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We prove that the natural map T (F)/R → A0(X), where T is an algebraic
torus over a field F of dimension at most 3, X a smooth proper geometrically
irreducible variety over F containing T as an open subset and A0(X) is the group
of classes of zero-dimensional cycles on X of degree zero, is an isomorphism.
In particular, the group A0(X) is finite if F is finitely generated over the prime
subfield, over the complex field, or over a p-adic field.

Let T be an algebraic torus over a field F and X a smooth proper geometrically
irreducible variety over F containing T as an open subset. Let A0(X) be the
subgroup of the Chow group CH0(X) of classes of zero-dimensional cycles on X
consisting of classes of degree zero. The map T (F)→ A0(X) taking a rational
point t in T (F) to [t]−[1] factors through the R-equivalence on T (F) (see Section
2C):

ϕ : T (F)/R→ A0(X).

One can ask the following questions:
1. Is ϕ a homomorphism?
2. Is ϕ an isomorphism?
Note that ϕ is a homomorphism if and only if [ts]− [t] = [s]− [1] for any two

rational points s, t ∈ T (F). If the translation action of T on itself extends to an
action on X , the latter means that the natural action of T (F) on A0(X) is trivial.

In the present paper we prove that ϕ is an isomorphism for all algebraic tori
of dimension at most 3 (Theorem 4.4). All tori of dimension 1 and 2 are ratio-
nal [Voskresenskiı̆ 1998, § 4.9], therefore, ϕ is an isomorphism of trivial groups.
Birational classification of 3-dimensional tori was given in [Kunyavskiı̆ 1987].

We use the following notation in the paper:
The word “variety” will mean a separated scheme of finite type over a field.
F is a field.
Fsep is a separable closure of F .

MSC2000: 19E15.
Keywords: algebraic tori, R-equivalence, K-cohomology, zero-dimensional cycle.
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0 is the Galois group of Fsep/F .
X L := X ×F Spec L for a scheme X over F and a field extension L/F .
Xsep is X ×F Spec Fsep.
T ∗ is the character group of an algebraic torus T over Fsep with 0-action.
T∗ = Hom(T ∗,Z) is the cocharacter group of a torus T .
T ◦ is the dual torus, (T ◦)∗ = T∗.
K∗(X) is Quillen’s K-group of a scheme X .
H∗(X, K∗) is the K-cohomology group.
CHi (X) is the Chow groups of cycles of codimension i on X .
CHi (X) is the Chow groups of cycles of dimension i on X .
Fields/F is the category of field extensions of F .
Ab is the category of abelian groups.
Sets is the category of sets.
Gm = Gm,F .

1. Preliminaries

1A. R-equivalence. Let F be a field. For a field extension L/F , we write HL

for the semilocal ring of all rational functions f (t)/g(t) ∈ L(t) such that g(0) and
g(1) are nonzero. Let A be a functor from the category of semisimple commutative
F-algebras to the category Sets . If i = 0 or 1, we have a map A(HL)→ A(L),
a 7→ a(i), induced by the L-algebra homomorphism HL → L taking a function h
to h(i).

Two points a0, a1∈ A(L) are called strictly R-equivalent if there is an a∈ A(HL)

with a(0) = a0 and a(1) = a1. The strict R-equivalence generates an equivalence
relation R on A(L), called the R-equivalence relation. The set of R-equivalence
classes is denoted by A(L)/R.

Example 1.1. A scheme X over F defines the functor

X (A) :=MorF (Spec A, X).

The notion of R-equivalence in X (L) is classical and was introduced in [Manin
1986, Ch. 2, § 4]. If G is an algebraic group over F , then G(L)/R=G(L)/RG(L),
where RG(L) is the subgroup of G(L) consisting of all elements that are R-
equivalent to the identity.

Example 1.2. Let G be an algebraic group over F . We can define the functor
taking a commutative F-algebra A to the set of isomorphism classes H 1

ét(A,G) of
G-torsors over Spec A.

Example 1.3. Let 1→ S→ P → T → 1 be an exact sequence of algebraic tori
over F with P a quasitrivial torus, that is, P ' RK/F (Gm,K ) for an étale F-algebra
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K . As H 1
ét(A, P) = H 1

ét(A ⊗F K ,Gm) = 0 for any semilocal commutative F-
algebra A by Shapiro–Faddeev Lemma and Grothendieck’s Hilbert Theorem 90,
the sequence

P(A)→ T (A)→ H 1
ét(A, S)→ 0

is exact. Since P is an open subset in the affine space of K , we have P(L)/R = 1
for any field extension L/F . Hence the image of P(L)→ T (L) consists of R-
trivial elements in T (L) and therefore,

T (L)/R ' H 1(L , S)/R.

If in addition S is a flasque torus (see [Voskresenskiı̆ 1998, § 4.6]) then by [Colliot-
Thélène and Sansuc 1977, Th. 2],

T (L)/R ' H 1(L , S).

1B. Category of Chow motives. Let CM(F) be the category of Chow motives
over F (see [Manin 1968]). Recall that CM(F) is an additive category with objects
formal finite direct sums

∐
k(Xk, ik) (called Chow motives) where Xk are smooth

proper varieties over F and ik ∈Z. For a smooth proper variety X we write M(X)(i)
for the object (X, i) of CM(F) and shortly M(X) for M(X)(0). If M(X) and M(Y )
are objects in CM(F) and X is irreducible of dimension d then

MorCM(F)(M(X)(i),M(Y )( j))= CHd+i− j (X × Y ).

