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Joseph Gubeladze San Francisco State University, USA

Ehud Hrushovski Hebrew University, Israel

Craig Huneke University of Kansas, USA

Mikhail Kapranov Yale University, USA

Yujiro Kawamata University of Tokyo, Japan

János Kollár Princeton University, USA

Hendrik W. Lenstra Universiteit Leiden, The Netherlands

Yuri Manin Northwestern University, USA

Barry Mazur Harvard University, USA

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Andrei Okounkov Princeton University, USA

Raman Parimala Emory University, USA

Victor Reiner University of Minnesota, USA

Karl Rubin University of California, Irvine, USA

Peter Sarnak Princeton University, USA

Michael Singer North Carolina State University, USA

Ronald Solomon Ohio State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Bernd Sturmfels University of California, Berkeley, USA

Richard Taylor Harvard University, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium
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Contracted ideals and the Gröbner fan of
the rational normal curve

Aldo Conca, Emanuela De Negri and Maria Evelina Rossi

The paper has two goals: the study of the associated graded ring of contracted
homogeneous ideals in K [x, y] and the study of the Gröbner fan of the ideal P
of the rational normal curve in Pd . These two problems are, quite surprisingly,
very tightly related. We completely classify the contracted ideals with Cohen–
Macaulay associated graded ring in terms of the numerical invariants arising
from Zariski’s factorization. We determine explicitly the initial ideals (monomial
or not) of P , that are Cohen–Macaulay.

1. Introduction

The goal of the paper is twofold:

(1) to describe the Cohen–Macaulay initial ideals of the defining ideal P of the
rational normal curve in Pd in its standard coordinate system and for every
positive integer d , and

(2) to identify the homogeneous contracted ideals in K [x, y] whose associated
graded ring is Cohen–Macaulay.

The two problems are closely related. Indeed they are essentially equivalent, as
we proceed to explain. Let K be a field, R = K [x, y] and I be a homogeneous
ideal of R with

√
I =m= (x, y). Denote by grI (R) the associated graded ring⊕

k

I k/I k+1

of I . The ideal I is said to be contracted if it is contracted from a quadratic exten-
sion, that is, if there exists a linear form z in R such that

I = I R[m /z] ∩ R.

Contracted ideals have been introduced by Zariski in his studies on the factoriza-
tion property of integrally closed ideals; see [Zariski and Samuel 1960, App. 5]

MSC2000: primary 13A30; secondary 13P10, 13D40.
Keywords: Gröbner fan, contracted ideal, Rees algebra, rational normal curve, Cohen–Macaulay

ring.
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240 Aldo Conca, Emanuela De Negri and Maria Evelina Rossi

or [Huneke and Swanson 2006, Chap. 14]. Every integrally closed ideal I is con-
tracted and has a Cohen–Macaulay associated graded ring grI (R); see [Lipman
and Teissier 1981; Huneke 1989]. On the contrary, the associated graded ring of
a contracted ideal does not need to be Cohen–Macaulay. Zariski proved a factor-
ization theorem for contracted ideals, asserting that every contracted ideal I has a
factorization I = L1 · · · Ls where L i are themselves contracted but of a very special
kind. In the homogeneous case and with K assumed to be algebraically closed,
each L i is a lex-segment monomial ideal in a specific coordinate system depending
on i . Recall that a monomial ideal L in R is a lex-segment ideal if that xa yb

∈ L
with b > 0 implies that xa+1 yb−1

∈ L also. In [Conca et al. 2005, Corollary 3.14]
it is shown that the Cohen–Macaulayness of grI (R) is equivalent to the Cohen–
Macaulayness of grL i

(R) for every i = 1, . . . , s. Therefore to answer (2) one has
to characterize the lex-segment ideals L with Cohen–Macaulay associated graded
ring. Any lex-segment ideal L of initial degree d can be encoded by a vector
a = (a0, a1, . . . , ad) with increasing integral coordinates and a0 = 0. Given L
associated to a, we show that grL(R) is Cohen–Macaulay if and only if ina(P)
defines a Cohen–Macaulay ring. Here ina(P) denotes the ideal of the initial forms
of P with respect to the vector a. Therefore (1) and (2) are indeed equivalent
problems. In Section 4 we solve problem (1) by showing first that P has exactly
2d−1 Cohen–Macaulay initial monomial ideals; see Theorem 4.11. Then we show
that every Cohen–Macaulay initial ideal of P has a Cohen–Macaulay monomial
initial ideal; see Theorem 4.13. In terms of the Gröbner fan of P , Theorem 4.13
can be rephrased as that ina(P) is Cohen–Macaulay if and only if a belongs to the
union of 2d−1 maximal closed cones. These cones are explicitly described by lin-
ear homogeneous inequalities. The fact that P has exactly 2d−1 Cohen–Macaulay
monomial initial ideals can be derived by combining the results of Hoşten and
Thomas [2003] and those of O’Shea and Thomas [2005]; see Remark 4.20.

In Section 5 we give an explicit characterization, in terms of the numerical
invariants arising from Zariski’s factorization, of the Cohen–Macaulay property
of the associated graded ring of a contracted homogeneous ideal in K [x, y]. In
Section 6 we describe the relationship between the Hilbert series of grL(R) and
the multigraded Hilbert series of ina(P). We discuss also how the formulas for the
Hilbert series and the polynomials of grL(R) change by varying the corresponding
cones of the Gröbner fan of P . This has a conjectural relation with the hyperge-
ometric Gröbner fan introduced by Saito, Sturmfels and Takayama in [Saito et al.
2000]. In Section 7 we show that the union of a certain subfamily of the 2d−1

Cohen–Macaulay cones is itself a cone. We call it the big Cohen–Macaulay cone.
Indeed, the big Cohen–Macaulay cone is the union of fd Cohen–Macaulay cones
of the Gröbner fan of P , where fd denotes the (d + 1)-th Fibonacci number. In
Section 8 we present some examples.
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2. Notation and preliminaries

Let S be a polynomial ring over a field K with maximal homogeneous ideal m. For
a homogeneous ideal I of S we denote by grI (S),Rees(I ) and F(I ) respectively
the associated graded ring

⊕
k∈N I k/I k+1 , the Rees algebra

⊕
k∈N I k and the

fiber cone
⊕

k∈N I k/m I k of I . By the very definition F(I ) is a standard graded
K -algebra. Furthermore Rees(I ) can be identified with the S-subalgebra of the
polynomial ring S[t] generated by f t with f ∈ I .

Let I ⊂ S = K [x1, . . . , xn] be a homogeneous ideal. We may consider the
(standard) Hilbert function, Hilbert polynomial and Hilbert series of S/I . The
Hilbert series of S/I is

∑
i≥0 dimK (S/I )i zi and we denote it by HS/I (z). The

series HS/I (z) has a rational expression h(z)/(1− z)d where h(z) ∈ Z[z] and d
is the Krull dimension of S/I . The polynomial h(z) is called the (standard) h-
polynomial of S/I . In particular, h(0)= 1 and h(1) is the ordinary multiplicity of
S/I , denoted by e(S/I ).

If I is m-primary, we may consider also the (local) Hilbert functions, Hilbert
polynomials and Hilbert series of I (or of grI (S)). There are two Hilbert functions
associated with I in this context. We denote them by H(I, k) and H 1(I, k) and
they are defined by

H(I, k)= dimK (I k/I k+1) and H 1(I, k)= dimK (S/I k+1).

The corresponding Hilbert series are

HI (z)=
∑
k≥0

H(I, k)zk and H 1
I (z)=

∑
k≥0

H 1(I, k)zk .

Obviously, HI (z)= (1− z)H 1
I (z). The series H 1

I (z) has a rational expression

H 1
I (z)=

h(z)
(1− z)n+1

where h(z) is a polynomial with integral coefficients and is called the (local) h-
polynomial of I or of grI (S). The Hilbert functions H(I, k) and H 1(I, k) agree
for large k with polynomials PI (z) and P1

I (z) at z= k. The polynomials PI (z) and
P1

I (z) are called the Hilbert polynomials of I . Their coefficients, with respect to
an appropriate binomial basis, are integers and are called Hilbert coefficients of I
and are denoted by ei (I ). Precisely,

P1
I (z)=

n∑
i=0

(−1)i ei (I )
(

n− i + z
n− i

)
.

In particular, h(0)= dimK S/I and h(1)= e0(I ) that is the multiplicity of I .
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Definition 2.1. Let I ⊂ S= K [x1, . . . , xn] be a homogeneous ideal of codimension
c and not containing linear forms. Then

(1) S/I has minimal multiplicity if e(S/I )= c+ 1, and

(2) S/I has a short h-vector if its h-polynomial is 1+ cz, that is, if the Hilbert
series of S/I is (1+ cz)/(1− z)n−c.

We denote the Castelnuovo–Mumford regularity of a graded S-module M by
reg(M). For results on the Castelnuovo–Mumford regularity and the minimal mul-
tiplicity we refer the readers to [Eisenbud and Goto 1984]. We just recall that if
S/I has a short h-vector, then it has minimal multiplicity. On the other hand, if
S/I is Cohen–Macaulay with minimal multiplicity, then it has a short h-vector.
We will need the next lemma whose easy proof follows from the standard facts.

Lemma 2.2. Let I ⊂ S be a homogeneous ideal. Assume S/I has a short h-vector.
Then S/I is Cohen–Macaulay if and only if reg(I )= 2.

Every vector a = (a0, . . . , ad) ∈ Qd+1
≥0 induces a graded structure on the poly-

nomial ring K [t0, . . . , td ] by letting deg ti = ai . Every monomial tα is then homo-
geneous of degree

dega tα = aα =
d∑

i=0

aiαi .

For every nonzero polynomial f =
∑k

i=1 λi tαi we set

dega f =max
{
aαi : λi 6= 0

}
and ina( f )=

∑
aαi=dega f

λi tαi .

Then for every ideal I one defines the initial ideal ina(I ) of I with respect to a to
be

ina(I )=
(
ina( f ) : f ∈ I, f 6= 0

)
.

Similarly, given a term order τ , we denote by inτ (I ) the ideal of the initial
monomials of elements of I . Given a ∈Qd+1

≥0 the term order defined by

tα ≥ tβ if and only if aα > aβ or
(
aα = aβ and tα ≥ tβ with respect to τ

)
is denoted by τa.

One easily shows that inτ (ina(I ))= inτa(I ). Hence ina(I ) and I have a common
monomial initial ideal. This shows (1) of the following lemma.

Lemma 2.3. Let I be a homogeneous ideal with respect to the ordinary grading
deg ti = 1 and let a ∈Qd+1

≥0 . Then

(1) S/I and S/ ina(I ) have the same Hilbert function, and

(2) depth S/ ina(I )≤ depth S/I .
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Part (2) follows from the standard one-parameter flat family argument; for details
see [Eisenbud 1995, Chap. 15] or [Bruns and Conca 2003].

Definition 2.4. Let P be the ideal of the rational normal curve of Pd in its standard
embedding. Namely, P is the kernel of the K -algebra map

S = K [t0, t1, . . . , td ] → K [x, y]

sending ti to xd−i yi .

The ideal P is minimally generated by the 2-minors of the matrix

Td =

(
t0 t1 t2 . . . . . . td−1

t1 t2 . . . . . . td−1 td

)
and it contains the binomials of the form ti1 ti2 · · · tik − t j1 t j2 · · · t jk with

0≤ iv, jv ≤ d and i1+ i2+ · · ·+ ik = j1+ j2+ · · ·+ jk .

The Hilbert series of S/P is (1+ (d − 1)z)/(1− z)2.

3. Contracted ideals in dimension 2

We briefly recall from [Zariski and Samuel 1960, App. 5], [Huneke and Swanson
2006, Chap. 14] and [Conca et al. 2005] a few facts about contracted ideals. As we
deal only with homogeneous ideals, we will state the results in the graded setting.

Assume K is an algebraically closed field. Let R = K [x, y] and denote by m
its maximal homogeneous ideal. An m-primary homogeneous ideal I of R is said
to be contracted if it is contracted from a quadratic extension, that is, if there exists
a linear form z ∈ R such that I = I S ∩ R, where S = R[m /z]. The property of
being contracted can be described in several ways; for instance see [Conca et al.
2005, Prop. 3.3]. To a contracted ideal I one associates a form, the characteristic
form of I , defined as GCD(Id) where d is the initial degree of I . For our goals, it
is important to recall the following definition and theorem.

Definition 3.1. Let I be a homogeneous m-primary ideal in R and let Q = I Rm.
Let J ⊂ Rm be a minimal reduction of Q. The deviation of I is the length of
Q2/J Q. It will be denoted by V (I ).

Theorem 3.2. Let I be a homogeneous m-primary ideal in R. One has

(1) grI (R) is Cohen–Macaulay if and only if V (I )= 0, and

(2) V (I )= e0(I )− dimK (R/I 2)+ 2 dimK (R/I ).

See [Huckaba and Marley 1993, Prop. 2.6, Thm. A] for a proof of (1) and [Valla
1979, Lemma 1] for a proof of (2). Similar results are proved also in [Verma 1991].
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We recall now Zariski’s factorization theorem for contracted ideals and a related
statement, [Conca et al. 2005, Cor. 3.14], concerning associated graded rings. In
our setting they can be stated as follows.

Theorem 3.3. (1) Any contracted ideal I has a factorization I = L1 · · · Ls where
L i are homogeneous m-primary contracted ideals with characteristic form of
type `αi

i for pairwise linearly independent linear forms `1, . . . , `s .

(2) With respect to the factorization in (1) one has

depth grI (R)=min
{
depth grL i

(R) : i = 1, . . . , s
}
.

Lemma 3.4. The fiber cone F(I ) of a contracted ideal I has a short h-vector. Its
Hilbert series is (1+ (d − 1)z)/(1− z)2, where d is the initial degree of I .

Proof. A contracted ideal of initial degree d is minimally generated by d + 1
elements and products of contracted ideals are contracted. The initial degree of I k

is kd . Hence I k has kd + 1 minimal generators. It follows that the Hilbert series
of F(I ) is (1+ (d − 1)z)/(1− z)2. �

A monomial m-primary ideal I of R= K [x, y] can be encoded in various ways.
We use the following. Let d ∈ N be such that xd

∈ I and, for i = 0, . . . , d, set
ai (I ) = min{ j : xd−i y j

∈ I }. Then we have 0 = a0(I ) ≤ a1(I ) ≤ · · · ≤ ad(I ).
Obviously, the map

I → a = (a0(I ), . . . , ad(I ))

establishes a bijective correspondence between the set of m-primary monomial
ideals containing xd and the set of weakly increasing sequences a = (a0, . . . , ad)

of nonnegative integers with a0 = 0. The inverse map is

a = (0= a0 ≤ a1 · · · ≤ ad)→ (xd−i yai : i = 0, . . . , d).

It is easy to see that if a corresponds to I , then dimK R/I =
∑d

i=0 ai . Further-
more, if a′ corresponds to J , then the sequence associated to the product I J is
(c0, c1, c2, . . . ) where ci =min{a j + a′k : j + k = i}. In particular:

Lemma 3.5. Let I be a monomial ideal and a= (a0, . . . , ad) be the corresponding
sequence. Then the Hilbert function of I is given by

H 1(I, k)=
(k+1)d∑

i=0

min
{
a j1 + · · ·+ a jk+1 : j1+ · · ·+ jk+1 = i

}
.

We set bi (I )= ai (I )−ai−1(I ) for i = 1, . . . , d and observe that the ideal I can
be as well described via the sequence b1(I ), . . . , bd(I ) of nonnegative integers.

A monomial ideal I is a lex-segment ideal if x i y j
∈ I for some j > 0 implies

x i+1 y j−1
∈ I . The m-primary lex-segment ideals are contracted and correspond
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exactly to strictly increasing a-sequences (equivalently, positive b-sequences) in
the above correspondence, provided one takes d =min{ j ∈ N : x j

∈ I }.

Remark 3.6. With respect to suitable coordinate systems the ideals L i in Theorem
3.3 are lex-segment ideals.

It follows from Theorem 3.3 and Remark 3.6 that the study of the depth of the
associated graded ring of contracted ideals boils down to the study of the depth
of grL(R) for a lex-segment ideal L . One has depth grL(R) = depth Rees(L)− 1
since R is regular; see [Huckaba and Marley 1993, Cor. 2.7]. Therefore we can as
well study the depth of Rees(L) for lex-segment ideals L . Trung and Hoa gave in
[Trung and Hoa 1986] a characterization of the Cohen–Macaulay property of affine
semigroup rings. Since Rees(L) is an affine semigroup ring one could hope to use
their results to describe the lex-segment ideals L such that Rees(L) is Cohen–
Macaulay. In practice, however, we have not been able to follow this idea.

Let L be the lex-segment ideal with the associated a-sequence a = (a0, . . . , ad)

and b-sequence (b1, . . . , bd). We present Rees(L) as a quotient of R[t0, . . . , td ]
by the R-algebra map

ψ : R[t0, . . . , td ] → Rees(L)⊂ R[t]

obtained by sending ti 7→ xd−i yai t . Set

1= (1, 1, . . . , 1) ∈ Nd+1, and d= (d, d − 1, d − 2, . . . , 0) ∈ Nd+1.

Lemma 3.7. With the above notation, kerψ is generated by the binomials

(1) xti − ybi ti−1 with i = 1, . . . , d, and

(2) tα − yu tβ where α, β ∈ Nd+1 satisfy

1(α−β)= 0, d(α−β)= 0, u = a(α−β)≥ 0.

Proof. Let J be the ideal generated by the binomials of type (1) and (2). Obviously
J ⊆ kerψ . Since kerψ is generated by the binomials it contains, it is enough to
show that every binomial M1 − M2 ∈ kerψ with GCD(M1,M2) = 1 belongs to
J . Up to multiples of elements of type (1), we may assume that if x divides one
of the Mi , say M1, then M1 = x i y j tk

0 . But this clearly contradicts the fact that
M1 − M2 ∈ kerψ . In other words, every binomial in kerψ is, up to multiples of
elements of type (1), a multiple of an element of type (2). �

Lemma 3.8. Let L be a lex-segment ideal and a = (a0, . . . , ad) its associated
a-sequence, then we have

(1) Rees(L)/(y)Rees(L)= K [x, t0, . . . , td ]/x(t1, . . . , td)+ ina(P),

(2) F(L)= K [t0, . . . , td ]/ ina(P), and
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(3) depth grL(R)= depth Rees(L)− 1= depth F(L),

where P is the ideal introduced in Definition 2.4.

Proof. Set F = F(L), G = grL(R) and R = Rees(L). First note that (2) follows
from (1) since F =R/(x, y)R. To prove (1) we have to show that

kerψ + (y)= x(t1, . . . , td)+ ina(P)+ (y).

For the inclusion ⊆ we show that the generators of kerψ of type (1) and (2) in
Lemma 3.7 belong to the ideal on the right hand side. This is obvious for those of
type (1). For those of type (2), note that for any such tα− yu tβ one has tα− tβ ∈ P
and ina(tα − tβ)= tα if u > 0 and ina(tα − tβ)= tα − tβ if u = 0.

The inclusion ⊇ for the elements of x(t1, . . . , td) is obvious. Further, since P is
generated by binomials, one knows that ina(P) is generated by ina(tα − tβ) with
tα − tβ ∈ P; see [Sturmfels 1996, Chap. 1]. If a(α− β) = 0, then ina(tα − tβ) =
tα − tβ and tα − tβ ∈ kerψ . If instead u = a(α− β) > 0, then ina(tα − tβ) = tα

and tα − yu tβ ∈ kerψ so tα ∈ kerψ + (y).
To prove (3) note that P ⊆ (t1, . . . , td) and hence ina(P) ⊆ (t1, . . . , td). It

follows that

(t1, . . . , td)⊆
(
x(t1, . . . , td)+ ina(P)

)
: x ⊆ (t1, . . . , td) : x = (t1, . . . , td).

Hence
(t1, . . . , td)=

(
x(t1, . . . , td)+ ina(P)

)
: x

and we get a short exact sequence

0→ K [x, t0](−1)→R/(y)R→ F→ 0.

By Lemma 3.4 the ring F is 2-dimensional with short h-vector. It follows that
the same is true for R/(y)R with respect to the standard grading. Using the depth
formula for short exact sequences [Bruns and Herzog 1993, Prop. 1.2.9], we have
that if depth R/(y)R is 0 or 1, then depth F = depth R/(y)R. Finally, if R/(y)R
is Cohen–Macaulay then reg(R/(y)R) = 1 and it follows that reg F = 1. Then
from Lemma 2.2 we can conclude that F is Cohen–Macaulay.

We have shown that depth R−1=depth R/(y)R=depth F . Since by [Huckaba
and Marley 1993, Cor. 2.7] depth G = depth R−1, the proof of (3) is complete. �

Summing up, we have shown:

Proposition 3.9. Let L be a lex-segment ideal in R = K [x, y] with associated
a-sequence a = (a0, . . . , ad). Then

depth grL(R)= depth K [t0, . . . , td ]/ ina(P)

where P is the ideal in Definition 2.4.
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4. Cohen–Macaulay initial ideals of the ideal of the rational normal curve

The results of the previous sections show that the study of the contracted ideals
of K [x, y] whose associated graded ring is Cohen–Macaulay is equivalent to the
study of the initial ideals of P defining Cohen–Macaulay rings. In this section we
describe the initial ideals of P (with respect to vectors and in the given coordinates)
defining Cohen–Macaulay rings. We will say that an ideal I is Cohen–Macaulay if
the quotient ring defined by I is Cohen–Macaulay. The steps of the classification
are

(1) to classify the 2-dimensional Cohen–Macaulay monomial ideals with minimal
multiplicity,

(2) to identify those of the form inτ (P) for some term order τ among the ideals
of (1), and

(3) to identify the vectors a ∈Qd+1
≥0 such that ina(P) is Cohen–Macaulay (mono-

mial or not).

We start by classifying the 2-dimensional Cohen–Macaulay square-free mono-
mial ideals with minimal multiplicity. Square-free monomial ideals are in bijective
correspondence with simplicial complexes. In particular, square-free monomial
ideals defining algebras of Krull dimension 2 are in bijective correspondence with
simplicial complexes of dimension 1, that is, graphs. The correspondence goes like
this: to any graph with vertex set V and edge set E one associates the monomial
ideal on variables V , whose generators are the products xy such that {x, y} is not
in E and the square-free monomials of degree 3.

Recall that a graph G with n vertices and e edges is a tree if it satisfies the
following equivalent conditions:

(1) For every distinct vertices x and y, there exists exactly one path in G connect-
ing x and y;

(2) G is connected and n− e = 1;

(3) G is connected and if we remove any edge the resulting graph is disconnected.

Lemma 4.1. The 2-dimensional Cohen–Macaulay square-free monomial ideals
with minimal multiplicity correspond to trees.

Proof. Let G be a graph with n vertices and e edges. Let A be the corresponding
quotient ring. The Hilbert series of A is given by

1+
nz

(1− z)
+

ez2

(1− z)2
;
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see [Bruns and Herzog 1993, 5.1.7]. This implies immediately that A has minimal
multiplicity if and only if n − e = 1. The Cohen–Macaulay property of A corre-
sponds to the connectedness of G; see [Bruns and Herzog 1993, 5.1.26]. So we
are considering connected graphs with n− e = 1, that is, trees. �

Next we extend our characterization from the square-free monomial ideals to
general monomial ideals. We will make use of the following lemma, whose easy
proof belongs to the folklore of the subject.

Lemma 4.2. Let I be a monomial ideal generated in degree 2 and with linear
syzygies. Let x, y, z be variables. We have

(1) if x2, y2
∈ I then xy ∈ I , and

(2) if x2, yz ∈ I then either xy ∈ I or xz ∈ I .

Proof. Say I is generated by monomials m1 = x2 , m2 = y2 and other monomials
m3, ...,ms . Take a free module F with basis e1, e2, . . . es and map e j to m j . The
syzygy module Syz(I ) is generated by the reduced Koszul relations aei−be j with
a = m j/GCD(mi ,m j ) and b = mi/GCD(mi ,m j ). By assumption we know that
Syz(I ) is generated by the elements aei−be j with deg a= 1. Call this set G. Now
y2e1 − x2e2 is in Syz(I ) and therefore can be written as

∑
vi j (aei − be j ) where

the sum is extended to the elements aei − be j ∈ G. It follows that there must be
in G an element of the form ye1 − bei . We deduce that mi/GCD(mi , x2) = y,
forcing mi to be xy. Similarly one proves (2). �

The crucial inductive step is encoded in the following lemma.

Lemma 4.3. Let I ⊂ S = K [x1, . . . , xn] be a monomial ideal such that S/I is
Cohen–Macaulay of dimension 2 with minimal multiplicity. Let xi be a variable
such that x2

i ∈ I . Set S′ = K [x j : 1≤ j ≤ n, j 6= i].

(1) I : (xi ) is generated by exactly n− 2 variables.

(2) Write I + (xi ) = J + (xi ) where J is a monomial ideal of S′. Then S′/J is a
2-dimensional Cohen–Macaulay ring with minimal multiplicity.

Proof. First we show that I : (xi ) is generated by variables. Let m be one of the
generators of I . We have to show that if xi does not divide m then there exists a
variable x j such that x j |m and xi x j ∈ I . Let V be the set of the variables whose
square is not in I and let Q be the set of the variables whose square is in I . If m is
divisible by a variable in Q, then we are done by Lemma 4.2 (1). Otherwise, if m is
not divisible by a variable in Q, then m = x j xk with x j , xk ∈ V , j 6= k. By Lemma
4.2 (2) we have that either xi x j or xi xk is in I . Knowing that I : (xi ) is generated by
variables we deduce that I : (x) is a prime ideal, hence an associated prime of the
Cohen–Macaulay ideal I . Thus the codimension of I : (xi ) is n−2. This proves (1).
The standard short exact sequence 0→ S/I : (xi )(−1)→ S/I→ S′/J→ 0 shows
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that the Hilbert series of S′/J is 1+ (n − 3)z/(1− z)2. Hence S′/J has a short
h-vector. Furthermore, the exact sequence implies that the regularity of S′/J is 1,
that is, reg(J )= 2. By Lemma 2.2 we conclude that S′/J is Cohen–Macaulay. �

Corollary 4.4. With the assumptions in Lemma 4.3 and the notation of its proof ,
there exist x j , xk ∈ V such that I : (xi ) = (xv : 1 ≤ v ≤ n and v 6∈ { j, k}) and
x j xk 6∈ I .

Proof. We know by Lemma 4.3 that there are variables x j and xk so that

I : (xi )= (xv : 1≤ v ≤ n and v 6∈ { j, k}).

If x j xk ∈ I , then x j xk ∈ I : (xi ). This is a contradiction. �

Definition 4.5. Let V and Q be disjoint sets of variables. Let G be a tree with vertex
set V and edge set E . Let φ : Q→ E be a map. Let J be the square-free monomial
ideal associated with G. Let H = (Q)2+ (xy : x ∈ Q, y ∈ V and y 6∈ φ(x)). We
define

I (G, φ)= J + H.

Example 4.6. Let V = {v1, v2, v3, v4} and Q = {q1, q2, q3, q4, q5}. Let G be the
tree on V with edges E = {e1, e2, e3} where

e1 = {v1, v2}, e2 = {v1, v3}, e3 = {v3, v4}.

Let φ :Q→ E be the map sending q1, q2, q3, q4, q5 to e2, e1, e1, e3, e2, respectively.
Then J = (v1v4, v2v3, v2v4) and

H =(q1, q2, q3, q4, q5)
2
+ q1(v2, v4)+ q2(v3, v4)

+ q3(v3, v4)+ q4(v1, v2)+ q5(v2, v4).

In the next proposition we achieve the first step of the classification.

Proposition 4.7. Let I ⊂ S be a monomial ideal. The following conditions are
equivalent:

(1) there exist a tree G and a map φ : Q→ E such that I = I (G, φ);

(2) S/I is a 2-dimensional Cohen–Macaulay ring with minimal multiplicity.

Proof. First we show that every ideal of type I (G, φ) defines a Cohen–Macaulay,
2-dimensional ring with minimal multiplicity. We proceed by induction on the
cardinality of Q. If Q is empty, then the ideal I is 2-dimensional Cohen–Macaulay
with minimal multiplicity by Lemma 4.1. Now assume Q is not empty and pick
q ∈ Q. By construction I (G, φ) : (q) is generated by Q ∪ V \φ(q) and

I (G, φ)+ (q)= I (G, φ′)+ (q)
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where φ′ is the restriction of φ to Q′ = Q \ {q}. By induction we know that
I (G, φ′)⊂K [V, Q′] is 2-dimensional Cohen–Macaulay with minimal multiplicity.
The short exact sequence

0→K [V, Q]/I (G, φ) : (q)(−1)→K [V, Q]/I (G, φ)→K [V, Q′]/I (G, φ′)→0

shows that I (G, φ) is 2-dimensional with minimal multiplicity and since both
K [V, Q]/I (G, φ) : (q) and K [V, Q′]/I (G, φ′) are 2-dimensional and Cohen–
Macaulay, K [V, Q]/I (G, φ) is Cohen–Macaulay.

We show now that every 2-dimensional Cohen–Macaulay monomial ideal I
with minimal multiplicity is of the form I (G, φ). Let Q be the set of variables
whose square is in I and V the remaining variables. We argue by induction on
the cardinality of Q. If Q is empty, then I is square-free and we know that I is
associated to a tree. If Q is not empty, let q ∈ Q. Write I + (q) = J + (q) with
J a monomial ideal not involving the variable q . By Lemma 4.3 we know that
J ⊂ K [V, Q \ {q}] is 2-dimensional Cohen–Macaulay with minimal multiplicity.
Therefore there exists a tree G with vertices V and edges E , and a map

φ′ : Q \ {q} → E

so that J = I (G, φ′). On the other hand I = J + q(I : q) and by Corollary 4.4
there are x, y ∈ V so that I : (q) = (Q ∪ V \ {x, y}) with xy 6∈ I . Hence {x, y}
belongs to E and we extend φ′ to Q by sending q to {x, y}. Call the resulting map
φ. By construction, I (G, φ)= I . �

Now we come to the second step of our classification: to describe the Cohen–
Macaulay monomial initial ideals of P . Let I be a monomial Cohen–Macaulay
initial ideal of P . Since P is 2-dimensional with a short h-vector, so is I . By
what we have shown above, there exist G and φ so that I = I (G, φ). We want to
describe which pairs (G, φ) arise in this way.

Lemma 4.8. Let I be a monomial initial ideal of P generated in degree 2.

(1) For every v, 0 ≤ v ≤ 2d, there exists exactly one monomial ti t j such that
i + j = v and ti t j 6∈ I . In particular, t2

0 and t2
d are not in I .

(2) Let 0≤ i < j < k ≤ d. Assume that t2
i , t2

j and t2
k are not in I . Then ti tk ∈ I .

(3) Let 0 ≤ i < j < k ≤ d. Assume that t2
i 6∈ I and ts t j 6∈ I for every s with

i ≤ s ≤ j . Then ti tk ∈ I .

