let, for an open subscheme U ⊂
S, U ′ be its preimage in S′. Then

hi (X,U ; S)= hi (X,U ′; S′),

and therefore we may assume that S′ = S in the proof of (iii) and (iv). Then, by
Corollary 3.8, hi (X) = H 1−i

Zar (S,GS,S−X ). Assertion (iii) follows by applying the
functor R0(S,−) to the exact sequence of Zariski sheaves

0−→ GS,S−X1∩X2 −→ GS,S−X1 ⊕GS,S−X2 −→ GS,S−X −→ 0.

For an open subscheme jU :U −→ S, we denote the sheaf jU,! j∗U (Z) by ZU . Then,
for a sheaf F on S, we have a canonical isomorphism

H i
Zar(U, j∗U F)∼= ExtiS(ZU , F).

Applying the functor RHomS(−,GS,S−X ) to the exact sequence of Zariski sheaves

0−→ ZU∩V −→ ZU ⊕ZV −→ ZU∪V −→ 0,

Theorem 3.7 implies assertion (iv). From (iv) it follows that the complex C•(X)
is pseudo-flasque in the sense of [Brown and Gersten 1973], which shows asser-
tion (i). Finally, (ii) follows from the corresponding hypercohomology spectral
sequence converging to H−i

Zar(S,C•(X; S)) and from (i). �

Finally, we deduce an exact Gysin sequence for one-dimensional schemes. In
order to formulate it, we need the notion of twists. Let Gm denote the multiplicative
group scheme A1

S − {0} and let X be any scheme of finite type over S. For i =
1, · · · , n, let Di

•
(X ×G

×(n−1)
m ; S) be the direct summand in C•(X×G×n

m ; S)which
is given by the homomorphism

G×(n−1)
m −→ G×n

m , (x1, . . . , xn−1) 7→ (x1, . . . , 1i , . . . , xn−1)

We consider the complex C•(X × G∧n
m ; S) which is defined as the direct sum-

mand of the complex C•(X × G×n
m ; S) complementary to the direct summand∑n

i=1 Di
•
(X ×G

×(n−1)
m ; S); see [Suslin and Voevodsky 2000, Section 3].

Definition 3.11. For n ≥ 0, we put

hi (X (n); S)= Hi+n(C•(X ×G∧n
m ; S)).

In particular, we have hi (X (0); S) = hi (X; S) for all i and hi (X (n); S) = 0 for
i <−n. If X = {P} is a closed point on S, then (see [Suslin and Voevodsky 2000,
Lemma 3.2])

hi ({P}(1); S)=
{

k(P)× for i =−1,
0 otherwise.

The next corollary follows from this and from Theorem 3.7.
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Corollary 3.12. Assume that X is regular and quasifinite over S and that U is an
open, dense subscheme in X. Then we have a natural exact sequence

0→ h1(U )→ h1(X)→ h−1((X −U )(1))→ h0(U )→ h0(X)→ 0.

4. Homotopy invariance

Throughout this section we fix our base scheme S, which is the spectrum of a
Dedekind domain, and we omit it from the notation, writing h∗(X) for h∗(X; S)
and h∗(X, Y ) for h∗(X, Y ; S). Our aim is to prove that the relative singular ho-
mology groups h∗(X, Y ) are homotopy invariant with respect to both variables.

Theorem 4.1. Let X and Y be of finite type over S. Then the projection X×A1
→ X

induces isomorphisms

hi (X ×A1, Y )−→∼ hi (X, Y )

for all i .

Let i0, i1 : Y −→ Y ×A1 be the embeddings defined by the points (i.e. sections
over S) 0 and 1 of A1

= A1
S .

Recall that1n has coordinates (t0, . . . , tn) with
∑

ti = 1. Vertices are the points
(i.e. sections over S) pi = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the i-th place. Consider
the linear isomorphisms

θi :1
n+1
−→1n

×A1, i = 0, . . . , n

which are defined by taking p j to (p j , 0) for j ≤ i and to (p j−1, 1) if j > i . Then
consider for each n the formal linear combination

Tn =

n∑
i=0

(−1)iθi .

Let us call a subscheme F ⊂ 1n
×A1 a face if it corresponds to a face in 1n+1

under one of the linear isomorphisms θi . Using this terminology, Tn defines a
homomorphism from a subgroup of Cn(X, Y ×A1) to Cn+1(X, Y ). This subgroup
is generated by cycles having good intersection not only with all faces Y×A1

×1m

but also with all faces of the form Y × F , where F is a face in A1
×1n .

We will deduce Theorem 4.1 from the following proposition.

Proposition 4.2. The two chain maps

i0∗, i1∗ : C•(X, Y )−→ C•(X ×A1, Y )

are homotopic. In particular, i0∗ and i1∗ induce the same map on homology.
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Proof. Let D ⊂ A1
×A1 be the diagonal. Consider the map

Vn : Cn(X, Y )−→ Cn(X ×A1, Y ×A1)

which is defined by sending a cycle Z ⊂ X × Y × 1n to the cycle Z × D ⊂
X × Y ×1n

×A1
×A1. If Z projects finitely and surjectively onto T ⊂ Y ×1n ,

then Z×D projects finitely and surjectively onto T×A1
⊂Y×1n

×A1. Therefore
Vn is well defined. Fortunately, T×A1 has proper intersection with all faces Y×F ,
where F is a face in 1n

×A1. Therefore the composition

Tn∗ ◦ Vn : Cn(X, Y )−→ Cn(X ×A1, Y × A1)−→ Cn+1(X ×A1, Y )

is well defined for every n. These maps give the required homotopy. �

Proof of Theorem 4.1. Let τ :A1
×A1
−→A1 be the multiplication map. Consider

the diagram

C•(X ×A1, Y )
p∗
−→ C•(X, Y )yi0∗,i1∗

yi0∗,i1∗

C•(X ×A1
×A1, Y )

τ∗
−→ C•(X ×A1, Y ).

We have the following equalities of maps on homology:

i0∗ ◦ p∗ = τ∗ ◦ i0∗ = τ∗ ◦ i1∗ = idh•(X,Y ).

Therefore, p∗ is injective on homology. But on the other hand, p◦ i0 = idX , which
shows that p∗ is surjective. This concludes the proof. �

Now, exploiting a moving technique of [Bloch 1986], we prove that the bivariant
singular homology groups h∗(X, Y ) are homotopy invariant with respect to the
second variable.

Theorem 4.3. Assume that S is the spectrum of a Dedekind domain and let X and
Y be of finite type over S. Then the projection p :Y×A1

→Y induces isomorphisms
for all i ,

hi (X, Y )−→∼ hi (X, Y ×A1).

A typical intermediate step in proving a theorem like Theorem 4.3 would be to
show that the induced chain maps i∗0 , i∗1 : C•(X, Y ×A1)−→ C•(X, Y ) are homo-
topic. However, i∗0 , i∗1 are only defined as homomorphisms on the subcomplex

i∗0 , i∗1 : C
Y×{0,1}
•

(X, Y ×A1)−→ C•(X, Y ).

(The maps T ∗n :Cn(X, Y ×A1)−→Cn+1(X, Y ) would define a homotopy i∗0 ∼ i∗1 :
Cn(X, Y ×A1)−→ Cn(X, Y ), if all these maps would be defined.)
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The proof of Theorem 4.3 will consist of several steps. First, we show that the
inclusion

CY×{0,1}
•

(X, Y ×A1)−→ C•(X, Y ×A1)

is a quasi-isomorphism. Then we show that the homomorphisms

i∗0 , i∗1 : C
Y×{0,1}
•

(X, Y ×A1)−→ C•(X, Y )

induce the same map on homology. Finally, we deduce Theorem 4.3 from these
results.

In the proof we will apply a moving technique of [Bloch 1986] which was used
there to show the homotopy invariance of the higher Chow groups. As long as
we have to deal with cycles of codimension 1, this technique also works in our
more general situation (this is the reason for the restriction to the case that S is the
spectrum of a Dedekind domain).

We would like to construct a homotopy between the identity of the complex
C•(X, Y ×A1) and another map which takes its image in the subcomplex

CY×{0,1}
•

(X, Y ×A1).

What we can do is the following:
For a suitable scheme S′ over S we construct a homotopy between the pullback

map C•(X, Y × A1) −→ C•(X, Y × A1
× S′) and another map whose image is

contained in the subcomplex

CY×{0,1}×S′
•

(X, Y ×A1
× S′).

(Eventually, we will use S′ = A1
S but perhaps this would be too many A1’s in the

notation.)
Let (for the moment) π : S′→ S be any integral scheme of finite type over S

and let t be an element in 0(S′,OS′). Consider the action

A1
S′ ×S′ (Y ×A1)S′ −→ (Y ×A1)S′

of the smooth group scheme A1
S′ on (Y ×A1)S′ given by additive translation

a · (y, b))= (y, a+ b)

and consider the morphism ψ : A1
S′ → A1

S′ given by multiplication by t : a 7→ ta.
The points 0, 1 of A1

S′ give rise to isomorphisms

ψ(0), ψ(1) : (Y ×A1)S′ −→ (Y ×A1)S′

(ψ(0) is the identity and ψ(1) sends (y, b) to (y, t + b)). Furthermore, setting
φ(y, a, b)= (y, ψ(b) · a, b), we obtain an isomorphism

φ : (Y ×A1
×A1)S′ −→ (Y ×A1

×A1)S′ .
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We would like to compose the maps

Cn(X, Y ×A1)
π∗

−→ Cn(X, Y ×A1
× S′)

pr∗
−→ Cn(X, (Y ×A1)×A1

× S′)

φ∗

−→ Cn(X, (Y ×A1)×A1
× S′)

T ∗n
−→ Cn+1(X, Y ×A1

× S′),

but we are confronted with the problem that the map T ∗n is not defined on the whole
group Cn(X, (Y×A1)×A1

×S′). The next proposition tells us that the composition
is well defined if S′ = A1

S = Spec S[t].

Proposition 4.4. Suppose that S′ = A1
S = Spec S[t]. Then the composition

Hn = T ∗n ◦φ
∗
◦ pr∗ ◦π∗ : Cn(X, Y ×A1)−→ Cn+1(X, Y ×A1

× S′)

is well defined for every n. The family {Hn}n≥0 defines a homotopy

π∗ = ψ(0) ◦π∗ ∼ ψ(1) ◦π∗ : Cn(X, Y ×A1)−→ Cn(X, Y ×A1
× S′).

Furthermore, the image of the map ψ(1) ◦π∗ is contained in the subcomplex

CY×{0,1}×S′
•

(X, Y ×A1
× S′).