We have the functor from the category SP(F) of smooth proper varieties over
F to CM(F) taking a variety X to M(X) and a morphism f : X→ Y to the cycle
of the graph of f .

We write Z(i) for M(Spec F)(i). A motive is called split if it is isomorphic to
a motive of the form

∐r
i=1 Z(di ).

The functor taking an X to the K-cohomology groups H∗(X, K∗) (see [Quillen
1973]) from the category SP(F) to the category of (bigraded) abelian groups fac-
tors through the category CM(F) as follows. Let α ∈ CH(X × Y ) be a morphism
M(X)(i)→ M(Y )( j) in CM(F). Then the functor takes α to the homomorphism
H∗(X, K∗)→ H∗(Y, K∗) defined by β 7→ (p2)∗(α · p∗1(β)) where p∗1 and (p2)∗ are
the pull-back and the push-forward homomorphisms for the first and the second
projections p1 : X × Y → X and p2 : X × Y → Y respectively.

Recall that H p(X, K p)=CHp(X) for a smooth X and every p ≥ 0 by [Quillen
1973, § 7, Prop. 5.14].

Lemma 1.4. Let M be a split motive. Then the product map

CHp(M)⊗ Kq(F)→ H p(M, K p+q)

is an isomorphism.
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Proof. The statement is obviously true for the motive M = Z(i). �

Let X be a smooth proper irreducible variety over F . The push-forward homo-
morphism

deg : CH0(X)→ CH0(Spec F)= Z

with respect to the the structure morphism X→ Spec F is called the degree homo-
morphism. For every i ≥ 0, we have the intersection pairing

CHp(X)⊗CHp(X)→ Z, α⊗β 7→ deg(αβ). (1)

Proposition 1.5. Let X be a smooth proper irreducible variety over F. Then the
Chow motive of X is split if and only if

(i) the Chow group CH(X) is free abelian of finite rank and the map

CH(X)→ CH(X L)

is an isomorphism for every field extension L/F and

(ii) the pairing (1) is a perfect duality for every p.

Proof. Suppose that the motive of X is split. Mutually inverse isomorphisms
between M(X) and a split motive

∐r
i=1 Z(di ) are given by two r -tuples of elements

ui ∈ CHdi (X) and vi ∈ CHdi (X) such that the tuple u (and also v) form a Z-basis
of CH(X) and deg(uiv j )= δi j over any field extension of F .

Conversely, suppose that (i) and (ii) hold. Choose dual bases ui and v j of
CH(X). They define morphisms α and β from a split motive N to M(X) and
back respectively so that β ◦α is the identity of N . By Yoneda Lemma, it suffices
to prove that for every variety Y over F the morphism

u⊗ 1Y : CH
(
N ⊗M(Y )

)
→ CH(X × Y )

is an isomorphism. The injectivity follows from the fact that β ◦ α = id. The
surjectivity follows by induction on the dimension of Y using the localization and
the fact that the map u ⊗ 1Y is an isomorphism if Y is the spectrum of a field
extension of F . �

1C. K-theory, K-cohomology and the Brown–Gersten–Quillen spectral sequence.
Let X be a smooth variety over F . Let K∗(X)(i) denote the i-th term of the topo-
logical filtration on K∗(X). Consider the Brown–Gersten–Quillen (BGQ) spectral
sequence (see [Quillen 1973, § 7, Th. 5.4])

E p,q
2 = H p(X, K−q)⇒ K−p−q(X) (2)

converging to the K-groups of X with the topological filtration. The K-cohomology
groups H∗(X, K∗) can be computed via Gersten complexes [Quillen 1973, § 7.5].
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We have E p,q
2 = 0 if p < 0 or p+ q > 0, or p > dim X and E p,−p

2 = CHp(X).
The E2-term is as follows.

CH0(X) 0

H 0(X, K1)

++WWWWWWWWWWWWWWWWWWWWWWW CH1(X) 0

H 1(X, K2)

++VVVVVVVVVVVVVVVVVVVVVV CH2(X) 0

H 2(X, K3) CH3(X)

If in addition X is geometrically irreducible proper, we have H 0(X, K1)= F×.
The composition of the pull-back homomorphism F× = K1(F)→ K1(X) for the
structure morphism of X with the edge homomorphism K1(X)→ H 0(X, K1) is
the identity. Hence all the differentials starting at E0,−1

∗
are trivial. If in addition

dim X = 3, the spectral sequence yields an exact sequence

K1(X)(1)→ H 1(X, K2)→ CH3(X)
g
−→ K0(X), (3)

where g is the edge homomorphism.

2. Zero cycles on toric models

2A. K-theory of toric models. Let T be an algebraic torus over a field F . Let
X be a geometrically irreducible variety containing T as an open subset. We say
that X is a toric model of T if the translation action of T on itself extends to an
action on X . Every torus admits a smooth proper toric model [Brylinski 1979;
Colliot-Thélène et al. 2005].

Let X be a smooth proper toric model of T . It follows from [Klyachko 1982,
Prop. 3, Cor. 2] that Xsep satisfies the conditions (i) and (ii) of Proposition 1.5.
Thus by Proposition 1.5, we have:

Proposition 2.1. Let X be a smooth proper toric model of T . Then the Chow
motive of Xsep is split.

The proposition and Lemma 1.4 yield:

Corollary 2.2. Let X be a smooth proper toric model of an algebraic torus T .
Then the product map

CHp(Xsep)⊗ Kq(Fsep)→ H p(Xsep, K p+q)
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is an isomorphism.