Proof. (1) By definition, K [t0, . . . , td ]/P is bigraded by setting deg ti = (d −
i, i) and 1-dimensional in each bihomogeneous component. Therefore the ring
K [t0, . . . , td ]/I is also bigraded and 1-dimensional in each bihomogeneous com-
ponent. This proves the assertion. (2) Since tk− j

i t j−i
k − tk−i

j ∈ P , we have that

either tk− j
i t j−i

k or tk−i
j belongs to I . If tk−i

j belongs to I , since I is generated in
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degree 2, then t2
j belongs to I ; a contradiction. So we have tk− j

i t j−i
k ∈ I . Since t2

i

and t2
k are not in I we conclude that ti tk ∈ I . (3) We show that there exist a positive

integer a and i ≤ s ≤ j so that ta
i tk − ts ta

j ∈ P . Then since, by assumption, the
factors of degree 2 of ts ta

j are not in I , we have that a factor of degree 2 of ta
i tk is

in I . Since t2
i 6∈ I , it follows that ti tk ∈ I . To show that a and s as above exist, note

that the condition ta
i tk − ts ta

j ∈ P translates into s = k − a( j − i). So we have to
show that there exists a positive integer a such that

i ≤ k− a( j − i)≤ j,

or equivalently
k− j
j − i

≤ a ≤
k− i
j − i

.

But this interval has length 1 so it contains an integer which is positive since i <
j < k. �

The matrix Td appearing in the following theorem is defined in Section 2.

Theorem 4.9. Let I be a monomial ideal of K [t0, . . . , td ]. The following conditions
are equivalent.

(1) There exists a sequence 0 = i0 < i1 < i2 · · · < ik = d such that I (G, φ) = I
where V = {ti0, ti1, . . . , tik }, Q = {t0, . . . , td} \ V , G is the tree (a line) with
vertex set V and with edge set E = {{ti j , ti j+1} : 0 ≤ j ≤ k − 1} and the map
φ : Q→ E sends ts to {ti j , ti j+1} where i j < s < i j+1.

(2) There exists a sequence 0= i0 < i1 < i2 · · ·< ik = d such that I is generated
by
(a) the main diagonals tv−1tr of the 2-minors of the matrix Td with column

indices v, r such that v ≤ i j < r for some j , and
(b) the antidiagonals tvtr−1 of the 2-minors of the matrix Td with column

indices v, r such that i j < v < r ≤ i j+1 for some j .

(3) I is a Cohen–Macaulay initial ideal of P.

Proof. To prove that (1) and (2) are equivalent is just a direct check. To prove that
(1) and (2) imply (3), it is enough to describe a term order τ such that

inτ (P)= I (G, φ).

Indeed, the inclusion inτ (P)⊇ I (G, φ) is enough because the two ideals have the
same Hilbert function. To do so, consider a vector b = (b1, b2, . . . , bd) such that
br > bv if v ≤ i j < r for some j and bv > br if i j < v < r ≤ i j+1 for some j .
In Remark 4.10 we will show a canonical way to construct such a vector. Define
a = (a0, a1, . . . , ad) by setting a0 = 0 and ai =

∑i
j=1 b j . Consider a term order τ

refining (no matter how) the order defined by the vector a. We claim that the initial
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term with respect to τ of the minor with column indices v, r (v<r ) of the matrix Td

is the one prescribed by (2). The minor with those column indices is tv−1tr−tvtr−1.
The weights with respect to a of the two terms are av−1+ar and av+ar−1. Hence
av−1+ar > av+ar−1 if and only if br > bv and av−1+ar < av+ar−1 if and only
if br < bv. Therefore, by construction, the initial forms of the minors of Td with
respect to a are exactly the monomials prescribed by (2).

We prove now that (3) implies (1). Assume that I is a Cohen–Macaulay initial
ideal of P . Then I has regularity 2 and, in particular, is generated by elements of
degree 2. Set V = {ti : t2

i 6∈ I } and Q = {ti : t2
i ∈ I }. We know by Lemma 4.8

(1) that t0 and td are in V . So with 0 = i0 < i1 < i2 · · · < ik = d we may write
V = {ti0, ti1, . . . , tik }. Since I is 2-dimensional Cohen-Macaulay with minimal
multiplicity, it has the form I = I (G ′, φ′). We prove that G ′ = G and φ′ = φ
where G and φ are those described in (1). Note that, by Lemma 4.8 (2), we have
that tiv tir ∈ I whenever r − v > 1 so that {tv, tr } is not an edge of G ′. This implies
that the underlying tree G ′ is exactly the line G. It remains to prove that φ = φ′.
In other words, we have to prove that for every t j ∈ Q, say ir < j < ir+1, one has
t j tir 6∈ I and t j tir+1 6∈ I . By contradiction, let j be the smallest element of Q that
does not satisfy the required condition, say ir < j < ir+1.

Claim. If 0≤ v < r and q ≥ j then tiv tq ∈ I .

To prove the claim, note that, by the choice of j , we know that ts tiv+1 6∈ I for
every iv ≤ s ≤ iv+1 and iv+1 ≤ ir < j . Therefore we may apply Lemma 4.8 (3) to
the indices iv, iv+1, q and we conclude that tiv tq ∈ I . In particular, for q = j the
claim says that tiv t j ∈ I for every v < r . So φ′(t j ) must be an edge of the form
{tiu , tiu+1} with u > r . It follows that tir t j ∈ I . But, according to Lemma 4.8 (1),
there exists (exactly one but we do not need this) a monomial tatb (say a ≤ b) such
that a+ b = ir + j and tatb 6∈ I . We distinguish now three cases.

Case 1. ir < a and b < j , so that a and b are both in Q. A contradiction (the
square of Q is contained in I ).

Case 2. a< ir , b> j and a∈V . The claim above says that tatb∈ I . A contradiction.

Case 3. a < ir , b > j and a ∈ Q. Say iu < a < iu+1. By induction we know
that {tv : tvta 6∈ I } = {tiu , tiu+1} and therefore b > j > ir ≥ iu+1. So tatb ∈ I . A
contradiction.

This concludes the proof. �

Remark 4.10. Given 0 = i0 < i1 < i2 · · · < ik = d , in the proof of Theorem 4.9
we have used a vector b= (b1, b2, . . . , bd) ∈Qd

≥0 with the property that br > bv if
v≤ i j <r for some j and bv>br if i j <v<r ≤ i j+1 for some j . Of course there are
many vectors with this property. But there is just one “permutation” vector, whose
entries are the numbers 1, . . . , d permuted in some way, with this property. It arises
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as follows: for j = 1, . . . , k, consider the vector c j = (i j , i j−1, . . . , i j−1+1) and
define the vector b to be the concatenation of c1, c2 . . . , ck .

The following theorem summarizes what we have proved so far.

Theorem 4.11. (1) The ideal P has exactly 2d−1 distinct Cohen–Macaulay mono-
mial initial ideals.

(2) They are in bijective correspondence with the sequences 0 = i0 < i1 < · · · <

ik = d , namely with their radical.

(3) Each of them can be obtained with a term order associated to a vector a =
(a0, a1, . . . , ad) ∈ Nd+1 with 0= a0 < a1 < · · ·< ad .

(4) Each of them is obtained by taking the appropriate initial terms of the 2-
minors of the matrix Td .

(5) The reduced Gröbner basis of P giving the Cohen–Macaulay initial ideal
corresponding to the sequence 0 = i0 < i1 < i2 · · · < ik = d is the set of
polynomials

ts tr − tiv ts+r−iv , if 2iv ≤ s+ r ≤ iv + iv+1,

ts tr − tiv+1 ts+r−iv+1, if iv + iv+1 ≤ s+ r ≤ 2iv+1,

where the initial terms are underlined.

Definition 4.12. For every sequence i= (i0, i1, . . . , ik)with 0= i0< i1<· · ·< ik=d
we denote by C(i) the open cone in Qd+1

≥0 of the points (a0, . . . , ad) satisfying the
inequalities

as + ar > aiv + as+r−iv , if 2iv ≤ s+ r ≤ iv + iv+1,

as + ar > aiv+1 + as+r−iv+1, if iv + iv+1 ≤ s+ r ≤ 2iv+1,

and by C(i) the corresponding closed cone, that is, the subset of Qd+1
≥0 described

by the inequalities above where > is replaced throughout by ≥.

We are ready to state and prove the main theorem of this section.

Theorem 4.13. Let a ∈ Qd+1
≥0 . Then ina(P) is Cohen–Macaulay if and only if

ina(P) has a Cohen–Macaulay initial monomial ideal. In other words,{
a ∈Qd+1

≥0 : ina(P) is Cohen–Macaulay
}
=

⋃
i

C(i)

where the union is indexed by the 2d−1 sequences i=(0=i0<i1<. . .<ik=d).

Proof. First we prove the inclusion ⊇. Let a ∈ C(i). To see that ina(P) is Cohen–
Macaulay it is enough to prove that it has a Cohen–Macaulay initial ideal. Just
take a′ in the open cone C(i) and check that ina′(ina(P)) = ina′(P). This is easy
since it is enough to check that ina′(ina(P))⊇ ina′(P).
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In order to prove the opposite inclusion, let a ∈ Qd+1
≥0 be such that ina(P) is

Cohen–Macaulay. We have to show that a ∈ C(i) for some i. We know already
that if ina(P) is monomial then a ∈ C(i) where i is the sequence of the indices i
such that no power of ti belongs to ina(P). So we are left with the case ina(P)
is nonmonomial. To treat this case we first note that, without loss of generality,
we may assume that a = (a0, . . . , ad) with ai ∈ N, a0 = 0, and ai < ai+1. This is
because cleaning denominators and adding to a multiples of the vectors (1, . . . , 1)
and (0, 1, 2, . . . , d) change neither ina(P) nor the membership in the cones. Then
we may associate to a a lex-segment ideal L in R= K [x, y] as described in Section
3. We compute the deviation V (L) of L in terms of the ai ’s. It is well-know, see
for instance [Delfino et al. 2003], that the multiplicity e0(L) of L is twice the area
of the region R2

+
\New(L) where New(L) is the Newton polytope of L , that is the

convex hull of the set of elements (a, b) ∈ N2 such that xa yb
∈ L . To determine

e0(L) we describe the vertices of New(L). The generators of L are the elements
xd−i yai . Set i0 = 0 and assume that it < d is already defined. Then we set

m =min
{
(a j − ait )/( j − it) : j = it + 1, . . . , d

}
,

it+1 =max
{

j : it + 1< j ≤ d and (a j − ait )/( j − it)= m
}
.

The procedure stops when we have reached, say after k steps, ik = d . By
construction the points (d − c, ac) with c ∈ {i0, i1, . . . , ik} are the vertices of
New(L). Taking into account that twice the area of the triangle with vertices (0, 0),
(d − it , ait ), (d − it+1, ait+1) is ait+1(d − it)− ait (d − it+1) and that a0 = 0, i0 = 0
we obtain

e0(L)= a0(i1− i0)+

k−1∑
t=1

ait (it+1− it−1)+ aik (ik − ik−1).

For j = 0, . . . , 2d set α j =min{as + ar : s+ r = j} and

β j =

{
ait + a j−it if 2it ≤ j ≤ it + it+1,

ait+1 + a j−it+1 if it + it+1 ≤ j ≤ 2it+1.

Since dimK (R/L)=
∑d

i=0 ai and dimK (R/L2)=
∑2d

i=0 αi we have

V (L)= e0(L)−
2d∑

i=0

αi + 2
d∑

i=0

ai

= e0(L)−
2d∑

i=0

βi + 2
d∑

i=0

ai +

2d∑
i=0

(βi −αi )

= Z +
2d∑

i=0

(βi −αi )
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where

Z = a0(i1− i0)+

k−1∑
t=1

ait (it+1− it−1)+ aik (ik − ik−1)−

2d∑
i=0

βi + 2
d∑

i=0

ai .

We claim that Z = 0 identically as a linear form in the ai ’s. This can be checked
directly. That Z=0 follows also from the fact that Z , as a linear function in the ai ’s,
computes the deviation V (H) where H is any lex-segment with associated vector
a in the cone C(i). Since every such lex-segment ideal has a Cohen–Macaulay
associated graded ring, we have V (H)= 0. Therefore Z vanishes when evaluated
at the points of C(i) ∩ {a ∈ Nd+1

: 0 = a0 < a1 < · · · < ad} and so it vanishes
identically. Summing up, we have

V (L)=
2d∑

i=0

(βi −αi ).

Now, by assumption ina(P) is Cohen–Macaulay, thus by Proposition 3.9 grL(R)
is Cohen–Macaulay and by Theorem 3.2 V (L) = 0. Since βi ≥ αi for every i , it
follows that βi = αi for every i , which in turn implies that a ∈ C(i). �

Remark 4.14. Let a= (a0, . . . , ad) be the vector associated to a lex-segment ideal
L . Denote by Y the convex hull of {(i, j) : x i y j

∈ L}, by V the set of the vertices
of Y and by V ′ the set of the elements (d− i, ai ) belonging to the lower boundary
of Y . Clearly V ⊆ V ′. Assume that grL(R) is Cohen–Macaulay. The proof above
shows that a ∈ C(i) where {(d − j, a j ) : j ∈ i} = V . The same argument shows
also that a ∈C(i) for every i such that V ⊆ {(d− j, a j ) : j ∈ i} ⊆ V ′. In particular,
a belongs to 2u of the cones C(i) where u = #V ′− #V .

The next example illustrates the remark above.

Example 4.15. Let a = (0, 2, 4, a3, a4, a5) with

4< a3 < a4 < a5, a3 > 4+ (a5− 4)/3, a4 > 4+ 2(a5− 4)/3.

Then V = {(5, 0), (3, 4), (0, a5)} and V ′ = V ∪ {(4, 2)}. By the remark above we
have that if ina(P) is Cohen–Macaulay then a ∈ C(i)∩C(j) with i = (0, 1, 2, 5)
and j = (0, 2, 5). In this case the Cohen–Macaulay property is equivalent to the
inequalities

a4 ≥ a3+ 2, a5 ≥ a4+ 2, 2a3 ≥ a4+ 4, 2a4 ≥ a3+ a5.

Definition 4.16. Let σ ∈ Sd be a permutation. We may associate to σ a cone

Cσ =
{

a ∈Qd+1
≥0 : bσ−1(1) < · · ·< bσ−1(d)

}
where bi = ai − ai−1. We call Cσ the permutation cone associated to σ .
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Remark 4.17. As shown in the proof of Theorem 4.9 and Remark 4.10 each cone
C(i) contains a specific permutation cone Cσ . The permutations involved in the
construction are indeed permutations avoiding the patterns “231” and “312”. More
precisely, there is a bijective correspondence between the permutations σ ∈ Sd

avoiding the patterns “231” and “312” and the cones C(i) so that C(i) ⊇ Cσ .
However, as we will see, the inclusion Cσ ⊆ C(i) can be strict in general. The
study of permutation patterns is an important subject in combinatorics; see for
instance [Wilf 2002].

The following example illustrates Theorem 4.11.

Example 4.18. Suppose d = 6 and take the sequence i=(i0=0, i1=3, i2=4, i3=6).
The corresponding Cohen–Macaulay initial ideal I of P is obtained by dividing
the matrix T6 into blocks (from column iv + 1 to iv+1)

T6 =

(
t0 t1 t2 | t3 | t4 t5
t1 t2 t3 | t4 | t5 t6

)
and then taking the antidiagonals of minors whose columns belong to the same
block:

t2
1 , t1t2, t2

2 , t2
5 ,

and the main diagonals from minors whose columns belong to different blocks:

t0t4, t0t5, t0t6, t1t4, t1t5, t1t6, t2t4, t2t5, t2t6, t3t5, t3t6.

The ideal I is the initial ideal of P with respect to every term order refining the
weight a = (0, 3, 5, 6, 10, 16, 21) obtained from the “permutation” vector

σ = (3, 2, 1|4|6, 5) ∈ S6

by setting a0= 0 and ai =
∑i

j=1 σ j . With respect to this term order the 2-minors of
T6 are a Gröbner basis of P but not the reduced Gröbner basis. The corresponding
reduced Gröbner basis is

t2
1 − t0t2, t1t2− t0t3, t2

2 − t1t3, t0t4− t1t3 t0t5− t2t3,
t1t4− t2t3, t0t6− t2

3 , t1t5− t2
3 , t2t4− t2

3 , t1t6− t3t4,
t2t5− t3t4, t2t6− t2

4 , t3t5− t2
4 , t3t6− t4t5, t2

5 − t4t6.

So for every vector a = (a0, a1, . . . , a6) ∈ Q7
≥0 satisfying the system of linear

inequalities

2a1 > a0+a2∗, a1+a2 > a0+a3, 2a2 > a1+a3∗, a0+a4 > a1+a3∗,

a0+a5 > a2+a3, a1+a4 > a2+a3, a0+a6 > 2a3, a1+a5 > 2a3,

a2+a4 > 2a3, a1+a6 > a3+a4, a2+a5 > a3+a4, a2+a6 > 2a4,

a3+a5 > 2a4, a3+a6 > a4+a5∗, 2a5 > a4+a6∗,
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we have ina(P)= I . The 15 linear homogeneous inequalities above define the open
Cohen–Macaulay cone C(i). The description is however far from being minimal.
The inequalities marked with ∗ are indeed sufficient to describe C(i). In terms of
bi = ai − ai−1 the inequalities can be described by b3 < b2 < b1 < b4 < b6 < b5,
that is, C(i)= Cσ .

Remark 4.19. (1) There exist Cohen–Macaulay ideals of dimension 2 with min-
imal multiplicity and without Cohen–Macaulay initial monomial ideals in the
given coordinates. For instance, let J be the ideal of K [t0, . . . , t4] generated
by the 2-minors of the matrix(

t0 t2 t4− t0 0
t1 t3 0 t4+ t0

)
.

Then J has the expected codimension and hence it is 2-dimensional Cohen–
Macaulay with minimal multiplicity. No monomial initial ideal of J is qua-
dratic since the degree 2 part of every monomial initial ideal has codimension
2. Hence no monomial initial ideal of J is Cohen–Macaulay. This example
shows that Theorem 4.13 does not hold for 2-dimensional binomial Cohen–
Macaulay ideals with minimal multiplicity.

(2) ina(P) can be monomial, quadratic and non-Cohen–Macaulay. For example,
for d = 4 the ideal I = (t2

3 , t2t3, t1t3, t0t4, t0t3, t2
1 ) is a non-Cohen–Macaulay

(indeed nonpure) monomial initial ideal of P . The corresponding cone is
described in terms of bi = ai −ai−1 by the inequalities b3 > b1 > b2 > b4 and
b3+ b4 > b1+ b2.

(3) ina(P) can be quadratic with linear 1-syzygies and not Cohen–Macaulay. For
instance, with d = 7 the ideal generated by

t2
2 , t2

4 , t2
6 , t1t2, t0t4, t0t5, t1t4, t0t6, t1t5, t2t4, t0t7, t1t6, t3t4,

t1t7, t2t6, t3t6, t3t7, t4t6, t2
1 + t0t2, −t4t5+ t2t7, −t5t6+ t4t7

is an initial ideal of P with linear 1-syzygies and a nonlinear 2-syzygy.

(4) We do not know any example as the one in (3) if we further assume that ina(P)
is a monomial ideal. Note however that 2-dimensional non-Cohen–Macaulay
quadratic monomial ideals with a short h-vector and linear 1-syzygies exist,
for example (t1t3, t1t5, t0t2, t2t5, t0t3, t2

2 , t2t4, t2t3, t0t4, t4t5).

Remark 4.20. As Rekha Thomas pointed out to us, one can deduce from results
in [Hoşten and Thomas 2003; O’Shea and Thomas 2005] that P has exactly one
Cohen–Macaulay monomial initial ideal for each regular triangulation of the un-
derlying point configuration A. In [Hoşten and Thomas 2003, Theorem 5.5(ii)] it is
proved that for every regular triangulation of A there exists exactly one initial ideal
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having no embedded primes (they are called Gomory initial ideals in that paper).
In [O’Shea and Thomas 2005] it is proved that every Gomory initial ideal coming
from a 1-normal configuration is Cohen–Macaulay. Since every triangulation of
A is 1-normal, one can conclude that the Gomory ideals of P are indeed Cohen–
Macaulay. Hence these results imply that P has exactly 2d−1 Cohen–Macaulay
monomial initial ideals.

5. Contracted ideals whose associated graded ring is Cohen–Macaulay

In this section we use the results of Section 4 to solve the problem (2) men-
tioned in Section 1. Since the ideal P is homogeneous with respect to the vectors
(1, 1, . . . , 1) and (0, 1, 2, . . . , d) of Qd+1, each cone of the Gröbner fan of P is
determined by its intersection with

Wd =
{
(a0, a1, . . . , ad) ∈ Nd+1

: 0= a0 < a1 < · · ·< ad
}
.

As explained in Section 3, Wd parametrizes the lex-segment ideals of initial degree
d. For a given d ∈ N, d > 0, we set

C Md =
{
a ∈Qd+1

≥0 : ina(P) is Cohen–Macaulay
}

the “Cohen–Macaulay region” of the Gröbner fan of P . According to Theorem
4.13 we have

C Md =
⋃

i

C(i)

where the union is extended to all of the 2d−1 sequences i=(0=i0<i1<. . .<ik=d).

Theorem 5.1. Let d1, . . . , ds be positive integers and a1, . . . , as be vectors such
that ai ∈Wdi . Let `1, . . . , `s, z be linear forms in R = K [x, y] such that each pair
of them is linearly independent. For every i = 1, . . . , s, consider the lex-segment
ideals L i associated to ai with respect to `i , z, that is,

L i = (`
di− j
i zai j : j = 0, . . . , di ).

Set I = L1 · · · Ls . We have

(1) I is contracted and every homogeneous contracted ideal in R=K [x, y] arises
in this way, and

(2) grI (R) is Cohen–Macaulay if and only if ai ∈ C Mdi for all i = 1, . . . , s.

Proof. (1) is a restatement of Zariski’s factorization theorem for contracted ideals.
(2) follows from Theorem 3.3, Proposition 3.9 and Theorem 4.13. �

Theorem 5.1 can be generalized as follows.
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Theorem 5.2. Let I ⊂ K [x, y] be a monomial ideal (not necessarily contracted)
and let a = (a0, . . . , ad) be its associated sequence. Then grI (R) is Cohen–
Macaulay if and only if a ∈ C Md .

Proof. If a is strictly increasing, then I is a lex-segment ideal. Hence I is contracted
and the statement is a special case of Theorem 5.1. If a is not strictly increasing,
then we set a′ = a + (0, 1, . . . , d) and let L be the monomial ideal associated to
a′. Since a′ is strictly increasing, L is a lex-segment ideal. The cones C(i) are
described by the inequalities that are homogeneous with respect to (0, 1, . . . , d).
Therefore a belongs to C Md if and only if a′ does. By construction, I is the
quadratic transform of the contracted ideal L in the sense of [Conca et al. 2005,
Sect. 3]. Further we know that depth grI (R) = depth grL(R) according to [Conca
et al. 2005, Thm. 3.12]. In summary, grI (R) is Cohen–Macaulay if and only if
grL(R) is Cohen–Macaulay if and only if a′ ∈ C Md if and only if a ∈ C Md . �

Remark 5.3. (1) In K [x, y] denote by C the class of contracted ideals, by C1 the
class of the ideals in C with Cohen–Macaulay associated graded ring and by
C2 the class of integrally closed ideals. We have C ⊃ C1 ⊃ C2. One knows
that C and C2 are closed under product. On the other hand C1 is not: the
lex-segment ideals associated to the sequences (0, 4, 6, 7) and (0, 2) belong
to C1 and their product does not. However, C1 is closed under powers: if
I ∈ C1 then I k

∈ C1. This can be seen, for instance, by looking at the Hilbert
function of I . Furthermore we will show in Section 7 that a certain subset of
C1 is closed under product.

(2) For a lex-segment ideal L in K [x, y] we have seen that grL(R) and F(L)
have the same depth. We believe that grI (R) and F(I ) have the same depth
for every contracted ideal I . In [D’Cruz et al. 1999, Thm. 3.7, Cor. 3.8]
D’Cruz, Raghavan and Verma proved that the Cohen–Macaulayness of grI (R)
is equivalent to that of F(I ). Note however that for a monomial ideal I the
rings grI (R) and F(I ) might have different depth. For instance, for the ideal
I associated to (0, 2, 2, 3) one has depth grI (R)= 1 and depth F(I )= 2.

Remark 5.4. Two of the cones of the Cohen–Macaulay region C Md are special as
they correspond to opposite extreme selections.

(1) If i= (0, 1, 2, . . . , d), then the closed cone C(i) is described by the inequality
system ai +a j ≥ au+av with u = b(i + j)/2c, v = d(i + j)/2e for every i , j
or, equivalently, by bi+1 ≥ bi for every i = 1, . . . , d−1. In other words, C(i)
equals its permutation cone Cid , where id ∈ Sd is the identity permutation. In
this case the initial ideal of P is (ti t j : j − i > 1) and it can be realized by the
lex-order t0 < t1 < · · ·< td or by the lex-order t0 > t1 > · · ·> td . This is the
only radical monomial initial ideal of P . The points in Wd ∩C(i) correspond
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to integrally closed lex-segment ideals. Indeed, they are the products of d
complete intersections of type (x, yu).

(2) If i= (0, d) then the closed cone C(i) is described by the inequality system

ai + a j ≥ a0+ ai+ j , if i + j ≤ d and

ai + a j ≥ ad + ai+ j−d , if i + j ≥ d.

It can be realized by the revlex order with t0 < t1 < · · · < td or by the
revlex order with t0 > t1 > · · · > td . The corresponding initial ideal of P is
(t1, . . . , td−1)

2. The lex-segment ideals L belonging to the cone are character-
ized by the fact that L2

= (xd , yad )L , that is, they are exactly the lex-segment
ideals with a monomial minimal reduction and the reduction number 1. It
is not difficult to show that the simple homogeneous integrally closed ideals
of K [x, y] are exactly the ideals of the form (xd , yc), with GCD(d, c) = 1.
In other words, C(i) contains (the exponent vectors of) all the simple inte-
grally closed ideals of order d . The associated permutation cone is Cσ with
σ = (d, d − 1, . . . , 1). For d ≤ 3 one has C(i) = Cσ . For d = 4 one has
C(i)) Cσ and C(i)= Cσ ∪Cτ with τ = (4, 2, 3, 1). For d > 4 the cone C(i)
is not the union of the closure of the permutation cones it contains. For d = 5,
for example, the cone C(i) is described by the inequalities

b1+ b2 ≥ b3+ b4, b2+ b3 ≥ b4+ b5, b1 ≥ bi ≥ b5 with i = 2, 3, 4,

and hence it intersects but it does not contain the cone associated with the
permutation (5, 2, 4, 3, 1).

(3) Apart from the example discussed in (1), the other Cohen–Macaulay mono-
mial initial ideals of P arising from lex orders are exactly those associated
to sequences i = (0, 1, . . . , ĵ, . . . , d) for some 0 < j < d . Apart from the
example discussed in (2), the other Cohen–Macaulay monomial initial ideals
of P arising from revlex orders are exactly those associated to sequences
i = (0, j, d) for some 0 < j < d . Therefore, starting from d = 5, there are
Cohen–Macaulay monomial initial ideals of P not coming from lex or revlex
orders. For instance, the initial ideal associated to i = (0, 1, 4, 5) is such an
example.

6. Describing the Hilbert series of grL(R)

Let L be a lex-segment ideal in R = K [x, y] with associated a-sequence a =
(a0, a1, . . . , ad). We have seen in the proof of Theorem 4.13 that the multiplicity
e0(L) can be expressed as a linear function in ai ’s. In terms of initial ideals of P ,
that assertion can be rephrased as follows. Let I be a monomial initial ideal of P
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and let C I be the corresponding closed cone in the Gröbner fan of P ,

C I =
{

a ∈Qd+1
≥0 : inτ (ina(P))= I

}
where τ is a given term order such that inτ (P)= I . Let i=(0=i0<i1<. . .<ik=d)
and let the set of the integers 0≤ j ≤ d be such that t j 6∈

√
I . Then

√
I = (t j : j 6∈ i)+ (tiv tir : r − v > 1).

Consider the linear form in Z[A0, . . . , Ad ] given by

eI
0 = A0(i1− i0)+

k−1∑
t=1

Ait (it+1− it−1)+ Aik (ik − ik−1),

where the Ai are variables. For every lex-segment ideal L with the associated
sequence a belonging to C I one has that e0(L) is equal to eI

0 evaluated at A = a.
So the “same” formula holds in all the cones of the Gröbner fan associated with

the same radical, that is, in all the cones of which the union forms a maximal cone
of the secondary fan [Sturmfels 1996, p. 71]. We establish now similar formulas
for the Hilbert function H 1(L , k) and the h-polynomial of grL(R).

To this end, consider S=K [t0, t1, . . . , td ] equipped with its natural Zd+1-graded
structure. The quotient S/I is Zd+1-graded and we denote by HS/I (t) its Zd+1

graded Hilbert series, namely

HS/I (t)=
∑

α∈Nd+1

dim[S/I ]αtα =
∑
tα 6∈I

tα

where tα = tα0
0 · · · t

αd
d . The key observation is contained in the following lemma.

Lemma 6.1. Let L be a lex-segment ideal with associated vector a belonging to
C I . For k ∈ N set Mk(I ) = {α ∈ Nd+1

: tα 6∈ I, |α| = k}. Denote by
∑

Mk(I ) the
sum of the vectors in Mk(I ). By construction

∑
Mk(I ) ∈ Nd+1 and

H 1(L , k− 1)= a ·
∑

Mk(I )

for all k.

Proof. Set Ck = a ·
∑

Mk(I ). Writing tα as t j1 · · · t jk , we may rewrite Ck as the
sum a j1 + · · ·+ a jk over all monomials t j1 · · · t jk 6∈ I . By construction

a j1 + · · ·+ a jk =min
{
ai1 + ai2 + · · ·+ aik : i1+ i2+ · · ·+ ik = j1+ j2+ · · ·+ jk

}
if and only if t j1 · · · t jk 6∈ I . Therefore Ck is the sum over all v, 0 ≤ v ≤ kd of
min{ai1 + ai2 + · · ·+ aik : i1+ i2+ · · ·+ ik = v}. But this is exactly H 1(L , k− 1);
see Lemma 3.5. �

In terms of Hilbert series Lemma 6.1 can be rewritten as the follows.
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Lemma 6.2. Let L be a monomial ideal with associated sequence a belonging to
C I . Then

H 1
L(z)= a · ∇HS/I (t)ti=z

where ∇ = (∂/∂t0, . . . , ∂/∂td) is the gradient operator.

Remark 6.3. (1) The series HS/I (t) is rational and it can be described in terms
of the multigraded Betti numbers βi,α(S/I )= dimK TorS

i (S/I, K )α as

HS/I (t)=

∑
i,α(−1)i tαβi,α(S/I )

5d
i=0(1− ti )

.

