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Complexes of injective kG-modules
David John Benson and Henning Krause

Let G be a finite group and k be a field of characteristic p. We investigate the
homotopy category K(InjkG) of the category C(InjkG) of complexes of injective
(= projective) kG-modules. If G is a p-group, this category is equivalent to the
derived category Ddg(C∗(BG; k)) of the cochains on the classifying space; if G
is not a p-group, it has better properties than this derived category. The ordinary
tensor product in K(InjkG) with diagonal G-action corresponds to the E∞ tensor
product on Ddg(C∗(BG; k)).

We show that K(InjkG) can be regarded as a slight enlargement of the stable
module category StModkG. It has better formal properties inasmuch as the or-
dinary cohomology ring H∗(G, k) is better behaved than the Tate cohomology
ring Ĥ∗(G, k).

It is also better than the derived category D(ModkG), because the compact
objects in K(InjkG) form a copy of the bounded derived category Db(modkG),
whereas the compact objects in D(ModkG) consist of just the perfect complexes.

Finally, we develop the theory of support varieties and homotopy colimits in
K(InjkG).

1. Introduction

Let k be a field and G a finite group. The purpose of this paper is to develop
the properties of K(Inj kG), the homotopy category of complexes of injective kG-
modules.

For any ring 3, we write C(Inj 3) for the category whose objects are the chain
complexes of injective 3-modules and whose arrows are the degree zero mor-
phisms of chain complexes. We write K(Inj 3) for the category with the same
objects, but where the maps are the homotopy classes of degree zero maps of
chain complexes. We write Kac(Inj 3) for the full subcategory whose objects are
the acyclic chain complexes of injective 3-modules.

MSC2000: primary 20C20; secondary 20J06.
Keywords: modular representation theory, derived category, stable module category, cohomology of

group.
The research of the first author was undertaken during visits to Paderborn in Germany, supported by
a Forschungspreis from the Humboldtstiftung.
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2 David John Benson and Henning Krause

We investigate a recollement relating K(Inj kG) to the stable module category
StMod kG and the derived category D(Mod kG):

StMod kG ' Kac(Inj kG)

Homk(tk,−)
←−−−−−−−
−−−−−−−→
←−−−−−−−
−⊗k tk

K(Inj kG)

Homk(pk,−)
←−−−−−−−
−−−−−−−→
←−−−−−−−
−⊗k pk

D(Mod kG).

For notation, we write pk, ik and tk for a projective resolution, injective resolution
and Tate resolution of k as a kG-module respectively. The compact objects in these
categories are

stmod kG←− Db(mod kG)←− Db(proj kG).

This means that K(Inj kG) can be regarded as the appropriate “big” category for
Db(mod kG), whereas D(Mod kG) has too few compact objects for this purpose.
In this sense, K(Inj kG) is a nicer category to work in than D(Mod kG).

From the point of view of algebraic topology, what K(Inj kG) does for us is
provide an algebraic replacement for the derived category of the differential graded
algebra of singular cochains on the classifying space, Ddg(C∗(BG; k)). Namely,
if G is a p-group there is an equivalence of categories

K(Inj kG)' Ddg(C∗(BG; k)).

We prove that the tensor product over k of complexes in K(Inj kG) corresponds
under this equivalence to the left derived tensor product over C∗(BG; k) coming
from the fact that the latter is E∞, or “commutative up to all higher homotopies”
(see Theorem 7.8 and the remarks after Theorem 4.1).

If G is not a p-group, then there is more than one simple kG-module, and the
only one C∗(BG; k) “sees” is the trivial kG-module. In this sense, K(Inj kG) is
nicer to work in than Ddg(C∗(BG; k)), even though it is not necessarily equivalent
to it. Writing ik for an injective resolution of the trivial module, what we obtain in
general is an equivalence between Ddg(C∗(BG; k)) and the localizing subcategory
of K(Inj kG) generated by ik.

In the work of Dwyer, Greenlees and Iyengar [2006], a close relationship was
established between D(Mod kG) and Ddg(C∗(BG; k)). For a general finite group,
the relationship between K(Inj kG) and Ddg(C∗(BG; k)) is much closer, and pro-
vides some sort of context for understanding what is going on in [Dwyer et al.
2006]. Traces of arguments from that paper can be seen from time to time in this
paper.

We develop the theory of support varieties for objects in K(Inj kG), extending
the theory developed by Benson, Carlson and Rickard [1996]. The extra informa-
tion not included in StMod kG is reflected in the fact that the maximal ideal m of
positive degree elements in H∗(G, k) becomes relevant in the variety theory. Thus
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K(Inj kG) can be regarded as a slight enlargement of StMod(kG) in which one more
prime ideal m of the cohomology ring is reflected. We also construct objects with
injective cohomology, extending the work of Benson and Krause [2002]; the theory
in K(Inj kG) is easier than in StMod kG because one does not have to compare
ordinary and Tate cohomology.

Homotopy colimits in K(Inj kG) are harder to deal with than in StMod kG or than
in D(Mod kG), so we conclude with a section describing how the theory works in
this case. The main theorem here is that localizing subcategories of K(Inj kG) are
closed under filtered colimits in C(Inj kG), in spite of the fact that the compact
objects in K(Inj kG) do not lift to compact objects in C(Inj kG).

2. K(Inj kG) is compactly generated

Let 3 be a Noetherian ring. We consider the category Mod 3 of 3-modules and
denote by mod 3 the full subcategory which is formed by all finitely generated
modules. The injective 3-modules form a subcategory Inj 3 of Mod 3 that is
closed under taking arbitrary coproducts. This implies that K(Inj 3) is a triangu-
lated category which admits arbitrary coproducts.

We need to recall some definitions. Let T be a triangulated category with arbi-
trary coproducts. An object X of T is called compact if the functor HomT(X,−)

into the category of abelian groups preserves all coproducts. We denote by Tc the
full subcategory which is formed by all compact objects of T and observe that Tc

is a thick subcategory. The triangulated category T is compactly generated if the
isomorphism classes of objects of Tc form a set and if T coincides with its smallest
triangulated subcategory containing Tc and closed under all coproducts.

Well known examples of compactly generated triangulated categories include
the stable module category StMod 3 provided that 3 is self-injective, and the
derived category D(Mod 3) for any ring 3. For references, see [Happel 1988]
and [Verdier 1996]. Note that the inclusion functors stmod 3 → StMod 3 and
proj 3→Mod 3 induce equivalences

stmod 3
'
−→ (StMod 3)c and Db(proj 3)

'
−→ D(Mod 3)c.

Proposition 2.1. The triangulated category K(Inj 3) is compactly generated. Let
Kc(Inj 3) denote the full subcategory which is formed by all compact objects. Then
the canonical functor K(Inj 3)→ D(Mod 3) induces an equivalence

Kc(Inj 3)
'
−→ Db(mod 3).

Proof. See [Krause 2005, Proposition 2.3]. �

Remark 2.2. The canonical functor Q : K(Inj 3)→D(Mod 3) has a right adjoint
sending a complex X to its semiinjective resolution i X (the definition can be found
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just before Corollary 6.2). This right adjoint induces an equivalence

Db(mod 3)
'
−→ Kc(Inj 3)

which is a quasiinverse for the equivalence Kc(Inj 3)→ Db(mod 3) induced by
Q. For details of this construction we refer to Section 6.

3. K(Inj kG) is a derived category

Given two chain complexes X and Y in Mod 3, we define the chain complex
Hom3(X, Y ). The n-th component is∏

p∈Z

Hom3(X p, Yn+p)

and the differential is defined so that

(d( f ))(x)= d( f (x))− (−1)| f | f (d(x)).