The absolute Galois group 0 acts naturally on K0(Xsep) leaving each term
K0(Xsep)

(i) invariant.
The following theorem was proven in [Merkurjev and Panin 1997].

Theorem 2.3. Let X be a smooth proper toric model of an algebraic torus of di-
mension d over F. Then

(1) K0(Xsep) is a direct summand of a permutation 0-module;

(2) the subgroup K0(Xsep)
(d) is infinite cyclic generated by the class of a rational

point of X ;

(3) the natural map Ki (X)→ Ki (Xsep)
0 is an isomorphism for i ≤ 1;

(4) the product map K0(Xsep)⊗ F×sep→ K1(Xsep) is an isomorphism.

Corollary 2.4. Let X be a smooth proper toric model of a torus of dimension d
over F. We have the following natural isomorphisms:

(1) Ki (X)(1)
∼
→

(
Ki (Xsep)

(1)
)0 for i ≤ 1.

(2) K0(Xsep)
(1)
⊗ F×sep

∼
→ K1(Xsep)

(1).

Proof. (1): The group Ki (X)(1) is the kernel of the restriction to the generic point
Ki (X)→ Ki F(X). The image of this map is equal to H 0(X, Ki ) = Ki (F) for
i = 0, 1. Statement (1) follows from Theorem 2.3(3) applied to the exact sequence

0→ (Ki (Xsep)
(1))0→ Ki (Xsep)

0
→ Ki (Fsep)

0

for i = 0, 1.

(2): Tensoring with F×sep the split exact sequence

0→ K0(Xsep)
(1)
→ K0(Xsep)→ Z→ 0

we get (2) by Theorem 2.3(4). �

Corollary 2.5. Let X be a smooth proper toric model of a torus of dimension d
over F. Then

(1) K0(Xsep)
(1) is a direct summand of a permutation 0-module.

(2) K0(Xsep)
(d) is a direct summand of the 0-module K0(Xsep).

Proof. (1): We have the canonical decomposition of 0-modules via the structure
sheaf OX :

K0(Xsep)= K0(Xsep)
(1)
⊕Z · 1.

Hence K0(Xsep)
(1) is a direct summand of a permutation 0-module by Theorem

2.3(1).
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(2): For a rational point x ∈ X (F), the composition of the push-forward ho-
momorphism K0(Fsep) = K0(Fsep(x)) → K0(Xsep) with the push-forward map
p∗ : K0(Xsep) → K0(Fsep) induced by the structure morphism p of Xsep is the
identity. It follows from Theorem 2.3(2) that the inclusion

K0(Xsep)
(d)
→ K0(Xsep)

is split by p∗ as a homomorphism of 0-modules. �

We shall need the following property of K -cohomology groups of smooth proper
toric models.

Proposition 2.6. Let X be a smooth proper toric model of a torus of dimension d
over F. Then the natural morphism H 1(X, K2)→ H 1(Xsep, K2)

0 is an isomor-
phism.

Proof. As X is geometrically rational and has a rational point, the statement follows
from [Colliot-Thélène and Raskind 1985, Prop. 4.3] (if char(F) = 0) and [Kahn
1996, Th. 1(a)] or [Garibaldi et al. 2003, Th. 8.9] (in general). �

2B. The group A0(X) of 3-dimensional toric models. Let T be an algebraic torus
and X a smooth proper geometrically irreducible variety over F containing T as an
open subset. Let P and S be algebraic tori over F such that P∗ is the permutation
0-module with Z-basis the set of irreducible components of (X \ T )sep and S∗ =
CH1(Xsep). We have natural 0-homomorphisms T ∗ → P∗ taking a character χ
to div(χ) (we consider χ as a rational function on Xsep) and P∗ → S∗ taking a
component of (X \ T )sep to its class in the Chow group. The sequence

0→ T ∗→ P∗→ S∗→ 0 (4)

is a flasque resolution of T ∗ (see [Colliot-Thélène and Sansuc 1977, Prop. 6],
[Voskresenskiı̆ 1998, § 4.6]). Thus we have an exact sequence of algebraic tori

1→ S→ P→ T → 1, (5)

a flasque resolution of T .
By [Colliot-Thélène and Sansuc 1977, Th. 2] (see Example 1.3),

T (L)/R ' H 1(L , S) (6)

for any field extension L/F .
The spectral sequence (2) for Xsep yields isomorphisms of 0-modules

K0(Xsep)
(1/2)
' CH1(Xsep)= S∗

and
K0(Xsep)

(2/3)
' CH2(Xsep).
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Let T be a 3-dimensional torus and X a smooth proper toric model of T . By
[Klyachko 1982, Prop. 3, Cor. 2], the pairing

CH1(Xsep)⊗CH2(Xsep)→ Z, α⊗β 7→ deg(αβ)

is a perfect duality of 0-lattices. It follows that CH2(Xsep) ' S∗. Thus, the exact
sequence

0→ K0(Xsep)
(2)
→ K0(Xsep)

(1)
→ K0(Xsep)

(1/2)
→ 0

yields an exact sequence of algebraic tori

1→ S′
τ
−→ Q→ S◦→ 1 (7)

with S′
∗
= K0(Xsep)

(2) and Q∗ = K0(Xsep)
(1) a direct summand of a permutation

0-module by Corollary 2.5(1). By Theorem 2.3(2) and Corollary 2.5(2), we have
isomorphisms of 0-modules

S′
∗
= K0(Xsep)

(2)
' K0(Xsep)

(2/3)
⊕Z' CH2(Xsep)⊕Z' S∗⊕Z.