(2) A rational expression of HS/I (t) can be computed also from a Stanley decom-
position of S/I . For a monomial ideal I a Stanley decomposition of S/I is a
finite set � of pairs (σ, τ ) where σ ∈Nd+1 and τ ⊆ {0, . . . , d} which induces
a decomposition

S/I =
⊕

(σ,τ )∈�

tσ K [ti : i ∈ τ ]

as a K -vector space. Stanley decompositions always exist but they are far
from being unique. There are algorithms to compute them; see [Maclagan
and Smith 2005] for more. For every Stanley decomposition � of S/I clearly
one has

HS/I (t)=
∑

(σ,τ )∈�

tσ

5i∈τ (1− ti )
.

Combining Lemma 6.1, Remark 6.3 with Lemma 6.2 we obtain:

Corollary 6.4. For every cone C I and for a monomial ideal L whose associated
sequence a belongs to C I we have

H 1
L(z)= |a|

1+ (d − 1)z
(1− z)3

+ a ·
∑
i≥1

(−1)i
∑
α

βi,α(S/I )
z|α|−1

(1− z)d+1α,

where βi,α(S/I ) are the multigraded Betti numbers of S/I . Moreover

H 1
L(z)= a ·

∑
(σ,τ )∈�

z|σ |−1

(1− z)|τ |+1 (zτ + (1− z)σ ),

where� is a Stanley decomposition of S/I and we have identified the subset τ with
the corresponding 0/1-vector.

The next proposition summarizes what we have proved so far concerning for-
mulas for h I and related invariants.

Proposition 6.5. Given a cone C I of the Gröbner fan of P there are polynomials
h I
∈ Z[A, z] and Q I , Q I

1 ∈ Q[A, z] linear in the variables A = A0, . . . , Ad and
without constant term, such that
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(1) for every monomial ideal L with associated sequence a belonging to C I , the
polynomial h I evaluated at A=a equals the h-polynomial of L , Q I evaluated
at A = a equals the Hilbert polynomial PL of L , and Q I

1 evaluated at A = a
equals the Hilbert polynomial P1

L of L;

(2) h I , Q I and Q I
1 can be expressed in terms of the multigraded Betti numbers of

I ; they can also be expressed in terms of a Stanley decomposition of S/I ;

(3) in particular,

h I
= |A|(1+ (d − 1)z)+ A

∑
i≥1

(−1)i
∑
α

βi,α(S/I )
z|α|−1

(1− z)d−2α,

where βi,α(S/I ) are the multigraded Betti numbers of S/I , and

h I
= A ·

∑
(σ,τ )∈�

z|σ |−1(1− z)2−|τ | (zτ + (1− z)σ ) ,

where � is a Stanley decomposition of S/I ; explicit expressions for Q I and
Q I

1 can be obtained from that of h I .

Similarly one has expressions for the Hilbert coefficients eI
i as a linear function

in the variables A. Now we discuss the dependence of the polynomials h I and Q I
1

on I .

Proposition 6.6. Let I, J be monomial initial ideals of P. Then

(1) eI
0 = eJ

0 if and only if
√

I =
√

J ,

(2) h I
= h J if and only if I = J , and

(3) Q I
1 = Q J

1 if and only if I and J have the same saturation, equivalently, they
coincide from a certain degree on.

Proof. Denote by A the vector of variables (A0, . . . , Ad). We have discussed
already the fact that the formula for the multiplicity eI

0 identifies and it is identified
by the radical of I . For statement (2), we have already seen that the coefficient Ck

of zk in the series h I /(1− z)3 is exactly A ·
∑

Mk+1(I ). Hence h I
= h J holds if

and only if A ·
∑

Mk(I ) = A ·
∑

Mk(J ) for all k, that is,
∑

Mk(I ) =
∑

Mk(J )
as vectors for every k. By virtue of [Sturmfels 1996, Corollary 2.7], we conclude
that h I

= h J implies I = J . For (3) one just applies the same argument to all large
degrees. �

For an ideal I of dimension v we denote by I top the component of dimension v
of I , that is, the intersection of the primary components of I of dimension v.

Remark 6.7. Let I, J be monomial initial ideals of P . In terms of Mk(I ) the condi-
tion Q I

= Q J is equivalent to
∑

Mk(I )−
∑

Mk−1(I )=
∑

Mk(J )−
∑

Mk−1(J )
for all k � 0. There is some computational evidence that Q I

= Q J could be
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equivalent to I top
= J top. This is related with the hypergeometric Gröbner fan of

P; see [Saito et al. 2000, Section 3.3]. In particular Example 3.3.7 in [Saito et al.
2000] discusses the secondary fan, the hypergeometric fan and Gröbner fan of P
for d = 4.

7. The big Cohen–Macaulay cone

Starting from d = 3, the Cohen–Macaulay region C Md is not a cone, that is to say
it is not convex; see Section 8 for examples. However, a bunch of the cones C(i)
get together to form a big cone.

Proposition 7.1. Let Bd =∪i C(i) where the union is extended to all the sequences
i= {0= i0 < i1 < · · ·< ik = d} such that iv − iv−1 ≤ 2 for all v = 1, . . . , k. Then
Bd is the closed cone described in terms of the bi ’s by the inequalities b j ≤ b j+2

for all j = 1, . . . , d − 2.

Proof. Let B ′ be the cone described by the inequalities b j ≤ b j+2 for all j =
1, . . . , d − 2. We have to show that Bd = B ′. For the inclusion ⊆, let a ∈ Bd and
b j = a j − a j−1. Then a ∈ C(i) for a sequence i = {0 = i0 < i1 < · · · < ik = d}
such that iv− iv−1 ≤ 2 for all v= 1, . . . , k. For every j , 1≤ j ≤ d−2, at least one
among j and j + 1 is in i. We distinguish two cases.

Case 1. j ∈ i, say j = iv. Then set s = j−1 and r = j+2. We have 2iv ≤ s+r ≤
iv+ iv+1 and so, by Theorem 4.11 (5), as+ar ≥ aiv+as+r−iv is one of the defining
inequalities of C(i). Explicitly, a j−1+ a j+2 ≥ a j + a j+1, that is, b j ≤ b j+2.

Case 2. j + 1 ∈ i, say j + 1 = iv+1. Then set s = j − 1 and r = j + 2. We have
iv+ iv+1≤ s+r ≤ 2iv+1 and so, by Theorem 4.11 (5), as+ar ≥ aiv+1+as+r−iv+1 is
one of the defining inequalities of C(i). Explicitly, a j−1+ a j+2 ≥ a j + a j+1, that
is, b j ≤ b j+2.

For the inclusion ⊇, let a ∈ B ′ and bi = ai − ai−1. Set

U =
{

j : 1≤ j ≤ d − 1, b j > b j+1
}
.

Since b j ≤ b j+2 for all j , U does not contain pairs of consecutive numbers. Set
i= {0, 1, . . . , d} \U = (0= i0 < · · ·< ik = d). Note that for all 0≤ r, s ≤ d such
that s−r ≥ 2 one has bs+bs−1 ≥ br+1+br and hence as+ar ≥ as−2+ar+2. This
fact, together with the definition of U , implies that for all 0≤ r, s ≤ d one has

as + ar ≥


a j + a j+1, if s+ r = 2 j + 1,
2a j , if s+ r = 2 j and j ∈ i,
a j−1+ a j+1, if s+ r = 2 j and j 6∈ i.

Using this information one proves directly that a satisfies the inequalities in The-
orem 4.11 (5) defining C(i). �
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Remark 7.2. (1) The number fd of the cones C(i) appearing in the description
of Bd satisfies the recursion fd = fd−1+ fd−2 with f1 = 1 and f2 = 2. Hence
fd is the (d + 1)-th Fibonacci number.

(2) One also has Bd = ∪ Cσ where σ ∈ Sd satisfies σ( j) < σ( j + 2) for j =
1, . . . , d − 2. There are

( d
bd/2c

)
such permutations.

(3) Indeed, each cone C(i) appearing in the description of Bd is the union of
permutation cones Cσ . Precisely, the permutations involved are those σ ∈ Sd

such that σ( j)<σ( j+2) for all j=1, . . . , d−2 and such that σ( j)>σ( j+1)
if and only if j 6∈ i. The number of these permutations, say n(i), is a product of
Catalan numbers. Recall that the n-th Catalan number is c(n)= (n+1)−1

(2n
n

)
.

Decompose {1, . . . , d} \ i as a disjoint union ∪t
i=1Vi where Vi are of the form

{a, a+2, . . . } and are maximal. Then n(i)= c(|V1|) · · · c(|Vt |). For instance,
if i= (0, 2, 3, 5, 7, 9, 10, 12, 14) then {1, . . . , 14}\i={1}∪{4, 6, 8}∪{11, 13}
and hence C(i) is the union of c(1)c(3)c(2)= 10 permutation cones.

(4) The family Bd with d ∈ N is closed under multiplication, that is, if a ∈ Bd

and a′ ∈ Be and c= a ·a′, then c ∈ Bd+e. Set c= (c0, c1, . . . , cd+e). To show
that c ∈ Bd+e one has to prove that c j+2− c j+1 ≥ c j − c j−1, that is,

c j+2+ c j−1 ≥ c j+1+ c j .

By definition, c j+2 = av + a′u with v + u = j + 2 and c j−1 = aw + a′z with
w + z = j − 1. Since (v −w)+ (u − z) = (v + u)− (w + z) = 3 we may
assume that v−w ≥ 2. Then av + aw ≥ av−2+ aw+2 and hence

c j+2+ c j−1 = av + a′u + aw + a′z ≥ av−2+ a′u + aw+2+ a′z ≥ c j + c j+1.

8. Examples with small d

In this section we describe, for small d , the Gröbner fan and the Cohen–Macaulay
region, and give formulas for the Hilbert series associated to the various cones. For
simplicity, the cones will be described in terms of b1, . . . , bd where bi = ai−ai−1.

For d = 1, there is not much to say. The ideal P is 0, C M1 =Q2
≥0 and

C M1 ∩W1 =
{
(0, a) ∈ N2

: a > 0
}
.

For d = 2 the Gröbner fan has two maximal cones, both Cohen–Macaulay. The
lex cone C(0, 1, 2) is described by b1≤ b2 and the revlex cone C(0, 2) is described
by b1 ≥ b2.

For d= 3 the Gröbner fan has 8 maximal cones. 4 of them are Cohen–Macaulay
and 4 have depth 1. We show below the cones. Each table shows

(1) an initial ideal I of P ,
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(2) the linear inequalities defining the corresponding cone in the Gröbner fan, and

(3) the coefficients of the h-vector of grL(R) for the ideal L corresponding to
points (a0, a1, a2, a3) in the cone.

The expressions of the h-vectors have been computed using Stanley decompo-
sitions and the formula in Corollary 6.4. The Stanley decompositions have been
computed by the algorithm presented in [Maclagan and Smith 2005]. Cones (a),
(b), (c) and (d) are Cohen–Macaulay cones. In particular (a) is the lex cone and (d)
is the revlex cone. The union of (a), (b) and (c) is the big cone B3 and it is defined
by b1 ≤ b3. The revlex cone (d) is isolated; it intersects B3 only at b1 = b2 = b3.
In particular the Cohen–Macaulay region is not a cone.

(a) (t1t3, t0t3, t0t2),
b1 ≤ b2 ≤ b3,

(h0) a0+ a1+ a2+ a3

(h1) a1+ a2

(b) (t1t3, t0t3, t2
1 )

b2 ≤ b1 ≤ b3,

(h0) a0+ a1+ a2+ a3

(h1) a0− a1+ 2a2

(c) (t2
2 , t0t3, t0t2),

b1 ≤ b3 ≤ b2,

(h0) a0+ a1+ a2+ a3

(h1) 2a1− a2+ a3

(d) (t2
2 , t1t2, t2

1 ),

b3 ≤ b2 ≤ b1,

(h0) a0+ a1+ a2+ a3

(h1) 2a0− a1− a2+2a3

The non-Cohen–Macaulay cones are

(e) (t2
2 , t1t2, t0t2, t2

0 t3),
b3 ≤ b1 ≤ b2 and b3+ b2 ≥ 2b1,

(h0) a0+ a1+ a2+ a3

(h1) a0+ a1− 2a2+ 2a3

(h2) − a0+ a1+ a2− a3

( f ) (t1t3, t1t2, t2
1 , t0t2

3 ),

b2 ≤ b3 ≤ b1 and b1+ b2 ≤ 2b3,

(h0) a0+ a1+ a2+ a3

(h1) 2a0− 2a1+ a2+ a3

(h2) − a0+ a1+ a2− a3

(g) (t1t3, t1t2, t2
1 , t3

2 ),

b2 ≤ b3 ≤ b1 and b1+ b2 ≥ 2b3,

(h0) a0+ a1+ a2+ a3

(h1) 2a0− 2a1+ a2+ a3

(h2) a1− 2a2+ a3

(h) (t2
2 , t1t2, t0t2, t3

1 ),

b3 ≤ b1 ≤ b2 and b3+ b2 ≤ 2b1,

(h0) a0+ a1+ a2+ a3

(h1) a0+ a1− 2a2+ 2a3

(h2) a0− 2a1+ a2

For d = 4 there are 42 cones of the Gröbner fan. 10 of them have depth 0,
24 have depth 1 and 8 are Cohen–Macaulay. The big Cohen–Macaulay cone is
the union of 5 of the 8 Cohen–Macaulay cones. The remaining 3 are isolated.
The following example illustrates Proposition 6.6 and Remark 6.7. The ideals I, J
below are non-Cohen–Macaulay initial ideals of P . They satisfy Q I

= Q J and
Q I

1 6= Q J
1 . We display the ideals and the formulas for the coefficients e0, e1, e2
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that have been computed via Stanley decompositions.

I (t1t3, t1t2, t0t2, t3
3 , t2

1 t4, t3
1 , t2t4, t2t3, t2

2 )

(e0) 4a0+ 4a4

(e1) 3a0− a1− 3a3+ 4a4

(e2) − a0+ 2a1− 2a3+ a4

J (t1t3, t1t2, t2
1 , t3

3 , t2t4, t2t3, t2
2 )

(e0) 4a0+ 4a4

(e1) 3a0− a1− 3a3+ 4a4

(e2) a2− 2a3+ a4

In this case I top
= J top

= (t1t3, t2, t3
3 , t2

1 ) as expected by Remark 6.7 and J =
J sat
6= I sat

= (t2, t1t3, t2
1 t4, t3

3 , t3
1 ) as proved in Proposition 6.6.
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Swan conductors for p-adic differential
modules, I: A local construction

Kiran S. Kedlaya

We define a numerical invariant, the differential Swan conductor, for certain
differential modules on a rigid analytic annulus over a p-adic field. This gives
a definition of a conductor for p-adic Galois representations with finite local
monodromy over an equal characteristic discretely valued field, which agrees
with the usual Swan conductor when the residue field is perfect. We also es-
tablish analogues of some key properties of the usual Swan conductor, such as
integrality (the Hasse–Arf theorem), and the fact that the graded pieces of the
associated ramification filtration on Galois groups are abelian and killed by p.

Introduction

In this paper, we define a numerical invariant, which we call the differential Swan
conductor, for certain differential modules on a rigid analytic annulus over a com-
plete nonarchimedean field of mixed characteristics. We then use this definition to
define a differential Swan conductor for p-adic Galois representations with finite
local monodromy over an equal characteristic discretely valued field, whose residue
field need not be perfect. The latter will coincide with the usual Swan conductor
in the case of a perfect residue field.

The construction of the differential Swan conductor proceeds by measuring the
failure of convergence of the Taylor isomorphism, or equivalently, the failure of
local horizontal sections for the connection to converge on as large a disc as pos-
sible. This phenomenon distinguishes the study of differential equations over p-
adic fields from its classical analogue, and the relationship with Swan conductors
explains the discrepancy in terms of wild ramification in characteristic p. (The
analogy between irregularity of connections and wild ramification has been known

MSC2000: primary 11S15; secondary 14F30.
Keywords: p-adic differential modules, Swan conductors, wild ramification, Hasse–Arf theorem,

imperfect residue fields.
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additionally supported by NSF grant DMS-0400727, NSF CAREER grant DMS-0545904, and a
Sloan Research Fellowship.
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for a while, but recent developments have pushed it further, e.g., construction of a
de Rham analogue of local ε-factors [Beilinson et al. 2002].)

In the case of Galois representations over an equal characteristic discretely
valued field with perfect residue field, the differential interpretation of the Swan
conductor is known from the work of several authors, including André, Christol
and Mebkhout, Crew, Matsuda, Tsuzuki, and others; see [Kedlaya 2005a, Section
5] for an overview. The question of extending this interpretation to the case of
imperfect residue field was first raised by Matsuda [2004], who proposed giving a
differential interpretation of the logarithmic conductor of [Abbes and Saito 2002;
Abbes and Saito 2003]. Our point of view is a bit different: we first construct
a numerical invariant from differential considerations, and check that it has good
properties. These include the Hasse–Arf property, i.e., integrality of conductors
(Theorem 2.8.2), and the fact that the associated ramification filtration on Galois
groups has graded pieces which are elementary abelian (Theorem 3.5.13). Only
then do we pose questions about reconciling the definition with other constructions;
we do not answer any of these.

In a subsequent paper, we will apply this construction to overconvergent F-
isocrystals on varieties over perfect fields of positive characteristic; in particular,
the construction applies to discrete representations of the étale fundamental groups
of open varieties. We will pay particular attention to how the differential Swan
conductor of a fixed isocrystal changes as we vary the choice of a boundary divisor
along which to compute the conductor.

Acknowledgments. The author thanks Liang Xiao for comments on an early draft.

1. Differential fields

We start with a summary of some relevant facts about differential fields and mod-
ules. We defer to [Kedlaya 2006b, Section 3] (and other explicitly cited references)
for more details.

1.1. Differential modules and twisted polynomials.

Hypothesis 1.1.1. Throughout this subsection, let F be a differential field of or-
der 1 and characteristic zero, i.e., a field of characteristic zero equipped with a
derivation ∂ .

Definition 1.1.2. Let F{T } denote the (noncommutative) ring of twisted polynomi-
als over F [Ore 1933]; its elements are finite formal sums

∑
i≥0 ai T i with ai ∈ F ,

multiplied according to the rule T a = aT + ∂(a) for a ∈ F .

Remark 1.1.3. The opposite ring of F{T } is the ring of twisted polynomials for
the differential field given by equipping F with the derivation −∂ instead of ∂ .



Swan conductors for p-adic differential modules, I: A local construction 271

Definition 1.1.4. A differential module over F is a finite dimensional F-vector
space V equipped with an action of ∂ (subject to the Leibniz rule); any such module
inherits a left action of F{T } where T acts via ∂ . For V a differential module
over F , a cyclic vector in V is a vector v ∈ V such that v, ∂(v), . . . , ∂dim(V )−1(v)
form a basis of V . A cyclic vector defines an isomorphism V ∼= F{T }/F{T }P of
differential modules for some twisted polynomial P ∈ F{T }, where the ∂-action
on F{T }/F{T }P is left multiplication by T .

Lemma 1.1.5. Every differential module over F contains a cyclic vector.

Proof. See, e.g., [Dwork et al. 1994, Theorem III.4.2]. �

Hypothesis 1.1.6. For the remainder of this subsection, assume that the differential
field F is equipped with a nonarchimedean norm | · |, and let V denote a nonzero
differential module over F . Write v(x)=−log |x | for the valuation corresponding
to | · |.

Definition 1.1.7. Let |∂|F denote the operator norm of ∂ on F . Let |∂|V,sp de-
note the spectral norm of ∂ on V , i.e., the limit lims→∞ |∂

s
|
1/s
V for any fixed F-

compatible norm | · |V on V . Any two such norms on V are equivalent [Schneider
2002, Proposition 4.13], so the spectral norm does not depend on the choice. More
explicitly, if one chooses a basis of V and lets Ds denote the matrix via which ∂s

acts on this basis, then

max{|∂|F,sp, |∂|V,sp} =max{|∂|F,sp, lim sup
s→∞

|Ds |
1/s
}, (1.1.7.1)

where the norm applied to Ds is the supremum over entries [Christol and Dwork
1994, Proposition 1.3].

Definition 1.1.8. For P(T ) =
∑

i ai T i
∈ F{T } a nonzero twisted polynomial,

define the Newton polygon of P as the lower convex hull of the set {(−i, v(ai ))} ⊂

R2. This Newton polygon obeys the usual additivity rules only for slopes less than
−log |∂|F [Kedlaya 2006b, Lemma 3.1.5 and Corollary 3.1.6; Robba 1980, Section
1].

Proposition 1.1.9 (Christol–Dwork). Suppose V ∼= F{T }/F{T }P and P has least
slope r . Then

max{|∂|F , |∂|V,sp} =max{|∂|F , e−r
}.

Proof. See [Christol and Dwork 1994, Théorème 1.5] or [Kedlaya 2006b, Propo-
sition 3.3.7]. �
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Proposition 1.1.10 (Robba). Suppose that F is complete for its norm. Then any
monic twisted polynomial P ∈ F{T } admits a unique factorization

P = P+Pm · · · P1

such that for some r1 < · · · < rm < −log |∂|F , each Pi is monic with all slopes
equal to ri , and P+ is monic with all slopes at least −log |∂|F .

Proof. This follows by repeated application of Hensel’s lemma for twisted poly-
nomials [Robba 1980]; see also [Kedlaya 2006b, Corollary 3.2.4]. �

1.2. Differential fields of higher order.

Hypothesis 1.2.1. Throughout this subsection, let F denote a differential field of
order n, i.e., a field F equipped with n commuting derivations ∂1, . . . , ∂n . Assume
also that F has characteristic zero and is complete for a nonarchimedean norm | · |
with corresponding valuation v. Let V denote a nonzero differential module over
F , i.e., a nonzero finite dimensional F-vector space equipped with commuting
actions of ∂1, . . . , ∂n . We apply the results of the previous subsection by singling
out one of ∂1, . . . , ∂n .

Definition 1.2.2. Define the scale of V as

max
{

max
{

1,
|∂i |V,sp

|∂i |F,sp

}
: i ∈ {1, . . . , n}

}
;

note that this quantity is at least 1 by definition, with equality at least when V = F .
For i = 1, . . . , n, we say ∂i is dominant for V if max{1, |∂i |V,sp/|∂i |F,sp} equals the
scale of V .

Definition 1.2.3. Let V1, . . . , Vm be the Jordan–Hölder factors of V (listed with
multiplicity). Define the scale multiset of V as the multiset of cardinality dimF V ,
consisting of the scale of V j included with multiplicity dimF V j , for j = 1, . . . ,m.
Note that the largest element of the scale multiset equals the scale of V .

Remark 1.2.4. If n = 1 and V ∼= F{T }/F{T }P for P a twisted polynomial, then
Proposition 1.1.10 implies that the multiplicity of any r <−log |∂|F as a slope of
the Newton polygon of P coincides with the multiplicity of e−r/|∂|F,sp in the scale
multiset of V .

Proposition 1.2.5. Suppose that |∂i |F/|∂i |F,sp = s0 for i = 1, . . . , n. Then there is
a unique decomposition

V = V−⊕
⊕
s>s0

Vs

of differential modules, such that each Jordan–Hölder factor of Vs has scale s, and
each Jordan–Hölder factor of V− has scale at most s0.
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Proof. This may be deduced from Proposition 1.1.10, as in [Kedlaya 2006b, Propo-
sition 3.4.3]. �

Definition 1.2.6. We refer to the decomposition given in Proposition 1.2.5 as the
scale decomposition of V .

2. Conductors for ∇-modules

In this section, we construct the differential Swan conductor for certain differential
modules over p-adic fields. We will perform all of the calculations under the bifur-
cated Hypothesis 2.1.3; one of the two options therein allows for nonarchimedean
fields which are not discretely valued, but restricts their residue fields, while the
other is less restrictive on residue fields, but requires the nonarchimedean norms
to be discretely valued.

Notation 2.0.1. For S a set or multiset, write S p
= {s p

: s ∈ S}. If A, B are two
multisets of the same cardinality d , then write A≥ B to mean that for i = 1, . . . , d,
the i-th largest element of A is greater than or equal to the i-th largest element of
B (counting multiplicity).

2.1. Setup.

Definition 2.1.1. Given a field K equipped with a (possibly trivial) nonarchimedean
norm, for ρ1, . . . , ρn ∈ (0,+∞), the (ρ1, . . . , ρn)-Gauss norm on K [u1, . . . , un]

is the norm | · |ρ given by∣∣∣∣ ∑
I

cI ui1
1 · · · u

in
n

∣∣∣∣=max
I
{|cI |ρ

i1
1 · · · ρ

in
n };

this norm extends uniquely to K (u1, . . . , un).

Definition 2.1.2. For `/k an extension of fields of characteristic p > 0, a p-basis
of ` over k is a set B ⊂ ` with the property that the products

∏
b∈B beb , where

eb ∈ {0, . . . , p − 1} for all b ∈ B and eb = 0 for all but finitely many b, are all
distinct and form a basis for ` as a vector space over the compositum k`p. By a
p-basis of `, we mean a p-basis of ` over `p.

Hypothesis 2.1.3. For the rest of this section, assume one of the following two
sets of hypotheses.

(a) Let K be a field of characteristic zero, complete for a (not necessarily discrete)
nonarchimedean norm | · |, with residue field k of characteristic p > 0. Equip
K (u1, . . . , un) with the (1, . . . , 1)-Gauss norm. Let ` be a finite separable
extension of k(u1, . . . , un), and let L be the unramified extension with residue
field ` of the completion of K (u1, . . . , un).
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(b) Let K be a field of characteristic zero, complete for a nonarchimedean norm
| · |, with discrete value group and residue field k of characteristic p > 0. Let
L be an extension of K , complete for an extension of | · | with the same value
group, whose residue field ` admits a finite p-basis B = {u1, . . . , un} over k.
For i = 1, . . . , n, let ui be a lift of ui to the valuation ring oL of L .

Definition 2.1.4. Under either option in Hypothesis 2.1.3, the module of continu-
ous differentials�1

L/K is generated by du1, . . . , dun; let ∂1, . . . , ∂n denote the dual
basis of derivations (that is, ∂i =

∂
∂ui

).

Remark 2.1.5. Note that |∂i |L/|∂i |L ,sp = |p|−1/(p−1) for i = 1, . . . , n, so Proposi-
tion 1.2.5 applies.

2.2. Taylor isomorphisms. The scale of a differential module over L can be inter-
preted as a normalized radius of convergence for the Taylor series, as follows.

Convention 2.2.1. Let N0 denote the monoid of nonnegative integers. For I ∈Nn
0

and ∗ any symbol, we will write ∗I as shorthand for ∗i1
1 · · · ∗

in
n . We also write I !

as shorthand for i1! · · · in!.

Definition 2.2.2. Let V be a differential module over L . Define the formal Taylor
isomorphism on V to be the map T : V 7→ V ⊗L LJx1, . . . , xnK given by

T (v)=
∑
I∈Nn

0

x I

I !
∂ I (v).

We can then interpret the scale of V as the minimum λ such that T takes values in
V ⊗L R, for R the subring of LJx1, . . . , xnK consisting of series convergent on the
open polydisc

|xi |< λ
−1 (i = 1, . . . , n).

In particular, if L ′ is a complete extension of L , and x1, . . . , xn ∈ L ′ satisfy |xi |<

λ−1 for λ the scale of V , we obtain by substitution a concrete Taylor isomorphism

T (v; x1, . . . , xn) : V → V ⊗L L ′.

Remark 2.2.3. If x1, . . . , xn ∈ L satisfy |xi | < 1, then the concrete Taylor iso-
morphism T ( · ; x1, . . . , xn) is defined on L , and is a K -algebra homomorphism
carrying ui to ui + xi . If V is a differential module of scale λ, and |xi | < λ−1

for i = 1, . . . , n, then the concrete Taylor isomorphism T ( · ; x1, . . . , xn) on V is
semilinear over the concrete Taylor isomorphism on L .

Remark 2.2.4. Note that |∂ I /I !|F ≤ 1 for any I ∈ Nn
0 . Hence if x1, . . . , xn ∈ L

satisfy |xi |< 1, then for any f ∈ L ,

|T ( f ; x1, . . . , xn)− f | ≤max
i
{|xi |} · | f |.
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In particular, suppose u′1, . . . , u′n ∈ L satisfy |u′i | = 1, and the images of u′1, . . . , u′n
in ` form a p-basis of ` over k. Then T (·; x1, . . . , xn) can also be interpreted as the
concrete Taylor isomorphism defined with respect to the dual basis of du′1, . . . , du′n
and evaluated at y1, . . . , yn , for yi = T (u′i ; x1, . . . , xn) − u′i . This implies that
the scale of a differential module computed with respect to (the dual basis to)
du1, . . . , dun is no greater than with respect to du′1, . . . , du′n; by the same calcu-
lation in reverse, it follows that the two scales are equal. (Francesco Baldassarri
has suggested a coordinate-free definition of the scale that explains this remark;
we will follow up on this suggestion elsewhere.)

2.3. Frobenius descent. As discovered originally in [Christol and Dwork 1994],
in the situations of Hypothesis 2.1.3, one can overcome the limitation on scales
imposed by Proposition 1.1.9 by using descent along the substitution ui 7→ u p

i .

Definition 2.3.1. Let V be a differential module over L with scale less than
|p|−1/(p−1). If K contains a primitive p-th root of unity ζ , we may define an
action of the group (Z/pZ)n on V using concrete Taylor isomorphisms:

vJ
= T (v; (ζ j1 − 1)u1, . . . , (ζ

jn − 1)un) (J ∈ (Z/pZ)n).

Let V1 be the fixed space under this group action; in particular, taking V = L , we
obtain a subfield L1 of L , which we may view as a differential field of order n
for the derivations ∂i,1 = ∂/∂(u

p
i ). In general, V1 may be viewed as a differential

module over L1, the natural map V1 ⊗L1 L → V is an isomorphism of L-vector
spaces (by Hilbert 90), and the actions of ∂i and ∂i,1 on V are related by the formula

∂i,1 =
1

pu p−1
i

∂i . (2.3.1.1)

We call V1 the Frobenius antecedent of V . If K does not contain a primitive p-th
root of unity, we may still define the Frobenius antecedent using Galois descent.

Proposition 2.3.2. Let V be a differential module over L with scale s< |p|−1/(p−1)

and scale multiset S. Then the scale multiset of the Frobenius antecedent of V is
S p.

Proof. Since any direct sum decomposition commutes with the formation of the
Frobenius antecedent V1, it suffices to check that the scale of V1 is s p. Let T (v) be
the formal Taylor isomorphism for V , and let T ′(v) be the formal Taylor isomor-
phism for V1 but with variables x ′1, . . . , x ′n .

By [Kedlaya 2005a, Lemma 5.12], for t, t1 in any nonarchimedean field,

|t − t1|< λ−1
|t | H⇒ |t p

− t p
1 |< λ

−p
|t |p (1< λ < |p|−1/(p−1)). (2.3.2.1)

(We repeat from [Kedlaya 2006b, Lemma 4.4.2] the description of a misprint in
the last line of the statement of [Kedlaya 2005a, Lemma 5.12]: one must read
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r1/pρ1/p, rρ for rρ1/p, r pρ, respectively.). Hence the convergence of the isomor-
phism T ′(v; x ′1, . . . , x ′n) for |x ′i | < λ−p implies convergence of T (v; x1, . . . , xn)

for |xi | < λ
−1, so the scale of V1 is at least s p. On the other hand, we can obtain

T ′ by averaging T over the action of (Z/pZ)n , so the scale of V1 is at most s p.
(Compare [Kedlaya 2005a, Theorem 6.15].) �

Remark 2.3.3. It should also be possible to prove Proposition 2.3.2 by raising both
sides of (2.3.1.1) to a large power and comparing the results, but this would appear
to be somewhat messy.

