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In a recent paper, Gopal Prasad and Jiu-Kang Yu introduced the notion of a
quasireductive group scheme % over a discrete valuation ring R, in the context
of Langlands duality. They showed that such a group scheme % is necessarily
of finite type over R, with geometrically connected fibres, and its geometric
generic fibre is a reductive algebraic group; however, they found examples where
the special fibre is nonreduced, and the corresponding reduced subscheme is a
reductive group of a different type. In this paper, the formalism of vanishing
cycles in étale cohomology is used to show that the generic fibre of a quasire-
ductive group scheme cannot be a restriction of scalars of a group scheme in a
nontrivial way; this answers a question of Prasad, and implies that nonreductive
quasireductive group schemes are essentially those found by Prasad and Yu.

Gopal Prasad and Jiu-Kang Yu [2006] introduced the notion of a quasireductive
group scheme over a discrete valuation ring R in a recent paper: this is an affine,
flat group scheme 7 : ¢ — Spec R, such that

(1) the generic fibre Yk is a smooth, connected group scheme over the quotient
field K of R;

(ii) the reduced geometric special fibre (z)eq is of finite type over the algebraic
closure of the residue field k of R, and its identity component is a reductive
affine algebraic group;

(ii1) dim%9gx = dim %;.

They showed that 4 is necessarily of finite type over R, with geometrically con-
nected fibres, and its geometric generic fibre is a reductive algebraic group. Further,
% is a reductive group scheme over Spec R, except possibly when R has residue
characteristic 2 and the geometric generic fibre 9 has a nontrivial normal sub-
group of type SOy, 1, for some n > 1. They gave examples to show that in case
% = SOy,41, reductivity can fail to hold, with a nonreduced geometric special
fibre, and they gave a classification of such 4. Their work arose in response to

MSC2000: primary 14L15; secondary 20G35.
Keywords: group scheme, quasireductive, nearby cycle.

121


http://pjm.math.berkeley.edu/ant
http://dx.doi.org/10.2140/ant.2008.2-2

122 Najmuddin Fakhruddin and Vasudevan Srinivas

a question of Vilonen to Prasad, in connection with a Tannakian construction of
Langlands dual groups; see [Mirkovi¢ and Vilonen 2004].

In this context, it is natural to ask if there are any other possibilities for nonre-
ductive, quasireductive group schemes 4, except the examples found by Prasad and
Yu, and the others obtained from these by simple modifications (like products and
so forth). From their results, this boils down to the following specific question:

Does there exist a quasireductive group scheme 7 : 9 — Spec R, where
R is a complete DVR with algebraically closed residue field, such that
for some finite, separable (totally ramified) extension field L of K, of
degree > 1, the generic fibre 9k is isomorphic to Rz /x (SO2,41) 1, the
Weil restriction of scalars of (SOg,41)1?

One aim of this paper is to show that there do not exist any such quasireduc-
tive group schemes; see Corollary 2 below. Gopal Prasad has obtained a stronger
conclusion, combining Corollary 2 with the arguments based on [Prasad and Yu
2006]; at his urging, this is included below (Theorem 11).

The nonexistence proof is based on a topological result, Theorem 1, on the £-
adic cohomology of a quasireductive group scheme; it says roughly that, though
a quasireductive group scheme may not be smooth over the base, it is almost so
from the point of view of f-adic cohomology. This property of quasireductive
group schemes (including the nonsmooth ones) may also be of interest in potential
applications of such group schemes. This topological result was motivated by the
well known Serre-Tate criterion [1968] for good reduction of abelian varieties,
which relies ultimately on the theory of Néron models. In a sense, [Prasad and Yu
2006] also relies on some aspects of this theory.

Theorem 1. Let R be a complete DVR with quotient field K and algebraically
closed residue field k. Let

7 :%— Spec R
be a quasireductive group scheme. Let G — Spec K be the generic fibre. Let € be
a prime number, invertible in R. Then the action of the inertia group Gal(K /K)

on the étale cohomology group H:(G g, Z/€"Z) is trivial, for any i,n > 0. Thus,
the inertia action on the €-adic cohomology H! (G i Qo) is trivial, for all i > 0.

