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The nef cone volume of
generalized Del Pezzo surfaces

Ulrich Derenthal, Michael Joyce and Zachariah Teitler

We compute a naturally defined measure of the size of the nef cone of a Del
Pezzo surface. The resulting number appears in a conjecture of Manin on the
asymptotic behavior of the number of rational points of bounded height on the
surface. The nef cone volume of a Del Pezzo surface Y with (−2)-curves defined
over an algebraically closed field is equal to the nef cone volume of a smooth
Del Pezzo surface of the same degree divided by the order of the Weyl group of
a simply-laced root system associated to the configuration of (−2)-curves on Y .
When Y is defined over an arbitrary perfect field, a similar result holds, except
that the associated root system is no longer necessarily simply-laced.

1. Introduction

An ordinary Del Pezzo surface is a smooth projective rational surface X on which
the anticanonical class −KX is ample. If X is defined over an algebraically closed
field, then X is one of the following: P2, P1

× P1, or the blowup of P2 at up to 8
points in general position. Points are in general position if no three are collinear,
no six lie on a conic, and no eight lie on a cubic with one of them a singular point
of the cubic. Then X may contain (−1)-curves, but no (−2)-curves, where for
n ∈ {1, 2}, a (−n)-curve is a smooth rational curve on X having self-intersection
number −n.

A generalized Del Pezzo surface is a smooth projective rational surface Y on
which −KY is big and nef. If Y is defined over an algebraically closed field, then
Y is one of the following: P2, P1

× P1, the Hirzebruch surface F2, or a surface
obtained from P2 by a sequence of blowings-up at up to 8 points, possibly infin-
itely near, each not lying on any (−2)-curve. Over an algebraically closed field, a
generalized Del Pezzo surface is ordinary if and only if it contains no (−2)-curves.
See Section 3 for more details.

MSC2000: primary 14J26; secondary 14C20, 14G05.
Keywords: Del Pezzo surface, Manin’s conjecture, nef cone, root system.
The first author was partially supported by a Feodor Lynen Research Fellowship of the Alexander
von Humboldt Foundation.
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The nef cone volume of a generalized Del Pezzo surface Y is equal to the volume
of the cross-section of the nef cone of Y obtained by intersecting with the hyper-
plane consisting of those divisor classes whose intersection with the anticanonical
class −KY is equal to 1. The resulting cross-section is a polytope. Its volume is a
rational number, denoted by α(Y ). We give details of this definition in Section 2.

In this paper we compute α(Y ) for generalized Del Pezzo surfaces Y .
The degree of Y is the self-intersection number

d = 〈−KY , −KY 〉.

It satisfies 1 ≤ d ≤ 9, and when Y is the blowup of P2 at r points in almost general
position, d = 9 − r .

A generalized Del Pezzo surface Y defined over a field K is split if it is either P2,
P1

× P1, F2, or the blowup of P2 at 1 ≤ r ≤ 8 K-rational points in almost general
position. See Definition 3.2. Otherwise, Y is said to be nonsplit (for example, the
blowup of P2 at two conjugate points). We consider only split Y until Section 6,
and so the reader may assume that K is algebraically closed until that point.

An investigation of α(Y ) for split ordinary Del Pezzo surfaces was undertaken
by the first author. He proved the following result.

Theorem 1.1 [Derenthal 2007, Theorem 4]. Let Xd denote a split ordinary Del
Pezzo surface of degree d obtained by blowing up 9 − d points in general position
on P2 and let Nd denote the number of (−1)-curves on Xd . For d ≤ 6,

α(Xd) =
Nd

d(9 − d)
α(Xd+1).

Combining this with simple calculations that show that

α(P2) =
1
3 , α(P1

× P1) =
1
4 , α(X8) =

1
6 , α(X7) =

1
24 ,

this theorem allows for an inductive calculation of α(X) for any split ordinary Del
Pezzo surface X . This calculation is summarized in Table 1.

We extend this result in two directions. First, we study split generalized Del
Pezzo surfaces. In Section 4, we prove the following theorem by analyzing the nef
cone of such a surface Y . It allows us to compute α(Y ) by induction on the rank
of the Néron–Severi group of Y .

d 8 7 6 5 4 3 2 1

Nd 1 3 6 10 16 27 56 240

α(Xd) 1
6

1
24

1
72

1
144

1
180

1
120

1
30 1

Table 1. Values of α(Xd) for ordinary Del Pezzo surfaces Xd .
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Theorem 1.2. Let Y be a split generalized Del Pezzo surface of degree d ≤ 7. For
each E in the set C of (−1)-curves on Y , let YE denote the split generalized Del
Pezzo surface of degree d + 1 obtained by contracting E. Then

α(Y ) =

∑
E∈C

1
d(9 − d)

α(YE).

As with Theorem 1.1, using the additional calculation that α(F2) =
1
8 , this the-

orem allows us to compute α(Y ) for any split generalized Del Pezzo surface Y .
The first author computed α(Y ) for split generalized Del Pezzo surfaces Y of

degree d ≥ 3 directly, using computer programs to find a triangulation of the nef
cone case by case [Derenthal 2007, Section 3]. This numerical data led us to
formulate the following theorem; see Section 5C for its proof.

Theorem 1.3. Let Y be a split generalized Del Pezzo surface of degree d ≤ 7 and
let X be a split ordinary Del Pezzo surface of the same degree. Then

α(Y ) =
1

#W (RY )
α(X),

where W (RY ) is the Weyl group of the root system RY whose simple roots are the
(−2)-curves on Y .

When combined with Theorem 1.1 the computation of α(Y ) for an arbitrary
split generalized Del Pezzo surface Y of any degree is reduced to a determination
of the (−2)-curves on the surface. See Section 5 for more information on the root
system RY and its Weyl group.

We also consider the case of nonsplit surfaces. Suppose that Y is a generalized
Del Pezzo surface and X is an ordinary Del Pezzo surface, both of the same degree
and defined over the same perfect field K. Then the Néron–Severi groups of X
and Y coincide (Proposition 6.2) and the absolute Galois group of K acts as a
finite group G of automorphisms of this group (Proposition 6.1). Assume that
the Galois actions associated to X and Y coincide. The Galois action on the root
system RY allows us to associate to Y an orbit root system O(RY , G) (Definition
6.5). Our third main result is that under these assumptions

α(Y ) =
α(X)

#W (O(RY , G))
.

See Corollary 7.5. The integer appearing in the denominator is the order of a Weyl
group and is straightforward to compute. Thus all that is left is to compute α(X).
There are a finite number of cases in each degree d , one for each conjugacy class
of subgroups of the Weyl group of a canonically defined root system Rd (Section
5B). We perform the computations for d ≥ 5 in Section 7B.
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Manin’s conjecture. The primary motivation for our study of the nef cone vol-
ume α is its appearance in Manin’s conjecture on the number of rational points of
bounded height on Fano varieties defined over number fields, as described below.
Although the conjecture is now known not to hold for all Fano varieties [Batyrev
and Tschinkel 1996, Theorems 3.1–3.3], it has been verified in a large number
of cases, including some varieties for which the anticanonical class is big but not
ample.

Let X be a smooth projective variety defined over a number field K for which
−KX is big and assume that the set X (K) of rational points is Zariski dense. Equip
X (K) with an anticanonical height function H (consult [Hindry and Silverman
2000, Part B] for information on height functions) and for any constructible set
U ⊂ X let

NU (B) := #{P ∈ U (K) : H(P) ≤ B}.

