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A finiteness property of torsion points
Matthew Baker, Su-ion Ih and Robert Rumely

Let k be a number field, and let G be either the multiplicative group Gm/k or an
elliptic curve E/k. Let S be a finite set of places of k containing the archimedean
places. We prove that if α ∈G(k) is nontorsion, then there are only finitely many
torsion points ξ ∈G(k)tors that are S-integral with respect to α. We also formulate
conjectural generalizations for dynamical systems and for abelian varieties.

Introduction

Let k be a number field, with ring of integers Ok and algebraic closure k. In this
paper we prove finiteness theorems for torsion points that are integral with respect
to a given nontorsion point, for the multiplicative group Gm/k and for elliptic
curves E/k. We then attempt to place these results in a conceptual framework,
and conjecture generalizations to dynamical systems and abelian varieties.

Let S be a finite set of places of k containing the archimedean places. Given
α, β ∈ P1(k), let cl(α), cl(β) be their Zariski closures in P1

Ok
. By definition, β

is S-integral relative to α if cl(β) does not meet cl(α) outside S. Thus, β is S-
integral relative to α if and only if for each place v of k not in S, and each pair of
k-embeddings σ : k(β) ↪→ kv, τ : k(α) ↪→ kv, we have ‖σ(β), τ (α)‖v = 1 under
the spherical metric on P1(kv). Equivalently, for all σ , τ ,{

|σ(β)− τ(α)|v ≥ 1 if |τ(α)|v ≤ 1,
|σ(β)|v ≤ 1 if |τ(α)|v > 1.

Theorem 0.1. Let k be a number field, and let S be a finite set of places of k
containing all the archimedean places. Fix α ∈ P1(k) with Weil height h(α) > 0;
that is, identifying P1(k) with k ∪ {∞}, α is not 0 or ∞ or a root of unity. Then
there are only finitely many roots of unity in k that are S-integral with respect to α.

Similarly, let E/k be an elliptic curve, and let E/Spec(Ok) be a model of E .

MSC2000: primary 11G05; secondary 11J71, 11J86, 37F10, 11G50.
Keywords: elliptic curve, equidistribution, canonical height, torsion point, integral point.
Work supported in part by NSF grant DMS-0300784.
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Theorem 0.2. Let k be a number field, and let S be a finite set of places of k
containing all the archimedean places. If α ∈ E(k) is nontorsion (has canonical
height ĥ (α)> 0), there are only finitely many torsion points ξ ∈ E(k)tors which are
S-integral with respect to α.

By S-integrality we mean that the Zariski closures of ξ and α in E/Spec(Ok) do not
meet outside fibres above S. Since any two models are isomorphic outside a finite
set of places, it follows from the theorem that the finiteness property is independent
of the choice of the set S and the model E.

The main ingredients of the proofs of Theorems 0.1 and 0.2 are linear forms
in logarithms (Baker’s theorem for Gm , and David/Hirata-Kohno’s theorem for
elliptic curves), properties of local height functions, and a strong form of equidis-
tribution for torsion points at all places v. In outline, both theorems are proved as
follows. By base change, one reduces to the case where α is rational over k. Given
a place v of k, let kv be the algebraic closure of the completion kv, and let λv be
the normalized canonical local height occurring in the decomposition of the global
height. On the one hand, well known properties of local and global heights can be
used to show that since α is nontorsion, for any torsion point ξn one has

0 < ĥ (α) =
1

[k(ξn) : k]

∑
v

∑
σ : k(ξn)/k↪→kv

λv(α− σ(ξn)), (1)

where σ : k(ξn)/k ↪→ kv means σ is an embedding of k(ξn) in kv fixing k. On the
other hand, if {ξn} is a sequence of distinct torsion points which are S-integral with
respect to α, then for each v, by equidistribution and the normalization of λv,

lim
n→∞

1
[k(ξn) : k]

∑
σ : k(ξn)/k↪→kv

λv(α− σ(ξn)) = 0 . (2)

By the integrality hypothesis, the outer sum in (1) can be restricted to v ∈ S, allow-
ing the limit and the sum to be interchanged. This gives ĥ (α) = 0, contradicting
the assumption that α is nontorsion.

Examples show that the conclusion is false if α is a torsion point, and that it
can fail if {ξn} is merely a sequence of small points (that is, a sequence of points
with ĥ (ξn)→ 0). In particular, our results cannot be strengthened to theorems of
Bogomolov type.

The paper is divided into three sections. In Section 1, we prove Theorem 0.1
for Gm ; in Section 2, we prove Theorem 0.2 for elliptic curves. In Section 3,
we attempt to provide perspective on these results, comparing them with other
arithmetic finiteness theorems, and formulating conjectural generalizations.

Throughout the paper, we use the following notation. For each place v of k, let
kv be the completion of k at v and let |x |v be the normalized absolute value which
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coincides with the modulus of additive Haar measure on kv. If v is archimedean
and kv∼=R, then |x |v=|x |, while if kv∼=C then |x |v=|x |2. If v is nonarchimedean
and lies over the rational prime p, then |p|v = p−[kv :Qp]. For 0 6=α ∈ k, the product
formula reads ∏

v

|α|v = 1 .

If kv is an algebraic closure of kv, there is a unique extension of |x |v to kv,
also denoted |x |v. Given a finite extension L/k, for each place w of L we have the
normalized absolute value |x |w on Lw. If we embed Lw in kv, then |x |w=|x | [Lw :kv]v

for each x ∈ Lw. Write log x for the natural logarithm of x . Given β ∈ L and a
place v of k, as σ ranges over all embeddings of L into kv fixing k we have∑

σ : L/k↪→kv

log |σ(β)|v =
∑
w |v

log |β|w . (3)

The absolute Weil height of α ∈ k (also called the naive height) is defined to be

h(α) =
1
[k :Q]

∑
v

max(0, log |α|v),

with the convention that log 0 = −∞. It is well known that for α ∈ Q, h(α) is
independent of the field k containing Q(α) used to compute it, so h extends to a
function on Q. Furthermore h(α)≥ 0, with h(α)= 0 if and only if α = 0 or α is a
root of unity.

1. The finiteness theorem for Gm

Limitations. Before giving the proof of Theorem 0.1, we note some examples that
limit possible strengthenings of the theorem.

(A) The hypothesis h(α) > 0 is necessary. To see this, take k = Q. If α = 0 or
α =∞, then each root of unity ζn is integral with respect to α at all finite places.
If α = 1, then each root of unity whose order is divisible by at least two distinct
primes is integral with respect to α at all finite places. If α= ζN is a primitive N -th
root of unity with N > 1, let ζm be a primitive m-th root of unity with (m, N )= 1
and m > 1. Then ζ−1

N ζm is a primitive m N -th root of unity whose order is divisible
by at least two distinct primes, so 1−ζ−1

N ζm is a unit in Z, the ring of all algebraic
integers, and ζN − ζm is also a unit. This holds for all conjugates of ζN and ζm .
Hence ζm is integral with respect to α at all finite places.

(B) When h(α)> 0, one can ask if the theorem could be strengthened to a result of
Bogomolov type: is there a number B = B(α) > 0 such that there are only finitely
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many points β ∈ k with h(β) < B which are S-integral with respect to α? That is,
could finiteness for roots of unity be strengthened to finiteness for small points?

The following example1 shows this is not possible (see [Autissier 2006] for
similar examples). Take k =Q, α = 2, and S = {∞}. For each n, let βn be a root
of the polynomial

fn(x) = x2n
−1(x − 2)− 1 .

Here fn(x+1) is Eisenstein with respect to the prime p= 2, so fn(x) is irreducible
over Q. Note that each βn is a unit. By Rouché’s theorem, βn has one conjugate
very near 2 and the rest of its conjugates very close to the unit circle; this can be
used to show that limn→∞ h(βn)= 0. Finally, βn−2 is also a unit, so βn is integral
with respect to 2 at all finite places.

Proof of Theorem 0.1. By replacing k with k(α), and S with the set of places Sk(α)

lying over S, we are reduced to proving the theorem when α ∈ k. Indeed, if ζ is
a root of unity which is S-integral with respect to α over k, then each k-conjugate
of ζ is Sk(α)-integral with respect to α over k(α).

Suppose α ∈ k, and that there are infinitely many distinct roots of unity ζn which
are S-integral with respect to α. For each n, we will evaluate the sum

An =
1

[k(ζn) :Q]

∑
v of k

∑
σ : k(ζn)/k↪→kv

log(|σ(ζn)−α|v) (4)

in two different ways. On the one hand, we will see that each An = 0. On the other
hand, by applying the integrality hypothesis, A. Baker’s theorem on linear forms in
logarithms, and a strong form of equidistribution for roots of unity, we will show
that limn→∞ An = h(α) > 0. This contradiction will give the desired result. The
details are as follows.

First, using (3), formula (4) can be rewritten as

An =
1

[k(ζn) :Q]

∑
w of k(ζn)

log |ζn −α|w .

Since α is not a root of unity, we have ζn−α 6= 0; hence the product formula gives
An = 0.

Next, take v /∈ S. If |α|v>1, we have |σ(ζn)−α|v=|α|v for each σ : k(ζn)/k ↪→
kv, by the ultrametric inequality. On the other hand, if |α|v ≤ 1, the integrality
hypothesis gives |σ(ζn)−α|v = 1. It follows that for each v /∈ S

1
[k(ζn) :Q]

∑
σ : k(ζn)/k↪→kv

log(|σ(ζn)−α|v) =
1
[k :Q]

max(0, log |α|v), (5)

1The authors thank Pascal Autissier for correcting an error in an earlier version of this example.
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so

An =
∑
v∈S

1
[k(ζn) :Q]

∑
σ :k(ζn)/k↪→kv

log(|σ(ζn)−α|v)+
1
[k :Q]

∑
v /∈S

max(0, log |α|v).

