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Joint moments of derivatives of
characteristic polynomials

Paul-Olivier Dehaye

Pour Annie & Jean-Paul

We investigate the joint moments of the 2k-th power of the characteristic poly-
nomial of random unitary matrices with the 2h-th power of the derivative of this
same polynomial. We prove that for a fixed h, the moments are given by rational
functions of k, up to a well-known factor that already arises when h = 0.

We fully describe the denominator in those rational functions (this had al-
ready been done by Hughes experimentally), and define the numerators through
various formulas, mostly sums over partitions.

We also use this to formulate conjectures on joint moments of the zeta func-
tion and its derivatives, or even the same questions for the Hardy function, if we
use a “real” version of characteristic polynomials.

Our methods should easily be applied to other similar problems, for instance
with higher derivatives of characteristic polynomials.

More data and computer programs are available as expanded content.

1. Introduction

Our central object of study is the characteristic polynomial

ZU (θ) :=

N∏
j=1

(1 − ei(θ j −θ))

of an N × N random unitary matrix U with eigenangles θ j , and specifically the
joint moments of the powers of this polynomial and its derivative. Our results,
which we state forthwith, are motivated by questions in number theory (page 33),
and obtain by techniques from representation theory and algebraic combinatorics
(see Section 1).

We define
VU (θ) := eiN (θ+π)/2e−i

∑N
j=1 θ j /2 ZU (θ). (1)

MSC2000: primary 11M26; secondary 60B15, 15A52, 33C80, 05E10.
Keywords: discrete moment, random matrix theory, unitary characteristic polynomial, Riemann

zeta function, Cauchy identity.
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It is easily checked that for real θ , VU (θ) is real and |VU (θ)| = |ZU (θ)|.
In this paper, we will investigate the averages (with respect to Haar measure)

|M|N (2k, r) :=

〈
|ZU (0)|2k

∣∣∣ Z ′

U (0)

ZU (0)

∣∣∣r〉
U(N )

,

(M)N (2k, r) :=

〈
|ZU (0)|2k

( Z ′

U (0)

ZU (0)

)r
〉

U(N )

,

|V|N (2k, r) :=

〈
|VU (0)|2k

∣∣∣V ′

U (0)

VU (0)

∣∣∣r〉
U(N )

and their asymptotics

|M|(2k, r) := lim
N→∞

|M|N (2k, r)/N k2
+r ,

(M)(2k, r) := lim
N→∞

(M)N (2k, r)/N k2
+r ,

|V|(2k, r) := lim
N→∞

|V|N (2k, r)/N k2
+r .

As they involve both the characteristic polynomials and their derivatives, we call
these averages joint moments. It is easy to show (by expanding the Haar measure
explicitly) that the joint moments at finite N only make sense when 2k − r > −1.
For the asymptotics, the normalization by N k2

+r is due to Hughes [2005] (and
proved in this paper anyway).

This and related problems have been looked at by Conrey et al. [2006], Hughes
[2001; 2005], Hughes et al. [2000], Forrester and Witte [2006a] and Mezzadri
[2003]. However, much mystery remains, in particular for the dependency in r
when r ∈ R \ N.

While r ∈ R \ N remains out of reach, we offer in this paper an alternative
approach that uncovers some of the structure in those averages.

Theorem 1.1. For r ∈ N and k ∈ C, the moments (M)(2k, r) are essentially given
by rational functions, that is, as meromorphic functions of k we have

(M)(2k, r) =

(
−

i

2

)r G(k + 1)2

G(2k + 1)

Xr (2k)

Yr (2k)
, (2)

where Xr and Yr are even monic polynomials with integer coefficients and with
deg Xr = deg Yr and G is the Barnes G-function [Hughes et al. 2000, Appendix].

Moreover

Yr (u) =

∏
1≤a≤r−1

a odd

(u2
− a2)αa(r),
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with the αa( · ) given by

αa(r) =

⌊
−a +

√
a2 + 4r

2

⌋
.

We derive from this a similar result (Theorem 6.1, page 55) for |M|(2k, 2h) and
|V|(2k, 2h) (for h an integer). Finally, we have explicit expressions for (M)(2k, r)

given in Theorem 5.11, page 53 and Theorem 8.2, page 62 which allow us to
compute the Xr (u)s, as given in Table 2, page 56, and additional data (available in
Section 7).

Motivation. Ever since the works by Keating and Snaith [2000a; 2000b], the Rie-
mann ζ -function can be (conjecturally but quantitatively) better understood through
the modeling by characteristic polynomials of unitary matrices. The classical ex-
ample concerns moments. Let

g(k) :=
G(k + 1)2

G(2k + 1)
,

a(k) :=

∏
p prime

(
1 −

1
p

)k2 ∞∑
m=0

(0(m + k)

m! 0(k)

)2
p−m .

Then one can prove (fairly immediately, using the Selberg integral) that

|M |(2k, 0) = g(k), (3)

which according to the Keating–Snaith philosophy leads to the following conjec-
ture (for k > −1/2):

1
T

∫ T

0

∣∣ζ(1
2 + it)

∣∣2k
dt ∼T g(k) a(k)

(
log

T
2π

)k2

. (4)

The main point is thus that a(k) is obtained by looking at primes, while g(k) is
guessed at from the random matrix side.

Observe also that Equations (3) and then (4) can be analytically continued in k.
Many of the authors cited above have now shown that this philosophy should

be extended to the derivatives of characteristic polynomials.
In particular, |M|(2k, r) should show up as the RMT factor of1

I(2k, r) := lim
T →∞

T −1
(

log
T

2π

)−k2
−r
∫ T

0

∣∣∣ζ(1
2 + it)

∣∣∣2k−r ∣∣∣ζ ′( 1
2 + it)

∣∣∣r dt,

1It is a conjecture of Hall [2004] and Hughes [2001] that this is the appropriate normalization
with respect to T .
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k h a(k) |M|(2k, 2h) I(2k, 2h)

1 1 1
( 1

22

)12

1
(2×1)2

(22−12)1
1
3

[Ingham 1928]

2 1 6
π2

( 1
22

) 12

12
(2×2)2

(42−12)1
2

15π2 [Conrey 1988]

2 2 6
π2

( 1
24

) 12

12
(2×2)4

−8(2×2)2
−6

(42−12)1(42−32)1
61

1680π2 [Conrey 1988]

k h a(k) |V|(2k, 2h) J(2k, 2h)

1 1 1
( 2!

1!23

)12

1
1

(22−12)1
1
12

[Ingham 1928]; see
also [Hughes 2005]

2 1 6
π2

( 2!

1!23

) 12

12
1

(42−12)1
1

120π2
[Conrey 1988]; see
also [Hall 2002b]

2 2 6
π2

( 4!

2!26

) 12

12
1

(42−12)1(42−32)1
1

1120π2
[Conrey 1988]; see
also [Hall 2002b]

Table 1. Summary of results on I(2k, 2h) and J(2k, 2h) when
h 6= 0. The values for |M|(2k, 2h) and |V|(2k, 2h) are as obtained
from Theorem 6.1. The fifth column equals the product of the
third and the fourth. The last column gives the source where the
result in the fifth column was first published.

and similarly |V|(2k, r) is needed for

J(2k, r) := lim
T →∞

T −1
(

log
T

2π

)−k2
−r
∫ T

0

∣∣∣Z( 1
2 + it)

∣∣∣2k−r ∣∣∣Z′( 1
2 + it)

∣∣∣r dt,

where Z is Hardy’s function (the relationship of Z to ζ is analogous to the relation-
ship of VU to ZU , that is, when t ∈ R, Z( 1

2 + it) ∈ R and ±Z( 1
2 + it) =

∣∣ζ(1
2 + it)

∣∣).
More precisely, it is expected that

I(2k, r) = a(k) |M|(2k, r) and J(2k, r) = a(k) |V|(2k, r).

Thus Theorems 1.1 and 6.1 give us a conjectural handle on the moments of ζ and Z.
One can compute some small cases (for integer k and r ) and show that they

agree with previous Number Theory (proved) results. This had already been done
before and is repeated in Table 1.

However, while Keating and Snaith obtained a full conjecture for I(2k, 0) and
J(2k, 0) by computing |M|(2k, 0) and |V|(2k, 0), for the case of joint moments
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this goal remains elusive. All the available formulas for |M|(2k, r) or |V|(2k, r)

are rather inadequate. In particular, those formulas are limited to r := 2h (h an
integer), they are hard to compute for large values of k and h, they obscure some
of the structure in the results, and finally they cannot be analytically continued in h.

Analytic continuation would be important, because Conrey and Ghosh [1989]
have proved (assuming the Riemann Hypothesis) that

J(2, 1) =
e2

− 5
4π

and hence effectively conjectured2

|V|(2, 1) =
e2

− 5
4π

as well since a(1) = 1. In order to get this, we would need to have a sufficiently
nice formula for |V|(2k, 2h) that would allow for the analytic continuation in h.
We have simply been unable to do this but have no doubt that our results should
be helpful for that goal (see the connection with Noumi’s work below).

On the other hand, the formulas obtained in Theorem 5.11, page 53 allow for
much more effective computation than possible before, and we can compute longer
tables for the different moments (see Section 7).

This numerical data is useful as well, as Hall has devised (around 2002) a method
that uses J(2k, 2h) for all 0 ≤ h ≤ k to produce a lower bound 3(k) on

3 := lim sup
n→∞

tn+1 − tn
2π/ log tn

,

where the tn is the n-th positive real zero of ζ(1/2+ it). It is probably good to insist
that this method does not depend on the Riemann Hypothesis, but only on values
for moments! At the time of writing [Hall 2004], Hall only had the information he
needed for k up to 2 (conjecturally, up to 6). In Section 7, we present our conjectural
data for J(2k, 2h) as a direct function of k for h up to 15 (also available online
at [Dehaye 2007a] for h up to 30). For a fixed h, various conjectural formulas
are also given in this paper for J(2k, 2h) as a function of k. This, combined with
Hall’s method, should lead to more (conjectural) lower bounds on 3. It is widely
believed that 3 = ∞ so potentially we could also see if Hall’s method has any
hope to reach that, assuming only information on the J(2k, 2h), but not on the
Riemann Hypothesis. In other words, it would also inform us on the relationship
between moment conjectures, the Riemann Hypothesis and the conjecture 3 = ∞.
We leave this to a further paper.