Hence S′ ' S × Gm is a flasque torus. Let Q̃ be a torus such that Q × Q̃ is a
quasi-split torus. Then the exact sequence

1→ S′× Q̃
τ×1Q̃
−−−→ Q× Q̃→ S◦→ 1

is a flasque resolution of S◦. By [Colliot-Thélène and Sansuc 1977, Th. 2] (see
Example 1.3) and (6), we have

S◦(L)/R ' H 1(L , S′× Q̃)' H 1(L , S′)' H 1(L , S)' T (L)/R (8)

for any field extension L/F , and hence it follows from (7) that

Coker(Q(F)→ S◦(F))= S◦(F)/R. (9)

As K0(X) injects into K0(Xsep) and K0(Xsep)
(3) is infinite cyclic group gener-

ated by the class of a rational point by Theorem 2.3, the kernel of the homomor-
phism g in (3) coincides with the kernel of the composition

CH3(X)→ CH3(Xsep)→ K0(Xsep)
(3)
' Z,

which is the degree map. Recall that we write A0(X) for the kernel of deg :
CH0(X)→ Z. We then have

Ker(g)= A0(X). (10)

The group A0(X) is 2-torsion, by [Merkurjev and Panin 1997, Cor. 5.11(4)].
By Corollary 2.4, we have isomorphisms

K1(X)(1)'
(
K1(Xsep)

(1))0
'

(
K0(Xsep)

(1)
⊗F×sep

)0
= (Q∗⊗F×sep)

0
=Q(F). (11)
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It follows from Corollary 2.2 and Proposition 2.6 that

H 1(X, K2)' H 1(Xsep, K2)
0
'

(
CH1(Xsep)⊗ F×sep

)0
= (S∗⊗ F×sep)

0
= S◦(F).

(12)

Remark 2.7. The referee has pointed out that using results from [Colliot-Thélène
and Raskind 1985] one can deduce that CH1(X)⊗ F× ' H 1(X, K2) for a smooth
projective rational variety X over an algebraically closed field F of characteristic
zero.

Under the identifications (11) and (12), and the fact that the BGQ spectral
sequence is compatible with products [Gillet 1981, § 7], the map K1(X)(1) →
H 1(X, K2) in (3) coincides with the homomorphism Q(F)→ S◦(F) given by (7).
It follows from (3), (9) and (10) that

S◦(F)/R = Coker(Q(F)→ S◦(F))

' Coker
(
K1(X)(1)→ H 1(X, K2)

)
' Ker(g)= A0(F). (13)

By (8), there are natural isomorphisms

T (F)/R ' S◦(F)/R ' A0(X). (14)

Similarly, over any field extension L/F we have an isomorphism

ρL : T (L)/R ' A0(X L). (15)

We shall view ρ as an isomorphism of functors L 7→ T (L)/R and L 7→ A0(X L)

from Fields/F to Ab.
The following remark was suggested by J.-L. Colliot-Thélène.

Remark 2.8. The isomorphism (14) yields finiteness of A0(X) in all cases when
T (F)/R is known to be finite, that is, F a finitely generated over the prime subfield,
over the complex field, over a p-adic field (see [Colliot-Thélène and Sansuc 1977,
Th. 1 and Prop. 14] and [Colliot-Thélène et al. 2004, Th. 3.4]).

2C. The map ϕL : T (L)/R → A0(XL). Let T be an algebraic torus over F , X
a smooth proper geometrically irreducible variety over F containing T as an open
subset, and L/F a field extension. By [Colliot-Thélène and Sansuc 1977, Prop. 12,
Cor.], the map

ϕL : T (L)/R→ A0(X L) (16)

taking the R-equivalence class of an L-point t ∈ T (L) to the class of the zero cycle
[t] − [1], is well defined. We view ϕ as a morphism of functors from Fields/F to
Sets .
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Proposition 2.9. The map ϕL does not depend (up to canonical isomorphism) on
the choice of X.

Proof. We may assume that L = F . Let X and X ′ be two smooth proper geo-
metrically irreducible varieties containing T as an open subset. The closure of the
graph of a birational isomorphism between X and X ′ that is identical on T yields
morphisms between the motives M(X) and M(X ′) in CM(F). These morphisms
induce mutually inverse isomorphisms between A0(X) and A0(X ′) [Fulton 1984,
16.1.11]. �

Let X be a smooth proper toric model of T . Consider the flasque resolution (5).
The S-torsor PL over TL can be extended to an S-torsor q :U→ X L (see [Colliot-
Thélène and Sansuc 1977, Prop. 9] or [Merkurjev and Panin 1997, Prop. 5.4]). For
any point x ∈ X L , the fiber Ux of q over x is an S-torsor over Spec L(x). Denote
by [Ux ] its class in H 1(L(x), S). By [Colliot-Thélène and Sansuc 1977, Prop. 12],
the map

ψL : CH0(X L)→ H 1(L , S)= T (L)/R, (17)

taking the class [x] of a closed point x ∈ X L to NL(x)/L([Ux ]) extends to a well
defined group homomorphism. The composition ψ |A0(X L ) ◦ ϕ is the identity. It
follows that the map ϕL is injective.

3. Functors from Fields/F to Sets

We consider functors from the category Fields/F to the category Sets .
All functors we are considering take values in Ab, but some of the morphisms

between such functors (namely, ϕ) may not be given by group homomorphisms.
In this section, we study compatibility properties for morphisms between func-

tors with respect to norm and specialization maps.

