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A topological property of quasireductive
group schemes

Najmuddin Fakhruddin and Vasudevan Srinivas

In a recent paper, Gopal Prasad and Jiu-Kang Yu introduced the notion of a
quasireductive group scheme G over a discrete valuation ring R, in the context
of Langlands duality. They showed that such a group scheme G is necessarily
of finite type over R, with geometrically connected fibres, and its geometric
generic fibre is a reductive algebraic group; however, they found examples where
the special fibre is nonreduced, and the corresponding reduced subscheme is a
reductive group of a different type. In this paper, the formalism of vanishing
cycles in étale cohomology is used to show that the generic fibre of a quasire-
ductive group scheme cannot be a restriction of scalars of a group scheme in a
nontrivial way; this answers a question of Prasad, and implies that nonreductive
quasireductive group schemes are essentially those found by Prasad and Yu.

Gopal Prasad and Jiu-Kang Yu [2006] introduced the notion of a quasireductive
group scheme over a discrete valuation ring R in a recent paper: this is an affine,
flat group scheme π : G→ Spec R, such that

(i) the generic fibre GK is a smooth, connected group scheme over the quotient
field K of R;

(ii) the reduced geometric special fibre (Gk)red is of finite type over the algebraic
closure of the residue field k of R, and its identity component is a reductive
affine algebraic group;

(iii) dim GK = dim Gk .

They showed that G is necessarily of finite type over R, with geometrically con-
nected fibres, and its geometric generic fibre is a reductive algebraic group. Further,
G is a reductive group scheme over Spec R, except possibly when R has residue
characteristic 2 and the geometric generic fibre GK has a nontrivial normal sub-
group of type SO2n+1, for some n ≥ 1. They gave examples to show that in case
GK = SO2n+1, reductivity can fail to hold, with a nonreduced geometric special
fibre, and they gave a classification of such G. Their work arose in response to

MSC2000: primary 14L15; secondary 20G35.
Keywords: group scheme, quasireductive, nearby cycle.
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122 Najmuddin Fakhruddin and Vasudevan Srinivas

a question of Vilonen to Prasad, in connection with a Tannakian construction of
Langlands dual groups; see [Mirković and Vilonen 2004].

In this context, it is natural to ask if there are any other possibilities for nonre-
ductive, quasireductive group schemes G, except the examples found by Prasad and
Yu, and the others obtained from these by simple modifications (like products and
so forth). From their results, this boils down to the following specific question:

Does there exist a quasireductive group scheme π : G→ Spec R, where
R is a complete DVR with algebraically closed residue field, such that
for some finite, separable (totally ramified) extension field L of K , of
degree > 1, the generic fibre GK is isomorphic to RL/K (SO2n+1)L , the
Weil restriction of scalars of (SO2n+1)L?

One aim of this paper is to show that there do not exist any such quasireduc-
tive group schemes; see Corollary 2 below. Gopal Prasad has obtained a stronger
conclusion, combining Corollary 2 with the arguments based on [Prasad and Yu
2006]; at his urging, this is included below (Theorem 11).

The nonexistence proof is based on a topological result, Theorem 1, on the `-
adic cohomology of a quasireductive group scheme; it says roughly that, though
a quasireductive group scheme may not be smooth over the base, it is almost so
from the point of view of `-adic cohomology. This property of quasireductive
group schemes (including the nonsmooth ones) may also be of interest in potential
applications of such group schemes. This topological result was motivated by the
well known Serre–Tate criterion [1968] for good reduction of abelian varieties,
which relies ultimately on the theory of Néron models. In a sense, [Prasad and Yu
2006] also relies on some aspects of this theory.

Theorem 1. Let R be a complete DVR with quotient field K and algebraically
closed residue field k. Let

π : G→ Spec R

be a quasireductive group scheme. Let G→ Spec K be the generic fibre. Let ` be
a prime number, invertible in R. Then the action of the inertia group Gal(K/K )
on the étale cohomology group H i

et(G K ,Z/`nZ) is trivial, for any i, n ≥ 0. Thus,
the inertia action on the `-adic cohomology H i

et(G K ,Q`) is trivial, for all i ≥ 0.

For a more technical assertion, which implies the above result, and may be viewed
as the key new observation in this paper, see Proposition 8 in Section 2 below.

Corollary 2. Let R be a complete DVR with quotient field K , and algebraically
closed residue field k. Let L be a finite extension field of K , and let

π : G→ Spec R
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be a quasireductive group scheme, whose generic fibre GK is isomorphic to the
restriction of scalars of a positive dimensional reductive affine algebraic group G
over L. Then we must have L = K .

Proof. We first note that since G K is a positive dimensional reductive algebraic
group over an algebraically closed field, it has a nonzero `-adic Betti number in
some positive degree; for example, this is a simple consequence of the classification
of reductive groups over algebraically closed fields. Let i > 0 be the smallest such
degree.

Next, since the generic fibre of G→ Spec R is a reductive group and is obtained
by the restriction of scalars from L to K , the extension field L/K is necessarily
separable. (If L/K is a purely inseparable finite extension and G is an algebraic
group over L , then the kernel of the natural homomorphism RL/K (G)L → G is
unipotent; see [Oesterlé 1984, A.3.5], for example.)

Now, if L/K is a separable extension of degree n > 1, then the geometric
generic fibre GK is isomorphic to a product of n copies of G K , and the inertia
group Gal (K/K ) permutes the n factors transitively. From the Kunneth formula,
it follows that for the chosen i > 0, the étale cohomlogy group H i

et(GK ,Q`) is
a direct sum of (a positive number of) copies of a nontrivial permutation Galois
module. This contradicts Theorem 1. �

1. Some preliminaries

Before proving Theorem 1, we discuss some preliminaries.
Recall that, if k is an algebraically closed field, a unipotent isogeny between

connected reductive algebraic k-groups is a homomorphism, which is a finite sur-
jective morphism, whose kernel does not contain any nontrivial subgroup scheme
of multiplicative type (that is, isomorphic to a subgroup scheme of Ge

m for some
e ≥ 1).

The following lemma sheds more light on unipotent isogenies (see Corollary 4).
We thank Conrad for explaining this argument to us; the reader might compare this
with [Prasad and Yu 2006, Lemma 2.2].

Lemma 3. Let H be a reduced group scheme over a perfect field k, let G be a
closed normal subgroup scheme of H and let G red be the reduced subscheme of
G. Then G red is also a normal subgroup scheme of H. If H is connected and G is
finite then G red is in the center of H.

Proof. We first recall that since k is perfect, the product of reduced k-schemes is
reduced, so the morphism G red

×G red
→ G induced by the product morphism of

G factors through G red and similarly for the inverse morphism. Hence G red is a
subgroup scheme of G. Since H is reduced, so is H×G red, and hence (H×G)red

=

H ×G red.
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Let c : H × G → G be the morphism giving the conjugation action of H on
G and let i : G red

→ G be the inclusion. Then there is a unique morphism cred
:

H ×G red
→ G red making the diagram below commute,

H ×G red cred
//

Id×i
��

G red

i
��

H ×G
c // G.

Thus G red is normal.
Now suppose G is finite and H is connected. Since H(k) is nonempty, H is

geometrically connected over k [EGA 6, 4.5.13]. We may assume that k is al-
gebraically closed and so G red is a disjoint union of copies of Spec k. Then the
inclusion e : Spec k→ H given by the identity induces a bijection of connected
components of G red with those of H × G red. Since cred is continuous, it follows
that

cred
= pG red,

the projection onto G red. Thus G red is central. �

Corollary 4. The kernel of a unipotent isogeny between connected reductive alge-
braic groups over an algebraically closed field k is infinitesimal, so that such an
isogeny must be purely inseparable.

Proof. If H is a connected reductive algebraic group over k, and G is the kernel of
a unipotent isogeny with domain H , then G is a finite, normal subgroup scheme
of H . By Lemma 3, G red is a central subgroup scheme, hence contained in a
maximal torus. Since G, and hence G red, has no nontrivial subgroup scheme of
multiplicative type, this means G red is trivial, that is, G is infinitesimal. �

Lemma 5. Let k be an algebraically closed field of characteristic p > 0, and ` a
prime distinct from p. Let f : G1→ G2 be either

(i) a unipotent isogeny between connected reductive algebraic groups over k, or

(ii) a closed immersion of k-schemes of finite type, which induces an isomorphism
on the underlying reduced schemes.

Then
F 7→ f∗F, F′ 7→ f ∗F′

determine an equivalence of categories between étale sheaves on G1 and G2, and
there are natural isomorphisms H i

et(G2, f∗F)∼= H i
et(G1,F) for all i .

Proof. A finite, surjective, radicial morphism induces an equivalence of categories
on étale sheaves, and hence isomorphisms on étale cohomology — see [SGA 4 II,
Exposé VIII, Théorème 1.1, Cor. 1.2]. �
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The main input in the proof of Theorem 1 is the formalism of vanishing cy-
cles, and in particular, the notion of the complex of nearby cycles, as explained in
[SGA 7 II, Exposé XIII]. We briefly review what we need.

Suppose given a morphism of schemes π : X→ T , where T is the spectrum of
a complete discrete valuation ring with algebraically closed residue field. Denote
the generic point of T by η, and fix an algebraic closure of the quotient field of the
DVR, giving a geometric generic point η of T . Let X0 be the closed fibre, and let
Xη be the geometric generic fibre.

If F is any étale sheaf of Z/`nZ-modules on X , then one defines the complex
of nearby cycles RψT (F) on the closed fibre X0 as follows: if i : X0→ X is the
inclusion, and j : Xη→ X the evident morphism, then

RψT (F)= i∗R j∗ j∗F.

The adjunction map id→ i∗i∗ gives a map R j∗ j∗ → i∗i∗R j∗ j∗ and the ad-
junction map id→ R j∗ j∗ gives a map i∗→ i∗R j∗ j∗. These give rise to maps on
cohomology:

H i
et(Xη, j∗F)→ H i

et(X0, RψT (F)),

H i
et(X0,F0)→ H i

et(X0, RψT (F)).
(1-1)

Further, H i
et(X0, RψT (F)) carries an action of the inertia group Gal(k(η)/k(η)),

such that the above two maps on cohomology are equivariant (where the inertia
action on H i

et(X0,F0) is taken to be trivial). We may of course replace the closed
fibre X0 by its reduced subscheme in the above, since the categories of étale sheaves
on X0 and (X0)red are equivalent. If T = Spec R, we may write ψR instead of ψT .

The adjunctions above fit into a square

id //

��

R j∗ j∗

��
i∗i∗ // i∗i∗R j∗ j∗

which gives a commutative diagram

H i
et(X,F) //

��

H i
et(Xη, j∗F)

��
H i

et(X0,F0) // H i
et(X0, RψT (F)).

(1-2)

Here the left vertical arrow is an isomorphism if f is proper [SGA 5, proper base
change theorem, Exposé XII].
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Lemma 6. If in the above situation, f : X → T is smooth, and F is a locally
constant constructible sheaf of Z/`nZ-modules, with ` invertible in OT , then the
natural map

F0→ RψT (F)

is an isomorphism, and so induces isomorphisms on étale cohomology.

Proof. This follows from the definition of RψT , and the smooth base change the-
orem [SGA 7 II, Exposé XIII, Reformulation 2.1.5 and above]. �

Lemma 7. Let X be a noetherian scheme, i :Y→ X a closed embedding, β : X ′→
X a finite morphism, Y ′ = X ′×X Y with induced embedding i ′ : Y ′→ X ′ and finite
morphism α : Y ′→ Y . For all I ∈ D+(Xet) and r ∈ Z the restriction map

H r
et(X

′,I)→ H r
et(Y

′, i ′∗I)

is equal to the composite

H r
et(X

′,I)→H r
et(X, Rβ∗I)→H r

et(Y, i∗Rβ∗I)→H r
et(Y, Rα∗i ′

∗
I)→H r

et(Y
′, i ′∗I)

where the first and the last map are the natural isomorphisms, the second is the
restriction map and the third is induced by the base change map.

Proof. If I is represented by a single sheaf F (in degree 0) and r =0 then the equal-
ity follows from the very definition of the base change map [SGA 5, Exposé XII,
§4].

We now assume that I is (represented by) a bounded below complex of injective
sheaves

· · ·I j−1
→ I j

→ I j+1
→ · · · .

Then i ′∗I is (represented by) the complex

· · · i ′∗I j−1
→ i ′∗I j

→ i ′∗I j+1
→ · · · .

Let J be a complex of injective sheaves on Y ′ with a quasiisomorphism q ′: i ′∗I→J.
Then the map H r

et(X
′,I)→ H r

et(Y
′, i ′∗I) is induced by the map of complexes of

abelian groups which in cohomological degree r is the composite

0(X ′,Ir )→ 0(Y ′, i ′∗Ir )→ 0(Y ′,Jr ) .