Proof. Recall that all groups C• are relative to the base scheme S which we have
omitted from the notation. At the moment, the map Hn is only defined as a map
to the group of cycles in X × Y × A1

×1n+1
× S′. If Z ⊂ X × Y × A1

×1n

projects finitely and surjectively onto an irreducible subscheme T ⊂ Y ×A1
×1n

of codimension one, then φ∗◦pr∗ ◦π∗(Z) projects finitely and surjectively onto the
irreducible subscheme of codimension one T ′=φ∗◦pr∗ ◦π∗(T )⊂ (Y×A1)×1n

×

A1
×S′. Therefore, in order to show that Hn(Z) is in Cn+1(X, Y×A1

×S′), we have
to check that θ−1

i (T ′) has proper intersection with all faces for i = 0, . . . , n. Thus
we have to show that T ′ has proper intersection with all faces (Y ×A1)× F × S′,
where F is a face in 1n

×A1 (as defined above). Since T ′ has codimension one,
this comes down to show that it does not contain any irreducible component of any
face (we did not assume Y to be irreducible, but we can silently assume that it is
reduced). Consider the projection

Y ×A1
×1n

×A1
× S′ −→ S′.

We can check our condition by considering the fibre over the generic point of S′.
More precisely, let k be the function field of S and let K = k(t) be the function
field of S′. Let (Y1)k, . . . , (Yr )k be the irreducible components of Yk . Then an
irreducible subscheme T ′ ⊂ Y ×A1

×1n
×A1

× S′ of codimension one meets all
faces Y ×A1

× F × S′ (F a face of 1n
×A1) properly if and only if TK does not

contain (Yi ×A1)K ×K FK for i = 1, . . . , r .
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Now we arrived exactly at the situation considered in [Bloch 1986, Section 2].
The result follows from [Bloch 1986, Lemma 2.2] by taking (Y × A1)k for the
scheme X of that lemma, taking A1

k as the algebraic group G acting on X by
additive translation on the second factor and choosing the map ψ : A1

K → G K of
that lemma as the morphism which sends a to ta. The fact that the Hn define the
homotopy is a straightforward computation.

It remains to show that the image of the map ψ(1) ◦ π∗ is contained in the
subcomplex

CY×{0,1}×S′
•

(X, Y ×A1
× S′).

But this is a again a condition which says that a subscheme of codimension one
does not contain certain subschemes. In the same way as above, this can be verified
over the generic fibre of S′, and the result follows from the corresponding statement
of [Bloch 1986, Lemma 2.2]. �

Corollary 4.5. The natural inclusion

CY×{0,1}
•

(X, Y ×A1)−→ C•(X, Y ×A1)

is a quasi-isomorphism.

Proof. Let S′ = A1
S . Then the homomorphism

π∗ : C•(X, Y ×A1)/CY×{0,1}
•

(X, Y ×A1)

−→ C•(X, Y ×A1
× S′)/CY×{0,1}×S′

•
(X, Y ×A1

× S′)

is nullhomotopic (the Hn of Proposition 4.4 give the homotopy). In order to con-
clude the proof, it suffices to show that the nullhomotopic homomorphism π∗ is in-
jective on homology. Suppose that for a cycle z in degree n we have π∗(z)=dn(w).
Then we find an a ∈0(S,OS) such that the specialization (i.e. t 7→ a) w(a) is well
defined. But then z = dn(w(a)). �

Proposition 4.6. Suppose that S′ = A1
S = Spec S[t]. Then the composition

CY×{0,1}
n (X, Y×A1)

ψ(1)◦π∗
−→ CY×{0,1}×S′

n (X, Y×A1
×S′)

T ∗n
−→ Cn+1(X, Y×S′)

is well defined, giving a homotopy

i∗0 ◦ψ(1) ◦π
∗
∼ i∗1 ◦ψ(1) ◦π

∗
: CY×{0,1}
•

(X, Y ×A1)−→ C•(X, Y × S′).

Proof. Let again k be the function field of S and let K = k(t) be that of S′. We use
the following fact, which is explained in the proof of [Bloch 1986, Corollary 2.6]:

If zk is a cycle on Y×A1
×1n which intersects all faces (Y×A1

×1m)k properly,
then ψ(1) ◦ π∗(zk) ⊂ (Y ×A1

×1n)K intersects all faces (Y × F)K (where F is
any face in A1

×1n) properly.
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We deduce the statement of Proposition 4.6 from this in the same manner as we
deduced Proposition 4.4 from [Bloch 1986, Lemma 2.2]. The fact that the maps
T ∗n ◦ψ(1) ◦π

∗ define the homotopy is a straightforward computation. �

Corollary 4.7. The two maps

i∗0 , i∗1 : C
Y×{0,1}
•

(X, Y ×A1)−→ C•(X, Y )

induce the same map on homology.

Proof. Consider the commutative diagram

CY×{0,1}
• (X, Y ×A1)

π∗

−→ CY×{0,1}×S′
• (X, Y ×A1

× S′)yi∗0 ,i
∗

1

yi∗0 ,i
∗

1

C•(X, Y )
π∗

−→ C•(X, Y × S′).

The same specialization argument as in the proof of Corollary 4.5 shows that π∗

is injective on homology. Therefore it suffices to show that i∗0 ◦ π
∗
= i∗1 ◦ π

∗ on
homology. By Proposition 4.4, we have a homotopy π∗ ∼ψ(1)◦π∗, and hence it
suffices to show that the maps i∗0 ◦ψ(1) ◦ π

∗ and i∗1 ◦ψ(1) ◦ π
∗ induce the same

map on homology. But this follows from Proposition 4.6. �

Now we conclude the proof of Theorem 4.3. First of all, note that

p∗(C•(X, Y ))⊂ CY×{0,1}
•

(X, Y ×A1)

and that i∗0 ◦ p∗ = id, such that p∗ is injective on homology. Consider the multipli-
cation map

τ : A1
×A1

−→ A1.

It is flat and therefore τ ∗ exists. Consider the diagram

C•(X, Y ×A1)
τ ∗

−→ C•(X, Y ×A1
×A1)xq.iso.

xq.iso.

CY×{0,1}
• (X, Y ×A1)

τ ∗

· · ·> CY×A1
×{0,1}

• (X, Y ×A1
×A1)yi∗0 ,i

∗

1

yi∗0 ,i
∗

1

C•(X, Y )
p∗
−→ C•(X, Y ×A1).

One easily observes that τ ∗ sends a cycle z ∈ CY×{0,1}
n (X, Y × A1) to a cycle in

CY×A1
×{0,1}

n (X, Y ×A1
×A1) and that for such a z the following equalities hold:

i∗0 ◦ τ
∗(z)= p∗ ◦ i∗0 (z), (3)

i∗1 ◦ τ
∗(z)= z. (4)
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By Corollary 4.5, any class in hn(X, Y ×A1) can be represented by an element in
CY×{0,1}

n (X, Y ×A1). Therefore (3) shows that in order to prove that p∗ is surjec-
tive on homology, it suffices to show that i∗0 ◦ τ

∗ is. But by Corollary 4.7, i∗0 ◦ τ
∗

induces the same map on homology as i∗1 ◦ τ
∗, which is the identity, by (4).

�

A naive definition of homotopy between scheme morphisms is the following:
Two scheme morphisms φ,ψ : X −→ X ′ are homotopic if there exists a morphism

H : X ×A1
−→ X ′

with φ = H ◦ i0 and ψ = H ◦ i1. (This is not an equivalence relation!) The next
corollary is an immediate consequence of Proposition 4.2.

Corollary 4.8. If two morphisms

φ,ψ : X −→ X ′

are homotopic, then they induce the same map on singular homology, i.e. for every
scheme Y flat and of finite type over S, the homomorphisms

φ∗, ψ∗ : hi (X, Y )−→ hi (X ′, Y )

coincide for all i .

Now we recall the definition of relative singular homology from [Suslin and
Voevodsky 1996]. Suppose that Y is an integral scheme and that X is any scheme
over Y .

For n ≥ 0, let Cn(X/Y ) be the free abelian group generated by closed integral
subschemes of X ×Y 1

n
Y such that the restriction of the canonical projection

X ×Y 1
n
Y −→1n

Y

to Z induces a finite surjective morphism p : Z → 1n
Y . Let i : 1m

Y ↪→ 1n
Y be a

face. Then all irreducible components of Z ∩ X×Y 1
m
Y have the “right” dimension

and thus the cycle theoretic inverse image i∗(Z) is well defined and in Cm(X/Y ).
Furthermore, degeneracy maps are flat, and thus we obtain a simplicial abelian
group C•(X/Y ). As above, we use the same notation for the complex of abelian
groups obtained by taking the alternating sum of face operators. The groups

hi (X/Y )= Hi (C•(X/Y ))

are called the relative singular homology groups of X over Y .
We have seen in Section 2 that singular homology is covariantly functorial on

the category SmCor(X) of smooth schemes over S with finite correspondences
as morphisms. For X, Y ∈ Sm(S) the group of finite correspondences c(X, Y )
coincides with C0(X × Y/Y ) and we call two finite correspondences homotopic
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if they have the same image in h0(X × Y/Y ). The next proposition shows that
homotopic finite correspondences induce the same map on singular homology.

Proposition 4.9. For smooth schemes X, Y ∈ Sm(S), the natural pairing

c(X, Y )⊗ hi (X; S)→ hi (Y ; S)

factors through h0(X × Y/Y ), defining pairings

h0(X × Y/Y )⊗ hi (X; S)−→ hi (Y ; S) for all i .

Proof. Let W ⊂ X × Y ×11
= X × Y ×A1 define an element in C1(X × Y/Y ).

Let W j
= i∗j (W ), for j = 0, 1, so that d1(W ) = W 0

−W 1
∈ C0(X × Y/Y ). Let

ψ ∈ Cn(X; S). We have to show that (W 0, ψ) = (W 1, ψ). Considering W as an
element in C0(X×Y×A1/Y×A1), the composite (W, ψ) is in C {0,1}n (Y,A1

; S) and
(W j , ψ)= i∗j ((W, ψ)) for j = 0, 1. Thus the result follows from Corollary 4.7. �

5. Alternative characterization of h0

For a noetherian scheme X we have the identification

CHd(X, 0)= CHd(X)

between the higher Chow group CHd(X, 0) and the group CHd(X) of d-codimen-
sional cycles on X modulo rational equivalence (see [Nart 1989, Proposition 3.1]).
Fixing the notation and assumptions of the previous sections, we now give an
analogous description for the group h0(X; S).

Let C be an integral scheme over S of absolute dimension 1. Then to every
rational function f 6= 0 on C , we can attach the zero-cycle div( f ) ∈ C0(C; S)
(see [Fulton 1998, Chapter I,1.2]). Let C̃ be the normalization of C in its field
of functions. Denoting the normalization morphism by φ : C̃ → C , we have
φ∗(div( f )) = div( f ). If C is regular and connected, then we denote by P(C)
the regular compactification of C over S, i.e. the uniquely determined regular and
connected scheme of dimension 1 which is proper over S and which contains C as
an open subscheme.

With this terminology, for an integral scheme C of absolute dimension 1, ele-
ments in the function field k(C) are in 1-1 correspondence to morphisms P(C̃)→
P1

S , which are not ≡∞.