2This is completely backwards from the usual flow of conjectures from random matrix theory to
number theory, and possibly an unique instance of a reversal of this type.
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Finally, Noumi [2004] investigates the relationship between Painlevé equations
and expressions similar to one of the expressions we obtain for (M)(2k, r), in
Theorem 8.2. Connections of this sort have been uncovered before (see [Forrester
and Witte 2006a; 2006b] and works of Borodin), but an approach through Noumi’s
ideas would be original. One of our goals then would be to obtain analytic con-
tinuation for (M)(2k, r) in r , which would again allow to compute |V|(2, 1). We
also leave this for further study.

Our techniques are quite disconnected from the original motivation, so we dis-
cuss them separately.

Techniques. As mentioned, our techniques lie mostly in representation theory and
algebraic combinatorics. We look at the characteristic polynomials or the deriva-
tives as symmetric functions of the eigenvalues of U , and express them in that
way. We eventually express those symmetric functions in the most natural basis to
use, the Schur functions. This basis is particularly suitable since those functions are
also (irreducible) characters of unitary groups U(N ). We find ourselves integrating
irreducible characters over their support (groups), which is very enviable!

To express all the different functions in this basis of the Schur functions, we use
ideas present in [Bump and Gamburd 2006] and the author’s thesis [Dehaye 2006].
We will introduce those ideas as we need them.

For a more thorough discussion of why a similar approach should always be
attempted and other examples of its applications, please see the author’s thesis and
the results in [Dehaye 2007b].

Once we have a concise expression for the various moments, we still have to
evaluate it. This will involve sums over partitions of values of the Schur functions.
After reparametrizing those sums over the Frobenius coordinates of the partitions,
the results of El-Samra and King were immediately useful to obtain the Schur
values, and the results of Borodin to handle the combinatorics of the sums. We
then obtain a very big sum for the moments (Theorem 5.9), but that can directly
be evaluated on computer (and thus checked against small N results). After taking
asymptotics, our results start simplifying into Theorem 5.11, enough to prove The-
orem 1.1 on the general shape of those moments. However, the best expression is
probably obtained once we use Macdonald’s ninth variation of the Schur functions
(Theorem 8.2).

Organization of this paper. In Section 2, we introduce all the nonstandard notation
we will be using. In Section 3, we present the basic relations satisfied by the
integrands

|ZU (0)|2k
∣∣∣∣ Z ′

U (0)

ZU (0)

∣∣∣∣r , |ZU (0)|2k
( Z ′

U (0)

ZU (0)

)r
, and |VU (0)|2k

∣∣∣∣V ′

U (0)

VU (0)

∣∣∣∣r .
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The bulk of this paper is contained in Sections 4 and 5. In Section 4, we reexpress
the integrands as a sum in the Schur basis, in a way similar to Bump and Gamburd
(via the Dual Cauchy Identity). In Section 5, we engage in a long computation to
evaluate the result obtained in the previous section, mostly using the results of El-
Samra and King, and Borodin. Section 6 merely serves to tie what has been done
in Sections 4 and 5 into the proof of Theorem 1.1. In Section 7 we present the data
we are now able to compute, and particularly discuss the position of the roots of
|V|(2k, 2h) starting on page 57. Section 8 describes two attempts to simplify our
results further, one using Macdonald’s ninth variation of the Schur functions, and
the other imitating a proof of the Cauchy identity.

2. Notation

We let N+ be the set N \ 0. To avoid confusion with the index i , we set i2 = − 1.
We use v for a generic vector (of integers) (v1, . . . , vd), and Ev for a strictly

decreasing sequence of integers v1 > v2 > · · · > vd , which we call a Frobenius
sequence. Frobenius sequences are thus a special type of vectors.

Sequences of weakly decreasing positive integers amount to partitions, and we
stick with classical notation for those, λ = (λ1, . . . , λl(λ)), which defines l(λ). We
also freely change our point of view to Young tableaux when discussing partitions.
We denote by λt the conjugate of a partition λ of |λ|. Define two sequences pi :=

λi − i , qi := λt
i − i . They are strictly decreasing; λi and λt

i are eventually 0, and
hence pi = − i and qi = − i eventually. There exists d such that pd ≥ 0 > pd+1

and qd ≥ 0 > qd+1. We call d the rank of λ. The vectors Ep = (p1, . . . , pd)

and Eq = (q1, . . . , qd) are Frobenius sequences, and we call Ep and Eq the Frobenius
coordinates of the partition λ. We write λ = {Ep : Eq}.

Given p, we define σp ∈ Sd such that sort(p) := (pσp(i)) is strictly decreasing
(and hence a Frobenius sequence). This is thus not defined if pi = p j while i 6= j .
We set sgn(p) := sgn(σp), with the added convention that sgn(p) := 0 if σp is not
defined.

If λ and µ are partitions, λ ∪ µ is the partition obtained by taking the union of
their parts. The partition

〈
XY
〉

has a Y × X rectangle for Young tableau.
We also use the notation

[
1R
]

for R copies of 1, used as argument to a (Schur)
function.

3. Basic relations among the integrands

We logarithmically differentiate Equation (1) to obtain

V ′

U (θ)

VU (θ)
=

iN
2

+
Z ′

U (θ)

ZU (θ)
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and hence, when θ is real,∣∣∣∣ Z ′

U (θ)

ZU (θ)

∣∣∣∣2 =

∣∣∣∣V ′

U (θ)

VU (θ)

∣∣∣∣2 +
N 2

4
=

(
V ′

U (θ)

VU (θ)

)2

+
N 2

4
=

(
Z ′

U (θ)

ZU (θ)

)2

+ iN
(

Z ′

U (θ)

ZU (θ)

)
.

These basic relations give

|M|N (2k, 2h) =

h∑
j=0

(iN )h− j
(h

j

)
(M)N (2k, h + j),

|M| (2k, 2h) =

h∑
j=0

ih− j
(h

j

)
(M)(2k, h + j), (5)

|V|N (2k, 2h) =

h∑
j=0

(h
j

)(
−N 2

4

)h− j
|M|N (2k, 2 j),

|V| (2k, 2h) =

h∑
j=0

(h
j

)(
−1
4

)h− j
|M|(2k, 2 j). (6)

These formulas are initially valid only when h is a nonnegative integer, but the
right-hand sides can be analytically continued by plugging in noninteger h and
extending the sum to infinity.3 Thus we see that computing (M)N (2k, r) would
get us most of the way to |M|N (2k, 2h) or |V|N (2k, 2h), and we now focus on the
integrand |ZU (0)|2k (Z ′

U (0)/ZU (0))r .

4. Derivation into the Schur basis

The goal here is to follow ideas similar of Bump and Gamburd [2006] in order
to prove Proposition 4.3, page 40. One of their main tools was the dual Cauchy
identity. We encourage the reader to look at their first proposition and corollary
for the unitary group, since this is all we really exploit from that paper.

Lemma 4.1 (Dual Cauchy identity). If {xi } and {y j } are finite sets of variables,∏
i, j

(1 + xi y j ) =

∑
λ

sλt (xi )sλ(y j ),

where the sum is over all partitions λ and sλ is the Schur polynomial.

3Getting the correct analytic continuation can be tricky. The relation

|V| (2k, 2h) =

2h∑
j=0

(2h
j

)( i

2

) j
(M)(2k, 2h − j)

is also valid for integers h, but here the right-hand side does not analytically continue in h to the
left-hand side, since we exploit |V ′

U (θ)/VU (θ)|2h
= (V ′

U (θ)/VU (θ))2h , where h must be an integer.
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Apply this lemma setting {x j := eiθ j | j ∈ [1, . . . , N ]} to be the set of eigen-
values of U , and {y j := 1 | j ∈ [1, . . . , 2k]}. We chose the notation sλ(U ) :=

sλ(eiθ1, . . . , eiθN ). This gives∑
λ

sλt (U )sλ([12k
]) = det(Id +U )2k

= det U
k
|det(Id +U )|2k

= s〈k N 〉(U ) |det(Id +U )|2k

or (replacing U by −U )

|ZU (0)|2k
= |det(Id −U )|2k

= (−1)k N s〈k N 〉(U )
∑
λ

(−1)|λ|sλt (U )sλ([12k
]).

We can also reexpress

Z ′

U (0)

ZU (0)
=

N∑
j=1

ieiθ j

1 − eiθ j
=

N∑
j=1

i lim
z→1−

∞∑
m=1

zmeimθ j = i lim
z→1−

∞∑
m=1

zm pm(U ), (7)

where pm(x1, . . . , xN ) is the m-th power sum xm
1 +· · ·+ xm

N and we have used the
same convention as for sλ(U ) of inputting the eigenvalues. We will use the same
convention soon for the power sums pλ :=

∏
i pλi .

In practice, we want the reader to just ignore the variable z and set it to 1. This
will be justified a posteriori.

Putting everything together, we thus get for |ZU (0)|2k (Z ′

U (0)/ZU (0))r

(−1)k N s〈k N 〉(U )

(
i

∞∑
m=1

pm(U )

)r ∑
λ

(−1)|λ|sλ([12k
])sλt (U ). (8)

At this point, we will soon want to use the fact that the sλs are the characters of
unitary groups.

Indeed, if U ∈ U(N ) then when l(λ) > N , we have4 sλ(U ) ≡ 0, but when
l(λ), l(µ) ≤ N , we have 〈

sλ(U )sµ(U )
〉
U(N )

= δλµ;

that is, for large enough N , sλ is an irreducible character of U(N ). This orthogonal-
ity is obviously good for our purposes, but the only obstacle is the need to express
s〈k N 〉(U )

(∑
∞

m=1 pm(U )
)r exclusively in terms of the Schur functions. This can be

done and will require the Murnaghan–Nakayama rule.
Let a ribbon be a connected Young skew-tableau not containing any 2×2-block.

If a ribbon contains m blocks, it is called a m-ribbon. A first approximation to one
version of the M–N rule says that sλ pm is given by a signed sum of sµs, where µ

runs through all partitions obtained by adding a m-ribbon to λ.

4This is a consequence of the fact that sλ(x1, . . . , xn) ≡ 0 if l(λ) > n.
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If we average Expression (8) over U(N ), we could thus see λ as running through
all partitions obtained by adding r ribbons to the rectangle

〈
N k
〉

(this uses the fact
that this lax version of the M–N rule is invariant under transpositions, since we
have yet to discuss the signs). There are more conditions, however. We also need
l(λt) ≤ N (since otherwise sλt (U ) ≡ 0, as in note 4), and we need l(λ) ≤ 2k (since
otherwise sλ([12k

]) = 0, again just as in that note). In other words, λ contains〈
N k
〉

but is contained in
〈
N 2k

〉
. There are only finitely many (ways to obtain) such

partitions, which will make the sum over λs finite, and thus only finitely many sets
of lengths of the r ribbons will contribute. This justifies a posteriori setting z to 1
in (7), but only when we can apply the dominated convergence theorem. This will
only occur if we know of a bound on the integrand independent of z that is itself
integrable. We can pick |ZU (0)|2k

∣∣Z ′

U (0)/ZU (0)
∣∣r whenever this is integrable,

that is, only when 2k − r > −1.
We now state a more precise version of the M–N rule.