Since the pushforward by a finite morphism is exact on the category of étale
sheaves,

α∗(q) : α∗i ′
∗
I→ α∗J

is a quasiisomorphism and α∗J is also a complex of injective sheaves on Y . Using
the base change isomorphism we may view q ′ := α∗(q) as a quasiisomorphism
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i∗β∗I→α∗J, and hence we may use it to compute the second map in the sequence
of the lemma. Since the diagram

0(Y ′, i ′∗I j )
q //

��

0(Y ′,J j )

��
0(Y, α∗i ′

∗I j )
q ′ // 0(Y, α∗J j ),

where the vertical maps are the canonical isomorphisms, commutes for all j , the
lemma then follows from the first step of the proof. �

2. Proof of the theorem

We now give the proof of Theorem 1.
If we apply the formalism of nearby cycles to our quasireductive group scheme

π : G→ Spec R

(which is of course not proper), with geometric generic fibre GK , special fibre G0,
and

F= (Z/`nZ)G,

where ` is invertible in R, then from (1-1) we obtain homomorphisms

H i
et(GK ,Z/`nZ)→ H i

et(G0, RψR(Z/`
nZ)), (2-1)

H i
et(G0,Z/`nZ)→ H i

et(G0, RψR(Z/`
nZ)). (2-2)

These are equivariant for the action of the inertia Gal(K/K), where the action on
H i

et(G0,Z/`nZ) is trivial.
Thus, Theorem 1 follows from:

Proposition 8. With the above notation, the maps in (2-1), (2-2) are isomorphisms,
for any n.

We first consider the situation of a smooth reductive group scheme.

Lemma 9. Let R be a complete DVR with algebraically closed residue field. Let

ϕ :H→ Spec R

be a smooth, reductive group scheme. Let H0 be the closed fibre of ϕ, and Hη the
geometric generic fibre. Then for any prime ` which is invertible in R, we have the
following.

(i) The canonical map

(Z/`nZ)H0 → RψR(Z/`
nZ)H

is an isomorphism.
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(ii) The canonical maps

H i
et(Hη,Z/`n Z)→ H i

et(H0, RψR(Z/`
nZ)),

H i
et(H0,Z/`nZ)→ H i

et(H0, RψR(Z/`
nZ))

are isomorphisms.

Proof. Since ϕ is a smooth morphism, the isomorphism in (i) holds by Lemma 6.
To get the isomorphisms in (ii), consider (1-2) constructed with X =H, f = ϕ,

F= Z/`nZ:

H i
et(H,Z/`nZ) //

��

H i
et(Hη,Z/`nZ)

��
H i

et(H0,Z/`nZ) // H i
et(H0, RψR(Z/`

nZ)).

We claim that the left vertical and top horizontal arrows are isomorphisms; this
follow at once from [Raynaud 1968, Théorème 3.7] or [SGA 5, Exposé VII, Propo-
sition 6.2, p. 315]. From (i), the bottom horizontal arrow is also an isomorphism,
and so the right vertical arrow must be one as well. �

We now return to the case of a “general” quasireductive group scheme.

Lemma 10. Let π : G→ Spec R be a quasireductive group scheme, where R is a
complete DVR with algebraically closed residue field, and ` a prime invertible in
R. Let G0 be the closed fibre of π . Then the canonical map

(Z/`nZ)G0 → RψR(Z/`
nZ)G

is an isomorphism.

Proof. Combining Propositions 3.4 and 4.3 of [Prasad and Yu 2006], we see that
there is a finite extension field K ′ of K (contained in our chosen algebraic closure
K̄ ) with the following property. Let R′ be the integral closure of R in K ′, and set

G̃= normalization of G×Spec R Spec R′.

Then

(i) R′ is a complete DVR (with the same residue field as R),

(ii) G̃→ Spec R′ is a smooth, reductive group scheme with connected fibres, and

(iii) the induced morphism on reduced, geometric special fibres G̃0 → (G0)red is
a unipotent isogeny between connected, reductive groups of the same dimen-
sion.
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The propositions cited rely on a result due independently to Raynaud and Falt-
ings, whose proof is given in [Conrad 2006].

We note that there is a commutative diagram

G̃ //

π ′

��

G

π

��
Spec R′ // Spec R.

By choice, the geometric point η of Spec R is also a geometric point of Spec R′.
Let G̃1 = G̃×G G0. We may regard the special fibre G̃0 of π ′ : G̃→ Spec R′ as

a closed subscheme of G̃1, and in fact it is just the underlying reduced subscheme.
Thus the inclusion

i0 : G̃0 ↪→ G̃1

induces an equivalence of categories between étale sheaves on the two schemes;
under this equivalence, the constant sheaves Z/`nZ on the two schemes correspond.
There is a commutative diagram

GK

j ′

��
G̃0

i0 //

��@
@@

@@
@@

G̃1
i1 //

α

��

G̃

β

��
G0

i // G

where the square is a pullback, and the inclusion i ′ : G̃0 → G̃ is the composition
i ′ = i1 ◦ i0.

From the definitions, we have that

RψR′(Z/`
nZ)G̃ = i ′∗R j ′

∗
(Z/`nZ)GK

.

From Lemma 9, this is isomorphic to the constant sheaf Z/`nZ on G̃0. Hence we
obtain isomorphisms

(Z/`nZ)G̃0
∼= i ′∗R j ′

∗
(Z/`nZ)GK

∼= i∗0 i∗1 R j ′
∗
(Z/`nZ)GK

.

This implies that
(Z/`nZ)G̃1

∼= i∗1 R j ′
∗
(Z/`nZ)GK

.

Applying Rβ∗ = β∗ (since β is a finite morphism), and using the proper base-
change theorem, we get isomorphisms

α∗(Z/`
nZ)G̃1

∼= i∗R(β ◦ j ′)∗(Z/`nZ)GK
= RψR(Z/`

nZ)G .
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Now the three arrows

i0 : G̃0→ G̃1, G̃0→ (G0)red, (G0)red ↪→ G0

induce equivalences of categories between the respective categories of étale sheaves
(the middle arrow is a unipotent isogeny, the other two are inclusions of underly-
ing reduced schemes). Hence α∗ also induces such an equivalence of categories,
so RψR(Z/`

nZ)G is isomorphic to (Z/`nZ)G0 . It follows from the description
of the stalks of RiψR(Z/`

nZ)G [SGA 7 II, Exposé 12, Proposition 2.1.4] that the
canonical map (Z/`nZ)G0→ R0ψR(Z/`

nZ)G is an injection of sheaves. Since any
injection from (Z/`nZ)G0 to itself must be an isomorphism, the lemma follows. �

In particular, we see that the map (2-2) is an isomorphism. It remains to consider
the map (2-1)

H i
et(GK ,Z/`nZ)→ H i

et(G0, RψRZ/`nZ).

This map is constructed as the composition

H i
et(GK ,Z/`nZ)∼= H i

et(G, R j∗Z/`nZ)→

H i
et(G0, i∗R j∗Z/`nZ)= H i

et(G0, RψRZ/`nZ).

Thus it suffices to show that the restriction map

H i
et(G, R j∗Z/`nZ)→ H i

et(G0, i∗R j∗Z/`nZ) (2-3)

is an isomorphism.
The analogous map for the group scheme π ′ : G̃→Spec R′ is similarly expressed

as a composition

H i
et(GK ,Z/`nZ)∼= H i

et(G̃, R j ′
∗
Z/`nZ)→

H i
et(G̃0, i ′∗R j ′

∗
Z/`nZ)= H i

et(G̃0, RψR′Z/`
nZ).

As seen in Lemma 9, this composition is an isomorphism.
Since i ′ = i0 ◦ i1, where i0 is finite, surjective and radicial, we see that the

restriction map

H i
et(G̃, R j ′

∗
Z/`nZ)→ H i

et(G̃1, i∗1 R j ′
∗
Z/`nZ) (2-4)

is also an isomorphism. The formula j = β ◦ j ′, Lemma 7, the proper base change
theorem and (2-4) imply that the map in (2-3) is indeed an isomorphism, thus
completing the proof of the theorem.
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3. An application

Gopal Prasad has given the following application of Corollary 2; we include his
proof here.

Theorem 11. Let R be a strictly Henselian DVR with algebraically closed residue
field, and K be its field of fractions. Then the generic fibre G =GK of any quasire-
ductive R-scheme G splits over K .

Proof. In view of [Prasad and Yu 2006, Proposition 4.4 (i)], we can assume that G is
either a torus or a semisimple K -simple group. Now if G is a torus, then it follows
from [SGA 3 II, Exposé X, Théorème 8.8], that G is a R-torus, which implies that
it splits over R [SGA 3 III, Exposé XXII, Proposition 2.1], and hence the generic
fibre G is a K -split torus. We assume now that G is a semisimple K -simple group.
If G does not contain a normal subgroup, defined and isomorphic over the algebraic
closure K of K , to SO2n+1 for some n > 1, then according to [Prasad and Yu 2006,
Theorem 1.2], G is smooth and reductive, so again by [SGA 3 III, Exposé XXII,
Proposition 2.1], G is split, and so its generic fibre G is K -split. On the other hand,
if G contains a normal subgroup defined and isomorphic over K to SO2n+1 for
some n > 1, then as SO2n+1 is a group of adjoint type, and G is K -simple, there
exists a finite separable extension L ⊂ K of K , and an absolutely simple L-group
H such that

(i) H is K -isomorphic to SO2n+1, and

(ii) G ∼= RL/K (H); see [Borel and Tits 1965, 6.21(ii) and 6.17].

Now Corollary 2 implies that since G is quasireductive, L = K . Thus G is a K -
group which is isomorphic to SO2n+1 over K . But as K is a field of cohomological
dimension 6 1, according to a well known theorem of Steinberg [1965] (if K is
imperfect, see also [Borel and Springer 1968, 8.6]), G is quasisplit over K . But as
G is an absolutely simple K -group of type Bn , if it is quasisplit over K , then it is
K -split. This completes the proof of the above theorem. �

Remark 12. Let R and K be as in the theorem above. According to [Prasad and
Yu 2006, 8.2], a quasireductive group scheme G is by definition a good quasireduc-
tive model of its generic fibre G if G(R) is a hyperspecial parahoric subgroup of
G(K ) = G(K ). If G admits a good quasireductive model, then it is K -split, by
Lemma 8.1 of the same references. Theorems 9.3–9.5 of Prasad and Yu classify
all good quasireductive models of G. It is an interesting problem to determine all
quasireductive models of a connected K -split reductive group G. For G=SO2n+1,
all such models have been determined in Section 10 of the same article.



132 Najmuddin Fakhruddin and Vasudevan Srinivas

4. Further remarks

We briefly discuss an analogue of quasireductive group schemes wherein we re-
place reductive algebraic groups by abelian varieties.

Definition 13. For a scheme S, we call a group scheme π : A→ S quasiabelian
if it is proper and flat over S and if it is an abelian scheme when restricted to an
open dense subset of S.

If all residue fields of S are of characteristic zero then a quasiabelian scheme is nec-
essarily an abelian scheme by Cartier’s theorem [SGA 3 I, Exposé VIB, Corollaire
1.6.1].

Now suppose S is the spectrum of a DVR R with residue characteristic p > 0
and π : A→ S a quasiabelian scheme. The following statements are in contrast
with the quasireductive case.

1. If A is normal then it is an abelian scheme. This follows from (i) the existence
of Néron models and (ii) the fact that for any commutative group scheme G, flat
and of finite type over S, the morphism

[n] : G→ G

of multiplication by n, where n ∈Z and (n, p)= 1, is étale. (One can use [SGA 3 I,
Exposé VIA, p. 316, Proposition] to prove that [n] is flat; it is unramified because
n is a unit in R).

Since A is proper and its geometric special fibre contains no rational curves, it
follows that the rational map from A′, the Néron model of A, to A extending the
identity morphism on the generic fibres, is actually a morphism. By examining
prime to p torsion (using (ii)) we deduce that the induced morphism on special fi-
bres is dominant, which implies that A′ is an abelian scheme. We then use Zariski’s
main theorem to conclude.

2. For any prime number p there exists S as above and a quasiabelian scheme over
S which is not an abelian scheme. Such schemes can be constructed as follows:
Let B′,B be abelian schemes over S and φ :B′→B a flat isogeny with kernel K′.
Suppose there is an abelian subscheme A′ of B′ such that K′ ∩A′ is not flat over
S. Then A := φ(A′) is quasiabelian but not abelian. For any p one may easily find
such data with B′ the product of a one dimensional abelian scheme with itself.

One could generalize the definition of quasiabelian schemes by considering
group schemes π : A→ S which are flat and of finite type over S, abelian over a
dense open subset and such that all reduced geometric fibres are semiabelian. In
this generality, we do not know if the analogue of item 1 above continues to hold
(though it does if the relative dimension is one since there exist canonical regular
compacifications in this case).
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Piecewise polynomials, Minkowski weights,
and localization on toric varieties

Eric Katz and Sam Payne

We use localization to describe the restriction map from equivariant Chow coho-
mology to ordinary Chow cohomology for complete toric varieties in terms of
piecewise polynomial functions and Minkowski weights. We compute examples
showing that this map is not surjective in general, and that its kernel is not always
generated in degree one. We prove a localization formula for mixed volumes of
lattice polytopes and, more generally, a Bott residue formula for toric vector
bundles.

1. Introduction

Let 1 be a complete fan in NR, where N is a lattice of rank n, and let X = X (1)
be the corresponding complete n-dimensional toric variety. See [Fulton 1993]
for standard notation and general background on toric varieties. The equivariant
operational Chow cohomology ring with integer coefficients A∗T (X) is naturally
isomorphic to the ring of integral piecewise polynomial functions on 1 [Payne
2006a], and there is a canonical map to ordinary Chow cohomology with integer
coefficients

ι∗ : A∗T (X)→ A∗(X)

induced by inclusions of X in the finite dimensional approximations of the Borel
mixed space [Edidin and Graham 1998a]. Now A∗(X) is naturally isomorphic
to the ring of Minkowski weights on 1 [Fulton and Sturmfels 1997], and ι∗ has
a natural interpretation in terms of localization and equivariant multiplicities, as
follows.