For a more technical assertion, which implies the above result, and may be viewed
as the key new observation in this paper, see Proposition 8 in Section 2 below.

Corollary 2. Let R be a complete DVR with quotient field K, and algebraically
closed residue field k. Let L be a finite extension field of K, and let

7w :%— Spec R
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be a quasireductive group scheme, whose generic fibre Gk is isomorphic to the
restriction of scalars of a positive dimensional reductive affine algebraic group G
over L. Then we must have L = K.

Proof. We first note that since Gz is a positive dimensional reductive algebraic
group over an algebraically closed field, it has a nonzero ¢-adic Betti number in
some positive degree; for example, this is a simple consequence of the classification
of reductive groups over algebraically closed fields. Let i > 0 be the smallest such
degree.

Next, since the generic fibre of ¢ — Spec R is a reductive group and is obtained
by the restriction of scalars from L to K, the extension field L/K is necessarily
separable. (If L/K is a purely inseparable finite extension and G is an algebraic
group over L, then the kernel of the natural homomorphism Ry x (G), — G is
unipotent; see [Oesterlé 1984, A.3.5], for example.)

Now, if L/K is a separable extension of degree n > 1, then the geometric
generic fibre 9 is isomorphic to a product of n copies of G, and the inertia
group Gal (K /K) permutes the n factors transitively. From the Kunneth formula,
it follows that for the chosen i > 0, the étale cohomlogy group H' (9z, Q) is
a direct sum of (a positive number of) copies of a nontrivial permutation Galois
module. This contradicts Theorem 1. |

1. Some preliminaries

Before proving Theorem 1, we discuss some preliminaries.

Recall that, if k is an algebraically closed field, a unipotent isogeny between
connected reductive algebraic k-groups is a homomorphism, which is a finite sur-
jective morphism, whose kernel does not contain any nontrivial subgroup scheme
of multiplicative type (that is, isomorphic to a subgroup scheme of ¢, for some
e>1).

The following lemma sheds more light on unipotent isogenies (see Corollary 4).
We thank Conrad for explaining this argument to us; the reader might compare this
with [Prasad and Yu 2006, Lemma 2.2].

Lemma 3. Let H be a reduced group scheme over a perfect field k, let G be a
closed normal subgroup scheme of H and let G™ be the reduced subscheme of
G. Then G™4 is also a normal subgroup scheme of H. If H is connected and G is
finite then G™ is in the center of H.

Proof. We first recall that since & is perfect, the product of reduced k-schemes is
reduced, so the morphism G™ x G™ — G induced by the product morphism of
G factors through G™ and similarly for the inverse morphism. Hence G™! is a
subgroup scheme of G. Since H is reduced, sois H x G™Y, and hence (H x G)™¢ =
H x G™4,



124 Najmuddin Fakhruddin and Vasudevan Srinivas

Let ¢ : H x G — G be the morphism giving the conjugation action of H on
G and let i : G™ — G be the inclusion. Then there is a unique morphism ¢4 :
H x G™ — G™ making the diagram below commute,

Cred
H x Gred — Gred

Idxil li

HxG— G.

Thus G™¢ is normal.

Now suppose G is finite and H is connected. Since H (k) is nonempty, H is
geometrically connected over k [EGA 6, 4.5.13]. We may assume that & is al-
gebraically closed and so G™¢ is a disjoint union of copies of Speck. Then the
inclusion e : Spec k — H given by the identity induces a bijection of connected
components of G with those of H x G™. Since c™! is continuous, it follows
that

Cred = pgred,

the projection onto G™4. Thus G™ is central. g

Corollary 4. The kernel of a unipotent isogeny between connected reductive alge-
braic groups over an algebraically closed field k is infinitesimal, so that such an
isogeny must be purely inseparable.

Proof. If H is a connected reductive algebraic group over k, and G is the kernel of
a unipotent isogeny with domain H, then G is a finite, normal subgroup scheme
of H. By Lemma 3, G™ is a central subgroup scheme, hence contained in a
maximal torus. Since G, and hence G™9, has no nontrivial subgroup scheme of
multiplicative type, this means G™¢ is trivial, that is, G is infinitesimal. O

Lemma 5. Let k be an algebraically closed field of characteristic p > 0, and € a
prime distinct from p. Let f : G1 — G be either
(i) a unipotent isogeny between connected reductive algebraic groups over k, or

(i1) a closed immersion of k-schemes of finite type, which induces an isomorphism
on the underlying reduced schemes.