Now let n→∞. Since S is finite, we can interchange the limit and the sum over
v ∈ S, obtaining

0=
∑
v∈S

(
lim

n→∞

1
[k(ζn) :Q]

∑
σ :k(ζn)/k↪→kv

log(|σ(ζn)−α|v)

)
+

1
[k :Q]

∑
v /∈S

max(0, log |α|v).

We will now show that for each v ∈ S,

lim
n→∞

1
[k(ζn) :Q]

∑
σ :k(ζn)/k↪→kv

log(|σ(ζn)−α|v) =
1
[k :Q]

max(0, log |α|v). (6)

Inserting this in the previous equation gives h(α)= 0, a contradiction.
For each nonarchimedean v ∈ S, (6) is trivial if |α|v > 1 or |α|v < 1. In the first

case |σ(ζn)−α|v = |α|v for all n and all σ , and in the second case |σ(ζn)−α|v = 1
for all n and all σ . Hence we can assume that |α|v = 1. We can then apply the
following result, part (i) of which is a special case of the Tate–Voloch conjecture
for semiabelian varieties proved by Scanlon [1999].

Lemma 1.1. Let v be nonarchimedean, and suppose |α|v = 1. Then

(i) there is a bound M(α) > 0 such that |ζ − α|v ≥ M(α) for all roots of unity
ζ ∈ kv and

(ii) for each 0 < r < 1, there are only finitely many roots of unity ζ ∈ kv with
|ζ −α|v < r .

Proof. Since α is not a root of unity, (i) follows immediately from (ii). For (ii),
note that if ζ and ζ ′ are roots of unity with |ζ − α|v < r and |ζ ′ − α|v < r , then
|ζ − ζ ′|v < r and so ζ ′′ = ζ−1ζ ′ is a root of unity with |1− ζ ′′|v < r . There are
only finitely many such ζ ′′. Indeed, if p is the rational prime under v, the only
roots of unity ξ ∈ kv with |1−ξ |v < 1 are those with order pn for some n. If ξ is a
primitive pn-th root of unity, then |1−ξ |v = p−[kv :Qp]/pn−1(p−1) so 1> r > |1−ξ |v
for only finitely many n. �

Assuming v is nonarchimedean and |α|v = 1, let M(α) be as in Lemma 1.1. Fix
0 < r < 1, and let N (r) be the number of roots of unity in kv with |ζ − α|v < r .
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For each ζn and each σ : k(ζn)/k→ kv, we have |σ(ζn)−α|v ≤ 1, so

0 ≥ lim
n→∞

1
[k(ζn) :Q]

∑
σ : k(ζn)/k↪→kv

log(|σ(ζn)−α|v)

≥ lim
n→∞

1
[k(ζn) :Q]

(
([k(ζn) : k] − N (r)) log r + N (r) · log M(α)

)
=

1
[k :Q]

log r.

Since r < 1 is arbitrary, the limit in (6) is 0, verifying (6) in this case.
Now suppose v is archimedean. To simplify notation, view k as a subfield of C

and identify kv with C. (Thus, the way k is embedded depends on the choice of v.)
By Jensen’s formula [Conway 1973, p. 280] applied to f (z)= z−α,

1
2π

∫ 2π

0
log |eiθ

−α| dθ = max(0, log |α|). (7)

Here |x | can be replaced by |x |v, since |x |v is either |x | or |x |2.
The Gal(k/k)-conjugates of roots of unity equidistribute in the unit circle. We

will give a direct proof of this below, but we note that it also follows from Bilu’s
theorem [1997] and restriction of scalars, or from the equidistribution theorem for
polynomial dynamical systems given in [Baker and Hsia 2005]. Those theorems
show that if µn is the discrete measure

µn =
1

[k(ζn) : k]

∑
σ : k(ζn)/k↪→C

δσ(ζn)(x),

where δP(x) is the Dirac measure with mass 1 at P , then the µn converge weakly
to the Haar measure µ= (1/2π)dθ on the unit circle.

If |α|v > 1 or |α|v < 1 then log |z−α|v is continuous on the unit circle. In these
cases, (6) follows from (7) and weak convergence. If |α|v = 1 then log |z−α|v is
not continuous on |z|=1 and weak convergence is not enough to give

∫
|z|=1 log |z−

α|v dµn(z)→ 0: there could be a problem if some conjugate of ζn were extremely
close to α,or if too many conjugates of ζn clustered near α.

The first problem is solved by A. Baker’s theorem on lower bounds for linear
forms in logarithms [Baker 1975, Theorem 3.1, p. 22]. We are assuming that
|α|v = 1, and α is not a root of unity. Fix a branch of log with log z = log |z|+ iθ ,
for −π < θ ≤ π , and write logα = iθ0. For another branch, log 1 = 2π i . The
following is a special case of Baker’s theorem. (In his statement of the theorem,
Baker uses an exponential height having bounded ratio with H(β)= eh(β).)

Proposition 1.2 (A. Baker). There is a constant C = C(α) > 0 such that for each
β = a/N ∈Q, with a, N ∈ Z coprime,

| iθ0−β · 2π i | ≥ e−C ·max(1,h(β)) ,

where h(β)= log max(|a|, |N |) is the Weil height of β.



A finiteness property of torsion points 223

The second problem is settled by a strong form of equidistribution for roots of
unity, proved starting on page 226. It says that for any 0 < γ < 1, the conjugates
of the ζn are asymptotically equidistributed in arcs of length [k(ζn) : k]−γ . Note
that weak convergence is equivalent to equidistribution in arcs of fixed length.

Proposition 1.3 (Strong equidistribution). Let k ⊂ C be a number field. Then the
Gal(k/k)-conjugates of the roots of unity in k (viewed as embedded in C) are
strongly equidistributed in the unit circle, in the following sense.

Given an arc I in the unit circle, write µ(I ) = 1
2π length(I ) for its normalized

Haar measure. If ζ ∈ k is a root of unity, put

N (ζ, I ) = #
{
σ(ζ ) ∈ I : σ ∈ Gal(k/k)

}
.

Fix 0< γ < 1. Then for all roots of unity ζ and all I ,

N (ζ, I )
[k(ζ ) : k]

= µ(I )+ Ok,γ ([k(ζ ) : k]−γ ). (8)

Assuming Proposition 1.3, we will now complete the proof of Theorem 0.1 by
showing that (6) holds for archimedean v such that |α|v = 1.

Let µ = (1/2π) dθ be the normalized Haar measure on the unit circle, and for
each n, put

µn =
1

[k(ζn) : k]

∑
σ : k(ζn)/k→C

δσ(ζn)(x).

Then the µn are supported on the unit circle and converge weakly to µ as n→∞.
We must show that∫

|z|=1
log |z−α| dµn(z) =

1
[k(ζn) : k]

∑
σ

log(|σ(ζn)−α|) → 0 .

The idea is to split the integrand log |z−α| into two parts: a continuous “back-
ground” function that can be handled by weak convergence, and a function with a
logarithmic pole at α supported in a small neighborhood of α. The terms nearest α
can then be dealt with using Baker’s theorem, while the other terms can be treated
by strong equidistribution. Define

largα,ε(z) =min(0, log(|θ − θ0|/ε)),

taking largα,ε(θ0) = −∞. Then there is a continuous function gα,ε(z) on |z| = 1
for which log |z−α| = largα,ε(z)+ gα,ε(z).

Fix 0< ε < 1. We will show that for all sufficiently large n,∣∣∣∫
|z|=1

log |z−α| dµn(z)
∣∣∣ < 6ε . (9)
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Note that
∫ ε

0 log(t/ε) dt=−ε. For the remainder of the proof, we restrict to |z|=1;
write α = eiθ0 where −π < θ0 ≤ π , and write z = eiθ where θ0−π < θ ≤ θ0+π .
Recalling that

∫
|z|=1 log |z−α| dµ(z)= 0, we have∫

|z|=1
gα,ε(z) dµ(z) = −

∫
|z|=1

largα,ε(z) dµ(z) = −2
∫ ε

0
log(θ/ε)

dθ
2π
=
ε

π
.

By weak convergence, it follows that for all sufficiently large n,∣∣∣∫
|z|=1

gα,ε(z) dµn(z)
∣∣∣ < ε. (10)

To obtain (9), it suffices to show that for all sufficiently large n,∣∣∣∫
|z|=1

largα,ε(z) dµn(z)
∣∣∣ < 5ε .

For each interval [c, d] let Iα([c, d]) be the arc {αe2π i t
: t ∈ [c, d]}. Noting that

largα,ε(z) is supported on Iα([−ε, ε]), put D = Dn = d[k(ζn) : k]1/2e and divide
Iα([−ε, ε]) into 2D equal subarcs. Taking γ = 2/3 in Proposition 1.3, it follows
that if n is sufficiently large, each such subarc contains at most 2ε[k(ζn) : k]1/2

conjugates of ζn .
First consider the union of the two central subarcs, Iα([−ε/D, ε/D]). Let N be

the order of ζn . Let σ0(ζn)= e2π ia/N be the conjugate of ζn closest to α= eiθ0 . We
can assume that |a/N | ≤ 1, which implies that h(a/N ) = max(log |a|, log N ) =
log N . By Baker’s theorem,

|2π(a/N )− θ0| > e−C max(1,log N ) .

Hence if n is sufficiently large,

largα,ε(σ0(ζn)) > −C log N − log ε ≥ −C log N .

Since there are at most 4ε[k(ζn) : k]1/2 conjugates of ζn in Iα([−ε/D, ε/D]),

0 ≥
∫

Iα([−ε/D,ε/D])
largα,ε(|z−α|) dµn(z) > −4

C log N
[k(ζn) : k]1/2

ε .