Let M = Hom(N ,Z), which is naturally identified with the character lattice
of T , and let Sym±(M) be the Z-graded ring obtained by inverting all of the
homogeneous elements in the ring Sym∗(M) of polynomials with integer coef-
ficients. We refer to elements of Sym±(M) as rational functions, and elements of

MSC2000: primary 14M25; secondary 14C17, 52B20.
Keywords: toric variety, localization, tropical geometry, piecewise polynomial, Minkowski weight.
Payne was supported by the Clay Mathematics Institute. Part of this research was done during his
visit to the Institut Mittag-Leffler (Djursholm, Sweden).
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the subring Sym∗(M) as polynomials. Each maximal cone σ ∈1 corresponds to
a nondegenerate torus fixed point xσ ∈ X , which has an “equivariant multiplicity”
exσ [X ]∈Sym±(M), which is a homogeneous rational function of degree−n. Since
every rational polyhedral cone admits a unimodular subdivision, these equivariant
multiplicities are determined by the following two properties.

(1) If σ1, . . . , σr are the maximal cones of a rational polyhedral subdivision of a
cone σ , then

exσ [X ] = exσ1
[X ] + · · · + exσr

[X ].

(2) If σ is a unimodular cone, spanned by a basis e1, . . . , en for N , then

exσ [X ] =
1

e∗1 · · · e
∗
n
.

The fact that the sum of rational functions determined by (1) and (2) is independent
of the choice of unimodular subdivision is not obvious from elementary considera-
tions, though it follows directly from the theory of localization at torus fixed points
in algebraic geometry [Edidin and Graham 1998b] and the theory of equivariant
multiplicities developed by Rossmann [1989] and Brion [1997, Theorem 4.2 and
Proposition 4.3, in particular]. Here we give a combinatorial proof of this indepen-
dence; the techniques of this proof may be of independent interest. We view the
multigraded Hilbert function Hilb(σ ) of the affine toric variety Uσ , given by

Hilb(σ )=
∑

u∈(σ ∗∩M)

xu ,

as a rational function on the dense torus T ⊂ X . We define eσ to be (−1)n times
the quotient of the leading forms when Hilb(σ ) is written as a quotient of two
polynomials in local coordinates at the identity 1T . We then show that eσ satisfies
properties analogous to (1) and (2) and therefore is equal to exσ [X ]. See Section 2
for details. Our approach is inspired by the presentation of multidegrees of multi-
graded modules over polynomial rings in [Knutson and Miller 2005, Sections 1.2
and 1.7] and [Miller and Sturmfels 2005, Chapter 8].

Recall that the ring of integral piecewise polynomial functions PP∗(1) is the
ring of continuous functions f : |1| → R such that the restriction fσ of f to each
maximal cone σ ∈1 is a polynomial in Sym∗(M).

Proposition 1.1. Let 1 be a complete n-dimensional fan, and let f ∈ PPk(1) be
a piecewise polynomial function. Then∑

σ

eσ fσ

is a homogeneous polynomial in Sym∗(M) of degree k− n.
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In particular, if the degree of f is less than n then
∑

eσ fσ vanishes. If deg f = n,
then

∑
eσ fσ = d is an integer, which may be identified with the codimension n

Minkowski weight c(0)= d on 1.
Minkowski weights of codimension less than n may be constructed similarly

from piecewise polynomials using equivariant multiplicities, as follows. For any
cone τ ∈1, let1τ be the fan in (N/(N∩span τ))R whose cones are the projections
of the cones in 1 that contain τ . If σ is a maximal such cone, we define eσ,τ to be
eσ , where σ is the image of σ in 1τ . So eσ,τ is a homogeneous rational function
of degree (dim τ − n) in the graded subring Sym±(τ⊥ ∩M) of Sym±(M).

Proposition 1.2. Let 1 be a complete fan, and let f ∈ PPk(1) be a piecewise
polynomial function. Then, for any τ ∈1,

c(τ )=
∑
σ�τ

eσ,τ fσ

is a homogeneous polynomial in Sym∗(M) of degree k+ dim τ − n.

If k ≤ n then c(τ ) is an integer for every codimension k cone in 1, and these
integers are a Minkowski weight of codimension k. Propositions 1.1 and 1.2 are
proved in Section 3 using elementary properties of generating functions for lattice
points in polyhedral cones.

Remark 1.3. Proposition 1.1 is the special case of Proposition 1.2 where τ = 0.
The essential content of Propositions 1.1 and 1.2 is that the denominator of the
sum must divide the numerator. In some special cases, this divisibility may be
seen as a consequence of Brion’s Formula, and its generalizations, in the theory of
generating functions for lattice points in polyhedra. See Section 5 below. Other
special cases of these cancellations appeared earlier in [Brion 1996]; in particular,
Brion showed that

∑
eσ,τ fσ is in Sym∗(MQ) when 1 is simplicial.

Theorem 1.4. The natural map ι∗ : Ak
T (X)→ Ak(X) takes the equivariant Chow

cohomology class corresponding to a piecewise polynomial function f to the or-
dinary Chow cohomology class corresponding to the Minkowski weight c given
by

c(τ )=
∑
σ�τ

eσ,τ fσ ,

for all codimension k cones τ ∈1.

We prove Theorem 1.4 in Section 3 by interpreting Propositions 1.1 and 1.2 in
terms of general localization formulas in equivariant Chow cohomology [Edidin
and Graham 1998b].
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We apply Theorem 1.4 to study the map ι∗ : A∗T (X)→ A∗(X). Recall that if X
is smooth then capping with the fundamental class of X gives isomorphisms

A∗(X)∼= An−∗(X) and A∗T (X)∼= AT
n−∗(X).

Furthermore, the globally linear functions u ∈ M , identified with the equivariant
first Chern classes of the toric line bundles O(divχu), act on AT

∗
(X) as homoge-

neous operators of degree−1, and there is a natural isomorphism to ordinary Chow
homology [Brion 1997, Section 2.3],

AT
∗
(X)/M AT

∗
(X)∼= A∗(X).

It follows that if X is a smooth toric variety then ι∗ is surjective and its kernel is
generated by M in degree one. Similar arguments show that if X is simplicial,
then ι∗ becomes surjective after tensoring with Q, with kernel generated by MQ in
degree one.

Theorem 1.5. There exist projective toric surfaces X such that ι∗ : A2
T (X) →

A2(X) is not surjective.

In particular, even when the natural map PP∗(1)/(M) → A∗(X) becomes an
isomorphism after tensoring with Q, it need not be an isomorphism over Z.

Theorem 1.6. There exist projective toric threefolds X such that ι∗ : A∗T (X)Q→
A∗(X)Q is not surjective and its kernel is not generated in degree one.

It follows that the natural map from piecewise polynomials modulo linear func-
tions to Minkowski weights is neither injective nor surjective in general. We prove
Theorems 1.5 and 1.6 in Section 4 by computing the maps A∗T (X)→ A∗(X) for
several examples of singular toric varieties using Theorem 1.4.

Remark 1.7. Minkowski weights on1, and classes in A∗(X), correspond to trop-
ical varieties supported on the cones of1, and are of significant interest in tropical
geometry [Katz 2007, Section 9; Mikhalkin 2006, p. 10]. The desire to use piece-
wise polynomials to produce interesting examples of Minkowski weights was one
of the main motivations for this research. We hope and expect that the combinato-
rial localization techniques developed here will be useful in tropical geometry.

2. Combinatorics of equivariant multiplicities

Let N be a lattice of rank n, and let M=Hom(N ,Z) be its dual lattice. Let Poly(N )
denote the rational polytope algebra on NR, the subring of real-valued functions on
NR generated by the characteristic functions of closed rational polyhedra. We write
[Q] ∈ Poly(N ) for the characteristic function of a closed polyhedron Q. Recall
that Q has a polar dual Q∗, which is a closed polyhedron in MR, defined by

Q∗ = { u ∈ MR | 〈u, v〉 ≥ −1 for all v ∈ Q },



Piecewise polynomials and Minkowski weights 139

and there is a linear map from Poly(N ) to Poly(M) given by [Q] 7→[Q∗] [Lawrence
1988]. Furthermore, there is a linear map

ν : Poly(M)→Q(M),

to the quotient field Q(M) of the multivariate Laurent polynomial ring Z[M],
that takes the class of a closed, pointed polyhedron P to the generating function∑

u∈(P∩M) xu , expressed as a rational function, and takes the class of a polyhedron
containing a line to 0 [Barvinok 2002, Theorem VIII.3.3]. In particular, for any
closed polyhedral cone σ in NR, ν(σ ∗)= Hilb(σ ), where

Hilb(σ )=
∑

u∈(σ ∗∩M)

xu

is the multigraded Hilbert series of the affine toric variety Uσ . Composing polar
duality with the valuation ν then gives a linear map

ν∗ : Poly(N )→Q(M)

that takes [σ ] to Hilb(σ ).

Lemma 2.1. If σ1, . . . , σr are the maximal cones in a rational polyhedral subdivi-
sion of an n-dimensional cone σ , then

Hilb(σ )= Hilb(σ1)+ · · ·+Hilb(σr ).

Proof. In the polytope algebra Poly(N ),

[σ ] = [σ1] + · · · + [σr ] ± classes of lower dimensional cones.

Since the duals of lower dimensional cones contain lines, these terms are all in
the kernel of ν∗. Therefore, ν∗([σ ]) = ν∗([σ1])+ · · · + ν

∗([σr ]), and the lemma
follows. �

The generating function Hilb(σ ), being an element of Q(M), is naturally inter-
preted as a rational function on the torus T =Spec Q[M]. Therefore, Hilb(σ )may
be expanded as a quotient of two power series in local parameters at the identity
1T . The principal part of this expansion, the quotient of the leading forms, which
we denote by

Hilb(σ )◦ ∈ Sym±(MQ),

is a rational function on the tangent space of T at 1T , which cuts out the tangent
cone of zeros of Hilb(σ ) minus the tangent cone of its poles. See the Appendix
for details on principal parts of rational functions.

Definition 2.2. If σ is an n-dimensional rational polyhedral cone in NR then

eσ = (−1)n
·Hilb(σ )◦.



140 Eric Katz and Sam Payne

Lemma 2.3. If σ is an n-dimensional rational polyhedral cone in NR, then eσ is
homogeneous of degree −n.

Proof. The lemma follows directly from closed formulas for polyhedral generat-
ing functions, such as those given in [Payne 2007], as follows. Suppose 6 is a
unimodular subdivision of σ ∗, and u1, . . . , us are the primitive generators of the
rays of 6. Then every lattice point in σ ∗ lies in the relative interior of a unique
cone τ ∈ 6, and the generating function for those in the relative interior of τ is∏

ui∈τ
xui /(1− xui ). Therefore,

(1− xu1) · · · (1− xus ) ·Hilb(σ )=
∑
τ∈6

(∏
ui∈τ

xui
∏
u j 6∈τ

(1− xu j )
)
.

If τ1, . . . , τr are the maximal cones of 6, then taking leading forms at 1T on both
sides gives

u1 · · · us · (−1)n
·Hilb(σ )◦ =

r∑
i=1

∏
u j 6∈τi

u j ,

provided that the right hand side is nonvanishing. Since all of the u j lie in σ ∗, the
right hand side is strictly positive on the interior of σ . In particular, it does not
vanish, so the degree of Hilb(σ )◦ is −n. �

Lemma 2.3 can also be seen as a special case of more general results on multigraded
Hilbert series of modules. See [Miller and Sturmfels 2005, Definition 8.45 and
Claim 8.54].

Lemma 2.4. Let σ be a unimodular cone, spanned by a basis e1, . . . , en for N.
Then the principal part of Hilb(σ ) at 1T is

Hilb(σ )◦ =
(−1)n

e∗1 · · · e
∗
n
,

where e∗1, . . . , e∗n is the dual basis for M.

Proof. The generating function Hilb(σ ) is given by

Hilb(σ )=
1

(1− xe∗1 ) · · · (1− xe∗n )
.

Now, (1−xe∗i ) is a local parameter at 1T , with principal part (1−xe∗i )◦=−e∗i . Since
principal parts are multiplicative, it follows that the principal part of 1/(1− xe∗i ) is
−1/e∗i , and the lemma follows. �

Proposition 2.5. Let σ be an n-dimensional rational polyhedral cone in NR.

(1) If σ1, . . . , σr are the maximal cones in a rational polyhedral subdivision of σ ,
then

eσ = eσ1 + · · ·+ eσr .
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(2) If σ is unimodular, spanned by a basis e1, . . . , en for N , then

eσ =
1

e∗1 · · · e
∗
n
.

In particular, the sum determined by (1) and (2) is independent of the choice of
unimodular subdivision.

Proof. Part (1) follows from the additivity of Hilb(σi ) (Lemma 2.1) and the fact
that Hilb(σ ) and the Hilb(σi ) all have principal parts in degree −n (Lemma 2.3).
See Proposition A.1, in the Appendix. Part (2) is an immediate consequence of
Lemma 2.4. �

Recall that for any cone τ ∈ 1, 1τ is the fan in (N/(N ∩ span τ))R whose
cones are the projections of the cones in 1 that contain τ . If σ is a maximal cone
containing τ , we define eσ,τ to be eσ , where σ is the image of σ in 1τ . So eσ,τ
is a homogeneous rational function of degree (dim τ − n) in the graded subring
Sym±(τ⊥ ∩M) of Sym±(M). We write V (τ ) for the T-invariant subvariety of X
corresponding to τ .