Theorem 4.2 (Murnaghan–Nakayama). Let λ be a partition and ρ be a vector with
|λ| =

∑
i ρi . If χλ

ρ is the value of the irreducible character of S|λ| associated to λ

on the conjugacy class of cycle-type sort(ρ), then

pρ =

∑
λ

χλ
ρ sλ (9)

and (more importantly)
χλ

ρ =

∑
S

(−1)ht(S)

summed over all sequences of partitions S = (λ(0), λ(1), . . . , λ(r)) such that r :=

l(λ), 0 = λ(0)
⊂ λ(1)

⊂ · · · ⊂ λ(r)
= λ, and such that each λ(i)

− λ(i−1) is a ribbon
of length ρi , and ht(S) =

∑
i ht(λ(i)

− λ(i−1)).

We have not defined the height ht of a ribbon, but rather than doing so or detailing
the computation here, we only expose the idea. Equation (9) tells us that (

∑
m pm)r

can be computed using the character values of symmetric groups, which can be
evaluated by summing over sequences of partitions (λ(0), . . . , λ(r)). For each such
sequence, the sequence (λ̃(0), . . . , λ̃(r)), with λ̃(i)

:=
〈
N k
〉
∪ λ(i), would be asso-

ciated with the combinatorics of the expansion of the product in (8). Indeed the
combinatorics of ribbon is unchanged under translations (down by k) as long as
the partitions are kept within a rectangle (actually, a horizontally bounded region).

If the computation is explicitly carried out, we get the following result.

Proposition 4.3. If 2k − r > −1, we have

(M)N (2k, r) = ( − i)r
∑

µ∈Nr
+

∑
λwithin
k×N

χλ
µ s〈N k〉∪λ([1

2k
]), (10)
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with the understanding that χλ
µ = 0 if |λ| 6=

∑
i µi .

For this result, we have preferred to index all the partitions containing
〈
N k
〉

but
contained in

〈
N 2k

〉
as
〈
N k
〉
∪ λ, for λ ⊂

〈
N k
〉
.

We are now left with the task of evaluating the right-hand side of (10), which
will turn out to be a tedious process.

5. Main computation

We are left with two problems. The first one is due to the characters of the
symmetric group. Those are of course desperately hard to evaluate directly and
individually. We are helped here because we will actually only evaluate something
close to ∑

µ∈Nl
+

χλ
µ

for given λ. This amounts to computing the sum of values of the character χλ over
the permutations with l cycles. The second issue is evaluating s〈N k〉∪λ([12k

]). The
author had previously used the Weyl Dimension Formula to do this (see [Dehaye
2006]). A formula giving that dimension in terms of the Frobenius coordinates of
λ is probably better adapted for our purposes.

In addition, both “problems” combine extremely well, in that both expressions
should involve a sign, which turns out to be the same.

We will then sum our terms over all partitions, expressed in Frobenius coordi-
nates. This amounts to summing over possible ranks (1 ≤ d) and then pairs of
Frobenius sequences of length d .

The value of the Schur function in Frobenius coordinates.

Dimension formula in Frobenius coordinates. El Samra and King [1979] use the
notation DR{p : q} for s{Ep : Eq}([1R

]).
Assume {Ep : Eq} has d Frobenius coordinates. They prove that

s{Ep : Eq}([1R
]) =

∣∣∣∣ (R + pi )!

(R − q j − 1)! pi !q j !(pi + q j + 1)

∣∣∣∣
d×d

=

d∏
i=1

(R + pi )!

(R − qi − 1)! pi !qi !

∏
1≤i< j≤d

(pi − p j )(qi − q j )

d∏
i, j=1

1
pi + q j + 1

(11)

where the first expression is also known as the reduced determinantal form (see
[Foulkes 1951], as cited in [El Samra and King 1979]).

It is a consequence of Cauchy’s Lemma that the two expressions in (11) are
equivalent.
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Lemma 5.1 (Cauchy).

∣∣∣∣ 1
pi + q j + 1

∣∣∣∣
d×d

=

∏
1≤i< j≤d

(pi − p j )(qi − q j )

d∏
i, j=1

1
pi + q j + 1

.

Observe that Formula (11) is positive (as it should, given that it is also a dimen-
sion) because the pi and qi are strictly decreasing.

However, the right-hand side of (11) still makes sense if we plug in the unsorted
vectors p, q (with even the possibility of i 6= j but pi = p j ). Hence this can be
used to define s{p : q}([1R

]) as well, which is then skew-symmetric in both the pi s
and the qi s separately. This can be written

s{p : q}([1R
]) = sgn(p) sgn(q)s{sort(p) : sort(q)}([1R

]). (12)

Observe that Formula (12) is still valid when sort(p) or sort(q) is not defined (this
happens when two of the entries of p or q are equal) thanks to sgn(p) sgn(q) = 0!
(See the conventions in Section 2.)

Finally, it is helpful to remark that Formula (11) for s{p : q}([1R
]) can be seen as

a product indexed by the sets p∪q and pairs in the set (p×p) ∪ (q×q) ∪ (p×q).

Evaluation of s〈N k〉∪λ([12k
]). We take λ = {Ep : Eq} to have d Frobenius coordinates.

In total analogy with (12), we first extend the definition of s〈N k〉∪λ and set

s〈N k〉∪{p : q} := sgn(p) sgn(q)s〈N k〉∪{sort(p) : sort(q)},

with the understanding (as before) that the value of the right-hand side is taken as
0 if pi = p j or qi = q j for some i 6= j . Again, this is skew-symmetric in the pi s
and separately in the qi s.

We have the following lemma.

Lemma 5.2. Let p, q be vectors with d coordinates. Then

s〈N k〉∪{p : q}([1
2k

])

= s〈N k〉([1
2k

])

( d∏
i=1

(N − pi )
(k)(k − qi )

(k)

(pi + k + 1)(k)(N + qi + 1)(k)

)
s{p : q}([12k

]). (13)

Proof. By skew-symmetry, we really only have to check this for {Ep : Eq}. If we want
to use (11), we should look at the Frobenius coordinates of

〈
N k
〉
∪λ. This would be

rather unpleasant (particularly because the number of Frobenius coordinates would
change for fixed N and k according to the λ considered).

We look instead at
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Ex := (N + k − 1, . . . , N ) ,

Ey := (2k − 1, . . . , k) ,

Eα := Ex ∪ Ep (sorted), and
Eβ := Ey ∪ Eq (sorted).

Then Eα and Eβ are strictly decreasing, so those are Frobenius coordinates. The
partition corresponding to those coordinates is obtained geometrically by sticking
a
〈
k2k
〉

block to the left of
〈
N k
〉
∪λ, or equivalently, shifting

〈
N k
〉
∪λ by k spots to

the right, while considering λ = (λ1, . . . , λk) to have exactly k parts (with some
possibly empty).

Because of this, we have (as in [Bump and Gamburd 2006, page 6])

s
{Eα : Eβ}

([12k
]) = ek

2k([1
2k

]) s〈N k〉∪λ([1
2k

]) = s〈N k〉∪λ([1
2k

]).

Additionally, {Ex : Ey} are the Frobenius coordinates of
〈
(N + k)k

〉
∪
〈
kk
〉
. Hence,

for the same reason as above, we have

s{Ex : Ey}([12k
]) = s〈(N+k)k〉∪〈kk〉([1

2k
]) = ek

2k([1
2k

]) s〈N k〉([1
2k

]) = s〈N k〉([1
2k

]).

When evaluating the product described in (11) using the Eα and Eβ coordinates,
we have a big product taken over the sets Eα, Eβ, Eα× Eα, Eβ× Eβ and Eα× Eβ. We expand
those index sets using Eα = Ex ∪ Ep and Eβ = Ey ∪ Eq.

One can see that the products indexed by Ep, Eq, Ep × Ep, Eq × Eq and Ep × Eq together
give

s{Ep : Eq}([12k
]) = sλ([12k

]).

Similarly, the products indexed by Ex, Ey, Ex × Ex, Ey × Ey and Ex × Ey give

s{Ex : Ey}([12k
]) = s〈N k〉([1

2k
]).

We are left with only “cross-products” to evaluate, for the index sets Ex×Ep, Ex×Eq,
Ey × Ep and Ey × Eq. The definitions of Ex and Ey now give the result. �

Sums of characters over conjugacy classes with same number of cycles. Assume
f
(
{p : q}

)
is a function of pairs of vectors of the same length (say d). One can set

f (λ) := f
(
{Ep : Eq}

)
, where λ = {Ep : Eq}.

The goal in this section is to evaluate sums of characters of the general form∑
µ∈Nl

+

χλ
µ f (λ).

We will eventually take f (λ) = s〈N k〉∪λ([12k
]) but there is no reason to limit our-

selves in that way for a while.
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We rely on a few results of Borodin, that give a slightly different version of the
Murnaghan–Nakayama rule.

Definitions. This is based on [Borodin 2000, around page 15] and [Borodin and
Olshanski 1998, around page 6]. The relevant definitions (not included here) are
fragment, the different block types, the filling numbers, filled structure, sign of a
structure.

Theorem 5.5 is almost in Borodin’s work, and his definitions are used in Propo-
sition 5.6. Both of those results are used for Theorem 5.9, which can be read
without looking at Borodin’s papers.

However, the first condition to have a fragment needs clarification in both papers,
that is, we change

“(1) there is exactly one hook block that precedes the others”

to

“(1) there is exactly one hook block in each fragment. That hook block
precedes any other block in the fragment”.

We also would like to correct a statement in [Borodin 2000], in that linear hor-
izontal or vertical blocks are positive, not just nonnegative integers (in agreement
with the other cited paper of Borodin [Borodin and Olshanski 1998]).

We can highlight one of the definitions. Any filled structure T with d fragments
produces a set of pairs

{(p1, q1), . . . , (pd , qd)}

which consists of the filling p- and q- numbers of the fragments.
The sign of T is defined as follows.

sgn(T ) = sgn(p) sgn(q)(−1)
∑

qi +v(T ),

where, as a reminder, the sgn inside the formula is 0 if pi = p j (respectively,
qi = q j ) for i 6= j .

Simplified Murnaghan–Nakayama rule. Although we haven’t defined anything,
we state Proposition 4.3, taken from the first paper of Borodin.