Note that

Hn Hom3(X, Y )∼= HomK(Mod3)(X, Y [n]).

Composition of maps gives

End3(X)= Hom3(X, X)

the structure of a differential graded algebra (DG algebra), over which Hom3(X, Y )

is a differential graded module (DG module).
Given a DG algebra 0, we denote by Ddg(0) the derived category of DG 0-

modules. The objects in this category are DG 0-modules. The arrows are homo-
topy classes of degree zero morphisms of DG modules, with the quasiisomorphisms
(maps that induce an isomorphism on homology) inverted. So for example if 0 is
a ring, regarded as a DG algebra concentrated in degree zero with zero differential,
then a DG 0-module is a complex of modules, and we recover the usual definition
of the derived category of a ring. See [Keller 1994] for further details.

Proposition 3.1. Let C be an object of Kc(Inj 3) ' Db(mod 3) and let 0 =

End3 C. Denote by C the smallest full triangulated subcategory of K(Inj 3) closed
under all coproducts and containing C. Then the functor

Hom3(C,−) : K(Inj 3)−→ Ddg(0)

induces an equivalence C
'
−→ Ddg(0) of triangulated categories.
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Proof. We begin by defining Hom3(C,−) as a functor from C(Inj 3) to the cate-
gory of differential graded 0-modules. This functor is exact, and the composite to
Ddg(0) takes homotopic maps to the same place. So we obtain a well defined exact
functor from K(Inj 3) to Ddg(0) (compare [Keller 1994, §4.3, bottom of p. 77]).
To see that it preserves coproducts, fix a family of objects X i in K(Inj 3). Then we
have for every n ∈ Z

Hn

∐
i

Hom3(C, X i )∼=
∐

i

Hn Hom3(C, X i )∼=
∐

i

HomK(Inj3)(C, X i [n])

∼= HomK(Inj3)(C,
∐

i

X i [n])∼= Hn Hom3(C,
∐

i

X i [n])

since C is compact in K(Inj 3). Thus the canonical map∐
i

Hom3(C, X i )−→ Hom3(C,
∐

i

X i )

is an isomorphism. Furthermore, the functor induces bijections

HomK(Inj3)(C, C[n])∼= Hn Hom3(C, C)∼= HomDdg(0)(0, 0[n]).

Thus the class D of objects in K(Inj 3) such that the induced map

HomK(Inj3)(X, Y )−→ HomDdg(0)(Hom3(C, X), Hom3(C, Y ))

is bijective for all X, Y in D contains C. The functor Hom3(C,−) is, up to isomor-
phism, surjective on objects since the image contains the free 0-module 0 which
generates Ddg(0). �

Remark 3.2. (1) The functor Hom3(C,−) admits left and right adjoints. This is
a consequence of Brown representability (see [Neeman 2001]) because the functor
preserves (co)products. Thus Hom3(C,−) induces a recollement of the form

Ker Hom3(C,−)
←−−−−−−−
−−−−−−−→
←−−−−−−−

K(Inj 3)
←−−−−−−−
−−−−−−−→
←−−−−−−−

Ddg(0).

Here, Ker Hom3(C,−) denotes the full subcategory of K(Inj 3) formed by all
objects X with Hom3(C, X) = 0. The functors between Ker Hom3(C,−) and
K(Inj 3) are the inclusion together with its left and right adjoints.

(2) If the object C generates Kc(Inj 3), that is, there is no proper thick subcategory
containing C , then C= K(Inj 3) and the functor Hom3(C,−) is an equivalence.

In the case where G is a finite p-group, one choice for the compact generator
C of Proposition 3.1 is ik, an injective resolution of k. For a more general finite
group, we may take the sum of the injective resolutions of the simple modules.
We write EG for the differential graded algebra EndkG(ik) whether or not G is a
p-group.
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4. The Rothenberg–Steenrod construction

We now relate the category K(Inj kG) to the classifying space BG. For general
background references on classifying spaces of groups, see for example [Benson
1991; Brown 1982]. The basic link between K(Inj kG) and the derived category of
C∗(BG; k) is achieved through the Rothenberg–Steenrod construction [Rothen-
berg and Steenrod 1965], which we now make precise. For any path-connected
space X , this construction gives a quasiisomorphism of differential graded algebras
from the derived endomorphisms of k over the chains on the loop space and the
cochains on X :

REndC∗(�X;k)(k)' C∗(X; k).

In the case where X is the classifying space BG, �X is equivalent to G, and
C∗(�X; k) is equivalent as a differential graded algebra to the group algebra kG
in degree zero. So in this case the left hand side is just EG = EndkG(ik), and
therefore we obtain

Ddg(EG)' Ddg(C∗(BG; k)).

The purpose of this section is to investigate this equivalence algebraically.
We begin by remarking that EndkG(pk) and EndkG(ik) are quasiisomorphic

differential graded algebras. To see this, choose a quasiisomorphism pk → ik.
Then we have quasiisomorphisms

EndkG(pk)→ HomkG(pk, ik)← EndkG(ik).

The middle object is not a differential graded algebra, but the pullback of this pair
of maps

X //

��

EndkG(ik)

��

EndkG(pk) // HomkG(pk, ik)

is a differential graded algebra

X = EndkG(pk)×HomkG(pk,ik) EndkG(ik)

that comes with quasiisomorphisms

EndkG(pk)
'
←− X

'
−→ EndkG(ik).

Thus we obtain equivalences of derived categories

Ddg(EndkG(pk))' Ddg(X)' Ddg(EndkG(ik)).
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Similarly, if p′k is another projective resolution there is a comparison map pk→
p′k, and hence there are homomorphisms

EndkG(pk)→ HomkG(pk, p′k)← EndkG(p′k).

The pullback of this pair of maps is a differential graded algebra

Y = EndkG(pk)×HomkG(pk,p′k) EndkG(p′k)

that comes with quasiisomorphisms

EndkG(pk)
'
←− Y

'
−→ EndkG(p′k).

Thus we obtain equivalences of derived categories

Ddg(EndkG(pk))' Ddg(Y )' Ddg(EndkG(p′k)).

It follows that Ddg(EndkG(pk)) is, up to natural equivalence, independent of
choice of projective resolution, and is also equivalent to Ddg(EndkG(ik)).

The augmentation map ε : pk→ k gives a quasiisomorphism of complexes

EndkG(pk)' HomkG(pk, k).

Suppose that pk is a resolution supporting a strictly coassociative and counital
diagonal 1 : pk→ pk⊗k pk, meaning that the following diagrams commute:

pk 1
//

1

��

pk⊗k pk

1⊗1

��

pk⊗k pk
1⊗1

// pk⊗k pk⊗k pk ,

pk
∼=

xxrrrrrrrrrrr

1

��

∼=

&&MMMMMMMMMMM

pk⊗k k pk⊗k pk
ε⊗1

oo
1⊗ε

// k⊗k pk .

This happens, for example, when pk is the bar resolution, and when pk is equal
to the singular cochains on EG. Then there is a multiplication on HomkG(pk, k)

given as follows. If α, β : pk→ k then α.β is given by the composite

pk
1
−→ pk⊗k pk

α⊗β
−−→ k⊗k k

∼=
−→ k.

The fact that 1 is coassociative and counital implies that this multiplication is
associative and unital.