Corollary 2.6. If σ is an n-dimensional rational polyhedral cone in NR and τ is a
face of σ , then

eσ = exσ [X ] and eσ,τ = exσ [V (τ )].

Lemma 2.7. If σ is a unimodular cone spanned by a basis e1, . . . , en for N and
τ � σ then

eσ,τ =
∏
ei 6∈τ

1
e∗i
.

Proof. Apply part (2) of Proposition 2.5 to the fan 1τ . �

3. Localization and Minkowski weights

Here we use equivariant multiplicities to describe the natural map from piecewise
polynomials on a complete fan to Minkowski weights. We then use localization to
show that this map agrees with ι∗ : A∗T (X)→ A∗(X).

Lemma 3.1. Let 1 be a complete n-dimensional fan. Then the sum of the rational
functions eσ for all maximal cones σ ∈1 is given by

∑
σ

eσ =
{

0 for n ≥ 1,
1 for n = 0.
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Proof. If n = 0, then 1 contains only one cone 0, and e0 = 1. Suppose n ≥ 1. In
the polytope algebra ,∑

σ

[σ ] = [NR] ± classes of smaller dimensional cones.

Applying the linear transformation ν∗ gives∑
σ

Hilb(σ )= 1.

Since each of the principal parts Hilb(σ )◦ = (−1)n
· eσ is homogeneous of degree

−n, it follows that the sum of these principal parts must vanish by Proposition A.1
in the Appendix, and the lemma follows. �

Lemma 3.2. Let τ be a cone in a complete n-dimensional fan 1. Then∑
σ�τ

eσ,τ =
{

0 for dim τ < n,
1 for dim τ = n.

Proof. Apply Lemma 3.1 to the fan 1τ . �

Piecewise polynomials are especially well-behaved on unimodular fans, that is,
fans in which each maximal cone is spanned by a basis for the lattice. Suppose
1 is a unimodular fan, and ρ1, . . . , ρs are the rays of 1. Let vi be the primitive
generator of ρi . Then there is a unique piecewise linear function 9i ∈ PP1(1)

whose values at the primitive generators of the rays are given by the Kronecker
delta function

9i (v j )= δi j ,

and whose values elsewhere are given by extending linearly on each cone.
Then, for any k-dimensional cone τ ∈1, we have a piecewise polynomial 9τ ∈

PPk(1) that vanishes away from Star(τ ), the union of the cones in 1 that contain
τ , defined by

9τ =
∏
vi∈τ

9i ,

and PP∗(1) is generated by {9τ }τ∈1 as a Sym∗(M)-module.

Proof of Proposition 1.1. Since equivariant multiplicities are additive with respect
to subdivisions, we may assume that 1 is unimodular. Say ρ1, . . . , ρs are the
rays of 1 and vi is the primitive generator of ρi . Since PP∗(1) is generated as a
Sym∗(M)-module by the piecewise polynomials 9τ , it suffices to prove that∑

eσ · (9τ )σ
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is in Sym∗(M) for all τ . Now, if σ is spanned by a basis e1, . . . , en for N and
τ � σ , then (9τ )σ =

∏
vi∈τ

e∗i . It then follows from Lemma 2.7 that

eσ · (9τ )σ =
{

eσ,τ for σ � τ,
0 otherwise.

Therefore, by Lemma 3.2,
∑

eσ · (9τ )σ vanishes unless τ is a maximal cone, in
which case the sum is equal to one. In particular,

∑
eσ · (9τ )σ is in Sym∗(M), as

required. �

Proof of Proposition 1.2. The sum in Proposition 1.2 is over the maximal cones in
Star(τ ). Then the proof of Proposition 1.2 is similar to the proof of Proposition
1.1, since PP∗(Star(τ )) is generated as a Sym∗(M)-module by the restrictions of
the piecewise polynomial functions 9γ , for γ ∈ Star(τ ). �

It remains to show that if f is a homogeneous piecewise polynomial of degree
k, then the integer-valued function c on codimension k cones of 1 given by

c(τ )=
∑
σ�τ

eσ,τ fσ

is a Minkowski weight of codimension k, and that f 7→ c agrees with the natural
map ι∗ : A∗T (X)→ A∗(X). Although the entire statement can be proved using the
general machinery of localization, the fact that the integers c(τ ) give a Minkowski
weight is purely combinatorial, and we include an elementary proof.

We recall the definition of Minkowski weights from [Fulton and Sturmfels 1997].
If γ is a codimension k + 1 cone in 1 contained in a codimension k cone τ , we
write vτ/γ ∈ N/(N ∩ span γ ) for the primitive generator of the image of τ in 1γ .

Definition 3.3. An integer valued function c on codimension k cones τ ∈ 1 is a
Minkowski weight if, for every codimension k+ 1 cone γ ∈1,∑

τ�γ

c(τ ) · vτ/γ = 0.

We will use the following basic property of equivariant multiplicities to show
that the integer-valued function c coming from a piecewise polynomial function is
a Minkowski weight. Let vρ denote the primitive generator of a ray ρ.

Proposition 3.4. If σ is an n-dimensional rational polyhedral cone in NR and u is
in M then ∑

ρ�σ

〈u, vρ〉 · eσ,ρ = u · eσ .

We will prove the proposition by subdividing σ and reducing to the case where σ
is unimodular.
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Lemma 3.5. If σ is an n-dimensional unimodular cone in NR and u is in M then∑
ρ�σ

〈u, vρ〉 · eσ,ρ = u · eσ .

Proof. Say σ is spanned by a basis e1, . . . , en for N , and u= u1e∗1+· · · une∗n . Then

∑
〈u, vρ〉 · eσ,ρ =

n∑
i=1

ui

e∗1 · · · ê
∗

i · · · e∗n
,

which is equal to u · eσ . �

Lemma 3.6. If σ1, . . . , σs are the maximal cones in a subdivision of σ , and if ρ is
a ray in this subdivision then∑

σi�ρ

eσi ,ρ =

{
eσ,ρ if ρ � σ,
0 otherwise.

Proof. Suppose ρ lies in the relative interior of a k-dimensional face τ � σ . Con-
sider the fan 1ρ , whose maximal cones are the images of the σi � ρ. The support
|1ρ | is a closed polyhedral cone in an (n − 1)-dimensional vector space whose
minimal face is (k−1)-dimensional, so the polar dual |1ρ |∗ has dimension n− k.
It follows that the principal part of ν∗(|1ρ |) has degree k − n. Since each eσ,ρ
has degree 1− n, and

∑
eσi ,ρ is the principal part of ±ν∗(|1ρ |) unless this sum

vanishes (Appendix, Proposition A.1), the lemma follows. �

Proof of Proposition 3.4. Let σ1, . . . , σr be the maximal cones of a unimodular
subdivision of σ . Then u · eσ = u · eσ1 + · · ·+ u · eσr . Since σi is unimodular,

u · eσi =

∑
ρ�σi

〈u, vρ〉eσi ,ρ .

Therefore, by rearranging terms in the summation, we have

u · eσ =
∑
ρ

(∑
σi�ρ

〈u, vρ〉 · eσi ,ρ

)
.

By Lemma 3.6, the right hand side is equal to
∑

ρ�σ eσ,ρ , as required. �

Proposition 3.7. Let f ∈ PPk(1) be a homogeneous piecewise polynomial of
degree k. Then the integers

c(τ )=
∑
σ�τ

eσ,τ fσ

are a Minkowski weight of codimension k on 1.
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Proof. Let γ be a codimension k + 1 cone in 1. It will suffice to show that∑
〈u, vτ/γ 〉c(τ )= 0 for any u ∈ (M ∩γ⊥), where the sum is over all codimension

k cones τ containing γ . To prove this, we will show that
∑
〈u, vτ/γ 〉c(τ ), which

is an integer by Proposition 1.2, is divisible by the linear function u in Sym∗(M).
Now, ∑

τ

〈u, vτ/γ 〉 c(τ )=
∑
τ

(∑
σ�τ

〈u, vτ/γ 〉 eσ,τ fσ
)
,

and the sum on the right hand side may be rearranged as∑
σ

(
fσ ·

∑
τ�σ

〈u, vτ/γ 〉 eσ,τ
)
.

Applying Proposition 3.4 to 1γ then gives∑
τ�σ

〈u, vτ/γ 〉 eσ,τ = u · eσ,γ .

It follows that the integer
∑
〈u, vτ/γ 〉c(τ ) is divisible by u in Sym∗(M), as claimed,

and hence must vanish. �

Proof of Theorem 1.4. To show that f 7→ c agrees with the natural map ι∗ :
A∗T (X)→ A∗(X), we must prove that∫

V (τ )
ι∗c f = c(τ ),

where c f denotes the equivariant Chow cohomology class whose restriction to a
torus fixed point is fσ ∈ Sym∗(M) ∼= A∗T (xσ ). By Corollary 2.6, eσ,τ is equal
to the equivariant multiplicity exσ [V (τ )] of the nondegenerate T-fixed point xσ in
V (τ ). Therefore, by localization [Edidin and Graham 1998b], in equivariant Chow
homology tensored with Sym±(M), we have∫

V (τ )
c f =

∑
σ

eσ fσ .

Since
∑

σ eσ fσ is an integer, projecting to A∗(X) gives
∫

V (τ ) ι
∗c f = c(τ ). �

4. Applications to Chow cohomology of toric varieties

Here we use combinatorial computations with piecewise polynomials to study the
map ι∗ : A∗T (X)→ A∗(X) for some specific complete toric varieties X . As dis-
cussed in the introduction, this map is known to be surjective with kernel generated
by M in degree one if X is smooth, and similar statements hold over Q if X is
simplicial. We give the first examples showing that ι∗ is not surjective in general,
and that its kernel is not always generated in degree one.



146 Eric Katz and Sam Payne

Example 4.1 (Mirror dual of P1
×P1). Let N =Z2, and let 1 be the complete fan

in R2 whose rays are generated by

v1 = (1, 1), v2 = (1,−1), v3 = (−1,−1), v4 = (−1, 1),

and whose maximal cones are

σ1 = 〈v1, v2〉, σ2 = 〈v2, v3〉, σ3 = 〈v3, v4〉, σ4 = 〈v1, v4〉.

Then X = X (1) is isomorphic to (P1
×P1)/Z2, which is the Fano surface that is

“mirror dual” to P1
×P1.

We claim that the image of PP2(X) under the map f 7→
∑4

i=1 eσi fσi is exactly
2Z. We compute e(σ1) using the unimodular subdivision of σ1 along v = (1, 0),

σ1 = 〈v1, v〉 ∪ 〈v, v2〉.

Then, writing a= e∗1 and b= e∗2 , the dual cones of 〈v1, v〉 and 〈v, v2〉 are 〈b, a−b〉
and 〈b, a+ b〉, respectively, so

e(x1)=
1

b(a− b)
−

1
b(a+ b)

=
2

a2− b2 .

Similarly, we compute e(σ3)= 2/(a2
− b2) and

e(σ2)= e(σ4)=
−2

a2− b2 .

Therefore, since two divides every term in
∑4

i=1 eσi fσi , the sum must be divisi-
ble by two. Also, the piecewise polynomial function f that vanishes on σ2∪σ3∪σ4

and whose restriction to σ1 is a2
−b2 maps to two. So the image of PP2(1) is 2Z,

as required.

Proof of Theorem 1.5. Applying Theorem 1.4 to Example 4.1 shows that the image
of ι∗ : A2

T (X)→ A2(X) is 2A2(X), which is a proper subgroup of A2(X)∼= Z. �

In the following examples, we consider fans in R3 with respect to the lattice
N = Z3.

Example 4.2 (Mirror dual of P1
×P1
×P1). Consider the toric variety X = X (1),

where 1 is the fan whose nonzero cones are the cones over the faces of the cube
with vertices (±1,±1,±1). Then X is the Fano toric threefold that is “mirror
dual” to P1

×P1
×P1. Recall that, since X is complete, the rank of Ai (X) is equal

to the rank of Ai (X) [Fulton and Sturmfels 1997, Proposition 2.4], so rk A0(X)=
rk A3(X)= 1. Furthermore, since A2(X) is the Weil divisor class group of X , we
also have rk A2(X) = 5. The remainder of the following table can be filled in by
straightforward linear algebra computations with piecewise polynomial functions.
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From these computations, it is clear that A2
T (X) does not surject onto A2(X), since

its image has rank at most two.

rk Ai
T (X) rk M · Ai−1

T (X) rk Ai (X)

i = 0 1 0 1
i = 1 4 3 1
i = 2 11 9 5
i = 3 23 22 1

Example 4.3 (Fulton’s threefold). Consider the toric variety X ′ = X (1′), where
1′ is the fan combinatorially equivalent to the fan over the cube as in the preceding
example, but with the ray through (1, 1, 1) replaced by the ray through (1, 2, 3).
Then X ′ is complete and, as in the previous example, rk A0(X ′)= rk A3(X ′)= 1,
and rk A2(X ′)=5, but Fulton showed that X ′ has no nontrivial line bundles [Fulton
1993, pp. 25–26], so A1(X ′)= 0. The remainder of the following table is filled in
by linear algebra computations with piecewise polynomial functions.

rk Ai
T (X

′) rk M · Ai−1
T (X ′) rk Ai (X ′)

i = 0 1 0 1
i = 1 3 3 0
i = 2 8 6 5
i = 3 20 16 1

Here, again, we see that ι∗ : A2
T (X

′)→ A2(X ′) is not surjective, since its image
has rank at most two. Furthermore, the kernel of ι∗ is not generated in degree one,
since the degree one part of the kernel is M , and A3

T (X
′)/M ·A2

T (X
′) has rank four,

and hence cannot map injectively into A3(X ′). However, X ′ is not projective, so to
prove Theorem 1.6, it remains to give a projective example with similar properties.