3A. Functors with norm maps. Let A : Fields/F → Sets be a functor. We say
that A is a functor with norms if for any finite field extension E/F , there is given
a norm map NE/F : A(E)→ A(F).

Example 3.1. Let T be an algebraic torus over F and E/F a finite field extension.
There is an obvious norm map

NE/F : T (E)= H 0(E, T∗⊗ E×sep)→ H 0(F, T∗⊗ F×sep)= T (F).

Thus the functor L 7→ T (L) is equipped with norms. Similarly, the functors L 7→
T (L)/R, L 7→ H 1(L , T ), and L 7→ A0(X L) also have norms.
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A morphism α : A→ B of functors with norms from Fields/F to Sets commutes
with norms if for any field extension E/F , the diagram

A(E)
αE
−−−→ B(E)

NE/F

y yNE/F

A(F)
αF
−−−→ B(F)

is commutative.

Example 3.2. Let T be a torus of dimension 3. The sequence (5) yields an iso-
morphism of functors T (L)/R

∼
→ H 1(L , S) that commutes with norms. It follows

that the isomorphism T (L)/R ' S◦(L)/R in (8) commutes with norms.

Example 3.3. Let T be an arbitrary torus and 1→ S → P → T → 1 a flasque
resolution. Let EndF (S) = Hom0(S∗, S∗) be the endomorphism ring of S. For
a field extension L/F , the group T (L)/R = H 1(L , S) has a natural structure of
an EndF (S)-module. For any α ∈ EndF (S), the endomorphism of the functor
L 7→ T (L)/R taking a t to α(t) commutes with norms.

Proposition 3.4. Let T be an algebraic torus over F and X a smooth proper ge-
ometrically irreducible variety over F containing T as an open subset. Then the
morphism ψ in (17) commutes with norms.

Proof. Let E/F be a finite field extension, x ∈ X E a closed point and x ′ the image
of x under the natural morphism X E→ X . We have NE/F ([x])=m[x ′] in CH0(X),
where m = [E(x) : F(x ′)]. The torsor Ux in the definition of ψ is the restriction
of Ux ′ to E(x). By [Fulton 1984, Example 1.7.4], we have

NE(x)/F(x ′)
(
[Ux ′]E(x)

)
= m[Ux ′].

Hence

NE/F
(
ψE([x])

)
= NE(x)/F ([Ux ])=NF(x ′)/F NE(x)/F(x ′)([Ux ′]E(x))

=m NF(x ′)/F ([Ux ′])= ψF
(
NE/F ([x])

)
. �

Proposition 3.5. Let T be an algebraic torus over F and X a smooth proper ge-
ometrically irreducible variety over F containing T as an open subset. Then the
map ϕF : T (F)/R→ A0(X) in (16) is an isomorphism of groups if and only if the
morphism ϕ commutes with norms.

Proof. Suppose that ϕ commutes with norms. We show that ϕ is surjective. Every
closed point in X is rationally equivalent to a zero-divisor with support in T . Let
x ∈ T be a closed point of degree n. It is sufficient to prove that [x]−n[1] belongs
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to the image of ϕF . Let E = F(x) and x ′ ∈ TE the canonical rational point over x .
We have ϕE(x ′)= [x ′] − [1] and as ϕ commutes with norms,

[x] − n[1] = NE/F ([x ′] − [1])= NE/F ◦ϕE(x ′)= ϕF (NE/F (x ′)).

Thus, ϕ is a bijection. The inverse map given by (17) is a group homomorphism.
Hence ϕ is a group isomorphism.

Conversely, if ϕ is an isomorphism, then ϕ commutes with norms as ψ does by
Proposition 3.4. �

Proposition 3.6. Let T be an algebraic torus of dimension 3 over F and X a
smooth proper toric model of T . Then the morphism of functors ρ in (15) com-
mutes with norms.

Proof. By Example 3.2, it suffices to prove that the morphism S◦(L)/R→ A0(X L)

given by (13) commutes with norms. Let E/F be a finite field extension. The
statement follows from the commutativity of the diagram

S◦(E)/R −−−→ H 1(X E , K2) −−−→ CH3(X E)yNE/F

yNE/F

yNE/F

S◦(F)/R −−−→ H 1(X, K2) −−−→ CH3(X).

The exact direct image functor f∗ takes the category M p(X E) of coherent sheaves
on X E supported in codimension at least p to M p(X). Therefore, f∗ yields a
map of the BGQ spectral sequences for X E and X . Hence the right square of the
diagram is commutative.

As the map H 1(X, K2)→ H 1(Xsep, K2) is injective by Proposition 2.6, it suf-
fices to prove commutativity of the left square in the split case. The left square
coincides with

S∗⊗ E× −−−→ H 1(X E , K2)y1⊗NE/F

yNE/F

S∗⊗ F× −−−→ H 1(X, K2),

where the horizontal maps are product maps after the identification of S∗ with
CH1(X). The commutativity follows from the projection formula in K-cohomology
[Rost 1996, § 14.5]. �

3B. Functors with specializations. Let A : Fields/F → Sets be a functor. We
say that A is a functor with specializations if for any DVR (discrete valuation
ring) over F of geometric type (a localization of an F-algebra of finite type) with
quotient field L and residue field K there is given a map sA : A(L)→ A(F) called
a specialization map.