The original formulation of the Manin conjecture [Batyrev and Manin 1990, Con-
jecture B] posits the existence of a Zariski open set U ⊂ X such that for any open
set V ⊂ U

NV (B) ∼ c(X)B(log B)ρ−1 asymptotically as B → ∞,

where ρ is the Néron–Severi rank of X . The conjecture was initially made for
Fano varieties, but a more ambitious version of the conjecture relaxes the condi-
tion on −KX to merely being big. The leading constant was given a conjectural
interpretation by Peyre [1995, Definition 2.4] and Batyrev and Tschinkel [1995,
Theorem 4.4.4]. They predict that c(X) = α(X)β(X)τ (X), where α(X) ∈ Q is
the constant of interest in this paper, β(X) ∈ N is a cohomological invariant of the
Galois action on the Néron–Severi group of X , and τ(X) ∈ R is a volume of adelic
points on X .

2. Definition of the nef cone volume

We recall the definition of α(X), first introduced by Peyre [1995, Definition 2.4].
Let X be a smooth complete variety for which −KX is big. We denote the

intersection form on X by 〈 · , · 〉. Recall that a divisor class D on X is numerically
trivial if 〈D, C〉 = 0 for all curves (equivalently, all 1-cycles) C on X , and two
divisor classes are numerically equivalent if their difference is numerically trivial.
One similarly defines numerical equivalence of curves. Numerical equivalence
classes of divisors on X form a finitely-generated torsion-free abelian group N 1(X)

whose dual group N1(X) consists of numerical equivalence classes of 1-cycles on
X . Let N 1(X)R = N 1(X) ⊗Z R and N1(X)R = N1(X) ⊗Z R be the associated
Euclidean spaces. Inside N 1(X)R lies the effective cone Eff1(X), the closed convex
cone spanned by the classes of effective divisors.
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Recall that for a finite-dimensional real inner product space V and a convex
cone 0 ⊂ V , the dual convex cone 0∨

⊂ V is defined by

0∨
= { v ∈ V : 〈v, c〉 ≥ 0 for all c ∈ 0 }.

The cone 0∨ is closed as a subspace of the Euclidean space V . The dual Eff1(X)∨

of the effective cone of X in N 1(X)R is the movable cone of X (see [Boucksom
et al. 2004, Theorem 2.2], [Lazarsfeld 2004, Section 11.4.C]). Note that when X is
a surface, N1(X) = N 1(X) and Eff1(X)∨ is the nef cone of X , denoted by Nef(X).

Since the cone Eff1(X)∨ has infinite volume in N1(X)R, a natural means of
measuring its “size” is to truncate the cone in an (anti)canonical manner. To do
this, consider the hyperplane

HX := {C ∈ N1(X)R : 〈−KX , C〉 = 1}.

Note that since −KX is big by hypothesis, HX intersects each ray of Eff1(X)∨. We
endow N1(X)R with Lebesgue measure ds normalized so that N1(X) has covolume
1, and we endow HX with the induced Leray measure dµ with respect to the linear
form 〈−KX , · 〉. That is, letting l be the linear form l(v) = 〈−KX , v〉, we have
ds = dµ ∧ dl. We construct the polytope

PX := Eff1(X)∨ ∩ HX

and define

α(X) := Vol(PX ) =

∫
PX

dµ.

There are variants of this definition differing only by a dimensional factor. Let
ρ = dim N1(X)R and

CX := {C ∈ Eff1(X)∨ : 〈−KX , C〉 ≤ 1}

be the convex hull of PX and the origin. Then a simple slicing argument shows
that α(X) = ρ · Vol(CX ). Additionally,

α(X) =
1

(ρ − 1)!

∫
· · ·

∫
Eff1(X)∨

exp (−〈−KX , s〉) ds,

with the bigness of −KX ensuring the convergence of the integral.

Example 2.1. Let us compute α(P2). We have N 1(P2)R
∼= R1, with the real num-

ber x ∈ R corresponding to the (real) divisor class x L , where L is the class of a
line in P2. Then the nef cone Nef(P2) = {x ∈ R : x ≥ 0} and the anticanonical
class corresponds the real number 3. The hyperplane HP2 is just {

1
3}. The polytope

PP2 is also {
1
3} and the convex hull CP2 = [0, 1

3 ]. Thus CP2 has volume 1
3 and so

α(P2) = 1 · Vol(CP2) =
1
3 .
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Example 2.2. Let X8 be the blowup of P2 at a single point. Let L be the class of
the pullback of a line to X8 and let E be the class of the exceptional divisor. Then
N 1(X8) is generated by L and E . In N 1(X8)R

∼= R2, with (a, b) corresponding to
aL + bE , the nef cone Nef(X8) is equal to

{(a, b) : a ≥ 0, a + b ≥ 0},

that is, the cone with extremal rays spanned by L and L − E . The anticanonical
class corresponds to the point (3, −1). The hyperplane HX8 is the line 3a +b = 1.
One checks that PX8 is the segment joining the points (1

3 , 0) and (1
2 , −1

2). Then
CX8 is the triangle with vertices the above two points together with the origin. The
area of this triangle is 1

12 , and so α(X8) = 2 Vol CX8 =
1
6 .

Terminology. Peyre [1995] introduced the notation α(X), but did not give a name
to this quantity. We will refer α(X) as the “nef cone volume of X” whenever X is
a surface.

3. Generalized Del Pezzo surfaces

As stated in the introduction, a generalized Del Pezzo surface is a smooth projective
rational surface Y on which −KY is big and nef. If Y is defined over an algebraically
closed field, Y is one of P2, P1

× P1, the Hirzebruch surface F2, or P2 blown up
at 1 ≤ r ≤ 8 points in almost general position [Demazure 1980, Definition III.2.1].
To blow up r points on P2 in almost general position is to construct a sequence of
morphisms

Y = Yr → Yr−1 → · · · → Y1 → Y0 = P2,

where each map Yi → Yi−1 is the blowup of Yi−1 at a point pi ∈ Yi−1 not lying on
any irreducible curves of self-intersection number −2 on Yi .

For n ∈ {1, 2}, a (−n)-class on Y is a divisor class D such that 〈D, D〉=−n and
〈D, −KY 〉 = 2 − n. If such a class is effective, then there is necessarily a unique
curve in that class. If this curve is irreducible, we use the term (−n)-curve both
for this curve and its class. It follows from the genus formula that a (−n)-curve
is a smooth rational curve. A simple calculation [Demazure 1980, Tables 2 and 3]
shows that the sets of (−1)- and (−2)-classes on a generalized Del Pezzo surface
are finite.

Let Y be a generalized Del Pezzo surface defined over a field K. We denote
Y ×K K by Y . Recall that a generalized Del Pezzo surface Y is an ordinary Del
Pezzo surface if and only if the anticanonical class −KY is ample. Equivalently,
there are no (−2)-curves on Y .

Convention 3.1. Throughout the paper, we will use X to refer to an ordinary Del
Pezzo surface and Y to refer to a generalized (possibly ordinary) Del Pezzo surface.
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The absolute Galois group GK = Gal(K/K) acts on N 1(Y ).

Definition 3.2. A generalized Del Pezzo surface Y is split if Y (K) 6= ∅ and the
action of GK on N 1(Y ) is trivial.

Apart from the exceptional cases where Y is isomorphic to P1
× P1 or F2, the

existence of a rational point assures that Y is a blowup of P2 and the triviality of
the Galois action assures that each exceptional divisor is defined over K, and thus
the sequence of blown-up points must themselves be defined over K.

In the remainder of this section, we prove that for a split Y , the effective cone
Eff1(Y ) is generated by the set of (−1)- and (−2)-curves on Y , collecting a number
of useful facts along the way.