Then

F > fiF, F > f*F
determine an equivalence of categories between étale sheaves on G| and G,, and
there are natural isomorphisms H(G», f.F) = H.(G1, F) for all i.

Proof. A finite, surjective, radicial morphism induces an equivalence of categories
on étale sheaves, and hence isomorphisms on étale cohomology — see [SGA 411,
Exposé VIII, Théoreme 1.1, Cor. 1.2]. O
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The main input in the proof of Theorem 1 is the formalism of vanishing cy-
cles, and in particular, the notion of the complex of nearby cycles, as explained in
[SGA 711, Exposé XIII]. We briefly review what we need.

Suppose given a morphism of schemes 7 : X — T, where T is the spectrum of
a complete discrete valuation ring with algebraically closed residue field. Denote
the generic point of T by 7, and fix an algebraic closure of the quotient field of the
DVR, giving a geometric generic point 7 of 7. Let X be the closed fibre, and let
X7 be the geometric generic fibre.

If & is any étale sheaf of Z/¢"Z-modules on X, then one defines the complex
of nearby cycles Ryr7 (%) on the closed fibre X as follows: if i : Xo — X is the
inclusion, and j : X7 — X the evident morphism, then

RYr(F) =i*Rj.j*F.

The adjunction map id — i,i* gives a map Rj,j* — i.i"Rj,j* and the ad-
junction map id — R}, j* gives a map i* — i*Rj, j*. These give rise to maps on
cohomology:

H. (X7, j*F) — H.(Xo, RY7(F)),

. . (1-1)
H{(Xo, Fo) — Hy(Xo, RY7(F)).

Further, Hét(Xo, Ry (%)) carries an action of the inertia group Gal(k()/k(n)),

such that the above two maps on cohomology are equivariant (where the inertia

action on Heit(Xo, %) is taken to be trivial). We may of course replace the closed

fibre X by its reduced subscheme in the above, since the categories of étale sheaves

on Xo and (Xo)req are equivalent. If T = Spec R, we may write {g instead of .
The adjunctions above fit into a square

id—— Rj.j"

L

Ll — 00" Rj, j*
which gives a commutative diagram

HL(X, %) Hy (X7, j*F) (1-2)

i i

H! (X0, Fo) — H. (X0, RY7(F)).

Here the left vertical arrow is an isomorphism if f is proper [SGA 5, proper base
change theorem, Exposé XII].
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Lemma 6. If in the above situation, f : X — T is smooth, and F is a locally
constant constructible sheaf of Z /0" Z-modules, with £ invertible in O, then the
natural map

Fo — Ryrr (%)
is an isomorphism, and so induces isomorphisms on étale cohomology.

Proof. This follows from the definition of Rirr, and the smooth base change the-
orem [SGA 711, Exposé XIII, Reformulation 2.1.5 and above]. Il

Lemma 7. Let X be a noetherian scheme,i:Y — X a closed embedding, B : X' —
X a finite morphism, Y' = X' x x Y with induced embedding i’ : Y' — X' and finite
morphisma :Y' — Y. Forall $ € DY (Xe) and r € Z the restriction map

HI (X', 9)— HL(Y',i"9)
is equal to the composite
H! (X', 9) — H. (X, RB+9) — HL (Y, i*RB,9) — HL (Y, Roi’™ 9) — HL (Y, i"™ )

where the first and the last map are the natural isomorphisms, the second is the
restriction map and the third is induced by the base change map.

Proof. If 9 is represented by a single sheaf & (in degree 0) and » = 0 then the equal-
ity follows from the very definition of the base change map [SGA 5, Exposé XII,
§41.