Note that [k(ζn) : k] ≥ [Q(ζn) : Q]/[k : Q] = ϕ(N )/[k : Q]. For all large N ,
ϕ(N ) ≥ N 1/2, so there is a constant B such that [k(ζn) : k]1/2 ≥ B N 1/4. Thus for
all sufficiently large n,∣∣∣∫

Iα([−ε/D,ε/D])
log |z−α| dµn(z)

∣∣∣ < ε. (11)

Finally, consider the remaining subarcs. For `= 1, . . . , D− 1, if

z ∈ Iα
(
[`ε/D, (`+ 1)ε/D]

)
or z ∈ Iα

(
[−(`+ 1)ε/D,−`ε/D]

)
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then 0≥ largα,ε(z)≥ log(`/D). As before, by Proposition 1.3, for sufficiently large
n, each subarc contains at most 2 [k(ζn) : k] (ε/D) conjugates of ζn . It follows that

0 ≥
∫

Iα([−ε,ε])\Iα([−ε/D,ε/D])
largα,ε(z) dµn(z)

≥ 2 ·
D−1∑
`=1

log
(
(
`ε

D
)/ε

)
·

2ε
D

> 4
∫ ε

0
log(t/ε) dt = −4ε . (12)

Combining (10), (11), and (12) gives (9), which completes the proof of Theorem
0.1. �

In the course of writing this paper, the authors learned of several results related
to Theorem 0.1, some of which imply it in special cases.

A. Bang’s theorem [1886] says that if α 6= ±1 is a nonzero rational number,
then for all sufficiently large integers n there is a prime p such that the order of
α modulo p is exactly n. This can be rephrased as saying that for all sufficiently
large n, there exists a primitive n-th root of unity ζn and a nonzero prime ideal p

of Z[ζn] such that α ≡ ζn (mod p). Since all primitive n-th roots are conjugate
over Q, this implies Theorem 0.1 in the case α ∈ Q. A. Schinzel [1974] gave an
effective generalization of Bang’s theorem to arbitrary number fields; Schinzel’s
theorem implies Theorem 0.1 for number fields k which are linearly disjoint from
the maximal cyclotomic field Qab, and α ∈ k.

J. Silverman [1995] has shown that if α ∈ Q is an algebraic unit which is not
a root of unity, there are only finitely many m for which 8m(α) is a unit, where
8m(x) is the m-th cyclotomic polynomial. In fact, if d = [Q(α) : Q] he shows
there is an absolute, effectively computable constant C such that the number of
such m’s is at most

C · d1+0.7/ log log d .

In the case when α is a unit, this yields Theorem 0.1 in the same situations as
Schinzel’s theorem.

G. Everest and T. Ward [1999, Lemma 1.10] show that if F(x) ∈ Z[x] is monic
and irreducible, with roots α1, . . . , αd , and if F(x) is not a constant multiple of
x or a cyclotomic polynomial 8m(x), then the quantity 1n(F) =

∏d
i=1(α

n
i − 1)

satisfies

lim
n→∞

1
n

log1n(F) = m(F) > 0 , (13)

where m(F) = deg(F) · h(αi ) is the logarithm of the Mahler measure of F(x).
When k =Q, and α = α1 is an algebraic integer, the product formula tells us that∏
v of Q |1n(F)|v = 1, so for all large n there must be some nonarchimedean v and

some αi such that |αn
i − 1|v < 1, and this in turn means there is some n-th root of

unity ζ with |αi − ζ |v < 1. This implies there are infinitely many roots of unity
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which are not integral with respect to some αi , as also follows from Theorem 0.1.
However, the Everest–Ward theorem does not yield Theorem 0.1.

Strong equidistribution for roots of unity. We will now prove Proposition 1.3, the
strong equidistribution theorem for roots of unity. At least when k =Q, the result
is well known to analytic number theorists, but we are not aware of a reference in
the literature.

The proof rests on the following lemma, for which we thank Carl Pomerance.
Let ϕ(N ) denote Euler’s function and let d(N )=

∑
m |N ,m≥1 1 be the divisor func-

tion. We write λ(m) for the number of distinct primes dividing m, and use θ(x) to
denote a quantity satisfying −|x | ≤ θ(x)≤ |x |.

Lemma 1.4 (Pomerance). Fix an integer Q > 1 and an integer b coprime to Q.
Then for each integer N ≥ 1 divisible by Q and each interval (C, D] ⊂ R,

#
{
a ∈ (C, D] ∩Z : (a, N )= 1, a ≡ b (mod Q)

}
=

ϕ(N )
Nϕ(Q)

(D−C)+ θ(d(N )).

In particular, the error depends only on N , and not on Q or (C, D].

Proof. Let p1, . . . , pr be the distinct primes dividing N but not Q. (If there are
no such primes, take p1 · · · pr = 1 below.) Take b0 ∈ Z with b0 ≡ b (mod Q),
b0 ≡ 0 (mod p1 . . . pr ). Then{
a ∈ (C, D] ∩Z : a ≡ b (mod Q), (a, N )= 1}

= {a ∈ (C, D] ∩Z : Q |a− b0, p1, . . . , pr -a− b0
}
.

If m is a positive integer dividing p1 · · · pr , put

rm,b,Q(C, D)= # {a ∈ (C, D] ∩Z : Qm |a− b0} .

Then

rm,b,Q(C, D) =
⌊d−b0

Qm

⌋
−

⌊c−b0
Qm

⌋
=

1
Qm

(D−C)+ θ(1).

Carrying out inclusion/exclusion relative to the primes p1, . . . , pr , we have

#
{
a ∈ (C, D] ∩Z : a ≡ b (mod Q), (a, N )= 1

}
=

∑
m | p1···pr

(−1)λ(m) rm,b,Q(C, D)=
1
Q

r∏
i=1

(
1− 1

pi

)
(D−C)+ θ(d(p1 · · · pr ))

=
ϕ(N )

Nϕ(Q)
(D−C)+ θ(d(N )). �

Proof of Proposition 1.3. Let ζN denote a primitive N -th root of unity. There are
only finitely many subfields of k, so there are only finitely subfields of the form
kN = k∩Q(ζN ) for some N . For each N there is a minimal Q for which kN = kQ ,
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and then Q(ζQ)⊂Q(ζN ) so Q |N . We will call Q=QN the cyclotomic conductor
of ζN relative to k, and write TN = [Q(ζQN ) : kN ].

As Q(ζN ) is galois over Q, it is linearly disjoint from k over kN , and

Gal(k(ζN )/k)∼= Gal(Q(ζN )/kN ).

Since kN ⊂Q(ζQN )⊂Q(ζN ), the conjugates of ζN over k are a union of TN sets
of the form

{e2π ia/N
: a ≡ bi (mod QN ), (a, N )= 1},

for certain numbers bi coprime to QN .
Let I be an arc of the unit circle corresponding to an angular interval (θ1, θ2].

Put (C, D] = (N/2π)(θ1, θ2]. Then e2π ia/N
∈ I if and only if a ∈ (C, D]. By

Lemma 1.4,

N (ζN , I ) = TN ·
ϕ(N )

Nϕ(QN )
·

N
2π
(θ2− θ1) + θ(TN · d(N )). (14)

Recall that for any δ > 0, if N is sufficiently large then d(N )≤ N δ and ϕ(N )≥
N 1−δ [Hardy and Wright 1954, Theorem 315, p. 260, and Theorem 327, p. 267].
Take δ such that 0< 2δ < 1− γ . Noting that [k(ζN ) : k] = TN ϕ(N )/ϕ(QN ), and
that ϕ(QN ) is bounded independent of N , (14) gives

N (ζN , I )
[k(ζN ) : k]

= µ(I )+ Oγ (N−γ ). (15)

Since [k(ζN ) : k]≤ N , the error bound in (15) holds with N replaced by [k(ζN ) : k].
Since [k(ζN ) : k]/N γ

→∞ as N→∞, adjoining or removing endpoints of I will
not affect the form of the estimate, so (8) applies to all intervals. �

2. The finiteness theorem for elliptic curves

Preliminaries. Let k be a number field, and let E/k be an elliptic curve. We can
assume E is defined by a Weierstrass equation

y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6 (16)

with coefficients in Ok . More precisely, E is the hypersurface in P2/Spec(k) de-
fined by the homogenization of (16). Let 1 be its discriminant.

Given a nonarchimedean place v of k and points α, β ∈ E(k), we will say that β
is integral with respect to α at v if the Zariski closures cl(β) and cl(α) do not meet
in the model Ev/Spec(Ov) defined by the homogenization of (16). Equivalently,
if ‖z, w‖v is the restriction of the spherical metric on P2(kv) to E(kv) [Rumely
1989, §1.1], then for each pair of embeddings σ, τ : k/k ↪→ kv,

‖σ(β), τ (α)‖v = 1 .



228 Matthew Baker, Su-ion Ih and Robert Rumely

If S is a set of places of k containing all the archimedean places, we say β is
S-integral with respect to α if β is integral with respect to α at each v /∈ S.

Write ĥ (α) for the canonical height on E(k), defined by

ĥ (α) =
1
2

lim
n→∞

1
4n hP1(x([2n

]α)) =
1
3

lim
n→∞

1
4n hP2([2n

]α),

where hP1 (respectively, hP2) is the naive height on P1(k) (respectively, P2(k)), x
is the coordinate function on the Weierstrass model (16), and [m] is multiplication
by m on E(k). (For a discussion of ĥ (α) and its properties, see [Silverman 1986,
pp. 227–231 and 365–366; or 1994, § VI].) Recall that ĥ (α) ≥ 0, that ĥ ([m]α)=
m2 ĥ (α) for all m, and that ĥ (α)= 0 if and only if α ∈ E(k)tors. From these facts
it follows (as is well known) that if ξ ∈ E(k) tors, then

ĥ (α) = ĥ (α− ξ). (17)

There is also a decomposition of ĥ (α) as a sum of local terms. For each place v
of k, let λv(P) be the local Néron–Tate height function on E(kv). For compatibility
with our absolute values we normalize λv(P) so that λv(P)= [kv :Qp] ·λv,Sil(P),
where λv,Sil(P) is the local Néron–Tate height defined in Silverman [1986, p. 365].
For each 0 6= α ∈ E(k) we have

ĥ (α) =
1
[k :Q]

∑
v of k

λv(α); (18)

see [Silverman 1986, Theorem 18.2, p. 365]. Only finitely many terms in the sum
are nonzero.