By the following lemma, the group N 1(Y ) depends only on the degree of Y . We
will make frequent use of this well-known result.

Lemma 3.3. Let X be a split ordinary Del Pezzo surface and let Y be a split
generalized Del Pezzo surface of the same degree d ≤ 7. There is an isomorphism
of N 1(X) and N 1(Y ) which identifies the intersection forms and takes −KX to
−KY .

Proof. Say X is the blowup of P2 at points p1, . . . , pr ∈ P2, r = 9−d , with blow-
down πX : X → P2, and say Y is obtained by blowing up P2 at points q1, . . . , qr :

πY : Y = Yr → Yr−1 → · · · → Y1 → Y0 = P2

where Y j = Blq j (Y j−1), q j ∈ Y j−1. Let EX, j be the exceptional divisor over p j ,
and let EY, j be the total transform in Y of the exceptional divisor over q j . (That
is, if f j : Y → Y j−1, then EY, j = f −1

j (q j ), scheme-theoretically.)
Then N 1(X) is the free abelian group on L X = π∗

X OP2(1), EX,1, . . . , EX,r .
Similarly, N 1(Y ) is the free abelian group on LY = π∗

Y OP2(1), EY,1, . . . , EY,r .
The intersection form on N 1(X) is given in this basis by the diagonal matrix with
entries (1, −1, . . . ,−1); the intersection form on N 1(Y ) is given in this basis by
the same matrix. We have −KX = 3L X −

∑
EX, j and −KY = 3LY −

∑
EY, j . �

Remark 3.4. Note that the identification made in the proof of Lemma 3.3 is not
necessarily unique; see [Harbourne 1985, Theorem 0.1].

The next lemma is a modest generalization of [Hassett and Tschinkel 2004,
Proposition 4.5].

Lemma 3.5. Let S be a surface and let D1, . . . , Dk be irreducible effective divisors
on S. Let 0 denote the cone generated by D1, . . . , Dk . Then the effective cone of
S is equal to 0 if and only if 0∨

⊂ 0.
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Proof. If the effective cone of S is equal to 0 then it is a closed cone. The nef cone
Nef(S) = 0∨ is contained in the closure of the effective cone, which is just 0.

For the converse, it is clear that 0 is contained in the effective cone of S. Let D
be an effective divisor. Then we can write D = D′

+a1 D1 +· · ·+ak Dk with ai ≥ 0
and D′ having none of the Di as an irreducible component. It is clear that D′ is
contained in 0∨, and by hypothesis, D′ is consequently contained in 0. Hence the
same is true of D. �

Proposition 3.6. If Y is a split generalized Del Pezzo surface, every (−1)-class in
N 1(Y ) is effective. Indeed, if E is any (−1)-class, then either

(1) E is a (−1)-curve, or

(2) E can be written as the sum of a (−1)-curve and one or more (−2)-curves, or

(3) d = 1 and E can be written as the sum of −KY and one or more (−2)-curves.

Proof. See [Demazure 1980, Theorem III.2.c]. �

For a split generalized Del Pezzo surface Y of degree d ≥2, this shows that every
(−1)-class is a nonnegative integral linear combination of (−1)- and (−2)-curves.
By the following lemma, this holds also in degree d = 1 if we allow rational instead
of integral coefficients.

Lemma 3.7. For a split generalized Del Pezzo surface Y of degree 1, the anti-
canonical class −KY is a linear combination of (−1)- and (−2)-curves with non-
negative rational coefficients.

Proof. Let X be an ordinary Del Pezzo surface of degree 1. It is easy to check that
the sum of all (−1)-classes on X is −240KX .

Using the identification of Lemma 3.3, the sum of all (−1)-classes on Y is
−240KY . Using Proposition 3.6, we can write n of the (−1)-classes as the sum
of a (−1)-curve and possibly some (−2)-curves, and the remaining 240 − n of
the (−1)-classes as the sum of −KY and some (−2)-classes. Note that EY,8 in the
proof of Lemma 3.3 is a (−1)-curve on Y , so we have n > 0.

This gives us −240KY as the sum of n (−1)-curves, −(240 − n)KY , and some
(−2)-curves. We transform this equation to write −nKY as a sum of (−1)- and
(−2)-curves. �

Lemma 3.8. Let Y be a split generalized Del Pezzo surface and let E be a (−1)-
class in N 1(Y ). Then E is irreducible if and only if 〈E, C〉 is nonnegative for every
(−2)-curve C.

Proof. See [Demazure 1980, Corollary on page 46]. �

In the case of ordinary Del Pezzo surfaces, the following result is well-known.
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Proposition 3.9. Let X be a split ordinary Del Pezzo surface of degree d ≤ 7.
Then the effective cone of X is minimally generated by the (−1)-classes on X , all
of which are (−1)-curves.

Proof. This can be proved directly (see [Hartshorne 1977, Theorem V.4.11] for a
proof when d = 3) or can be taken as an immediate consequence of the calculation
of generators for the Cox ring given in [Batyrev and Popov 2004, Theorem 3.2],
making use of Lemma 3.7 in the case d = 1. �

We now reach our main goal for this section.

Theorem 3.10. If Y is a split generalized Del Pezzo surface and has degree d ≤ 7,
the effective cone of Y is finitely generated by the set of (−1)- and (−2)-curves.

Proof. Let 0 be the cone generated by the (−1)- and (−2)-curves on Y . To prove
the theorem, it suffices by Lemma 3.5 to show that 0∨

⊂ 0. Let X be a split
ordinary Del Pezzo surface of the same degree as Y . Identify N 1(X) and N 1(Y ) as
in Lemma 3.3. Note that this identification takes (−1)-classes to (−1)-classes. By
Proposition 3.9, Eff1(X) is generated by (−1)-classes. Each (−1)-class lies in 0

by Proposition 3.6 and Lemma 3.7. Therefore Eff1(X)⊂0. It follows immediately
that 0∨

⊂ Eff1(X)∨. From Lemma 3.5 we have Eff1(X)∨ ⊂ Eff1(X). Thus 0∨
⊂0

and hence 0 = Eff1(Y ), again by Lemma 3.5. �

Remark 3.11. A generalization of Theorem 3.10 has already been proved by
Lahyane and Harbourne [2005, Lemma 4.1]. We include our presentation both
as a summary of results that we will use later and also because the approach here
seems to have interest in its own right.

Corollary 3.12. Let X be a split ordinary Del Pezzo surface and Y a split general-
ized Del Pezzo surface with deg(X) = deg(Y ) ≤ 7. Identifying N 1(X) and N 1(Y )

as in Lemma 3.3, we have Eff1(X) ⊂ Eff1(Y ) and Nef(X) ⊃ Nef(Y ).
Let 0 ⊂ N 1(Y )R be the cone spanned by the set of (−2)-curves on Y . Then

Eff1(Y ) is the sum of Eff1(X) and 0, and Nef(Y ) = Nef(X) ∩ 0∨. �

4. Inductive method

With these preliminaries in place, we now turn to proving Theorem 1.2. For a
generalized Del Pezzo surface Y and any class D ∈ N 1(Y )R, we denote by D⊥ the
hyperplane

D⊥
:= {C ∈ N1(Y )R : 〈D, C〉 = 0}.

Lemma 4.1. Let Y be a split generalized Del Pezzo surface and E a (−1)-curve
on Y . Let πE : Y → YE be the contraction of E. Then

π∗

E : N 1(YE) −→ E⊥
∩ N 1(Y )
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is an isomorphism and induces an isomorphism of convex cones,

π∗

E(Nef(YE)) = Nef(Y ) ∩ E⊥.