We claim that there is a quasiisomorphism of differential graded algebras

HomkG(pk, k)→ EndkG(pk)

given by sending α : pk → k to the map α̃ : pk → pk given by the composite

pk
1
−→ pk⊗k pk

1⊗α
−−→ pk⊗k k

∼=
−→ pk. Since 1 is counital, we have ε ◦ α̃ = α, so
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that α 7→ α̃ is a quasiisomorphism. The commutative diagram

pk
α̃◦β̃

// pk ε
// k

pk
β̃

//

1

��

pk α
//

α̃

OO

k

pk⊗k pk
1⊗β

//

α⊗β

44
pk⊗k k

α⊗1
//

∼=

OO

k⊗k k

∼=

OO

shows that the map α 7→ α̃ preserves multiplication.
Using this, we see that we have quasiisomorphisms of differential graded alge-

bras

EndkG(pk)' HomkG(pk, k)' HomkG(C∗(EG; k), k)

∼= Homk(C∗(BG; k), k)∼= C∗(BG; k).

Now suppose that H is a subgroup of G. Then EG can be used as a model
for E H . In particular, C∗(EG; k) is another model of pk in K(Inj k H) with a
strictly coassociative and counital diagonal map. Restricting resolutions for G
to the subgroup H gives us resolutions for H , so we have a restriction map of
differential graded algebras resG,H : EG → EH . We also have a restriction map
resG,H : C∗(BG; k)→ C∗(B H ; k). Naturality of the Rothenberg–Steenrod con-
struction gives us the following theorem.

Theorem 4.1. There are equivalences of categories

Ddg(EG)= Ddg(EndkG(ik))' Ddg(EndkG(pk))' Ddg(C∗(BG; k)).

The equivalence Ddg(EG)' Ddg(C∗(BG; k)) is natural, in the sense that if H is a
subgroup of G then the square

Ddg(EH )
'

//

res∗G,H
��

Ddg(C∗(B H ; k))

res∗G,H
��

Ddg(EG)
'

// Ddg(C∗(BG; k))

commutes up to natural isomorphism. �

Next, we discuss the tensor product −⊗C∗(BG;k) − on Ddg(C∗(BG; k)). It is
convenient at this stage to be able to pass back and forth between differential graded
algebras and S-algebras (S here is the sphere spectrum). The point of this formal-
ism is to have a category of spectra with a smash product that is commutative and
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associative up to coherent natural isomorphism, and not just up to homotopy. In
the 1990s, several sets of authors produced such categories. We will work with the
formalism of S-algebras introduced by Elmendorf, Křı́ž, Mandell and May [1997].

We make use of [Shipley 2007] to translate between the language of S-algebras
and the language of differential graded algebras. Shipley shows that if R is a
discrete commutative ring, with associated Eilenberg–Mac Lane spectrum H R,
then the model categories of differential graded R-algebras and S-algebras over
H R are Quillen equivalent. In particular, their homotopy categories are equivalent
as triangulated categories. It would be possible to work directly in the category
of E∞ differential graded algebras, but we would need to be working over an
E∞ operad such as the surjection operad of McClure and Smith [2003] and then
transfer to an E∞ operad satisfying the Hopkins lemma in [Elmendorf et al. 1997].
Alternatively, one could work directly with the formalism of Hovey, Shipley and
Smith [Hovey et al. 2000] and use the algebraic analogue of symmetric spectra.
Further comments on the relationships between E∞ algebras and singular cochains
on spaces can be found in [Mandell 2001].

In any case, the upshot of the discussion is that if X and Y are objects in
Ddg(C∗(BG; k)) then so is the left derived tensor product X ⊗C∗(BG;k) Y . This
tensor product is symmetric monoidal, so there are coherent natural isomorphisms

X ⊗C∗(BG;k) Y ∼= Y ⊗C∗(BG;k) X,

(X ⊗C∗(BG;k) Y )⊗C∗(BG;k) Z ∼= X ⊗C∗(BG;k) (Y ⊗C∗(BG;k) Z).

In the case where G is a p-group, we can compare Ddg(0) with Ddg(C∗(BG; k))

as in the following theorem. If G is not a p-group, then Ddg(C∗(BG; k)) is not
equivalent to the whole of K(Inj kG), but just the part generated by ik. This is
because there is more than one simple kG-module, and C∗(BG; k) only “sees”
what is generated by the trivial module; in particular, nonprincipal blocks of kG
are invisible to C∗(BG; k).

Theorem 4.2. Let G be a finite group. Then we have functors

K(Inj kG)
HomkG(ik,−)
−−−−−−−→ Ddg(EG)' Ddg(C∗(BG; k))

whose composite we denote by 8. If G is a finite p-group, this gives an equivalence
of categories

8 : K(Inj kG)
'
−→ Ddg(C∗(BG; k)).

Proof. This is proved by combining Proposition 3.1 and Theorem 4.1. As remarked
above, in the case of a p-group, we can take ik as a generator for Kc(Inj kG), so
that the differential graded algebra 0 of Proposition 3.1 is equal to EG . �
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Remark 4.3. An explicit right adjoint 9 : Ddg(C∗(BG; k))→ K(Inj kG) to 8 is
described just before Lemma 7.4; see also Remark 3.2. The functor 9 satisfies
8 ◦9 ' IdDdg(C∗(BG;k)).

5. K(Inj kG) is a tensor category

If G1 and G2 are groups then there is a natural isomorphism of group algebras
k(G1 × G2) ∼= kG1 ⊗k kG2. Taking the tensor product of complexes gives an
external tensor product

C(Mod kG1)×C(Mod kG2)→ C(Mod k(G1×G2))

and hence also

K(Mod kG1)×K(Mod kG2)→ K(Mod k(G1×G2)).

If G = G1 = G2, then restricting the external tensor product via the diagonal
embedding of G in G×G defines an internal tensor product

C(Mod kG)×C(Mod kG)→ C(Mod kG)

which induces
K(Mod kG)×K(Mod kG)→ K(Mod kG).

Similar arguments show that Homk(−,−) induces internal products on the cat-
egories C(Mod kG) and K(Mod kG). Note that we have a natural isomorphism

HomK(Mod kG)(X ⊗k Y, Z)∼= HomK(Mod kG)(X, Homk(Y, Z)) (5.1)

for all X, Y, Z in K(Mod kG).
The subcategories K(Inj kG) and Kac(Inj kG) inherit tensor products from the

category K(Mod kG) because they are tensor ideals. This follows from the next
lemma.

Lemma 5.2. Let X, Y be complexes of kG-modules.

(i) If X is a complex of injective kG-modules, then X ⊗k Y and Homk(X, Y ) are
complexes of injective kG-modules.

(ii) If X is an acyclic complex, then X ⊗k Y and Homk(X, Y ) are acyclic com-
plexes.

Proof. The first assertion is clear since M⊗k N and Homk(M, N ) are injective for
any pair of kG-modules M, N provided that one of them is injective. The second
assertion follows from the fact that the tensor product and Hom are computed
over k. �
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Proposition 5.3. The unit for the tensor product on K(Inj kG) is the injective res-
olution ik of the trivial representation k.

Proof. For any object X in K(Inj kG), the map of complexes k→ ik induces the
following chain of isomorphisms:

HomK(Mod kG)(ik⊗k X,−)∼= HomK(Mod kG)(ik, Homk(X,−))

∼= HomK(Mod kG)(k, Homk(X,−))

∼= HomK(Mod kG)(k⊗k X,−).

Here we use (5.1) and that k→ ik induces an isomorphism

HomK(Mod kG)(ik, Y )∼= HomK(Mod kG)(k, Y )

for all Y in K(Inj kG) by [Krause 2005, Lemma 2.1]. Thus the map of complexes
k⊗k X→ ik⊗k X is an isomorphism in K(Inj kG). �

Definition 5.4. If X is an object in K(Inj kG), we define

H∗(G, X)= Hom∗K(Inj kG)(ik, X)

where the n-th component is HomK(Inj kG)(ik, X [n]). This is a graded module for
the cohomology ring H∗(G, k)= Hom∗K(Inj kG)(ik, ik).