Example 3.7. Let O be a DVR over F with quotient field L and residue field K
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and X a variety over F . The specialization homomorphism

s : CH0(X L)→ CH0(X K )

is defined as follows. Let α ∈ CH0(X L). As the restriction map CH1(X O) →

CH0(X L) is surjective, we can choose α′ ∈ CH1(X O) such that α′L = α. Then set
s(α) = i∗(α′), the image of α′ under the Gysin homomorphism i∗ : CH1(X O)→

CH0(X K ), where i : X K → X O is the regular closed embedding of codimension
one [Fulton 1984, § 2.6]. The map s is well defined as i∗ ◦ i∗ = 0 for the principal
divisor X K in X O by [Fulton 1984, Prop. 2.6(c)].

Example 3.8. (see [Gille 2004, Prop. 2.2]) Let T be a torus over F and O a DVR
over F with quotient field L and residue field K . Let 1→ S→ P→ T → 1 be a
flasque resolution of T . The homomorphism

H 1
ét(O, S)→ H 1(L , S)

is an isomorphism by [Colliot-Thélène and Sansuc 1987, Cor. 4.2]. The composi-
tion

s : T (L)/R ' H 1(L , S)' H 1
ét(O, S)→ H 1(K , S)' T (K )/R

is called the specialization homomorphism with respect to O . One can easily see
that the specialization homomorphism does not depend on the choice of a flasque
resolution of T . It follows from the triviality of H 1

ét(O, P) that the composition
T (O)→ T (L)→ T (L)/R is surjective.

T (L)/R �� T (L) � T (O) - T (K ) -- T (K )/R

H 1(L , S)

o

?
� ∼ H 1

ét(O, S)

??
- H 1(K , S)

o

?

Let p ∈ T (L)/R and q ∈ T (O) be a lift of p. Then it readily follows from the
definition that s(p) is the image of q under the composition T (O)→ T (K )→
T (K )/R.

Lemma 3.9. Let T be an algebraic torus over F. Let t, t ′ ∈ T be two points
such that t belongs to the closure of t ′ and the local ring Ot ′,t is a DVR. Let s :
T (F(t ′))/R → T (F(t))/R be the specialization homomorphism with respect to
Ot ′,t . Then s(t ′)= t .

Proof. In the ring A := F[T ] let P and P ′ be the prime ideals of y and y′ re-
spectively. Then O is the ring AP/P ′AP . Let t̃ ∈ T (O) = Mor(Spec O, T ) be
the point given by the natural homomorphism of A→ O . Then the images of t̃
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under the maps T (O)→ T (F(t)) and T (O)→ T (F(t ′)) coincide with y and y′

respectively. The statement follows now from Example 3.8. �

Let θ : A→ B be a morphism of functors from Fields/F to Sets with special-
izations (for example, the functors L 7→ T (L)/R or L 7→ CH0(X L)). We say that
θ commutes with specializations if for every DVR as above, the diagram

A(L)
θL
−−−→ B(L)

sA

y ysB

A(K )
θK
−−−→ B(K )

is commutative.

Proposition 3.10. Let T be an algebraic torus over F and X a smooth proper
geometrically irreducible variety over F containing T as an open subset. Then the
morphism ϕ in (16) commutes with specializations.

Proof. Let O be a DVR over F with quotient field L and residue field K . For an
O-point p of T let [p] denote the class of its graph in CH1(X O). Consider the
diagram

T (K ) ←−−− T (O) −−−→ T (L)

ϕK

y ϕO

y ϕL

y
CH0(X K ) ←−−− CH1(X O) −−−→ CH0(X L)

where ϕO(p)= [p]−[1] and the bottom maps are the pull-back homomorphisms.
The statement follows from the commutativity property of the diagram. To prove
commutativity let E be either K or L and f : Spec E→ Spec O , g : X E→ X O the
natural morphisms. Let p ∈ T (O) be a point and q ∈ T (E) its image. We view p
and q as morphisms p : Spec O → X O and q : Spec E → X E . By [Fulton 1984,
Th. 6.2(a)], the diagram

CH1(Spec O)
f ∗

−−−→ CH0(Spec E)

p∗

y yq∗

CH1(X O)
g∗
−−−→ CH0(X E)

is commutative. It follows that [q] = q∗(1E) = q∗ f ∗(1O) = g∗ p∗(1O) = g∗([p])
and the result follows. �

Proposition 3.11. Let T be an algebraic torus over F and θ, θ ′ : T (?)/R→ B two
morphisms of functors commuting with specializations. Suppose that θF(T ) and
θ ′F(T ) coincide at the generic point of T . Then θ = θ ′.
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Proof. Let p : Spec L → T be a point of T over a field extension L over F . We
need to prove that θL(p) = θ ′L(p). Let t ∈ T be the point in the image of p. We
view t as a point of T over the residue field F(t). As F(t)⊂ L and p is the image
of t under the map T (F(t))→ T (L), it suffices to show that θF(t)(t)= θ ′F(t)(t).

We prove this by induction on codim(t). By assumption, the statement holds
if t is the generic point. Otherwise let t ′ ∈ T be a point such that t is a direct
specialization of t ′. Then the local ring Ot ′,t is a DVR with quotient field F(t ′)
and residue field F(t). As θ and θ ′ commute with specializations, it follows from
Lemma 3.9 that

θF(t)(t)= θF(t)(s(t ′))= sB
(
θF(t ′)(t ′)

)
= sB

(
θ ′F(t ′)(t

′)
)
= θ ′F(t)(s(t

′))= θ ′F(t)(t). �

Proposition 3.12. Let T be an algebraic torus of dimension 3 over F and X a
smooth proper toric model of T . Then the morphism of functors ρ in (15) commutes
with specializations.