Proof. We have N 1(Y ) = π∗

E(N 1(YE)) ⊕ ZE . We may identify Nef(YE) with
π∗

E(Nef(YE)) ⊂ E⊥. The inclusion π∗

E(Nef(YE)) ⊂ Nef(Y ) follows immediately
from the projection formula. This proves π∗

E(Nef(YE)) ⊂ Nef(Y ) ∩ E⊥.
For the reverse inclusion, let D ∈Nef(Y ) ∩ E⊥. Since E⊥

= π∗

E(N 1(YE)), we
have D = π∗

EπE ∗D. Again by the projection formula, for any curve C ⊂ YE ,

〈πE ∗D, C〉YE = 〈D, π∗

EC〉 ≥ 0,

since D ∈ Nef(Y ). �

We now prove the first of our main theorems. We repeat it here for convenience.

Theorem 1.2. Let Y be a split generalized Del Pezzo surface of degree d ≤ 7. For
each E in the set C of (−1)-curves on Y , let YE denote the split generalized Del
Pezzo surface of degree d + 1 obtained by contracting E. Then

α(Y ) =

∑
E∈C

1
d(9 − d)

α(YE).

Proof. We follow the argument used in [Derenthal 2007, Theorem 4]. Let E be
the set of (−1)- and (−2)-curves on Y . Then E is exactly the set of generators for
Eff1(Y ) described in Theorem 3.10. Recall that the hyperplane HY is defined as

HY = {C ∈ N1(Y )R : 〈−KY , C〉 = 1}.

The intersection PY = Nef(Y ) ∩ HY is a polytope with faces corresponding to
E ∈ E. For E ∈ E, let PE ⊂ HY be the convex hull of the vector 1

d (−KY ) and the
face PY ∩ E⊥. (Note that −KY is nef by the definition of generalized Del Pezzo
surface and 1

d (−KY ) is in PY since 〈−KY , −KY 〉 = d .) Then

PY = Nef(Y ) ∩ HY =

⋃
E∈E

PE .

The intersection of any two of the PE has volume zero in HY because the inter-
section lies in a subspace of dimension strictly less than that of HY . Therefore,

α(Y ) = Vol PY =

∑
E∈E

Vol PE .

For each (−2)-curve E , 〈KY , E〉 = 0 and hence 1
d (−KY ) ∈ E⊥. Thus PE lies in

the hyperplane HY ∩ E⊥ of dimension dim(HY )− 1, and so PE has volume zero.
We thus reduce to Vol PY =

∑
E∈C Vol PE .
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For E ∈C, let πE :Y →YE be the contraction. By Lemma 4.1 we have π∗

E HYE =

HY ∩ E⊥. This identifies the base of the cone PE as PY ∩ E⊥
= π∗

E PYE . Thus PE

is a cone of dimension 9 − d with height 1/d and base volume Vol(π∗

E PYE ). By
Lemma 4.1, the sublattices N 1(YE)⊂ N 1(YE)R and π∗

E(N 1(YE))= E⊥
∩N 1(Y )⊂

E⊥ are isomorphic, so π∗

E is volume-preserving and Vol(π∗

E PYE ) = Vol PYE =

α(YE). Consequently,

Vol PE =
1

d(9 − d)
Vol PYE =

1
d(9 − d)

α(YE).

Summing over E ∈ C gives the desired result. �

Remark 4.2. This generalization explains why Theorem 1.1 does not hold for
d = 7. When one blows down a (−1)-curve on an ordinary Del Pezzo surface of
degree d for d ≤ 7 the result is an ordinary Del Pezzo surface of degree d + 1.
For d ≤ 6, the resulting ordinary Del Pezzo surfaces all have the same nef cone
volume. This is no longer true when d = 7. Let Xd denote an ordinary Del Pezzo
surface of degree d obtained by blowing up 9−d points in general position on P2.
Recall that X7 = Blp,q(P2) contains three (−1)-curves: the exceptional divisors
E p and Eq , and the proper transform L pq of the line through p and q . Contracting
E p or Eq results in an X8, while contracting L pq results in P1

× P1. We have

α(X7) =
1

14
(2α(X8) + α(P1

× P1)) =
1
24

since α(X8) =
1
6 and α(P1

× P1) =
1
4 .

5. Root systems and Weyl groups

In this section, we recall some of the basic facts about the root system of (−2)-
classes on a Del Pezzo surface and its associated Weyl group. We use this structure
in our second main result which relates the nef cone volumes of split generalized
and ordinary Del Pezzo surfaces of the same degree.

5A. Root systems.

Definition 5.1. A root system R is a finite collection of nonzero vectors in a finite-
dimensional real vector space V with a nondegenerate definite inner product 〈 · , · 〉

satisfying the following conditions.

(1) The set R spans V , namely R is essential.

(2) For each x ∈ R, let sx : V → V be the reflection through the hyperplane
orthogonal to x :

sx(v) = v − 2
〈x, v〉

〈x, x〉
x .

For each x ∈ R, it is required that sx takes R to R.
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(3) For every x1, x2 ∈ R,
2
〈x1, x2〉

〈x2, x2〉

is an integer, that is, R is crystallographic.

(4) If x ∈ R and cx ∈ R, then c ∈ {1, −1}, that is, R is reduced.

Definition 5.2. A morphism of root systems from R ⊂ V to R′
⊂ V ′ is a linear

map 8 : V → V ′ such that (1) 8(R) ⊂ R′, and (2) 8 preserves inner products up
to a scalar multiple, that is, there is a c ∈ R such that 〈8(x), 8(y)〉 = c · 〈x, y〉.
Equivalently, the integers 2〈x1, x2〉/〈x2, x2〉 are preserved for all x1, x2 ∈ R.

Remark 5.3. We will sometimes refer to a root system R in a vector space V even
when R does not span V . Strictly speaking, R is only a root system in the subspace
it spans, but this minor abuse of language should not cause any confusion.

We recall some standard notions; for details, see [Humphreys 1990, Section 1.3],
[Bourbaki 2002, Section VI.1.2], [Hall 2003, Chapter 8]. Any hyperplane in V not
containing any root of R divides R into two subsets, with positive roots on one side
(and negative roots on the other side). Those positive roots which cannot be written
as a sum of other positive roots with positive coefficients form a set of simple roots.
Each set of simple roots (for each choice of a set of positive roots) is a linearly
independent set such that every root in R is either a sum of simple roots with
nonnegative coefficients or a sum of simple roots with nonpositive coefficients.

A decomposition of R is a disjoint union R = R1 ∪ · · · ∪ Rk such that the
span of R is the direct sum of the spans of the R j , each R j is a root system in
its span, and the spans of the R j are orthogonal to each other. If R admits no
nontrivial decomposition, then R is an irreducible root system. If R is reducible, it
has a unique (up to order) decomposition into irreducible root systems, called the
irreducible components of R.

Recall the classification of root systems by Dynkin diagrams. For a root system
R and a choice of a set R0 of simple roots in R, the Dynkin diagram of R is the
graph with vertex set R0 and an edge joining two vertices if and only the corre-
sponding roots are not perpendicular. One labels the edges of the graph according
to the angle between the roots and their relative length; for details, see [Bourbaki
2002]. The Dynkin diagram is independent of the choice of a set of simple roots.
The irreducible root systems correspond to connected graphs. The irreducible
components of a reducible root system R correspond exactly to the connected
components of the Dynkin diagram of R. One has the well-known classification of
irreducible root systems corresponding to Dynkin diagrams of types An for n ≥ 1,
Bn for n ≥ 2, Cn for n ≥ 3, Dn for n ≥ 4, En for 6 ≤ n ≤ 8, F4 and G2.