Example 4.4. Consider the toric variety X ′′ = X (1′′), where 1′′ is the fan com-
binatorially equivalent to the fan over the cube as in Example 4.2, but with the
ray through (1, 1, 1) replaced by the ray through (1, 1, 2) and with the ray through
(1,−1, 1) replaced by the ray through (1,−1, 2). It is straightforward to check
that −3K X ′′ is Cartier and ample, so X ′′ is Q-Fano and projective. We compute
the following table as in the preceding examples.

rk Ai
T (X

′′) rk M · Ai−1
T (X ′′) rk Ai (X ′′)

i = 0 1 0 1
i = 1 4 3 1
i = 2 10 9 5
i = 3 22 19 1
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Proof of Theorem 1.6. From the computations in Example 4.4, we conclude that
ι∗ : A∗T (X)Q → A∗(X)Q is not surjective in degree two, and its kernel in degree
three is not in the ideal generated by its kernel in degree one. �

To balance these negative results, we conclude by proving a positive statement:
ι∗ : A∗T (X)→ A∗(X) is always surjective in degree one.

Theorem 4.5. For any toric variety X = X (1), ι∗ : A1
T (X)→ A1(X) is surjective,

giving a natural isomorphism A1(X)∼= PP1(1)/M.

Proof. If X is smooth, then the statement is clear. Suppose X is singular, and let

Xr → · · · → X1
π
−→ X0 = X

be a resolution of singularities, where each X i = X (1i ) is a toric variety and
X i+1→ X i is the blowup along a smooth T-invariant center. Say X1 is the blowup
of X along V (τ ) and V (ρ) ⊂ X1 is the exceptional divisor. By induction on
r , we may assume A1(X1) ∼= PP1(11)/M . Also, we may assume A1(V (ρ)) =
PP1(Star(ρ))/M and A1(V (τ ))= PP1(Star(τ ))/M , by induction on dimension.
Then π∗ : A1(X)→ A1(X1) is injective, and c∈ A1(X1) is in the image of π∗ if and
only if c|V (ρ) is in the image of A1(V (τ )) [Kimura 1992, Theorem 3.1]. The theo-
rem then follows, since Star(ρ) is a subdivision of Star(τ ), 11 and1 coincide ev-
erywhere else, and the class of a piecewise linear function [9] ∈ PP1(Star(ρ))/M
is pulled back from Star(τ ) if and only if 9 is given by a single linear function on
each cone of Star(τ ). �

Corollary 4.6. For any toric variety X , the canonical map Pic(X)→ A1(X) is an
isomorphism.

Proof. The corollary follows from the canonical identification of PP1(X)/M with
Pic(X) [Fulton 1993, pp. 65–66]. �

Corollary 4.6 was known previously in the case where X is complete [Brion 1989].
See also [Fulton and Sturmfels 1997, Corollary 3.4].

Remark 4.7. One can use Kimura’s inductive method, as in the proof of Corollary
4.6 and [Payne 2006a, Theorem 1], to compute the Chow cohomology of an arbi-
trary toric variety in all degrees. However, the resulting induction is more subtle,
as Theorems 1.5 and 1.6 suggest.

5. Localization formula for mixed volumes of lattice polytopes

Let P1, . . . , Pn be lattice polytopes in MR. For nonnegative real numbers ai , the
euclidean volume of a1 P1+ · · ·+ an Pn is a homogeneous polynomial function of
(a1, . . . , an). The mixed volume V (P1, . . . , Pn) is defined to be the coefficient of
a1 · · · an in this polynomial. Let1 be the inner normal fan to P1+· · ·+Pn , and let
ui (σ )∈ M be the vertex of Pi that is minimal on σ , for each maximal cone σ ∈1.
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Theorem 5.1. The mixed volume of the polytopes Pi is given by

n! · V (P1, . . . , Pn)= (−1)n
∑
σ∈1

eσ · u1(σ ) · · · un(σ ).

Theorem 5.1 follows from Theorem 1.4 and the fact that V (P1, . . . , Pn) is the
degree of D1 · · · Dn , where Di is the T-Cartier divisor on X (1) corresponding
to Pi [Fulton 1993, p. 116]. However, the statement of the theorem is purely
combinatorial, and we give a combinatorial proof based on Brion’s formula for
generating functions for lattice points in polyhedra. The methods used in this proof
may be of independent interest.

Let P be a lattice polytope in MR. Let 1 be the normal fan to P , and let
u(σ ) ∈ M be the vertex of P that is minimal on σ , for each maximal cone σ ∈1.

Brion’s Formula. The generating function for lattice points in P is∑
u∈(P∩M)

xu
=

∑
σ

xu(σ )
·Hilb(σ ).

In addition to Brion’s Formula, we will use the following formula for mixed vol-
umes, which is a lattice point counting analogue of the alternating sum of volumes
in formula (3) of [Fulton 1993, p. 116 ].

Proposition 5.2. Let P1, . . . , Pn be lattice polytopes in MR. Then

n! · V (P1, . . . , Pn)=
∑

1≤i1<···<ik≤n

(−1)n−k #((Pi1 + · · ·+ Pik )∩M).

Proof. The number of lattice points in a1 P1+· · ·+an Pn is a polynomial in the ai of
degree at most n, and the degree n part of this polynomial is n! times the volume of
a1 P1+· · ·+an Pn [McMullen 1978/79, Theorem 7]. Therefore, n! ·V (P1, . . . , Pn)

is the coefficient of a1 · · · an in this polynomial, and the proposition is an immediate
consequence of the following lemma. �

Lemma 5.3. Let f ∈ R [t1, . . . , tn] be a polynomial function on Rn of degree at
most n. The coefficient of t1 · · · tn in f is∑

1≤i1<···<ik≤n

(−1)n−k f (ei1 + · · ·+ eik )

where {e1, . . . , en} is the standard basis for Rn .

Proof. The function taking a polynomial g to
∑
(−1)n−k g(ei1+· · ·+eik ) vanishes

on any monomial that does not contain all n variables, and its value on t1 · · · tn is
1. �
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Proof of Theorem 5.1. For each σ , (−1)n
· eσ ·u1(σ ) · · · un(σ ) is the principal part

of
(xu1(σ )− 1) · · · (xun(σ )− 1) ·Hilb(σ ).

Expanding the product of the binomials, taking the sum over all σ , and applying
Brion’s Formula then gives∑

1≤i1<···<ik≤n

(−1)n−k
·

∑
u∈(Pi1+···+Pik∩M)

xu .

The theorem then follows from Proposition 5.2 by taking principal parts, since the
leading form of xu at 1T is equal to one. �

6. Bott residue formula for toric vector bundles

The mixed volume V (P1, . . . , Pn) is the degree of the top Chern class of the toric
vector bundle O(D1)⊕· · ·⊕O(Dn), where Di is the T-Cartier divisor corresponding
to Pi . Therefore, mixed volumes are a special case of Chern numbers of toric vector
bundles, and Theorem 5.1 may be generalized as follows. Given a multiset of linear
functions u ⊂ M let εi (u) ∈ Sym i (M) be the i-th elementary symmetric function
in the elements of u. For instance, if u= {u1, . . . , ur }, then ε1(u)= u1+ · · ·+ ur

and εr (u)= u1 · · · ur . For a partition λ= (λ1, . . . , λs) of n, let ελ(u) ∈ Symn(M)
be the product

ελ(u)= ελ1(u) · · · ελs (u).
Recall that, for any toric vector bundle E on an arbitrary toric variety X = X (1)

and any maximal cone σ ∈ 1, there is a unique multiset u(σ ) ⊂ M such that the
restriction of E to Uσ splits equivariantly as

E|Uσ
∼=

⊕
u∈u(σ )

O (divχu).

See [Klyachko 1989] or [Payne 2006b, Section 2] for this and other basic facts
about toric vector bundles.

Theorem 6.1. Let E be a toric vector bundle on a complete toric variety X , and
let λ be a partition of n. Then the Chern number cλ(E) is given by

cλ(E)=
∑
σ

eσ · ελ(u(σ )).

Proof. The Chern number cλ(E) is equal to the integral over [X ] of the equivariant
Chow cohomology class corresponding to the piecewise polynomial whose restric-
tion to σ is ελ(u(σ )). Therefore, the theorem follows from Theorem 1.4. �

Theorem 6.1 has a straightforward generalization to top degree polynomials in
the Chern classes of several toric vector bundles (we omit the details), and may be
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seen as a Bott residue formula for vector bundles on toric varieties with arbitrary
singularities. This solves the toric case of the problem of proving residue formulas
on singular varieties posed in [Edidin and Graham 1998b, Section 5]. Edidin and
Graham handled the case of toric subvarieties of smooth toric varieties, but the
extension to arbitrary toric varieties is nontrivial; there are singular toric varieties,
such as Fulton’s threefold (Example 4.3) that have no nontrivial line bundles, and
hence admit no nonconstant morphisms to smooth varieties.

Example 6.2. We apply Theorem 6.1 to compute the Chern numbers of a specific
nonsplit rank two toric vector bundle on the singular toric variety X = X (1)mirror
dual to P1

×P1
×P1 (see Example 4.2). For this example, we assume that the base

field has at least three elements. The primitive generators of the rays of 1 are

v1 = (1, 1, 1), v2 = (1, 1,−1), v3 = (1,−1, 1), v4 = (1,−1,−1),
v5 = (−1, 1, 1), v6 = (−1, 1,−1), v7 = (−1,−1, 1), v8 = (−1,−1,−1),

and the maximal cones of 1 are

σ1 = 〈v1, v2, v3, v4〉, σ2 = 〈v1, v2, v5, v6〉, σ3 = 〈v1, v3, v5, v7〉,

σ4 = 〈v2, v4, v7, v8〉, σ5 = 〈v3, v4, v7, v8〉, σ6 = 〈v5, v6, v7, v8〉.

Let ρi be the ray of 1 spanned by vi , let E = k2, fix four distinct lines L1, L2,
L3, and L4 in E , and let E be the toric vector bundle determined by the filtrations

Eρ1(i)=


E for i ≤−1,
L1 for 0≤ i ≤ 3,
0 for i > 3,

Eρ4(i)=


E for i ≤−1,
L2 for 0≤ i ≤ 3,
0 for i > 3,

Eρ6(i)=


E for i ≤−1,
L3 for 0≤ i ≤ 3,
0 for i > 3,

Eρ7(i)=


E for i ≤−1,
L4 for 0≤ i ≤ 3,
0 for i > 3,

and

Eρ j (i)=
{

E for i ≤ 1,
0 for i > 1,

for j ∈ {2, 3, 5, 8}. Since the lines L i are distinct, the vector bundle E does not
split as a sum of line bundles. It is straightforward to check that the multisets of
linear functions u(σi ) determined by E are as follows. For simplicity, we write a,
b, and c, for e∗1 , e∗2 and e∗3 , respectively.

u(σ1)= {(a+ b+ c), (a− b− c)}, u(σ2)= {(a+ b+ c), (−a+ b− c)},
u(σ3)= {(a+ b+ c), (−a− b+ c)}, u(σ4)= {(a− b− c), (−a+ b− c)},
u(σ5)= {(a− b− c), (−a− b+ c)}, u(σ6)= {(−a+ b− c), (−a− b+ c)}.
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To compute the Chern numbers of E, we now need only to compute the equi-
variant multiplicities eσi . First, σ ∗1 is spanned by u1 = (1, 1, 0), u2 = (1, 0, 1),
u3 = (1, 0,−1), and u4 = (1,−1, 0). Let u = (1, 0, 0). We compute, as in [Payne
2007, Example 1.8],

Hilb(σ1)=
(1+ xu)(1− x2u)

(1− xu1)(1− xu2)(1− xu3)(1− xu4)
.

Since the principal parts of 1+ xu , 1− x2u and 1− xui at 1T are 2, −2u, and −ui

respectively, it is then straightforward to compute eσ1 =−Hilb(σ )◦. Then

eσ1 =
4a

(b2− a2)(c2− a2)
.

By symmetry, eσ6 =−eσ1 , and similarly

eσ2 =
4b

(a2− b2)(c2− b2)
=−eσ5,

and

eσ3 =
4c

(a2− c2)(b2− c2)
=−eσ4 .

Then, using Theorem 6.1 and combining the summands coming from σi and σ7−i ,
we obtain

c111(E)=
2 · (2a)3 · 4a

(b2− a2)(c2− a2)
+

2 · (2b)3 · 4b

(a2− b2)(c2− b2)
+

2 · (2c)3 · 4c

(a2− c2)(b2− c2)
,

which simplifies to c111(E)= 64. Similarly,

c21(E)=
16a2(a2

− b2
− c2)

(b2− a2)(c2− a2)
+

16b2(−a2
+ b2
− c2)

(a2− b2)(c2− b2)
+

16c2(−a2
− b2
+ c2)

(a2− c2)(b2− c2)
,

which simplifies to c21(E)= 32.