Theorem 5.1. The group h0(X; S) is the quotient of the group of zero-cycles on X
modulo the subgroup generated by elements of the form div( f ), where

• C is a closed integral curve on X ,

• f is a rational function on C which, considered as a rational function on
P(C̃), is defined and ≡ 1 at every point of P(C̃)− C̃.
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Proof. We may suppose that X is reduced. Let Z ⊂ X ×11 be an integral curve
such that the projection Z → 11 induces a finite and surjective morphism of Z
onto a closed integral subscheme T of codimension 1 in11. Embed11 linearly to
P1
= P1

S by sending (0, 1) to 0= (0 : 1) and (1, 0) to∞= (1 : 0). Since Z→11

is finite, the projection Z→P1 corresponds to a rational function g on Z which is
defined and ≡ 1 at every point of P(Z̃)− Z . Let Z be the closure of Z in X ×P1,
and let C be the image of Z under the (proper) projection X×P1

→ X , considered
as a reduced (hence integral) subscheme of X .

We have to consider two cases:

(1) If C = P is a closed point on X , then Z = {P}×11 and d1(Z)= 0.

(2) If C is an integral curve, then the image C of Z under X×P1
→ X is an open

subscheme of C . Consider the extension of function fields

k(Z)|k(C)

and let f ∈ k(C) be the norm of g with respect to this extension. Then f is
defined and ≡ 1 at every point of P(C̃)−C and

div( f )= δ0(Z)− δ1(Z)= d(Z).

If X is of dimension 1, the last equality follows from [Nart 1989, Proposition 1.3].
The general case can be reduced to this by replacing X by C . Considering f as a
rational function on C , it satisfies the assumption of the theorem.

It remains to show the other direction. Let C and f be as in the theorem. We
have to show that div( f ) ∈ C0(X; S) is a boundary. To see this, interpret f as
a nonconstant morphism U → P1 defined on an open subscheme U ⊂ C and let
Z be the closure of the graph of this morphism in X × P1. The scheme Z is
integral, of dimension 1 and projects birationally and properly onto C . Consider
again the open linear embedding 11

⊂ P1 which is defined by sending (0, 1) to
0 and (1, 0) to ∞ and let Z = Z ∩ X ×11. The properties of f imply that the
induced projection Z → 11 is finite and surjective onto a closed subscheme of
codimension 1 in 11, thus defining an element of C1(X; S). Finally note that
d(Z)= δ0(Z)− δ1(Z)= div( f ). �

This immediately implies:

Corollary 5.2. If X is proper over S, then

h0(X; S)= CH0(X).

Corollary 5.3. The natural homomorphism
⊕

iC
d(C1(C; S))

iC ∗
−→ d(C1(X; S)) is

surjective, where iC :C→ X runs through all S-morphisms from a regular scheme
C over S of dimension 1 to X.
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Proof. By Theorem 5.1, d(C1(X; S) is generated by elements of the form div( f ),
where f is a rational function on an integral curve on X satisfying an additional
property. The normalization C̃ of C is a regular scheme of dimension 1 and let
i : C̃ → X the associated morphism. Considering f as a rational function on C̃ ,
we have the equality

i∗(div( f ))= div( f ).

By the additional property of f , the associated line bundle L(div( f )) over the
compactification P(C̃) together with its canonical trivialization over P(C̃) − C̃
defines the trivial element in Pic(P(C̃), P(C̃)− C̃). Therefore, the calculation of
singular homology of regular schemes of dimension 1 (see Theorems 3.5 and 3.7),
shows that div( f ) is in d(C1(C; S)). This finishes the proof. �

Now we can prove the exactness of a part of the Mayer–Vietoris sequence for
X of arbitrary dimension.

Proposition 5.4. Let S =U ∪V be a covering by Zariski-open subschemes U and
V . Then the natural sequence

h0(X; S)−→ h0(X;U )⊕ h0(X; V )−→ h0(X;U ∩ V )−→ 0

is exact.

Proof. First of all, the homomorphism

C0(X;U )⊕C0(X; V )−→ C0(X;U ∩ V )

is surjective, and therefore so is h0(X;U )⊕ h0(X; V )−→ h0(X;U ∩ V ).
Consider the commutative diagram

0 0 0y y y
d(C1(X; S)) −→ d(C1(X;U ))⊕ d(C1(X; V )) −→ d(C1(X;U ∩ V ))y y y

C0(X; S) ↪−→ C0(X;U )⊕C0(X; V ) −→ C0(X;U ∩ V ) −→ 0y y y
h0(X; S) −→ h0(X;U )⊕ h0(X; V ) −→ h0(X;U ∩ V ) −→ 0y y y

0 0 0
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The middle row and the middle and right columns are exact. Therefore the snake
lemma shows that the lower line is exact if and only if the homomorphism

d(C1(X;U ))⊕ d(C1(X; V ))−→ d(C1(X;U ∩ V )) (5)

is surjective. By Theorem 3.10 (iv), we observe that (5) is surjective if X is regular
and of dimension 1. For a general X , put

X ′ = X ×S (U ∩ V ).

Then the commutative diagram

C1(X ′;U )⊕C1(X ′; V ) −→ C1(X ′;U ∩ V )y ∥∥∥
C1(X;U )⊕C1(X; V ) −→ C1(X;U ∩ V )

shows that, in order to show the surjectivity of (5), we may suppose that X = X ′.
Now the statement follows from Corollary 5.3, using the commutative diagram⊕

iC

d(C1(C;U ))⊕ d(C1(C; V ))
iC ∗
−→ d(C1(X;U ))⊕ d(C1(X; V ))yy y⊕

iC

d(C1(C;U ∩ V ))
iC ∗
−→−→ d(C1(X;U ∩ V )).

This concludes the proof. �

A similar argument shows:

Proposition 5.5. Let X = X1 ∪ X2 be a covering by Zariski open subschemes X1

and X2. Then the natural sequence

h0(X1 ∩ X2; S)−→ h0(X1; S)⊕ h0(X2; S)−→ h0(X; S)−→ 0

is exact.

Proof. We omit the base scheme S from our notation. The homomorphism

C0(X1)⊕C0(X2)−→ C0(X)

is surjective, and therefore so is

h0(X1)⊕ h0(X2)−→ h0(X).
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Consider the commutative diagram

0 0 0y y y
d(C1(X1 ∩ X2)) −→ d(C1(X1))⊕ d(C1(X2)) −→ d(C1(X))y y y

C0(X1 ∩ X2) ↪−→ C0(X1)⊕C0(X2) −→ C0(X) −→ 0y y y
h0(X1 ∩ X2) −→ h0(X1)⊕ h0(X2) −→ h0(X −→ 0y y y

0 0 0

The middle row and the middle and right columns are exact. Therefore the snake
lemma shows that the lower line is exact if and only if the homomorphism

d(C1(X1))⊕ d(C1(X2))−→ d(C1(X)) (6)

is surjective. By Theorem 3.10 (iii), we observe that (6) is surjective if X is regular
and of dimension 1.

For a morphism i :C→ X we use the notation C1= i−1(X1) and C2= i−1(X2),
thus C = C1 ∪C2 is a Zariski open covering.

Now the required statement for arbitrary X follows from Corollary 5.3, using
the commutative diagram⊕

iC

d(C1(C1))⊕ d(C1(C2))
iC ∗
−→ d(C1(X1))⊕ d(C1(X2))yy y⊕

iC

d(C1(C))
iC ∗
−→−→ d(C1(X)).

This concludes the proof. �

We conclude this section with a surjectivity result.

Proposition 5.6. Let X be regular and let U be a dense open subscheme in X.
Then the natural homomorphism

h0(U ; S)−→ h0(X; S)

is surjective.
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Proof. Let P be a 0-dimensional point on X which is not contained in U . We have
to show that the image of P in h0(X; S) is equal to the image of a finite linear
combination

∑
ni Pi with Pi ∈ U for all i . Choose a one-dimensional subscheme

C on X such that P is a regular point on C and such that C is not contained in
X −U . We find such a curve, since X is regular: Indeed, OX,P is a d-dimensional
regular local ring, with d = dim X . Let m be the maximal ideal and a the ideal
defining the closed subset (X −U )∩ Spec(OX,P). Choose elements x1, . . . , xd−1

in m/m2 which span a (d − 1)-dimensional subspace which does not contain a+

m/m. Lifting x1, . . . , xd−1 to a regular sequence x1, . . . , xd−1 ∈ OX,P , the ideal
(x1, . . . , xd−1) is a prime ideal of height (d−1) which does not contain a. Finally,
extend x1, . . . , xd−1 to an affine open neighbourhood of P in X and choose C as
the closure of their zero-locus.

Consider the normalization C̃ of C and let P(C̃) be a regular compactification
over S. Let P(C̃)− C̃ = {P1, . . . , Pr } and let Pr+1, . . . , Ps be the finitely many
closed points on C̃ mapping to C ∩ (X − U ). Let P̃ be the unique point on C̃
projecting to P ∈ C . Let D = {P1, . . . , Ps, P̃} and consider the ring A= OP(C̃),D ,
which is a semilocal principal ideal domain. We find an element f ∈ A which has
exact valuation 1 at P̃ and which is ≡ 1 at each Pi , i = 1, . . . , n. Then (div f )⊂ X
is of the form P +

∑
Qi with Qi ∈U . �

6. Review of tame coverings

The concept of tame ramification stems from number theory: A finite extension of
number fields L|K is called tamely ramified at a prime P of L if the associated
extension of completions LP|KP is a tamely ramified extension of local fields.
The latter means that the ramification index is prime to the characteristic of the
residue field. It is a classical result that composites and towers of tamely ramified
extensions are again tamely ramified. This concept generalizes to separable exten-
sions of arbitrary discrete valuation fields by requiring that the associated residue
field extensions are separable.

Let from now on S be the spectrum of an excellent Dedekind domain and let
X ∈ Sch(S). Our aim is to say when a finite étale covering Y → X is tame. Here
“tame” means tamely ramified along the boundary of a compactification X of X
over S. If X is regular and D = X − X is a normal crossing divisor, then one can
use the approach of [Grothendieck 1971; Grothendieck and Murre 1971]:

Definition 6.1 [Grothendieck and Murre 1971, 2.2.2]. A finite étale covering Y→
X is called tame (along D) if the extension of function fields k(Y )|k(X) is tamely
ramified at the discrete valuations associated to the irreducible components of D.

Even if one restricts attention to regular schemes, one is confronted with the
following problems:
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• If X is regular, we do not know whether there exists a regular compactification
with an NCD as its boundary,

• The notion of tameness might depend on the choice of the compactification
X of X .

• Even if the first two questions can be answered in a positive way, there is
no obvious functoriality for the tame fundamental group (already for an open
immersion).

All these problems are void in the case of a regular curve C , where a canoni-
cal compactification C exists. Starting from the therefore obvious notion of tame
coverings of regular curves, G. Wiesend [2006] proposed the following definition.

Definition 6.2. Let X be a separated integral scheme of finite type over S. A
finite étale covering Y → X is called tame if for every integral curve C ⊂ X with
normalization C̃→ C the base change

Y ×X C̃ −→ C̃

is a tame covering of the regular curve C̃ .