The group of orthogonal transformations generated by all sx , x ∈ R, is finite
and is called the Weyl group W (R). A wall in V is a hyperplane orthogonal to an
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root system R An Dn E6 E7 E8

#W (R) (n+1)! 2n−1
·n! 27

·34
·5 210

·34
·5·7 214

·35
·52

·7

Table 2. The orders of simply laced Weyl groups.

root system R Bn Cn F4 G2

#W (R) 2n
·n! 2n

·n! 27
·32 22

·3

Table 3. The orders of nonsimply laced Weyl groups.

x ∈ R. Removing the walls from V leaves a finite set of open convex cones called
chambers. The action of W (R) permutes these chambers simply transitively.

Table 2 lists all of the simply laced root systems (those in which all roots have
the same self-intersection) and the orders of their Weyl groups. Table 3 gives the
same data for the nonsimply laced root systems.

5B. Root systems on Del Pezzo surfaces. Let Y be a split generalized Del Pezzo
surface of degree d ≤ 7. By [Manin 1986, Sections 23–25], the finite set Rd of
(−2)-classes on Y is a root system in N 1(Y )R and of course depends only on the
degree d . For d ≤ 6, the roots span the hyperplane (−KY )⊥. The classification of
this root system is shown in Table 4.

Not only is Rd a root system, but in fact the subset of (−2)-classes that are
effective on Y gives rise to a root system [Demazure 1980, Theorem III.2.b].

Theorem 5.4 (Demazure). Let Y be a split generalized Del Pezzo surface of degree
d ≤ 6 and let R+

Y be the set of effective (−2)-classes on Y . Then RY := R+

Y ∪−R+

Y
is a root system in N 1(Y ) whose simple roots are the (−2)-curves of Y and whose
positive roots are R+

Y . It is contained in Rd . �

Remark 5.5. Urabe [1983, Main Theorem] has shown that every root system con-
tained in Rd occurs as the root system RY of a generalized Del Pezzo surface Y of
degree d as in Theorem 5.4, with four exceptions: the subsystem of type 7A1 in
R2 and the subsystems of type 7A1, 8A1, and D4 + 4A1 in R1.

Remark 5.6. The root system RY can have irreducible components of the follow-
ing types: A1, . . . , A8, D4, . . . , D8, E6, E7, E8.

For Y of degree d ≥ 3, consider the anticanonical morphism φ defined by the
linear series |−KY | which maps Y to a projective space of dimension d . For d = 2

d 7 6 5 4 3 2 1

Rd A1 A1×A2 A4 D5 E6 E7 E8

Table 4. Classification of root systems Rd .
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(respectively, d = 1), let φ be the morphism defined by the linear series |−2KY |

(respectively, |−3KY |). Let Y ′ be the image of Y under φ. The map φ sends the
union of (−2)-curves corresponding to any connected component of the Dynkin
diagram to a singularity of Y ′, while it is an isomorphism between the complement
of the (−2)-curves on Y and the complement of the singularities on Y ′. Each
singularity on Y ′ is a rational double point. Its type in the ADE-classification is
given by the type of the corresponding irreducible Dynkin diagram. The surface Y ′

is a singular Del Pezzo surface, whose minimal desingularization is the generalized
Del Pezzo surface Y .

5C. Weyl groups and nef cone volume. We proceed with the proof of our second
main result, which we repeat here for the convenience of the reader.

Theorem 1.3. Let Y be a split generalized Del Pezzo surface of degree d ≤ 7 and
let X be a split ordinary Del Pezzo surface of the same degree. Then

α(Y ) =
1

#W (RY )
α(X),

where W (RY ) is the Weyl group of the root system RY whose simple roots are the
(−2)-curves on Y .

Proof. Identify N 1(X) and N 1(Y ) as in Lemma 3.3.
With notation as in the statement of Theorem 5.4, let C be the open convex cone

in N1(Y )R dual to the cone spanned by the (−2)-curves of Y . That is,

C = { v ∈ N1(Y )R : 〈v, x〉 > 0 for all (−2)-curves x on Y }.

Since the (−2)-curves are a system of simple roots of RY , C is a single chamber
for the Weyl group W (RY ). Recall that by Corollary 3.12, Nef(Y ) = Nef(X)∩ C .
Intersecting with the hyperplane HX gives PY = C ∩ PX . We have

N 1(X)R =

⋃
w∈W (RY )

wC,

so
PX =

⋃
w∈W (RY )

(
wC ∩ PX

)
.

The sets wC ∩ PX , w ∈ W (RY ), are pairwise disjoint except along boundaries,
which have zero volume. The action of W (RY ) preserves volume and fixes Nef(X)

and −KX . Therefore it fixes PX , and we have

α(X) = Vol PX =

∑
w∈W (RY )

Vol(wC ∩ PX ) = #(W (RY )) Vol(C ∩ PX )

= #(W (RY )) Vol PY = #(W (RY )) · α(Y ). �
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Remark 5.7. As in Remark 5.6, let Y ′ be the singular Del Pezzo surface whose
minimal desingularization is Y . The number #W (RY ), and therefore α(Y ), can be
determined directly from the types of singularities on Y ′ as follows. The types R
of the singularities of Y ′ coincide with the types of the irreducible components of
RY . The orders of their Weyl groups W (R) can be found in Table 2. Their product
is #W (RY ).

6. Nonsplit generalized Del Pezzo surfaces

We recall some facts about the geometry of generalized Del Pezzo surfaces that are
not split and then introduce the notion of orbit root systems. The results collected
here will be used in Section 7 to relate the nef cone volume of nonsplit generalized
Del Pezzo surfaces to the nef cone volume of ordinary Del Pezzo surfaces.

6A. The Galois action. Throughout this section, we let Y be a generalized Del
Pezzo surface of degree d ≤ 7 defined over a perfect field K and we assume that Y
contains a K-rational point; we let Y = Y ×K K. The Galois group GK = Gal(K/K)

acts on N 1(Y ), and each automorphism of N 1(Y ) induced by an element of GK

preserves both the intersection form and the anticanonical class.

Proposition 6.1. The group of automorphisms of N 1(Y ) which preserve the inter-
section form 〈 · , · 〉 and the anticanonical class −KY is canonically isomorphic to
W (Rd).

Proof. The result for ordinary Del Pezzo surfaces can be found in [Manin 1986,
Theorem 23.9]. (The statement there is given only for d ≤ 6, but the d = 7 case is
an easy calculation.) The result holds for generalized Del Pezzo surfaces via the
identification described in Lemma 3.3. �

Thus the action of GK factors through (a subgroup of) the finite group W (Rd).

Proposition 6.2. Let Y be a generalized Del Pezzo surface defined over the field
K containing a K-rational point. Then N 1(Y ) = N 1(Y )GK .

Recall that if S is a set on which the group G acts, the standard notation

SG
= {s : gs = s for all g ∈ G}

denotes the set of fixed points of the action.