Definition 2.3.4. If V is a differential module over F of scale less than

|p|−1/(pm−1(p−1)),

by Proposition 2.3.2, we can iterate the construction of a Frobenius antecedent m
times; we call the result the m-fold Frobenius antecedent of V .

Remark 2.3.5. Note that it is also possible to construct antecedents one variable at
a time; the point is that since the operators ∂i , ∂ j commute for i 6= j , ∂i continues
to act on the antecedent with respect to ∂ j . This will be used in the proof of
Proposition 2.5.4.

2.4. ∇-Modules.

Notation 2.4.1. Let 0∗ denote the divisible closure of |K ∗|. We say a subinterval
of (0,+∞) is aligned if each endpoint at which it is closed belongs to 0∗.

Remark 2.4.2. One can drop the word “aligned”, and all references to 0∗, ev-
erywhere hereafter if one works with Berkovich analytic spaces [Berkovich 1990]
instead of rigid analytic spaces. We omit further details.

Notation 2.4.3. For I an aligned interval and t a dummy variable, let AL(I ) be
the rigid analytic (over L) subspace of the affine t-line over L consisting of points
with |t | ∈ I ; this space is affinoid if I is closed. (We omit the parentheses if I is
described explicitly, e.g., if I = [α, β), we write AL [α, β) for AL(I ).) For ρ ∈ I ,
we write | · |ρ for the ρ-Gauss norm∣∣∣∣ ∑

i∈Z

ci t i
∣∣∣∣
ρ

= sup
i
{|ci |ρ

i
};

for ρ ∈ 0∗, we may interpret | · |ρ as the supremum norm on the affinoid space
AL [ρ, ρ].

Lemma 2.4.4. Let I be an aligned interval. For ρ, σ ∈ I and c ∈ [0, 1], put
τ = ρcσ 1−c. Then for any f ∈ 0(AL(I ),O),

| f |τ ≤ | f |cρ | f |
1−c
σ .
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Proof. See [Kedlaya 2007, Lemma 3.1.6], [Amice 1975, Corollaire 4.2.8], or
[Robba and Christol 1994, Corollaire 5.4.9]. �

Definition 2.4.5. For I an aligned interval, a ∇-module on AL(I ) (relative to
K ) is a coherent locally free sheaf E on AL(I ) equipped with an integrable K -
linear connection ∇ : E→ E⊗ �1

AL (I )/K . (Here �1
AL (I )/K denotes the sheaf of

continuous differentials; it is freely generated over OAL (I ) by du1, . . . , dun, dt .)
The connection equips E with actions of the derivations ∂i=

∂
∂ui

for i=1, . . . , n and
∂n+1 =

∂
∂t ; integrability of the connection is equivalent to commutativity between

these actions.

Definition 2.4.6. For I an aligned interval and ρ ∈ I , let Fρ be the completion of
L(t) for the ρ-Gauss norm, viewed as a differential field of order n + 1. For E a
nonzero ∇-module on AL(I ), let J be a closed aligned neighborhood of ρ in I ,
and put

Eρ = 0(AL(J ),E)⊗0(AL (J ),O) Fρ,

viewed as a differential module over Fρ ; this construction does not depend on J .
Define the radius multiset of Eρ , denoted S(E, ρ), as the multiset of reciprocals of
the scale multiset of Eρ . Define the (toric) generic radius of convergence of Eρ ,
denoted T (E, ρ), as the smallest element of S(E, ρ), i.e., the reciprocal of the scale
of Eρ .

Remark 2.4.7. As in [Kedlaya 2006b], the toric generic radius of convergence is
normalized differently from the generic radius of convergence of [Christol and
Dwork 1994], which would be multiplied by an extra factor of ρ. Our chief
justification for this normalization is “because it works”, in the sense of giving
the expected answer for Example 3.5.10. We look forward to ongoing work of
Baldassarri (compare Remark 2.2.4) for a more intrinsic justification.

Remark 2.4.8. To our knowledge, the consideration of ∇-modules over a rigid
analytic annulus, but taking into account derivations of the base field over a sub-
field, is novel to this paper. It may prove an interesting exercise to transcribe the
arguments of [Kedlaya 2005a], such as local duality, as much as possible to this
setting.

2.5. The highest ramification break.

Definition 2.5.1. Let E be a ∇-module on AL(ε, 1) for some ε ∈ (0, 1). We say E

is solvable at 1 if
lim
ρ→1−

T (E, ρ)= 1.

Hypothesis 2.5.2. For the rest of this subsection, let E be a ∇-module on AL(ε, 1)
for some ε ∈ (0, 1), which is solvable at 1.
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Lemma 2.5.3. For each i ∈ {1, . . . , n + 1}, for r ∈ (0,−log ε), put ρ = e−r and
let fi (r) be the negative logarithm of the scale of ∂i on Eρ . Then fi is a concave
function of r ; in particular,

log T (E, e−r )=min
i
{ fi (r)}

is a concave function of r . (This does not require solvability at 1.)

Proof. It suffices to check concavity on −log(J ) for J an arbitrary closed aligned
subinterval of (ε, 1). Since J is closed aligned, AL(J ) is affinoid; by Kiehl’s theo-
rem (see for instance [Fresnel and van der Put 2004, Theorem 4.5.2]), 0(AL(J ),E)

is a finitely generated module over the ring 0(AL(J ),O). Since that ring is a prin-
cipal ideal domain [Lazard 1962, Proposition 4, Corollaire], 0(AL(J ),E) is freely
generated by some subset e1, . . . , em . Let Di,l be the matrix over 0(AL(J ),O) via
which ∂ l

i acts on e1, . . . , em . For ρ, σ ∈ J and c ∈ [0, 1], put τ = ρcσ 1−c. By
Lemma 2.4.4, we have

|Di,l |τ ≤ |Di,l |
c
ρ |Di,l |

1−c
σ ;

taking l-th roots of both sides and taking limits yields

lim sup
l→∞

|Di,l |
1/ l
τ ≤

(
lim sup

l→∞
|Di,l |

1/ l
ρ

)c(
lim sup

l→∞
|Di,l |

1/ l
σ

)1−c
.

By (1.1.7.1), this yields the desired result. (Compare [Kedlaya 2006b, Proposi-
tion 4.2.6].) �

Proposition 2.5.4. The function f (r) = log T (E, e−r ) on (0,−log ε) is piecewise
linear, with slopes in (1/(rank E)!)Z. Moreover, f is linear in a neighborhood of
0.

Proof. Since f is concave by Lemma 2.5.3, takes nonpositive values, and tends to
0 as r→ 0+, it is everywhere nonincreasing. Hence for sufficiently large integers
h, we can choose ρh ∈ (ε, 1) with T (E, ρh)= |p|1/(p

h−1(p−1)) and ρh < ρh+1. Put
rh =−log ρh .

We now check piecewise linearity and the slope restriction on (rh+1, rh); it
suffices to check on −log(J ) for J an arbitrary closed aligned subinterval of
(ρh, ρh+1). Assume without loss of generality that K contains a primitive p-th
root of unity. Put L0 = L . For l = 1, . . . , h, let L l be the subfield of L l−1 fixed
under the action of (Z/pZ)n given in Definition 2.3.1, but with

u pl−1

1 , . . . , u pl−1

n

playing the roles of u1, . . . , un . Since T (E, ρ) > |p|1/(p
h−1(p−1)) for ρ ∈ J , using

Definition 2.3.1 (in the u1, . . . , un-directions) and [Kedlaya 2005a, Theorem 6.15]
(in the t-direction), we can construct an h-fold Frobenius antecedent Eh for E,
which is defined on ALh (J

ph
).
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Apply Lemma 1.1.5 to construct a cyclic vector for Eh over Frac0(ALh (J
ph
),O);

by writing down the corresponding twisted polynomial P(T ) and applying Propo-
sition 1.1.9, we see that for σ ∈ J ph

, T (Eh, σ ) is piecewise of the form |g|1/j
σ for

some g∈Frac0(ALh (J
ph
),O) and j ∈{1, . . . , rank(E)}. In particular, for σ =ρ ph

,
this expression is piecewise of the form (|a|ρi ph

)1/j for some a ∈ K ∗, i ∈ Z, and
j ∈ {1, . . . , rank(E)}. This proves that on (rh+1, rh), f is piecewise linear with
slopes in (1/(rank E)!)Z.

To check piecewise linearity in a neighborhood of rh , note that as we approach
rh from the right, the successive slopes of f that we encounter are increasing but
bounded above, and lie in a discrete subset of R. Hence they stabilize, so f is
linear in a one-sided neighborhood of rh . An analogous argument applies again
when approaching rh+1 from the left, so f is piecewise linear on [rh+1, rh]; taking
the union of these intervals, we deduce that f is piecewise linear on (0, rh] for some
h. An analogous argument applies yet again when approaching 0 from the right,
yielding the desired result. (Compare [Christol and Mebkhout 2000, Théorème 4.2-
1].) �

Corollary 2.5.5. There exists b ∈Q≥0 such that T (E, ρ)= ρb for all ρ ∈ (ε, 1).

Definition 2.5.6. We will refer to the number b in Corollary 2.5.5 as the (differen-
tial) highest ramification break of E, denoted b(E).

2.6. Invariance.

Definition 2.6.1. Define the Robba ring over L as

RL =
⋃

ε∈(0,1)

0(AL(ε, 1),O).

The elements of RL can be represented as formal Laurent series
∑

i∈Z ci t i with
ci ∈ L; let Rint

L be the subring of series with |ci | ≤ 1 for all i ∈ Z. The ring Rint
L

is local, with maximal ideal consisting of series with |ci | < 1 for all i ∈ Z, with
residue field `((t)).

We first examine invariance under certain endomorphisms of L , following Def-
inition 2.2.2.

Definition 2.6.2. Choose u′1, . . . , u′n, t ′∈Rint
L such that under the projection Rint

L →

`((t)), u′1− u1, . . . , u′n − un map into t`JtK and t ′− t maps into t2`JtK. Then for
some ε ∈ (0, 1), the Taylor series∑

I∈Nn+1
0

(u′1− u1)
i1 · · · (u′n − un)

in (t ′− t)in+1

I !
∂ I ( f )
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converges for f ∈0(AL(I ),O) for any closed aligned subinterval I of (ε, 1), so we
can use it to define a map g : 0(AL(I ),O)→ 0(AL(I ),O) such that g∗(ui ) = u′i ,
g∗(t)= t ′.

Proposition 2.6.3. Let g be a map as in Definition 2.6.2. For any ∇-module E on
AL(ε, 1) which is solvable at 1, we have T (E, ρ) = T (g∗E, ρ) for all ρ ∈ (ε, 1)
sufficiently close to 1. In particular, g∗E is also solvable at 1, and E and g∗E have
the same highest break.

Proof. By the choice of u′1, . . . , u′n, t ′, for ρ ∈ (0, 1) sufficiently close to 1,

|u′i − ui |ρ < 1 (i = 1, . . . , n), |t ′− t |ρ < ρ.

We will prove the claim for such ρ.
By continuity of T (E, ρ) (implied by Lemma 2.5.3), it suffices to check for

ρ ∈0∗. There is no loss of generality in enlarging K , so we may in fact assume that
there exists λ ∈ K with |λ| = ρ. In this case, we may put ourselves in the situation
of Remark 2.2.4 by considering Eρ to be a differential module over the comple-
tion of L(t/ρ) for the 1-Gauss norm, comparing the p-bases u1, . . . , un, t/λ and
u′1, . . . , u′n, t ′/λ. This yields the claim. �

Proposition 2.6.4. Let g : AL(I ) → AL(I ) be the map fixing L and pulling t
back to t pN

for some positive integer N. Then for any ∇-module E on AL(ε, 1),
we have S(E, ρ) ≤ S(g∗E, ρ1/pN

) for all ρ ∈ (ε, 1); moreover, if n = 0, then
S(E, ρ)≤ S(g∗E, ρ1/pN

)pN
.

Proof. If we compare the scale multisets of ∂i on Eρ and on (g∗E)
ρ1/pN , then we get

identical results for i = 1, . . . , n. For i = n+1, the scale multiset on Eρ is at least
the pN -th power of the scale multiset on (g∗E)

ρ1/pN , as in the proof of Proposition
2.3.2. This yields the claim. �

Proposition 2.6.5. Let g : AL(I )→ AL(I ) be the map fixing L and pulling t back
to t N for some positive integer N coprime to p. Then for any ∇-module E on
AL(ε, 1), we have S(E, ρ)= S(g∗E, ρ1/N ) for all ρ ∈ (ε, 1).

Proof. If we compare the scale multisets of ∂i on Eρ and on (g∗E)ρ1/N , then we get
identical results for i = 1, . . . , n. For i = n+ 1, we again get identical results by
virtue of [Kedlaya 2005a, Lemma 5.11]. �

We next examine what happens when we change the p-basis.

Proposition 2.6.6. Choose u′1, . . . , u′n ∈Rint
L such that under the projection Rint

L →

`((t)), u′1, . . . , u′n map to elements of `JtK lifting a p-basis of ` over k. Let
∂ ′1, . . . , ∂

′
n be the derivations dual to the basis du′1, . . . , du′n of �1

L/K . Let E be
a ∇-module on AL(ε, 1) for some ε ∈ (0, 1), which is solvable at 1. Then for
ρ ∈ (0, 1) sufficiently close to 1, the scale of Eρ for ∂1, . . . , ∂n, ∂n+1 is the same as
for ∂ ′1, . . . , ∂

′
n, ∂n+1; in particular, the highest break is the same in both cases.
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Proof. If u′1, . . . , u′n ∈ L , then we can invoke Remark 2.2.4 to obtain the claim. In
general, we may first make a transformation as in the previous sentence, to match
up the reductions modulo t`JtK, then invoke Proposition 2.6.3. �

2.7. The break decomposition. Retain Hypothesis 2.5.2 throughout this subsec-
tion.

Definition 2.7.1. We say that E has a uniform break if for all ρ ∈ (0, 1) sufficiently
close to 1, S(E, ρ) consists of a single element with multiplicity rank(E). We write
“E has uniform break b” as shorthand for “E has a uniform break and its highest
ramification break is b”.

Theorem 2.7.2. For some η ∈ (0, 1), there exists a decomposition of ∇-modules
(necessarily unique) E = ⊕b∈Q≥0Eb over AL(η, 1) such that each Eb has uniform
break b.

We will prove Theorem 2.7.2 later in this subsection. To begin with, we recall
that the case L = K is essentially a theorem of Christol–Mebkhout [2001, Corol-
laire 2.4-1], from which we will bootstrap to the general case.

Lemma 2.7.3. Theorem 2.7.2 holds in case L = K .

Proof. This is the conclusion of [Christol and Mebkhout 2001, Corollaire 2.4-1],
at least in case K is spherically complete. However, it extends to the general case
as follows.

By a straightforward application of Zorn’s lemma, we may embed K into a
spherically complete field K ′. Apply [Christol and Mebkhout 2001, Corollaire 2.4-
1] to obtain a break decomposition over AK ′(η, 1) for some η ∈ (0, 1); let v ∈
0(AK ′(η, 1),E∨⊗E) be the projector onto the highest break component.

Now set notation as in the proof of Proposition 2.5.4. The set of ρ ∈ (ρh, ρh+1)

for which at least one coefficient P(T ) fails to be a unit in ALh [ρ
ph
, ρ ph
] is discrete,

so we may choose ρ ∈ (ρh, ρh+1) not of that form. Then Proposition 1.1.10 gives
a factorization of P(T ) over ALh [ρ

ph
, ρ ph
] (and likewise in the opposite ring);

we thus obtain an element v′ of 0(AK [ρ, ρ],E∨ ⊗ E) which agrees with v over
AK ′[ρ, ρ].

For any closed aligned subinterval J of (η, 1) containing ρ, we have

0(AK [ρ, ρ],O)∩0(AK ′(J ),O)= 0(AK (J ),O)

inside 0(AK ′[ρ, ρ],O). Since E∨⊗E is free over AK (J ) (as in the proof of Lemma
2.5.3), this implies that

0(AK [ρ, ρ],E∨⊗E)∩0(AK ′(J ),E∨⊗E)= 0(AK (J ),E∨⊗E),
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and so v ∈ 0(AK (J ),E∨ ⊗ E). Running this argument over all possible J , we
obtain v∈0(AK (η, 1),E∨⊗E), so E admits a break decomposition over AK (η, 1)
as desired. �

We exploit Lemma 2.7.3 via the following construction.

Definition 2.7.4. Define the relativization F of E as the ∇-module E itself, but
viewed relative to L instead of K . That is, retain only the action of ∂n+1. (The
term “generic fibre” was used in an earlier version of this paper, but we decided to
reserve that name for a different concept to appear in a subsequent paper.)

However, we are forced to make a crucial distinction.

Lemma 2.7.5. For i ∈ {1, . . . , n + 1}, there exists η ∈ (0, 1) such that one of the
following two statements is true.

• For all ρ ∈ (η, 1), ∂i is dominant for Eρ .

• For all ρ ∈ (η, 1), ∂i is not dominant for Eρ .

Proof. Let b denote the highest break of E. Choose η∈ (0, 1) such that T (E, ρ)=ρb

for all ρ ∈ (η, 1). Put

fi (ρ)=
|∂i |Fρ ,sp

|∂i |Eρ ,sp
;

then Lemma 2.5.3 shows that fi is log-concave. Consequently, if fi (ρ)= T (E, ρ)
for two different values of ρ, then the same is true for all intermediate values. This
proves the claim: if the second statement does not hold, then there exist ρ ∈ (0, 1)
arbitrarily close to 1 such that fi (ρ) = T (E, ρ), in which case the first statement
holds with η equal to any such ρ. �

Definition 2.7.6. For i ∈ {1, . . . , n+ 1}, we say that ∂i is eventually dominant for
E if the first alternative in Lemma 2.7.5 holds, i.e., if there exists η ∈ (0, 1) such
that for all ρ ∈ (η, 1), ∂i is dominant for Eρ .

Remark 2.7.7. Note that if ∂n+1 is eventually dominant for E, then the highest
break term in the decomposition of F (which is respected by ∂1, . . . , ∂n because it
is unique) already has a uniform break. Our strategy in case ∂n+1 is not eventually
dominant for E is to perform an operation which one might call rotation to recover
that more favorable situation: namely, we use a concrete Taylor isomorphism to
change the embedding of K into L .

In order to perform the rotation suggested in Remark 2.7.7, we need two partic-
ular instances of Definition 2.6.2.

Lemma 2.7.8. For N a nonnegative integer, let fN : AL(0, 1)→ AL(0, 1) be the
map fixing L and pulling back t to t pN

. Then for ρ ∈ (ε, 1), we have the inequality
S( f ∗N E, ρ1/pN

) ≥ S(E, ρ). Moreover, if ∂i is dominant for Eρ for some i 6= n+ 1,
then T ( f ∗N E, ρ1/pN

)= T (E, ρ).
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Proof. The first assertion follows from Proposition 2.6.4. The second follows
because if ∂i is dominant for Eρ and i 6= n+ 1, then T ( f ∗N E, ρ1/pN

) and T (E, ρ)
can be computed using the same formula. �

Lemma 2.7.9. Suppose i ∈ {1, . . . , n} is such that ∂i is eventually dominant for E.
Let gi be the map given by Definition 2.6.2 with

u′i = ui + t, u′j = u j ( j 6= i), t ′ = t.

Put E′= g∗i E, and let F′ be the relativization of E′. Let b, brel be the highest breaks
of E,F. If b > brel+ 1, then:

• the highest break of F′ is b− 1;

• for ρ ∈ (0, 1) sufficiently close to 1, the multiplicity of ρb−1 in S(F′, ρ) is the
same as that of ρb in S(E, ρ).

Proof. The action of ∂n+1 on g∗i E is the pullback of the action of ∂n+1+ ∂i on E,
so the highest break of F′ is the value of b′ satisfying

|∂n+1+ ∂i |Eρ ,sp = ρ
−b′−1

for ρ ∈ (0, 1) sufficiently close to 1. For such ρ, the spectral norms of ∂i , ∂n+1 on
Eρ are ρ−b, ρ−brel−1, respectively. From this the claims are evident. �

Lemma 2.7.10. Pick i ∈ {1, . . . , n+ 1} such that ∂i is eventually dominant for E.
Then at least one of the following statements is true.

• For ρ ∈ (0, 1) sufficiently close to 1, the scale multiset of ∂i on Eρ consists of
a single element.

• There exists η ∈ (0, 1) such that E is decomposable on AL(η, 1).

Proof. If i = n+ 1, then the claim follows by Remark 2.7.7, so we assume i ≤ n.
Let b and brel be the highest breaks of E and F, respectively. Assume that the first
alternative does not hold; this forces b > 0.

Suppose to begin with that b > brel+ 1. Put E′ = g∗i E as in Lemma 2.7.9, and
let F′ be the relativization of E′. Then F′ does not have a uniform break, so by
Lemma 2.7.3, it splits off a component of uniform break b− 1. We conclude that
E′ is decomposable on some AL(η, 1), as then is E, as desired.

In the general case, we can always pick N such that bpN > brel+1. By Lemma
2.7.8, f ∗N E has highest break bpN , and the first alternative of this lemma also
does not hold for f ∗N E. Moreover, by Proposition 2.3.2, the relativization of f ∗N E

has highest break brel. We may thus apply the previous paragraph to split off
a component of f ∗N E of highest break; since the splitting is unique, it descends
down the Galois group of the cover fN (after adjoining pN -th roots of unity), so
E is itself decomposable on some AL(η, 1), as desired. �
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Proof of Theorem 2.7.2. It suffices to show that if E is indecomposable over
AL(η, 1) for any η ∈ (0, 1) sufficiently close to 1, then E has a uniform break.
This follows from Remark 2.7.7 if ∂n+1 is eventually dominant for E, and from
Lemma 2.7.10 otherwise. �

It will be useful later to have a more uniform version of the rotation construc-
tion used in Section 2.7, which comes at the expense of enlarging the field L .
(This generic rotation is inspired by the operation of generic residual perfection in
[Borger 2004].) The resulting construction will be used to study the graded pieces
of the ramification filtration.

Proposition 2.7.11. Let b be the highest break of E, and suppose b > 1. Let L ′

be the completion of L(v1, . . . , vn) for the (1, . . . , 1)-Gauss norm, viewed as a
differential field of order 2n over K . Let E′ be the pullback of E along the map
f : AL ′[0, 1)→ AL [0, 1) given by

f ∗(ui )= u p
i + vi t p−1 (i = 1, . . . , n), f ∗(t)=

t p

1− t p−1 .

Then E′ has highest break pb− p+ 1. In addition, among the differentials

∂

∂u1
, . . . ,

∂

∂un
,
∂

∂v1
, . . . ,

∂

∂vn
,
∂

∂t
,

∂
∂t (at least) is eventually dominant for E′.

Proof. We first treat the case n = 0. In this case, g∗(t−1)= t−p
− t−1, so this is an

instance of [Kedlaya 2005a, Lemma 5.13].
In the general case, writing ∂ ′1, . . . , ∂

′

n+1 for the actions of ∂1, . . . , ∂n+1 before
the pullback, we have

∂

∂ui
= pu p−1

i ∂ ′i ,

∂

∂vi
= t p−1∂ ′i ,

∂

∂t
=

d
dt

(
t p

1− t p−1

)
∂ ′n+1+

n∑
i=1

(p− 1)vi t p−2∂ ′i .

We compute the scale of ∂/∂t by inspecting each term separately: the contribution
from ∂ ′n+1 can be treated as above, and the contribution from ∂ ′i can be treated
directly after invoking Proposition 2.6.5. This implies that the highest break of E′

is at least pb− p+ 1, with equality if and only if ∂/∂t is eventually dominant.
We compute the scale of ∂/∂ui as if ui had pulled back to u p

i and t to t p (i.e., as
for a Frobenius antecedent). In particular, if ∂/∂ui were eventually dominant for
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E′, then the highest break of E′ would be at most b < pb− p+ 1, contradiction.
Hence ∂/∂ui is not eventually dominant.

We read off the scale of ∂/∂vi directly: it is eventually dominant if and only if
∂ ′i is, and in any case it cannot mask ∂/∂t . This proves the desired results. �

Remark 2.7.12. The calculations in this subsection may become more transparent
when checked against the examples produced by Artin–Schreier covers in posi-
tive characteristic, as in Example 3.5.10. Indeed, many of these calculations were
conceived with those examples firmly in mind.

2.8. The differential Swan conductor. Throughout this subsection, retain Hypoth-
esis 2.5.2.

Definition 2.8.1. By Theorem 2.7.2, there exists a multiset {b1, . . . , bd} such that
for all ρ ∈ (0, 1) sufficiently close to 1, S(E, ρ) = {ρb1, . . . , ρbd }. We call this
multiset the break multiset of E, denoted b(E). Define the (differential) Swan
conductor of E, denoted Swan(E), as b1+ · · ·+ bd .

Theorem 2.8.2. The differential Swan conductor of E is a nonnegative integer.

Proof. It suffices to check this in case E is indecomposable over AL(η, 1) for any
η∈ (0, 1) sufficiently close to 1. Choose i ∈{1, . . . , n+1} such that ∂i is eventually
dominant for E. By Lemma 2.7.10, for ρ ∈ (ε, 1) sufficiently close to 1, the scale
multiset of Eρ with respect to ∂i consists of a single element. That means in the
calculation of the Newton polygon in Proposition 2.5.4, the Newton polygon must
have only one slope, and so the integer j can be taken to be rank(E). Consequently,
the slopes of the function f (r)= log T (E, e−r ) are always multiples of 1/ rank(E),
as then is the highest break of E. This proves the desired result. �

Remark 2.8.3. Proposition 2.6.5 implies that pulling E along the map t 7→ t N ,
for N a positive integer coprime to p, has the effect of multiplying Swan(E) by
N . For Galois representations, this will imply that the Swan conductor commutes
appropriately with tamely ramified base changes (Theorem 3.5.9).

Remark 2.8.4. In case L = K , one can interpret the integrality of Swan(E) by
equating it to a certain local index [Christol and Mebkhout 2001, Théorème 2.3-
1]. It would be interesting to give a cohomological interpretation of our more
general construction, perhaps by relating it to an appropriate Euler characteristic.

Remark 2.8.5. Liang Xiao points out that one can also prove Theorem 2.8.2 by
reduction to the case of perfect residue field, for which one may invoke Remark
2.8.4. The argument is as follows. By Lemma 2.7.10, we may assume that E and its
relativization have respective uniform breaks b, brel. The perfect residue field case
implies that brel rank(E) is an integer. If b 6= brel, we can choose positive integers
m1,m2 coprime to each other and to p such that mi (b−brel)> 1 for i = 1, 2. If we
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pull back along t 7→ tmi and then apply the rotation in Lemma 2.7.9, the highest
break of the relativization becomes mi b−1, so (mi b−1) rank(E) is an integer for
i = 1, 2. This implies that b rank(E) ∈ Z.

3. Differential conductors for Galois representations

In this section, we explain how to define differential Swan conductors for certain
p-adic Galois representations of complete discretely valued fields of equal charac-
teristic p> 0 (including the discrete representations). This uses a setup for turning
representations into differential modules due to [Tsuzuki 1998]. For comments on
the mixed characteristic case, see Section 3.7.

3.1. Preliminaries: Cohen rings.

Definition 3.1.1. Let k be a field of characteristic p > 0. A Cohen ring for k is a
complete discrete valuation ring Ck with maximal ideal generated by p, equipped
with an isomorphism of its residue field with k.

It can be shown that Cohen rings exist and are unique up to noncanonical iso-
morphism; see [Bourbaki 1983]. One can do better by carrying some extra data.

Definition 3.1.2. Define a based field of characteristic p>0 to be a field k equipped
with a distinguished p-basis Bk . We view based fields as forming a category whose
morphisms from (k, Bk) to (k ′, B ′k) are morphisms k → k ′ of fields carrying Bk

into B ′k .

Definition 3.1.3. For (k, Bk) a based field, a based Cohen ring for (k, Bk) is a pair
(C, B), where C is a Cohen ring for k and B is a subset of C which lifts Bk .

Proposition 3.1.4. There is a functor from based fields to based Cohen rings which
is a quasi-inverse of the residue field functor. In particular, any map between based
fields lifts uniquely to given based Cohen rings.

Proof. This is implicit in Cohen’s original paper [Cohen 1946]; an explicit proof
is given in [Whitney 2002, Theorem 2.1]. Here is a sketch of another proof. Let
Wn be the ring of p-typical Witt vectors of length n over k, let W be the inverse
limit of the Wn , let F be the Frobenius on W , and let [·] denote the Teichmüller
map. Put B = {[b] : b ∈ Bk}. Let Cn be the image of Fn(W )[B] in Wn . Then
the projection Wn+1→Wn induces a surjection Cn+1→ Cn . Let C be the inverse
limit of the Cn; one then verifies that (C, B) is a based Cohen ring for (k, Bk), and
functoriality of the construction follows from functoriality of the Witt ring. �

Remark 3.1.5. In fact, [Whitney 2002, Theorem 2.1] asserts something slightly
stronger: if (C, B) is a based Cohen ring of (k, Bk), R is any complete local ring
with residue field k, and BR is a lift of Bk to R, then there is a unique ring homo-
morphism C→ R inducing the identity on k and carrying B to BR .
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3.2. Galois representations and (φ, ∇)-modules.

Hypothesis 3.2.1. For the remainder of this section, let R be a complete discrete
valuation ring of equal characteristic p > 0, with fraction field E and residue field
k. Let k0 =

⋂
n≥0 k pn

be the maximal perfect subfield of k; note that k0 embeds
canonically into R (whereas if k 6= k0, then k embeds but not canonically).

Convention 3.2.2. Put G E = Gal(E sep/E). Let O be the integral closure of Zp in
a finite extension of Qp, whose residue field Fq is contained in k. Throughout this
section, a “representation” will be a continuous representation ρ : G E → GL(V ),
where V = V (ρ) is a finite free O-module. (One can also consider representations
on finite dimensional Frac(O)-vector spaces, by choosing lattices; for brevity, we
stick to statements for integral representations, except for Remark 3.5.11.)

Definition 3.2.3. Fix a based Cohen ring (CE , B) with residue field E ; note that
CE is canonically a W (Fq)-algebra. Put

0 = CE ⊗W (Fq ) O.

Let �1
0/O be the completed (for the p-adic topology) direct sum of 0 db over all

b ∈ B, i.e., the inverse limit over n of ⊕b∈B(0/pn0) db; then there is a canonical
derivation d : 0→ �1

0/O. Note that all of this data stays canonically independent
of the choice of B as long as CE remains fixed.

Definition 3.2.4. A ∇-module over 0 is a finite free 0-module M equipped with
an integrable connection ∇ : M→ M ⊗0 �1

0/O; integrability means that the com-
position of ∇ with the map M ⊗�1

0/O→ M ⊗∧2
0�

1
0/O induced by ∇ is the zero

map.