6. A recollement for K(Inj kG)

Let 3 be a Noetherian ring. We have seen that K(Inj 3) is compactly generated
and this fact has some interesting consequences. For instance, any exact functor
K(Inj 3)→ T into a triangulated category T admits a right adjoint if it preserves
coproducts and a left adjoint if it preserves products. We apply this consequence
of Brown representability (see [Neeman 2001]) to the canonical functor

Q : K(Inj 3)
inc
−→ K(Mod 3)

can
−→ D(Mod 3)

and obtain the following result [Krause 2005, Corollary 4.3].

Proposition 6.1. The pair of canonical functors

Kac(Inj 3)
I
−→ K(Inj 3)

Q
−→ D(Mod 3)

induces a recollement

Kac(Inj 3)

Iρ
←−−−−−−−
−−−−−−−→
←−−−−−−−

Iλ

K(Inj 3)

Qρ

←−−−−−−−
−−−−−−−→
←−−−−−−−

Qλ

D(Mod 3).
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More precisely, the functors I and Q admit left adjoints Iλ and Qλ as well as right
adjoints Iρ and Qρ such that the following adjunction morphisms

Iλ ◦ I
'
−→ IdKac(Inj3)

'
−→ Iρ ◦ I and Q ◦ Qρ

'
−→ IdD(Mod3)

'
−→ Q ◦ Qλ

are isomorphisms.

Recall from [Avramov et al. 2003] (see also [Spaltenstein 1988]) that for any
differential graded algebra 0, a DG 0-module X is said to be semiprojective
if Hom0(X,−) carries surjective quasiisomorphisms to surjective quasiisomor-
phisms. Similarly, X is semiinjective if Hom0(−, X) carries injective quasiiso-
morphisms to surjective quasiisomorphisms. A semiprojective resolution of a DG
0-module X is a quasiisomorphism pX→ X with pX semiprojective, and a semi-
injective resolution of X is a quasiisomorphism X→ i X with i X semiinjective. If
0 is a ring, these definitions are applied by regarding 0 as a DG algebra concen-
trated in degree zero, so that a DG module is just a complex of 0-modules.

Note that the recollement provides two embeddings of D(Mod 3) into K(Inj 3).
The more familiar one is the fully faithful functor Qρ : D(Mod 3) → K(Inj 3)

which sends a complex X of 3-modules to a semiinjective resolution i X . The less
familiar embedding is the fully faithful functor Qλ : D(Mod 3)→ K(Inj 3) which
identifies D(Mod 3) with the localizing subcategory of K(Inj 3) generated by i3.
If 3 is self-injective, then Qλ sends a complex X of 3-modules to a semiprojective
resolution pX .

We summarize this discussion as follows.

Corollary 6.2. Let 3 be a Noetherian ring, and let X be a complex of injective 3-
modules. Then the following are equivalent. (i) X is semiinjective. (ii) X ∼= QρY
for some Y in D(Mod 3). (iii) Iρ X ∼= 0.

If 3 is selfinjective (so that projective and injective 3-modules coincide), then
the following are equivalent. (i) X is semiprojective. (ii) X ∼= QλY for some Y in
D(Mod 3). (iii) IλX ∼= 0.

In the case where 3 = kG, we have StMod kG ' Kac(Inj kG), and the adjoints
in the recollement take the form

StMod kG ' Kac(Inj kG)

Homk(tk,−)
←−−−−−−−
−−−−−−−→
←−−−−−−−
−⊗k tk

K(Inj kG)

Homk(pk,−)
←−−−−−−−
−−−−−−−→
←−−−−−−−
−⊗k pk

D(Mod kG). (6.3)

Here, we write ik for a semiinjective resolution, pk for a semiprojective resolution,
and tk for a Tate resolution of the trivial kG-module k. Note that these resolutions
fit into an exact triangle

pk −→ ik −→ tk −→ pk[1]
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in K(Inj kG). This triangle induces for each object X of K(Inj kG) the following
exact triangles:

X ⊗k pk −→ X ⊗k ik −→ X ⊗k tk −→ X ⊗k pk[1],

Homk(tk, X)−→ Homk(ik, X)−→ Homk(pk, X)−→ Homk(tk[−1], X).

The first two maps in each triangle are the obvious adjunction morphisms which are
induced by the recollement. This becomes clear once we observe that the canonical
map k→ ik induces isomorphisms

X = X ⊗k k
'
−→ X ⊗k ik and Homk(ik, X)

'
−→ Homk(k, X)= X

(see Proposition 5.3). Thus K(Inj kG) is a sort of intermediary between StMod kG
and D(Mod kG), and in some ways is better behaved than either of them. The
problem with StMod kG is that the graded endomorphisms of the trivial module
form a usually non-Noetherian ring (the Tate cohomology ring). The problem with
D(Mod kG), on the other hand, is that k is usually not a compact object.

The compact objects in the three categories in the recollement give the perhaps
more familiar sequence of categories and functors

stmod kG←− Db(mod kG)←− Db(proj kG).

Note that only the left adjoints in the recollement preserve compact objects.

7. The dictionary between K(Inj kG) and Ddg(C∗(BG; k))

Let G be a finite group. Then by Theorem 4.1 we have functors

K(Inj kG)
HomkG(ik,−)
−−−−−−−→ Ddg(EG)' Ddg(C∗(BG; k))

(where EG = EndkG(ik)), which in the case of a p-group give an equivalence of
triangulated categories

8 : K(Inj kG)→ Ddg(C∗(BG; k)).

In this section, we investigate the functor 8 further, and we develop a dictionary
for translating between K(Inj kG) and Ddg(C∗(BG; k)).

First we deal with external tensor products. Now if R1 and R2 are commuta-
tive S-algebras over k, then R1 ⊗k R2 is also a commutative S-algebra over k by
VII.1.6 of [Elmendorf et al. 1997]. If X and Y are spaces then the Eilenberg–
Zilber map gives an equivalence between C∗(X; k)⊗k C∗(Y ; k) and C∗(X×Y ; k)

as S-algebras over k. If δ : X→ X × X is the diagonal map, then the composite

C∗(X; k)⊗k C∗(X; k)' C∗(X × X; k)
δ∗

−→ C∗(X; k)

is the multiplication map, and is a map of commutative S-algebras over k.
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In particular, if X = BG1 and Y = BG2 then X × Y = B(G1 × G2), and we
get the equivalence of C∗(BG1; k)⊗k C∗(BG2; k) with C∗(B(G1×G2); k). This
means that if X and Y are modules over C∗(BG1; k) and C∗(BG2; k) respectively,
we have an external tensor product X ⊗k Y as a module over C∗(B(G1×G2); k).

If 1 : G→ G×G is the diagonal map, then the composite

C∗(BG; k)⊗k C∗(BG; k)' C∗(BG× BG; k)

= C∗(B(G×G); k)
B1∗

−−→ C∗(BG; k)

is the multiplication map on C∗(BG; k).

Theorem 7.1. The functor 8 takes the external tensor product over k discussed in
Section 5 to the external tensor product described above.

Proof. If ikG1 and ikG2 are injective resolutions of k for G1 and G2, then the
external tensor product ikG1 ⊗k ikG2 is an injective resolution of k for G1 × G2.
We have a commutative diagram

K(Inj kG1)×K(Inj kG2)
HomkG1 (ikG1 ,−)×HomkG2 (ikG2 ,−)

//

⊗k

��

Ddg(EG1)×Ddg(EG2)

⊗k

��

K(Inj k(G1×G2))
Homk(G1×G2)(ikG1⊗k ikG2 ,−)

// Ddg(EG1 ⊗k EG2)

We combine this with the commutative diagram

Ddg(EG1)×Ddg(EG2)
'

//

⊗k

��

Ddg(C∗(BG1, k)×Ddg(C∗(BG2; k))

⊗k

��

Ddg(EG1 ⊗k EG2)
'

// Ddg(C∗(BG1; k)⊗k C∗(BG2; k))

and the equivalence

Ddg(C∗(BG1; k)⊗k C∗(BG2; k))' Ddg(C∗(B(G1×G2); k))

to prove the theorem. �

Next we deal with subgroups.