Proof. A result of Colliot-Thélène and Sansuc [1987, Theorem 2.1.2, Claim (iii)]
assures that under the hypotheses of the proposition, Pic(Y )= Pic(Y )GK . Since the
intersection form on Pic(Y ) is nondegenerate, we have Pic(Y ) = N 1(Y ). Finally,
to show N 1(Y ) = Pic(Y ) it suffices to prove that a divisor is numerically trivial on
Pic(Y ) if it is numerically trivial on Pic(Y ).
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Suppose D ∈ Pic Y is numerically trivial in Pic Y . Let E be any divisor class
on Y . Recall that the action of GK on N 1(Y ) factors through the finite Weyl group
W (Rd), so the GK-orbit of E is finite. Say this orbit is {E1, . . . , Es}. Since GK

preserves the intersection form on Y and D is GK-invariant,

〈D, E〉 =
1
s

∑
i

〈D, Ei 〉 =

〈
D,

1
s

∑
i

Ei

〉
= 0

because (1/s)
∑

Ei lies in (Pic Y )GK = Pic Y .
With the above results put together, N 1(Y ) = Pic(Y ) = Pic(Y )GK = N 1(Y )GK ,

which proves the proposition. �

We now explain the relation between the effective cone of Y and that of Y .

Proposition 6.3. The effective cone of Y is equal to the cone of GK-invariant ef-
fective classes of Y , that is,

Eff1(Y ) = Eff1(Y )GK .

Proof. By Proposition 6.2, we have N 1(Y ) = N 1(Y )GK . It is clear that

Eff1(Y ) ⊆ Eff1(Y )GK .

To show the reverse inclusion, first note that if D is any effective divisor on
Eff1(Y ), with L being a finite Galois extension of K over which D is defined,
then

∑
σ∈Gal(L/K) σ(D) ∈ Eff1(Y ). For any D ∈ Eff1(Y )GK that is defined over a

finite Galois extension L/K, we have

D =
1

# Gal(L/K)

∑
σ∈Gal(L/K)

σ(D).

This completes the proof. �

The action of GK on N 1(Y ) induces an action both on the set of (−1)-curves
and on the set of (−2)-curves.

Corollary 6.4. A set of generators for the effective cone of Y consists of , for each
orbit of GK on the sets of (−1)-curves and (−2)-curves, the sum of the classes in
that orbit. �

Note that this set of generators may fail to be minimal. (See rows 3, 6 and 9 of
Table 8 for examples.)

6B. Orbit root systems. We will use the following construction in Section 7A in
the case of GK acting on the root system RY ⊂ N 1(Y ) (as in Theorem 5.4) of Y ,
in order to obtain a root system in N 1(Y ).
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Definition 6.5. Let R ⊂ V be a possibly reducible root system with a chosen set
5 of positive roots. Suppose a group G acts linearly on V in such a way that it
permutes the elements of R, preserves the inner product between elements of R
and preserves positivity. In this case, we say that G acts on R. The set

O(R, G) :=

{∑
x∈O

x : O is a G-orbit of an element of R
}

is called the orbit root system of R with respect to G. (We show below that O(R, G)

is indeed a root system.)

Proposition 6.6. Let R ⊂ V be an irreducible root system with a chosen positive
system 5. Suppose G acts on R. Then O(R, G) is an irreducible root system as
in Table 5. The simple (respectively, positive) roots of O(R, G) are the sums of
elements of orbits of simple (respectively, positive) roots of R.

Proof. Any group action which preserves inner products and positivity must nec-
essarily act as an automorphism of the Dynkin diagram. Indeed, the group takes
nonsimple roots to nonsimple roots, and thus takes simple roots to simple roots.
Thus the group acts on the vertices of the Dynkin diagram; since the edges (and
edge labelings) are determined by the inner product, they are preserved by the
group. We check case by case that all nontrivial admissible group actions on irre-
ducible Dynkin diagrams are listed in Table 5. In each case, a direct calculation
shows that O(R, G) is indeed a root system of the listed type. �

A list similar to Table 5 has been compiled by Kac [1990, Propositions 7.9 and
7.10]. The main difference between our list and Kac’s is that we use the sum
of roots in an orbit, while he uses the average; because of this difference Kac’s
approach sometimes gives the dual root system to ours.

Lemma 6.7. Let R ⊂ V be a possibly reducible root system with a chosen positive
system 5. Suppose G acts on R. Then G acts on the irreducible components of
R in the following sense. If R =

⋃n
i=1 Ri is a decomposition of R into irreducible

components and g ∈ G, the image g(Ri ) for any i is one of the irreducible compo-
nents R j .

R G O(R, G)

A2n Z/2Z Bn

A2n+1 Z/2Z Bn+1

Dn Z/2Z Cn−1

D4 Z/3Z or S3 G2

E6 Z/2Z F4

Table 5. Nontrivial irreducible orbit root systems.
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Proof. One way to see this is by considering the Dynkin diagram D of R. Each
component Ri corresponds to a connected component of the graph D. As noted
above, the group G acts as a graph automorphism of D. Then each element of G
must take connected components of D to connected components. �

To avoid confusion between the actions of G on R and on the set of irreducible
components of R, we refer to orbits in the latter set as “component orbits”.

Proposition 6.8. Let R ⊂ V be a possibly reducible root system with a chosen pos-
itive system 5. Suppose G acts on R. Let R1, . . . , Rk be irreducible components
of R which form a set of component orbit representatives, that is, each component
orbit contains exactly one of the Ri . For each i , let Gi ⊂ G be the subgroup fixing
Ri . Then O(R, G) is a root system and

O(R, G) ∼=

k⋃
i=1

O(Ri , Gi ). (∗)

Proof. First, note the right-hand side is indeed a root system. For by Proposition
6.6, each O(Ri , Gi ) is a root system contained in the subspace spanned by Ri

(since each element of O(Ri , Gi ) is a sum of one or more elements of Ri ). Then
if i 6= j , by assumption Ri and R j are distinct irreducible components of R, so
they span perpendicular subspaces of V . Therefore O(Ri , Gi ) and O(R j , G j ) are
perpendicular. Hence the union on the right-hand side of (∗) is a perpendicular
union of root systems.

Now, the spans of the component orbits are pairwise perpendicular, so we may
treat them separately. We consider the orbit i = 1, the others being similar. Let
the component orbit of R1 consist of the components R1,1 = R1, R1,2, . . . , R1,p.
Choosing elements g1 = idG, g2, . . . , gp ∈ G such that gi R1 = R1,i for each i , we
get isomorphisms

(span R1, R1) ∼= (span R1,2, R1,2) ∼= · · · ∼= (span R1,p, R1,p).

Under this identification we have an isomorphism of the diagonal

1 ⊂ (span R1)
p ∼= (span R1,1) ⊕ · · · ⊕ (span R1,p)

with span(R1) by projection onto the first factor. Note that this projection preserves
angles and ratios of lengths, but divides all lengths by a factor of

√
p. One can

check that the projection takes O(R1,1 ∪ · · · ∪ R1,p, G) to O(R1, G1), as desired.
More precisely, if O is the orbit of r ∈ R1 under G1, then O∪g2O∪· · ·∪gpO is the

orbit of r under G. Then gi
∑

x∈O x =
∑

x∈gi O
x is an element of O(R1,i , gi G1g−1

i )

where gi G1g−1
i is the subgroup of G fixing R1,i , while

∑p
i=1 gi

∑
x∈O x is an el-

ement of O(R1,1 ∪ · · · ∪ R1,p, G), which lies in 1. It is projected to the element∑
x∈O x of O(R1, G1). �
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Corollary 6.9. In the setting of Proposition 6.8,

W (O(R, G)) ∼=

k∏
i=1

W (O(Ri , Gi )). �

7. Nef cone volume of nonsplit generalized Del Pezzo surfaces

Let Y be a nonsplit generalized Del Pezzo surface of degree at most 7, defined
over a perfect field K. As in Section 6 we continue to assume that Y contains a
K-rational point. Then GK = Gal(K/K) acts on the set of (−2)-curves on Y and on
the associated root system. In this situation, we can construct an orbit root system
as in Definition 6.5. As in the split case (Theorem 1.3), this allows us to relate the
nef cone volume of Y to a volume associated to an ordinary Del Pezzo surface of
the same degree. In Section 7B, we compute this volume for all nonsplit Del Pezzo
surfaces of degree at least 5.