Proof. Let O be a DVR over F of geometric type with quotient field L and residue
field K . The diagram

H 1(X K , K2) ←−−− H 1(X O , K2) −−−→ H 1(X L , K2)y y y
CH3(X K ) ←−−− CH3(X O) −−−→ CH3(X L)

where the middle vertical map is the differential in the E2-term of the BGQ spectral
sequence (2) for X O . The right square is commutative since the morphism X L →

X O is flat [Quillen 1973, § 7, Th. 5.4].
The pull-back homomorphism f ∗ for the morphism f : X K → X O in K-theory

is defined as follows (see [Quillen 1973, § 7.2.5]). Let π ∈ O be a prime element
and M(X O , f ) the full subcategory of the category M(X O) of coherent sheaves
on X O consisting of sheaves G with π a nonzero-divisor in G. Then f ∗ is the
composition of the inverse of the isomorphism induced by the inclusion functor

α : M(X O , f )→ M(X O)

on K-groups and the map induced by the restriction

β : M(X O , f )→ M(X K )

of the unverse image functor M(X O) → M(X K ). Note that functors α and β
take sheaves supported in codimension p into M p(X O) and M p(X K ) respectively.
Hence f induces a pull-back map of the BGQ spectral sequences for X O and X K .
It follows that the left square of the diagram is commutative too.
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As the map H 1(X, K2)→ H 1(Xsep, K2) is injective by Proposition 2.6, we may
consider the split situation. In the diagram

S◦(K ) ←−−− S◦(O) −−−→ S◦(L)y y y
H 1(X K , K2) ←−−− H 1(X O , K2) −−−→ H 1(X L , K2)

the vertical maps are the product maps. The commutativity follows from the pro-
jection formula in K-cohomology [Rost 1996, § 14.5].

Finally, it follows from the definition that the isomorphism T (L)/R
∼
→ S◦(L)/R

of functors in (15) commutes with specializations. �

4. Main theorem

Let T be a torus over F and 1→ S→ P→ T → 1 a flasque resolution.

4A. The group T (F(T ))/R. Tensoring the exact sequence

0→ F×sep⊕ T ∗→ Fsep(T )×→ Div(Tsep)→ 0

with S∗ and applying Galois cohomology yields a surjective homomorphism

H 1(F, S)⊕ H 1(F, S∗⊗ T ∗)→ H 1(F(T ), S)

since H 1
(
F, S∗⊗Div(Tsep)

)
= 0 as S is flasque.

Tensoring (4) with S∗ yields a surjective homomorphism

EndF (S)= H 0(F, S∗⊗ S∗)→ H 1(F, S∗⊗ T ∗)

as H 1(F, S∗⊗P∗)= 0. Combining these two surjections we get another surjective
homomorphism

(T (F)/R)⊕EndF (S)→ T (F(T ))/R.

Note that the group T (L)/R = H 1(L , S) is a left module over the ring EndF (S)
for any field extension L/F . The image of an element α ∈EndF (S) in T (F(T ))/R
is equal to α(ξ) (up to sign), where ξ is the generic point of T .

We have proven:

Proposition 4.1. Every element of the group T (F(T ))/R is of the form t · α(ξ)
where t ∈ T (F)/R and α ∈ EndF (S).

Now assume that dim T = 3 and X is a smooth proper toric model of T .

Corollary 4.2. There is an α ∈ EndF (S) such that the composition ρ−1
◦ ϕ takes

every t ∈ T (L)/R over a field extension L/F to α(t).
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Proof. By Propositions 3.10, 3.11 and 3.12, it is sufficient to prove the statement
in the case when t is the generic point ξ of T . By Proposition 4.1, (ρ−1

◦ϕ)(ξ)=

t ·α(ξ) for some α ∈ EndF (S) and t ∈ T (F)/R. As (ρ−1
◦ϕ)(1)= 1, specializing

at 1, we get t = 1. �

Example 3.3 then yields:

Corollary 4.3. The composition ρ−1
◦ϕ commutes with norms.

4B. Main theorem.

Theorem 4.4. Let T be an algebraic torus of dimension 3 and X a smooth proper
geometrically irreducible variety over F containing T as an open subset. Then the
map ϕ : T (F)/R→ A0(X) is an isomorphism.

Proof. In view of Proposition 2.9, we may assume that X is a smooth proper toric
model of T . By Proposition 3.6 and Corollary 4.3, ϕ commutes with norms. It
follows from Proposition 3.5 that ϕ is an isomorphism. �

Remark 4.5. The following is an alternative proof of Theorem 4.4. It avoids
the machinery of Section 3, but it is based on deep, albeit classical, arithmetic-
geometric result. We may assume that the field F is finitely generated over the
prime subfield. By [Colliot-Thélène and Sansuc 1977, Th. 1], the group T (F)/R
is finite. It follows from (15) that A0(X) is also finite of the same order. As ϕ is
injective, it is a bijection. Therefore, ϕ is an isomorphism of groups as we have a
homomorphism of groups ψ with ψ ◦ϕ = id.

The statement of the following theorem (but not the proof) does not involve a
toric model.

Theorem 4.6. Let T be an algebraic torus of dimension 3. Then there is a natural
isomorphism T (F)/R ' H 1(F, T ◦)/R.