Appendix: Principal parts of rational functions

Associated graded rings and leading forms have been standard tools for about as
long as commutative algebra has been applied to local algebraic geometry [Samuel
1953; 1955]. The generalization from leading forms of regular functions to prin-
cipal parts of rational functions is straightforward but, since we have been unable
to locate a reference, we include a brief account.

Let X be an algebraic variety over a field k, and let x ∈ X (k) be a smooth point.
Let m be the maximal ideal in the local ring OX,x . Since x is smooth,

(md/md+1)∼= Symd(m/m2),
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for all nonnegative integers d [Atiyah and Macdonald 1969, Theorem 11.22]. Sup-
pose g ∈ OX,x is a regular function whose order of vanishing at x is d . Then the
leading form of g is its image

g◦ ∈ Symd(m/m2).

In other words, if x1, . . . , xn is a local system of parameters, then g can be expanded
uniquely as a power series in k[[x1, . . . , xn]], and the sum of the lowest degree
terms in this power series is the homogeneous degree d polynomial in x1, . . . , xn

that maps to g◦ under the canonical isomorphism

k[x1, . . . , xn]d ∼= Symd(m/m2).

Now m/m2 is the cotangent space of X at x , so g◦ is naturally a regular function
on the tangent space TX,x , and the zero locus of g◦ is the tangent cone of the
divisor of zeros of g at x [Harris 1992, Lecture 20]. Note that leading forms are
multiplicative; if g, h ∈OX,x , then (gh)◦= g◦h◦ in Sym∗(m/m2). For convenience,
we define the leading form of zero to be 0 ∈ Sym∗(m/m2).

Suppose f is a rational function on X . Then f can be written as a fraction
f = g/h, with g, h ∈ OX,x . We define the principal part of f to be

f◦ = g◦/h◦,

which is a homogeneous element of Sym±(m/m2), the Z-graded ring obtained by
inverting all homogeneous elements in Sym∗(m/m2). Note that f◦ is well-defined;
if g/h = g′/h′, then gh′ = g′h (since OX,x is a domain), and therefore

g◦h′◦ = g′
◦
h◦,

since leading forms are multiplicative, so g◦/h◦ = g′
◦
/h′
◦
. Also, f◦ is naturally a

rational function on TX,x , and its divisors of zeros and poles are the tangent cones
of the zeros and poles of f , respectively.

Proposition A.1. Suppose f1, . . . , fs are rational functions on X with principal
parts in degree d , and let f = f1+ · · ·+ fs . Then either

f◦ = ( f1)◦+ · · ·+ ( fs)◦,

or ( f1)◦+ · · · + ( fs)◦ = 0 and the principal part of f is in degree strictly greater
than d.

Proof. If f = 0 then the proposition is clear. Suppose f is nonzero, and express
each fi as a fraction fi = gi/hi , with gi , hi ∈ OX,x . Then we can write f as a
fraction over a common denominator

f =
s∑

i=1

gi · h1 · · · ĥi · · · hs

h1 · · · hs
.
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Say hi vanishes to order di at x . Then each summand in the numerator above
vanishes to order exactly d1+· · ·+ds+d . Therefore, either the numerator vanishes
to order exactly d1+ · · · + ds + d and f◦ = ( f1)◦+ · · · + ( fs)◦, or the numerator
vanishes to some larger order and f◦ has degree greater than d . �

Corollary A.2. Suppose f1, . . . , fs are rational functions on X with principal
parts in degree d , and suppose f = f1+· · ·+ fs is regular at x. Then ( f1)◦+· · ·+

( fs)◦ ∈ Sym∗(m/m2) is regular on TX,x .

Proof. By Proposition A.1, if ( f1)◦ + · · · + ( fs)◦ does not vanish then it is equal
to f◦, which is the principal part of a regular function. �
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The nef cone volume of
generalized Del Pezzo surfaces

Ulrich Derenthal, Michael Joyce and Zachariah Teitler

We compute a naturally defined measure of the size of the nef cone of a Del
Pezzo surface. The resulting number appears in a conjecture of Manin on the
asymptotic behavior of the number of rational points of bounded height on the
surface. The nef cone volume of a Del Pezzo surface Y with (−2)-curves defined
over an algebraically closed field is equal to the nef cone volume of a smooth
Del Pezzo surface of the same degree divided by the order of the Weyl group of
a simply-laced root system associated to the configuration of (−2)-curves on Y .
When Y is defined over an arbitrary perfect field, a similar result holds, except
that the associated root system is no longer necessarily simply-laced.

1. Introduction

An ordinary Del Pezzo surface is a smooth projective rational surface X on which
the anticanonical class −KX is ample. If X is defined over an algebraically closed
field, then X is one of the following: P2, P1

×P1, or the blowup of P2 at up to 8
points in general position. Points are in general position if no three are collinear,
no six lie on a conic, and no eight lie on a cubic with one of them a singular point
of the cubic. Then X may contain (−1)-curves, but no (−2)-curves, where for
n ∈ {1, 2}, a (−n)-curve is a smooth rational curve on X having self-intersection
number −n.

A generalized Del Pezzo surface is a smooth projective rational surface Y on
which −KY is big and nef. If Y is defined over an algebraically closed field, then
Y is one of the following: P2, P1

× P1, the Hirzebruch surface F2, or a surface
obtained from P2 by a sequence of blowings-up at up to 8 points, possibly infin-
itely near, each not lying on any (−2)-curve. Over an algebraically closed field, a
generalized Del Pezzo surface is ordinary if and only if it contains no (−2)-curves.
See Section 3 for more details.

MSC2000: primary 14J26; secondary 14C20, 14G05.
Keywords: Del Pezzo surface, Manin’s conjecture, nef cone, root system.
The first author was partially supported by a Feodor Lynen Research Fellowship of the Alexander
von Humboldt Foundation.
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The nef cone volume of a generalized Del Pezzo surface Y is equal to the volume
of the cross-section of the nef cone of Y obtained by intersecting with the hyper-
plane consisting of those divisor classes whose intersection with the anticanonical
class −KY is equal to 1. The resulting cross-section is a polytope. Its volume is a
rational number, denoted by α(Y ). We give details of this definition in Section 2.

In this paper we compute α(Y ) for generalized Del Pezzo surfaces Y .
The degree of Y is the self-intersection number

d = 〈−KY ,−KY 〉.

It satisfies 1≤ d ≤ 9, and when Y is the blowup of P2 at r points in almost general
position, d = 9− r .

A generalized Del Pezzo surface Y defined over a field K is split if it is either P2,
P1
×P1, F2, or the blowup of P2 at 1≤ r ≤ 8 K-rational points in almost general

position. See Definition 3.2. Otherwise, Y is said to be nonsplit (for example, the
blowup of P2 at two conjugate points). We consider only split Y until Section 6,
and so the reader may assume that K is algebraically closed until that point.

An investigation of α(Y ) for split ordinary Del Pezzo surfaces was undertaken
by the first author. He proved the following result.

Theorem 1.1 [Derenthal 2007, Theorem 4]. Let Xd denote a split ordinary Del
Pezzo surface of degree d obtained by blowing up 9− d points in general position
on P2 and let Nd denote the number of (−1)-curves on Xd . For d ≤ 6,

α(Xd)=
Nd

d(9− d)
α(Xd+1).

Combining this with simple calculations that show that

α(P2)= 1
3 , α(P1

×P1)= 1
4 , α(X8)=

1
6 , α(X7)=

1
24 ,

this theorem allows for an inductive calculation of α(X) for any split ordinary Del
Pezzo surface X . This calculation is summarized in Table 1.

We extend this result in two directions. First, we study split generalized Del
Pezzo surfaces. In Section 4, we prove the following theorem by analyzing the nef
cone of such a surface Y . It allows us to compute α(Y ) by induction on the rank
of the Néron–Severi group of Y .

d 8 7 6 5 4 3 2 1

Nd 1 3 6 10 16 27 56 240

α(Xd)
1
6

1
24

1
72

1
144

1
180

1
120

1
30 1

Table 1. Values of α(Xd) for ordinary Del Pezzo surfaces Xd .
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Theorem 1.2. Let Y be a split generalized Del Pezzo surface of degree d ≤ 7. For
each E in the set C of (−1)-curves on Y , let YE denote the split generalized Del
Pezzo surface of degree d + 1 obtained by contracting E. Then

α(Y )=
∑
E∈C

1
d(9− d)

α(YE).

As with Theorem 1.1, using the additional calculation that α(F2) =
1
8 , this the-

orem allows us to compute α(Y ) for any split generalized Del Pezzo surface Y .
The first author computed α(Y ) for split generalized Del Pezzo surfaces Y of

degree d ≥ 3 directly, using computer programs to find a triangulation of the nef
cone case by case [Derenthal 2007, Section 3]. This numerical data led us to
formulate the following theorem; see Section 5C for its proof.

Theorem 1.3. Let Y be a split generalized Del Pezzo surface of degree d ≤ 7 and
let X be a split ordinary Del Pezzo surface of the same degree. Then

α(Y )=
1

#W (RY )
α(X),

where W (RY ) is the Weyl group of the root system RY whose simple roots are the
(−2)-curves on Y .

When combined with Theorem 1.1 the computation of α(Y ) for an arbitrary
split generalized Del Pezzo surface Y of any degree is reduced to a determination
of the (−2)-curves on the surface. See Section 5 for more information on the root
system RY and its Weyl group.

We also consider the case of nonsplit surfaces. Suppose that Y is a generalized
Del Pezzo surface and X is an ordinary Del Pezzo surface, both of the same degree
and defined over the same perfect field K. Then the Néron–Severi groups of X
and Y coincide (Proposition 6.2) and the absolute Galois group of K acts as a
finite group G of automorphisms of this group (Proposition 6.1). Assume that
the Galois actions associated to X and Y coincide. The Galois action on the root
system RY allows us to associate to Y an orbit root system O(RY ,G) (Definition
6.5). Our third main result is that under these assumptions

α(Y )=
α(X)

#W (O(RY ,G))
.

See Corollary 7.5. The integer appearing in the denominator is the order of a Weyl
group and is straightforward to compute. Thus all that is left is to compute α(X).
There are a finite number of cases in each degree d , one for each conjugacy class
of subgroups of the Weyl group of a canonically defined root system Rd (Section
5B). We perform the computations for d ≥ 5 in Section 7B.
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Manin’s conjecture. The primary motivation for our study of the nef cone vol-
ume α is its appearance in Manin’s conjecture on the number of rational points of
bounded height on Fano varieties defined over number fields, as described below.
Although the conjecture is now known not to hold for all Fano varieties [Batyrev
and Tschinkel 1996, Theorems 3.1–3.3], it has been verified in a large number
of cases, including some varieties for which the anticanonical class is big but not
ample.

Let X be a smooth projective variety defined over a number field K for which
−KX is big and assume that the set X (K) of rational points is Zariski dense. Equip
X (K) with an anticanonical height function H (consult [Hindry and Silverman
2000, Part B] for information on height functions) and for any constructible set
U ⊂ X let

NU (B) := #{P ∈U (K) : H(P)≤ B}.

The original formulation of the Manin conjecture [Batyrev and Manin 1990, Con-
jecture B] posits the existence of a Zariski open set U ⊂ X such that for any open
set V ⊂U

NV (B)∼ c(X)B(log B)ρ−1 asymptotically as B→∞,

where ρ is the Néron–Severi rank of X . The conjecture was initially made for
Fano varieties, but a more ambitious version of the conjecture relaxes the condi-
tion on −KX to merely being big. The leading constant was given a conjectural
interpretation by Peyre [1995, Definition 2.4] and Batyrev and Tschinkel [1995,
Theorem 4.4.4]. They predict that c(X) = α(X)β(X)τ (X), where α(X) ∈ Q is
the constant of interest in this paper, β(X) ∈N is a cohomological invariant of the
Galois action on the Néron–Severi group of X , and τ(X)∈R is a volume of adelic
points on X .

2. Definition of the nef cone volume

We recall the definition of α(X), first introduced by Peyre [1995, Definition 2.4].
Let X be a smooth complete variety for which −KX is big. We denote the

intersection form on X by 〈 · , · 〉. Recall that a divisor class D on X is numerically
trivial if 〈D,C〉 = 0 for all curves (equivalently, all 1-cycles) C on X , and two
divisor classes are numerically equivalent if their difference is numerically trivial.
One similarly defines numerical equivalence of curves. Numerical equivalence
classes of divisors on X form a finitely-generated torsion-free abelian group N 1(X)
whose dual group N1(X) consists of numerical equivalence classes of 1-cycles on
X . Let N 1(X)R = N 1(X) ⊗Z R and N1(X)R = N1(X) ⊗Z R be the associated
Euclidean spaces. Inside N 1(X)R lies the effective cone Eff1(X), the closed convex
cone spanned by the classes of effective divisors.
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Recall that for a finite-dimensional real inner product space V and a convex
cone 0 ⊂ V , the dual convex cone 0∨ ⊂ V is defined by

0∨ = { v ∈ V : 〈v, c〉 ≥ 0 for all c ∈ 0 }.