Lemma 7.2. If H is a subgroup of G, the following diagram commutes up to nat-
ural isomorphism:
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K(Inj k H)
Homk H (ik,−)

//

indH,G

��

Ddg(EH )

res∗G,H

��

K(Inj kG)
HomkG(ik,−)

// Ddg(EG)

Proof. This follows from the Frobenius reciprocity (or Eckmann–Shapiro) isomor-
phism

HomkG(ik, indH,G(X))∼= Homk H (ik, X). �

Theorem 7.3. The functor 8 takes induction from k H-modules to kG-modules to
restriction from C∗(B H ; k)-modules to C∗(BG; k)-modules.

Proof. By Theorem 4.1 and Lemma 7.2, the following diagram commutes up to
natural isomorphisms:

K(Inj k H)
Homk H (ik,−)

//

indH,G

��

Ddg(EH )

res∗G,H

��

'
// Ddg(C∗(B H ; k))

res∗G,H

��

K(Inj kG)
HomkG(ik,−)

// Ddg(EG)
'

// Ddg(C∗(BG; k)). �

The corresponding statement for restriction from K(Inj kG) to K(Inj k H) re-
quires more preparation. We begin by defining a functor

−
L
⊗EG ik : Ddg(EG)→ K(Inj kG)

as the left adjoint of HomkG(ik,−). The existence of such a left adjoint follows
from Brown’s representability theorem (see [Neeman 2001]) since HomkG(ik,−)

preserves products. Alternatively, we construct this functor explicitly by tensoring
over EG a semiprojective resolution (for the definition, see Section 6) of the given
differential graded EG-module with ik. It is clear from the construction that

−
L
⊗EG ik

identifies EG with ik.

Lemma 7.4. Let X be an object in Ddg(EG). Then the natural map

X→ HomkG(ik, X
L
⊗EG ik)

is an isomorphism in Ddg(EG).
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Proof. This is obviously true for X = EG . The functor on the right preserves
triangles and direct sums in the variable X because ik is compact. So the assertion
is true for any object in the localizing subcategory generated by EG , which is all
of Ddg(EG). �

Remark 7.5. The functor −
L
⊗EG ik identifies Ddg(EG) with the localizing subcat-

egory Loc(ik) of K(Inj kG) generated by ik. In particular, for each object Y in
K(Inj kG), the natural map

ηY : HomkG(ik, Y )
L
⊗EG ik→ Y

is the best left approximation of Y by objects in Loc(ik). More precisely, the object

HomkG(ik, Y )
L
⊗EG ik

belongs to Loc(ik) and the induced map HomK(Inj kG)(X, ηY ) is bijective for all X
in Loc(ik).

Lemma 7.6. Suppose we have given a diagram of functors

S

F
��

H
// T

G
��

S′
H ′

// T′

which is commutative up to isomorphism such that F , G, H ′ admit right adjoints
Fρ , Gρ , H ′ρ , and H admits a left adjoint Hλ. Suppose in addition that

IdT
∼= H ◦ Hλ and H ′ρ ◦ H ′ ∼= IdS′ .

Then the diagram of functors:

S′

Fρ

��

H ′
// T′

Gρ

��

S
H

// T

commutes up to isomorphism.

Proof. We have
G ∼= G ◦ H ◦ Hλ

∼= H ′ ◦ F ◦ Hλ.

Taking right adjoints, we obtain

Gρ
∼= H ◦ Fρ ◦ H ′ρ

and this implies
Gρ ◦ H ′ ∼= H ◦ Fρ ◦ H ′ρ ◦ H ′ ∼= H ◦ Fρ . �
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Theorem 7.7. Let G be a finite p-group and let H be a subgroup of G. Then the
functor 8 takes restriction from kG-modules to k H-modules to coinduction from
C∗(BG; k)-modules to C∗(B H ; k)-modules.

Proof. We claim that the diagram

K(Inj kG)
HomkG(ik,−)

//

resG,H

��

Ddg(EG)

RHomEG (EH ,−)

��

'
// Ddg(C∗(BG; k))

RHomC∗(BG;k)(C∗(B H ;k),−)

��

K(Inj k H)
Homk H (ik,−)

// Ddg(EH )
'

// Ddg(C∗(B H ; k))

commutes. For the right-hand square this is clear. For the left hand square, this
follows from Lemma 7.2, 7.4 and 7.6. The assumption on G to be a p-group is
needed for HomkG(ik,−) to be an equivalence. �

Theorem 7.8. Let G be a finite p-group. Then the functor 8 takes the internal
tensor product with diagonal G-action to the E∞ tensor product discussed at the
end of Section 4.

Proof. The internal tensor product in K(Inj kG) is given by external tensor prod-
uct to K(Inj k(G × G)) followed by restriction to the diagonal copy of G. Using
Theorems 7.1 and 7.7, we see that

HomkG(ik, (X ⊗k Y )↓G×G
G )∼= RHomEG×G (EG, Homk(G×G)(ik, X ⊗k Y ))

∼= RHomEG⊗k EG (EG, HomkG(ik, X)⊗k HomkG(ik, Y )).

Applying the equivalence with Ddg(C∗(BG; k)) to the latter, we obtain

RHomC∗(BG;k)⊗kC∗(BG;k)(C∗(BG; k), 8(X)⊗k 8(Y ))

which is isomorphic to
8(X)⊗C∗(BG;k) 8(Y )

with the E∞ tensor product. �

Theorems 7.3 and 7.7 above can be thought of as saying that the roles of re-
striction and (co)induction are reversed by the equivalence. So it makes sense that
the roles of the trivial representation and the regular representation should also be
reversed.

It is easy to see that ik in K(Inj kG) corresponds to the regular representation
of C∗(BG; k), and that the regular representation kG corresponds to the trivial
representation k of C∗(BG; k).

We summarize all this information in Table 1.



18 David John Benson and Henning Krause

K(Inj kG) Ddg(C∗(BG; k))

external −⊗k − external −⊗k −

internal −⊗k − −⊗C∗(BG;k)−

diagonal G-action E∞ tensor product

Induction Restriction
from H to G via C∗(BG; k)→ C∗(B H ; k)

Restriction Coinduction
from G to H HomC∗(BG;k)(C∗(B H ; k),−)

ik C∗(BG; k)

kG k

Table 1

8. K(Inj 3) is a derived invariant

The classical Morita theory for derived categories [Rickard 1989; 1991] can be
extended to complexes of injective modules as follows.

Proposition 8.1. Let 3 and 0 be Noetherian algebras over a commutative ring k.
Suppose 3 and 0 are projective as k-modules. Then the following are equivalent.

(i) 3 and 0 are derived equivalent, that is, there exists a tilting complex T over
3 such that the endomorphism ring EndD(Mod3)(T ) is isomorphic to 0.

(ii) There exists an exact equivalence K(Inj 3)→ K(Inj 0).

(iii) There exists an exact equivalence Db(mod 3)→ Db(mod 0).