Proof. The sequence dual to (5)

1→ T ◦→ P◦→ S◦→ 1

and [Colliot-Thélène and Sansuc 1977, Th. 2] (see Example 1.3) yield an isomor-
phism

S◦(F)/R ' H 1(F, T ◦)/R.

On the other hand, by (8), S◦(F)/R ' H 1(F, S)' T (F)/R. �

In the following examples we give two applications of Theorem 4.6.

Example 4.7. Let L/F be a degree 4 separable field extension and T the norm 1
torus for L/F , that is,

T = Ker
(
RL/F (Gm,L)

NL/F
−−−→ Gm

)
.
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Then T ◦ = RL/F (Gm,L)/Gm and

H 1(F, T ◦)= Br(L/F),

the relative Brauer group of the extension L/F . Thus by Theorem 4.6, we have a
canonical isomorphism

Br(L/F)/R ' T (F)/R.

The case of a biquadratic extension L/F was considered in [Tignol 1981, p. 427].

Example 4.8. Let L and K be finite separable field extensions of a field F and set
M := K ⊗F L . Let T be the kernel of the norm homomorphism

NM/L : RM/F (Gm,M)/RK/F (Gm,K )→ RL/F (Gm,L)/Gm .

We have
T (F)= {x ∈ M× such that NM/L(x) ∈ F×}/K×.

The dual torus T ◦ is the kernel of the norm homomorphism

NM/K : RM/F (Gm,M)/RL/F (Gm,L)→ RK/F (Gm,K )/Gm .

We have an exact sequence

K×→ H 1(F, T ◦)→ Br(M/L)→ Br(K/F).

Now suppose that [K : F] = 2 and [L : F] = 4. Then T is a 3-dimensional torus
and the last homomorphism in the exact sequence is isomorphic to the norm map

NL/F : L×/NM/L(M×)→ F×/NK/F (K×).

Let U be the subtorus of RL/F (Gm,L)× RK/F (Gm,K ) consisting of all pairs (l, k)
with NL/F (l)= NK/F (k). It follows that

T (F)/R ' H 1(F, T ◦)/R 'U (F)/R.

This isomorphism was known when L/F is a biquadratic extension (see [Shapiro
et al. 1982, Cor. 1.13] and [Gille 1997, Prop. 3]).

5. Chow group of a 3-dimensional torus

Let T be an algebraic torus over a field F and X a smooth proper geometrically
irreducible variety containing T as an open subset. Set Z = X \ T .

Lemma 5.1. (see [Colliot-Thélène and Sansuc 1977, Lemme 12], [Voskresenskiı̆
1998, Prop. 17.3] and [Gille 2004, Prop. 1.1]) The torus T is isotropic if and only
if Z(F) 6=∅.
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Proof. Suppose T is isotropic. Then T contains a subgroup isomorphic to Gm . The
embedding of Gm into T extends to a regular morphism f : P1

→ X . Then f (0)
or f (∞) is a rational point of Z .

Conversely, suppose Z has a rational point z. Since z is regular on X , there is a
geometric valuation v of F(X) dominating z with residue field F = F(z). Suppose
that T is anisotropic. Then there is a proper geometrically irreducible variety X ′

containing T as an open subset such that X ′\T has no rational points (see [Colliot-
Thélène and Sansuc 1977, Lemme 12], [Voskresenskiı̆ 1998, Prop. 17.3]). But v
dominates a rational point on X ′ \ T , a contradiction. �

Write iT (respectively nZ ) for the greatest common divisor of the integers [L : F]
for all finite field extensions L/F such that T is isotropic over L (respectively
Z(L) 6=∅).

Corollary 5.2. The number iT coincides with nZ . In particular, the integer nZ

does not depend on the smooth proper geometrically irreducible variety X con-
taining T as an open subset.

Proposition 5.3. The order of the class [1] in CH0(T ) is equal to iT .

Proof. If T is isotropic, there is a subgroup H of T isomorphic to Gm . As
CH0(Gm) = 0, we have [1] = 0 in CH0(H) and therefore in CH0(T ). In the
general case, let L be a finite field extension such that TL is isotropic. By the first
part of the proof, [1] is trivial in CH0(TL); hence applying the norm map for the
extension L/F yields [L : F] · [1] = 0 in CH0(T ). Therefore, iT · [1] = 0.

Now let m · [1] = 0 in CH0(T ) for some integer m. Hence the cycle m · [1]
in CH0(X) belongs to the image of the push-forward map CH0(Z) → CH0(X)
[Fulton 1984, Prop. 1.8]. In particular, there is a zero-cycle on Z of degree m,
hence iF = nZ divides m. �

Consider the map

αT : T (F)/R⊕Z/ iT Z→ CH0(T )

taking a pair (t, k) to the cycle [t] + (k− 1) · [1].

Theorem 5.4. Let T be a torus of dimension at most 3. Then the map αT :

T (F)/R⊕Z/ iT Z→ CH0(T ) is an isomorphism.

Proof. The Chow group CH0(T ) is the factor group of CH0(X)= A0(X)⊕Z · [1]
by the image of CH0(Z). Let z ∈ Z be a closed point. By Lemma 5.1, the torus
TF(z) is isotropic and hence is stably birational to a 2-dimensional torus. Therefore,
TF(z) is rational, A0(X F(z))= 0 and the image of the class of z in A0(X)⊕Z · [1]
is equal to 0⊕ deg(z) · [1]. Hence CH0(T ) is isomorphic to A0(X)⊕Z/ iT Z . The
result follows from Theorem 4.4. �
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