If L/k is a finite extension, for each place w of L there is a normalized local
Néron–Tate height λw(P) on E(Lw). If we fix a kv-isomorphism Lw ∼= kv, then
for all P ∈ E(kv),

λw(P) = [Lw : kv] λv(P). (19)

It follows that if β ∈ E(L), then for each place v of k, as σ runs over all embeddings
of L into kv fixing k, ∑

σ : L/k↪→kv

λv(σ (β)) =
∑
w |v

λw(β). (20)

We will use the following explicit formulas.

Proposition 2.1. Let k be a number field, and let E/k be an elliptic curve. Let v
be a place of k.

(i) If v is archimedean, fix an isomorphism E(kv) ∼= C/3 for an appropriate
lattice3⊂C. Let σ(z,3) be the Weierstrass σ-function, let1(3)=g2(3)

3
−

27g3(3)
2 be the discriminant of 3, and let η : C→ R be the R-linearized
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period map associated to the Weierstrass ζ-function ζ(z,3). If P ∈ E(kv)
corresponds to z ∈ C, then

λv(P) = −log
(
|1(3)1/12e−zη(z)/2σ(z,3)|v

)
.

If µv(z) is the additive Haar measure on E(kv) that gives E(kv) ∼= C/3

total mass 1, then ∫
E(kv)

λv(z) dµv(z) = 0 .

(ii) If v is nonarchimedean and E has split multiplicative reduction at v (so E is
kv-isomorphic to a Tate curve), fix a Tate isomorphism E(kv)∼= k×v /q

Z where
q ∈ k×v satisfies |q|v = |1/j (E)|v < 1. Let B2(x) = x2

− x + 1
6 be the second

Bernoulli polynomial, and put

λ̃v(x)=
1
2

B2

( x
ordv(q)

)
(−log |q|v).

If P ∈ E(kv) corresponds to z ∈ k×v , with z chosen so that |q|v < |z|v ≤ 1, then

λv(P) = −log |1− z|v + λ̃v(ordv(z)).

If µv is the Haar measure dx/ordv(q), which gives the loop R/(Z·ordv(q))
total mass 1, then ∫ ordv(q)

0
λ̃v(x) dµv(x) = 0 .

(iii) If v is nonarchimedean and E has good reduction at v, let ‖z, w‖v be the
spherical metric on E(kv) induced by a projective embedding E ↪→P2 corre-
sponding to a minimal Weierstrass model for E at v. Then for each P ∈ Ev(kv)

λv(P) = −log ‖P, O‖v .

Proof. This is a summary of results in [Silverman 1994, § VI]; see in particular
Theorems 1.1 (p. 455), 3.2 (p. 466), 3.3 (p. 468) and 4.1 (p. 470). �

The finiteness theorem. For the convenience of the reader, we recall Theorem 0.2
from the Introduction:

Theorem 0.2. Let k be a number field, and let S be a finite set of places of k
containing all the archimedean places. If α ∈ E(k) is nontorsion (has canonical
height ĥ (α)> 0), there are only finitely many torsion points ξ ∈ E(k)tors which are
S-integral with respect to α.

Again there are limitations to possible strengthenings of the theorem:
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(A) As noted by Silverman, it is necessary that α be nontorsion. If α= O and S
is the set of archimedean places, then by Cassels’ generalization of the Lutz–Nagell
theorem (Proposition 2.4 below), each torsion point whose order is divisible by at
least two distinct primes is S-integral with respect to α.

Similarly, if α is a torsion point of order N > 1, let S contain all places of bad
reduction for E . Then for each q coprime to N , all q-torsion points are S-integral
with respect to α.

(B) When ĥ (α) > 0, Zhang has pointed out that Theorem 0.2 cannot in gen-
eral be strengthened to a result of Bogomolov type. A result of E. Ullmo [1995,
Theorem 2.4] shows that if E has good reduction at all finite places, then for each
ε > 0, there are infinitely many distinct points β ∈ E(k) with ĥ (β) < ε which are
S∞-integral with respect to α, where S∞ is the set of archimedean places of k.

Proof of Theorem 0.2. The argument is similar to the proof of Theorem 0.1, but
requires more machinery. It should be possible to axiomatize some of the argu-
ments and combine both proofs, but for overall clarity of exposition we have chosen
not to.

We begin with some reductions.
First, after replacing k by k(α), and S by the set Sk(α) of places lying over S,

we can assume that α ∈ k.
Second, after replacing k by a finite extension K/k, and replacing S with the set

SK of places of K lying above places in S, we can assume that E has semistable
reduction. Thus we can assume without loss of generality that for nonarchimedean
v, either E has good reduction, or E is kv-isomorphic to a Tate curve.

Third, after enlarging S if necessary, we can assume that S contains all v for
which |1|v 6= 1. In particular, we can assume that the model of E defined by (16)
has good reduction for all v /∈ S.

We claim that if ξn ∈ E(k)tors is any torsion point, then

ĥ (α) =
1

[k(ξn) :Q]

∑
v

∑
σ : k(ξn)/k↪→kv

λv(α− σ(ξn)). (21)

To see this, let L be the galois closure of k(ξn) in k over k. By (17) and (18), for
each conjugate σ(ξn),

ĥ (α) = ĥ (α− σ(ξn)) =
1

[L :Q]

∑
w of L

λw(α− σ(ξn)).

Averaging over all k-embeddings σ : L ↪→ k, fixing a k-embedding k ↪→ kv for
each place v of K , using (19), and noting that there are only finitely many nonzero
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terms in each sum, we have

ĥ (α)=
1
[L : k]

∑
σ : L/k↪→k

1
[L :Q]

∑
w of L

λw(α− σ(ξn))

=
1

[L :Q]

∑
v of k

∑
σ : L/k↪→kv

1
[L : k]

∑
w |v

[Lw : kv] · λv(α− σ(ξn))

=
1

[L :Q]

∑
v of k

∑
σ : L/k↪→kv

λv(α− σ(ξn)).

Since each conjugate σ(ξn) occurs [L : k(ξn)] times in the final inner sum, this is
equivalent to (21).

Suppose there were an infinite sequence of distinct torsion points {ξn} which
were S-integral with respect to α.

If v /∈ S, our initial reductions assure that E has good reduction at v. By Propo-
sition 2.1(iii) and the integrality hypothesis, λv(α− σ(ξn)) = 0 for each n and σ .
It follows that

ĥ (α) =
∑
v∈S

1
[k(ξn) : k]

∑
σ : k(ξn)/k↪→kv

λv(α− σ(ξn)). (22)

From now through page 237, we will show in a series of cases that for each
v ∈ S,

lim
n→∞

(
1

[k(ξn) :Q]

∑
σ : k(ξn)/k↪→kv

λv(α− σ(ξn))

)
= 0 . (23)

This will complete the proof of Theorem 0.2, for then, combining (22) and (23)
and letting n→∞ in (22), we would have ĥ (α)= 0, contradicting the assumption
that α is nontorsion.

The archimedean case. Let v be an archimedean place of k. To simplify notation
we view k as embedded in C and fix an isomorphism of kv with C. Thus, the way
k is embedded depends on the choice of v.

To prove (23) we will need a theorem of David and Hirata-Kohno on linear forms
in elliptic logarithms and a strong form of equidistribution for torsion points.

Proposition 2.2 (a special case of [David and Hirata-Kohno 2002, Theorem 1]).
Let E/k be an elliptic curve defined over a number field k⊂C. Fix an isomorphism
θ :C/3∼= E(C) for an appropriate lattice3⊂C. Let ω1, ω2 be generators for3.
Fix a nontorsion point α ∈ E(k) and let a ∈C be such that θ(a mod 3)= α. There
is a constant C =C(E, α) > 0 such that for all rational numbers `1/N , `2/N with
`1, `2, N ∈ Z, ∣∣∣a− (

`1
N
ω1+

`2

N
ω2

)∣∣∣ ≥ e−C max(1,log N ) .
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By the Szpiro–Ullmo–Zhang theorem [1997], the galois conjugates of the ξn are
equidistributed in E(C). As we will see, they are in fact strongly equidistributed,
in a sense analogous to that in Proposition 1.3.

If ξ ∈ E(k) tors, write Gal(k/k) · ξ for the orbit {σ(ξ) : σ ∈Gal(k/k)}. For each
set U ⊂ E(C), write

N (ξ,U ) = #
(
(Gal(k/k) · ξ)∩U

)
.

Let S ⊂ C be a bounded, convex, centrally symmetric set with 0 in its interior.
For each a ∈ C and 0 ≤ r ∈ R, write S(a, r) = {a + r z : z ∈ S}. For example, if
S= B(0, 1) then S(a, r)= B(a, r).

Let 3 ⊂ C be a lattice such that E(C) ∼= C/3. Let r0 = r0(S,3) > 0 be
the largest number such that S(a, r) injects into C/3 ∼= E(C) under the natural
projection for all a ∈C and all 0≤ r < r0. Write SE(a, r) for the image of S(a, r)
in E(C).