Definition 3.2.5. A Frobenius lift on 0 is an endomorphism φ : 0→ 0 fixing O

and lifting the q-power Frobenius map on E . For instance, there is a unique such φ
carrying b to bq for each b∈ B (induced by the Frobenius action on the construction
given in Proposition 3.1.4); we call this φ the standard Frobenius lift with respect
to B. A φ-module (resp. (φ,∇)-module) over 0 is a finite free module (resp. ∇-
module) M over 0 equipped with an isomorphism F :φ∗M ∼=M of modules (resp.
of ∇-modules); we interpret F as a semilinear action of φ on M .

Definition 3.2.6. For any representation ρ, put

D(ρ)= (V (ρ)⊗O 0̂unr)G E .

By Hilbert’s Theorem 90, the natural map

D(ρ)⊗0 0̂unr→ V (ρ)⊗O 0̂unr
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is a bijection; in particular, D(ρ) is a free 0-module and rank0(D(ρ))= rankO(V ).
If we equip 0unr and its completion with actions of the derivation d and any Frobe-
nius lift φ (acting trivially on V (ρ)), we obtain by restriction a Frobenius action
and connection on D(ρ), turning it into a (φ,∇)-module.

Proposition 3.2.7. For any Frobenius lift φ on 0, the functor D from representa-
tions to φ-modules over 0 is an equivalence of categories.

Proof. Given a φ-module M over 0, put

V (M)= (M ⊗0 0̂unr)φ=1.

As in [Fontaine 1990, A1.2.6] or [Tsuzuki 1998, Theorem 4.1.3], one checks that
V is a quasi-inverse to D. �

Proposition 3.2.8. For any Frobenius lift φ on 0, any φ-module over 0 admits a
unique structure of (φ,∇)-module. Consequently, the functor D from representa-
tions to (φ,∇)-modules over 0 is an equivalence of categories.

Proof. Existence of such a structure follows from Proposition 3.2.7, so we focus
on uniqueness. Let M be a (φ,∇)-module over 0. Let ∂/∂b be the derivations
dual to the db for b ∈ B. Let e1, . . . , em be a basis of M , and let 8 and Nb be the
matrices via which φ and ∂/∂b act on this basis. Then the fact that the φ-action on
M respects the ∇-module structure implies that

N8+
∂8

∂b
=
∂φ(b)
∂b

8N . (3.2.8.1)

Let π be a uniformizer of O; note that ∂φ(b)/φb≡ 0 (mod π) because φ(b)≡ bq

(mod π). Consequently, for fixed 8, if Nb is uniquely determined modulo πm ,
then the right side of (3.2.8.1) is determined modulo πm+1, as then is Nb8. Since
8 is invertible, Nb is also determined modulo πm+1. By induction, Nb is uniquely
determined by 8 for each b, as desired. �

3.3. Representations with finite local monodromy. We now distinguish the class
of representations for which we define differential Swan conductors.

Definition 3.3.1. Let IE =Gal(E sep/Eunr) be the inertia subgroup of G E . We say
a representation ρ has finite local monodromy if the image of IE under ρ is finite.

For representations with finite local monodromy, we can refine the construction
of the (φ,∇)-module associated to ρ.

Hypothesis 3.3.2. For the remainder of this subsection, assume that k admits a
finite p-basis. Assume also that the based Cohen ring (CE , B) has been chosen
with B = B0 ∪ {t}, where t lifts a uniformizer of E , and B0 lifts elements of R
which in turn lift a p-basis of k.
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Definition 3.3.3. By the proof of the Cohen structure theorem, or by Remark 3.1.5,
there is a unique embedding of k into R whose image contains the image of B0

under reduction to E . Applying Proposition 3.1.4 to the map k→ R, we obtain an
embedding of a Cohen ring Ck for k into CE , the image of which contains B0. Put

Ok = Ck ⊗W (Fq ) O.

Then each x ∈ 0 can be written formally as a sum
∑

i∈Z xi t i with xi ∈ Ok , such
that for each n, the indices i for which vOk (xi ) ≤ n are bounded below. For n a
nonnegative integer, we define the partial valuation function vn : 0→ Z∪{∞} by

vn(x)=min{i ∈ Z : vOk (xi )≤ n}.

For r > 0, put
0r
= {x ∈ 0 : lim

n→∞
vn(x)+ rn =∞};

this is a subring of 0. Put 0†
=

⋃
r>0 0

r ; we may speak of ∇-modules over 0†

using the same definition as for 0, using for the module of differentials

�1
0†/Ok
=

⊕
b∈B

0† db.

(Here we are using the finiteness of the p-basis to avoid having to worry about a
completion.) If φ is a Frobenius lift carrying 0† into itself, we may also define
φ-modules and (φ,∇)-modules over 0† as before.

Definition 3.3.4. Since Ok ⊂ 0
†, we can identify a copy of Ounr

k inside (0†)unr.
Using this identification, put

0̃†
= Ôunr

k ⊗Ounr
k
(0†)unr

⊂ 0̂unr.

For ρ a representation, put

D†(ρ)= D(ρ)∩ (V (ρ)⊗O 0̃
†)= (V (ρ)⊗O 0̃

†)G E .

Again, D†(ρ) inherits a connection, and an action of any Frobenius lift φ acting
on 0†. Note that the natural map

(D†(ρ)⊗0† 0̃†)→ (V (ρ)⊗O 0̃
†)

is always injective, and it is surjective if and only if ρ has finite local monodromy.

The following is essentially [Tsuzuki 1998, Theorem 3.1.6].

Proposition 3.3.5. Let φ be a Frobenius lift on 0 acting on 0†. The base change
functor from (φ,∇)-modules over 0† to (φ,∇)-modules over 0 is fully faithful.
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Proof. Using internal Homs, we may rephrase this as follows: if M is a (φ,∇)-
module over 0†, then

(M ⊗0)φ=1,∇=0
⊂ M.

In particular, it is sufficient to check this using only the dt component of the con-
nection. In this case, we may replace 0 by the completion of 0[φ−n(b) :b∈ B0, n∈
Z≥0], to get into the case where R has perfect residue field. We may then conclude
by applying [Tsuzuki 1996, 4.1.3]. �

The following is essentially [Tsuzuki 1998, Theorem 4.2.6].

Theorem 3.3.6. Let φ be a Frobenius lift on 0 acting on 0†. Then D† and restric-
tion induce equivalences between the following categories:

(a) representations with finite local monodromy;

(b) (φ,∇)-modules over 0†;

(c) ∇-modules over 0† equipped with φ-actions over 0.

In particular, if a ∇-module over 0† admits a φ-action over 0, that action is de-
fined already over 0†.

Proof. The functor from (a) to (b) is D†, while the functor from (b) to (c) is
restriction. The functor from (c) back to (a) will be induced by V ; once it is shown
to be well-defined, it will be clear that the three functors compose to the identity
starting from any point.

To obtain the functor from (c) to (a), we must prove that if M is a ∇-module
over 0† such that M ⊗ 0 admits a compatible φ-action, then the corresponding
representation V (M) has finite local monodromy. It suffices to check this after
replacing E by a finite extension, which can be chosen to ensure the existence of
an isomorphism (M/2pM)⊗0 ∼= (0/2p0)m of φ-modules. In this case we claim
that V (M) is actually unramified; as in the proof of Proposition 3.3.5, it suffices
to check this using only the dt component of ∇, and hence to reduce to the case of
R having perfect residue field. This case is treated by the proof of [Tsuzuki 1998,
Proposition 5.2.1], but not by its statement (which requires a φ-action over 0†);
for a literal citation, see [Kedlaya 2006a, Proposition 4.5.1]. �

3.4. (φ, ∇)-Modules over R. Throughout this subsection, retain Hypothesis 3.3.2,
and write L for Frac(Ok) and R for RL . The choices made so far determine an
embedding 0† ↪→RL , and any Frobenius φ acting on 0† extends continuously to
RL (as in [Kedlaya 2004, Section 2]). We may thus define φ-modules, ∇-modules,
and (φ,∇)-modules over R using the same definitions as over 0.

Remark 3.4.1. From a ∇-module over R, we may construct a ∇-module on
AL(ε, 1) for some ε ∈ (0, 1). The construction is unique in the following sense:
any two such ∇-modules become isomorphic on AL(η, 1) for some η ∈ (0, 1).
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Conversely, since any locally free sheaf on AL(η, 1) is freely generated by global
sections (because L is spherically complete; see for instance [Kedlaya 2005a, The-
orem 3.14]), any ∇-module on AL(η, 1) gives rise to a ∇-module over R.

Remark 3.4.1 is sufficient for the construction of the differential Swan conductor
associated to a representation of finite local monodromy. However, for complete-
ness, we record some related facts, including the analogue of the p-adic local
monodromy theorem.

Lemma 3.4.2. Let M be a φ-module over 0† such that M⊗R admits the structure
of a (φ,∇)-module. Then this structure is induced by a (φ,∇)-module structure on
M itself , and so M corresponds to a representation with finite local monodromy.

Proof. By [Kedlaya 2005b, Proposition 7.1.7], the action of ∂/∂t on M ⊗R acts
on M itself. Also, for any b ∈ B0, we may change the p-basis by replacing b by
b+ t , and then the same argument shows that the action of ∂

∂t +
∂
∂b on M⊗R acts

on M itself. (This is another instance of rotation in the sense of Remark 2.7.7.) We
conclude that ∇ itself acts on M , so we may apply Theorem 3.3.6 to conclude. �

Definition 3.4.3. A φ-module (resp. (φ,∇)-module) M over R is unit-root if it
has the form M0⊗R for some φ-module (resp. (φ,∇)-module) M0 over 0†. By
Lemma 3.4.2, a (φ,∇)-module over R is unit-root if and only if its underlying
φ-module is unit-root.

Proposition 3.4.4. The base extension functor from the isogeny category of unit-
root φ-modules over 0† (i.e., φ-modules over 0†

[
1
p ] obtained by base extension

from 0†) to the category of unit-root φ-modules over R is an equivalence of cate-
gories.

Proof. This is [Kedlaya 2005b, Theorem 6.2.3]. �

Definition 3.4.5. Let s = c/d be a rational number written in lowest terms. A φ-
module (resp. (φ,∇)-module) M over R is pure (or isoclinic) of slope s if there ex-
ists a scalar λ∈ K ∗ of valuation c such that the φd -module (resp. (φd ,∇)-module)
obtained from M by twisting the φd -action by λ−1 is unit-root. In particular, by
Theorem 3.3.6, the ∇-module structure on M corresponds to a representation with
finite local monodromy after replacing O by a finite extension.

Theorem 3.4.6. Let M be a φ-module (resp. (φ,∇)-module) M over R. Then
there exists a unique filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M of M by saturated
φ-submodules (resp. (φ,∇)-submodules) such that each quotient Mi/Mi−1 is pure
of some slope si as a φ-module, and s1 < · · ·< sl .

Proof. In the φ-module case, this is [Kedlaya 2004, Theorem 6.10] or [Kedlaya
2005b, Theorem 6.4.1]. In the (φ,∇)-module case, it suffices to check that the
filtration of the underlying φ-module is respected by ∇. For this, we proceed as
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in [Kedlaya 2005b, Theorem 7.1.6]: for each derivation ∂/∂b, we get a morphism
of φ-modules M1 → (M/M1)⊗R db. The former is pure of slope s1, whereas
the latter admits a slope filtration in which each slope is strictly greater than s1

(the slope of R db being positive). By [Kedlaya 2005b, Proposition 4.6.4], that
morphism is zero, proving that M1 is respected by each derivation. Hence M1 is a
(φ,∇)-submodule, and repeating the argument on M/M1 yields the claim. �

Remark 3.4.7. One may apply Theorem 3.3.6 to each individual quotient of the
filtration produced by Theorem 3.4.6. (Alternatively, one may project∇ onto the dt
component and directly invoke the p-adic local monodromy theorem; this allows
the invocation of [André 2002] or [Mebkhout 2002] in place of [Kedlaya 2004].)
It is an interesting question, which we have not considered, whether one can show
that the category of (φ,∇)-module M over RL is equivalent to a category of rep-
resentations of G E times an algebraic group over Frac(O), as in [Kedlaya 2005a,
Theorem 4.45].

3.5. Defining the differential Swan conductor. In order to use Theorem 3.3.6 to
define the differential Swan conductor of a representation ρ : G E → GL(V ) with
finite local monodromy, we must check that the answer does not depend on the
auxiliary choices we made along the way. (Note that the choice of φ does not
matter: it is only used to define the Frobenius action on D†(ρ), whereas only the
connection is used to compute the conductor.)

Proposition 3.5.1. Suppose that k admits a finite p-basis. For ρ a representation
with finite local monodromy, the isomorphism type of the ∇-module D†(ρ) does
not depend on the choice of the Cohen ring CE or the lifted p-basis B.

Proof. By Proposition 3.1.4, the construction of CE is functorial in pairs (E, B),
where B is a p-basis of E . It thus suffices to check that if for i = 1, 2, Bi is a
p-basis of E consisting of a uniformizer ti of R and a lift Bi,0 to R of a p-basis
of k over k0, then the modules D†(ρ) constructed using lifts of B1 and B2 are
isomorphic, compatibly with some isomorphism of the underlying rings 0†.

Let (CE , B1) be a based Cohen ring lifting (E, B1); write Ck,1, t1 instead of
Ck, t . Define B2,0 by choosing, for each b ∈ B2,0, a lift b of b in Ck,1Jt1K. Then
choose t2 to be a lift of t2 belonging to t1Ck,1Jt1K. We can then view (CE , B2) as
a based Cohen ring lifting (E, B2), containing a Cohen ring Ck,2 for k.

Since we used the same ring CE for both lifts, we may identify the two rings
0. Although Ck,1 6=Ck,2 in general, we did ensure by construction that Ck,1Jt1K=
Ck,2Jt2K. Consequently, the two rings 0† constructed inside 0 coincide, and we
may identify the two copies of 0̃†. This gives an identification of the two modules
D†(ρ), as desired. �
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Definition 3.5.2. Suppose to start that k is finite over k p, i.e., any p-basis of k or
of E is finite. For ρ : G E→GL(V ) a representation with finite local monodromy,
with V a finite dimensional O-module, we may now define the differential highest
break, differential break multiset, and differential Swan conductor by constructing
the (φ,∇)-module D†(ρ), for some Cohen ring CE and some lifted p-basis B, and
computing the corresponding quantities associated to the underlying ∇-module of
D†(ρ) tensored with the Robba ring RFrac(Ok) (as in Remark 3.4.1). By Proposition
2.6.6 (to change the p-basis of k) and Proposition 3.5.1, this definition depends
only on ρ and not on any auxiliary choices. For general k, we may choose a finite
subset B1 of B containing a lift t of a uniformizer of R, project onto the span of
the db for b ∈ B1, and compute a conductor that way; this has the same effect as
passing from E to E1 = Ê0, where

E0 = E(b1/pn
: b ∈ B \ B1, n ∈ N0).

We define the differential Swan conductor of ρ in this case to be the supremum
over all choices of B and B1; it will turn out to be finite (Corollary 3.5.7) and hence
integral by Theorem 2.8.2.

Definition 3.5.3. Let E ′/E be a finite separable extension, let B be a p-basis of E
containing a uniformizer t of E , and put B0 = B \ {t}. We say a subset B2 of B0 is
a rectifying set for E ′/E if, putting E2 = Ê0 for

E0 = E(b1/pn
: b ∈ B2, n ∈ N0),

the extension (E ′⊗E E2)/E2 has separable residue field extension. Beware that it
is not enough for the residue field of E2 to contain the perfect closure of k in the
residue field of E ′. For instance, if p > 2, b1, b2 ∈ B, and

E ′ = E[z]/(z p
− z− b1t−2p

− b2t−p),

then E ′ has residue field k(b1
1/p), but B2 = {b1} is not a rectifying set because the

residue field of E ′⊗E E2 contains b2
1/p.

Lemma 3.5.4. With notation as in Definition 3.5.3, B contains a finite rectifying
set for E ′/E.

Proof. Use B to embed k into E . By induction on the degree of E ′/E , we may
reduce to the case of an Artin–Schreier extension

E ′ = E[z]/(z p
− z− ant−n

− · · ·− a1t−1
− a0)

with ai ∈ k. In this case, pick any N ∈ N0 with pN > n, and write each ai as
a k pN

-linear combination of products of powers of elements of B0. Only finitely
many elements of B0 get used; those form a rectifying set. �
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Proposition 3.5.5. Suppose that there exists a finite separable extension E ′ of E
whose residue field is separable over k, such that ρ is unramified on G E ′ . Then
the differential break multiset and Swan conductor of a representation ρ with finite
local monodromy can be computed with respect to {t}, and it agrees with the usual
break multiset and Swan conductor.

Proof. It suffices to consider ρ irreducible and check equality for the highest breaks.
Note that the usual highest break is insensitive to further residue field extension,
because it can be computed using Herbrand’s formalism as in [Serre 1979, Chap-
ter IV]. It thus agrees with the differential highest break computed with respect
to {t}: namely, this claim reduces to the case where k is perfect, for which see
[Kedlaya 2005a, Theorem 5.23] and references thereafter.

It remains to show that for any B1, ∂/∂t must be eventually dominant. Suppose
the contrary, and pick b ∈ B1 \ {t} such that ∂/∂b is eventually dominant. By a
tame base change (invoking Proposition 2.6.5), we can force the gap between the
differential highest breaks computed with respect to B1 and with respect to {t} to
be greater than 1; then a rotation as in Lemma 2.7.10 sending b to b+ t raises the
differential highest break computed with respect to {t}. But that contradicts the
previous paragraph: both before and after rotation, the differential highest break
computed with respect to {t} must coincide with the usual highest break.

We deduce that ∂/∂t is eventually dominant, proving the claim. �

Corollary 3.5.6. In the notation of Definition 3.5.2, suppose that there exists a
finite separable extension E ′ of E such that ρ is unramified on G E ′ , and that the
image of B1 \ {t} in E is a rectifying set for E ′/E. Then the differential Swan
conductor of ρ computed using (B \ B1)∪ {t} is equal to that computed using t.

Corollary 3.5.7. In the notation of Definition 3.5.2, suppose that there exists a
finite separable extension E ′ of E such that ρ is unramified on G E ′ , and that the
image of B1 \ {t} in E is a rectifying set for E ′/E. Then the differential Swan
conductor of ρ is equal to that computed using B1.

For completeness, we record the following observations.

Theorem 3.5.8. The differential Swan conductor of any representation with finite
local monodromy is a nonnegative integer.

Proof. By Lemma 3.5.4 and Corollary 3.5.7, the conductor can be computed using
a finite set B1; we may thus apply Theorem 2.8.2. �

Theorem 3.5.9. Let E ′ be a tamely ramified extension of E of ramification degree
m. Let ρ be a representation of G E with finite local monodromy, and let ρ ′ be the
restriction of ρ to G E ′ . Then Swan(ρ ′)= m Swan(ρ).

Proof. Apply Proposition 2.6.5. �
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Example 3.5.10. As an example, consider a nontrivial character of the Artin–
Schreier extension E[z]/(z p

− z− x). The corresponding differential module will
be a Dwork isocrystal, i.e., a rank one ∇-module with generator v such that

∇(v)= πv⊗ dx,

for x some lift of x and π a (p−1)-st root of−p. One computes that the differential
Swan conductor for this character is equal to the least integer m ≥ 0 such that
vE(x− y p

+ y)≥−m for all y ∈ E . This agrees with the definition given by [Kato
1989] of the Swan conductor of a character; note that the conductor is allowed to
be divisible by p if and only if k is imperfect.

Remark 3.5.11. Given a representation ρ : G E → GL(V ), where V is a finite
dimensional Frac(O)-vector space, we may define a differential Swan conductor
for it by picking a ρ-stable O-lattice of V and proceeding as in Definition 3.5.2.
Changing the lattice will not change the resulting ∇-module over RFrac(Ok), so we
get a well-defined numerical invariant of ρ also.

Defining conductors for Galois representations is tantamount to filtering the Ga-
lois group; let us now make this explicit.

Definition 3.5.12. Put G0
E = IE . For r > 0, let Rr be the set of representations ρ

with highest break less than r , and put

Gr
E =

⋂
ρ∈Rr

(IE ∩ ker(ρ)).

Note that ρ ∈ Rr if and only if Gr
E ⊆ IE ∩ ker(ρ); this reduces to the fact that

Rr is stable under tensor product and formation of subquotients. We call Gr
E

the differential upper numbering filtration on G E . Write Gr+
E for the closure of⋃

s>r Gs
E ; note that Gr

E = Gr+
E for r irrational, because differential highest breaks

are always rational numbers.

As in the perfect residue field case, the graded pieces of the upper numbering
filtration are particularly simple.

Theorem 3.5.13. For r > 0 rational, Gr
E/Gr+

E is abelian and killed by p.

Proof. Let E ′ be a finite Galois extension of E with Gal(E ′/E) = G; then we
obtain an induced filtration on G by taking Gr to be the image of Gr

E under the
surjection G E → G. It suffices to check that Gr/Gr+ is abelian and killed by p;
moreover, we may quotient further to reduce to the case where Gr+ is the trivial
group but Gr is not. Let ρ be the regular representation of G; then ρ has highest
break r . Let S be the set of irreducible constituents of ρ of highest break strictly
less than r ; we are then trying to show that the intersection of ker(ψ)⊆G over all
ψ ∈ S is an elementary abelian p-group.
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By Corollary 3.5.7, we may reduce to the case where the lifted p-basis B of
Hypothesis 3.3.2 is finite; put B0 = {b1, . . . , bn}. By making a tame base change,
we can force all nonzero ramification breaks to be greater than 1. By another
base change (passing from Frac CE to the completion of CE(v1, . . . , vn) for the
(1, . . . , 1)-Gauss norm), we can add extra elements v1, . . . , vn to B, then perform
the operation described in Proposition 2.7.11. Each nonzero ramification break
m before the operation corresponds to the break pm − p + 1 afterwards, so the
desired result may be checked afterwards. But now ∂/∂t is dominant on every
irreducible component of ρ, so we may reduce to the case of perfect residue field
and (by Proposition 3.5.5) the usual upper numbering filtration. In this case, the
claim is standard: it follows from the fact that the upper numbering filtration can
be constructed by renumbering the lower numbering filtration [Serre 1979, Section
IV.3], for which the claim is easy to check [Serre 1979, Section IV.2, Corollary 3
of Proposition 7]. �

Remark 3.5.14. Note that the definition of the differential Swan conductor of a
representation is invariant under enlarging O, because the differential Swan con-
ductor of a ∇-module is invariant under enlarging the constant field K .

3.6. Reconciliation questions. By introducing a numerical invariant of represen-
tations and calling it a conductor, one begs various reconciliation questions with
other definitions. To begin with, it is known (and was a motivation of our construc-
tion) that in the traditional case of a perfect residue field, one computes the right
numbers; see Proposition 3.5.5.

In the general case, there is a definition of the “logarithmic conductor” due to
[Abbes and Saito 2002; Abbes and Saito 2003]. Following [Matsuda 2004], one is
led to ask the following.

Question 3.6.1. For ρ a representation with finite local monodromy, does the
differential Swan conductor agree with the Abbes–Saito logarithmic conductor in
equal characteristic?

It is easy to check the affirmative answer for Artin–Schreier characters. An affir-
mative answer in the general case would have the beneficial consequence of verify-
ing the Hasse–Arf theorem for the Abbes–Saito conductor in equal characteristic.
Some progress on this question has been made recently by Bruno Chiarellotto and
Andrea Pulita, and independently by Liang Xiao.

One might also try to reconcile our definition with conductors for Galois repre-
sentations over a two-dimensional local field, as in [Zhukov 2000; Zhukov 2003].
In order to formulate a precise question, it may be easiest to pass to the context
of considering a representation of the étale fundamental group of a surface and
computing its conductor along different boundary divisors. Indeed, this will be the
point of view of the sequel to this paper.
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There is also a construction of Artin conductors in the imperfect residue field
case due to [Borger 2004], by passing from E to a certain extension which is
universal for the property of having perfect residue field. Borger’s construction
does not behave well with respect to tame base extension, but one should get a
better invariant by forcing such good behavior (i.e., constructing a logarithmic
analogue of Borger’s conductor). Indeed, we expect the following.

Conjecture 3.6.2. For ρ a representation with finite local monodromy, for m a
positive integer, let Em be an extension of E which is tamely ramified of tame
degree m. Let b′(Em) be Borger’s Artin conductor of the restriction of ρ to G Em .
Then the limsup of m−1b′(Em) as m→∞ equals the differential Swan conductor
of ρ.

Since the Abbes–Saito construction also works in mixed characteristic, one may
also be interested in reconciling it there with a differential construction. For more
on this possibility, see the next subsection.

3.7. Comments on mixed characteristic. It would be interesting to extend the
constructions in this paper to the case where R has mixed characteristics. The
analogue of the passage from Galois representations to ∇-modules is given by p-
adic Hodge theory, specifically via the theory of (φ, 0)-modules over the Robba
ring, as in the work of Fontaine, Cherbonnier–Colmez, Berger, et al.

In that context, when R has perfect residue field, Colmez [2003] has given a
recipe for reading off the Swan conductor of de Rham representations from the
associated (φ, 0)-module . One would like to reformulate this recipe via Berger’s
construction of the Weil–Deligne representation, which converts the (φ, 0)-module
into a (φ,∇)-module over R [Berger 2002]; however, it is not immediately clear
how to do this. The fact that this might even be possible is suggested by work of
Marmora [2004], who gives a direct comparison with differential Swan conductors,
but only for the Swan conductor of a representation over the maximal p-cyclotomic
extension of a given p-adic field.

If one can indeed give a differential definition of the usual Swan conductor
of a de Rham representation in the perfect residue field, then it seems likely one
can make a differential definition in the imperfect residue field case. Indeed, the
construction of (8, 0)-modules has already been generalized to this setting by
Morita [2005]. If one can do all this, then one will again encounter the question of
reconciliation with the Abbes–Saito constructions; however, it is not clear whether
in this case the Hasse–Arf theorem would be any easier on the differential side
than on the Abbes–Saito side.
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L 8 structures on mapping cones
Domenico Fiorenza and Marco Manetti

We show that the mapping cone of a morphism of differential graded Lie al-
gebras, χ : L → M , can be canonically endowed with an L∞-algebra structure
which at the same time lifts the Lie algebra structure on L and the usual differen-
tial on the mapping cone. Moreover, this structure is unique up to isomorphisms
of L∞-algebras.

Introduction

There are several cases where the tangent and obstruction spaces of a deformation
theory are the cohomology groups of the mapping cone of a morphism χ : L→M
of differential graded Lie algebras. It is therefore natural to ask if there exists a
canonical differential graded Lie algebra structure on the complex (Cχ , δ), where

Cχ =
⊕

C i
χ , C i

χ = L i
⊕

M i−1, δ(l,m)= (dl, χ(l)− dm),

such that the projection Cχ→ L is a morphism of differential graded Lie algebras.
In general we cannot expect the existence of a Lie structure. In fact the canonical

bracket

l1⊗ l2 7→ [l1, l2], m1⊗ l2 7→
1
2 [m1, χ(l2)],

l1⊗m2 7→
1
2(−1)deg(l1)[χ(l1),m2], m1⊗m2 7→ 0

satisfies the Leibniz rule with respect to the differential δ but not the Jacobi identity.
However, the Jacobi identity for this bracket holds up to homotopy, and so we can
look for the weaker requirement of a canonical L∞ structure on Cχ .

More precisely, let K be a fixed characteristic zero base field, denote by DG the
category of differential graded vector spaces, by DGLA the category of differen-
tial graded Lie algebras, by L∞ the category of L∞ algebras and by DGLA2 the

MSC2000: primary 17B70; secondary 13D10.
Keywords: differential graded Lie algebra, symmetric coalgebra, L∞-algebra, functor of Artin ring.
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category of morphisms in DGLA. The four functors,

DGLA→ L∞ by natural inclusion,

L∞→ DG by forgetting higher brackets,

DGLA2
→ DG by {L

χ
−→ M} 7→ Cχ ,

DGLA→ DGLA2 by L 7→ {L→ 0},

give a commutative diagram

DGLA

��

// L∞

��
DGLA2 C // DG.

Theorem 1. There exists a functor C̃ : DGLA2
→ L∞ making the diagram

DGLA

��

// L∞

��
DGLA2 C //

C̃
::vvvvvvvvv
DG

commutative.

Moreover, the functor C̃ is essentially unique, that is, if F :DGLA2
→ L∞ has

the same properties, then for every morphism χ of differential graded Lie algebras,
the L∞-algebra F(χ) is (noncanonically) isomorphic to C̃(χ).

The L∞ structure C̃(χ) on the mapping cone of a DGLA morphism χ : L→M
is actually a particular case of a more general construction of an L∞ structure
on the total complex of a semicosimplicial DGLA. More precisely, the category
DGLA2 of morphisms of DGLAs can be seen as a full subcategory of the category
DGLA1mon of semicosimplicial DGLAs via the functor

{L
χ
−→ M} 

{
L

0 //
χ

// M
////// 0

//////// · · ·

}
and we have a commutative diagram

DGLA2

��

C̃ // L∞

��
DGLA1mon

Tot //

T̃ot
66mmmmmmmmmmmmmmm
DG.

The functor C̃ can be explicitly described. The linear term of the L∞-algebra
C̃(χ) is by construction the differential δ on Cχ , and the quadratic part which turns
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out to coincide with the naive bracket described at the beginning of the Introduc-
tion. An explicit expression for the higher brackets is given in Theorem 5.2.

The second main result of this paper is to prove that the deformation functor
DefC̃(χ) associated with the L∞ algebra C̃(χ) is isomorphic to the functor Defχ
defined in [Manetti 2005].

Given χ : L→ M , it defines a functor Defχ :Art→ Set, with Art the category
of local Artinian K-algebras with residue field K,

Defχ (A)

=

{
(x, ea) ∈ (L1

⊗mA)× exp(M0
⊗mA) | dx + 1

2 [x, x] = 0, ea
∗χ(x)= 0

}
gauge equivalence

where ∗ denotes the gauge action in M , and (l0, em0) is defined to be gauge equiv-
alent to (l1, em1) if there exists (a, b) ∈ (L0 ⊕

M−1)⊗mA such that

l1 = ea
∗ l0, em1 = edbem0e−χ(a).

Theorem 2. With the notation above, for every morphism of differential graded
Lie algebras, χ : L→ M , we have

DefC̃(χ) ' Defχ .

The importance of Theorem 2 lies in that it allows one to study the functors Defχ ,
which are often naturally identified with geometrically defined functors, using the
whole machinery of L∞-algebras. In particular this gives, under some finiteness
assumption, the construction and the homotopy invariance of the Kuranishi map
[Fukaya 2003; Goldman and Millson 1990; Kontsevich 2003], as well as the local
description of the corresponding extended moduli spaces.

Keywords and general notation. We assume that the reader is familiar with the
notion and main properties of differential graded Lie algebras and L∞-algebras
(we refer to [Fukaya 2003; Grassi 1999; Kontsevich 2003; Lada and Markl 1995;
Lada and Stasheff 1993; Manetti 2004b] as the introduction of such structures);
however the basic definitions are recalled in this paper in order to fix notation and
terminology.