Proposition 5.3. For any two partitions λ and ρ with |λ| = |ρ|, we have

χλ
ρ =

∑
T

sgn T,

where the sum is taken over all filled structures of cardinality ρ = (ρ1, . . . , ρl)

such that the sequences (p1, . . . , pd) and (q1, . . . , qd) of filling p-numbers and
q-numbers of the structure T coincide, up to a permutation, with the Frobenius
p-coordinates and q-coordinates of the partition λ, that is, λ = {sort(p) : sort(q)}.
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The proof of this proposition is quite simple. Back to the original presentation of
the Murnaghan–Nakayama rule in terms of hooks, Borodin analyzes what happens
to Frobenius coordinates when subtracting hooks/ribbons. Each such subtraction
corresponds to a block. There are three cases to distinguish: the hook/ribbon can
be above or below the “Frobenius diagonal” or even overlap it. Those cases cor-
respond respectively to linear horizontal blocks, linear vertical blocks, and hook
blocks.

This proposition, as stated in Borodin’s work, is slightly restrictive: there is no
need for ρ to be a partition. Let ρ = (ρ1, . . . , ρl) be a vector of positive integers
and define (just as in Theorem 4.2) χλ

ρ := χλ
sort(ρ). Then, by summing over all

vectors ρ, we get:

Proposition 5.4. For any partition λ,∑
ρ∈Nl

+

χλ
ρ =

∑
T

sgn T,

where the sum is taken over all filled structures T of l blocks and with filling p-
numbers (p1, . . . , pd) and q-numbers (q1, . . . , qd) such that λ={sort(p) : sort(q)}.

Observe that d , the rank of λ, has to be less than or equal to l in order to have
a structure.

We now state the main theorem we will use, which originates in Borodin’s work.

Theorem 5.5. Assume f is skew-symmetric within its two vector entries (sepa-
rately), that is f

(
{sort(p) : sort(q)}

)
= sgn(p) sgn(q) f

(
{p : q}

)
. Then

∑
λwithin
k×N

∑
ρ∈Nl

+

χλ
ρ f (λ) =

l∑
d=1

∑
p∈[0,N−1]

d

q∈[0,k−1]
d

f
(
{p : q}

) ∑
T (p,q)

(−1)
∑

qi +v(T ),

where T (p, q) goes trough all filled structures of d fragments, l blocks, v(T ) ver-
tical blocks with filling p-numbers (p1, . . . , pd) and q-numbers (q1, . . . , qd).

Proof. We start by summing Proposition 5.4 over λs fitting inside a k × N box:∑
λwithin
k×N

∑
ρ∈Nl

+

χλ
ρ f (λ) =

∑
λwithin
k×N

∑
T (p,q)

(−1)
∑

qi +v(T ) sgn(p) sgn(q) f (λ)

=

∑
λwithin
k×N

∑
T (p,q)

(−1)
∑

qi +v(T ) f
(
{p : q}

)
,

where the second sum in each right-hand side is over all filled structures T (p, q) of
l blocks and d fragments such that the sequences of filling p-numbers (p1, . . . , pd)

and q-numbers (q1, . . . , qd) of the structure coincide, up to two permutations, with
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the sequences of Frobenius p-coordinates and q-coordinates of the partition λ =

{sort (p) : sort (q)}. Note that d changes with λ.
We then obtain the final result by seeing the double sum over λ then permuted

Frobenius coordinates of λ as a sum over all vectors of appropriate lengths.
We should not be concerned about vectors having two identical coordinates (say

pi = p j ), since the corresponding term on the right-hand side vanishes by skew-
symmetry of f . �

Counting structures. We now need to compute the sum∑
T (p,q)

(−1)
∑

qi +v(T ),

which is taken over the structures described above, that is, for given l, d , p, q,
v. It would help to know how many structures there are for each choice of those
parameters. We prove the following proposition.

Proposition 5.6. There are exactly #T (l, d, p, q, v) :=∑
s,t∈Nd∑

ti =v

d+
∑

si +ti =l

[
(sd + td + · · · + s1 + t1 + d)!∏

si !
∏

ti !
∏d

i=1(d + 1 − i +
∑d

j=i s j + t j )

]
×

[ d∏
i

( pi
si

)(qi
ti

)]
(14)

structures with d fragments, l blocks, filling numbers p = (p1, . . . , pd) and q =

(q1, . . . , qd) and v vertical blocks. The indices in the sum si (respectively, ti ) count
horizontal (respectively, vertical) blocks in the i-th fragment.

Proof. This is a purely combinatorial problem. Given the number of vertical blocks
on each fragment, we essentially have a partial order on blocks that we want to
extend to form a linear order (across fragments). Part of the rules in the initial
partial order say that the hook-block in the i-th fragment precedes any other block
in that fragment. We then need to fill the structure, that is, to choose filling numbers
for each block.

We can reverse this process.

• We first choose the numbers of horizontal and vertical blocks si and ti on the
i-th fragment. We have the conditions that

∑
ti = v(T ) and d +

∑
si + ti = l

(that is, there are l blocks in total, d hook, si horizontal in the i-th fragment
and ti horizontal in the i-th fragment).

• Starting from the d-th fragment, we decide where to insert the horizontal and
vertical blocks of the i-th fragment in the partial order that is established so
far on the set of fragments from the (i + 1)-th to the d-th one.

• We decide how to cut up the i-th fragment into filled blocks, respecting the
number of horizontal/vertical blocks decided upon earlier.
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The equality in the statement is intended to reflect clearly the layering described
above: the sum corresponds to the first layer, while the other two layers correspond
to one square-bracketed factor each.

Observe that the relation sd + td +· · ·+s1 + t1 +d = l could be used to simplify
the numerator in this expression.

The only hard part is to derive for the second step

(sd + td + · · · + s1 + t1 + d)!∏
si !
∏

ti !
∏d

i=1(d + 1 − i +
∑d

j=i s j + t j )

=
(sd + td + · · · + s1 + t1 + d)!∏

si !
∏

ti !

(
(sd+td+1)×

(sd+td+sd−1+td−1+2)×
···×

(sd+td+sd−1+td−1+···+s1+t1+d)

) .

This is obtained by simplifying

d−1∏
i=0

(
i +
∑d

j=d−i s j +t j

sd−i +td−i

)(sd−i +td−i
sd−i

)
,

where the i-th factor in the
∏d−1

i=0 -product counts the number of ways of choosing
the linear order on the blocks of the (d − i)-th fragment, as we know that the linear
order restricted on the blocks of the fragments d − i + 1 to d.

The first binomial factor intersperses the set of blocks of the (d − i)-th fragment
among the blocks of fragments d − i + 1 to d , while the second factor decides
which blocks are horizontal and which are vertical. �

We wish to insist on the fact that the summand in (14) is not symmetric in the
pi s or the qi s, because the factor in the denominator,

d∏
i=1

(
d + 1 − i +

d∑
j=i

s j + t j

)
,

is not symmetric in the s j s or the t j s. For instance, sd appears d times while s1

appears only once.

Sum of determinants. We now aim to put together all the results obtained so far in
this section, but we first need a quick lemma.

Lemma 5.7. Let s and t be vectors of integers. Then∑
σ,τ∈Sd

(sgn σ sgn τ)∏d
i=1(d+1−i+

∑d
j=i sσ( j)+tτ( j))

=

∏
1≤i< j≤d

(si−s j )(ti−t j )
∏

1≤i, j≤d

1
1+si+t j

.

Proof. The proof proceeds as for the classical computation for the Vandermonde
determinant: the left-hand side is skew-symmetric in s and t separately, and has
obvious poles as prescribed on the right-hand side (when si0 + t j0 = − 1), and the
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degrees on the right-hand side are appropriate. Up to a constant of proportionality,
both sides are thus the same. This constant is shown to be 1 by looking at the rates
of decrease when s1 goes to infinity. �

Proposition 5.8. Assume f is skew-symmetric within its two vector entries (sepa-
rately), that is, f

(
{sort(p) : sort(q)}

)
= sgn(p) sgn(q) f

(
{p : q}

)
. Then∑

µ∈Nl
+

∑
λwithin
k×N

χλ
µ f (λ) = l!

l∑
d=1

∑
p∈[0,N−1]

d

q∈[0,k−1]
d

v

f
(
{p : q}

)
(−1)

∑
qi +v

∑
Es,Et∈Nd∑

ti =v

d+
∑

si +ti =l

d∏
i

( pi
si

)(qi
ti

)∏
i

1
si !ti !

∏
1≤i< j≤d

(si − s j )(ti − t j )
∏

1≤i, j≤d

1
1 + si + t j

.

Proof. We first combine (10) with Theorem 5.5:∑
µ∈Nl

+

∑
λwithin
k×N

χλ
µ f (λ)

= l!
l∑

d=1

∑
p∈[0,N−1]

d

q∈[0,k−1]
d

v

f
(
{p : q}

)
(−1)

∑
qi +v

×

∑
s,t∈Nd∑

ti =v

d+
∑

si +ti =l

∏d
i

( pi
si

)(qi
ti

)
∏

si !
∏

ti !
∏d

i=1(d + 1 − i +
∑d

j=i s j + t j )

= l!
l∑

d=1

∑
p∈[0,N−1]

d

q∈[0,k−1]
d

v

f
(
{sort(p) : sort(q)}

)
(−1)

∑
qi +v

×

∑
s,t∈Nd∑

ti =v

d+
∑

si +ti =l

sgn(p) sgn(q)
∏d

i

( pi
si

)(qi
ti

)
∏

si !
∏

ti !
∏d

i=1(d + 1 − i +
∑d

j=i s j + t j )

= l!
l∑

d=1

∑
{Ep : Eq}

within k×N
v

f
(
{Ep : Eq}

)
(−1)

∑
qi +v

∑
Es,Et∈Nd∑

ti =v

d+
∑

si +ti =l

∑
σ,τ∈Sd

[∑
π,θ∈Sd

sgn(π) sgn(θ)
∏d

i

( pπ(i)
sσ(i)

)(qθ(i)
tτ(i)

)]
∏

sσ(i)!
∏

tτ(i)!
∏d

i=1(d + 1 − i +
∑d

j=i sσ( j) + tτ( j))
.
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Now it is crucial that for fixed Ep, Eq, Es,Et, the sign of this last numerator (bracketed)
will depend on the parity of σ and τ . Hence we obtain for the preceding expression

l!
l∑

d=1

∑
{Ep : Eq}

within k×N
v

f
(
{Ep : Eq}

)
(−1)

∑
qi +v

∑
Es,Et∈Nd∑

ti =v

d+
∑

si +ti =l

∑
π,θ∈Sd

sgn(π) sgn(θ)

d∏
i

( pπ(i)
si

)(qθ(i)
ti

)

×

∑
σ,τ∈Sd

sgn(σ ) sgn(τ )∏
sσ(i)!