This definition has the advantage of making no use of a compactification of X .
Furthermore, it is obviously stable under base change. However, it is difficult to
decide whether a given étale covering is actually tame. For coverings of normal
schemes, several authors [Abbes 2000; Chinburg and Erez 1992; Schmidt 2002]
have made suggestions for a definition of tameness which all come down to the
following notion, which we want to call numerically tameness here.

Definition 6.3. Let X ∈ Sch(S) be normal connected and proper, and let X ⊂ X
be an open subscheme. Let Y → X be a finite étale Galois covering and let Y be
the normalization of X in the function field k(Y ) of Y . We say that Y → X is
numerically tame (along D = X − X ) if the order of the inertia group Tx(Y |X)⊂
Gal(Y |X) = Gal(Y |X) of each closed point x ∈ D (see [Bourbaki 1964, Chapter
5, Section 2.2] for the definition of inertia groups) is prime to the residue charac-
teristic of x . A finite étale covering Y → X is called numerically tame if it can be
dominated by a numerically tame Galois covering.

Proposition 6.4. Let X ∈ Sch(S) be normal connected and proper, and let X ⊂ X
be an open subscheme. If the finite étale covering Y → X is numerically tame
(along X − X ), then it is tame.

Proof. For regular curves the notions of tameness and of numerically tameness
obviously coincide. Therefore the statement of the proposition follows from the
fact that numerically tame coverings are stable under base change; see [Schmidt
2002]. �
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Theorem 6.5 [Wiesend 2006, Theorem 2]. Assume that X is regular and that
D= X−X is an NCD. Then, for a finite étale covering Y→ X , there is equivalence
between:

(i) Y → X is tame according to Definition 6.1.

(ii) Y → X is tame (according to Definition 6.2).

(iii) Y → X is numerically tame.

Remark 6.6. The equivalence of (i) and (iii) had already been shown in [Schmidt
2002].

Theorem 6.7 [Wiesend 2006, Theorem 2]. Assume that X is regular (but make
no assumption on D = X − X ). If a numerically tame covering Y → X can be
dominated by a Galois covering with nilpotent Galois group, then it is tame.

In particular, for nilpotent coverings of a regular scheme X the notion of nu-
merically tameness does not depend on the choice of a regular compactification X
(if it exists). This had already been shown in [Schmidt 2002]. A counterexample
with non-nilpotent Galois group can be found in [Wiesend 2006, Remark 3].

7. Finiteness results for tame fundamental groups

The tame coverings of a connected integral scheme X ∈ Sch(S) satisfy the axioms
of a Galois category [Wiesend 2006, Proposition 1]. After choosing a geometric
point x of X we have the fibre functor (Y → X) 7→MorX (x, Y ) from the category
of tame coverings of X to the category of sets, whose automorphisms group is
called the tame fundamental group π t

1(X, x). It classifies finite connected tame
coverings of X . We have an obvious surjection

π et
1 (X, x)� π t

1(X, x),

which is an isomorphism if X is proper. Assume that X is normal, connected and
let X be a normal compactification. Then, replacing tame coverings by numerically
tame coverings, we obtain in an analogous way the numerically tame fundamen-
tal group πnt

1 (X , X − X, x), which classifies finite connected numerically tame
coverings of X (along X − X ). By Proposition 6.4 we have a surjection

ϕ : π t
1(X, x)� πnt

1 (X , X − X, x),

which, by Theorem 6.7, induces an isomorphism on the maximal pro-nilpotent
factor groups if X is regular. If, in addition, X − X is a normal crossing divisor
then ϕ is an isomorphism by Theorem 6.5. The fundamental groups of a connected
scheme X with respect to different base points are isomorphic, and the isomor-
phism is canonical up to inner automorphisms. Therefore, when working with the
maximal abelian quotient of the étale fundamental group (tame fundamental group,
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n.t. fundamental group) of a connected scheme, we are allowed to omit the base
point from notation.

Now we specialize to the case S = Spec(Z), i.e. to arithmetic schemes. In
[Schmidt 2002] we proved the finiteness of the abelianized numerically tame fun-
damental group πnt

1 (X , X − X)ab of a connected normal scheme, flat and of finite
type over Spec(Z) with respect to a normal compactification X . The proof given
there can be adapted to apply also to the larger group π t

1(X)
ab.

Theorem 7.1. Let X be a connected normal scheme, flat and of finite type over
Spec(Z). Then the abelianized tame fundamental group π t

1(X)
ab is finite.

For the proof we need the following two lemmas. The first one extends [Schmidt
2002, Corollary 2.6] from numerical tameness to tameness.

Lemma 7.2. Let X ∈ Sch(S) be normal and connected, p a prime number and
Y → X a finite étale Galois covering whose Galois group is a finite p-group. Let
X be a normal compactification of X and assume there exists a prime divisor D
on X which is ramified in k(Y )|k(X) and which contains a closed point of residue
characteristic p. Then Y → X is not tame.

Proof. The statement of the lemma is part of the proof of [Wiesend 2006, Theo-
rem 2]. �

Lemma 7.3. Let A be a strictly henselian discrete valuation ring with perfect
(hence algebraically closed) residue field and with quotient field k. Let k∞|k be
a Zp-extension. Let K |k be a regular field extension and let B ⊂ K be a discrete
valuation ring dominating A. Then B is ramified in K k∞|K .

Proof. See [Schmidt 2002, Lemma 3.2]. �

Proof of Theorem 7.1. The proof is a modification of the proof of [Schmidt 2002,
Theorem 3.1]. Let X be a normal compactification of X over Spec(Z). Let k be
the normalization of Q in the function field of X and put S = Spec(Ok). Then the
natural projection X→ Spec(Z) factors through S.

Since X is normal, for any open subscheme V of X the natural homomorphism
π et

1 (V )→ π et
1 (X) is surjective. Therefore also the homomorphism

π t
1(V )

ab
−→ π t

1(X)
ab

is surjective and so we may replace X by a suitable open subscheme and assume
that X is smooth over S. Let T ⊂ S be the image of X . Consider the commutative
diagram

0 −→ Ker(X/T ) −→ π et
1 (X)

ab
−→ π et

1 (T )
aby yy yy

0 −→ Kert(X/T ) −→ π t
1(X)

ab
−→ π t

1(T )
ab
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where the groups Ker(X/T ) and Kert(X/T ) are defined by the exactness of the
corresponding rows, and the two right vertical homomorphisms are surjective. By
[Katz and Lang 1981, Theorem 1], the group Ker(X/T ) is finite. By classical one-
dimensional class field theory, the group π t

1(T )
ab is finite (it is the Galois group of

the ray class field of k with modulus
∏

p/∈T p). The kernel of π et
1 (T )

ab
→ π t

1(T )
ab

is generated by the ramification groups of the primes of S which are not in T .
Denoting the product of the residue characteristics of these primes by N , we see
that π et

1 (T )
ab is the product of a finite group and a topologically finitely generated

pro-N group. Therefore the same is also true for π et
1 (X)

ab and for π t
1(X)

ab. Hence
it suffices to show that the cokernel C of the induced map Ker(X/T )→Kert(X/T )
is a torsion group.

Let K be the function field of X and let k1 be the maximal abelian extension of
k such that the normalization X K k1 of X in the composite K k1 is ind-tame over X .
By [Katz and Lang 1981, Lemma 2, (2)], the normalization of T in k1 is ind-étale
over T . Let k2|k be the maximal subextension of k1|k such that the normalization
Tk2 of T in k2 is tame over T . Then G(k2|k)= π t

1(T )
ab and C ∼= G(k1|k2).

In order to show that C is a torsion group, we therefore have to show that k1|k2

does not contain a Zp-extension of k2 for any prime number p. Since k2|k is a finite
extension and k1|k is abelian, this is equivalent to the assertion that k1|k contains
no Zp-extension of k for any prime number p.

Let p be a prime number and suppose that k∞|k is a Zp-extension such that
the normalization X K k∞ is ind-tame over X . A Zp-extension of a number field
is unramified outside p and there exists at least one ramified prime dividing p;
see e.g. [Neukirch et al. 2000, (10.3.20)(ii)]. Let k ′ be the maximal unramified
subextension of k∞|k and let S′ be the normalization of S in k ′. Then the base
change X ′ = X ×S S′→ X is étale. Hence X ′ is normal and the preimage X ′ of X
is smooth and geometrically connected over k ′. So, after replacing k by k ′, we may
suppose that k∞|k is totally ramified at a prime p|p, p∈ S−T . Considering the base
change to the strict henselization of S at p and applying Lemma 7.3, we see that
each vertical divisor of X in the fibre over p ramifies in K k∞. Replacing X by its
normalization in a suitable finite subextension of K k∞, we obtain a contradiction
using Lemma 7.2. �

Next we consider the case S= Spec(F), i.e. varieties over a finite field F. In this
case we have the degree map

deg : π t
1(X)

ab
−→ π t

1(S)
ab ∼= Gal(F | F)∼= Ẑ,

and we denote the kernel of this degree map by (π t
1(X)

ab)0. The image of deg is an
open subgroup of Ẑ and is therefore isomorphic to Ẑ. As Ẑ is a projective profinite
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group, we have a (noncanonical) isomorphism

π t
1(X)

ab ∼= (π
t
1(X)

ab)0× Ẑ.

Let p be the characteristic of the finite field F. If X is an open subscheme of a
smooth proper variety X , then we have a decomposition

(π t
1(X)

ab)0 ∼= (π
et
1 (X)

ab)0(prime-to-p-part)⊕ (π et
1 (X)

ab)0(p-part),

and both summands are known to be finite. The finiteness statement for (π t
1(X)

ab)0

can be generalized to normal schemes.

Theorem 7.4. Let X be a normal connected variety over a finite field. Then the
group (π t

1(X)
ab)0 is finite.

Proof (sketch). We may replace X by a suitable open subscheme and therefore
assume that there exists a smooth morphism X −→C to a smooth projective curve.
Then we proceed in an analogous way as in the proof of Theorem 7.1 using the fact
that a global field of positive characteristic has exactly one unramified Ẑ-extension,
which is obtained by base change from the constant field. �

8. Tame class field theory

In this section we construct a reciprocity homomorphism from the singular ho-
mology group h0(X) to the abelianized tame fundamental group of an arithmetic
scheme X . A sketch of the results of this section is contained in [Schmidt 2007].

Let for the whole section S = Spec(Z) and let X ∈ Sch(Z) be connected and
regular. If X has R-valued points, we have to modify the tame fundamental group
in the following way.