Proof. (i) ⇒ (ii): In [Rickard 1991], it is shown that 3 and 0 admit a standard
derived equivalence. Thus there is a bounded complex P of 0-3-bimodules which
in each degree is finitely generated projective over 3 and over 0. The functor
Hom3(P,−) sends complexes of injective 3-modules to complexes of injective
0-modules and semiinjective complexes to semiinjective complexes. The last as-
sertion follows from the isomorphism

Hom0(A, Hom3(P, X))∼= Hom3(A⊗0 P, X).

Thus Hom3(P,−) induces the commutative diagram of exact functors

D(Mod 3)

(Q3)ρ

��

Hom3(P,−)
// D(Mod 0)

(Q0)ρ

��

K(Inj 3)
Hom3(P,−)

// K(Inj 0)
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because we know from Corollary 6.2 that the right adjoint functors (Q3)ρ and
(Q0)ρ identify the derived categories with the full subcategories formed by all
semiinjective complexes. By our assumption, the functor D(Mod 3)→D(Mod 0)

is an equivalence inducing an equivalence Db(mod 3) → Db(mod 0). Now we
apply Proposition 2.1 as follows. The commutativity of the diagram implies that
Hom3(P,−) induces an equivalence Kc(Inj 3) → Kc(Inj 0). Then a standard
dévissage argument shows that Hom3(P,−) induces an equivalence K(Inj 3)→

K(Inj 0) since K(Inj 3) is compactly generated and the functor preserves all co-
products.

(ii)⇒ (iii): An exact equivalence K(Inj 3)→ K(Inj 0) induces an exact equiv-
alence Kc(Inj 3) → Kc(Inj 0) and therefore, again by Proposition 2.1, an exact
equivalence Db(mod 3)→ Db(mod 0).

(iii) ⇒ (i): Let F : Db(mod 0)→ Db(mod 3) be an exact equivalence. Then
T = F0 is a tilting complex with EndDb(mod3)(T )∼= 0. �

9. Bousfield localization

We recall briefly some basic facts about Bousfield localization. Let T be trian-
gulated with arbitrary coproducts. We fix a full triangulated subcategory S of T

which is localizing in the sense that S is closed under taking all coproducts. Then
we have a sequence

S
I
−→ T

Q
−→ T/S

of canonical functors and observe that I has a right adjoint Iρ if and only if Q
has a right adjoint Qρ . In this case we call the sequence a localization sequence.
Following [Rickard 1997], we write ES = I ◦ Iρ and FS = Qρ ◦ Q. Note that ES

and FS are idempotent functors.
Let us collect the basic facts of such a localization sequence.

Lemma 9.1. A localization sequence S
I
−→ T

Q
−→ T/S has the following properties.

(i) The functor Qρ is fully faithful and identifies T/S with the full subcategory

S⊥ = {Y ∈ T | HomT(X, Y )= 0 for all X ∈ S}.

(ii) We have

S= {X ∈ T | HomT(X, Y )= 0 for all Y ∈ S⊥}.

(iii) For each object X of T, there exists up to isomorphism a unique exact triangle

X ′ −→ X −→ X ′′ −→ X ′[1]

with X ′ ∈ S and X ′′ ∈ S⊥.
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(iv) For each object X of T, the adjunction morphisms ESX → X and X → FSX
fit into an exact triangle

ESX −→ X −→ FSX −→ ESX [1].

There is a finite variant of Bousfield localization for compactly generated tri-
angulated categories which Rickard [1997] introduced into representation theory.
Here we use the tensor product ⊗k which is defined on K(Inj kG).

Let S0 be a class of compact objects of K(Inj kG) and denote by S=Loc(S0) the
localizing subcategory of K(Inj kG) which is generated by S0. Then the sequence

S
I
−→ K(Inj kG)

Q
−→ K(Inj kG)/S

of canonical functors is a localization sequence. Moreover, S is compactly gen-
erated and the subcategory Sc of compact objects equals the thick subcategory
Thick(S0) of Kc(Inj kG) which is generated by S0.

Now suppose that S0 is a thick tensor ideal of Kc(Inj kG). Thus S0 is by defi-
nition a thick subcategory and a tensor ideal, that is, X ⊗k Y belongs to S0 for all
X in S0 and Y in Kc(Inj kG). Then S = Loc(S0) is a localizing tensor ideal and
therefore the exact triangle

ESik −→ ik −→ FSik −→ ESik[1]

induces for each X in K(Inj kG) an exact triangle

X ⊗k ESik −→ X ⊗k ik −→ X ⊗k FSik −→ X ⊗k ESik[1]

which is isomorphic to

ESX −→ X −→ FSX −→ ESX [1].

10. Varieties

In this section, we indicate how the theory of support for kG-modules from [Benson
et al. 1996] may be modified to work in K(Inj kG).

Let H∗(G, k) be the cohomology ring of G, and denote by Spec∗ H∗(G, k) the
set of homogeneous prime ideals of H∗(G, k). We consider the Zariski topology
on Spec∗ H∗(G, k), that is, a subset of Spec∗ H∗(G, k) is Zariski closed if it is of
the form

V(a)= {p ∈ Spec∗ H∗(G, k) | a⊆ p}

for some homogeneous ideal a of H∗(G, k). We write m = H+(G, k) for the
unique maximal ideal of H∗(G, k) and obtain the projective variety

Proj H∗(G, k)= Spec∗ H∗(G, k) \ V (H+(G, k))= Spec∗ H∗(G, k) \ {m}.
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Now fix a specialization closed subset V ⊆ Spec∗ H∗(G, k), that is, p ⊆ q and
p ∈ V imply q ∈ V. We obtain the localizing tensor ideal

SV = Loc
(
{X ∈ Kc(Inj kG) | H∗(G, X)q = 0 for all q ∈ Spec∗ H∗(G, k) \V}

)
,

of K(Inj kG). To simplify our notation, we write

EV = ESV and FV = FSV .

Now fix p ∈ Spec∗ H∗(G, k) and let

Vp = {q ∈ Spec∗ H∗(G, k) | p⊆ q} and Wp = {q ∈ Spec∗ H∗(G, k) | q 6⊆ p}.

Note that Wp \Vp = {p}. We define

κp = (FWp ◦ EVp)ik ∼= (EVp ◦ FWp)ik.

For example, one computes

κm = (EVm ◦ FWm)ik = EVm ik = pk.

Given X in K(Inj kG), we have

X ⊗k κp
∼= (FWp ◦ EVp)X ∼= (EVp ◦ FWp)X

and the variety of X is by definition

VG(X)= {p ∈ Spec∗ H∗(G, k) | X ⊗k κp 6= 0}.

Lemma 10.1. Let p ∈ Spec∗ H∗(G, k). Then VG(κp)= {p}.

Proof. The proof is essentially the same as the proof of Lemma 10.4 of [Benson
et al. 1996]. �

Lemma 10.2. A complex X in K(Inj kG) is acyclic if and only if VG(X) is con-
tained in Proj H∗(G, k).

Proof. A complex X is acyclic if and only if X ⊗k pk = 0 if and only if

VG(X)⊆ Proj H∗(G, k). �

It follows that κp is in Kac(Inj kG) ∼= StMod kG unless p = m, and that these
modules agree with the modules κV introduced in [Benson et al. 1996].

11. Objects with injective cohomology

Modules over kG with injective cohomology were studied in [Benson and Krause
2002]. In this section, we indicate how this works in K(Inj kG). The theory is actu-
ally easier than in StMod kG, because it does not involve a discussion of injective
modules over the non-Noetherian Tate cohomology ring.
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Let I be an injective H∗(G, k)-module. Then the functor from K(Inj kG) to the
category of abelian groups which takes an object X to

HomH∗(G,k)(H∗(G, X), I )

takes triangles to exact sequences and coproducts to products. So by Brown rep-
resentability (see [Neeman 2001]) there is an object T (I ) in K(Inj kG) satisfying

HomK(Inj kG)(X, T (I ))∼= HomH∗(G,k)(H∗(G, X), I ).