For the whole paper, K is a fixed field of characteristic 0 and Art is the category
of local Artinian K-algebras with residue field K. For A ∈ Art we denote by mA

the maximal ideal of A.

1. Conventions on graded vector spaces

In this paper we will work with Z-graded vector spaces. We write a graded vector
space as V =

⊕
n∈Z V n , and call V n the degree n component of V ; an element v
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of V n is called a degree n homogeneous element of V . The shift functor is defined
as (V [k])i := V i+k . We say that a linear map ϕ : V→W is a degree k map if it is a
morphism V →W [k], that is, if it is a collection of linear maps ϕn

: V n
→W n+k .

The set of degree k liner maps from V to W will be denoted Homk(V,W ).
Graded vector spaces form a symmetric tensor category with

(V ⊗W )k =
⊕

i+ j=k

V i
⊗W j ,

and σV,W : V ⊗ W → W ⊗ V given by σ(v ⊗ w) := (−1)deg(v)·deg(w)w ⊗ v on
the homogeneous elements. We adopt the convention according to which degrees
are “shifted on the left”. By this we mean that we have a natural identification,
called the suspension isomorphism, V [1] ' K[1] ⊗ V where K[1] denotes the
graded vector space consisting of the field K concentrated in degree −1. With this
convention, the canonical isomorphism is

V ⊗K[1] ' V [1], v⊗ 1[1] 7→ (−1)deg(v)v[1].

More in general we have the following decalage isomorphism

V1[1]⊗ · · ·⊗ Vn[1]
∼
−→ (V1⊗ · · ·⊗ Vn)[n],

v1[1]⊗ · · ·⊗ vn [1] 7→ (−1)
∑n

i=1(n−i)·deg vi (v1⊗ · · ·⊗ vn)[n].

Since graded vector spaces form a symmetric category, for any graded vector space
V and any positive integer n we have a canonical representation of the symmetric
group Sn on ⊗nV . The space of coinvariants for this action is called the n-th sym-
metric power of V and is denoted by �nV . Twisting the canonical representation
of Sn on ⊗nV by the alternating character σ 7→ (−1)σ and taking the coinvariants
one obtains the n-th antisymmetric (or exterior) power of V , denoted by

∧n V . By
the naturality of the decalage isomorphism, we have a canonical isomorphism

n⊙
(V [1])

∼
−→

( n∧
V

)
[n].

Remark 1.1. Using the natural isomorphisms

Homi (V,W [l])' Homi+l(V,W )

and the decalage isomorphism, we obtain the natural identifications

dec : Homi
( k∧

V,W
)
∼
−→ Homi+k−1

( k⊙
(V [1]),W [1]

)
,

dec( f )(v1[1]� · · ·� vk[1])= (−1)ki+
∑k

j=1(k− j)·deg(v j ) f (v1 ∧ · · · ∧ vk)[1].
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2. Differential graded Lie algebras and L∞-algebras

A differential graded Lie algebra (DGLA) is a Lie algebra in the category of graded
vector spaces, endowed with a compatible degree 1 differential. Via the decalage
isomorphisms one can look at the Lie bracket of a DGLA V as a morphism

q2 ∈ Hom1(V [1]� V [1], V [1]), q2(v[1]�w[1])= (−1)deg(v)
[v,w][1].

Similarly, the suspended differential q1 = d[1] = idK[1]⊗d is a degree 1 morphism

q1 : V [1] → V [1], q1(v[1])= − (dv)[1].

Up to the canonical bijective linear map V → V [1], v 7→ v[1], the suspended
differential q1 and the bilinear operation q2 are written simply as

q1(v)= − dv, q2(v�w)= (−1)degV (v)[v,w],

that is, “the suspended differential is the opposite differential and q2 is the twisted
Lie bracket”.

Define morphisms qk ∈ Hom1(�k(V [1]), V [1]) by setting qk ≡ 0, for k ≥ 3.
The map

Q1
=

∑
n≥1

qn :
⊕
n≥1

n⊙
V [1] → V [1]

extends to a coderivation of degree 1

Q :
⊕
n≥1

n⊙
V [1] →

( ⊕
n≥1

n⊙
V [1]

)
on the reduced symmetric coalgebra cogenerated by V [1], by the formula

Q(v1� · · ·� vn)

=

n∑
k=1

∑
σ∈S(k,n−k)

ε(σ )qk(vσ(1)� · · ·� vσ(k))� vσ(k+1)� · · ·� vσ(n), (2-1)

where S(k, n− k) is the set of unshuffles and ε(σ )=±1 is the Koszul sign, deter-
mined by the relation in

⊙n V [1]

vσ(1)� · · ·� vσ(n) = ε(σ )v1� · · ·� vn.

The axioms of differential graded Lie algebra are then equivalent to Q being a
codifferential, that is, Q Q = 0. This description of differential graded Lie algebra
in terms of the codifferential Q is called the Quillen construction [1969]. By drop-
ping the requirement that qk ≡ 0 for k ≥ 3 one obtains the notion of L∞-algebra
(or strong homotopy Lie algebra); see for example [Lada and Markl 1995; Lada
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and Stasheff 1993; Kontsevich 2003]. Namely, an L∞ structure on a graded vector
space V is a sequence of linear maps of degree 1,

qk :

k⊙
V [1] → V [1], k ≥ 1,

such that the induced coderivation Q on the reduced symmetric coalgebra cogen-
erated by V [1], given by (2-1) is a codifferential, that is, Q Q = 0. This condition
implies q1q1=0 and therefore an L∞-algebra is in particular a differential complex.
By the preceding discussion, every DGLA can be naturally seen as an L∞-algebra;
namely, a DGLA is an L∞-algebra with vanishing higher multiplications qk , k≥ 3.

A morphism f
∞

between two L∞-algebras

(V, q1, q2, q3, . . . ) and (W, q̂1, q̂2, q̂3, . . . )

is a sequence of linear maps of degree 0

fn :

n⊙
V [1] →W [1], n ≥ 1,

such that the morphism of coalgebras

F :
⊕
n≥1

n⊙
V [1] →

⊕
n≥1

n⊙
W [1]

induced by F1
=

∑
n fn :

⊕
n≥1

⊙n V [1] → W [1] commutes with the codiffer-
entials induced by the two L∞ structures on V and W [Fukaya 2003; Kontsevich
2003; Lada and Markl 1995; Lada and Stasheff 1993; Manetti 2004b]. An L∞-
morphism f

∞
is called linear (sometimes strict) if fn = 0 for every n ≥ 2. Note

that a linear map f1 : V [1] →W [1] is a linear L∞-morphism if and only if

q̂n( f1(v1)�· · ·� f1(vn))= f1(qn(v1�· · ·�vn)), for all n≥ 1, v1, . . . , vn ∈V [1].

The category of L∞-algebras will be denoted by L∞ in this paper. Morphisms
between DGLAs are linear morphisms between the corresponding L∞-algebras, so
the category of differential graded Lie algebras is a (nonfull) subcategory of L∞.

If f∞ is an L∞ morphism between (V, q1, q2, q3, . . . ) and (W, q̂1, q̂2, q̂3, . . . ),
then its linear part f1 : V [1] → W [1] satisfies the equation f1 ◦ q1 = q̂1 ◦ f1,
that is, f1 is a map of differential complexes (V [1], q1)→ (W [1], q̂1). An L∞-
morphism f

∞
is called a quasiisomorphism of L∞-algebras if its linear part f1 is

a quasiisomorphism of differential complexes.
A major result in the theory of L∞-algebras is the following homotopical trans-

fer of structure theorem, dating back to Kadeishvili’s work on the cohomology of
A∞ algebras [Kadeishvili 1982]; see also [Huebschmann and Kadeishvili 1991].
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Theorem 2.1. Let (V, q1, q2, q3, . . .) be an L∞-algebra and (C, δ) be a differential
complex. If there exist two morphisms of differential complexes

ı : (C[1], δ[1])→ (V [1], q1) and π : (V [1], q1)→ (C[1], δ[1])

such that the composition ıπ is homotopic to the identity, then there exist an L∞-
algebra structure (C, 〈 〉1, 〈 〉2, . . .) on C extending its differential complex struc-
ture and an L∞-morphism ı

∞
extending ı .

Explicit formulas for the quasiisomorphism ı∞ and the brackets 〈 〉n have been
described by Merkulov [1999]; it has then been remarked by Kontsevich and
Soibelman [2000; 2001] (see also [Fukaya 2003; Schuhmacher 2004]) that Merku-
lov’s formulas can be nicely written as the summations over rooted trees. Let
K ∈ Hom−1(V [1], V [1]) be an homotopy between ıπ and IdV [1], that is,

q1K + K q1 = ıπ − IdV [1],

and denote by TK ,n the groupoid whose objects are directed rooted trees with
internal vertices of valence at least two and exactly n tail edges. Trees in TK ,n are
decorated as follows: each tail edge of a tree in TK ,n is decorated by the operator
ı , each internal edge is decorated by the operator K and also the root edge is
decorated by the operator K . Every internal vertex v carries the operation qr , where
r is the number of edges having v as endpoint. Isomorphisms between objects in
TK ,n are isomorphisms of the underlying trees. Denote the set of isomorphism
classes of objects of TK ,n by the symbol TK ,n . Similarly, let Tπ,n be the groupoid
whose objects are directed rooted trees with the same decoration as TK ,n except
for the root edge, which is decorated by the operator π instead of K . The set of
isomorphism classes of objects of Tπ,n is denoted Tπ,n .

Via the usual operadic rules, each decorated tree 0 ∈ TK ,n gives a linear map

Z0(ı, π, K , qi ) : C[1]�n
→ V [1].

Similarly, each decorated tree in Tπ,n gives rise to a degree 1 multilinear operator
from C[1] to itself.

Having introduced these notations, we can write Kontsevich–Soibelman’s for-
mulas as follows.

Proposition 2.2. In the above set-up the brackets 〈 〉n , and the L∞ morphism ı∞
can be expressed as sums over decorated rooted trees via the formulas

ın =
∑
0∈TK ,n

Z0(ı, π, K , qi )

|Aut0|
, 〈 〉n =

∑
0∈Tπ,n

Z0(ı, π, K , qi )

|Aut0|
, n ≥ 2.
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3. The suspended mapping cone of χ : L → M.

The suspended mapping cone of the DGLA morphism χ : L → M is the graded
vector space

Cχ = Cone(χ)[−1],

where Cone(χ)= L[1]
⊕

M is the mapping cone of χ . More explicitly,

Cχ =
⊕

i

C i
χ , C i

χ = L i
⊕

M i−1.

The suspended mapping cone has a natural differential δ ∈ Hom1(Cχ ,Cχ ) given
by

δ(l,m)= (dl, χ(l)− dm), l ∈ L ,m ∈ M.

Denote M[t, dt] = M ⊗K[t, dt] and define, for every a ∈ K, the evaluation mor-
phism

ea : M[t, dt] → M, ea(
∑

mi t i
+ ni t i dt)=

∑
mi ai .

It is easy to prove that every morphism ea is a surjective quasiisomorphism of
DGLA. The integral operator

∫ b
a :K[t, dt]→K extends to a linear map of degree

−1 ∫ b

a
: M[t, dt] → M,

∫ b

a

( ∑
i

t i mi + t i dt · ni

)
=

∑
i

(∫ b

a
t i dt

)
ni .

Consider the DGLA

Hχ =
{
(l,m) ∈ L ×M[t, dt] : e0(m)= 0, e1(m)= χ(l)

}
.

The morphism

ı : Cχ → Hχ , ı(l,m)= (l, tχ(l)+ dt ·m)

is an injective quasiisomorphism of complexes. If we denote by

〈 〉1 ∈ Hom1(Cχ [1],Cχ [1]), and q1 ∈ Hom1(Hχ [1], Hχ [1])

the suspended differentials, namely

〈(l,m)〉1 = (−dl,−χ(l)+ dm), l ∈ L ,m ∈ M,

q1(l,m)= (−dl,−dm),

then ı induces naturally an injective quasiisomorphism

ı : Cχ [1] → Hχ [1], ı(l,m)= (l, tχ(l)+ dt ·m).

Consider now the linear maps

π ∈ Hom0(Hχ [1],Cχ [1]), K ∈ Hom−1(Hχ [1], Hχ [1])
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defined as

π(l,m(t, dt))=
(

l,
∫ 1

0
m(t, dt)

)
, K (l,m)=

(
0,

∫ t

0
m− t

∫ 1

0
m

)
.

It is easy to check that π is a morphism of complexes and

π ı = IdCχ [1], ı π = IdHχ [1]+K q1+ q1K .

We are therefore in the hypotheses of Theorem 2.1 and we can transfer the DGLA
structure on Hχ to an L∞ structure on Cχ . We denote by C̃(χ) the induced L∞
structure on Cχ . The universal formulas for the homotopy transfer described in
Proposition 2.2 imply that the above construction is functorial. Namely, for every
commutative diagram

L1
fL //

χ1
��

L2

χ2
��

M1
fM // M2

of morphisms of differential graded Lie algebras, the natural map

( fL , fM) : C̃(χ1)→ C̃(χ2)

is a linear L∞-morphism. Summing up:

Theorem 3.1. For any morphism χ : L → M of differential graded Lie algebras,
let C̃(χ)= (Cχ , Q̂) be the L∞-algebra structure defined on Cχ by the above con-
struction. Then

C̃ : DGLA2
→ L∞

is a functor making the diagram

DGLA

��

// L∞

��
DGLA2 //

C̃
::vvvvvvvvv
DG

commutative.

Remark 3.2. As an instance of the functoriality, note that the projection on the first
factor p1 : C̃(χ)→ L is a linear morphism of L∞-algebras. To see this, consider
the morphism in DGLA2

L
IdL //

χ

��

L

��
M // 0
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Remark 3.3. The above construction of the L∞ structure on Cχ commutes with
the tensor products of differential graded commutative algebras. This means that
if R is a DGCA, then the L∞-algebra structure on the suspended mapping cone of
χ ⊗ idR : L ⊗ R→ M ⊗ R is naturally isomorphic to the L∞-algebra Cχ ⊗ R.

Remark 3.4. The functorial properties of C̃ determine the L∞ structure C̃(χ) up
to (noncanonical) isomorphism. Namley, if F : DGLA2

→ L∞ is a functor such
that the diagram

DGLA

��

// L∞

��
DGLA2 //

F
::vvvvvvvvv
DG

commutes, then for every morphism χ of differential graded Lie algebras, the L∞-
algebra F(χ) is isomorphic to C̃(χ). To see this, let

P =
{
(l,m) ∈ L ×M[t, dt] : e1(m)= χ(l)

}
.

We have a commutative diagram of morphisms of differential graded Lie algebras

L

χ

��

f // P

η

��

Hχ

��

oo

M
IdM // M 0oo

and then two L∞-morphisms F(χ)→F(η)
h∞
←− Hχ whose linear parts are the two

injective quasiisomorphisms

Cχ → Cη
h
←− Hχ , h(l,m)= ((l,m), 0).

A morphism of complexes p : Cη→ Hχ such that ph = IdHχ can be defined as

p((l,m), n)= (l,m+ (t − 1)e0(m)+ dt · n).

The composition of p with the injective quasiisomorphism Cχ → Cη gives the
map ı . By general theory of L∞ algebras, there exists a (noncanonical) left in-
verse of h∞ with linear term equal to p. We therefore get an injective L∞-
quasiisomorphism

ı̂∞ : F(χ)→ Hχ
with linear term ı . The composition of

ı∞ : C̃(χ)→ Hχ

with a left inverse of ı̂∞ is an isomorphism of L∞-algebras between C̃(χ) and
F(χ).



L∞ structures on mapping cones 311

4. The case of semicosimplicial DGLAs

The L∞ structure on the mapping cone of a DGLA morphism described in Section
3 is actually a particular case of a more general construction of an L∞ structure
on the total complex of a semicosimplicial DGLA; see also [Cheng and Getzler
2006], where this construction is described for cosimplicial commutative algebras.

Let 1mon be the category of finite ordinal sets, with order-preserving injective
maps between them. A semicosimplicial differential graded Lie algebra is a co-
variant functor 1mon→ DGLA. Equivalently, a semicosimplicial DGLA g1 is a
diagram

g0
//// g1

////// g2
//////// · · ·

where each gi is a DGLA, and for each i > 0 there are n morphisms of DGLAs

∂k,i : gi−1→ gi , k = 0, . . . , i,

such that ∂k+1,i+i∂l,i = ∂l,i+1∂k,i , for any k ≤ l. Therefore, the maps

∂i = ∂i,i − ∂i−1,i + · · ·+ (−1)i∂0,i

endow the vector space
⊕

i gi with the structure of a differential complex. More-
over, being a DGLA, each gi is in particular a differential complex

gi =
⊕

j

g
j
i , di : g

j
i → g

j+1
i ,

and since the maps ∂k,i are morphisms of DGLAs, the space

g•
•
=

⊕
i, j

g
j
i

has a natural bicomplex structure. The associated total complex is denoted by
(Tot(g1), δ), which has no natural DGLA structure. Yet, it can be endowed with a
canonical L∞-algebra structure by homotopy transfer from the homotopy equiva-
lent Thom–Whitney DGLA TotTW (g

1).
For every n ≥ 0, denote by �n the differential graded commutative algebra of

polynomial differential forms on the standard n-simplex 1n:

�n =
K[t0, . . . , tn, dt0, . . . , dtn](∑

ti − 1,
∑

dti
) .

Denote by δk,n
: �n → �n−1, k = 0, . . . , n, the face maps then we have natural

morphisms of DGLAs

δk,n
:�n ⊗ gn→�n−1⊗ gn, ∂k,n :�n−1⊗ gn−1→�n−1⊗ gn
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for every 0≤ k ≤ n. The Thom–Whitney DGLA is defined as

TotTW (g
1)=

{
(xn)n∈N ∈

⊕
n

�n ⊗ gn | δ
k,nxn = ∂k,nxn−1, for all 0≤ k ≤ n

}
.

We denote by dTW the differential of the DGLA TotTW (g
1). It is a remarkable

fact that the integration maps∫
1n
⊗ Id :�n ⊗ gn→ K[n]⊗ gn = gn[n]

give a quasiisomorphism of differential complexes

I : (TotTW (g
1), dTW )→ (Tot(g1), δ).

Moreover, Dupont has described in [Dupont 1976; Dupont 1978] an explicit mor-
phism of differential complexes

E : Tot(g1)→ TotTW (g
1)

and an explicit homotopy

h : TotTW (g
1)→ TotTW (g

1)[−1]

such that
I E = IdTot(g1), E I − IdTotTW (g1) = [h, dTW ].

We also refer to the papers [Cheng and Getzler 2006; Getzler 2004; Navarro Aznar
1987] for the explicit description of E, h and for the proof of the above identities.
Here we point out that E and h are defined in terms of integration over standard
simplexes and multiplication with canonical differential forms and in particular,
the construction of TotTW (g

1), Tot(g1), I , E and h is functorial in the category
DGLA1mon of semicosimplicial DGLAs.

Therefore we are in the position to use the homotopy transfer of L∞ structures
in Theorem 2.1 in order to get a commutative diagram of functors,

DGLA

��

// L∞

��
DGLA1mon

Tot //

T̃ot
66lllllllllllllll
DG.

The L∞ structure C̃(χ) on the mapping cone of a DGLA morphism χ : L→M
is actually a particular case of this more general construction of the L∞-algebra
T̃ot(g1). More precisely, the category DGLA2 of morphisms of DGLAs can be
seen as a full subcategory of the category of semicosimplicial DGLAs via the
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functor

{L
χ
−→ M} 

{
L

0 //
χ

// M
////// 0

//////// · · ·

}
,

and we have a commutative diagram

DGLA2

��

C̃ // L∞

��
DGLA1mon

Tot //

T̃ot
66mmmmmmmmmmmmmmm
DG.

To check the commutativity of this diagram, one only needs to identify the
suspended mapping cone Cχ with the total complex Tot(χ1) of the cosimplicial
DGLA

L
0 //
χ

// M
////// 0 ,

the Thom–Whitney DGLA TotTW (χ
1) with the DGLA we have called Hχ in the

main body of the paper, and the Dupont maps I, E, h with the maps we have
denoted ι, π, K .

For instance, to see that Tot(χ1)'Cχ one only needs to notice that the double
complex associated to the cosimplicial DGLA χ1 is

L i+1
χ //

OO

M i+1 //

OO

0

OO

L i
χ //

dL

OO

M i //

dM

OO

0

OO

L i−1
χ //

dL

OO

M i−1 //

dM

OO

0

OO

OO OO OO

an so the total complex Tot(χ1) is the graded vector space

Tot(χ1)i = L i
⊕

M i−1

endowed with the total differential

δ : Tot(χ1)i → Tot(χ1)i+1, (l,m) 7→ (dLl, χ(l)− dM m).
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Therefore, the differential complex (Tot(χ1), δ) is nothing but the suspended map-
ping cone Cχ endowed with its usual differential.

Setting t = t0 = 1− t1 we get an identification �1 ' K[t, dt] and therefore the
Thom–Whitney complex of the semicosimplicial DGLA

L
0 //
χ

// M
////// 0

is isomorphic to the sub-DGLA of L
⊕
(K[t, dt]⊗M) consisting of the differential

forms (l,m(t, dt)) such that m(0)= 0 and m(1)= χ(l), that is, TotTW (χ
1)= Hχ .

Moreover, the Dupont maps [Dupont 1976; Navarro Aznar 1987]

E : Tot(χ1)→ TotTW (χ
1),

(l,m) 7→ (l, t0∂1,1(l)− t1∂0,1(l)− (t0dt1− t1dt0)m)

and
I : TotTW (χ

1)→ Tot(χ1),

(l,m(t0, t1, dt0, dt1)) 7→
(∫
10 l,

∫
11 m(t0, t1, dt0, dt1)

)
are identified with the maps

ı : Cχ → Hχ ,

(l,m) 7→ (l, tχ(l)+ dt ·m)
and

π : Hχ → Cχ ,

(l,m(t, dt)) 7→
(
l,

∫ 1
0 m(t, dt)

)
.

Finally, we identify the Dupont map h : TotTW (χ
1)→ TotTW (χ

1)[−1] with the
map K : Hχ → Hχ [−1]. By definition,

h : TotTW (χ
1)→ TotTW (χ

1)[−1]

(l,m(t0, t1, dt0, dt1)) 7→ (0, t0 · h0(m)+ t1 · h1(m)),

where h0 and h1 are the Poincaré homotopies corresponding to the linear contrac-
tions of the affine hyperplane {t0 + t1 = 1} ⊆ A2 on the points (1, 0) and (0, 1)
respectively:

hi (m)=
∫

s∈[0,1]
φ∗i (m) with φ0(s; t0, t1)= ((1− s)t0+ s, (1− s)t1),

and φ1(s; t0, t1)= ((1− s)t0, (1− s)t1+ s).

Under the identification �1 ' K[t, dt] above, these homotopies read

h0(m(t, dt))=
∫ 1

t
m, h1(m(t, dt))=

∫ 0

t
m,

so

t0h0(m)+ t1h1(m)= t
∫ 1

t
m+ (1− t)

∫ 0

t
m = t

∫ 1

0
m−

∫ t

0
m.



L∞ structures on mapping cones 315

5. A closer look at the L∞ structure on Cχ

We now look for the explicit expressions for the degree 1 linear maps

〈 〉n :

n⊙
Cχ [1] → Cχ [1], n ≥ 2,

defining the L∞ structure C̃(χ), using the Kontsevich–Soibelman formulas de-
scribed in Proposition 2.2.

The L∞ structure on the differential graded Lie algebra Hχ is given by the
brackets

qk :

k⊙
(Hχ [1])→ Hχ [1],

where qk = 0 for every k ≥ 3,

q1(l,m(t, dt))= (−dl,−dm(t, dt))

and

q2
(
(l1,m1(t, dt))� (l2,m2(t, dt))

)
= (−1)degHχ (l1,m1(t,dt))(

[l1, l2], [m1(t, dt),m2(t, dt)]
)
.

The properties

q2(Im K ⊗ Im K )⊆ kerπ ∩ ker K , qk = 0 for all k ≥ 3,

imply that, fixing the number n ≥ 2 of tails, there exists at most one isomorphism
class of rooted trees giving a nontrivial contribution to 〈 〉n .

• n = 2:
◦

•
GGG

GG
##

◦

•wwwww
;;• ◦//  

ı
JJJ

ıttt

ı
q2

JJJ $$

ı

q2ttt
:: q2 ππ //

This graph gives

〈γ1� γ2〉2 = πq2(ı(γ1)� ı(γ2)).

• n ≥ 3:

◦

•
GGG

GG
##

◦

wwwwww

;;

◦

•wwwww
;;

◦

##

◦

•
GGG

GG
##

◦

•wwwww
;;

•
GGG

GGG

##

◦

•wwwww
;;

• ◦//  

q2

q2
$$

ıttt
ı

q2tttt
::

ıttt
ı

q2tttt
::

ıttt
ı

q2tttt
::

ı
JJJ

ı

q2
JJJ

J
$$

ıttt
ı

q2tttt
::

q2

K
JJJ

K

q2
JJJ $$

q2

K
JJJ

K

q2
JJJ $$

q2 ππ //
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This graph gives, for every n ≥ 3, the formula

〈γ1� · · ·� γn〉n =

=
1
2

∑
σ∈Sn

ε(σ )πq2
(
ı(γσ(1))�K q2

(
ı(γσ(2))�· · ·�K q2(ı(γσ(n−1))�ı(γσ(n))) · · ·

))
=

∑
σ∈Sn

σ(n−1)<σ(n)

ε(σ )πq2
(
ı(γσ(1))�K q2

(
ı(γσ(2))�· · ·�K q2(ı(γσ(n−1))� ı(γσ(n))) · · ·

))
.

A more refined description involving the original brackets in the differential
graded Lie algebras L and M is obtained by decomposing the symmetric powers
of Cχ [1] into types

n⊙
(Cχ [1])=

n⊙
Cone(χ)=

⊕
λ+µ=n

( µ⊙
M

)
⊗

( λ⊙
L[1]

)
.

The operation 〈 〉2 decomposes into

l1� l2 7→ (−1)degL (l1)[l1, l2] ∈ L , m1�m2 7→ 0,

m⊗ l 7→
(−1)degM (m)+1

2
[m, χ(l)] ∈ M.

For every n ≥ 2, it is easy to see that 〈γ1 � · · · � γn+1〉n+1 can be nonzero
only if the multivector γ1 � · · · � γn+1 belongs to

⊙n M ⊗ L[1]. For n ≥ 2,
m1, . . . ,mn ∈ M , and l ∈ L[1], the formula for 〈 〉n+1 described above becomes

〈m1� · · ·�mn ⊗ l〉n+1 =∑
σ∈Sn

ε(σ )πq2
(
(dt)mσ(1)� K q2

(
(dt)mσ(2)� · · ·� K q2((dt)mσ(n)⊗ tχ(l)) · · ·

))
.

Define recursively a sequence of polynomials φi (t) ∈ Q[t] ⊆ K[t] and rational
numbers In by the rule

φ1(t)= t, In =

∫ 1

0
φn(t)dt, φn+1(t)=

∫ t

0
φn(s)ds− t In.

By the definition of the homotopy operator K we have, for every m ∈ M ,

K
(
(φn(t)dt)m

)
= φn+1(t)m.

Therefore, for every m1,m2 ∈ M we have

K q2
(
(dt ·m1)�φn(t)m2

)
=−(−1)degM (m1)φn+1(t)[m1,m2].
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Therefore, we find

〈m1� · · ·�mn ⊗ l 〉n+1

=

∑
σ∈Sn

ε(σ )πq2
(
dt mσ(1)� K q2

(
dt mσ(2)� · · ·� K q2(dt mσ(n)⊗ tχ(l)) · · ·

))
= (−1)1+degM (mσ(n))

∑
σ∈Sn

ε(σ )πq2
(
dt mσ(1)

�K q2
(
dt mσ(2)�· · ·�φ2(t)[mσ(n), χ(l)] · · ·

))
= (−1)n−1+

∑n
i=2 degM (mσ(i))

∑
σ∈Sn

ε(σ )πq2
(
dt mσ(1)�φn(t)[mσ(2), . . . ,

[mσ(n), χ(l)] · · · ]
)

= (−1)n+
∑n

i=1 degM (mi ) In

∑
σ∈Sn

ε(σ )[mσ(1), [mσ(2), . . . , [mσ(n), χ(l)] · · · ]],

which lies in M .
We also have an explicit expression for the coefficients In appearing in the for-

mula for 〈 〉n+1; in the next lemma we show that they are, up to a sign, the Bernoulli
numbers.

Lemma 5.1. For every n ≥ 1 we have In = − Bn/n!, where Bn are the Bernoulli
numbers, that is, the rational numbers defined by the series expansion identity

∞∑
n=0

Bn
xn

n!
=

x
ex − 1

= 1−
x
2
+

x2

12
−

x4

720
+

x6

30240
−

x8

1209600
+ · · ·

Proof. Keeping in mind the definition of Bn , we have to prove that

1−
∑
n=1

Inxn
=

x
ex − 1

.

Consider the polynomials ψ0(t) = 1 and ψn(t) = φn(t)− In for n ≥ 1. Then, for
any n ≥ 1,

d
dt
ψn(t)= ψn−1(t),

∫ 1

0
ψn(t)dt = 0.

Setting

F(t, x)=
∞∑

n=0

ψn(t)xn,

we have

d
dt

F(t, x)=
∞∑

n=1

ψn−1(t)xn
= x F(t, x),

∫ 1

0
F(t, x)dt = 1.
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Therefore, F(t, x)= F(0, x)et x ,

1=
∫ 1

0
F(t, x)dt = F(0, x)

∫ 1

0
et x dt = F(0, x)

ex
− 1
x

,

and then
F(0, x)=

x
ex − 1

.

Since ψn(0)= − In for any n ≥ 1 we get

x
ex − 1

= F(0, x)= 1−
∞∑

n=1

Inxn.

In fact an alternative proof of the equality In = − Bn/n! can be done by observing
that the polynomials n!ψn(t) satisfy the recursive relations of the Bernoulli poly-
nomials; see for example [Remmert 1991]. �

Summing up the results of this section, we have the following explicit descrip-
tion of the L∞ algebra C̃(χ).

Theorem 5.2. The L∞ algebra C̃(χ) is defined by the multilinear maps

〈 〉n :

n⊙
Cχ [1] → Cχ [1]

given by

〈(l,m)〉1 = (−dl,−χ(l)+ dm),

〈m1�m2〉2 = 0,

〈m1� · · ·�mn ⊗ l1� · · ·� lk〉n+k = 0

〈l1� l2〉2 = (−1)degL (l1)[l1, l2],

〈m⊗ l〉2 =
1
2(−1)degM (m)+1

[m, χ(l)],

if n+ k ≥ 3 and k 6= 1,

and

〈m1� · · ·�mn ⊗ l 〉n+1

= − (−1)
∑n

i=1 degM (mi )
Bn

n!