Proposition 2.3 (Strong equidistribution). Let k ⊂ C be a number field, and let
E/k be an elliptic curve. Then the Gal(k/k)-conjugates of the torsion points in
E(k) are strongly equidistributed in E(C) in the following sense:

Let µ be the additive Haar measure on E(C) with total mass 1. Fix γ with 0 <
γ < 1/2, and fix a bounded, convex, centrally symmetric set S with 0 in its interior.
Then for each r such that S(a, r) injects into E(C), and for all ξ ∈ E(k) tors,

N
(
ξ,SE(a, r)

)
[k(ξ) : k]

= µ
(
SE(a, r)

)
+ O([k(ξ) : k]−γ )

where the implied constant depends only on k, S, E , and γ .

The proof will be given starting on page 237.
We can now complete the proof of (23) in the archimedean case. The argument

is similar to the one in the proof of Theorem 0.1. By the Szpiro–Ullmo–Zhang
theorem [1997], or by Proposition 2.3 when S has the shape of a period parallelo-
gram (so E can be tiled with sets SE(a, r)), one knows that as n→∞ the discrete
measures

µn =
1

[k(ξn) : k]

∑
σ : k(ξn)/k↪→C

δσ(ξn)(x)

converge weakly to the Haar measure µ on E(C) having total mass 1. Proving (23)
is equivalent to showing that

lim
n→∞

∫
E(C)

λv(α− z) dµn(z) = 0 .

Choose a lattice 3 ⊂ C such that E(C) ∼= C/3, and let F be the area of a
fundamental domain for 3. After scaling 3, if necessary, we can assume that
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F = 1. After this normalization, µ coincides with Lebesgue measure. Let θ :
C/3 ∼= E(C) be an isomorphism as in the David/Hirata-Kohno theorem, and let
a ∈ C be a point with θ(a mod 3)= α.

Fix ε > 0 small enough that B(a, ε) injects into C/3, and identify B(a, ε) with
its image BE(a, ε)= θ(B(a, ε))⊂ E(C). (In particular, identify a with α). Without
loss, we can assume that ε < 1/π , so πε2 < ε. We will show that for all large n,∣∣∣∫

E(C)
λv(α− z) dµn(z)

∣∣∣ < 6ε . (24)

Put

labsα,ε(z) =


∞ if z = a,

−[kv : R] log |z−a|
ε

if z ∈ B(a, r)\{a},

0 if z ∈ E(C)\B(a, r),

and note that

0<
∫

E(C)
labsα,ε(z) dµ(z)=

∫
B(a,ε)

−[kv : R] log(|z− a|/ε) dµ(z)

= [kv : R]
∫ ε

0
−2π t log

t
ε

dt = [kv : R]
πε2

2
< ε.

By Proposition 2.1(i) there is a continuous function gα,ε(z) on E(C) such that

λv(α− z) = labsα,ε(z)+ gα,ε(z).

Since
∫

E(C) λv(α− z) dµ(z)= 0 (also by Proposition 2.1(i)), we get∣∣∣∫
E(C)

gα,ε(z) dµ(z)
∣∣∣ = ∣∣∣∫

B(a,ε)
−labsα,ε(z) dµ(z)

∣∣∣ < ε.

By weak convergence, it follows that for all sufficiently large n,∣∣∣∫
E(C)

gα,ε(z) dµn(z)
∣∣∣ < 2ε . (25)

To complete the proof of (24), it suffices to show that for all sufficiently large n,∣∣∣∫
B(a,r)

log(|z− a|/ε) dµn(z)
∣∣∣ < 2ε . (26)

For this, put D=Dn=d[k(ξn) :k]1/8e, and subdivide B(a, ε) into a disc A0(n)=
B(a, ε/D) and annuli A`(n)= B(a, (`+1)ε/D)\B(a, `ε/D) for `=1, . . . , D−1.

For the central disc, we have µ(A0(n))= πε2/D2
≤ πε2/[k(ξn) : k]1/4. Apply-

ing Proposition 2.3 when S is a disc, taking γ = 3/8, gives

N (ξn, A0(n))/[k(ξn) : k] ≤ 2µ(A0(n))
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for all sufficiently large n. If ξn has order Nn , the David/Hirata-Kohno theorem
tells us that for each conjugate σ(ξn) ∈ A0(n) (where as before we are identifying
B(a, ε) with its image θ(B(a, ε))⊂ E(C))∣∣log |σ(ξn)− a|

∣∣ ≤ C log Nn .

Using (41) and (42) below, one sees that [k(ξn) : k] ≥ N 1/2
n for all sufficiently large

n. Thus 0≤
∣∣log |σ(ξn)−α|

∣∣ ≤ 2C log[k(ξn) : k] and

0 ≤
∣∣∣∫

A0(n)
log |z−α| dµn(z)

∣∣∣ ≤ 4πε2C
log[k(ξn) : k]
[k(ξn) : k]1/4

< ε (27)

for all sufficiently large n.
For each annulus A`(n), `= 1, . . . , D− 1, one has

µ(A`(n)) = π(2`+ 1) ε2/D2 ∼= π(2`+ 1) ε2/[k(ξ) : k]1/4 .

Since A`(n) is the difference of two sets to which Proposition 2.3 applies, we find
as above that for sufficiently large n,

N (ξn, A`(n))/[k(ξn) : k] ≤ 2µ(A`(n)).

Note that on A`(n),
∣∣log(|z− α|/ε)

∣∣ ≤ −log(`/D). Summing over these annuli,
and bounding the resulting Riemann sum by an integral, we find that∣∣∣∫

B(a,ε)\A0(n)
log |z−a|

ε
dµn(z)

∣∣∣ ≤ D−1∑
`=1

−log
(
`ε/D
ε

)
· 2µ(A`(n))

< 2
∫

B(a,ε)
−2π t log(t/ε) dt = πε2 < ε.

Combining this with (27) gives (26), which completes the proof of (23) in the
archimedean case (assuming Proposition 2.3).

The nonarchimedean case. In the nonarchimedean case, the proof of (23) depends
on a well known result of Cassels on the denominators of torsion points [Silverman
1986, Theorem 3.4, p. 177]. Write Ov for the ring of integers of kv.

Proposition 2.4 (Cassels). Let kv be a local field of characteristic 0 and residue
characteristic p > 0, and let E/kv be an elliptic curve defined by a Weierstrass
equation

y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6

whose coefficients belong to Ov (note that the Weierstrass equation need not be
minimal). Let P ∈ E(kv)tors be a point of exact order m ≥ 2.

(i) If m is not a power of p, then x(P), y(P) ∈ Ov.
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(ii) If m = pn , then x(P)= a/D2, y(P)= b/D3 where a, b, D ∈ Ov and

ordv(D) ≤
ordv(p)

pn − pn−1 .

Proof. Silverman [1986, Theorem 3.4] states the theorem for torsion points be-
longing to E(kv), with a, b, D ∈ kv in part (ii) and D satisfying

ordv(D) =
⌊ ordv(p)

pn − pn−1

⌋
, (28)

where bxc denotes the floor of x . Since the Weierstrass equation for E need not
be minimal, we can replace kv by an arbitrary finite extension Lw/kv, and if ew/v
is the ramification index of Lw/kv, then for P ∈ E(Lw)tors and a, b, D ∈ Lw, (28)
becomes

ordv(D) =
1

ew/v
·

⌊ew/v ordv(p)
pn − pn−1

⌋
. (29)

This yields the result for all P ∈ E(kv)tors. �

As a consequence, we obtain the following result, part (i) of which is a special
case of the Tate–Voloch conjecture proved in [Scanlon 1999].

Corollary 2.5. Let E/kv be an elliptic curve defined over a nonarchimedean local
field. Then for each nontorsion point α ∈ E(kv):

(i) There is a number M = M(α) such that for all ξ ∈ E(kv)tors,

λv(α− ξ) ≤ M .

(ii) If E has good reduction, then for each ε > 0, there are only finitely many
ξ ∈ E(kv)tors with λv(α− ξ) > ε. If E is a Tate curve, then for each ε > 0, there
are only finitely many ξ ∈ E(kv) tors with λv(α− ξ) > ε+ 1

12(−log |1(E)|v).

Proof. After a finite base extension, we can assume that E either has good reduction
or is a Tate curve. Since (ii) implies (i), it suffices to prove (ii). Fix ε > 0.

First suppose E has good reduction. Then λv(x − y) = −log ‖x, y‖v, where
‖x, y‖v is the spherical distance on the minimal Weierstrass model for E/kv. If
ξ1, ξ2 ∈ E(kv) tors satisfy λv(α− ξi ) > ε, then ‖ξ1, α‖v, ‖ξ2, α‖v < (Nv)−ε, where
Nv is the order of the residue field of Ov. By the ultrametric inequality for the
spherical distance [Rumely 1989, § 1.1], ‖ξ1, ξ2‖v < (Nv)−ε. By translation in-
variance, ‖ξ1−ξ2, 0‖v<(Nv)−ε. Put ξ := ξ1−ξ2. By the definition of the spherical
distance, if x, y are the coordinate functions in the minimal Weierstrass model,

−log ‖ξ, 0‖v = min
(
ordv(x(ξ)), ordv(y(ξ))

)
· log(Nv).

By Cassels’ theorem, there are only finitely many torsion points for which

min
(
ordv(x(ξ)), ordv(y(ξ))

)
> ε/ log(Nv).
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Next suppose E is a Tate curve. Fix a Tate isomorphism E(kv)∼= k×v /q
Z where

|q|v = |1(E)|v < 1, and let y2
+ xy = x3

+ a4(q)x + a6(q) be the corresponding
Weierstrass equation. Let a, u1, u2 ∈ k×v correspond to α, ξ1, ξ2 respectively; we
can assume that |q|v < |a|v, |u1|v, |u2|v ≤ 1. By the formula for λv(x − y) in
Proposition 2.1(ii), if λv(α−ξi ) > ε+

1
12(−log |1(E)|v), then | a|v = |u1|v = |u2|v

and
−log |1− a−1ui |v = ordv(1− a−1ui ) · log(Nv) > ε.