The assignment I 7→ T (I ) extends via Yoneda’s lemma to a functor

T : Inj H∗(G, k)→ K(Inj kG).

A dimension shifting argument (see [Benson and Krause 2002, §3]) shows that
we obtain an isomorphism of graded H∗(G, k)-modules

Hom∗K(Inj kG)(X, T (I ))∼= Hom∗H∗(G,k)(H∗(G, X), I ).

In particular, setting X = ik, we see that H∗(G, T (I ))∼= I for all I in Inj H∗(G, k),
and setting X = T (I ′) we see that

HomK(Inj kG)(T (I ′), T (I ))∼= HomH∗(G,k)(I ′, I ),

so that the functor T is fully faithful. Thus, if p ∈ Spec∗ H∗(G, k) and Ip is the
injective hull of H∗(G, k)/p, we have

End∗K(Inj kG)(T (Ip))∼= H∗(G, k)
∧

p = lim
←−
n

H∗(G, k)p/p
n
p,

using [Matlis 1958].

Proposition 11.1. Let Im= H∗(G, k), the graded dual of H∗(G, k). This is the in-
jective hull of the trivial H∗(G, k)-module k = H∗(G, k)/m where m= H+(G, k)

is the maximal ideal generated by the positive degree elements. Then T (Im)∼= pk,
the projective resolution of k.

Proof. The proof is essentially the same as the proof of Lemma 3.1 of [Benson and
Krause 2002]. �

Proposition 11.2. Let H be a subgroup of G, and write TG and TH for the functor
T with respect to kG and k H respectively. If I is an injective H∗(G, k)-module,
we have

TG(I )↓H ∼= TH
(
Hom∗H∗(G,k)(H∗(H, k), I )

)
.

Proof. The proof is essentially the same as the proof of Proposition 7.1 of [Benson
and Krause 2002]. �
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Proposition 11.3. Let p ∈ Spec∗ H∗(G, k). Then VG(T (Ip))= {p}.

Proof. The proof is essentially the same as the proof of Theorem 7.3 of [Benson
and Krause 2002]. �

It follows that T (Ip) is in Kac(Inj kG)∼= StMod kG unless p=m, and that these
objects agree with the objects of the same name constructed in [Benson and Krause
2002].

Theorem 11.4. Let p be a homogeneous prime ideal in H∗(G, k), and let d be the
Krull dimension of H∗(G, k)/p. Then

κp
∼= T (Ip[d]).

Proof. If d > 0 then both objects are in Kac(Inj kG)∼= StMod kG and the theorem
is proved in [Benson 2008; Benson and Greenlees 2008]. If d = 0 then p=m and
both sides are isomorphic to the projective resolution pk. �

12. Chouinard and Dade

In this section we describe the analogues in K(Inj kG) of the theorem of Chouinard
[1976] and of Benson, Carlson and Rickard’s version [1996] of the lemma from
[Dade 1978].

Theorem 12.1. Let G be a finite group and k a field of characteristic p. An object
in K(Inj kG) is semiinjective, respectively semiprojective, respectively zero, if and
only if its restriction to every elementary abelian p-subgroup of G is semiinjective,
respectively semiprojective, respectively zero.

Proof. It follows from the recollement (6.3) that an object X in K(Inj kG) is semi-
injective, respectively semiprojective, if and only if Homk(tk, X)= 0, respectively
X⊗k tk = 0. By Chouinard’s theorem [1976] in StMod kG, this is true if and only
if the restriction of Homk(tk, X), respectively X ⊗k tk to each elementary abelian
p-subgroup E of G is zero. This is equivalent to the statement that the restriction
of X to each such E is semiinjective, respectively semiprojective.

If an object X in K(Inj kG) restricts to zero on every elementary abelian p-
subgroup then it is acyclic, so it is in Kac(Inj kG)' StMod(kG). So we can apply
Chouinard’s theorem in StMod(kG) to deduce that X ∼= 0. �

Now if E = 〈g1, . . . , gr 〉 is an elementary abelian group of rank r , we write
X i for the element gi − 1 ∈ J (k E), the radical of the group algebra. If K is an
extension field of k, and λ= (λ1, . . . , λr ) is a nonzero point in affine space Ar (K ),
then

Xλ = λ1 X1+ · · ·+ λr Xr
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is an element of J (K E) satisfying X p
λ = 0, and 〈1+ Xλ〉 is a cyclic subgroup of

order p in the group algebra K E . It is called a cyclic shifted subgroup of E over
K .

Theorem 12.2. An object in K(Inj k E) is semiinjective, respectively semiprojective,
respectively zero if and only if for all extension fields K of k and all cyclic shifted
subgroups of E over K the restriction is semiinjective, respectively semiprojective,
respectively zero.

Proof. The proof follows the same lines as that of Theorem 12.1, using the version
of Dade’s lemma in [Benson et al. 1996, Theorem 5.2] instead of Chouinard’s
theorem. We also need to observe that

K ⊗k Homk(tk, X)∼= HomK (t K , K ⊗k X),

K ⊗k (X ⊗k tk)∼= (K ⊗k X)⊗K t K . �

Remark 12.3. As in [Benson et al. 1996], it suffices to check the hypothesis for
K the algebraic closure of an extension of k of transcendence degree r − 1.

13. Homotopy colimits and localizing subcategories

The goal of this section is to show that in the stable module category

StMod kG ' Kac(Inj kG),

the homotopy category of complexes of injectives K(Inj kG) and the derived cate-
gory D(Mod kG), localizing subcategories are closed under taking filtered colimits
in the corresponding category of chain complexes and chain homomorphisms. This
amounts to filling in the details of arguments of Bousfield and Kan [1972] and
Bökstedt and Neeman [1993] for the sake of easy access.

Let C denote one of the categories Kac(Inj kG), D(Mod kG), K(Inj kG) (the argu-
ments work in other situations, but it seems difficult to make precise the conditions
on C). Let I be a small category, and let φ : I→C be a covariant functor. Then we
call φ an I-diagram in C. We define the homotopy colimit of the diagram φ to be
the total complex of the double complex formed from finite chains of maps in I in
the following manner:

· · ·
d3
−→

⊕
i→ j→k

φ(i)
d2
−→

⊕
i→ j

φ(i)
d1
−→

⊕
i

φ(i) . (13.1)

We regard this as a complex of objects in C, where the differentials are alternating
sums over deleted objects in the chain in the usual way. So for example d1 takes
the copy of φ(i) indexed by i α

−→ j via φ(α) to φ( j) minus the identity to φ(i);
while d2 takes the copy of φ(i) indexed by i α

−→ j β
−→k via φ(α) to the copy of φ( j)

indexed by j β
−→k minus the identity to the copy of φ(i) indexed by i β◦α

−−→k plus the
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identity to the copy of φ(i) indexed by i α
−→ j . It is easy to see that d j ◦ d j+1 = 0.

Note that the cokernel of d1 is
colim
−−−→

I

φ.

We write
hocolim
−−−−→

I

φ or hocolim
−−−−→

i∈I

φ(i)

for the homotopy colimit.
We say that I is a right filter if it is a small category satisfying

(i) given objects x and y in I, there exists an object z in I and arrows x→ z and
y→ z, and

(ii) given objects x and y in I and arrows f, g : x→ y, there exists an object z in
I and an arrow α : y→ z such that α ◦ f = α ◦ g.