We consider the full subcategory of the category of tame coverings of X which
consists of that coverings in which every R-valued point of X splits completely.
After choosing a geometric point x of X we have the fibre functor (Y → X) 7→
MorX (x, Y ), and its automorphism group π̃ t

1(X, x) is called the modified tame
fundamental group of X . It classifies connected tame coverings of X in which
every R-valued point of X splits completely. We have an obvious surjection

π t
1(X, x)� π̃ t

1(X, x)

which is an isomorphism if X (R)=∅.
For x ∈ X (R) let σx ∈ π

t
1(X)

ab be the image of the complex conjugation σ ∈
Gal(C|R) under the natural map x∗ :Gal(C|R)→π t

1(X)
ab. By [Saito 1985, Lemma

4.9 (iii)], the map

X (R)−→ π t
1(X)

ab, x 7−→ σx ,
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is locally constant for the norm topology on X (R). Therefore the kernel of the
homomorphism

π t
1(X)

ab � π̃ t
1(X)

ab

is an F2-vector space of dimension less or equal the number of connected compo-
nents of X (R).

Let x ∈ X be a closed point. We have a natural isomorphism

π et
1 ({x})∼= Gal(k(x)|k(x))∼= Ẑ,

and we denote the image of the (arithmetic) Frobenius automorphism Frob ∈
G(k(x)|k(x)) under the natural homomorphism π et

1 ({x})
ab
−→π et

1 (X)
ab by Frobx .

In the following we omit the base scheme Spec(Z) from notation, writing C•(X)
for C•(X;Spec(Z)) and similar for homology. Recall that C0(X) = Z0(X) is the
group of zero-cycles on X . Sending x to Frobx , we obtain a homomorphism

r : C0(X)−→ π1(X)ab,

which is known to have dense image [Lang 1956; Raskind 1995, Lemma 1.7]. Our
next goal is to show:

Theorem 8.1. The composite map

C0(X)
r
−→ π et

1 (X)
ab
−→ π̃ t

1(X)
ab

factors through h0(X), thus defining a reciprocity homomorphism

rec : h0(X)−→ π̃ t
1(X)

ab,

which has a dense image.

In order to prove Theorem 8.1, let us apply Theorem 3.7 to the case of rings of
integers of algebraic number fields. Let k be a finite extension of Q and let 6 be a
finite set of nonarchimedean primes of k. Let Ok,6 be the ring of 6-integers of k
and let E1,6

k be the subgroup of elements in the group of global units Ek which are
≡ 1 at every prime p ∈6. Let r1 and r2 be the number of real and complex places
of k. If m is a product of primes of k, then we denote by Cm(k) the ray class group
of k with modulus m.

Proposition 8.2. For X = Spec(Ok,6), we have hi (X)= 0 for i 6= 0, 1,

(i) h0(X)= Cm(k) with m=
∏

p∈6 p, and

(ii) h1(X)= E1,6
k
∼= (finite group)⊕Zr1+r2−1.

In particular, h0(X) is finite and h1(X) is finitely generated. If 6 contains at
least two primes with different residue characteristics, the finite summand in (ii)
vanishes.
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Proof. The vanishing of hi (X) for i 6= 0, 1 follows from Theorem 3.7. A straight-
forward computation shows that for m=

∏
p∈6 p

Cm(k)∼= Pic(Spec(Ok),6),

and the finiteness of Cm(k) is well-known. The group E1,6
k is of finite index in

the full unit group Ek . Therefore the remaining statement in (ii) follows from
Dirichlet’s unit theorem. Furthermore, a root of unity congruent to 1 modulo two
primes of different residue characteristics equals 1. �

By Theorem 3.5, we have an analogous statement for smooth curves over finite
fields.

Proposition 8.3. Let X be a smooth, geometrically connected curve over a finite
field F and let X be the uniquely defined smooth compactification of X. Let 6 =
X − X and let k be the function field of X. Then we have hi (X)= 0 for i 6= 0, 1,

(i) h0(X)= Cm(k) with m=
∏

p∈6 p, and

(ii) h1(X)=
{

0 if 6 6=∅,
F× if 6 =∅.

In particular, hi (X) is finite for all i .

Proof of Theorem 8.1. Using Propositions 8.2 and 8.3, classical (one-dimensional)
class field theory for global fields shows the statement in the case dim X = 1. In
order to show the general statement, it suffices by Corollary 5.3 to show that for
any morphism f : C→ X from a regular curve C to X and for any x ∈ d(C1(C)),
we have r( f∗(x))= 0. This follows from the corresponding result in dimension 1
and from the commutative diagram

d(C1(C)) −→ C0(C)
rC
−→ π̃ t

1(C)
aby y y

d(C1(X)) −→ C0(X)
rX
−→ π̃ t

1(X)
ab. �

In order to investigate the reciprocity map, we use Wiesend’s version of higher
dimensional class field theory [Wiesend 2007]. We start with the arithmetic case,
i.e. when X is flat over Spec(Z). In this case π̃ t

1(X)
ab is finite by Theorem 7.1.

Theorem 8.4. Let X be a regular, connected scheme, flat and of finite type over
Spec(Z). Then the reciprocity homomorphism

recX : h0(X)−→ π̃ t
1(X)

ab

is an isomorphism of finite abelian groups.
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Remark 8.5. If X is proper, then h0(X)∼= CH0(X) and π̃ t
1(X)

ab ∼= π̃ et
1 (X)

ab, and
we recover the unramified class field theory for arithmetic schemes of Bloch and
Kato–Saito [Kato and Saito 1983; Saito 1985].

Proof of Theorem 8.4. Recall the definition of Wiesend’s idèle group IX . It is
defined by

IX := Z0(X)⊕
⊕
C⊂X

⊕
v∈C∞

k(C)×v .

Here C runs through all closed integral subschemes of X of dimension 1, C∞ is
the finite set of places (including the archimedean ones if C is horizontal) of the
global field k(C) with center outside C and k(C)v is the completion of k(C) with
respect to v. IX becomes a topological group by endowing the group Z0(X) of
zero cycles on X with the discrete topology, the groups k(C)×v with their natural
locally compact topology and the direct sum with the direct sum topology.1

The idèle class group CX is defined as the cokernel of the natural map⊕
C⊂X

k(C)× −→ IX .

which is given for a fixed C ⊂ X by the divisor map k(C)×→ Z0(C)→ Z0(X) and
the diagonal map k(C)×→

⊕
v∈C∞ k(C)×v . CX is endowed the quotient topology

of IX .
We consider the quotient Ct

X of CX obtained by cutting out the 1-unit groups
at all places outside X . More precisely, let for v ∈ C∞, U 1(k(C)v) be the group
of principal units in the local field k(C)v. We make the notational convention
U 1(K )= K× for the archimedean local fields K = R,C. Then

Ut
X :=

⊕
C⊂X

⊕
v∈C∞

U 1(k(C)v)

is an open subgroup of the idèle group IX and we put

Ct
X := coker(

⊕
C⊂X

k(C)× −→ IX/U
t
X ).

Consider the map
R : IX −→ π et

1 (X)
ab

which is given by the map r : Z0(X)→ π1(X)ab defined above and the reciprocity
maps of local class field theory

ρv : k(C)×v −→ π et
1 (Spec(k(C)v))ab

1The topology of a finite direct sum is just the product topology, and the topology of an infinite
direct sum is the direct limit topology of the finite partial sums.
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followed by the natural maps π et
1 (Spec(k(C)v))ab

→ π et
1 (X)

ab for all C ⊂ X ,
v ∈ C∞. By [Wiesend 2007, Theorem 1 (a)], the homomorphism R induces an
isomorphism

ρ : Ct
X −→
∼ π̃ t

1(X)
ab.

Now we consider the obvious map

φ : Z0(X)−→ Ct
X .

The kernel of φ is the subgroup in Z0(X) generated by elements of the form div( f )
where C ⊂ X is a closed curve and f is an invertible rational function on C which
is in U 1(k(C)v) for all v ∈ C∞. By Theorem 5.1 we obtain ker(φ) = d1(C1(X)).
Therefore φ induces an injective homomorphism

i : h0(X) ↪→ Ct
X

with ρ ◦ i = rec. As ρ is injective, rec is injective, and hence an isomorphism. �

Finally, assume that X is regular, flat and proper over Spec(Z), let D ⊂ X be a
divisor and X = X−D. In [Schmidt 2005] we introduced the relative Chow group
of zero cycles CH0(X , D) and constructed, under a mild technical assumption, a
reciprocity isomorphism rec′ :CH0(X , D)

∼
→ π̃ t

1(X)
ab. By [Schmidt 2005, Proposi-

tion 2.4], there exists natural projection π :h0(X)�CH0(X , D)with rec= rec′◦π .
We obtain the

Theorem 8.6. Let X be a regular, connected scheme, flat and proper over Spec(Z),
such that its generic fibre X ⊗Z Q is projective over Q. Let D be a divisor on X
whose vertical irreducible components are normal schemes. Put X = X−D. Then
the natural homomorphism

h0(X)−→ CH0(X , D)

is an isomorphism of finite abelian groups.

Finally, we deal with the geometric case. The next theorem was proved in 1999
by M. Spieß and the author under the assumption that X has a smooth projective
compactification; see [Schmidt and Spieß 2000]. Now we get rid of this assump-
tion.

Theorem 8.7. Let X be a smooth, connected variety over a finite field F. Then the
reciprocity homomorphism

recX : h0(X)−→ π t
1(X)

ab

is injective. The image of recX consists of all elements whose degree in Gal(F|F)
is an integral power of the Frobenius automorphism. In particular, the cokernel
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coker(recX )∼= Ẑ/Z is uniquely divisible. The induced map on the degree-zero parts
rec0

X : h0(X)0
∼
→ (π t

1(X)
ab)0 is an isomorphism of finite abelian groups.

Proof. The proof is strictly parallel to the proof of Theorem 8.4, using Theorem 5.1
and the tame version of Wiesend’s class field theory for smooth varieties over finite
fields [Wiesend 2007, Theorem 1 (b)]. �
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The 2-block splitting in symmetric groups
Christine Bessenrodt

In 1956, Brauer showed that there is a partitioning of the p-regular conjugacy
classes of a group according to the p-blocks of its irreducible characters with
close connections to the block theoretical invariants. But an explicit block split-
ting of regular classes has not been given so far for any family of finite groups.
Here, this is now done for the 2-regular classes of the symmetric groups. To
prove the result, a detour along the double covers of the symmetric groups is
taken, and results on their 2-blocks and the 2-powers in the spin character values
are exploited. Surprisingly, it also turns out that for the symmetric groups the
2-block splitting is unique.

1. Introduction

A half-century ago, Richard Brauer [1956] introduced the idea of not only dis-
tributing characters into p-blocks but also to associate p-regular conjugacy classes
to p-blocks. He showed that it is possible to distribute the p-regular classes in such
a way into blocks that it fits with the blocks of irreducible Brauer characters (and
suitable subsets of ordinary irreducible characters in the blocks); this is to say that
the determinant of the corresponding block part of the Brauer character table (or
a suitable part of the ordinary character table) is not congruent to 0 modulo p (a
prime ideal over p). Given such a splitting of p-regular classes into blocks, Brauer
showed that the elementary divisors of the Cartan matrix of a block are then exactly
the p-parts in the orders of the centralizers of elements in the classes corresponding
to the block. But while it is known how to determine the p-blocks of irreducible
characters, for the p-regular classes only the existence of such a block splitting
is known by Brauer’s work — concrete examples for providing such a distribution
for families of groups have not been known so far. Brauer also observed that in
general there may be several such block splittings, and there did not seem to be
any natural choice for a given finite group.