∏
tτ(i)!

∏d
i=1(d+1−i+

∑d
j=i sσ( j) + tτ( j))

= l!
l∑

d=1

∑
{Ep : Eq}

within k×N
v

f
(
{Ep : Eq}

)
(−1)

∑
qi +v

×

∑
Es,Et∈Nd∑

ti =v

d+
∑

si +ti =l

∑
σ,τ∈Sd

sgn(σ ) sgn(τ )
∏d

i

( pi
sσ(i)

)( qi
tτ(i)

)
∏

sσ(i)!
∏

tτ(i)!
∏d

i=1(d+1−i+
∑d

j=i sσ( j) + tτ( j))
.

The last line is now perfectly set for the substitution using Lemma 5.7. After
changing the range of summation on {Ep : Eq} within k × N to p ∈ [0, N−1]

d , q ∈

[0, k−1]
d , we obtain the announced result.

Admittedly, this is not very enlightening. It is thus worth highlighting what hap-
pens: the sums we deal with initially are sums over partitions. By using Frobenius
coordinates, and sorting the partitions by their rank d , we are expressing the main
sum into a sum over d of multisums in d variables. We thus now have sums over
two sets of d strictly decreasing variables (the sets Ep and Eq) of different ways of
building up this partition (the data encoded in s and t). Using skew-symmetry, we
can unsort the variables Ep and Eq to p and q and decide instead to sort the variables
according to “building blocks”, that is, switch from s and t to Es and Et. �

Putting everything together. We combine all the information obtained so far, and
simultaneously clear the restriction d +

∑
si + ti = l in (14) by encoding all the

moments at once into an exponential generating function.

Theorem 5.9. For a fixed k ∈ N, the two series
∑

r>0(M)N (2k, r)
(iz)r

r !
and

s〈N k〉([1
2k

])

∞∑
d=1

∑
Es,Et∈Nd

∣∣∣∣ z1+si +t j

si !t j !(1 + si + t j )

∣∣∣∣
d×d

×

∑
p∈[0,N−1]

d

q∈[0,k−1]
d

∣∣∣∣∣∣∣ k

( pi
si

)(q j
t j

)(k+ pi
pi

)(k−1
q j

)
(N − pi )

(k)(−1)q j

(N + q j + 1)(k)(1 + pi + q j )

∣∣∣∣∣∣∣
d×d

(15)
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have equal zr coefficients for r < 2k + 1.

Proof. A first necessary remark is that as a formal power series, the second series
is well defined: the sum to obtain the r -th coefficient in that series reduces to a
finite sum (because si ≤ pi and t j ≤ q j ).

We know from (12) that
s〈N k〉∪{p : q}([1

2k
])

is skew-symmetric in p and q (separately). Hence we can combine the relations
(10), (11) and (13) with Proposition 5.8 to obtain a huge sum. The main statement
then follows from the recombinations of the main product into determinants, using
Cauchy’s Lemma (5.1). �

Remarks on Theorem 5.9.
• This is a hypergeometric multisum (at least for fixed d), when we expand the
determinants using Cauchy’s Lemma. However, not even small d’s seem tractable
on computer.

• A definite advantage of this formula is that it can be tested at finite N (by ex-
panding the integral defining (MN )(2k, r) symbolically using the Haar measure).
This is helpful to confirm the results obtained so far.

• We wish to insist on the idea behind this theorem: initially we had a combinatorial
problem on structures — see (14) — that had no symmetry for its summands in the
si s or ti s. We have exploited some skew-symmetry in the as and bs in (13) to
change this. In particular, we have now switched from a sum over Ep, Eq, s, t to a
sum over p, q, Es,Et. We have also simplified the denominator in (14).

• As a consequence of the previous point, we can now assume that the si s are all
different. The same is true for the ti .

• This has useful consequences, especially for computational purposes. It is inter-
esting to compute a bound on r such that partitions with d fragments will have a
nonzero contribution to the final sum in (M)N (2k, r). We have r ≥ d +

∑
si + ti ,

and the si s (respectively, ti s) should be all different. We can take them to be
0, 1, . . . , d − 1. We thus have r ≥ d + 2 d(d−1)

2 = d2.

We now define

H N ,k,s,t
:= s!t !

∑
p∈[0,N−1]

q∈[0,k−1]

k(N − p)(k)(−1)q

(N + q + 1)(k)(1 + p + q)

(k+ p
p

)(k−1
q

)( p
s

)(q
t

)
,

where the right-hand side is taken to be similar to the entries in one of the deter-
minants in (15).

I have not been able to obtain a much better expression for this with Mathemat-

ica. Normally, the package MultiSum [Wegschaider 2004] should be able to deal



Joint moments of derivatives of characteristic polynomials 51

with multiple hypergeometric series, but this particular one is too complicated. We
will thus focus on an easier problem from now on, the problem of asymptotics (that
is, we switch from (M)N (2k, r) to (M)(2k, r)).

Asymptotics. We need to compute asymptotics for H N ,k,s,t more precisely.

Proposition 5.10. For a fixed integer k ≥ 1, when k > t ,

H k,s,t
:= lim

N→∞

H N ,k,s,t

N 1+s+t = k
k−t−1∑

i=0

0(k+i)0(s+i +t+1)

0(i +1)0(k+s+t+i +2)

=
1

1+s+t

∏2k−1
i=k (i −t)∏2k

j=k+1( j +s)
=

1
1+s+t

0(2k−t)0(k+s+1)

0(k−t)0(2k+s+1)
. (16)

(This last expression is well defined since k > t .)

Proof. Define

H̃ N ,k,s,t
:= t !

∑
p∈[0,N−1]

q∈[0,k−1]

k(N − p)k(−1)q

(N + q + 1)k(1 + p + q)

pk

k!

(k−1
q

)
ps
(q

t

)
,

that is to say, H N ,k,s,t stripped of some of its terms of obviously lower order in p,
N and q combined. We do this because we want to compute the leading order of
H N ,k,s,t and there will be lots of cancellations due to the sum over q , as shown by
(18) below.

Thus we wish to compute

lim
N→∞

H̃ N ,k,s,t

N 1+s+t = lim
N→∞

H N ,k,s,t

N 1+s+t .

The proof of the second equality in the proposition follows from two basic iden-
tities on formal series:

(1−r X +r2 X2
−· · · )k(1−s X +s2 X2

−· · · ) =

∑
j

(−1) j
j∑

i=0

(k+i −1
i

)
r i s j−i X j

(17)
and ∑

0≤ j≤k−1
0≤q≤k−1

(−1)q
(k−1

q

)
q j X j

= (−1)k+1(k − 1)! X k−1. (18)

We expand the definition of H̃ N ,k,s,t as a power series in q . Identity (17) indicates
that we should only look at the coefficient of qk−1, which we obtain from (18),
setting r := 1/N , s := 1/(p+1). We then let N tend to infinity, so the sum over p
becomes a Riemann sum. Its limit is a β-integral, and thus a β-function appears,
which can be expanded into a product of 0-functions, giving the desired equality.
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The last equality in the statement of the proposition is immediate and is the only
one to require the bound k > t .

For the third equality in the statement,5 we define

H k,s,t
a := k

∞∑
i=0

0(k+a+i)0(s+a+i +t+1)

0(a+i +1)0(k+s+t+a+i +2)

=
k0(a+k)0(a+s+t+1)

0(a+1)0(a+k+s+t+2)
3 F2

( 1, a+k, a+s+t+1
a+1, a+k+s+t+2 ; 1

)
,

where the second equality follows form the definition of 3 F2. Then

H k,s,t
= H k,s,t

0 − H k,s,t
k−t . (19)

Since

3 F2

( 1, c, d
e, c+d−e+2 ; 1

)
=

c+d−e+1
(c−e+1)(d−e+1)

(
1−e+

0(c+d−e+1)0(e)
0(c)0(d)

)
,

(see [Mat 2001], for example), we have

H k,s,t
a =

1
1+s+t

(
1−

a0(a+k)0(a+s+t+1)

0(a+1)0(a+k+s+t+1)

)
,

which yields the desired equality thanks to (19). �

Let G( · ) be the Barnes G-function [Hughes et al. 2000, Appendix]. It is a quick
consequence of the Weyl dimension formula [Bump and Gamburd 2006, (18)] that

s〈N k〉([1
2k

]) ∼N
G(k + 1)2

G(2k + 1)
N k2

.

We use the previous proposition to give a relatively concise expression for
(M)(2k, r).

Theorem 5.11. For a fixed k ∈ N, the two series
∑
r>0

(M)(2k, r)
(iz)r

r !
and

G(k + 1)2

G(2k + 1)

∞∑
d=1

∑
Es,Et∈Nd

∣∣∣∣ 1
si !t j !(1 + si + t j )

∣∣∣∣
d×d

∣∣∣∣H k,si ,t j

si !t j !

∣∣∣∣
d×d

zd+
∑

(si +ti ) (20)

have equal coefficients of zr for r < 2k + 1. For a fixed r , the coefficients of zr for
low values of k can be meromorphically continued into each other. The series (20)

5This equality was first proved using Mathematica. Paul Abbott observed that the hypergeometric
function that appears is Saalschützian and extracted the following proof by tracing Mathematica’s
output.
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can also be written as

G(k+1)2

G(2k+1)

∞∑
d=1

∑
Es,Et∈Nd

∣∣∣∣ 1
si !t j !(1+si +t j )

∣∣∣∣2
d×d( d∏

i, j=1

0(2k−t j )0(k+si +1)

0(k−t j )0(2k+si +1)

)
zd+

∑
si +ti

(21)

and
G(k+1)2

G(2k+1)

∑
λ={Es :Et}
rank λ=d

sλ([1k
])

∣∣∣∣∣∣∣
0(2k−t j )

0(2k+si +1)

si !t j !(1+si +t j )

∣∣∣∣∣∣∣
d×d

z|λ|. (22)

Furthermore, by using Cauchy’s Lemma, one can switch to an expression involving
products instead of determinants (that is, a hypergeometric expression).