For example, I could be a poset in which every pair of elements has an upper
bound. If I is a right filter, then an I-diagram φ : I→ C is called a filtered system
in C. We assume that every filtered system in C has a colimit, which we write as

colim
−−−→

I

φ or colim
−−−→

i∈I

φ(i).

Whether I is a filtered system or a more general small category, there is an
obvious map hocolim

−−−−→
I

φ→ colim
−−−→

I

φ.

Lemma 13.2 [Bousfield and Kan 1972]. Let φ be an I-diagram in C. Then

hocolim
−−−−→

I

φ→ colim
−−−→

I

φ

is an equivalence.

Proof. In the case where I has a terminal object, say `, there is a homotopy on
the complex (13.1) sending the copy of φ(i) indexed by i→ · · · → j to the copy
in one degree higher indexed by i → · · · → j → `. This is a homotopy from the
identity to the projection onto the subcomplex consisting of the single copy of φ(`)

in degree zero. This proves that the map from the homotopy colimit to the colimit
is an equivalence (that is, passes down to an isomorphism in the corresponding
homotopy category) in this case.

The homotopy colimit can be written as a colimit of homotopy colimits over
smaller diagrams, so we have

hocolim
−−−−→

I

φ = colim
−−−→

`∈I

hocolim
−−−−→

I/`

φ→ colim
−−−→

`∈I

colim
−−−→

I/`

φ = colim
−−−→

I

φ.
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Since I/` has a terminal object,

hocolim
−−−−→

I/`

φ→ colim
−−−→

I/`

φ

is an equivalence, and it remains to prove that a colimit of equivalences is an equiva-
lence. This is where the mild assumptions on the category C come in. Bousfield and
Kan were working in the homotopy category of simplicial sets, where equivalences
are detected by maps from spheres, and any such map to the filtered colimit factors
through some term in the filtered system.

For a countable filtered system, we can argue as follows. If there is no terminal
object, then we may choose a cofinal subsystem consisting of a countable sequence
of objects and maps

φ(0)
α0
−→ φ(1)

α1
−→ φ(2)

α2
−→ · · · .

Then the colimit fits into a triangle⊕
n

φ(n)
1−α
−−→

⊕
n

φ(n)→ colim
−−−→

n

φ(n).

It follows that a colimit of equivalences is an equivalence in this case. So it is only
for uncountable filtered systems that there is any problem.

In the category StMod kG ' Kac(Inj kG), equivalences are detected by maps
from the modules �n S for n∈Z with S simple, in the sense that for a map f : M→
N , if for all n ∈ Z and S simple

f∗ : HomkG(�n S, M)→ HomkG(�n S, N )

is an isomorphism, then f is an equivalence. So the argument of Bousfield and
Kan works here: any map from �n S to a filtered colimit factors through some term
in the filtered system.

The same argument works in D(Mod kG), where equivalences are detected by
maps from perfect complexes, and any map from a perfect complex to a filtered
colimit factors through some object in the system.

For the category K(Inj kG), we pass to K(Mod kG) and use the fact that for each
simple kG-module S the injective resolution S→ i S induces an isomorphism

HomK(Mod3)(i S, X)∼= HomK(Mod3)(S, X)

for all X in K(Inj kG) by [Krause 2005, Lemma 2.1]. In K(Mod kG) any map from
S to a filtered colimit factors through some object in the system since S is finitely
presented. Thus equivalences in K(Inj kG) are detected by maps from the injective
resolutions i S of simple kG-modules S. �

Theorem 13.3. Let L be a localizing subcategory of C. Then L is closed under
taking filtered colimits in the underlying category of chain complexes.
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Proof. According to Lemma 13.2, it suffices to show that the homotopy colimit is
in L.

For n ≥ 0, write X (n) for the total complex of the truncation of the sequence
(13.1) consisting of just the last n+1 objects and the maps dn, . . . , d1. Since each
φ(i) is in L and L is closed under direct sums, each of the terms in (13.1) is in L,
and so by the induction on n, X (n) is in L.

There are inclusions αn : X (n)→ X (n+1), and we have a short exact sequence
of complexes

0→
⊕

n

X (n)
1−α
−−→

⊕
n

X (n)→ colim
−−−→

n

X (n)→ 0.

The corresponding triangle shows that

hocolim
−−−−→

I

φ = colim
−−−→

n

X (n)

is in L. �

14. K(Inj kE) for an elementary abelian 2-group E

Let
E = 〈g1, . . . , gr 〉 ∼= (Z/2)r

be an elementary abelian 2-group of rank r , and let k be a field of characteristic
two. Let

H∗(E, k)= k[x1, . . . , xr ].

where the polynomial generators x1, . . . , xr have degree one. The purpose of this
section is to give an equivalence of triangulated categories

K(Inj k E)' Ddg(k[x1, . . . , xr ]).

This can be viewed as a version of Bernšteı̆n–Gel′fand–Gel′fand duality [1978],
and is also related to a construction of Carlsson [1983].

First we discuss the cyclic group of order two. The discussion begins with the
observation that the reduced bar construction on a cyclic group of order two is the
minimal resolution. The Alexander–Whitney map on the reduced bar construc-
tion is strictly associative, and so it follows that the minimal resolution supports
a strictly associative comultiplication. Applying Homk(Z/2)(−, k) to the reduced
bar construction gives a differential graded algebra quasiisomorphic to cochains
on B(Z/2). From this, it follows that we have a quasiisomorphism of differential
graded algebras

C∗(B(Z/2); k)' H∗(Z/2, k)
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where the right hand side is regarded as a differential graded algebra with zero dif-
ferential. A differential graded algebra is said to be formal if it is quasiisomorphic
to its cohomology. The statement above says that C∗(B(Z/2); k) is formal.

Using the Künneth theorem and the Eilenberg–Zilber theorem, it follows that
C∗(B E; k) is also formal, since we have quasiisomorphisms

C∗(B E; k)' C∗(B(Z/2); k)⊗k · · · ⊗k C∗(B(Z/2); k)

' H∗(Z/2, k)⊗k · · · ⊗k H∗(Z/2, k)

∼= H∗(E, k)= k[x1, . . . , xr ].

Thus we have equivalences of categories

Ddg(C∗(B E; k))' Ddg(H∗(E, k))= Ddg(k[x1, . . . , xr ]). (14.1)

Theorem 14.2. Let E be an elementary abelian 2-group and k a field of charac-
teristic two. Then there is an equivalence of triangulated categories

K(Inj k E)' Ddg(H∗(E, k))= Ddg(k[x1, . . . , xr ]).

Proof. This follows by combining the equivalences

K(Inj k E)' Ddg(Endk E(ik))' Ddg(C∗(B E; k))

' Ddg(H∗(E, k))= Ddg(k[x1, . . . , xr ])

coming from Proposition 3.1, Theorem 4.1 and Equation (14.1). �

Remark 14.3. The curious reader may wonder whether these equivalences are
monoidal, and if so, why this does not imply that the Steenrod operations on
H∗(B E; k) are trivial. The point here is that there are in fact many inequivalent
E∞ structures on the formal differential graded algebra k[x1, . . . , xr ]. There is a
trivial one which would make the Steenrod operations act trivially, but this is not
the one coming from C∗(B E; k). If E ′ is a subgroup of the group of units of k E
of augmentation one, inducing an isomorphism k E ′ ∼= k E , then this gives another,
usually inequivalent E∞ structure on k[x1, . . . , xr ]. There is another one coming
from viewing k E as a restricted universal enveloping algebra. The fact that these
E∞ structures are inequivalent can be seen by examining the corresponding tensor
products of k E-modules. So the point is that the equivalences in the theorem are
monoidal, but the monoidal structure on Ddg(k[x1, . . . , xr ]) is not the one coming
from the derived tensor product over this graded commutative ring.
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