We now assume that $ is (represented by) a bounded below complex of injective
sheaves

SRR At S AN
Then i"*$ is (represented by) the complex
LA Tt NN L Y SN L VA S N

Let $ be a complex of injective sheaves on Y’ with a quasiisomorphism g”:i"* $— §.
Then the map H. (X', $) — HL(Y',i"*$) is induced by the map of complexes of
abelian groups which in cohomological degree r is the composite

NX,9) —Ty,i"9) —-Ty,39).

Since the pushforward by a finite morphism is exact on the category of étale
sheaves,

a(q) t i 9 —> a9

is a quasiisomorphism and «, $ is also a complex of injective sheaves on Y. Using
the base change isomorphism we may view g’ := a,(g) as a quasiisomorphism
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i*B+9 — o, $, and hence we may use it to compute the second map in the sequence
of the lemma. Since the diagram

LY, i"™*97) 7. Ly, $/)

Lo

T(Y, ayi’*99) ——= (Y, an97),

where the vertical maps are the canonical isomorphisms, commutes for all j, the
lemma then follows from the first step of the proof. U

2. Proof of the theorem

We now give the proof of Theorem 1.
If we apply the formalism of nearby cycles to our quasireductive group scheme

7w :%4— Spec R

(which is of course not proper), with geometric generic fibre g, special fibre ¢,
and
F=(Z/t"D)s,

where £ is invertible in R, then from (1-1) we obtain homomorphisms

He (85, Z/0"T) — He (%o, RYR(Z/€"2)), 2-1)
H. (%, 7/0"7) — H. (%, RYr(Z/("Z)). (2-2)
These are equivariant for the action of the inertia Gal(K/K), where the action on
Hi(Gy,Z/€"Z) is trivial.
Thus, Theorem 1 follows from:

Proposition 8. With the above notation, the maps in (2-1), (2-2) are isomorphisms,
for any n.

We first consider the situation of a smooth reductive group scheme.

Lemma 9. Let R be a complete DVR with algebraically closed residue field. Let
@ : 3% — Spec R

be a smooth, reductive group scheme. Let Hy be the closed fibre of ¢, and Hy the
geometric generic fibre. Then for any prime £ which is invertible in R, we have the
following.

(i) The canonical map
(Z/0" D) gy — RYR(Z/C L)

is an isomorphism.
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(i1) The canonical maps

H!(Hy, Z/0"Z) — H!(Hy, RYr(Z/0"Z)),
H!\(Ho, Z/€"7) — H!(Ho, RYr(Z/L"7))

are isomorphisms.

Proof. Since ¢ is a smooth morphism, the isomorphism in (i) holds by Lemma 6.
To get the isomorphisms in (ii), consider (1-2) constructed with X =%, f = ¢,
F=17/0"7:

Hi(%,7/¢"7) — H. (Hy, Z/¢"Z)

| |

H!(Hy, Z/0"Z) — HL(Ho, RYr(Z/0"Z)).

We claim that the left vertical and top horizontal arrows are isomorphisms; this
follow at once from [Raynaud 1968, Théoreme 3.7] or [SGA 5, Exposé VII, Propo-
sition 6.2, p. 315]. From (i), the bottom horizontal arrow is also an isomorphism,
and so the right vertical arrow must be one as well. O

We now return to the case of a “general” quasireductive group scheme.

Lemma 10. Let 7 : 9 — Spec R be a quasireductive group scheme, where R is a
complete DVR with algebraically closed residue field, and £ a prime invertible in
R. Let 9y be the closed fibre of w. Then the canonical map

(Z2/0"L)gy — RYR(Z/C L)
is an isomorphism.

Proof. Combining Propositions 3.4 and 4.3 of [Prasad and Yu 2006], we see that
there is a finite extension field K’ of K (contained in our chosen algebraic closure
K) with the following property. Let R’ be the integral closure of R in K’, and set

% = normalization of % X spec g Spec R'.
Then

(i) R’ is a complete DVR (with the same residue field as R),
(i1) G — Spec R’ is a smooth, reductive group scheme with connected fibres, and

(iii) the induced morphism on reduced, geometric special fibres @0 — (90)red 18
a unipotent isogeny between connected, reductive groups of the same dimen-
sion.
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The propositions cited rely on a result due independently to Raynaud and Falt-
ings, whose proof is given in [Conrad 2006].
We note that there is a commutative diagram

Spec R —— Spec R.