Proof. For (20), we proceed by substitution into (15), and looking at terms of order
N k2

+r . Again, Cauchy’s Lemma is used repeatedly to reorganize determinants.
To obtain (21) or (22), we reorganized yet again the determinants using Cauchy’s

Lemma into a form corresponding to (11). We also summed over the partitions λ

instead of summing first over their rank d then their Frobenius coordinates Es,Et.
For a fixed r , both sides indeed admit meromorphic continuations in k, which

are equal by Carlson’s Theorem [Andrews et al. 1999, Theorem 2.8.1, p. 110].
(See also [Dehaye 2006, p. 86].) Indeed, the left-hand side is shown to admit a
meromorphic continuation in k using a Pochhammer contour. The meromorphic
continuation on the right-hand side is already written in (21), if we admit that what
is meant there is the value of the meromorphic continuation in k evaluated at k.
The difference of the two sides satisfies the hypotheses in Carlson’s Theorem, in
that its value is 0 at integers, it is of exponential type, and the type < π along the
axes parallel to the imaginary axis. similar statements are shown in [Dehaye 2006].

It is probably good to insist that the meromorphic continuation of

0(2k − t j )0(k + si + 1)

0(k − t j )0(2k + si + 1)

to the left has to be taken very carefully and cannot be obtained by just plugging
in values of k, once k ≤ t . We will discuss similar issues in Section 9. �

We now aim to replace the determinant left in (22) by a friendlier expression, a
rational function of k.

6. General shape of (M)(2k, r), |M|(2k, 2h) and |V|(2k, 2h)

Proof of Theorem 1.1. By (20), we know that (for fixed r and as meromorphic
functions of k)
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ir

r !
(M)(2k, r) =

G(k + 1)2

G(2k + 1)

∑
1≤d

Es,Et∈Nd

d+
∑

(si +ti )=r

C(d, Es,Et)
∣∣H k,si ,t j

∣∣
d×d ,

with C(d, Es,Et) ∈ Q, while for s and t fixed (and nonnegative, of course), Equation
(16) indicates that H k,s,t is a rational function of k:

H k,s,t
=

1
1 + s + t

s∏
i=−t

k + i
2k + i

. (23)

This already shows that we have a rational function of k and that the numerator
and denominator have the same degree. Equations (23) and (20) together, along
with the fact that H k,s,t

= H−k,t,s , a consequence of (16), explain why Xr is even.
In order to determine the Yr s a bit better, we need to investigate possible denom-

inators in terms of
∣∣H k,si ,t j

∣∣
d×d . If a is positive,

∣∣H k,si ,t j
∣∣
d×d will have a factor

(2k+a)αa(r) in its denominator if and only if a is odd (because there is cancellation
in (23)) and all of s1, . . . , sαa are greater than a. For this to happen, we need

r = d +

∑
si +

∑
ti ≥ αa(r) +

αa(r)∑
i=1

(a + i − 1) +

αa(r)∑
i=1

(i − 1), (24)

where the inequality is obtained by taking as small as possible values for d , that is
αa(r), for the si s (while requiring them to be different and greater or equal to a)
and for the ti s (all different). We turn this inequality around and get

αa(r) ≤

⌊
−a +

√
a2 + 4r

2

⌋
.

The case of negative a is the same, exchanging the roles played by Es and Et.
Finally, the constant D(r) ensuring that both Xr and Yr are monic can be found,

thanks to (20) and (23), taking limk→∞:

D(r) =

∑
1≤d

Es,Et∈Nd

d+
∑

(si +ti )=r

∣∣∣∣ 1
si !t j !(1 + si + t j )

∣∣∣∣2
d×d

1
2d+

∑
(si +ti )

=
1

r ! 2r , (25)

where the last equality is left to the reader.
Actually, this last equality is enough to also guarantee that Xr (u) and Yr (u) both

have integer coefficients: just substitute for H k,s,t in (20) the value

H k,s,t
=

1
1 + s + t

s∏
i=−t

1
2k + i

(
k

s+t∑
i=0

hi ki
)
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for the appropriate (integer) hi s (in particular, hs+t = 1).
This proves (2), at least for large k.
Meromorphic continuation has already been obtained in Theorem 5.11. �

Theorem 6.1. For h ∈ N, there are polynomials X̃2h, X̂2h, with integer coefficients
and deg X̂2h = deg X2h > deg X̃2h such that as meromorphic functions of k,

|M|(2k, 2h) = Ĉ(h)
G(k + 1)2

G(2k + 1)

X̂2h(2k)

Y2h(2k)
,

|V|(2k, 2h) = C̃(h)
G(k + 1)2

G(2k + 1)

X̃2h(2k)

Y2h(2k)
,

where Yr (u) is as defined in Theorem 1.1.
Moreover (but this is conjectural), the numerators are additionally monic poly-

nomials6 when Ĉ(h) = 1/22h , C̃(h) = (2h)!/(h!23h), and deg X2h −deg X̃2h = 2h.

Proof. For fixed integer r and large integer k, most of this follows immediately
from (5) and (6), combined with Theorem 1.1.

The fact that deg X̃2h < deg X2h for instance is a consequence of

(M) (2k, r) ∼k

(
−

i

2

)r G(k + 1)2

G(2k + 1)
,

which we use in the equation from note 3 (page 38):

2h∑
j=0

(2h
j

)( i

2

) j(
−

i

2

)2h− j
= 0.

We can similarly show that if it exists, Ĉ(h)= 1/22h . The constant C̃(h) is more
mysterious, and involves the lower order terms in k of (23).

The meromorphic continuation is obtained as in the proof of Theorem 1.1. �

Remark. Unfortunately, within their degree restrictions, the Xr (u), X̃2h(u) and
X̂2h(u) polynomials still look utterly random. We merely have an expression for
them as a sum of determinants of rank d ≤

√
r (respectively, 2h). This expression

is relatively quick and allows at least to compute a few of those polynomials.

7. Computational data

The polynomials X r(u), X̃2h(u) and X̂2h(u). We present our data for (M)(2k, r)

in Table 2, followed by the data for |M|(2k, 2h) in Table 3 and finally those for
|V|(2k, 2h) in Table 4. Everything extends numerical results previously published,

6This is the normalization we will keep later, when discussing data about those polynomials.
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r Xr (u)

1 1

2 u2
− 2

3 u2
− 4

4 u4
− 16u2

+ 66

5 u4
− 20u2

+ 114

6 u8
− 51u6

+ 864u4
− 5554u2

+ 4860

7 u8
− 57u6

+ 1134u4
− 8758u2

+ 8520

8 u10
− 113u8

+ 4620u6
− 86332u4

+ 682844u2
− 765660

9 u10
− 121u8

+ 5460u6
− 115564u4

+ 1053964u2
− 1457820

10 u14
− 220u12

+ 18897u10
− 831010u8

+ 20196928u6
− 260164440u4

+ 1428629724u2
− 2060092440

11 u14
− 230u12

+ 20997u10
− 996820u8

+ 26447168u6
− 374214600u4

+ 2270621484u2
− 3994446960

12 u18
− 363u16

+ 52929u14
− 4083011u12

+ 183649422u10
− 4906031274u8

+ 73323636100u6

− 512994314412u4
+ 1371835414728u2

− 927651213720

13 u18
− 375u16

+ 57141u14
− 4663655u12

+ 224398746u10
− 6467410170u8

+ 105010072036u6

− 806857605660u4
+ 2461218471576u2

− 1755890884440

14 u22
− 582u20

+ 141344u18
− 18977780u16

+ 1571817537u14
− 84339778978u12

+ 2962887441370u10
− 66386724069396u8

+ 884603961264548u6
− 6212383525692744u4

+ 19176051246319080u2
− 13863690471430800

15 u22
− 596u20

+ 149296u18
− 20838716u16

+ 1807941481u14
− 102286957136u12

+ 3809004157906u10
− 90891702433976u8

+ 1298188100828836u6
− 9917808021410976u4

+ 33986748108863880u2
− 25682708695644000

16 u24
− 836u22

+ 295486u20
− 58491716u18

+ 7245863641u16
− 593291868896u14

+ 32861804018536u12
− 1227084273320096u10

+ 29900504376591736u8

− 444180655702337856u6
+ 3616035044845449600u4

− 13500165816324763200u2

+ 10671545982659562000

17 u24
− 852u22

+ 308606u20
− 62999492u18

+ 8101703961u16
− 692989945072u14

+ 40321523165416u12
− 1589469869122752u10

+ 41098203910503416u8

− 652694167393180032u6
+ 5757854141711318400u4

− 23590053001525406400u2

+ 19761261673907754000

18 u30
− 1216u28

+ 641547u26
− 195081042u24

+ 38335269063u22
− 5171814422892u20

+ 495753742037253u18
− 34353739684203042u16

+ 1726507702228490928u14

− 62290017635596811632u12
+ 1575250938092261972152u10

− 26886933063310680515376u8

+ 293595553738705518511056u6
− 1882598606626601433513600u4

+ 5855125431247144869877200u2
− 4699357338080820827412000

19 u30
− 1234u28

+ 663111u26
− 206226048u24

+ 41629109007u22
− 5794171874298u20

+ 575320671855777u18
− 41443936954862628u16

+ 2171988993390059952u14

− 81956498940701768368u12
+ 2174685878160406187416u10

− 39111313358222167862304u8

+ 452360970074645727302736u6
− 3084756281794829726025120u4

+ 10210913321050424344698000u2
− 8861284072193198189544000

20 u34
− 1615u32

+ 1140143u30
− 467224385u28

+ 124593557421u26
− 22981261798995u24

+ 3040237566735165u22
− 294611133821587635u20

+ 21107532245623967310u18

− 1116405478738744697410u16
+ 43058312795636550000904u14

− 1183070247664529791035320u12
+ 22374172979188549647921632u10

− 277662183945403036368852000u8
+ 2095071747708073688848702224u6

− 8269151494407104768839910640u4
+ 12529695816553717113566335200u2

− 6099189940914050054558484000

Table 2. The first polynomials Xr (u) as the numerators in (M)(u, r).
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2h X̂2h(u)

2 u2

4 u4
− 8u2

− 6

6 u8
− 33u6

+ 198u4
+ 74u2

− 360

8 u10
− 81u8

+ 1740u6
− 8284u4

− 7716u2
+ 34020

10 u14
− 170u12

+ 9597u10
− 215560u8

+ 1846928u6
− 4247400u4

− 12317076u2
+ 42366240

12 u18
− 291u16

+ 30177u14
− 1379507u12

+ 28177518u10
− 236602818u8

+ 604630084u6

+ 1570591476u4
− 10008266040u2

+ 7829929800

14 u22
− 484u20

+ 90384u18
− 8378492u16

+ 415889897u14
− 11196067680u12

+ 157699171570u10

− 1023611526808u8
+ 1699483809828u6

+ 11589901952544u4
− 62361799232760u2

+ 44754182272800

16 u24
− 708u22

+ 198590u20
− 28525892u18

+ 2275085529u16
− 102837376096u14

+ 2598141390568u12
− 34807690054560u10

+ 213458763180152u8
− 261862022455104u6

− 3402805264433280u4
+ 19256263380043200u2

− 11718802173078000

18 u30
− 1054u28

+ 460431u26
− 109299828u24

+ 15577804767u22
− 1394331670638u20

+ 79872695247657u18
− 2932723486507728u16

+ 68022586503825552u14

− 962308385613255088u12
+ 7682283932820069016u10

− 26475220331016986304u8

− 59889950570120914224u6
+ 976582356673028315040u4

− 3441287004848413282800u2

+ 1366282646437284576000

20 u34
− 1415u32

+ 840943u30
− 275540385u28

+ 55049482221u26
− 7022476724835u24

+ 584090828573565u22
− 31869278744265555u20

+ 1134427249824868110u18

− 25880772100948222330u16
+ 365485578445889268104u14

− 2970099871666499086840u12

+ 10773785732163438366432u10
+ 24904735536575464181280u8

− 474478390713139651278576u6
+ 1993984711160163968152080u4

− 1770512318771949573760800u2
+ 214967318998766249916000

Table 3. The first polynomials X̂2h(u) as the numerators in |M|(u, 2h).

for instance in [Hall 2002a; 2004] (but those rely on [Hughes 2005]) or [Conrey
et al. 2006] (which is limited to k = h).