The cone 0∨ is closed as a subspace of the Euclidean space V . The dual Eff1(X)∨

of the effective cone of X in N 1(X)R is the movable cone of X (see [Boucksom
et al. 2004, Theorem 2.2], [Lazarsfeld 2004, Section 11.4.C]). Note that when X is
a surface, N1(X)= N 1(X) and Eff1(X)∨ is the nef cone of X , denoted by Nef(X).

Since the cone Eff1(X)∨ has infinite volume in N1(X)R, a natural means of
measuring its “size” is to truncate the cone in an (anti)canonical manner. To do
this, consider the hyperplane

HX := {C ∈ N1(X)R : 〈−KX ,C〉 = 1}.

Note that since −KX is big by hypothesis, HX intersects each ray of Eff1(X)∨. We
endow N1(X)R with Lebesgue measure ds normalized so that N1(X) has covolume
1, and we endow HX with the induced Leray measure dµ with respect to the linear
form 〈−KX , · 〉. That is, letting l be the linear form l(v) = 〈−KX , v〉, we have
ds = dµ∧ dl. We construct the polytope

PX := Eff1(X)∨ ∩HX

and define

α(X) := Vol(PX )=

∫
PX

dµ.

There are variants of this definition differing only by a dimensional factor. Let
ρ = dim N1(X)R and

CX := {C ∈ Eff1(X)∨ : 〈−KX ,C〉 ≤ 1}

be the convex hull of PX and the origin. Then a simple slicing argument shows
that α(X)= ρ ·Vol(CX ). Additionally,

α(X)=
1

(ρ− 1)!

∫
· · ·

∫
Eff1(X)∨

exp (−〈−KX , s〉) ds,

with the bigness of −KX ensuring the convergence of the integral.

Example 2.1. Let us compute α(P2). We have N 1(P2)R ∼=R1, with the real num-
ber x ∈ R corresponding to the (real) divisor class x L , where L is the class of a
line in P2. Then the nef cone Nef(P2) = {x ∈ R : x ≥ 0} and the anticanonical
class corresponds the real number 3. The hyperplane HP2 is just { 13}. The polytope
PP2 is also { 13} and the convex hull CP2 = [0, 1

3 ]. Thus CP2 has volume 1
3 and so

α(P2)= 1 ·Vol(CP2)= 1
3 .
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Example 2.2. Let X8 be the blowup of P2 at a single point. Let L be the class of
the pullback of a line to X8 and let E be the class of the exceptional divisor. Then
N 1(X8) is generated by L and E . In N 1(X8)R ∼= R2, with (a, b) corresponding to
aL + bE , the nef cone Nef(X8) is equal to

{(a, b) : a ≥ 0, a+ b ≥ 0},

that is, the cone with extremal rays spanned by L and L − E . The anticanonical
class corresponds to the point (3,−1). The hyperplane HX8 is the line 3a+b= 1.
One checks that PX8 is the segment joining the points (1

3 , 0) and (1
2 ,−

1
2). Then

CX8 is the triangle with vertices the above two points together with the origin. The
area of this triangle is 1

12 , and so α(X8)= 2 Vol CX8 =
1
6 .

Terminology. Peyre [1995] introduced the notation α(X), but did not give a name
to this quantity. We will refer α(X) as the “nef cone volume of X” whenever X is
a surface.

3. Generalized Del Pezzo surfaces

As stated in the introduction, a generalized Del Pezzo surface is a smooth projective
rational surface Y on which−KY is big and nef. If Y is defined over an algebraically
closed field, Y is one of P2, P1

×P1, the Hirzebruch surface F2, or P2 blown up
at 1≤ r ≤ 8 points in almost general position [Demazure 1980, Definition III.2.1].
To blow up r points on P2 in almost general position is to construct a sequence of
morphisms

Y = Yr → Yr−1→ · · · → Y1→ Y0 = P2,

where each map Yi→ Yi−1 is the blowup of Yi−1 at a point pi ∈ Yi−1 not lying on
any irreducible curves of self-intersection number −2 on Yi .

For n ∈ {1, 2}, a (−n)-class on Y is a divisor class D such that 〈D, D〉=−n and
〈D,−KY 〉 = 2− n. If such a class is effective, then there is necessarily a unique
curve in that class. If this curve is irreducible, we use the term (−n)-curve both
for this curve and its class. It follows from the genus formula that a (−n)-curve
is a smooth rational curve. A simple calculation [Demazure 1980, Tables 2 and 3]
shows that the sets of (−1)- and (−2)-classes on a generalized Del Pezzo surface
are finite.

Let Y be a generalized Del Pezzo surface defined over a field K. We denote
Y ×K K by Y . Recall that a generalized Del Pezzo surface Y is an ordinary Del
Pezzo surface if and only if the anticanonical class −KY is ample. Equivalently,
there are no (−2)-curves on Y .

Convention 3.1. Throughout the paper, we will use X to refer to an ordinary Del
Pezzo surface and Y to refer to a generalized (possibly ordinary) Del Pezzo surface.
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The absolute Galois group GK = Gal(K/K) acts on N 1(Y ).

Definition 3.2. A generalized Del Pezzo surface Y is split if Y (K) 6= ∅ and the
action of GK on N 1(Y ) is trivial.

Apart from the exceptional cases where Y is isomorphic to P1
×P1 or F2, the

existence of a rational point assures that Y is a blowup of P2 and the triviality of
the Galois action assures that each exceptional divisor is defined over K, and thus
the sequence of blown-up points must themselves be defined over K.

In the remainder of this section, we prove that for a split Y , the effective cone
Eff1(Y ) is generated by the set of (−1)- and (−2)-curves on Y , collecting a number
of useful facts along the way.

By the following lemma, the group N 1(Y ) depends only on the degree of Y . We
will make frequent use of this well-known result.

Lemma 3.3. Let X be a split ordinary Del Pezzo surface and let Y be a split
generalized Del Pezzo surface of the same degree d ≤ 7. There is an isomorphism
of N 1(X) and N 1(Y ) which identifies the intersection forms and takes −KX to
−KY .

Proof. Say X is the blowup of P2 at points p1, . . . , pr ∈P2, r = 9−d , with blow-
down πX : X→ P2, and say Y is obtained by blowing up P2 at points q1, . . . , qr :

πY : Y = Yr → Yr−1→ · · · → Y1→ Y0 = P2

where Y j = Blq j (Y j−1), q j ∈ Y j−1. Let EX, j be the exceptional divisor over p j ,
and let EY, j be the total transform in Y of the exceptional divisor over q j . (That
is, if f j : Y → Y j−1, then EY, j = f −1

j (q j ), scheme-theoretically.)
Then N 1(X) is the free abelian group on L X = π∗X OP2(1), EX,1, . . . , EX,r .

Similarly, N 1(Y ) is the free abelian group on LY = π
∗

Y OP2(1), EY,1, . . . , EY,r .
The intersection form on N 1(X) is given in this basis by the diagonal matrix with
entries (1,−1, . . . ,−1); the intersection form on N 1(Y ) is given in this basis by
the same matrix. We have −KX = 3L X −

∑
EX, j and −KY = 3LY −

∑
EY, j . �

Remark 3.4. Note that the identification made in the proof of Lemma 3.3 is not
necessarily unique; see [Harbourne 1985, Theorem 0.1].

The next lemma is a modest generalization of [Hassett and Tschinkel 2004,
Proposition 4.5].

Lemma 3.5. Let S be a surface and let D1, . . . , Dk be irreducible effective divisors
on S. Let 0 denote the cone generated by D1, . . . , Dk . Then the effective cone of
S is equal to 0 if and only if 0∨ ⊂ 0.



164 Ulrich Derenthal, Michael Joyce and Zachariah Teitler

Proof. If the effective cone of S is equal to 0 then it is a closed cone. The nef cone
Nef(S)= 0∨ is contained in the closure of the effective cone, which is just 0.

For the converse, it is clear that 0 is contained in the effective cone of S. Let D
be an effective divisor. Then we can write D= D′+a1 D1+· · ·+ak Dk with ai ≥ 0
and D′ having none of the Di as an irreducible component. It is clear that D′ is
contained in 0∨, and by hypothesis, D′ is consequently contained in 0. Hence the
same is true of D. �

Proposition 3.6. If Y is a split generalized Del Pezzo surface, every (−1)-class in
N 1(Y ) is effective. Indeed, if E is any (−1)-class, then either

(1) E is a (−1)-curve, or

(2) E can be written as the sum of a (−1)-curve and one or more (−2)-curves, or

(3) d = 1 and E can be written as the sum of −KY and one or more (−2)-curves.

Proof. See [Demazure 1980, Theorem III.2.c]. �

For a split generalized Del Pezzo surface Y of degree d≥2, this shows that every
(−1)-class is a nonnegative integral linear combination of (−1)- and (−2)-curves.
By the following lemma, this holds also in degree d=1 if we allow rational instead
of integral coefficients.

Lemma 3.7. For a split generalized Del Pezzo surface Y of degree 1, the anti-
canonical class −KY is a linear combination of (−1)- and (−2)-curves with non-
negative rational coefficients.

Proof. Let X be an ordinary Del Pezzo surface of degree 1. It is easy to check that
the sum of all (−1)-classes on X is −240KX .

Using the identification of Lemma 3.3, the sum of all (−1)-classes on Y is
−240KY . Using Proposition 3.6, we can write n of the (−1)-classes as the sum
of a (−1)-curve and possibly some (−2)-curves, and the remaining 240 − n of
the (−1)-classes as the sum of −KY and some (−2)-classes. Note that EY,8 in the
proof of Lemma 3.3 is a (−1)-curve on Y , so we have n > 0.

This gives us −240KY as the sum of n (−1)-curves, −(240− n)KY , and some
(−2)-curves. We transform this equation to write −nKY as a sum of (−1)- and
(−2)-curves. �

Lemma 3.8. Let Y be a split generalized Del Pezzo surface and let E be a (−1)-
class in N 1(Y ). Then E is irreducible if and only if 〈E,C〉 is nonnegative for every
(−2)-curve C.

Proof. See [Demazure 1980, Corollary on page 46]. �

In the case of ordinary Del Pezzo surfaces, the following result is well-known.
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Proposition 3.9. Let X be a split ordinary Del Pezzo surface of degree d ≤ 7.
Then the effective cone of X is minimally generated by the (−1)-classes on X , all
of which are (−1)-curves.

Proof. This can be proved directly (see [Hartshorne 1977, Theorem V.4.11] for a
proof when d = 3) or can be taken as an immediate consequence of the calculation
of generators for the Cox ring given in [Batyrev and Popov 2004, Theorem 3.2],
making use of Lemma 3.7 in the case d = 1. �

We now reach our main goal for this section.

Theorem 3.10. If Y is a split generalized Del Pezzo surface and has degree d ≤ 7,
the effective cone of Y is finitely generated by the set of (−1)- and (−2)-curves.

Proof. Let 0 be the cone generated by the (−1)- and (−2)-curves on Y . To prove
the theorem, it suffices by Lemma 3.5 to show that 0∨ ⊂ 0. Let X be a split
ordinary Del Pezzo surface of the same degree as Y . Identify N 1(X) and N 1(Y ) as
in Lemma 3.3. Note that this identification takes (−1)-classes to (−1)-classes. By
Proposition 3.9, Eff1(X) is generated by (−1)-classes. Each (−1)-class lies in 0
by Proposition 3.6 and Lemma 3.7. Therefore Eff1(X)⊂0. It follows immediately
that 0∨⊂Eff1(X)∨. From Lemma 3.5 we have Eff1(X)∨⊂Eff1(X). Thus 0∨⊂0
and hence 0 = Eff1(Y ), again by Lemma 3.5. �

Remark 3.11. A generalization of Theorem 3.10 has already been proved by
Lahyane and Harbourne [2005, Lemma 4.1]. We include our presentation both
as a summary of results that we will use later and also because the approach here
seems to have interest in its own right.

Corollary 3.12. Let X be a split ordinary Del Pezzo surface and Y a split general-
ized Del Pezzo surface with deg(X) = deg(Y ) ≤ 7. Identifying N 1(X) and N 1(Y )
as in Lemma 3.3, we have Eff1(X)⊂ Eff1(Y ) and Nef(X)⊃ Nef(Y ).

Let 0 ⊂ N 1(Y )R be the cone spanned by the set of (−2)-curves on Y . Then
Eff1(Y ) is the sum of Eff1(X) and 0, and Nef(Y )= Nef(X)∩0∨. �

4. Inductive method

With these preliminaries in place, we now turn to proving Theorem 1.2. For a
generalized Del Pezzo surface Y and any class D ∈ N 1(Y )R, we denote by D⊥ the
hyperplane

D⊥ := {C ∈ N1(Y )R : 〈D,C〉 = 0}.

Lemma 4.1. Let Y be a split generalized Del Pezzo surface and E a (−1)-curve
on Y . Let πE : Y → YE be the contraction of E. Then

π∗E : N
1(YE)−→ E⊥ ∩ N 1(Y )
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is an isomorphism and induces an isomorphism of convex cones,

π∗E(Nef(YE))= Nef(Y )∩ E⊥.

Proof. We have N 1(Y ) = π∗E(N
1(YE)) ⊕ ZE . We may identify Nef(YE) with

π∗E(Nef(YE)) ⊂ E⊥. The inclusion π∗E(Nef(YE)) ⊂ Nef(Y ) follows immediately
from the projection formula. This proves π∗E(Nef(YE))⊂ Nef(Y )∩ E⊥.