7A. Nef cone volume of pairs. Using Proposition 6.1, we can associate to a gen-
eralized Del Pezzo surface Y of degree d ≤ 7 the pair (Y , HY ), where HY ⊂ W (Rd)

is the image of GK under the homomorphism

GK → Aut
(
N 1(Y ), 〈 · , · 〉, −KY

)
∼= W (Rd).

Note that GK and therefore also HY acts on the set of (−2)-curves on Y and also
on the set of its (−1)-curves.

Remark 7.1. To every generalized Del Pezzo surface Y over K there is the asso-
ciated pair (Y , HY ), as described above. The “realization problem for pairs” is to
describe which pairs (Y , H) are obtained in this manner. That is, for which pairs
(Y , H), consisting of a split generalized Del Pezzo surface Y over K of degree d
and a subgroup H ⊂ W (Rd) acting on the set of (−2)-curves, is there a Y defined
over K such that Y = Y ×K K and H = HY is the image of GK in W (Rd)?

Corn has shown that every pair (X , H), with X a split ordinary Del Pezzo sur-
face of degree 6 and H ⊂ W (R6) arbitrary, is realizable in the above sense [Corn
2005, Theorem 5.1].

We use pairs to circumvent this realization problem. This allows us to prove
comparison theorems without having to address realization (see Corollary 7.5).

We now define the nef cone volume α(Y, H) of a pair (Y, H) where Y is any
split generalized Del Pezzo surface of degree d ≤ 7 and H is any subgroup of
W (Rd) that acts on the set of (−2)-curves on Y . It follows from Lemma 3.8 that
H also acts on the set of (−1)-curves. Note that there is no restriction on H if Y
is ordinary.

For such a pair (Y, H), define N 1(Y, H) to be N 1(Y )H . Motivated by Corollary
6.4, we define Eff1(Y, H) to be the cone in N 1(Y, H)R generated by the sum of
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the classes in each orbit of H acting on the sets of (−1)-curves and (−2)-curves
of Y . We naturally get a dual cone

Nef(Y, H) := {C ∈ N 1(Y, H)R : 〈D, C〉 ≥ 0 for all D ∈ Eff1(Y, H)}.

We then have the hyperplane

HY,H := {C ∈ N 1(Y, H)R : 〈C, −KY 〉 = 1}

and the polytope

PY,H := Nef(Y, H) ∩ HY,H .

And so we define α(Y, H) := Vol(PY,H ), with respect to the Leray measure dµ

defined in the analogous manner to the way it was defined in Section 2.
It is immediate from Proposition 6.2 and Corollary 6.4 that if Y is any general-

ized Del Pezzo surface (not necessarily split), then α(Y ) = α(Y , HY ).

Lemma 7.2. Assume that Y is split and let H1, H2 be two conjugate subgroups in
W (Rd). Then α(Y, H1) = α(Y, H2).

Proof. Let w ∈ W (Rd) be such that H2 = wH1w
−1. Let Oi , i ∈ I , denote the orbits

of the (−1)- and (−2)-classes under H1. By definition, Eff1(Y, H1) is generated
by the sums

∑
D∈Oi

D, i ∈ I . A simple calculation shows that the orbits of these
classes under H2 are given by wOi , i ∈ I . We have

α(Y, H1) = Vol
(
{C ∈ N 1(Y, H1)R : 〈−KY , C〉 = 1, 〈C,

∑
D∈Oi

D〉 ≥ 0 for all i ∈ I }
)
.

Making use of the fact that elements of W (Rd) preserve the intersection form and
anticanonical class and noting that elements of W (Rd) are orthogonal transforma-
tions and thus preserve volumes, we compute

α(Y, H2)=Vol
(
{C ∈ N 1(Y, H2)R : 〈−KY , C〉=1, 〈C,

∑
D∈Oi

wD〉≥0 ∀i ∈ I }
)

=Vol
(
{C ∈ N 1(Y, H2)R : 〈−KY , w−1C〉=1, 〈w−1C,

∑
D∈Oi

D〉≥0 ∀i ∈ I }
)

=Vol
(
w{C ∈ N 1(Y, H1)R : 〈−KY , C〉=1, 〈C,

∑
D∈Oi

D〉≥0 ∀i ∈ I }
)

=α(Y, H1). �

Corollary 7.3. Let Y1 and Y2 be generalized Del Pezzo surfaces of degree d ≤ 7,
defined over a perfect field K, which are geometrically isomorphic, that is, Y1 ∼= Y2.
Let H1 and H2 denote the images of GK under the respective homomorphisms
GK → W (Rd). If H1 and H2 are conjugate in W (Rd), then α(Y1) = α(Y2). �
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We arrive at the following analogue of Theorem 1.3. That theorem provided a
comparison between the nef cone volumes of a split generalized Del Pezzo sur-
face and of a split ordinary Del Pezzo surface of the same degree. The following
theorem generalizes this to the nef cone volumes of pairs.

Theorem 7.4. Let Y be a split generalized Del Pezzo surface of degree d ≤ 7,
X a split ordinary Del Pezzo surface of the same degree, and H a subgroup of
W (Rd) acting on the set of (−2)-curves on Y . Let RY be the root system whose
simple roots are the (−2)-curves on Y , and let O(RY , H) be the orbit root system
associated to the action of H on RY as in Definition 6.5. Then

α(Y, H) =
α(X, H)

#W (O(RY , H))
.

Proof. The proof of this theorem is a generalization of the argument that proves
Theorem 1.3. Using Lemma 3.3, we identify N 1(X) and N 1(Y ). This gives an
identification of N 1(X, H) and N 1(Y, H). As before, Nef(Y, H) is the intersec-
tion of Nef(X, H) with the closure of a chamber defined by the simple roots of
O(RY , H). As in the proof of Theorem 1.3, the chambers of the Weyl group
W (O(RY , H)) intersect only along boundaries, which have zero volume. They
fill N 1(Y ). There are #W (O(RY , H)) of the chambers. From here, the proof is
completed by the same steps as in the proof of Theorem 1.3. �

We arrive at our third main result, the computation of the nef cone volume of a
generalized Del Pezzo surface over an arbitrary perfect field.

Corollary 7.5. Let Y be a generalized Del Pezzo surface of degree d ≤ 7 over the
perfect field K and X a split ordinary Del Pezzo surface of the same degree. Let
Y = Y ×K K, and identify N 1(Y ) with N 1(X) as in Lemma 3.3. Let HY ⊂ W (Rd)

be the image of GK . Let RY ⊂ Rd be the root system whose simple roots are
(−2)-curves on Y . Then

α(Y ) = α(Y , HY ) =
α(X, HY )

#W (O(RY , HY ))
. �

Using Proposition 6.6 and Corollary 6.9, the integer appearing in the denomi-
nator is straightforward to compute. This reduces the computation of the nef cone
volume of an arbitrary generalized Del Pezzo surface over a nonclosed field to the
computation of the nef cone volume of a pair involving a split ordinary Del Pezzo
surface.