Extensions of those tables up to r = 2h = 60 are available on this article’s web
page or (possibly further extended) at [Dehaye 2007a].

To obtain those tables, we have implemented (21), which is the most computa-
tionally accessible version of the formulas available in Theorem 5.11. A Magma

implementation of this algorithm is also available as expanded content.

The roots of X̃2h(u). It has been suggested before, based on limited numerical
data, that the polynomials X̃2h(u) have only real roots. In fact we list in Table 6 the
number of real roots and degree for each such polynomial. One quickly observes
that X̃42(u) (of course!) is actually the first polynomial to break the initial fluke and
have nonreal roots; see Table 5 on the next page. (It is not clear if this is related to
a similar observation on the last line of [Hall 2002a] and throughout [Hall 2004].)
This polynomial has four nonreal roots (±18.8631835±0.0090603i) that show up
at once, since they would have to come in pairs of conjugate pairs by evenness of
X̃2h(u). One could wonder why nonreal roots show up so late.



58 Paul-Olivier Dehaye

2h X̃2h(u)

2 1

4 1

6 u2
− 9

8 u2
− 33

10 u4
− 90u2

+ 1497

12 u6
− 171u4

+ 6867u2
− 27177

14 u8
− 316u6

+ 30702u4
− 982572u2

+ 6973305

16 u8
− 484u6

+ 76902u4
− 4461348u2

+ 67692705

18 u12
− 766u10

+ 215847u8
− 27766980u6

+ 1653656895u4
− 41530140126u2

+ 337968054585

20 u14
− 1055u12

+ 421093u10
− 79486155u8

+ 7242179715u6
− 290444510205u4

+ 4099101803991u2

− 8381907513945

22 u16
− 1496u14

+ 892108u12
− 272180808u10

+ 45430344630u8
− 4121412379560u6

+ 189676636728876u4
− 3674923533427896u2

+ 14539253947899345

24 u18
− 1961u16

+ 1566628u14
− 658984788u12

+ 157743552510u10
− 21750520014270u8

+ 1678578114026196u6
− 67707100461703716u4

+ 1235110338400818825u2

− 6787336148294472225

26 u20
− 2610u18

+ 2860437u16
− 1718473240u14

+ 620475009522u12
− 139083336332460u10

+ 19348398203611266u8
− 1624490941247619480u6

+ 77190294570345945549u4

− 1813095317449668401010u2
+ 15009483262024846096425

28 u22
− 3243u20

+ 4462647u18
− 3407674501u16

+ 1586340567882u14
− 466277764083726u12

+ 86845227411024846u10
− 10042821279688179978u8

+ 688582088681764130469u6

− 25698037955845496067927u4
+ 444470604942195922015755u2

− 2654155080367803900605025

30 u28
− 4190u26

+ 7631083u24
− 7953124300u22

+ 5258554468937u20
− 2313326757869890u18

+ 691451285514065259u16
− 141062107217586416040u14

+ 19477099336547993586171u12

− 1781103872658227723795970u10
+ 103764470143371018680338137u8

− 3607131084573924222894990540u6
+ 66647887693999747894954784187u4

− 515514421669410774166185623070u2
+ 658183121944091618062137174225

Table 4. The first polynomials X̃2h(u) as the numerators in |V|(u, 2h).

u44
− 12302u42

+ 69239935u40
− 236610412148u38

+ 549459541784707u36

− 919748248913270486u34
+ 1148989069656897835213u32

− 1094474723973849448826480u30
+ 805533314533281755701371226u28

− 461541928967718110253944237052u26
+ 206514429127544387915748094513446u24

− 72119441118339869972121541587076920u22

+ 19577196457693502603026719624834404502u20

− 4099121776759328236737053383626986012604u18

+ 654170727960937096861203148250462720819850u16

− 78212503734767115379758317319774926243800176u14

+ 6836980008003428572296900814856434321006155189u12

− 422028250886223501142365592098345343850710857462u10

+ 17476800084974190439148752639441918166326024419531u8

− 448540393629268182677088044978029477583305447285620u6

+ 6253526937210642323596984565394593401672539709730775u4

− 37013087756228993438266827460643377762894550851248750u2

+ 36216052456609571501642100973941635690472733838765625.

Table 5. The first polynomial Xr with nonreal roots occurs for r = 42.
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h 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

deg(X̃2h) 0 0 2 2 4 6 8 8 12 14 16 18 20 22 28
# real roots 0 0 2 2 4 6 8 8 12 14 16 18 20 22 28

h 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

deg(X̃2h) 28 30 34 36 38 44 46 48 50 54 56 62 64 66 72
# real roots 28 30 34 36 38 40 46 44 46 54 52 58 60 62 68

Table 6. The degree and the number of real roots of X̃2h . The hs
for which there are nonreal roots are highlighted.
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Figure 1. The roots of X̃2h(u). The line corresponding to X̃42(u),
where the first real zeros go missing, has been indicated.

Fact. The polynomials X̃2h(u) tend to have many, but not all, of their roots real.
For instance, for high h, X̃2h(u) has one root very close by to every odd integer
between h and 2h.

We first present graphical clues for this fact in Figure 1, which depicts the po-
sition of the real roots for h = 1 to h = 30. It thus omits the complex roots.

We now explain the fact. It helps at this point to remember that X̃2h(u) is
obtained by summing various Xr (u) for r ≤ 2h, which are themselves obtained
from (20), for instance. Furthermore, the summand in that equation associated to
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d, s, t (with r = d +
∑

i si + ti ) will have poles (as a function of u = 2k) at the odd
integers a such that −s1 ≤a ≤ t1 (this uses Lemma 5.1 to expand the determinant in
H k,si ,t j s). For each pole a, there are a few summands where this pole comes with
multiplicity exactly αa(r), but for most others the multiplicity is lower; see (24).
So if we sum all of those terms, and multiply by Y2h(u) (the common denominator)
to obtain X̃2h(u), a vast majority of terms factor a (u − a) out. We thus have an
expression of the form

X̃2h(u) = (u − a)P1(u) + P2(u),

where the coefficients of P1(u) are expected to be much bigger than the coeffi-
cients of P2(u) (simply because much more terms are summed to obtain P1(u)

than P2(u)). Hence, we should expect X̃2h(u) to change sign when u travels along
the real axis from below a to above a (because |P1(a)| >|P2(a)| and (u − a)

changes sign) and we know that a root will be around u = a. This is especially true
if a > r/2, because the restrictions impose then s1 > a > s2, and as a consequence
αr (a) = 1 and the phenomenon described just now is accentuated. We present in
Table 7 some numerical data associated to this phenomenon.

It is obvious from Figure 1 that a lot is yet to be understood about the polyno-
mials X̃2h(u). For instance, it is not clear if asymptotically in h there is a positive
proportion of real roots.

8. Alternative expressions

Using Macdonald’s ninth variation of the Schur functions. Define, as in [Naka-
gawa et al. 2001] and [Noumi 2004], and similarly to [Macdonald 1992],

s̃(R)
λ :=

∣∣∣h̃(R− j+1)

λi −i+ j

∣∣∣
l(λ)×l(λ)

, (26)

with
h̃(R)

k :=
(R − 1)!

(R + k − 1)!k!
.

We first prove that this variation of the Schur functions satisfies a Giambelli iden-
tity.

Proposition 8.1. Let λ be a partition and {Es :Et} its Frobenius coordinates, of rank d.
Then,

s̃(R)
λ =

∣∣∣s̃(R)
(si |t j )

∣∣∣
d×d

=

∣∣∣∣0(R − t j )/0(R + si + 1)

si !t j !(1 + si + t j )

∣∣∣∣
d×d

.

Note how this provides a second determinantal expression for this variation of
Schur functions, but with a matrix of different rank.

Proof. We intend to use Exercise 3.21 of [Macdonald 1998], but to show that the
exercise applies, we need to prove that
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h largest root of X̃2h(u) difference with 2h−1 log. difference

1 no root no root no root
2 no root no root no root
3 3.0000000000000000000 2.000000000 0.69315
4 5.7445626465380286598 1.255437354 0.22748
5 8.2448923938491831987 0.7551076062 −0.28090
6 10.568920444013080343 0.4310795560 −0.84146
7 12.769459455674733521 0.2305405443 −1.4673
8 14.886048429155973920 0.1139515708 −2.1720
9 16.948550444560344620 0.05144955544 −2.9672

10 18.978943770872905688 0.02105622913 −3.8606
11 20.992206162055831068 0.007793837944 −4.8544
12 22.997383184072186530 0.002616815928 −5.9458
13 24.999198051064882757 0.0008019489351 −7.1285
14 26.999774030173017860 0.0002259698270 −8.3951
15 28.999941044846106152 5.895515389 × 10−5

−9.7388
16 30.999985671005722891 1.432899428 × 10−5

−11.153
17 32.999996738730003824 3.261269996 × 10−6

−12.633
18 34.999999301847217917 6.981527821 × 10−7

−14.175
19 36.999999858891343014 1.411086570 × 10−7

−15.774
20 38.999999972983353984 2.701664602 × 10−8

−17.427
21 40.999999995085836086 4.914163914 × 10−9

−19.131
22 42.999999999148595422 8.514045781 × 10−10

−20.884
23 44.999999999859167358 1.408326421 × 10−10

−22.683
24 46.999999999977712180 2.228782021 × 10−11

−24.527
25 48.999999999996618870 3.381129731 × 10−12

−26.413
26 50.999999999999507453 4.925468142 × 10−13

−28.339
27 52.999999999999930988 6.901186254 × 10−14

−30.304
28 54.999999999999990686 9.313971788 × 10−15

−32.307
29 56.999999999999998787 1.212486889 × 10−15

−34.346
30 58.999999999999999847 1.524414999 × 10−16

−36.420

Table 7. The largest root of X̃2h(u).

s̃(R)
(p|q) := det



h̃(R)
p+1 h̃(R−1)

p+2 · · · · · · · · · h̃(R−q)

p+q+1

1 h̃(R−1)
1 h̃(R−2)

2 · · · · · · h̃(R−q)
q

0 1 h̃(R−2)
1 h̃(R−3)

2 · · · h̃(R−q)

q−1
...