In the present paper, such an explicit block splitting in the sense of Brauer is
exhibited for the conjugacy classes of odd order elements and the 2-blocks of the
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symmetric groups; in fact, it turns out that for these groups this is the unique 2-
block splitting of the 2-regular classes. Surprisingly, the strategy employed here
takes a detour along the double covers of the symmetric groups and exploits results
on the 2-powers in the spin character values of these groups. Also our knowledge
on the 2-block distribution of the spin characters is an important ingredient.

Here is a brief outline of the sections. In Section 2, some notation and results
for the symmetric groups and its representation theory are collected, and we recall
Brauer’s results on block splittings for arbitrary finite groups. As already men-
tioned above, we will not only work in the context of characters of the symmetric
group Sn , but we want to use results on the spin characters of the double cover
groups S̃n . For this, we have to introduce further combinatorial notions in Section
3, and in particular we recall the Glaisher bijection between partitions into odd
parts and partitions into distinct parts which plays a crucial rôle here; we also
review a number of results on spin characters, mostly of the last decade, which
will be used in the proof of our main result. In preparation for the application
in Section 4, also a new result on spin character values is proved in this section
(Theorem 3.4). In the final section, the class labels for the 2-block splitting of Sn are
defined; for a 2-block B of Sn we take the 2-regular classes labelled by partitions
into odd parts whose Glaisher image has a 4̄-core corresponding to the 2-block
B̃ of S̃n containing B (see Definition 4.1). In the main Theorem 4.2 properties
of the determinants of the corresponding block character tables are proved which
imply that the construction gives indeed a block splitting of the classes; in fact, the
proof allows to refine the result on the determinants further to a result on the Smith
normal forms given in Theorem 4.3. An analysis of the proof of the main Theorem
shows that the information from Section 3 on spin character values exploited there
may also be applied to prove uniqueness of our splitting system.

2. Preliminaries

We have to introduce some notation. For the symmetric groups Sn , the correspond-
ing combinatorial notions and their representation theory, we will follow mostly
the usual notation in [James and Kerber 1981]; for the double cover groups S̃n and
the corresponding background we refer the reader to [Hoffman and Humphreys
1992] and [Morris 1962].

Let n ∈ N. For a partition λ of n, the number of its (nonzero) parts is called
its length and is denoted by l(λ). The complex irreducible character of Sn corre-
sponding to λ is denoted by [λ]. Given a second partition µ of n,

[λ](σµ)

is then the character value on an element σµ in Sn of cycle type µ.
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Let µ= (1m1(µ), 2m2(µ), . . . ) be a partition, written in exponential notation; then
we set

aµ =
∏
i≥1

imi (µ), bµ =
∏
i≥1

mi (µ)!

We let zµ denote the order of the centralizer of an element of cycle type µ in Sn;
then zµ = aµbµ.

Let p be a prime. Then a partition is called p-regular if no part is repeated p or
more times, and a partition is called p-class regular if no part is divisible by p.

We let D(n) denote the set of partitions of n into distinct parts; these partitions
are thus the 2-regular partitions of n and they are also called bar partitions in
connection with the theory of the double cover groups. We let O(n) denote the
set of partitions of n into odd parts; these are thus the 2-class regular partitions
of n.

We then define the 2-regular character table of the symmetric group Sn to be

X2 = ([λ](σα)) λ∈D(n)
α∈O(n)

where the partitions are ordered in a suitable way. More generally, the p-regular
character table is defined with λ running through the p-regular partitions and α
running through the p-class regular partitions. Its determinant has been studied by
Olsson, who showed in [2003, Theorem 2] that its absolute value equals the product
of all parts of all p-class regular partitions. Hence, | det(X2)| =

∏
µ∈O(n) aµ, and

in particular it is thus known that

2 - det([λ](σα)) λ∈D(n)
α∈O(n)

.

Our main result below will provide a block version of this property, by distributing
not only the characters but also the 2-regular conjugacy classes into blocks in a
suitable way.

This block distribution of conjugacy classes gives a block splitting in the sense
of Brauer; we first introduce the general context.

Let G be a finite group, p a prime. Let `(G) be the cardinality of the set Clp′(G)
of p-regular conjugacy classes in G. For each K ∈ Clp′(G) we let xK denote an
element in K . A defect group of K is a Sylow p-subgroup of CG(x) for some
x ∈ K ; if this has order pd , then d is called the p-defect of K . We let IBr(G)
denote the set of modular irreducible characters of G; then

8G = (ϕ(xK )) ϕ∈ IBr(G)
K∈Clp′ (G)

is the Brauer character table of G. It is well known that the Brauer character table
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is nonsingular modulo p; that is,

det8G 6≡ 0 (mod p).

Further, we let
D = (dχ ϕ)χ∈ Irr(G)

ϕ∈ IBr(G)

denote the p-decomposition matrix for G, and we let C = Dt D denote its Cartan
matrix. Let Blp(G) be the set of p-blocks of G. For B ∈ Bl(G), Irr(B) is the set
of ordinary irreducible characters in B, IBr(B) is the set of modular irreducible
characters in B, `(B)= |IBr(B)|,

D(B)= (dχ,ϕ)χ∈ Irr(B)
ϕ∈ IBr(B)

denotes the p-decomposition matrix for B, and C(B) is the Cartan matrix for B.
Then C and D are the block direct sums of the matrices C(B) and D(B), for

B ∈ Blp(G).

Theorem 2.1 [Brauer 1956, §5]. There exists a disjoint decomposition of Clp′(G)
into blocks of p-regular conjugacy classes

Clp′(G)=
⋃

B∈Blp(G)

Clp′(B)

and a selection of characters Irr′(B) ⊆ Irr(B) for each p-block B of G such that
the following conditions are fulfilled:

(1) |Clp′(B)| = | Irr′(B)| = `(B) for all B ∈ Blp(G).

(2) For X B = (χ(xK )) χ∈Irr′(B)
K∈Clp′ (B)

, we have det X B 6≡ 0 (mod p).

(3) For 8B = (ϕ(xK )) ϕ∈IBr(B)
K∈Clp′ (B)

, we have det8B 6≡ 0 (mod p).

(4) For DB = (dχϕ) χ∈Irr′(B)
ϕ∈IBr(B)

, we have det DB 6≡ 0 (mod p).

Furthermore, the elementary divisors of the Cartan matrix C(B) are then exactly
the orders of the p-defect groups of the conjugacy classes in Clp′(B), for all B in
Blp(G).

Note that the properties in (2), (3) and (4) are not independent of each other, as
X B = DB8B . In particular, if we have a suitable choice Irr′(B) of characters that
satisfies (4), and a suitable choice of classes that satisfies (3), then these together
are a suitable choice for (2). If we have a basic set of irreducible characters, i.e.,
a subset Irr′(G) ⊆ Irr(G) giving a Z-basis for the character restrictions to the p-
regular classes, then the p-block decomposition of this set will give a suitable
choice of sets Irr′(B) satisfying (4).
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We now turn to the symmetric groups. In this case, the so-called Nakayama
Conjecture (proved by Brauer and Robinson) gives a combinatorial description for
the block distribution of characters. If λ is a partition of n and p a prime, we
remove rim hooks of length p from the Young diagram of λ as often as possible;
this results in a unique partition λ(p) which has no rim hook of length p, called
the p-core of λ . The number of rim hooks removed from λ on the way to λ(p) is
called the p-weight of λ. We refer the reader to [James and Kerber 1981] for more
details on this and the following.

“Nakayama Conjecture”. Two irreducible characters [λ], [µ] of Sn belong to the
same p-block if and only if λ(p) = µ(p).

Hence each p-block B has a well-defined p-weight w(B) and p-core κ(B),
namely the common p-weight and p-core of all the labels of the irreducible char-
acters in B. Note that then |λ| = pw(B)+ |κ(B)|, for all [λ] ∈ Irr(B).

The situation at p= 2 is particularly nice, as we may then easily describe all the
2-core partitions: these are exactly the staircase partitions ρk = (k, k−1, . . . , 2, 1),
k ∈N0. The removal of a rim hook of length 2 from a partition is just the removal
of a “domino piece” from the rim of its Young diagram.

The irreducible characters labelled by the p-regular partitions form a basic set
[James and Kerber 1981; Külshammer et al. 2003]; thus with respect to a suitable
ordering, the determinant of the corresponding part of the decomposition matrix
is 1. We take the corresponding choice Irr′(B)⊆ Irr(B) of characters for Brauer’s
Theorem in our situation at p = 2. This means the following. Let Bl2(n) be the
set of 2-blocks of Sn . For a given 2-block B we set

D(B) := {λ ∈ D(n) | [λ] ∈ Irr(B)} = {λ ∈ D(n) | λ(2) = κ(B)} .

This gives a set partition according to the 2-blocks:

D(n)=
⋃

B∈Bl2(n)

D(B).

Then |D(B)| equals p(w(B)), the number of partitions of w(B); see [James and
Kerber 1981] or [Olsson 1993]. In the notation of Theorem 2.1 we then take
Irr′(B)= {[λ] | λ ∈ D(B)}.

By Brauer’s Theorem there must exist a suitable block splitting of the 2-regular
conjugacy classes; i.e., there must be a set partition

O(n)=
⋃

B∈Bl2(n)

O(B)
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such that for all B ∈ Bl2(n) we have

2 - det(ϕλ(σµ)) λ∈D(B)
µ∈O(B)

, (1)

where for µ ∈ D(n) we denote by ϕµ the corresponding Brauer character of Sn;
note that ϕµ belongs to the 2-block B exactly if µ(2)= κ(B). By the remarks above
this condition is equivalent to having

2 - det([λ](σµ)) λ∈D(B)
µ∈O(B)

. (2)

As noted above, for any such block splitting, the elementary divisors of the Cartan
matrix of B are then the defect group orders of the conjugacy classes labelled
by O(B).

The aim of this article is to define explicit subsets O(B) of O(n) satisfying the
equivalent conditions (1) and (2), thus giving a 2-block splitting of conjugacy
classes for the symmetric groups.

3. Spin characters

We collect here a number of results on spin characters that will be needed in the
sequel; the reader is referred to [Hoffman and Humphreys 1992] and [Olsson 1993]
for more background on the double cover groups S̃n and their representation theory.