By choice, the geometric point 77 of Spec R is also a geometrlc pomt of Spec R'.

Let 4 = G x %p. We may regard the special fibre ‘go of 7' : G — Spec R’ as
a closed subscheme of %, and in fact it is just the underlying reduced subscheme.
Thus the inclusion

i() . @0 —> %1
induces an equivalence of categories between étale sheaves on the two schemes;

under this equivalence, the constant sheaves Z/¢"Z on the two schemes correspond.
There is a commutative diagram
lj/
~  io o~ i

(gog><g14>(§

Nl

Y —>4

where the square is a pullback, and the inclusion i’ : ‘?fo — G is the composition
i =1ijoip.
From the definitions, we have that

RYr(Z/0" D)z =i"Rj(Z/C" L), .

From Lemma 9, this is isomorphic to the constant sheaf Z/¢"Z on %o. Hence we
obtain isomorphisms

2/ T)g, = /*RJ*(Z/E”Z)%_zOzTRJ*(Z/z"Z)cg,

This implies that
(Z/0"7)g, Zi{Rj(Z/0" D), .

Applying RB. = B (since B is a finite morphism), and using the proper base-
change theorem, we get isomorphisms

a0 (Z/0" D), Zi*R(B o j)+(Z/0" L) g, = RYR(Z/" D) .
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Now the three arrows
i0:% — %1, G —> (Y0)reds  (90)red = Y0

induce equivalences of categories between the respective categories of étale sheaves
(the middle arrow is a unipotent isogeny, the other two are inclusions of underly-
ing reduced schemes). Hence «, also induces such an equivalence of categories,
s0 RYr(Z/€"Z) is isomorphic to (Z/¢"Z)g,. It follows from the description
of the stalks of Rin (Z/€"Z)g [SGATII, Exposé 12, Proposition 2.1.4] that the
canonical map (Z/¢"Z)q, — ROwR (Z/¢"Z)« is an injection of sheaves. Since any
injection from (Z/£"Z)«, to itself must be an isomorphism, the lemma follows. [

In particular, we see that the map (2-2) is an isomorphism. It remains to consider
the map (2-1)

H.(%g,7/0"7) — H.(%, RYRZ/("Z).
This map is constructed as the composition
H! (4%, 7/¢"7) = H. (4, Rj,Z/0"7) —
H'! (%, i*Rj.Z/0"7) = H. (%, RYyrZ/0"7).
Thus it suffices to show that the restriction map
H' (4, Rj,Z/0"7) — H' (%, i*Rj.Z/0"7) (2-3)

is an isomorphism.
The analogous map for the group scheme 7’ : % — Spec R’ is similarly expressed
as a composition

H! (%5, 7/0"7) = H. (%, Rj.Z/€"7) —
H.(Go, i Rj.Z/€"Z) = H. (%o, RYrZ/"T).
As seen in Lemma 9, this composition is an isomorphism.

Since i’ = iy o i1, where iy is finite, surjective and radicial, we see that the
restriction map

H!(G, Rj/Z/0"Z) — H! (%, i*Rj.Z/0"7) (2-4)

is also an isomorphism. The formula j = 8o j’, Lemma 7, the proper base change
theorem and (2-4) imply that the map in (2-3) is indeed an isomorphism, thus
completing the proof of the theorem.
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3. An application

Gopal Prasad has given the following application of Corollary 2; we include his
proof here.

Theorem 11. Let R be a strictly Henselian DVR with algebraically closed residue
field, and K be its field of fractions. Then the generic fibre G =Yk of any quasire-
ductive R-scheme G splits over K.