Put ξ=ξ1−ξ2 and u=u−1
2 u1. Then ξ corresponds to u under the Tate isomorphism,

and ordv(1−u) > ε/ log(Nv). By the formulas for x(ξ), y(ξ) in [Silverman 1994,
p. 425],

ordv(x(ξ))= 2 ordv(1− u) and ordv(y(ξ))= 3 ordv(1− u).

Again by Cassels’ theorem, only finitely many torsion points ξ can satisfy

min
(
ordv(x(ξ)), ordv(y(ξ))

)
> ε/ log(Nv). �

We can now prove (23) when E has good reduction at v.
Fix ε > 0. Let M be the upper bound in Corollary 2.5(i), and let N be the

number of points ξ ∈ E(kv)tors with λv(α− ξ) > ε given by Corollary 2.5(ii). For
all sufficiently large n, M N/[k(ξn) : k]< ε, giving

0 ≤
1

[k(ξn) : k]

∑
σ : k/k↪→kv

λv(α−σ(ξn)) ≤
([k(ξn) : k] − N )
[k(ξn) : k]

ε+
N

[k(ξn) : k]
M < 2ε .

Thus

lim
n→∞

1
[k(ξn) : k]

∑
σ : k/k↪→kv

λv(σ (ξn)−α) = 0 .

To prove (23) when E is a Tate curve at v, we will need the following equidis-
tribution theorem of Chambert-Loir [2006, corollaire 5.5].

Fix a Tate isomorphism E(kv) ∼= kv/qZ, put L = Z · ordv(q) ⊂ R, and define a
“reduction map” r : E(k)→R/L by setting r(P)= ordv(a) (mod L) if P ∈ E(kv)
corresponds to a ∈ k×v .

For each global point P ∈ E(k), define a measure µP,v on R/L by

µP,v(z) =
1

[k(P) : k]

∑
σ : k/k↪→kv

δr(σ (P))(z)

and let µv be the Haar measure on R/L with total mass 1.

Proposition 2.6 (Chambert-Loir). For each sequence of distinct points {Pn} in
E(k) with ĥ (Pn)→ 0, the sequence of measures {µPn,v

} converges weakly to µv.
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We can now prove (23) when E is a Tate curve. Recall that {ξn} is a sequence
of distinct torsion points which are S-integral with respect to α.

Fix ε > 0. Let M be the upper bound in Corollary 2.5(i). Put a = r(α) and let
δ>0 be such thatµ((a−δ, a+δ))<ε/M , where by abuse of notation we identify a
sufficiently short interval in R with its image in R/L . By Chambert-Loir’s theorem,
µξn,v

((a− δ, a+ δ)) < 2ε/M for all sufficiently large n.
By the formulas in Proposition 2.1(ii),

∫
R/L λ̃v(z) dµv(z)= 0 and

∣∣ 1
[k(ξn) : k]

∑
σ : k/k↪→kv

λv(σ (ξn)−α)
∣∣

≤

∣∣∣∫
R/L

λ̃v(z− a) dµξn,v
(z)

∣∣∣ + M µξn,v
((a− δ, a+ δ)).

For all sufficiently large n the right side is at most 3ε. Hence

lim
n→∞

1
[k(ξn) : k]

∑
σ : k/k↪→kv

λv(σ (ξn)−α) = 0 .

This completes the proof of Theorem 0.2. �

Several results in the literature use methods related to ours.
J. Cheon and S. Hahn [1999] proved an elliptic curve analogue of Schinzel’s

theorem [1974]. Likewise, Everest and B. Nı́ Flathúin [1996] evaluate “elliptic
Mahler measures” in terms of limits involving division polynomials, obtaining re-
sults similar to (13). They use David/Hirata-Kohno’s theorem on elliptic logarithms
in place of Baker’s theorem, much as we do.

More recently, L. Szpiro and T. Tucker [2005] proved that local canonical heights
for a dynamical system can be evaluated by taking limits over “division poly-
nomials” for the dynamical system. (These polynomials have periodic points as
their roots.) Their work uses Roth’s theorem rather than Baker’s or David/Hirata-
Kohno’s theorem. It would be interesting to see if this could be brought to bear on
Conjecture 3.1 below.

Strong equidistribution for torsion points on elliptic curves. We will now prove
Proposition 2.3, the strong equidistribution theorem for galois orbits of torsion
points on elliptic curves, which was used in the proof of Theorem 0.2.

Proof of Proposition 2.3. The proof breaks into two cases, depending on whether
or not E has complex multiplication. Both cases are similar, and are modeled on
Proposition 1.3. We find an extension field over which there is a two-dimensional
geometric interpretation of the galois orbits, and by carrying out inclusion/exclu-
sion, we are able to count the number of conjugates over that field lying in a convex,
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centrally symmetric set, with a good error bound. The conjugates over the original
field can then be counted by breaking into cosets.

Case 1. Suppose E does not have complex multiplication. The action of Gal(k/k)
on E(k)tors induces an injective homomorphism

η : Gal(k/k)→ lim
←−

GL2(Z/NZ)∼=
∏

p

GL2(Zp).

By Serre’s theorem [1972, théorème 3], the image of Gal(k/k) in
∏

p GL2(Zp) is
open. Hence there is a number Q such that Im(η) contains the subgroup∏

p |Q

(1+ QM2(Zp))×
∏
p - Q

GL2(Zp).

Let GQ ⊂ Gal(k/k) be the preimage of this subgroup.

Step 1: Determining the size of a galois orbit under GQ . Let ξ ∈ E(k)tors have order
N , and put QN = gcd(Q, N ). For suitable right coset representatives σ1, . . . , σT
of GQ in Gal(k/k), the galois orbit Gal(k/k) · ξ decomposes as a disjoint union
of GQ-orbits:

Gal(k/k) · ξ =
T⋃

i=1

GQ · σi (ξ).

Since GQ is normal in Gal(k/k), the orbits GQ · σi (ξ) = σi (GQ · ξ) all have the
same size. Thus [k(ξ) : k] = T ·#(GQ · ξ). By considering the action of GQ on the
p-parts of ξ , one sees that

#(GQ ·ξ) =
∏

p |QN

p2(ordp(N )−ordp(QN ))
∏
p |N

p - QN

p2 ordp(N )
(

1− 1
p2

)
=

N 2

Q2
N
·

∏
p |N
p - Q

(
1− 1

p2

)
.

(30)

Indeed, let ξp be the p-component of ξ in E[N ] ∼=
∏

p |N (Z/pordp(N )Z)2. Identify
ξp with an element of (Z/pordp(N )Z)2: then ξp generates that group. If p divides
QN , the image of GQ in GL2(Z/pordp(N )Z) is I+ pordp(QN )M2(Z/pordp(N )Z), and

GQ · ξp = ξp + pordp(QN ) · (Z/pordp(N )Z)2 .

On the other hand, if p - QN , the image of GQ in GL2(Z/pordp(N )Z) is the full
group, so

GQ · ξp = (Z/pordp(N )Z)2\p · (Z/pordp(N )Z)2 .

Step 2: Counting translated lattice points in convex domains. Let F be a funda-
mental domain for 3; we can assume F is bounded and contains 0. Let C be such
that F⊂S(0,C). Note that since S is convex, if z1 ∈S(a1, r1) and z2 ∈S(a2, r2),
then z1+ z2 ∈ S(a1+ a2, r1+ r2). Put F = area F and S = area S.
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For each 0< t ∈R, we have area(tF)= t2 F and area S(a, r)= r2S. Each lattice
t3N is homothetic to 3N , and hence has fundamental domain tF⊂S(0, tC). Fix
x0 ∈ C. As y runs over x0+ t3, the sets y+ tF are pairwise disjoint and cover C.
If y ∈ S(a, r), then y+ tF⊂ S(a, r + tC). Hence

#
(
(x0+t3)∩S(a, r)

)
≤

area
(
S(a, r + tC)

)
area(tF)

=
r2S
F
·

1
t2+

2C Sr
F
·
1
t
+

C2S
F
. (31)

Similarly, if r > tC , take z ∈ S(a, r − tC), and let y ∈ x0 + t3 be such that
z ∈ y + tF. Then z − y ∈ tF, so z − y ∈ S(0, tC), and since S is centrally
symmetric y − z ∈ S(0, tC). Thus y = z + (y − z) ∈ S(a, r). It follows that
S(a, r − tC)⊂

⋃
y∈(x0+t3)∩S(a,r)(y+ tF), so

#
(
(x0+t3)∩S(a, r)

)
≥

area
(
S(a, r − tC)

)
area(tF)

>
r2S
F
·

1
t2−

2C Sr
F
·
1
t
−

C2S
F
. (32)

If r ≤ tC , the right side of (32) is negative, so the inequality between the first and
last quantities holds trivially.

Now let D be a positive divisor of N/QN . Taking t = QN D/N , and combining
(31), (32), we obtain∣∣∣∣ #

((
x0+

QN D
N

3N

)
∩S(a, r)

)
−

area
(
S(a, r)

)
area(F)

·
N 2

Q2
N D2

∣∣∣∣
≤

2C Sr
F
·

N
QN D

+
C2S

F
. (33)

Step 3: Inclusion/exclusion. Write3N =
1
N3, fix σi , and let x ∈3N correspond to

σi (ξ). Since E[N ] ∼=3N/3, the considerations above show there is a one-to-one
correspondence between elements of GQ · σi (ξ), and cosets y + 3 for y ∈ 3N

such that y − x ∈ QN3N and y +3 has exact order N in 3N/3. Equivalently,
y− x ∈ QN3N and y /∈ p3N for each prime p dividing N but not Q.