7B. Pairs involving ordinary Del Pezzo surfaces of high degree. As examples,
let us compute α(X) for the various possible nonsplit ordinary Del Pezzo surfaces
X of degree d ≥ 5.
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For d ≥ 7 there are very few possible nontrivial Galois actions on X , and we list
these cases briefly.
(1) There are no nontrivial possibilities with d = 9: we must have X ∼= P2, the

Galois action is trivial, and α(X) =
1
3 .

(2) For d = 8, the only nontrivial form occurs when X is a twist of P1
× P1

in which the Galois action permutes the two generating rulings. In this case
α(X) =

1
2 .

(3) For d = 7, the only possible nontrivial form occurs when X is the blowup
of two conjugate rational points on P2, so the Galois action interchanges the
points. In this case α(X) =

1
6 .

For d = 5, 6 there are many more cases. For the remainder of this section, let X
be a possibly nonsplit ordinary Del Pezzo surface of degree 5 or 6 defined over a
nonclosed perfect field K. Let X = X ×K K. As above, we have α(X) = α(X , HX )

where HX is the image of the Galois group in W (Rd). We compute α(X) by finding
the values of α(X , H) for all subgroups H of W (Rd). (As noted in Remark 7.1, it
is not obvious which subgroups H of W (Rd) arise as images of Galois groups, so
a priori some values α(X , H) might not correspond to any α(X).)

For the case d = 6, recall that X is obtained by blowing up three noncollinear
points in P2 and the cone Eff1(X) is minimally generated by the (−1)-curves on
X . Let E1, E2, E3 denote the exceptional curves and L denote the pullback of
a line. The set of (−1)-curves is shown schematically in Figure 1: the vertices
correspond to the generating classes for Eff1(X), with the convenient shorthand
L i j = L − Ei − E j . Two classes intersect if and only if the corresponding vertices
in the graph are connected by an edge.

Table 6 lists the subgroups of W (R6)= W (A1)×W (A2)∼= Z/2Z×S3 ∼= D6. By
Lemma 7.2, it suffices to consider subgroups up to conjugacy. For each conjugacy
class, we choose a representative subgroup H and give the order #H of H , the orbit
structure of H on the generators of Eff1(X), the rank ρ of N 1(X , H), the number
m of generators in the minimal generating set of Eff1(X , H), and finally the nef
cone volume α(X , H). We describe H in terms of generators, using the generator

E1

E2

E3

L12

L13

L23

Figure 1. Configuration of (−1)-curves on an ordinary Del Pezzo
surface of degree 6.
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H #H Orbit structure ρ m α(X,H)

〈s123, s12, s23〉 12
〈s23s123, s23s12〉 6 {E1, E2, E3, L12, L13, L23} 1 1 1

〈s123s12s23〉 6

〈s12, s23〉 6
〈s12s23〉 3 {E1, E2, E3}, {L12, L13, L23} 2 2 1

3

〈s123, s23〉 4 {E1, L23}, {E2, E3, L12, L13} 2 2 1
2

〈s123s12〉 2 {E1, L12}, {E2, L13}, {E3, L23} 2 2 1
2

〈s123〉 2 {E1, L23}, {E2, L13}, {E3, L12} 3 3 1
8

〈s12〉 2 {E1, E2}, {E3}, {L12}, {L13, L23} 3 4 1
12

〈e〉 1 {E1}, {E2}, {E3}, {L12}, {L13}, {L23} 4 6 1
72

Table 6. Values of α(X , H) for a split ordinary Del Pezzo surface
X of degree 6.

s123 := sL−E1−E2−E3 (180◦ rotation) of W (A1) and the generators s12 := sE1−E2

(flip swapping E1 and E2) and s23 := sE2−E3 (flip swapping E2 and E3) of W (A2).
Given H , we may compute α(X , H) as follows. We explicitly compute the

sums of elements in each orbit of the action of H on the generators of Eff1(X),
obtaining a set of generators of the cone Eff1(X , H). We compute the dual cone
in N 1(X , H), obtaining Nef(X , H). Intersecting with the hyperplane HX ,H gives
the polytope PX ,H , whose volume is α(X , H). For the case when d = 5, recall
that X is the blowup of P2 at 4 points in general position. Similarly to the case
d = 6, the cone Eff1(X) is generated by the (−1)-curves Ei for 1 ≤ i ≤ 4 and
L i j = L − Ei − E j for 1 ≤ i < j ≤ 4.

Figure 2 uses a different diagram to exhibit the full symmetry of the configura-
tion of these 10 curves with respect to W (R5) = S5. (It seems impossible to make
visible all of the symmetries in a diagram analogous to Figure 1). Here the minimal

4

5

3

2

1

Figure 2. Configuration of (−1)-curves on an ordinary Del Pezzo
surface of degree 5.
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generators of Eff1(X) correspond to edges of the graph, and two generating classes
intersect if and only if the corresponding edges do not share a common vertex. The
action of W (R5) = S5 corresponds to permuting the 5 vertices. Table 7 shows the

[12] [13] [14] [15] [23] [24] [25] [34] [35] [45]

E1 E2 E3 E4 L34 L24 L23 L14 L13 L12

Table 7. Correspondence of edges in Figure 2 to generators of the
effective cone of an ordinary Del Pezzo surface of degree 5.

H #H Orbit structure ρ m α(X,H)

〈(12), (12345)〉 120
〈(12)(34), (253)〉 60 {E1, E2, E3, E4, L12,

〈(1234), (13)(24), (12543)〉 20 L13, L14, L23, L24, L34}
1 1 1

〈(12)(34), (13542)〉 10

〈(12), (1234)〉 24 {E1, E2, E3, L14, L24, L34},

〈(123), (12)(34), (14)(23)〉 12 {E4, L12, L13, L23}
2 2 2

3

〈(12), (34), (345)〉 12
〈(12)(34), (345)〉 6 {E1}, {L12, L13, L14}, 2 2 1

2
〈(12), (345)〉 6 {E2, E3, E4, L23, L24, L34}

〈(12), (123)〉 6 {E1, E2, L34}, {E3, L14, L24},

〈(123)〉 3 {E4, L13, L23}, {L12}
3 4 5

24

{E1, E4, L12, L14, L34},
〈(12345)〉 5

{E2, E3, L13, L23, L24}
1 1 1

{E1}, {E2, E3, L24, L34},
〈(12)(34), (13)(24)〉 4

{E4, L23}, {L12, L13}, {L14}
3 4 1

6

{E1, E3, L14, L34}, {E2, L24},
〈(12), (34)〉 4

{E4, L12, L13, L23}
2 2 2

3

〈(12), (34), (13)(24)〉 8 {E1, L14}, {E2, L24}, {E3, L34},

〈(1234)〉 4 {E4, L12, L13, L23}
2 2 2

3

{E1}, {E2, L24}, {E3, L34},
〈(12)(34)〉 2

{E4 L23}, {L12, L13}, {L14}
3 4 1

6

{E1}, {E2, L34}, {E3, L24},
〈(12)〉 2

{E4 L23}, {L12}, {L13}, {L14}
4 7 1

24

{E1}, {E2}, {E3}, {E4}, {L12},
〈e〉 1

{L13}, {L14}, {L23}, {L24}, {L34}
5 10 1

144

Table 8. Values of α(X , H) for a split ordinary Del Pezzo surface
X of degree 7.
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correspondence between the edges of the diagram and the generating classes, where
we use the notation [i j] to indicate the edge connecting vertex i with vertex j .

The enumeration of the conjugacy classes of subgroups of S5 has been made by
Götz Pfeiffer and is available online [Pfeiffer 2007]. Table 8 contains the values
of α(X , H) for the various possible conjugacy classes of subgroups of S5.
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