Proof. In view of [Prasad and Yu 2006, Proposition 4.4 (i)], we can assume that G is
either a torus or a semisimple K -simple group. Now if G is a torus, then it follows
from [SGA 311, Exposé X, Théoreme 8.8], that 4 is a R-torus, which implies that
it splits over R [SGA 3 III, Exposé XXII, Proposition 2.1], and hence the generic
fibre G is a K-split torus. We assume now that G is a semisimple K -simple group.
If G does not contain a normal subgroup, defined and isomorphic over the algebraic
closure K of K, to SOy,+1 for some n > 1, then according to [Prasad and Yu 2006,
Theorem 1.2], ¢ is smooth and reductive, so again by [SGA 3 1II, Exposé XXII,
Proposition 2.1], 4 is split, and so its generic fibre G is K -split. On the other hand,
if G contains a normal subgroup defined and isomorphic over K to SOy, for
some n > 1, then as SO,, 1 is a group of adjoint type, and G is K -simple, there
exists a finite separable extension L C K of K, and an absolutely simple L-group
H such that

() His K -isomorphic to SOy, and
(i) G = Ry x (H); see [Borel and Tits 1965, 6.21(ii) and 6.17].

Now Corollary 2 implies that since < is quasireductive, L = K. Thus G is a K -
group which is isomorphic to SO, | over K. But as K is a field of cohomological
dimension < 1, according to a well known theorem of Steinberg [1965] (if K is
imperfect, see also [Borel and Springer 1968, 8.6]), G is quasisplit over K. But as
G is an absolutely simple K-group of type B,, if it is quasisplit over K, then it is
K -split. This completes the proof of the above theorem. U

Remark 12. Let R and K be as in the theorem above. According to [Prasad and
Yu 2006, 8.2], a quasireductive group scheme % is by definition a good quasireduc-
tive model of its generic fibre G if G(R) is a hyperspecial parahoric subgroup of
G(K) =%(K). If G admits a good quasireductive model, then it is K-split, by
Lemma 8.1 of the same references. Theorems 9.3-9.5 of Prasad and Yu classify
all good quasireductive models of G. It is an interesting problem to determine all
quasireductive models of a connected K -split reductive group G. For G =S0O,,,41,
all such models have been determined in Section 10 of the same article.
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4. Further remarks

We briefly discuss an analogue of quasireductive group schemes wherein we re-
place reductive algebraic groups by abelian varieties.

Definition 13. For a scheme S, we call a group scheme 7 : A — S quasiabelian
if it is proper and flat over S and if it is an abelian scheme when restricted to an
open dense subset of S.

If all residue fields of S are of characteristic zero then a quasiabelian scheme is nec-
essarily an abelian scheme by Cartier’s theorem [SGA 3 I, Exposé VIg, Corollaire
1.6.1].

Now suppose S is the spectrum of a DVR R with residue characteristic p > 0
and 7 : s{ — S a quasiabelian scheme. The following statements are in contrast
with the quasireductive case.

1. If s is normal then it is an abelian scheme. This follows from (i) the existence
of Néron models and (ii) the fact that for any commutative group scheme %, flat
and of finite type over S, the morphism

[n]:6— %

of multiplication by n, where n € Z and (n, p) =1, is étale. (One can use [SGA 31,
Exposé VIj, p. 316, Proposition] to prove that [»] is flat; it is unramified because
n is a unit in R).

Since o is proper and its geometric special fibre contains no rational curves, it
follows that the rational map from &', the Néron model of s, to # extending the
identity morphism on the generic fibres, is actually a morphism. By examining
prime to p torsion (using (ii)) we deduce that the induced morphism on special fi-
bres is dominant, which implies that ¢’ is an abelian scheme. We then use Zariski’s
main theorem to conclude.

2. For any prime number p there exists S as above and a quasiabelian scheme over
S which is not an abelian scheme. Such schemes can be constructed as follows:
Let %', 9B be abelian schemes over S and ¢ : B’ — % a flat isogeny with kernel .
Suppose there is an abelian subscheme ${’ of B’ such that %' N’ is not flat over
S. Then o := ¢ (') is quasiabelian but not abelian. For any p one may easily find
such data with %’ the product of a one dimensional abelian scheme with itself.

One could generalize the definition of quasiabelian schemes by considering
group schemes 7 : sd — § which are flat and of finite type over S, abelian over a
dense open subset and such that all reduced geometric fibres are semiabelian. In
this generality, we do not know if the analogue of item 1 above continues to hold
(though it does if the relative dimension is one since there exist canonical regular
compacifications in this case).
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