Let p1, . . . , pR be the distinct primes dividing N but not Q; if there are no such
primes, take p1 · · · pR = 1. Since QN and p1, · · · , pR are pairwise coprime, there
is an x0 ∈ 3N such that x0 ≡ x (mod QN3N ) and x0 ≡ 0 (mod p1 · · · pR3N ).
Then y − x0 ∈ QN3N if and only if y ∈ x0 + QN3N , and y ∈ pi3N if and
only if y ∈ x0+ pi3N . Note that if D|p1 · · · pR then QN3N ∩ D3N = QN D3N .
Recalling that r0 is the supremum over positive numbers r for which S(a, r) injects
into C/3, take a ∈C and take 0< r ≤ r0. Applying inclusion/exclusion, we obtain

#
(
GQ ·σi (ξ)∩SE(a, r)

)
=

∑
D | p1···pR

(−1)λ(D) · #
(
(x0+QN D3N )∩S(a, r)

)
, (34)

where λ(D) is the number of distinct primes dividing D.



240 Matthew Baker, Su-ion Ih and Robert Rumely

Inserting (33) in (34) and summing over all σi (ξ), i = 1, . . . , T , we find

N
(
ξ,SE(a, r)

)
=

area S(a, r)
F

·
T N 2

Q2
N

∏
p |N
p - Q

(
1− 1

p2

)

+ θ

(
2C Sr

F
·

T N
QN

∏
p |N
p - Q

(
1+ 1

p

))
+ θ

(C2S
F
· T 2R

)
,

where, as before, θ(x) denotes a quantity with −x ≤ θ(x)≤ x . By (30),

[k(ξ) : k] = T · #(GQ · ξ) =
T N 2

Q2
N

∏
p |N
p - Q

(
1− 1

p2

)
. (35)

Since r ≤ r0, it follows that

N
(
ξ,SE(a, r)

)
[k(ξ) : k]

=
area S(a, r)

area F
+ θ

(
2C Sr0

F
·

QN

N
∏

p |N
p - Q

(
1− 1

p

))

+ θ

(
C2S

F
·

2R Q2
N

N 2
∏

p |N
p - Q

(
1− 1

p2

))
.

Here area S(a, r)/area F = µ(SE(a, r)). Note that T is bounded by the order
of GL2(Z/QZ)), QN is bounded by Q, and

N
∏
p |N

(
1− 1

p

)
≥ N 1−ε

for each ε > 0 and each sufficiently large N . Using (35) and the fact that

1 ≥
∏

p |N ,p - Q

(
1− 1

p2

)
≥ 1/ζ(2)

one sees that the first error term is Oγ ([k(ξ) : k]−γ ) for each γ < 1/2. Similarly,
2R
≤ d(N ) ≤ N ε for each ε > 0 and each sufficiently large N . Thus the second

error term is negligible in comparison with the first. This completes the proof when
E does not have complex multiplication.

Case 2. Suppose E has complex multiplication. Let K be the CM field of E , and
let O⊂ OK be the order corresponding to E . After enlarging k if necessary, we can
assume that K ⊂ k. Let 3 ⊂ C be a lattice such that E ∼= C/3. Without loss of
generality, we can assume that 3 ⊂ K . Fix an analytic isomorphism ϑ : C/3 ∼=

E(C).
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By the theory of complex multiplication (see [Shimura 1971], [Lang 1973], or
[Silverman 1994, Chapter II]), E(k)tors is rational over kab, the maximal abelian
extension of k. Let k×A be the idèle ring of k, and for s ∈ k×A let [s, k] be the Artin
map acting on kab. Given σ ∈ Gal(k/k), take s ∈ k×A with σ |kab = [s, k], and put
w = Nk/K (s) ∈ K×A . There is an action of K×A on lattices, defined semilocally,
which associates to w and 3 a new lattice w−13. This action extends to a map
w−1
: K/3 → K/w−13. There is also a homomorphism ψ : k×A → K×, the

grössencharacter of E , which has the property that ψ(s)Nk/K (s)−13 = 3. Put
κ = ψ(s) ∈ K×.

With this notation, there is a commutative diagram

K/3

w−1

��

� � // C/3
ϑ // E(k)tors

σ

��
K/w−13

κ

��

� � // C/w−13 // E(k)tors

id
��

K/3 � � // C/3
ϑ // E(k)tors

in which the vertical arrows on the left are multiplication byw−1 and κ respectively,
and those on the right are the galois action (see [Shimura 1971, Proposition 7.40,
p. 211], or [Lang 1973, Theorem 8, p. 137]). Note that the same analytic isomor-
phism ϑ appears in the top and bottom rows. Thus, if ξ ∈ E(k)tors corresponds to
x ∈ K/3, and σ |kab = [s, k], then

σ(ξ) = ϑ(ψ(s)Nk/K (s)−1x).

This gives an explicit description of the galois action on torsion points in terms of
adelic “multiplication”.

The action of K×A in the diagram is as follows. Let L ⊂ K be a lattice. For
each rational prime p of Q, write L p = L ⊗Z Zp and K p = K⊗Q Qp; if w ∈ K×A ,
let wp be its p-component. Then w−1

p L p is a Zp-lattice in K p. There is a unique
lattice M ⊂ K such that Mp =w

−1
p L p for each p [Lang 1973, Theorem 8, p. 97],

and w−1L is defined to be M . Likewise, if x ∈ K/L , lift it to an element of
K ⊂ KA and write x p ∈ K p for its p-component; there is a y ∈ K such that
w−1

p x p (mod w−1L p) = y (mod Mp) for each p, and w−1(x (mod L)) is defined
to be y (mod M).

The order O has the form O=Z+cOK for some integer c≥ 1, and c is called the
conductor of O. The lattice3 is a proper O-lattice, meaning that O={x ∈ K : x3⊂
3}. For any order O, there are only finitely many homothety classes of proper O-
lattices [Lang 1973, Theorem 7, p. 95]. Write Op=O⊗Z Zp and OK ,p=OK⊗Z Zp.
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If p -c, then Op =OK ,p ∼=
∏

p | p OK ,p, where p runs over the primes of K lying over
p, and OK ,p is the completion of OK at p.

Let U be the kernel of the grössencharacter ψ : k×A → K×, and take W =
Nk/K (U ) ⊂ K×A . Since ψ is continuous, there is an integer Q ≥ 1 such that, for
each p |Q, the subgroup 1+QOK ,p ⊂ O×K ,p is contained in Wp and for each p - Q,
O×K ,p ⊂Wp. If w ∈W , then w−13=3, so wp ∈ O×p . Hence c |Q.

Noting that Op = OK ,p if p - Q, let WQ ⊂ K×A be the subgroup

C××
∏
p |Q

(1+ QOp)×
∏
p - Q

O×p ⊂ W ,

and let UQ be its preimage in k×A under the norm map. Put

GQ = {σ ∈ Gal(k/k) : σ |kab = [s, k] for some s ∈UQ} .

Then GQ is open and normal in Gal(k/k).

Step 1: Determining the size of a galois orbit under GQ . Fix ξ ∈ E(k)tors. Suppose
ξ has order N ; put QN = gcd(Q, N ). For suitable right coset representatives
σ1, . . . , σT of GQ in Gal(k/k), the orbit Gal(k/k) · ξ decomposes as a disjoint
union of GQ-orbits:

Gal(k/k) · ξ =
T⋃

i=1

GQ · σi (ξ).

As before, the orbits GQ · σi (ξ) = σi (GQ · ξ) all have the same size, and [k(ξ) :
k] = T · #(GQ · ξ).

Let ξ correspond to x +3 ∈ K/3. Write 3(x) for the O-lattice Ox +3; since
ξ has order N , [3(x) :3] ≥ N . More generally, for any integer m, put 3(mx) =
O ·mx +3= mOx +3. Note that

3(mx)/3 ∼=
∏
p |N

3(mx)p/3p =
∏
p |N

(mOp x +3p)/3p .

If p |Q, then GQ acts on ξp through the subgroup 1+ pordp(Q)Op ⊂ O×p . Noting
that ordp(QN ) = min(ordp(Q), ordp(N )) and that pordp(Q)x ∈ 3p if ordp(Q) ≥
ordp(N ), we have

GQ · ξp ∼= (x + pordp(Q)Op x +3p)/3p = (x +3(pordp(QN )x)p)/3p .

Thus #(GQ · ξp)= [3(pordp(QN )x)p :3p].
If p - Q, then Op = OK ,p and GQ acts on ξp through O×p

∼=
∏

p | p O×K ,p. For
each p | p, and each O-lattice L , we have L p ∼= (OK L)p where OK L is an OK -
fractional ideal. Thus ordp(L) := ordp(OK L) is well defined. Write ordp(ξ) =
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ordp(3)− ordp(3(x)). Then 3(x)p/3p ∼=
∏

p | p OK /p
ordp(ξ) and

#(GQ · ξp) = [3(x)p :3p] ·
∏
p | p

ordp(ξ)>0

(
1− 1

Np

)
,

where Np= #(OK /p) is the norm of p.
Combining these formulas, and using that∏

p |N

[3(pordp(QN )x)p :3p] = [3(QN x) :3],

we obtain
#(GQ · ξ) = [3(QN x) :3] ·

∏
p |N ,p - Q
ordp(ξ)>0

(
1− 1

Np

)
. (36)

Step 2: Counting translated lattice points in convex domains. If L is any O-lattice,
and F(L) is the area of a fundamental domain for C/L , then by Minkowski’s
theorem there is a point 0 6= ` ∈ L with |`| ≤ (4/π)1/2 F(L)1/2. Here L is a proper
O ′-lattice for some order O ′ with conductor c′ |c. There are only finitely many
such orders O ′, and for each O ′ there are only finitely many homothety classes of
proper O ′-lattices, so there are only finitely many homothety classes of O-lattices.
Hence there is a constant C1, independent of L , such that L has a fundamental
domain F(L) contained in the ball B(0,C1 · F(L)1/2). In turn, there is a constant
C , independent of L , such that F(L)⊂ S(0,C · F(L)1/2). This fact is the crux of
the argument in the CM case.