The sets D+(n) and D−(n) are the subsets of partitions λ ∈ D(n) with n− l(λ)
even or odd, respectively. For µ ∈ D+(n), we denote by 〈µ〉 the corresponding
complex irreducible spin character of S̃n , for µ ∈ D−(n), we let 〈µ〉 and 〈µ〉′ =
sgn·〈µ〉 be the corresponding pair of associate complex irreducible spin characters
of S̃n . We recall that the only conjugacy classes of Sn that split over the double
cover groups are those of type O and of type D−; the irreducible spin characters
vanish on all other conjugacy classes. More precisely, for any such partition α
one of the two corresponding conjugacy classes in S̃n is chosen in accordance
with [Schur 1911], and we denote a corresponding representative by σ̃α. While
the spin character values on the D− classes are known explicitly (but they are in
general not integers, and mostly not even real), for the values on the O-classes we
have a recursion formula due to A. Morris which is analogous to the Murnaghan–
Nakayama formula (and which shows in particular, that these are integers).

In contrast to odd characteristic, the 2-blocks of S̃n are mixed, i.e., they contain
ordinary as well as spin characters. The simple S̃n-modules in characteristic 2
may be identified with the simple Sn-modules Dλ which are labelled by partitions
λ ∈ D(n).

For a partition λ= (λ1, . . . , λm) ∈ D(n) we set

dbl(λ)=
([
λ1+ 1

2

]
,

[
λ1

2

]
,

[
λ2+ 1

2

]
,

[
λ2

2

]
, . . . ,

[
λm + 1

2

]
,

[
λm

2

])
,
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the doubling of λ. For example, the staircase partition ρk = (k, k− 1, . . . , 2, 1) is
the doubling of the partition τk = (2k− 1, 2k− 5, . . . ).

The 2-block distribution of the spin characters is described by the following
result (which confirmed a conjecture by Knörr and Olsson):

Theorem 3.1 [Bessenrodt and Olsson 1997]. Let λ ∈ D(n). Then 〈λ〉 and [dbl(λ)]
belong to the same 2-block of S̃n .

Thus, the 2-block of 〈λ〉 is determined by the 2-core of dbl(λ). But in fact,
the spin combinatorics in this case may also be viewed as a 4̄-combinatorics (see
[Bessenrodt and Olsson 1997] for more details). Indeed, we have a 4̄-abacus for
the bar partitions with one runner for all even parts (the 0-th runner), on which
we can slide by steps of 2, and two conjugate runners for the residues 1 and 3
modulo 4. A bar partition is then a 4̄-core exactly if the 0-th runner is empty (i.e.,
there are no even parts), at most one of the two conjugate runners is nonempty, and
a nonempty runner has only beads at the top; thus the 4̄-cores are the partitions τk

defined above. We will denote the 4̄-core of a bar partition λ by λ(4̄).

It is well known that |D(n)| = |O(n)|. In fact, J. W. L. Glaisher [1883] defined
a bijection between partitions with parts not divisible by a given number k on the
one hand and partitions where no part is repeated k times on the other hand; in
particular for k = 2 this gives a bijection between O(n) and D(n). In this case,
Glaisher’s map G is defined as follows. Suppose that α = (1m1, 3m3, · · · ) ∈ O(n).
Write each multiplicity mi as a sum of distinct powers of 2, i.e., in its 2-adic
decomposition: mi =

∑
j 2ai j . Then G(α) ∈ D(n) consists of the parts (2ai j i)i, j ,

sorted in descending order to give a partition. Surprisingly, this map has turned up
naturally in connection with spin characters of the symmetric groups (see below).

For any integer m ≥ 0, let s(m) be the number of summands in the 2-adic
decomposition of m. Then for α = (1m1, 3m3, · · · ) ∈ O(n) the length of G(α) is
l(G(α))=

∑
i odd

s(mi ). We define

kα =
∑
i odd

(mi − s(mi ))

and set σ(α)= (−1)kα ; note that we thus have

kα = l(α)− l(G(α)).

We denote by Oε(n) the set of partitions α in O(n) with the sign of σ(α) being
ε ∈ {±}. With this definition of signs, it is easy to see that the Glaisher map G
induces bijections Oε(n)→ Dε(n); see [Bessenrodt and Olsson 2000].

The integer kα also comes up naturally in the group-theoretic context. For any
nonzero integer m, we denote by ν(m) the exponent to which 2 divides m; 2ν(m) is
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the exact 2-power dividing m. Let α = (1m1(α)3m3(α), . . . ) ∈ O(n), σα an element
of cycle type α in Sn . Then ν(|CSn (σα)|)=

∏
i odd ν(mi (α)!)= kα. Hence kα is the

2-defect of Kα, the conjugacy class of Sn labelled by α ∈ O(n).

In joint work with J. Olsson, we have previously investigated the 2-powers ap-
pearing in the spin character values on a given 2-regular conjugacy class:

Theorem 3.2. Let α ∈ O(n).

(i) [Bessenrodt and Olsson 2000] For all λ ∈ D(n) we have

ν(〈λ〉(σ̃α))≥ bkα/2c .

(ii) [Bessenrodt and Olsson 2005] Let G(α) ∈ D(n) be the Glaisher image of α.
Then

ν(〈G(α)〉(σ̃α))= bkα/2c,

and if α ∈ O−(n), then 〈G(α)〉 and 〈G(α)〉′ are the only spin characters where
this equality holds.

In the case of partitions α ∈ O+(n), we may have spin characters different from
〈G(α)〉 such that the minimal 2-power is attained on σ̃α. At least we can have non-
selfassociate spin characters with this property, but it is not yet clear whether there
are also self-associate spin characters satisfying this; see [Bessenrodt and Olsson
2005]. For our later purposes the weaker statement in Theorem 3.4 below suffices.
For proving this result, we first have to recall some results due to Stembridge.

Stembridge [1989] has investigated a projective analogue of the outer tensor
product, called the reduced Clifford product, and has proved a shifted analogue of
the Littlewood–Richardson rule which we will need in the sequel. To state this, we
first have to define some further combinatorial notions.

Let A′ be the ordered alphabet {1′ < 1< 2′ < 2< ...}. The letters 1′, 2′, . . . are
said to be marked, the others are unmarked. The notation |a| refers to the unmarked
version of a letter a in A′. To a partition λ ∈ D(n) we associate a shifted diagram

Y ′(λ)= {(i, j) ∈ N2
| 1≤ i ≤ l(λ), i ≤ j ≤ λi + i − 1}

A shifted tableau T of shape λ is a map T : Y ′(λ) → A′ such that T (i, j) ≤
T (i + 1, j), T (i, j) ≤ T (i, j + 1) for all i, j , and every k ∈ {1, 2, . . .} appears at
most once in each column of T , and every k ′ ∈ {1′, 2′, . . .} appears at most once
in each row of T . For k ∈ {1, 2, . . .}, let ck be the number of boxes (i, j) in Y ′(λ)
such that |T (i, j)| = k. Then we say that the tableau T has content (c1, c2, . . . ).
Analogously, we define skew shifted diagrams and skew shifted tableaux of skew
shape λ \µ if µ is a partition with Y ′(µ) ⊆ Y ′(λ). For a (possibly skew) shifted
tableau S we define its associated word w(S) = w1w2 · · · by reading the rows of
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S from left to right and from bottom to top. By erasing the marks of w, we obtain
the word |w|.

Given a word w = w1w2 . . ., we define

mi ( j)=multiplicity of i among wn− j+1, . . . , wn for 0≤ j ≤ n,

mi (n+ j)= mi (n)+ multiplicity of i ′ among w1, . . . , w j for 0< j ≤ n.

This function mi corresponds to reading the rows of the tableau first from right to
left and from top to bottom, counting the letter i on the way, and then reading from
bottom to top and left to right, counting the letter i ′ on this way.

The wordw satisfies the lattice property if, whenever mi ( j)=mi−1( j), we have

wn− j 6= i, i ′ if 0≤ j < n,

w j−n+1 6= i−1, i ′ if n ≤ j < 2n.

For two partitions µ and ν we denote by µ ∪ ν the partition which has as its
parts all the parts of µ and ν together. Also define

ελ =

{
1 if λ ∈ D+(n)
√

2 if λ ∈ D−(n)
.

We can then state the spin version of the Littlewood–Richardson rule:

Theorem 3.3 [Stembridge 1989, 8.1 and 8.3]. Letµ∈D(k), ν ∈D(n−k), λ∈D(n),
and form the reduced Clifford product 〈µ〉×c 〈ν〉. Then we have

((〈µ〉×c 〈ν〉) ↑
S̃n , 〈λ〉)=

1
ελεµ∪ν

2(l(µ)+l(ν)−l(λ))/2 f λµν ,

unless λ is odd and λ = µ∪ ν. In that latter case, the multiplicity of 〈λ〉 is 0 or 1,
according to the choice of associates.

The coefficient f λµν is the number of shifted tableaux S of shape λ\µ and content
ν such that the tableau wordw=w(S) satisfies the lattice property and the leftmost
i of |w| is unmarked in w for 1≤ i ≤ l(ν).

For further properties of the reduced Clifford product, see [Humphreys 1986;
Michler and Olsson 1990; Schur 1911; Stembridge 1989].

Theorem 3.4. Let α ∈ O+(n), λ ∈ D+(n). If ν(〈λ〉(σ̃α))= bkα/2c, then λD G(α).
In particular, G(α) is the minimal D+-partition in lexicographic order where this
equality is attained.

Proof. We recall parts of the proof of [Bessenrodt and Olsson 2005, Theorem 1.2].
Let α = (imi )i=1,3,..., set αi

= (imi ), ai = imi , and let S̃a be the preimage of the
Young subgroup Sa1 × Sa3 × . . . in S̃n . Restricting 〈λ〉 to S̃a gives

〈λ〉S̃a
=

∑
µ=(µ1,µ3,...)

gλµ(×c〈µi 〉) +
∑

µ=(µ1,µ3,...)n.s.a.

g̃λµ(×c〈µi 〉)
′,
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where the gλµ are spin Littlewood–Richardson coefficients, and µ = (µ1, µ3, . . . )

runs over all sequences with µi a partition of ai . Moreover, µ is nonselfassociate
(n.s.a.) if the corresponding reduced Clifford product is nonselfassociate; this is
the case if and only if tµ = |{i | µi ∈ D−}| is odd. As we assume that λ ∈ D+, by
[Stembridge 1989] we have gλµ = g̃λµ for any n.s.a. µ. Thus

〈λ〉(σ̃α)=
∑

µ=(µ1,µ3,...) s.a.

gλµ(×c〈µi 〉)(σ̃α) +
∑

µ=(µ1,µ3,...) n.s.a.

2gλµ(×c〈µi 〉)(σ̃α).

By [Bessenrodt and Olsson 2005, Proposition 3.3], the 2-value of each Clifford
product value is at least [kα/2]; hence we obtain for the n.s.a. µ a contribution of
nonminimal 2-value. The same proposition implies that, since α ∈ O+, the only
Clifford product value which is of 2-value [kα/2] occurs for the partition sequence
µ = g(α) = (G(α1),G(α3), . . . ), and thus gλg(α) has to be odd. In particular, 〈λ〉
is a constituent of ×c〈G(αi )〉↑S̃n . By the spin Littlewood–Richardson rule due to
Stembridge, 〈G(α)〉 is the lowest constituent in this induced character (with respect
to dominance, and thus also in lexicographic order). We have already seen before
that for this character we have indeed equality on the conjugacy class to α. �

We want to go beyond determinants and study the Smith normal forms of the
matrices under consideration. For any integral square matrix X we let S(X) denote
its Smith normal form, i.e., the diagonal matrix with the elementary divisors of X
as diagonal elements. The following property of the Smith normal form will be
used: If X and Y are square n × n matrices with relatively prime determinants,
then S(XY )= S(X)S(Y ); see [Newman 1972, Theorem II.15], for instance. For
a finite family of numbers ci , i ∈ I , we mean by S(ci , i ∈ I ) the Smith normal
form of any diagonal matrix with the given numbers on the diagonal.