. . .
. . .

. . .
. . .

...

0 · · · · · · 0 1 h̃(R−q)

1


=

1
p!q!(1+ p+q)

0(R−q)

0(R+ p+1)
.
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where the matrix has dimensions (q+1)×(q+1). This can be shown by expanding
the determinant along the last column to obtain

s̃(R)
(p|q) = (−1)q h̃(R−q)

p+q+1 +

q∑
i=1

(−1)i+1h̃(R−q)

i s̃(R)
(p|q−i).

Subtract the left-hand side from the right-hand side, proceed by induction on q ,
and factor out

0(R − q)

0(R + p + 1)
.

The result then follows from the following equalities, for p and q positive integers,

(−1)q

(p+q+1)!
−

q∑
i=1

(−1)i

i ! p!(q−i)!(p+q−i +1)
−

1
p!q!(1+ p+q)

=
(−1)q

(p+q+1)!
+

p+q+q 2 F1
( 1−q −p−q

1−p−q ; 1
)

(p+q)(p+q+1)p!q!
−

1
p!q!(1+ p+q)

=
(−1)q

(p+q+1)!
+

q 2 F1
( 1−q −p−q

1−p−q ; 1
)

(p+q)(p+q+1)p!q!

=
(−1)q

(p+q+1)!
+

q
(p+q)(p+q+1)p!q!

(q−1)!

(1− p−q)(q+1)

= 0,

the last one being a consequence of Gauss’s hypergeometric theorem.
The theorem now results directly from Exercise 3.21 in Macdonald’s book. �

In essence, this proposition allows us to switch from a Giambelli-type expression to
a Jacobi–Trudi expression. It immediately leads to a simplified version of Theorem
5.11:

Theorem 8.2. With G( · ) the Barnes G-function, and s̃λ defined as in (26),∑
r>0

(M)(2k, r)
(iz)r

r !
=

G(k + 1)2

G(2k + 1)

∑
λ

s̃(2k)
λ sλ([1k

])z|λ|,

in the sense that their coefficients of zr are equal for fixed r and large enough k so
the coefficient on the left-hand side is defined.

Imitating the Cauchy identity. We can also give an alternative for the expression
in (22), proceeding as in Gessel’s theorem in its lead up to the Cauchy identity;
see [Tracy and Widom 2001]. This uses Theorem 8.2.
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Theorem 8.3.

G(k + 1)2

G(2k + 1)

∑
r>0

(M)(2k, r)
(iz)r

r !

= lim
n→∞

det
((

h j−i ([1k
])
)

n×∞
·
(
h̃(2k−n+ j)

i− j zi− j)
∞×n

)
= lim

n→∞
det
((

h j−i ([1k
])z j−i)

n×∞
·
(
h̃(2k−n+ j)

i− j

)
∞×n

)
= lim

n→∞
det
(∑

l≥0

hl−i ([1k
])h̃(2k−n+ j)

l− j zl− j
)

n×n

= lim
n→∞

det
(∑

l≥0

(l−i +k−1
k−1

) (2k − n + j − 1)!

(l − j)!(2k − n + l − 1)!
zl− j

)
n×n

,

in the sense that their coefficients of zr are equal for fixed r and large enough k so
the coefficient on the left-hand side is defined. The factorials on the last line should
really be evaluated in groups, to give 0 if l < j , and

0(2k − n + j)
0(2k − n + l)(l − j)!

otherwise.

This can be truncated significantly when we are only after∑
0<r≤S

(M)(2k, r)
(iz)r

r !

for a finite S, that is, when we are computing the head of the sequence of poly-
nomials: we can drop the limit in n and settle for a sufficiently big n instead, and
then cut the matrices in their infinite directions as well.

In Gessel’s Theorem, in order to get to the other side of the Cauchy identity,
one would then observe that the matrix on the last line is Toeplitz, and then use
Szegö’s theorem. Of course, that fails here because the matrix on the last line is
not Toeplitz.

9. The result of Conrey and Ghosh

As explained on page 35, Conrey and Ghosh’s theorem [1989] that J(2, 1) = (e2
−

5)/4π immediately leads to a conjecture that |V|(2, 1) = (e2
−5)/4π as well. Our

main concern is that we only know |V|(2k, 2h) for integer h through (5) and (6)
(while we would need h = 1/2).

We offer in Figure 2 one way to circumvent this problem. The idea is to com-
pute for each fixed integer h the values of the meromorphic continuation in k of
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(M)(2k, 2h) at k = 1, that is, at the crosses. This should be enough to know
through (5) any value of the form |M| (2, 2h), which could then finally be used to
meromorphically continue |V| (2, 2h) to h = 1/2.

Getting the meromorphic continuation of (21) to k = 1 is quite subtle.

Proposition 9.1. Define (M)(2, r) as the meromorphic continuation of (M)(2k, r)

in k, evaluated at k = 1. Then the exponential generating series of (M)(2, r) is
given by∑
r>0

(M)(2, r)
(iz)r

r !
=

∞∑
d=1

∑
Es,Et∈Nd

∣∣∣∣ 1
si !t j !(1 + si + t j )

∣∣∣∣2
d×d

( d∏
i, j=1

1
2ν(t j )

1 − t j

2 + s j

)
zd+

∑
si +ti , (27)

where ν(0) = 0 when t = 0, ν(t) = 1 when t ≥ 2. The value ν(1) is free to choose.

Proof. When looking for the analytic continuation in k, most of the formulas we
have found so far are misleading. For instance, in light of the remark in note 4

0 1 2 3 4
k

0

1

2

3

4

h

Figure 2. The real part of the situation in the Conrey–Ghosh case.
The circle at (1, 1/2) indicates the point for which the value of
J(2k, 2h) is coveted. The dots indicate the locations where (21)
applies, and the crosses indicate the points to which that expres-
sion is meromorphically continued (for a fixed h, that is, horizon-
tally) thanks to (27). Note that for fixed integer h, this continuation
hits a pole when crossing the dashed line (and many more before
reaching k = 1, as h increases: see Figure 1).
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(page 39), one could think that the sums over partitions λ in (22) or Theorem 8.2
immediately reduce when k = 1 to sums over partitions λ of length 1, that is, the
partitions indexed by a single variable. However, in those cases, the other factor
in the summands, for instance s̃(2k)

λ in Theorem 8.2, might actually be undefined if
we take k = 1 (in that particular case, when l(λ) ≥ 3, or equivalently when t1 ≥ 2
if λ = {Es :Et}).

We can get a better intuition through Expression (21), which we use as a basis
of our proof. We are clearly required to find the meromorphic continuation to k = 1
and for fixed s, t ≥ 0 ∈ N of

0(2k−t)
0(k−t)

0(k+s+1)

0(2k+s+1)
.

The second factor is certainly not a problem and immediately gives 1/(s +2). For
the first factor, we have to look at limk→1(0(2k − t)/0(k − t)) for t ≥ 0. Pick any
integer a such that 1 + a − t ≥ 0. Then, using the functional equation for 0, we
have

lim
k→1

0(2k − t)
0(k − t)

= lim
k→1

0(2k +a − t)
0(k +a − t +1)

·
(k − t)(k − t +1) · · · (k −1) · · · (k +a − t)
(2k − t) · · · (2k −2) · · · (2k +a − t −1)

.

Note that the terms (k − 1)/(2k − 2) only appear if t ≥ 2. In that case we get

lim
k→1

0(2k − t)
0(k − t)

= (1 − t) lim
k→1

0(2k + a − t)
0(k + a − t + 1)

·
k − 1
2k − 2

=
1
2
(1 − t),

and in the case t ≤ 2 the factor of 2 is missing. �

One can also check that the values recovered using Proposition 9.1 agree with
the values obtained using Xr (2)/Yr (2) and thus Theorem 1.1.

For completeness, we give the beginning of the sequence of Xr (2)s, for r = 1
to 15:

1, 2, 0, 18, 50, −6540, −11760, 852180, 1228500, 590126040, 558613440,

−39273224760, 455842787400, 5775116644337040, 14904865051876800.

Unfortunately, we fall short of actually finding the full meromorphic continua-
tion of (M)(2, r) and have to leave this for a further paper.

10. Conclusion

Our initial goal was to compute the (M) (2k, r), |M| (2k, 2h) and |V|(2k, 2h) more
effectively than previously done.

We feel that we have achieved this goal, since we have been able to shed some
light (for instance in Theorem 1.1) on the structure of the results. This structure
(rational functions with known denominators) underlines tables already available in
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[Hughes 2005] or [Conrey et al. 2006]. We have also been able to use these results
to obtain better algorithms to compute those rational functions, thereby extending
the data that was available. As a corollary we have shown that for large(r) h the
roots (in k) of |V|(2k, 2h) cease to all be real, a fluke only for the small-h cases
available previously.

However, we have not obtained a formula for all |V|(2k, r). In particular, we
cannot recover the value of |V|(2, 1), which can be conjectured from Conrey and
Ghosh’s result for J(2, 1).

Those methods should also give more general moments, for instance for expres-
sions of the form 〈

|ZU (θ1)|
2k
∣∣∣∣ Z ′

U (θ2)

ZU (θ2)

∣∣∣∣r〉
U(N )

or 〈
|ZU (θ1)|

2k
∣∣∣∣ Z ′′

U (θ2)

ZU (θ2)

∣∣∣∣r〉
U(N )

. (28)

An expression for those two extensions in the shape of (10) would definitely be
available (for instance, in the case of Expression (28), we would most likely have
to compute the equivalent of (10) by summing over Eµ ∈ (2N+)r ). However, the
second part of the computation, the part covered here by Proposition 5.6, would
probably be significantly worsened.
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