Again, if L is an O-lattice, then for each ideal $ of OK coprime to c, there
is a unique lattice $ L defined by the property that ($ L)q = ($OK L)q for all
primes q |N$ , and ($ L)q = Lq for all primes q - N$ . This lattice has index
[L :$ L] = N$ .

We will apply this taking L=3(QN x)= QN Ox+3. Note that the fundamental
domain F($3(QN x)) has area F · N$/[3(QN x) :3], where F is the area of a
fundamental domain F for 3. By the same argument leading to (33) we find that
for each x0 ∈ C∣∣∣∣#(
(x0+$3(QN x))∩S(a, r)

)
−

area S(a, r)
area F

·
[3(QN x) :3]

N$

∣∣∣∣
≤

2C Sr
F
·

(
[3(QN x) :3]

N$

)1/2
+

C2S
F
. (37)

Step 3: Inclusion/exclusion. Now consider a set S(a, r), where a ∈ C and r ≤
r0. For each σi (ξ), we will compute #

(
(GQ · σi (ξ)) ∩ SE(a, r)

)
. Fix σi , and

replace ξ by σi (ξ) in the discussion above. Let x ∈ K/3 correspond to σi (ξ),
and let p1, . . . , pR be the distinct primes of OK dividing N but not Q, for which
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ordp(3(x)) 6= ordp(3). If there are no such primes, take p1 · · · pR = 1 in the
argument below. (Note that the p j are independent of σi , since K ⊂ k and for
p - Q, σi acts on ξ through O×p .) Thus there is a one-to-one correspondence between
elements of GQ · σi (ξ), and cosets y +3 for y ∈ K such that y ∈ x +3(QN x)
and y /∈ p j3(x) for j = 1, . . . , R. Since 3(QN x) ⊂ 3(x), such y necessarily
belong to 3(x). The index [3(QN x) : 3] in (37) is independent of σi by (36),
since #(GQ · σi (ξ)) and the p j are independent of σi .

The lattices 3(QN x) and p1 · · · pR3(x) have coprime indices in 3(x), so there
is an x0 ∈3(x) such that x0≡ x (mod 3(QN x)) and x0≡ 0 (mod p1 · · · pR3(x)).
Further, for any OK -ideal $ dividing p1 · · · pR ,

3(QN x)∩
( ⋂

p j |$
p j3(x)

)
= $3(QN x).

Clearly y ∈ x +3(QN x) if and only if y ∈ x0+3(QN x), and y ∈ p j3(x) if and
only if y ∈ x0+ p j3(x). Since S(a, r) injects into C/3, by inclusion/exclusion

#
(
(GQ · σi (ξ))∩SE(a, r)

)
=

∑
$ |p1···pR

(−1)λK ($) · #
(
(x0+$3(QN x))∩S(a, r)

)
, (38)

where λK ($) is the number of distinct prime ideals of OK dividing $ .
Inserting (37) in the inclusion/exclusion formula (38) and summing over all

σi (ξ), we get

N
(
ξ,SE(a, r)

)
=

area S(a, r)
area F

· T [3(QN x) :3]
R∏

j=1

(
1− 1

Np j

)
+ θ

(
2C Sr

F
· T [3(QN x) :3]1/2

R∏
j=1

(
1+

1

Np
1/2
j

))
+ θ

(C2S
F
· T 2R

)
.

By (36), [k(ξ) : k] = T [3(QN x) :3]
∏R

j=1
(
1− 1

Np j

)
. Since r ≤ r0 and

R∏
j=1

(
1+ 1

Np
1/2
j

)
≤ 2R,

we have

N
(
ξ,SE(a, r)

)
[k(ξ) : k]

=
area S(a, r)

area F
+ θ

(C2S
F
·

T 2R

[k(ξ) : k]

)
+ θ

(
2C Sr0

F
·

T 1/22R(∏R
j=1(1− 1/Np j )

)1/2 ·
1

[k(ξ) : k]1/2

)
. (39)
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As before, area S(a, r)/area F = µ(SE(a, r)). Here T ≤ [Gal(k/k) : GQ] is
fixed. For each ε > 0 and each sufficiently large N , 2R

≤ 23K (N ) ≤ 22λ(N )
≤

d(N )2≤ N ε. Likewise,
∏R

j=1(1−1/Np)≥
∏

p |N (1−1/p)2≥C/(log log N )2 for
some constant C > 0, where the last inequality follows from [Hardy and Wright
1954, Theorem 328, p. 267]. Finally, since ξ has order N and QN ≤ Q is bounded,
[3(QN x) :3] ≥ N/Q, and so

[k(ξ) : k] ≥ T · N/Q ·C/(log log N )2 ≥ T C/Q · N 1−ε (40)

for all large N . Combining these shows that for each 0 < γ < 1/2, the first error
term is Oγ ([k(ξ) : k]−γ ). The same estimates show the second error term is neg-
ligible in comparison to the first. This completes the proof when E has complex
multiplication. �

Before leaving this section, we note that the arguments above provide lower
bounds for the degree [k(ξ) : k] in terms of the order N of ξ , as required by (27).
When E does not have complex multiplication, then since T is fixed, QN ≤ Q,
and

∏
p(1−1/p2) converges to a nonzero limit, (35) shows there is a constant C1

depending only on E such that

[k(ξ) : k] ≥ C1 N 2 . (41)

When E has complex multiplication, then since T and Q are fixed, (40) shows that
there is a constant C2 depending only on E such that

[k(ξ) : k] ≥ C2 N/(log log N )2. (42)

3. Context

Theorems 0.1 and 0.2 are the first known cases of general conjectures by the second
author (which were refined through conversations with J. Silverman and S. Zhang)
concerning dynamical systems and abelian varieties.

As before, let k be a number field, and let S be a finite set of places of k con-
taining the archimedean places. Let Ok,S be the ring of S-integers of k.

Conjecture 3.1 (Su-Ion Ih). Let R(x) ∈ k(x) be a rational function of degree at
least 2, and consider the dynamical system associated to the map R∗ : P1

→ P1.
Let α ∈ P1(k) be nonpreperiodic for R∗. Then there are only finitely many prepe-
riodic points ξ ∈ P1(k) that are S-integral with respect to α, that is, whose Zariski
closures in P1/Spec(Ok,S) do not meet the Zariski closure of α.

Conjecture 3.2 (Su-Ion Ih). Let A/k be an abelian variety, and let AS/Spec(Ok,S)

be a model of A. Let D be a nonzero effective divisor on A, defined over k, at least
one of whose irreducible components is not the translate of an abelian subvari-
ety by a torsion point, and let cl(D) be its Zariski closure in AS . Then the set
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Type of variety Type of rationality k k

Compact k,k-rationality Mordell–Lang Manin–Mumford
Conjecture Conjecture

Noncompact Ok ,Z-rationality Lang’s Ih’s
Conjecture Conjecture 3.2

AD,S(Z) tors, consisting of all torsion points of A(k) whose closure in AS is disjoint
from cl(D), is not Zariski dense in A.

Theorem 0.1 establishes Conjecture 3.1 for the maps R(x) = xd with |d| ≥ 2,
whose preperiodic points are 0,∞ and the roots of unity. It is possible to prove the
conjecture for Chebyshev maps by similar methods, though we do not do so here.

Theorem 0.2, in addition to being the one-dimensional case of Conjecture 3.2,
is equivalent to Conjecture 3.1 for Lattès maps. That is, if E/k is an elliptic curve,
let R ∈ k(x) be the degree 4 map on the x-coordinate corresponding to the doubling
map on E , so that the following diagram commutes:

E
[2] //

x
��

E

x
��

P1
R∗ // P1

Then β ∈ E(k) is a torsion point if and only x(β) is preperiodic for R∗.
Part of the motivation for Conjecture 3.2 is the following analogy between dio-

phantine theorems over k and k, and over Ok and Z (the ring of all algebraic inte-
gers). Let A/k be an abelian variety, and let X be a nontorsion subvariety of A (that
is, X is not the translate of an abelian subvariety by a torsion point). Recall that the
Mordell–Lang Conjecture (proved by Faltings) says that A(k) ∩ X is not Zariski
dense in X ; while the Manin–Mumford Conjecture (first proved by Raynaud) says
that A(k)tors ∩ X is not Zariski dense in X . Likewise, Lang’s conjecture (also
proved by Faltings) says that if D is an effective ample divisor on A, then the set
AD(Ok) of Ok-integral points of A not meeting supp(D) is finite. Note that A is
compact, whereas AD = A\supp(D) is noncompact.

Conjecture 3.1 is motivated by Conjecture 3.2 and the familiar analogy between
torsion points of abelian varieties and preperiodic points of rational maps.

J. Silverman [1993] proved the following result, which is somewhat related to
Conjecture 3.1: If the backward orbit of α ∈ P1(k) under a rational function R of
degree ≥ 2 is infinite, then for every β ∈P1(k), there are only finitely many points
in the forward orbit of β under R that are S-integral with respect to α.
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More recently, C. Petsche [2007] has proved Conjecture 3.1 under the additional
hypothesis that α is “totally Fatou”, meaning that for every place v of k and every
embedding σ of k into kv, σ(α) is in the v-adic Fatou set of R.

In closing, we note that an important ingredient of the proofs of Theorems 0.1
and 0.2 was a quantitative equidistribution theorem for torsion points. A quantita-
tive equidistribution theorem for points of small height with respect to an arbitrary
dynamical system on P1 has recently been proved by C. Favre and J. Rivera-
Letelier [2006, théorème 6].
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