∑
σ∈Sn

ε(σ )
[
mσ(1), [mσ(2), . . . , [mσ(n), χ(l)] · · · ]

]
if n ≥ 2. Here the Bn are the Bernoulli numbers, that is, the rational numbers
defined by the series expansion identity

∞∑
n=0

Bn
xn

n!
=

x
ex − 1

= 1−
x
2
+

x2

12
−

x4

720
+

x6

30240
−

x8

1209600
+ · · ·

Remark 5.3. Via the decalage isomorphism
⊙n

(Cχ [1])
∼
−→ (

∧n Cχ )[n], the linear
maps 〈 〉n defining the L∞-algebra C̃(χ) correspond to multilinear operations [ ]n :



L∞ structures on mapping cones 319∧n Cχ → Cχ [2− n] on Cχ . In particular, the linear map 〈 〉1 corresponds to the
differential δ on Cχ ,

δ : (l,m) 7→ (dl, χ(l)− dm),

whereas the map 〈 〉2 corresponds to the degree-zero bracket

[ ]2 : Cχ ∧Cχ → Cχ

given by

[l1, l2]2 = [l1, l2], [m, l]2 =
1
2 [m, χ(l)], [m1,m2]2 = 0.

This is precisely the naive bracket described in the Introduction.

Remark 5.4. The occurrence of Bernoulli numbers is not surprising. It had al-
ready been noticed by K. T. Chen [1957] how Bernoulli numbers are related to the
coefficients of the Baker–Campbell–Hausdorff formula.

More recently, the relevance of Bernoulli numbers in deformation theory has
been also remarked by Ziv Ran [2004]. In particular, Ran’s “JacoBer” complex
provides an independent description of the L∞ structure C̃(χ); see also [Merkulov
2005].

Bernoulli numbers also appear in some expressions of the gauge equivalence in
a differential graded Lie algebra [Sullivan 2007; Getzler 2004]. In fact the relation
x = ea

∗ y can be written as

x − y =
eada − 1

ada
([a, y] − da).

Applying to both sides the inverse of the operator (eada − 1)/ ada we get

da = [a, y] −
∑
n≥0

Bn

n!
adn

a(x − y).

The multilinear brackets 〈 〉n on Cone(χ)=Cχ [1] can be related to the Koszul (or
“higher derived”) brackets 8n of a differential graded Lie algebra as follows. Let
(M, ∂, [ , ]) be a differential graded Lie algebra. The Koszul brackets

8n :

n⊙
M→ M, n ≥ 1

are the degree-1 linear maps defined as 81 = 0 and

8n(m1 · · ·mn)=
1
n!

∑
σ∈6n

ε(σ )
[
· [[∂mσ(1),mσ(2)],mσ(3)], . . . ,mσ(n)

]
for n ≥ 2. Let L be the differential graded Lie subalgebra of M , given by ∂M and
let χ : L→ M be the inclusion. We can identify M with the image of the injective
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linear map M ↪→Cone(χ) given by m 7→ (∂m,m). Then we have 〈(∂m,m)〉1= 0,

〈(∂m1,m1)� (∂m2,m2)〉2 = (∂82(m1,m2),82(m1,m2))

and, for n ≥ 2,

〈(∂m1,m1)� · · ·� (∂mn+1,mn+1)〉n+1

=
(
0, Bn(−1)n(n+ 1)8n+1(m1� · · ·�mn+1)

)
.

Since the multilinear operations 〈 〉n define an L∞-algebra structure on Cχ =
Cone(χ)[−1], they satisfy a sequence of quadratic relations. Due to the already
mentioned correspondence with the Koszul brackets, these relations are translated
into a sequence of differential or quadratic relations between the odd Koszul brack-
ets, defined as {m}1 = 0 and

{m1, . . . ,mn}n =
1
n!

∑
σ∈6n

ε(σ )(−1)σ [·[[∂mσ(1),mσ(2)],mσ(3)], . . . ,mσ(n)]

for n≥2. For instance, if m1,m2,m3 are homogeneous elements of degree i1, i2, i3

respectively, then

{{m1,m2}2,m3} + (−1)i1i2+i1i3{{m2,m3}2,m1}2

+(−1)i2i3+i1i3{{m3,m1}2,m2}2 =
3
2 ∂{m1,m2,m3}3.

The occurrence of Bernoulli numbers in the L∞-type structure defined by the
higher Koszul brackets has been recently remarked by K. Bering [2006].

6. The Maurer–Cartan functor

Having introduced an L∞ structure on Cχ in Section 5, we have a correspond-
ing Maurer–Cartan functor [Fukaya 2003; Kontsevich 2003] MCCχ : Art→ Set,
defined as

MCCχ (A)=
{
γ ∈ Cχ [1]0⊗mA :

∑
n≥1

〈γ�n
〉n

n!
= 0

}
, A ∈ Art.

With γ = (l,m), l ∈ L1
⊗mA and m ∈ M0

⊗mA, the Maurer–Cartan equation
becomes

0=
∞∑

n=1

〈(l,m)�n
〉n

n!
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= 〈(l,m)〉1+ 1
2〈l
�2
〉2+〈m⊗ l〉2+ 1

2〈m
�2
〉2+

∑
n≥2

n+ 1
(n+ 1)!

〈m�n
⊗ l〉n+1

= − dl − 1
2 [l, l],−χ(l)+ dm− 1

2 [m, χ(l)] +
∑
n≥2

1
n!
〈m�n

⊗ l〉n+1,

which lies in (L2
⊕M1)⊗mA.

According to Theorem 5.2, since degM(m)= degCχ [1](m)= 0, we have

〈m�n
⊗ l〉n+1 = −

Bn

n!

∑
σ∈Sn

[m, [m, . . . , [m, χ(l)] · · · ]] = − Bn adn
m(χ(l)),

where for a ∈ M0
⊗ mA we denote by ada : M ⊗ mA → M ⊗ mA the operator

ada(y)= [a, y].
The Maurer–Cartan equation on Cχ is therefore equivalent to

dl + 1
2 [l, l] = 0,

χ(l)− dm+ 1
2 [m, χ(l)] +

∞∑
n=2

Bn

n!
adn

m(χ(l))= 0.

Since B0 = 1 and B1 = −
1
2 , we can write the second equation as

0= χ(l)− dm+ 1
2 [m, χ(l)] +

∞∑
n=2

Bn

n!
adn

m(χ(l))

= [m, χ(l)] − dm+
∞∑

n=0

Bn

n!
adn

m(χ(l))= [m, χ(l)] − dm+
adm

eadm − 1
(χ(l)).

Applying the invertible operator (eadm − 1)/ adm we get

0= χ(l)+
eadm − 1

adm
([m, χ(l)] − dm).

On the right-hand side of the last formula we recognize the explicit description
of the gauge action

exp(M0
⊗mA)×M1

⊗mA
∗
−→ M1

⊗mA,

ea
∗ y = y+

+∞∑
n=0

adn
a

(n+ 1)!
([a, y] − da)= y+

eada − 1
ada

([a, y] − da).

Therefore, the Maurer–Cartan equation for the L∞-algebra structure on Cχ is
equivalent to {

dl + 1
2 [l, l] = 0,

em
∗χ(l)= 0.
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7. Homotopy equivalence and the deformation functor

Recall that the deformation functor associated to an L∞-algebra g is

Defg =MCg /∼ ,

where ∼ denotes homotopy equivalence of solutions of the Maurer–Cartan equa-
tion: two elements γ0 and γ1 of MCg(A) are called homotopy equivalent if there
exists an element γ (t, dt) ∈MCg[t,dt](A) with γ (0)= γ0 and γ (1)= γ1.

Remark 7.1. The homotopy equivalence is an equivalence relation and a proof of
this fact can be found in [Manetti 2004b, Ch. 9]. The same conclusion also follows
immediately from the more general result [Getzler 2004, Prop. 4.7] that the sim-
plicial set {MCg⊗�n (A)}n∈N is a Kan complex, where �n is the DG commutative
algebra of polynomial differential forms on the standard n-simplex.

We have already described the functor MCCχ in terms of the Maurer–Cartan
equation in L and the gauge action in M . Now we want to prove a similar result
for the homotopy equivalence on MCCχ . We need some preliminary results.

Proposition 7.2. Let (L , d, [ , ]) be a differential graded Lie algebra such that

(1) L = M
⊕

C
⊕

D as graded vector spaces,

(2) M is a differential graded subalgebra of L , and

(3) d : C→ D[1] is an isomorphism of graded vector spaces.

Then, for every A ∈ Art there exists a bijection

α :MCM(A)× (C0
⊗mA)

∼
−→MCL(A), (x, c) 7→ ec

∗ x .

Proof. This is essentially proved in [Schlessinger and Stasheff 1979, Section 5] by
the induction of the length of A and using the Baker–Campbell–Hausdorff formula.
Here we sketch a different proof based on formal theory of deformation functors
[Schlessinger 1968; Rim 1972; Fantechi and Manetti 1998; Manetti 1999].

The map α is a natural transformation of homogeneous functors, so it is suf-
ficient to show that α is bijective on tangent spaces and injective on obstruction
spaces. Recall that the tangent space of MCL is Z1(L), while its obstruction space
is H 2(L). The functor A 7→C0

⊗mA is smooth with tangent space C0 and therefore
tangent and obstruction spaces of the functor

A 7→MCM(A)× (C0
⊗mA)

are respectively Z1(M)
⊕

C0 and H 2(M). The tangent map is

Z1(M)
⊕

C0
3 (x, c) 7→

ec
∗ x = x − dc ∈ Z1(M)

⊕
d(C0)= Z1(M)

⊕
D1
= Z1(L)
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and it is an isomorphism. The inclusion M ↪→ L is a quasiisomorphism, therefore
the obstruction to lifting x in M is equal to the obstruction to lifting x = e0

∗x in L .
We conclude the proof by observing that, according to [Fantechi and Manetti 1998,
Prop. 7.5], [Manetti 1999, Lemma 2.20], the obstruction maps of Maurer–Cartan
functor are invariant under the gauge action. �

Corollary 7.3. Let M be a differential graded Lie algebra, L = M[t, dt] and
C ⊆ M[t] the subspace consisting of polynomials g(t) with g(0) = 0. Then for
every A ∈ Art the map (x, g(t)) 7→ eg(t)

∗ x induces an isomorphism

MCM(A)× (C0
⊗mA)'MCL(A).

Proof. The data M,C and D = d(C) satisfy the condition of Proposition 7.2. �

Corollary 7.4. Let M be a differential graded Lie algebra. Two elements x0, x1 ∈

MCM(A) are gauge equivalent if and only if they are homotopy equivalent.

Proof. If x0 and x1 are gauge equivalent, then there exists g ∈ M0
⊗mA such that

eg
∗x0= x1. Then, by Corollary 7.3. x(t)= et g

∗x0 is an element of MCM[t,dt](A)
with x(0)= x0 and x(1)= x1, that is, x0 and x1 are homotopy equivalent.

Vice versa, if x0 and x1 are homotopy equivalent, there exists

x(t) ∈MCM[t,dt](A)

such that x(0)= x0 and x(1)= x1. By Corollary 7.3., there exists g(t)∈M0
[t]⊗mA

with g(0) = 0 such that x(t) = eg(t)
∗ x0. Then x1 = eg(1)

∗ x0, that is, x0 and x1

are gauge equivalent. �

Theorem 7.5. Let χ : L → M be a morphism of differential graded Lie algebras
and let (l0,m0) and (l1,m1) be elements of MCCχ (A). Then (l0,m0) is homo-
topically equivalent to (l1,m1) if and only if there exists (a, b) ∈ C0

χ ⊗mA such
that

l1 = ea
∗ l0, em1 = edbem0e−χ(a).

Remark 7.6. The condition em1 = edbem0e−χ(a) can be also written as m1•χ(a)=
db •m0, where • is the Baker–Campbell–Hausdorff product in the nilpotent Lie
algebra M0

⊗mA.
As a consequence, we get that in this case the homotopy equivalence is induced

by a group action, which is false for general L∞-algebras.

Proof. We shall say that two elements (l0,m0), (l1,m1) are gauge equivalent if and
only if there exists (a, b) ∈ C0

χ ⊗mA such that

l1 = ea
∗ l0, em1 = edbem0e−χ(a).

We first show that homotopy implies gauge. Let (l0,m0) and (l1,m1) be homo-
topy equivalent elements of MCCχ (A). Then there exists an element (l̃, m̃) of
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MCCχ [s,ds](A) with (l̃(0), m̃(0))= (l0,m0) and (l̃(1), m̃(1))= (l1,m1). According
to Remark 3.3, the Maurer–Cartan equation for (l̃, m̃) is{

dl̃ + 1
2 [l̃, l̃] = 0,

em̃
∗χ(l̃)= 0.

The first of the two equations above tells us that l̃ is a solution of the Maurer–Cartan
equation for L[s, ds]. So, by Corollary 7.3, there exists a degree zero element λ(s)
in L[s] ⊗ mA with λ(0) = 0 such that l̃ = eλ ∗ l0. Evaluating at s = 1 we find
l1= eλ1 ∗ l0. As a consequence of l̃ = eλ ∗ l0, we also have χ(l̃)= eχ(λ) ∗χ(l0). Set
µ̃= m̃•χ(λ)•(−m0), so that m̃= µ̃•m0•(−χ(λ)) and the second Maurer–Cartan
equation is reduced to eµ̃ ∗ (em0 ∗χ(l0))= 0, that is, to eµ̃ ∗ 0= 0, where we have
used the fact that (l0,m0) is a solution of the Maurer–Cartan equation in Cχ . This
last equation is equivalent to the equation dµ̃ = 0 in Cχ [s, ds] ⊗mA. If we write
µ̃(s, ds)= µ0(s)+ ds µ−1(s), then the equation dµ̃= 0 becomes{

µ̇0
− dMµ

−1
= 0,

dMµ
0
= 0,

where dM is the differential in the DGLA M . The solution is, for any fixed µ−1,

µ0(s)=
∫ s

0
dσ dMµ

−1(σ )= − dM

∫ s

0
dσ µ−1(σ ).

Set ν = −
∫ 1

0 ds µ−1(s). Then m1 = m̃(1)= (dMν)•m0 • (−χ(λ1)). In summary,
if (l0,m0) and (m1, l1) are homotopy equivalent, then there exists

(dν, λ1) ∈ (d M−1
⊗mA)× (L0

⊗mA)

such that {
l1 = eλ1 ∗ l0,

m1 = dν •m0 • (−χ(λ1)),

that is, (l0,m0) and (m1, l1) are gauge equivalent.
We now show that gauge implies homotopy. Assume (l0,m0) and (m1, l1) are

gauge equivalent. Then there exists

(dν, λ1) ∈ (d M−1
⊗m)× (L0

⊗m)

such that {
l1 = eλ1 ∗ l0,

m1 = dν •m0 • (−χ(λ1)).

Set l̃(s, ds) = esλ1 ∗ l0. By Corollary 7.3, l̃ satisfies the equation dl̃ + 1
2 [l̃, l̃] = 0.

Set m̃ = (d(sν)) •m0 • (−χ(sλ1)). Reasoning as above, we find

em̃
∗χ(l̃)= ed(sν)

∗ 0= 0.
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Therefore, (l̃, m̃) is a solution of the Maurer–Cartan equation in Cχ [s, ds]. More-
over l̃(0)= l0, l̃(1)= l1, m̃(0)=m0 and m̃(1)= dν •m0 • (−χ(λ1))=m1, that is,
(l0,m0) and (m1, l1) are homotopy equivalent. �

8. Examples and applications

Let χ : L → M be a morphism of differential graded Lie algebras over a field K

of characteristic 0. In the paper [Manetti 2005] one of the authors has introduced,
having in mind the example of embedded deformations, the notion of Maurer–
Cartan equation and gauge action for the triple (L ,M, χ); these notions reduce to
the standard Maurer–Cartan equation and gauge action of L when M = 0. More
precisely, there are two functors of Artin rings MCχ ,Defχ :Art→ Set, defined by

MCχ (A)={
(x, ea) ∈ (L1

⊗mA)× exp(M0
⊗mA) : dx + 1

2 [x, x] = 0, ea
∗χ(x)= 0

}
,

Defχ (A)=
MCχ (A)

gauge equivalence
,

where two solutions of the Maurer–Cartan equation are gauge equivalent if they
belong to the same orbit of the gauge action

(exp(L0
⊗mA)× exp(d M−1

⊗mA))×MCχ (A)
∗
−→MCχ (A)

given by the formula

(el, edm) ∗ (x, ea)= (el
∗ x, edmeae−χ(l))= (el

∗ x, edm•a•(−χ(l))).

The computations of Sections 6 and 7 show that MCχ and Defχ are canonically
isomorphic to the functors MCC̃(χ) and DefC̃(χ) associated with the L∞ structure
on Cχ .

Example 8.1. Let X be a compact complex manifold and let Z ⊂ X be a smooth
subvariety. Denote by 2X the holomorphic tangent sheaf of X and by NZ |X the
normal sheaf of Z in X .

Consider the short exact sequence of complexes

0→ kerπ
χ
−→ A0,∗

X (2X )
π
−→ A0,∗

Z (NZ |X )→ 0.

It is proved in [Manetti 2005] that there exists a natural isomorphism between Defχ
and the functor of embedded deformations of Z in X . Therefore, the L∞ algebra
C̃(χ) governs the embedded deformations in this case.
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The DGLA A0,∗
Z (2Z ) governs the deformations of Z ; the natural transformation

DefC̃(χ) = Defχ → DefA0,∗
Z (2Z )

,

{Embedded deformations of Z} → {Deformations of Z},

is induced by the morphism in DGLA2 given by the diagram

kerπ

χ

��

// A0,∗
Z (2Z )

��
A0,∗

X (2X )
// 0.

The next result was proved in [Manetti 2005] using the theory of extended de-
formation functors. Here we can prove it in a more standard way.

Theorem 8.2. Consider a commutative diagram

L1
fL //

χ1
��

L2

χ2
��

M1
fM // M2

of morphisms of differential graded Lie algebras and assume that

( fL , fM) : Cχ1
→ Cχ2

is a quasiisomorphism of complexes (for example, if both fL and fM are quasiiso-
morphisms). Then the natural transformation Defχ1

→ Defχ2
is an isomorphism.

Proof. The map ( fL , fM) : C̃(χ1)→ C̃(χ2) is a linear quasiisomorphism of L∞-
algebras and then induces an isomorphism of the associated deformation functors
[Kontsevich 2003]. �

Example 8.3. It is shown in [Fiorenza and Manetti 2006] how the L∞ structures
C̃(χ) are related to the period maps of a compact Kähler manifold X . Denote by
AX = F0

⊇ F1
⊇ · · · , the Hodge filtration of differential forms on X , that is, for

every p ≥ 0,
F p
=

⊕
i≥p

⊕
j

Ai, j
X .

For a fixed nonnegative integer p one considers the inclusion of differential graded
Lie algebras{

f ∈ Hom∗(AX , AX ) : f (F p)⊆ F p} χ
−→ Hom∗(AX , AX ).

The contraction of differential forms with vector fields

i : A0,∗
X (2X )→ Hom∗(AX , AX )[−1],
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and the holomorphic Lie derivative

l : A0,∗
X (2X )→

{
f ∈ Hom∗(AX , AX ) : f (F p)⊆ F p}

define a linear map pp
= (l, i) : A0,∗

X (2X )→ Cχ , which is actually a linear L∞-
morphism

pp
: A0,∗

X (2X )→ C̃(χ).

The induced morphism of deformation functors

Pp
: DefX → Defχ ' GrassH∗(F p),H∗(AX )

is the infinitesimal p-th period map of the Kähler manifold X . As immediate
corollaries of this L∞-algebra interpretation of period maps, one recovers Griffiths’
description of the differential of the period map, namely

dPp
= i : H 1(X, TX )→

⊕
i

Hom
(

F p H i (X,C),
H i (X,C)

F p H i (X,C)

)
,

and a proof of the so-called Kodaira’s Principle [Clemens 2005; Manetti 2004a;
Ran 1999] that obstructions to deformations of X are contained in the kernel of

i : H 2(X, TX )→
⊕

i

Hom
(

F p H i (X,C),
H i+1(X,C)

F p H i+1(X,C)

)
,

for every p ≥ 0.

Example 8.4. Let π : A→ B be a surjective morphism of associative K-algebras
and denote by I its kernel. The algebra B is an A-module via π ; this makes B a
trivial I -module. Let K be the suspended Hochschild complex

K = Hoch•(I, B)[−1].

The differential d of K is identically zero if and only if I ·I = 0.
The natural map

α : Hoch•(A, A)→ K [1] = Hoch•(I, B)

is a surjective morphism of complexes, and its kernel

kerα =
{

f : f (I⊗)⊆ I
}

is a Lie subalgebra of Hoch•(A, A) endowed with the Hochschild bracket. Denote
by χ : kerα ↪→ Hoch•(A, A) the inclusion. Since χ is injective, the projection on
the second factor induces a quasiisomorphism of differential complexes

pr2 : Cχ → Coker(χ)[−1] ' K ,
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where the isomorphism on the right is induced by the map α. Therefore we have a
canonical L∞ structure (defined up to homotopy) on K . This gives a Lie structure
on the cohomology of K , which is not trivial in general. Consider for instance the
exact sequence

0→ Kε→ K[ε]/(ε2)
π
−→ K→ 0

and take f ∈ K 1
= H 1(K ) with f (ε) = 1. Choose as a lifting the linear map

g : K[ε]/(ε2)→ K[ε]/(ε2) such that g(1)= 0 and g(ε)= 1. Then

dg(ε⊗ ε)= 2ε

and so dg ∈ kerα. Therefore, (dg, g) is a closed element of C1
χ representing the

cohomology class f ∈ H 1(K ) and so

[ f, f ] = α(pr2([(dg, g), (dg, g)]2))= α([g, dg]).

One computes

[ f, f ](ε⊗ ε)= π([g, dg](ε⊗ ε))

= π
(
g(dg(ε⊗ ε))− dg(g(ε)⊗ ε)+ dg(ε⊗ g(ε))

)
= π(g(2ε)− dg(1⊗ ε)+ dg(ε⊗ 1))= 2.

Hence [ f, f ] 6= 0.
On the other hand, if A = B

⊕
I as an associative K-algebra, then the L∞

structure on K is trivial. Indeed, as K [1] is considered to be a DGLA with trivial
bracket, the obvious map

K [1] = Hoch•(I, B)→ Hoch•(A, A)

gives a commutative diagram of morphisms of DGLAs

0 → kerαy yχ
K [1] → Hoch•(A, A)

such that the composition K→Cχ→ K is the identity. Therefore the L∞-algebra
structure induced on K is isomorphic to C̃(0 ↪→ K [1]), which is a trivial L∞-
algebra.
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Sur la définissabilité existentielle de la
non-nullité dans les anneaux

Laurent Moret-Bailly

On étudie les anneaux (notamment noethériens) dans lesquels l’ensemble des
éléments non nuls est existentiel positif (réunion finie de projections d’ensembles
« algébriques »). Dans le cas noethérien intègre, on montre notamment que cette
condition est vérifiée pour tout anneau qui n’est pas local hensélien, et qu’elle
ne l’est pas pour un anneau local hensélien excellent qui n’est pas un corps.

Ces résultats apportent au passage une réponse à une question de Popescu sur
l’approximation forte pour les couples henséliens.

We investigate rings in which the set of nonzero elements is positive-existential
(i.e., a finite union of projections of “algebraic” sets). In the case of Noetherian
domains, we prove in particular that this condition is satisfied whenever the ring
in question is not local Henselian, while it is not satisfied for any excellent local
Henselian domain which is not a field.

As a byproduct, we obtain an answer to a question of Popescu on strong
approximation for Henselian pairs.

1. Introduction

1.1. Définissabilité existentielle. Si A est un anneau (commutatif unitaire) et r
un entier naturel, un sous-ensemble Z de Ar est dit [A-]existentiel (respectivement
[A-]existentiel positif ) s’il existe une formule φ(t1, . . . , tr ) du langage des anneaux
avec symboles de constantes pour les éléments de A, à r variables libres, sans
quantificateur universel (∀) (resp. et sans négation) telle que pour tout t ∈ Ar , φ(t)
soit vraie si et seulement si t ∈ Z .

MSC2000: primary 13E05; secondary 03C99, 11U09, 13B40, 13J15.
Mots-clefs: Noetherian rings, positive-existential definability, Henselian rings, Artin

approximation.
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00120).
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Plus explicitement, un ensemble existentiel (resp. existentiel positif) est réunion
d’une famille finie (éventuellement vide, voir remarque 1.1.1 ci-dessous) d’en-
sembles de la forme{

t ∈ Ar
| ∃x ∈ An, F1(t, x)=· · ·= Fs(t, x)=0∧G1(t, x) 6=0∧· · ·∧Gu(t, x) 6=0

}
,

resp. {
t ∈ Ar

| ∃x ∈ An, F1(t, x)= · · · = Fs(t, x)= 0
}
, (∗)

où les F j et les G j sont des polynômes en r+n indéterminées à coefficients dans A.
Si f : Ar

→ As est une application polynomiale (par exemple A-linéaire),
l’image (resp. l’image réciproque) par f de tout sous-ensemble existentiel de Ar

(resp. de As) est existentielle, et de même pour les sous-ensembles existentiels
positifs. On voit en particulier que la notion de sous-ensemble existentiel (resp.
existentiel positif) a un sens dans tout A-module libre de rang fini, indépendamment
du choix d’une base.

1.1.1. Remarque. Dans la définition d’un ensemble existentiel positif, la réunion
de la famille vide d’ensembles (∗) donne naissance au sous-ensemble vide de Ar ,
qui est donc existentiel positif. Au niveau des formules, cette opération correspond
à la disjonction de la famille vide de formules, qui est la constante logique FAUX.
Il faut donc adjoindre celle-ci au langage des anneaux usuel, ce qui ne semble pas
être de pratique courante en théorie des modèles.

Lorsque A n’est pas nul, la constante FAUX est équivalente à la formule 1=0, de
sorte que l’on peut s’en dispenser. En revanche, si A est l’anneau nul, la partie vide
de Ar n’est pas réunion d’une famille non vide d’ensembles (∗), ceux-ci n’étant
jamais vides.

Le lecteur pourra, s’il y tient, revenir à la définition traditionnelle {+, ., 0, 1} du
langage des anneaux, au prix de modifications mineures (dans certains énoncés il
faut se limiter aux anneaux non nuls).

1.2. La condition (C). Pour A donné, on peut se demander si tout ensemble exis-
tentiel dans Ar est existentiel positif. Cette propriété équivaut manifestement à la
condition suivante :

(C) « l’ensemble A \ {0} est existentiel positif »

1.2.1. Exemples. Il est clair que tout anneau fini vérifie (C) (y compris l’anneau
nul, vu nos conventions).

Tout corps K vérifie (C) (t ∈ K est non nul si et seulement si il existe x ∈ K tel
que t x = 1).

Il est aussi bien connu que Z vérifie (C) : par exemple, si t ∈ Z, alors t 6= 0 si
et seulement si il existe x, y, w dans Z tels que tw = (1+ 2x)(1+ 3y). La même
astuce montre d’ailleurs que tout anneau d’entiers algébriques vérifie (C).
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L’anneau A des entiers d’un corps local ne vérifie pas (C) : en effet, tout sous-
ensemble existentiel positif de A est compact, alors que A \ {0} ne l’est pas. Plus
généralement, un anneau topologique compact infini ne vérifie pas (C).

Il est facile de voir qu’un produit A1 × A2 vérifie (C) si et seulement si A1

et A2 vérifient (C). En revanche, un produit infini d’anneaux non nuls ne vérifie
jamais (C) (tout ensemble existentiel positif est fermé pour le produit des topologies
discrètes).

1.3. Résultats. Les principaux résultats de ce travail sont les suivants.

1.3.1. Anneaux noethériens. Soit A un anneau noethérien. Alors :
– si A est intègre et n’est pas local hensélien, il vérifie (C) (3.1) ;
– si A est un localisé d’un anneau de Jacobson noethérien, il vérifie (C) (5.4) ;
– si A est local hensélien excellent de dimension > 0, il ne vérifie pas (C) (4.1).

1.3.2. Propriétés d’approximation. Ces propriétés — et notamment les résultats de
[Pfister et Popescu 1975; Denef et Lipshitz 1980; Popescu 1986; Swan 1998; Spi-
vakovsky 1999] — jouent un rôle essentiel dans la preuve de 4.1 ; a contrario, on
déduit de 3.1 que si un couple hensélien (A, r) vérifie la « propriété d’approxi-
mation forte », alors A est nécessairement semi-local hensélien (sauf cas triviaux,
comme r= 0). Ce résultat (corollaire 4.2.1) précise la réponse négative donnée par
Spivakovsky [1994] à une question de D. Popescu ; voir la remarque 4.2.2.

1.3.3. Anneaux de fonctions holomorphes. Soit X un espace analytique de Stein
(par exemple un fermé analytique de Cn ou d’un polydisque ouvert), irréductible
et réduit. Alors l’anneau des fonctions holomorphes sur X vérifie (C) (théorème
6.2).

1.4. Remarques sur les méthodes. Les deux éléments essentiels dans la démons-
tration du théorème 3.1 sont le lemme 3.2, qui suppose l’existence de deux idéaux
premiers ayant certaines propriétés, et le lemme 3.3 qui permet de remplacer l’an-
neau étudié (muni d’un idéal premier p) par un autre ayant deux idéaux premiers
au-dessus de p.

De ces deux lemmes, le premier généralise à peu de chose près l’argument utilisé
plus haut pour Z (1.2.1, où les idéaux en question sont 2Z et 3Z), dont des variantes
ont été maintes fois utilisées dans la littérature (voir par exemple [Davis et al. 1976]
ou, pour une généralisation récente, [Demeyer 2007], Proposition 2.3) ; l’idée du
second remonte au moins à [Shlapentokh 1994], Theorem 4.2.

Quant au théorème 4.1, il repose comme on l’a dit sur les propriétés d’ap-
proximation, le lien étant la proposition 4.1.1. Le lien entre la condition (C) et
l’approximation était déjà connu de T. Pheidas.

On voit donc que ce travail ne contient pas d’idée essentiellement nouvelle,
l’auteur s’étant seulement efforcé de systématiser les méthodes existantes.
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2. Généralités et rappels.

2.1. Définissabilité. On laisse au lecteur la démonstration du lemme suivant :

2.1.1. Lemme. Soient A un anneau, I un idéal de A, π : A→ A/I l’homomor-
phisme canonique.

(i) Si I est de type fini, c’est un sous-ensemble existentiel positif de A.
(ii) On suppose que I est existentiel positif dans A. Si D est un sous-ensemble

existentiel positif de A/I , alors π−1(D) est existentiel positif dans A.
En particulier, si A/I vérifie (C), alors A \ I est existentiel positif dans A.

�

2.1.2. Lemme. Soient A un anneau, et B une A-algèbre qui est un A-module libre
de rang fini d.

(i) Soit Z un sous-ensemble B-existentiel positif de B. Alors Z est A-existentiel
positif (dans B vu comme A-module).

(ii) Si d > 0 et si B vérifie (C), alors A vérifie (C).