We define the reduced spin character table of S̃n as the integral square matrix

Zs = (〈λ〉(σ̃µ)) λ∈D(n)
µ∈O(n)

.

Then we have

Theorem 3.5 [Bessenrodt et al. 2005, Theorem 13]. The Smith normal form of the
reduced spin character table Zs of S̃n is given by

S(Zs)= S(2[kµ/2], µ ∈ O(n)) ·S(bµ, µ ∈ O(n))2′ .

In the context of 2-modular representations, we consider the part of the 2-decom-
position matrix for S̃n corresponding to spin characters. Since the rows correspond-
ing to associate spin characters are equal, this part of the decomposition matrix is
determined by the submatrix Ds = Ds(n), where for each λ ∈ D(n) we keep only
one row for each associate class of spin characters. We call Ds the reduced spin
2-decomposition matrix; it is a square matrix of the same size as Zs .
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Theorem 3.6 [Bessenrodt and Olsson 2000]. Let B̃ ∈ Bl2(S̃n), B ∈ Bl2(Sn),
B ⊆ B̃. Suppose that 2c1, 2c2, . . . , 2c` are the elementary divisors of the Cartan
matrix C(B). Then the elementary divisors of Ds(B̃) are 2[c1/2], 2[c2/2], . . . , 2[c`/2].

Now the invariants of the Cartan matrix had been explicitly determined by Ols-
son (see [Bessenrodt and Olsson 2000] for the correction of the formula misstated
in [Olsson 1986]). For p= 2, this formula was recast in a nicer combinatorial way
by Uno and Yamada; we reformulate this here for our purposes.

Theorem 3.7 [Uno and Yamada 2006]. Let B be a 2-block of Sn with 2-core
ρk = (k, k − 1, . . . , 2, 1), and let τk = (2k − 1, 2k − 5, . . . ). Then the elementary
divisors of the Cartan matrix C(B) are given by

2l(α)−l(G(α)), α ∈ O(n), G(α)(4̄) = τk .

As kα = l(α)− l(G(α)) for any α ∈ O(n), we thus conclude

Corollary 3.8. Let B̃ ∈ Bl2(S̃n), B ∈ Bl2(Sn), B ⊆ B̃, τk as above. Then

S(Ds(B̃))= S
(
2[kα/2], α ∈ O(n), G(α)(4̄) = τk

)
.

We observe also that by Brauer’s Theorem 2.1, the defect group orders of the
classes associated to B in a block splitting thus have to be the numbers 2kα , α ∈
O(n), α(4̄) = τB . We take this as a hint on how to choose the distribution of the
2-regular conjugacy classes into blocks in the next section.

4. The 2-block splitting for Sn

We fix the following notation.
Let B be a 2-block of Sn , with 2-core ρk = (k, k−1, . . . , 2, 1), k ∈N0. Let B̃ be

the 2-block of S̃n containing B, with corresponding 4̄-core τk= (2k−1, 2k−5, . . . ).
As before, we let

D(B)= {µ ∈ D(n) | µ(2) = ρk}

and we set
D(B̃)= {λ ∈ D(n) | λ(4̄) = τk} .

An important point to note here is that these sets of partitions really fit to the 2-
block inclusion B ⊆ B̃, as the corresponding characters [µ], µ ∈ D(B), and 〈λ〉,
λ ∈ D(B̃), belong to the same 2-block B̃ of S̃n by Theorem 3.1.

Let w = w(B) be the 2-weight of B. Then

|D(B)| = |D(B̃)| = p(w);

see [Bessenrodt and Olsson 1997] or [Olsson 1993], for example. With this no-
tation, we can now introduce the crucial definition that will provide the 2-block
splitting of the 2-regular classes:
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Definition 4.1. With G : O(n)→ D(n) still denoting the Glaisher map defined in
Section 3, we set

O(B) := {α ∈ O(n) | G(α)(4̄) = τk} =: O(B̃).

Thus by definition the Glaisher map restricts to blockwise bijections

G : O(B)→ D(B̃).

In particular, we thus have |O(B)| = `(B), so the first condition of a block splitting
is satisfied for these labelling sets.

We now consider the following parts of the character table and spin character
table, respectively, which are all square matrices by the observations made above
(note that the spin character table is reduced in the sense that we take only one of
a pair of associate spin characters):

Z(B)= ([µ](σα))µ∈D(B)
α∈O(B)

, Zs(B̃)= (〈λ〉(σ̃α)) λ∈D(B̃)
α∈O(B)

.

We also consider the corresponding block part of the Brauer character table:

8(B)= (ϕµ(σα))µ∈D(B)
α∈O(B)

.

Finally we define a diagonal matrix associated to B by

1(B)=1(2[kα/2], α ∈ O(B)).

After all these preparations, we can now state the following result on the deter-
minants of the matrices defined above, which tells us that the chosen distribution
of conjugacy classes given by the sets O(B) is indeed a 2-block splitting of the
2-regular classes:

Theorem 4.2. Let B ⊆ B̃ be as above. Then the following holds:

(i) The 2-part in the determinant of the block part of the spin character table is
given by

ν(det Zs(B̃))=
∑
α∈O(B)

[
kα
2

]
.

(ii) The odd part of the determinant of the block part of the spin character table
satisfies

(det Zs(B̃))2′ = det8(B)= det Z(B).

In particular, the sets O(B), B ∈ Bl2(n), define a 2-block splitting for Sn .

Proof. (i) By Theorem 3.2 we have

ν(det Zs(B̃))≥
∑
α∈O(B)

[
kα
2

]
.
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More precisely, for any bijection π : O(B)→ D(B̃) we have

ν

( ∏
α∈O(B)

〈π(α)〉(σ̃α)

)
≥

∑
α∈O(B)

[
kα
2

]
.

We claim that the Glaisher bijection G : O(B)→ D(B̃), α 7→ G(α) is the unique
bijection O(B)→D(B̃) such that equality holds. Then the assertion follows by the
Leibniz formula for the determinant.

By Theorem 3.2, each such map π has to be the Glaisher map on restriction to
O−(B), and thus π induces bijections Oε(B)→Dε(B̃), for both signs ε=±. Now
we argue by induction on the lexicographic order on D+. Take α ∈ O+(B) such
that G(α) is highest among the partitions in D+(B̃). Then by Theorem 3.4, G(α)
is the unique partition in D+(B̃) such that

ν(〈G(α)〉(σ̃α))=
[

kα
2

]
and hence (using again Theorem 3.2) we must have π(α)=G(α). Remove α from
O+(B) and π(α) = G(α) from D+(B̃) and continue, using Theorem 3.4 in each
step. This shows that π = G, and hence we are done.

(ii) Let
Ds(B̃)= (d̃λµ) λ∈D(B̃)

µ∈D(B)

be the reduced spin 2-decomposition matrix for the spin characters in B̃ (taking
only one of an associate pair). By Theorem 3.1 we have

Zs(B̃)= Ds(B̃)8(B).

By Corollary 3.8 and part (i) we know that

| det Ds(B̃)| =
∏

α∈O(B)

2[kα/2]
= (det Zs(B̃))2 ,

and hence the first equality in (ii) follows.
With DB = (dλµ) λ∈D(B)

µ∈D(B)
denoting the upper square part of the 2-decomposition

matrix for B (with the usual order where the characters to regular partitions come
first) we also have

Z(B)= DB8(B).

As DB is well-known to be a lower unitriangular matrix, this immediately implies
det8(B)= det Z(B). �

We can also deduce further information on the Smith normal forms of the matri-
ces defined above; these may also be considered as block versions of some results
in [Bessenrodt et al. 2005].
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Theorem 4.3. Let B ⊆ B̃ be as above.

(i) The 2-part of the Smith normal form of Zs(B̃) is given by

S(Zs(B̃))2 = S(1(B)).

(ii) The odd part of the Smith normal form of Zs(B̃) satisfies

S(Zs(B̃))2′ = S(8(B))= S(Z(B)).

Proof. We have already seen above that

Zs(B̃)= Ds(B̃)8(B).

By Corollary 3.8 and Theorem 4.2 we know that Ds(B̃) and 8(B) have coprime
determinants, and more precisely, we then obtain

S(Zs(B̃))2 = S(Ds(B̃))= S(1(B)),

S(Zs(B̃))2′ = S(8(B)).

Since Z(B) = DB8(B) and det DB = 1, this immediately implies S(8(B)) =
S(Z(B)). �

Theorem 4.4. The block splitting of the 2-regular classes given by the sets O(B),
B ∈ Bl2(n), is the unique block splitting in the sense of Brauer (i.e., such that
Theorem 2.1(3) is satisfied).

Proof. We keep our previous choice of characters Irr′(B) ⊆ Irr(B), i.e., we take
the ordinary characters labelled by D(B), and we take the spin characters labelled
by D(B̃). For any choice O(B)′, B ∈ Bl2(n), of blocks of labels of the 2-regular
conjugacy classes, we have the analogous equality

Zs(B̃)′ = Ds(B̃)8(B)′

and hence det Zs(B̃)′ = det Ds(B̃) det8(B)′. Thus the sets O(B)′ correspond to
a splitting system, i.e., condition (3) in Brauer’s Theorem is satisfied for all B, if
and only if

(det Zs(B̃)′)2 = (det Ds(B̃))2 =
∏

α∈O(B)

2[kα/2] for all B ∈ Bl2(n).

As in the proof of Theorem 4.2 we again consider the bijections on the block
level that give a summand with minimal 2-power in the Leibniz formula for the
determinant and use Theorem 3.2; one immediately observes that we must have
for any 2-block B of Sn:

O−(B)′ = G−1(D−(B))= O−(B),
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i.e., the O−-part of the blocks in a block splitting of regular classes is uniquely
determined. In the next step, arguing similarly as before with Theorem 3.4 along
the lexicographic ordering on the D+-partitions (and considering all blocks in this
argument simultaneously) one also obtains

O+(B)′ = O+(B) for all B ∈ Bl2(n).

Thus the block splitting O(B), B ∈ Bl2(n), constructed above is the unique block
splitting of the 2-regular classes of Sn . �

Remark. While there is a nice formula for the determinant of the whole regular
character table of Sn (see Section 2), we do not have a formula for the determinant
of the block character table. A first guess might be that it is again the product of the
parts of the corresponding labelling O-partitions (or related to this), but examples
show that this is not the case — in fact, primes > n may appear in the determinant.
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