Démonstration. On déduit (i) de la remarque suivante : si F : Br
→ B est définie

par un polynôme à coefficients dans B, alors F est définie par d polynômes (en rd
indéterminées) à coefficients dans A, une fois B identifié à Ad par le choix d’une
base. On en déduit (ii) en prenant Z = B \ {0} et en remarquant que A \ {0} est
image réciproque de Z par l’application A-linéaire canonique de A dans B, qui est
injective si d > 0. �

2.2. Anneaux locaux henséliens. On rappelle [Grothendieck 1967; Raynaud 1970]
qu’un anneau local A, de corps résiduel k, est dit hensélien si toute A-algèbre finie
(i.e. de type fini comme A-module) est un produit d’anneaux locaux. Une définition
équivalente est la suivante : pour tout polynôme unitaire P ∈ A[X ] et tout élément
x̄ de k qui est racine simple de (l’image de) P , il existe un unique x ∈ A relevant
x̄ et annulant P .

Pour utiliser efficacement la première définition, nous aurons besoin du lemme
suivant :

2.2.1. Lemme. Soit A un anneau semi-local noethérien. Les conditions suivantes
sont équivalentes :

(i) A est isomorphe à un produit d’anneaux ;
(ii) tout idéal premier de A est contenu dans un unique idéal maximal (autrement

dit, tout quotient intègre de A est local) ;
(iii) tout idéal premier minimal de A est contenu dans un unique idéal maximal.

Démonstration. Les implications (i)⇒ (ii)⇔ (iii) sont faciles et laissées au lecteur.
Supposons (iii), et montrons (i). Posons X =Spec A, et soient x1, . . . , xr les points
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fermés de X (correspondant aux idéaux maximaux m1, . . . ,mr de A). Pour chaque
i ∈ {1, . . . , r}, notons X i le fermé de X réunion des composantes irréductibles
contenant xi . L’hypothèse (iii) signifie que X est réunion disjointe des X i , qui sont
donc ouverts dans X . Si l’on munit chaque X i de sa structure de sous-schéma
ouvert de X , alors X i est local de point fermé xi et s’identifie donc à Spec Ami . Le
fait que X soit réunion disjointe des X i entraı̂ne donc que A ∼=

∏r
i=1 Ami , d’où la

conclusion. �

2.2.2. Corollaire. Soit A un anneau local noethérien. Les conditions suivantes sont
équivalentes :

(i) A est hensélien ;
(ii) toute A-algèbre finie intègre est un anneau local. �

2.3. Anneaux excellents. On renvoie à [Grothendieck 1965] ou [Matsumura 1989]
pour la définition des anneaux excellents. On en rappelle seulement quelques pro-
priétés :

(i) tout anneau excellent est noethérien ;
(ii) tout anneau local noethérien complet est excellent ;
(iii) si A est excellent, il en est de même de toute A-algèbre de type fini et de tout

anneau de fractions de A ;
(iv) si A est local excellent, il en est de même de son hensélisé ;
(v) un anneau de valuation discrète A est excellent si et seulement si le corps des

fractions de son complété est une extension séparable du corps des fractions
de A.

2.4. Propriétés d’approximation. Soient A un anneau noethérien et r un idéal de
A. Pour tout q ∈N, on pose A(q) := A/rq , et l’on note Â= lim

←−q∈N
A(q) le séparé

complété r-adique de A.
Pour toute famille finie S = (F j ) j=1,...,s de polynômes en r indéterminées X1,

. . . , Xr à coefficients dans A, et pour toute A-algèbre B, on posera

sol(S, B) := {x ∈ Br
| F j (x)= 0 pour tout j}.

Il est clair que sol(S, B) est fonctoriel en B ; il s’identifie à l’ensemble des mor-
phismes de A-algèbres de A[X ]/(F1, . . . , Fs) dans B.

On considérera la condition suivante (« principe de Hasse infinitésimal ») :

PHI(A, r) : « pour toute famille S comme ci-dessus, si sol(S, A(q)) 6=∅ pour tout
q ∈ N alors sol(S, A) 6=∅ ».

2.4.1. Remarques. (1) Il est facile de voir que PHI(A, r) implique les propriétés
suivantes :
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(i) r est contenu dans le radical de A ;
(ii) (conséquence de (i)) A est r-adiquement séparé, i.e.

⋂
q∈N rq

= {0} ;
(iii) pour tout idéal J de A, PHI(A/J, (r+ J )/J ) est vérifiée ;
(iv) (A, r) vérifie la « propriété d’approximation » : pour S comme ci-dessus,

sol(S, A) est dense dans sol(S, Â) pour la topologie r-adique ;
(v) (conséquence de (iv)) (A, r) est un couple hensélien : si B est une A-algèbre

étale telle que l’application A/r→ B/rB soit un isomorphisme, alors il existe
un A-homomorphisme de B dans A.

(2) D’autre part, PHI(A, r) est vraie dès que (A, r) vérifie la « propriété d’ap-
proximation forte », que l’on peut formuler ainsi : pour S comme ci-dessus et tout
q ∈ N, il existe q ′ ≥ q tel que sol(S, A) et sol(S, A(q ′)) aient même image dans
sol(S, A(q)).

(3) Lorsque A est local d’idéal maximal m, la propriété d’approximation pour
(A,m) est en fait équivalente à la propriété d’approximation forte (et donc aussi à
PHI(A,m)), d’après [Pfister et Popescu 1975] (redémontré dans [Denef et Lipshitz
1980] par des méthodes de théorie des modèles).

(4) Enfin, lorsque A est local hensélien excellent d’idéal maximal m, la propriété
d’approximation est vérifiée, d’après [Popescu 1986] (autres références : [Swan
1998; Spivakovsky 1999]). Il en est donc de même de PHI(A,m), et a fortiori de
PHI(A, r) pour tout idéal strict r. Retenons donc pour la suite :

2.5. Théorème. Soient A un anneau local hensélien excellent, et r un idéal strict
de A. Alors la condition PHI(A, r) est vérifiée. �

3. Anneaux noethériens intègres

Dans ce paragraphe, nous allons établir le théorème suivant :

3.1. Théorème. Soit A un anneau intègre noethérien. Si A n’est pas local hensé-
lien, alors A vérifie (C).

3.2. Lemme. Soient A un anneau intègre, p1 et p2 deux idéaux premiers de A. On
suppose que :

(i) Ap1 est noethérien ;
(ii) p1∩ p2 ne contient aucun idéal premier non nul de A.

Alors, pour tout t ∈ A, on a l’équivalence :

t 6= 0 ⇐⇒ ∃(w, x1, x2) ∈ A3, (t w = x1 x2 ∧ x1 6∈ p1 ∧ x2 6∈ p2).

En outre, si p1 et p2 sont de type fini et si A/p1 et A/p2 vérifient (C), alors A vérifie
(C).
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Démonstration. La dernière assertion résulte de la première en vertu du lemme
2.1.1 appliqué aux idéaux p1 et p2. Montrons la première assertion. L’implication
⇐ est triviale puisque A est intègre. Réciproquement, soit t 6= 0 dans A. Comme
Ap1 est noethérien, les idéaux premiers minimaux de Ap1/(t) sont en nombre fini ;
ils correspondent à un nombre fini d’idéaux premiers de A contenant t et contenus
dans p1, que nous noterons q1, . . . , qr . L’hypothèse (ii) implique qu’aucun des q j

n’est contenu dans p2, ce qui implique que
⋂

j q j 6⊂ p2. Soit donc y ∈
(⋂

j q j
)
\p2.

L’image de y dans Ap1/(t) appartient à tous les idéaux premiers minimaux donc
est nilpotente : il existe n ∈ N et v ∈ Ap1 tels que yn

= tv. Vu la définition du
localisé Ap1 , il existe donc s ∈ A \ p1 et w ∈ A tels que syn

= tw, de sorte que
t vérifie la propriété voulue (avec x1 = s et x2 = yn : noter que yn

6∈ p2 puisque
y 6∈ p2). �

3.2.1. Remarques.

(1) La condition (i) de l’énoncé du lemme peut être affaiblie en « l’espace topolo-
gique Spec (Ap1) est noethérien » ; plus précisément on n’utilise que le fait que pour
tout t ∈ Ap1 , l’anneau Ap1/(t) n’a qu’un nombre fini d’idéaux premiers minimaux.

(2) La condition (ii) est notamment vérifiée si l’on a dim Ap1 = 1 et p1 6⊂ p2 (ou
l’inverse).

Voici un corollaire immédiat de 3.2 :

3.2.2. Corollaire. Soit R un anneau intègre vérifiant (C). Alors R[X ] vérifie (C).

Démonstration. Il suffit d’appliquer la dernière assertion de 3.2 avec A = R[X ],
p1 = (X) et p2 = (X − 1). �

3.3. Lemme. Soit A un anneau intègre noethérien, de corps des fractions K . Soit
p un idéal premier non nul de A ; on suppose que p n’est pas le plus grand idéal
premier de A (autrement dit, A n’est pas un anneau local d’idéal maximal p).

Alors il existe un polynôme F = X2
+ aX + b ∈ A[X ] ayant les propriétés

suivantes :

(i) a 6∈ p ;
(ii) b ∈ p ;
(iii) F est irréductible dans K [X ].

Démonstration. L’hypothèse sur p entraı̂ne qu’il existe un élément non inversible
α de A \ {0} qui n’appartient pas à p. Soit q un idéal premier minimal parmi ceux
contenant α : alors q 6⊂ p (puisque α ∈ q), et l’anneau Aq est local noethérien de
dimension 1 (vu la minimalité de q). Comme p n’est pas nul cela entraı̂ne que p 6⊂q.
Fixons β ∈ p\q. Nous avons ainsi trouvé un idéal premier q et deux éléments α et
β de A vérifiant :

α ∈ q \ p; β ∈ p \ q; dim Aq = 1.
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Il résulte du théorème de Krull–Akizuki [Bourbaki 1965, §2, no 5, prop. 5 et cor. 2]
que la clôture intégrale de Aq est un anneau de Dedekind ; si on le localise en l’un
de ses idéaux maximaux, on obtient un anneau de valuation discrète de corps des
fractions K qui domine Aq. Notons ν : K → Z ∪ {+∞} la valuation normalisée
correspondante. Comme le monoı̈de ν(A\{0}) engendre le groupe Z, il existe γ ∈ A
tel que ν(γ ) soit impair et positif.

Posons b :=βγ . Alors b∈p et ν(b) est impair. Pour n ∈N convenable, l’élément
a := αn vérifie ν(a) > ν(b)/2 (et évidemment a 6∈ p).

Il reste à montrer que F = X2
+aX+b n’a pas de racine dans K . Si z était une

telle racine, on aurait z(z + a) = −b. Si ν(z) < ν(a) ceci entraı̂ne ν(z(z + a)) =
2ν(z) = ν(b), impossible puisque ν(b) est impair ; sinon, on a ν(z) ≥ ν(a) donc
ν(z(z+a))≥ 2ν(a)>ν(b) vu le choix de a : nouvelle contradiction. (Les amateurs
de polygones de Newton se contenteront de remarquer que celui de F a pour seule
pente −ν(b)/2, qui n’est pas un entier). �

3.3.1. Remarque. On voit notamment que, sous les hypothèses de 3.3, l’anneau
local Ap n’est pas hensélien, puisque F est irréductible mais a deux racines simples
dans le corps résiduel de Ap.

3.4. Proposition. Soit A un anneau intègre noethérien. On suppose qu’il existe un
idéal premier p de A tel que :

(i) p n’est pas le plus grand idéal premier de A ;
(ii) A/p vérifie (C).

Alors A vérifie (C).

Démonstration. On procède par récurrence sur h := dim Ap. Si h = 0, alors p est
nul et l’assertion est triviale.

Supposons h > 0. Il existe alors un polynôme F = X2
+aX+b comme dans le

lemme 3.3. Soit B la A-algèbre A[X ]/(F). Alors B est intègre, et est un A-module
libre de rang 2 ; il suffit donc (lemme 2.1.2) de montrer que B vérifie (C). L’anneau
B/pB est isomorphe à (A/p)[X ]/(X (X + ā)) où ā 6= 0 est la classe de a modulo
p. Donc B a deux idéaux premiers distincts au-dessus de p, à savoir p1 = pB+ x B
et p2 = pB+ (x+a)B où x est la classe de X . Comme B est fini libre sur A, on a
dim Bp1 = dim Bp2 = h. De plus B/p1 ∼= A/p (l’isomorphisme envoie la classe de
x sur 0) et de même B/p2 ∼= A/p (l’isomorphisme envoie la classe de x sur −ā).
En particulier les anneaux B/p1 et B/p2 vérifient (C). Distinguons deux cas :

(1) p1 ∩ p2 ne contient aucun idéal premier non nul de B (condition vérifiée en
particulier si h = 1) : alors on déduit du lemme 3.2 que B vérifie (C).

(2) il existe un idéal premier q⊂ p1∩p2 non nul : en choisissant q minimal on peut
supposer que dim Bq = 1. Pour i ∈ {1, 2} posons pi := pi/q⊂ B := B/q. Alors les
localisés Bpi

sont de dimension ≤ h − 1 ; en outre p1 6⊂ p2, donc p2 n’est pas le
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plus grand idéal premier de B et l’hypothèse de récurrence s’applique à B. Ainsi
B vérifie (C), et donc B aussi d’après le cas h = 1 déjà établi. �

3.5. Démonstration du théorème 3.1. Soit A comme dans l’énoncé. Si A n’est
pas local, il suffit d’appliquer 3.4 en prenant pour p n’importe quel idéal maximal
de A : il est clair que la condition (ii) de la proposition est vérifiée puisque A/p
est un corps.

Supposons A local mais non hensélien. Il existe alors une A-algèbre finie intègre
B0 qui n’est pas locale, d’après 2.2.2. Soit (ξ1, . . . , ξs) une famille génératrice
finie du A-module B0, et pour chaque i ∈ {1, . . . , s} soit Fi ∈ A[X i ] un po-
lynôme unitaire, en une indéterminée X i , annulant ξi . Alors B0 est quotient de
B := A[X1, . . . , Xs]/(F1, . . . , Fs) qui est libre de rang fini comme A-module.

Nous avons donc trouvé une A-algèbre finie libre B et un idéal premier p de B tel
que B0= B/p ne soit pas local. Soit q un idéal premier minimal de B contenu dans
p : alors B/q n’est pas local donc vérifie (C). Par suite B \ q est existentiel positif
dans B (2.1.1). Soit j : A → B le morphisme structural. Comme les éléments
de q sont diviseurs de zéro dans B, que A est intègre et que B est A-libre on a
j−1(q) = {0}. Donc A \ {0} = j−1(B \ q) est existentiel positif dans A, ce qui
achève la démonstration. �

3.6. Anneaux de fractions. Une conséquence du théorème 3.1 est que pour les an-
neaux noethériens intègres, la propriété (C) est « stable par anneaux de fractions ».
Plus précisément :

3.6.1. Corollaire. Soit A un anneau intègre noethérien, et soit S une partie multi-
plicative de A. On suppose vérifiée l’une des conditions suivantes :
(i) S 6⊂ A× (de sorte que S−1 A 6= A) ;
(ii) A vérifie (C).
Alors S−1 A vérifie (C).

Démonstration. Si 0 ∈ S, alors S−1 A est nul et tout est trivial. On suppose donc
que 0 6∈ S, de sorte que S−1 A est noethérien et intègre. S’il n’est pas local, on
conclut par 3.1. Supposons-le local : il est donc de la forme Ap où p est un idéal
premier de A. Si p est nul, alors S−1 A est un corps ; si A est local d’idéal maximal
p, alors S−1 A = A, ce qui est exclu dans le cas (i) et implique le résultat dans le
cas (ii). Sinon, nous sommes dans la situation du lemme 3.3, de sorte que Ap n’est
pas hensélien d’après 3.3.1, donc vérifie (C). �

4. Le cas hensélien

4.1. Théorème. Soient A un anneau noethérien, r un idéal non contenu dans le
nilradical de A. Si la propriété PHI(A, r) de 2.4 est vérifiée (et notamment si A est
local hensélien excellent, d’après 2.5), alors A ne vérifie pas (C).
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Démonstration. L’hypothèse sur r équivaut à dire que la topologie r-adique de A
n’est pas discrète. Donc A \ {0} n’est pas fermé dans A pour cette topologie, de
sorte que le théorème résulte de la proposition 4.1.1 qui suit. �

4.1.1. Proposition. Soit A un anneau noethérien, r un idéal de A. Les conditions
suivantes sont équivalentes :

(i) PHI(A, r) est vérifiée ;
(ii) pour tout n ∈ N, toute partie existentielle positive de An est fermée pour la

topologie r-adique.

Démonstration. (i)⇒ (ii) : supposons PHI(A, r) vérifiée, et soit Z ⊂ An un sous-
ensemble existentiel positif. Alors Z est réunion finie d’ensembles de la forme{

t ∈ An
| (∃ x) F1(t, x)= . . .= Fs(t, x)= 0

}
où chaque F j est un polynôme à coefficients dans A en n + r variables (où x =
(x1, . . . , xr )). Pour voir que Z est fermé, on peut donc supposer qu’il est de la
forme ci-dessus.

Soit t ∈ An adhérent à Z . Pour tout q ∈ N, il existe donc (t(q), x(q)) ∈ An+r

tels que t − t(q) ∈ rq An+r et que F j (t(q), x(q)) = 0 pour tout j . Comme les F j

sont à coefficients dans A, on a donc F j (t, x(q)) ∈ rq . Autrement dit, le système
d’équations

F j (t, X1, . . . , Xr )= 0 ( j = 1, . . . , s)

en les inconnues X i admet une solution modulo rq pour tout q . L’hypothèse im-
plique donc qu’il a une solution dans Ar , donc que t ∈ Z , cqfd.

(ii)⇒ (i) : supposons (ii), et reprenons les notations de 2.4. On a donc une fa-
mille finie S = (F j ) j=1,...,s de polynômes en r indéterminées à coefficients dans
A. Supposons que sol(S, A(q)) 6= ∅ pour tout q ∈ N, et considérons l’ensemble
Z ⊂ As image de l’application (F1, . . . , Fs) : Ar

→ As . Alors Z est existentiel
positif, et l’hypothèse sur S signifie que 0 ∈ As est adhérent à Z . Comme Z est
fermé d’après (ii), on conclut que 0 ∈ Z , donc que sol(S, A) 6=∅. �

4.2. Application à une question de D. Popescu. En combinant 4.1 et 3.1, on ob-
tient :

4.2.1. Corollaire. Soient A un anneau intègre noethérien, r un idéal non nul de A.
Si PHI(A, r) est vérifiée, alors A est local hensélien. �

4.2.2. Remarque. En utilisant la remarque 2.4.1, on en déduit plus généralement
que si A est un anneau noethérien, r un idéal de A non contenu dans un idéal
premier minimal, et si PHI(A, r) est vérifiée, alors A est semi-local hensélien (donc
produit d’anneaux locaux henséliens).
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Popescu demandait dans [Popescu 1986] si tout couple hensélien (A, r) (cf.
2.4.1 (1)(v)) tel que l’homomorphisme de complétion A→ Â soit régulier vérifie
l’approximation forte, et Spivakovsky [1994] a montré par un exemple que la
réponse est en général négative. Le résultat ci-dessus montre que la réponse est
toujours négative, sauf dans le cas semi-local (où elle est affirmative, au moins
lorsque r est le radical ; j’ignore ce qui se passe par exemple si A est local hensélien
excellent et si r est différent de l’idéal maximal).

On a une réciproque partielle à 4.1 :

4.3. Théorème. Soit A un anneau local noethérien hensélien, intègre et de dimen-
sion 1, d’idéal maximal m. Si PHI(A,m) n’est pas vérifiée, alors A vérifie (C).

Démonstration. Par hypothèse il existe un système S = (F j ) j=1,...,s comme dans
2.4 qui a un zéro modulo mq pour tout q ∈ N mais n’a pas de zéro dans Ar .

Montrons qu’il existe un tel système réduit à un seul polynôme : en effet, comme
dim A > 0, le corps des fractions K de A n’est pas algébriquement clos (il admet
une valuation discrète non triviale, cf. la preuve de 3.3) et il existe donc un po-
lynôme P ∈ K [X1, . . . , Xs] ayant (0, . . . , 0) pour seul zéro dans K s . On peut
naturellement prendre P dans A[X ] ; le polynôme composé F := P(F1, . . . , Fs) a
alors un zéro modulo mq pour tout q ∈ N mais n’a pas de zéro dans Ar .

Montrons alors que pour x ∈ A quelconque on a l’équivalence :

x 6= 0 ⇐⇒ (∃t)(∃w) xw = F(t).

L’implication⇐ résulte du fait que F n’a pas de zéro dans Ar ; réciproquement,
si x 6= 0, l’anneau A/x A est artinien donc il existe q ∈ N tel que mq

⊂ x A ; vu le
choix de F , il existe t ∈ A tel que F(t) ∈mq , donc F(t) ∈ x A, cqfd. �

4.4. Un exemple. Nous donnons ici un exemple, tiré de [Bosch et al. 1990], d’an-
neau de valuation discrète hensélien qui ne vérifie pas (PHI). Soit k un corps de
caractéristique p > 0. Choisissons un élément ξ de k[[T ]] qui est transcendant sur
k(T ) ; posons

U = ξ p et A0 := k[[T ]] ∩ k(T,U ).

Enfin soit A le hensélisé de A0. On vérifie facilement que A0 et A sont des anneaux
de valuation discrète, de complété k[[T ]]. De plus, par construction, ξ p

∈ A0 mais
ξ 6∈ A0 et donc ξ 6∈ A puisque le corps des fractions de A est séparable sur celui
de A0. L’équation X p

= U n’a donc pas de solution dans A, mais en a une dans
A/(T q) pour tout q > 0 (à savoir la classe d’un polynôme en T congru à ξ modulo
T q ).

En particulier A vérifie (C) : explicitement, pour tout f ∈ A, on a f 6= 0 si et
seulement si il existe g et h dans A tels que f g = h p

−U .
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5. Anneaux noethériens non intègres

5.1. Notations. La condition (C), à la connaissance de l’auteur, n’a été utilisée
dans la littérature que dans le cas intègre ; pour les anneaux plus généraux, nous
nous contenterons donc de quelques remarques élémentaires. Notons d’abord que
pour un anneau non intègre il est naturel de considérer, outre A \ {0}, l’ensemble
Areg des éléments réguliers (c’est-à-dire « non diviseurs de zéro ») de A, qui est
contenu dans A \{0} si A n’est pas nul et lui est égal si A est intègre. Ceci conduit
à envisager, pour un anneau A donné, la condition

(Creg) « l’ensemble Areg est existentiel positif dans A »
qui est équivalente à (C) si A est intègre. Nous utiliserons en outre la condition

(Q) « tout quotient intègre de A vérifie (C) ».

5.2. Proposition. Soit A un anneau noethérien. On fait l’une des hypothèses sui-
vantes :

(i) A vérifie (C) ;
(ii) pour tout idéal premier p associé à A, le quotient A/p vérifie (C).

Alors A vérifie (Creg), et vérifie (C) s’il est réduit.

Démonstration. Soient p1, . . . , pn les idéaux premiers associés à A. Par définition,
chaque pi est l’annulateur d’un élément αi de A ; on sait en outre [Bourbaki 1961,
chapitre IV, §1, no 1, cor. 3 de la prop. 2] que A \ Areg est la réunion des pi , de
sorte que

Areg
=

n⋂
i=1

(A \ pi ).

Dans le cas (ii), chaque A \pi est existentiel positif par 2.1.1, et il en est de même
dans le cas (i) puisque A \ pi = {t ∈ A | t αi 6= 0}. Donc A vérifie (Creg). Si A est
réduit, il suffit de remarquer que les pi sont les idéaux premiers minimaux de A et
que A \ {0} est la réunion des A \ pi . �

5.3. Théorème. Soit A un anneau noethérien vérifiant (Q), et soit S une partie
multiplicative de A. Alors :

(i) A vérifie (C) ;
(ii) S−1 A vérifie (Q) (et donc (C), d’après (i)).

Démonstration. (i) d’après [Bourbaki 1961, chap. IV, §1, no 4, théorème 1] il existe
une suite d’idéaux

A = I0 ⊃ I1 ⊃ · · · ⊃ In = {0}

et des idéaux premiers p0, . . . , pn−1 tels que, pour tout j , le A-module I j/I j+1 soit
isomorphe à A/p j ; fixons pour chaque j un élément α j de I j engendrant I j/I j+1.
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Pour tout x ∈ A, on a alors les équivalences

x 6= 0 ⇐⇒
∨n−1

j=0 (x ∈ I j \ I j+1)

⇐⇒
∨n−1

j=0 (∃ t) (∃ u)(x = tα j + u ∧ t ∈ A \ p j ∧ u ∈ I j+1)

d’où la conclusion puisque A \ p j et I j+1 sont existentiels positifs, d’après l’hy-
pothèse sur A et le lemme 2.1.1.

(ii) Les quotients intègres de S−1 A sont des anneaux de fractions de quotients
intègres de A, donc le cas (ii) de 3.6.1 entraı̂ne que S−1 A vérifie (Q). �

Rappelons qu’un anneau A est un anneau de Jacobson si tout idéal premier de
A est intersection d’idéaux maximaux.

5.4. Corollaire. Tout anneau de Jacobson noethérien vérifie (Q).
Par suite, d’après 5.3, tout anneau de fractions d’un anneau de Jacobson noe-

thérien vérifie (C).
En particulier :
– tout anneau artinien vérifie (C) ;
– soit k un corps ou un anneau de Dedekind ayant une infinité d’idéaux maxi-

maux ; alors toute k-algèbre essentiellement de type fini vérifie (C).

Démonstration. Il est clair qu’un anneau de Jacobson intègre et local est un corps,
de sorte que, d’après 3.1, tout anneau de Jacobson intègre et noethérien vérifie
(C). Comme il est non moins clair qu’un quotient d’un anneau de Jacobson est de
Jacobson, on en déduit la première assertion, qui entraı̂ne les autres. �

6. Fonctions analytiques.

Pour les notions de base sur les espaces analytiques et les espaces de Stein, le
lecteur pourra consulter [Grauert et Remmert 1979]. Un espace analytique sera tou-
jours supposé séparable (en particulier l’ensemble de ses composantes irréductibles
est dénombrable) et de dimension finie.

Parmi les espaces de Stein on compte notamment les espaces Cn , les poly-
disques, et les sous-espaces analytiques fermés de ceux-ci.

Si (X,OX ) est un espace analytique, nous noterons H(X) l’anneau H 0(X,OX )

des fonctions holomorphes globales sur X .

6.1. Proposition. Soit (X,OX ) un espace analytique de Stein, irréductible et réduit,
de dimension > 0, et soit P un point de X. Il existe un sous-espace fermé Y de X
ayant les propriétés suivantes :

(i) P 6∈ Y , et Y est disjoint du lieu singulier de X ;
(ii) Y est irréductible et réduit, et son idéal IY ⊂ OX est localement principal ;
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(iii) l’idéal p = H 0(X,IY ) de l’anneau A := H(X) formé des fonctions holo-
morphes sur X nulles sur Y est de type fini ;

(iv) avec les notations de (iii), l’anneau Ap est un anneau de valuation discrète.

Démonstration. Soit Z ⊂ X le sous-espace fermé réunion du lieu singulier de X et
du point P . Vu les hypothèses sur X il existe un point Q ∈ X \ Z . Comme X est de
Stein il existe une fonction holomorphe f sur X qui vaut 1 sur Z , 0 en Q et dont la
différentielle en Q n’est pas nulle. Le sous-espace fermé Y ′ de X défini par f = 0
est un diviseur contenu dans X \ Z , et lisse au voisinage de Q. Soit Y l’unique
composante irréductible de Y ′ contenant Q. Il est clair que Y vérifie les conditions
(i), (ii) et (iv), et la propriété (iii) résulte du lemme 6.1.2 ci-dessous (appliqué à
F= IY ). �

6.1.1. Notations. Soit (X,OX ) un espace analytique, et soit F un OX -module cohé-
rent. Pour tout x ∈ X notons Fx le OX,x -module de type fini fibre de F en x , et
F(x) le C-espace vectoriel de dimension finie Fx/mx Fx où mx est l’idéal maximal
de OX,x . Le lemme de Nakayama implique que dimC F(x) est le plus petit entier r
tel qu’il existe un voisinage U de x et une surjection Or

U → F|U .

6.1.2. Lemme. Soit (X,OX ) un espace analytique de Stein, et soit F un OX -module
cohérent. Pour que le H(X)-module H 0(X,F) soit de type fini, il faut et il suffit
que la fonction x 7→ dimC F(x) soit bornée sur X.

Démonstration. La nécessité est évidente : si H 0(X,F) est engendré par r éléments,
alors la fonction en question est majorée par r .

Pour montrer la suffisance, on procède par récurrence sur la dimension d du
support de F, avec la convention dim(∅)=−1. Si d =−1 alors F est nul et il n’y
a rien à démontrer.

Soit r un majorant de la fonction x 7→ dimC F(x). Comme l’ensemble des com-
posantes irréductibles de Supp (F) est localement fini, il existe un sous-espace
fermé discret Z ⊂ X qui rencontre toutes ces composantes. Pour chaque z ∈ Z ,
soit (s1,z, . . . , sr,z) une famille génératrice à r éléments de F(z). On obtient donc
r sections globales de la restriction de F à Z ; comme X est de Stein, elles se
relèvent en r sections s1, . . . , sr de F sur X , définissant un morphisme ϕ :Or

X→F.
Notons F1 le conoyau de ϕ, qui est un OX -module cohérent. Par construction, ϕ est
surjectif au voisinage de Z , de sorte que Supp (F1) ne contient aucune composante
de Supp (F). Donc dim Supp (F1) < d, et par hypothèse de récurrence H 0(X,F1)

est un H(X)-module de type fini (noter que comme F1 est un quotient de F on a
dim F1(x) ≤ dim F(x) pour tout x ∈ X ). Comme X est de Stein, la suite exacte
Or

X→F→F1→0 donne une suite exacte H(X)r→H 0(X,F)→H 0(X,F1)→0
de H(X)-modules, qui montre que H 0(X,F) est de type fini. (L’argument montre
plus précisément qu’il est engendré par r(d + 1) éléments). �
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6.2. Théorème. Soit (X,OX ) un espace analytique de Stein, irréductible et réduit.
Alors l’anneau H(X) vérifie (C).

Démonstration. Posons A=H(X), et procédons par récurrence sur d := dim X . Si
d = 0, alors A = C. Si d > 0, soient P ∈ X et Y ⊂ X comme dans la proposition
6.1. On note p l’idéal de Y dans A, et m l’idéal maximal du point P . Appliquons
le lemme 3.2 avec p1 = p et p2 = m. La proposition 6.1 assure que les conditions
(i) et (ii) de 3.2 sont satisfaites (cf. la remarque 3.2.1 (2)). De plus p1 est de type
fini d’après 6.1 (iii), et il en est de même de p2 d’après le lemme 6.1.2. L’anneau
A/p1 s’identifie à H(Y ) donc vérifie (C) par hypothèse de récurrence, et A/p2∼=C

vérifie trivialement (C), donc le lemme 3.2 donne bien le résultat voulu. �
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