For the reverse inclusion, let D∈Nef(Y ) ∩ E⊥. Since E⊥= π∗E(N
1(YE)), we

have D = π∗EπE∗D. Again by the projection formula, for any curve C ⊂ YE ,

〈πE∗D,C〉YE = 〈D, π
∗

EC〉 ≥ 0,

since D ∈ Nef(Y ). �

We now prove the first of our main theorems. We repeat it here for convenience.

Theorem 1.2. Let Y be a split generalized Del Pezzo surface of degree d ≤ 7. For
each E in the set C of (−1)-curves on Y , let YE denote the split generalized Del
Pezzo surface of degree d + 1 obtained by contracting E. Then

α(Y )=
∑
E∈C

1
d(9− d)

α(YE).

Proof. We follow the argument used in [Derenthal 2007, Theorem 4]. Let E be
the set of (−1)- and (−2)-curves on Y . Then E is exactly the set of generators for
Eff1(Y ) described in Theorem 3.10. Recall that the hyperplane HY is defined as

HY = {C ∈ N1(Y )R : 〈−KY ,C〉 = 1}.

The intersection PY = Nef(Y ) ∩ HY is a polytope with faces corresponding to
E ∈ E. For E ∈ E, let PE ⊂HY be the convex hull of the vector 1

d (−KY ) and the
face PY ∩ E⊥. (Note that −KY is nef by the definition of generalized Del Pezzo
surface and 1

d (−KY ) is in PY since 〈−KY ,−KY 〉 = d .) Then

PY = Nef(Y )∩HY =
⋃
E∈E

PE .

The intersection of any two of the PE has volume zero in HY because the inter-
section lies in a subspace of dimension strictly less than that of HY . Therefore,

α(Y )= Vol PY =
∑
E∈E

Vol PE .

For each (−2)-curve E , 〈KY , E〉 = 0 and hence 1
d (−KY ) ∈ E⊥. Thus PE lies in

the hyperplane HY ∩ E⊥ of dimension dim(HY )− 1, and so PE has volume zero.
We thus reduce to Vol PY =

∑
E∈C Vol PE .
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For E ∈C, let πE :Y→YE be the contraction. By Lemma 4.1 we have π∗E HYE =

HY ∩ E⊥. This identifies the base of the cone PE as PY ∩ E⊥ = π∗E PYE . Thus PE

is a cone of dimension 9− d with height 1/d and base volume Vol(π∗E PYE ). By
Lemma 4.1, the sublattices N 1(YE)⊂ N 1(YE)R and π∗E(N

1(YE))= E⊥∩N 1(Y )⊂
E⊥ are isomorphic, so π∗E is volume-preserving and Vol(π∗E PYE ) = Vol PYE =

α(YE). Consequently,

Vol PE =
1

d(9− d)
Vol PYE =

1
d(9− d)

α(YE).

Summing over E ∈ C gives the desired result. �

Remark 4.2. This generalization explains why Theorem 1.1 does not hold for
d = 7. When one blows down a (−1)-curve on an ordinary Del Pezzo surface of
degree d for d ≤ 7 the result is an ordinary Del Pezzo surface of degree d + 1.
For d ≤ 6, the resulting ordinary Del Pezzo surfaces all have the same nef cone
volume. This is no longer true when d = 7. Let Xd denote an ordinary Del Pezzo
surface of degree d obtained by blowing up 9−d points in general position on P2.
Recall that X7 = Blp,q(P

2) contains three (−1)-curves: the exceptional divisors
E p and Eq , and the proper transform L pq of the line through p and q . Contracting
E p or Eq results in an X8, while contracting L pq results in P1

×P1. We have

α(X7)=
1

14
(2α(X8)+α(P

1
×P1))=

1
24

since α(X8)=
1
6 and α(P1

×P1)= 1
4 .

5. Root systems and Weyl groups

In this section, we recall some of the basic facts about the root system of (−2)-
classes on a Del Pezzo surface and its associated Weyl group. We use this structure
in our second main result which relates the nef cone volumes of split generalized
and ordinary Del Pezzo surfaces of the same degree.

5A. Root systems.

Definition 5.1. A root system R is a finite collection of nonzero vectors in a finite-
dimensional real vector space V with a nondegenerate definite inner product 〈 · , · 〉
satisfying the following conditions.

(1) The set R spans V , namely R is essential.

(2) For each x ∈ R, let sx : V → V be the reflection through the hyperplane
orthogonal to x :

sx(v)= v− 2
〈x, v〉
〈x, x〉

x .

For each x ∈ R, it is required that sx takes R to R.
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(3) For every x1, x2 ∈ R,
2
〈x1, x2〉

〈x2, x2〉

is an integer, that is, R is crystallographic.

(4) If x ∈ R and cx ∈ R, then c ∈ {1,−1}, that is, R is reduced.

Definition 5.2. A morphism of root systems from R ⊂ V to R′ ⊂ V ′ is a linear
map 8 : V → V ′ such that (1) 8(R)⊂ R′, and (2) 8 preserves inner products up
to a scalar multiple, that is, there is a c ∈ R such that 〈8(x),8(y)〉 = c · 〈x, y〉.
Equivalently, the integers 2〈x1, x2〉/〈x2, x2〉 are preserved for all x1, x2 ∈ R.

Remark 5.3. We will sometimes refer to a root system R in a vector space V even
when R does not span V . Strictly speaking, R is only a root system in the subspace
it spans, but this minor abuse of language should not cause any confusion.

We recall some standard notions; for details, see [Humphreys 1990, Section 1.3],
[Bourbaki 2002, Section VI.1.2], [Hall 2003, Chapter 8]. Any hyperplane in V not
containing any root of R divides R into two subsets, with positive roots on one side
(and negative roots on the other side). Those positive roots which cannot be written
as a sum of other positive roots with positive coefficients form a set of simple roots.
Each set of simple roots (for each choice of a set of positive roots) is a linearly
independent set such that every root in R is either a sum of simple roots with
nonnegative coefficients or a sum of simple roots with nonpositive coefficients.

A decomposition of R is a disjoint union R = R1 ∪ · · · ∪ Rk such that the
span of R is the direct sum of the spans of the R j , each R j is a root system in
its span, and the spans of the R j are orthogonal to each other. If R admits no
nontrivial decomposition, then R is an irreducible root system. If R is reducible, it
has a unique (up to order) decomposition into irreducible root systems, called the
irreducible components of R.

Recall the classification of root systems by Dynkin diagrams. For a root system
R and a choice of a set R0 of simple roots in R, the Dynkin diagram of R is the
graph with vertex set R0 and an edge joining two vertices if and only the corre-
sponding roots are not perpendicular. One labels the edges of the graph according
to the angle between the roots and their relative length; for details, see [Bourbaki
2002]. The Dynkin diagram is independent of the choice of a set of simple roots.
The irreducible root systems correspond to connected graphs. The irreducible
components of a reducible root system R correspond exactly to the connected
components of the Dynkin diagram of R. One has the well-known classification of
irreducible root systems corresponding to Dynkin diagrams of types An for n ≥ 1,
Bn for n ≥ 2, Cn for n ≥ 3, Dn for n ≥ 4, En for 6≤ n ≤ 8, F4 and G2.

The group of orthogonal transformations generated by all sx , x ∈ R, is finite
and is called the Weyl group W (R). A wall in V is a hyperplane orthogonal to an
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root system R An Dn E6 E7 E8

#W (R) (n+1)! 2n−1
·n! 27

·34
·5 210

·34
·5·7 214

·35
·52
·7

Table 2. The orders of simply laced Weyl groups.

root system R Bn Cn F4 G2

#W (R) 2n
·n! 2n

·n! 27
·32 22

·3

Table 3. The orders of nonsimply laced Weyl groups.

x ∈ R. Removing the walls from V leaves a finite set of open convex cones called
chambers. The action of W (R) permutes these chambers simply transitively.

Table 2 lists all of the simply laced root systems (those in which all roots have
the same self-intersection) and the orders of their Weyl groups. Table 3 gives the
same data for the nonsimply laced root systems.

5B. Root systems on Del Pezzo surfaces. Let Y be a split generalized Del Pezzo
surface of degree d ≤ 7. By [Manin 1986, Sections 23–25], the finite set Rd of
(−2)-classes on Y is a root system in N 1(Y )R and of course depends only on the
degree d . For d ≤ 6, the roots span the hyperplane (−KY )

⊥. The classification of
this root system is shown in Table 4.

Not only is Rd a root system, but in fact the subset of (−2)-classes that are
effective on Y gives rise to a root system [Demazure 1980, Theorem III.2.b].

Theorem 5.4 (Demazure). Let Y be a split generalized Del Pezzo surface of degree
d ≤ 6 and let R+Y be the set of effective (−2)-classes on Y . Then RY := R+Y ∪−R+Y
is a root system in N 1(Y ) whose simple roots are the (−2)-curves of Y and whose
positive roots are R+Y . It is contained in Rd . �

Remark 5.5. Urabe [1983, Main Theorem] has shown that every root system con-
tained in Rd occurs as the root system RY of a generalized Del Pezzo surface Y of
degree d as in Theorem 5.4, with four exceptions: the subsystem of type 7A1 in
R2 and the subsystems of type 7A1, 8A1, and D4+ 4A1 in R1.

Remark 5.6. The root system RY can have irreducible components of the follow-
ing types: A1, . . . ,A8, D4, . . . ,D8, E6, E7, E8.

For Y of degree d ≥ 3, consider the anticanonical morphism φ defined by the
linear series |−KY | which maps Y to a projective space of dimension d . For d = 2

d 7 6 5 4 3 2 1

Rd A1 A1×A2 A4 D5 E6 E7 E8

Table 4. Classification of root systems Rd .
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(respectively, d = 1), let φ be the morphism defined by the linear series |−2KY |

(respectively, |−3KY |). Let Y ′ be the image of Y under φ. The map φ sends the
union of (−2)-curves corresponding to any connected component of the Dynkin
diagram to a singularity of Y ′, while it is an isomorphism between the complement
of the (−2)-curves on Y and the complement of the singularities on Y ′. Each
singularity on Y ′ is a rational double point. Its type in the ADE-classification is
given by the type of the corresponding irreducible Dynkin diagram. The surface Y ′

is a singular Del Pezzo surface, whose minimal desingularization is the generalized
Del Pezzo surface Y .

5C. Weyl groups and nef cone volume. We proceed with the proof of our second
main result, which we repeat here for the convenience of the reader.

Theorem 1.3. Let Y be a split generalized Del Pezzo surface of degree d ≤ 7 and
let X be a split ordinary Del Pezzo surface of the same degree. Then

α(Y )=
1

#W (RY )
α(X),

where W (RY ) is the Weyl group of the root system RY whose simple roots are the
(−2)-curves on Y .

Proof. Identify N 1(X) and N 1(Y ) as in Lemma 3.3.
With notation as in the statement of Theorem 5.4, let C be the open convex cone

in N1(Y )R dual to the cone spanned by the (−2)-curves of Y . That is,

C = { v ∈ N1(Y )R : 〈v, x〉> 0 for all (−2)-curves x on Y }.

Since the (−2)-curves are a system of simple roots of RY , C is a single chamber
for the Weyl group W (RY ). Recall that by Corollary 3.12, Nef(Y )= Nef(X)∩C .
Intersecting with the hyperplane HX gives PY = C ∩PX . We have

N 1(X)R =
⋃

w∈W (RY )

wC,

so
PX =

⋃
w∈W (RY )

(
wC ∩PX

)
.

The sets wC ∩ PX , w ∈ W (RY ), are pairwise disjoint except along boundaries,
which have zero volume. The action of W (RY ) preserves volume and fixes Nef(X)
and −KX . Therefore it fixes PX , and we have

α(X)= Vol PX =
∑

w∈W (RY )

Vol(wC ∩PX )= #(W (RY )) Vol(C ∩PX )

= #(W (RY )) Vol PY = #(W (RY )) ·α(Y ). �
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Remark 5.7. As in Remark 5.6, let Y ′ be the singular Del Pezzo surface whose
minimal desingularization is Y . The number #W (RY ), and therefore α(Y ), can be
determined directly from the types of singularities on Y ′ as follows. The types R
of the singularities of Y ′ coincide with the types of the irreducible components of
RY . The orders of their Weyl groups W (R) can be found in Table 2. Their product
is #W (RY ).

6. Nonsplit generalized Del Pezzo surfaces

We recall some facts about the geometry of generalized Del Pezzo surfaces that are
not split and then introduce the notion of orbit root systems. The results collected
here will be used in Section 7 to relate the nef cone volume of nonsplit generalized
Del Pezzo surfaces to the nef cone volume of ordinary Del Pezzo surfaces.

6A. The Galois action. Throughout this section, we let Y be a generalized Del
Pezzo surface of degree d ≤ 7 defined over a perfect field K and we assume that Y
contains a K-rational point; we let Y =Y×K K. The Galois group GK=Gal(K/K)
acts on N 1(Y ), and each automorphism of N 1(Y ) induced by an element of GK

preserves both the intersection form and the anticanonical class.

Proposition 6.1. The group of automorphisms of N 1(Y ) which preserve the inter-
section form 〈 · , · 〉 and the anticanonical class −KY is canonically isomorphic to
W (Rd).

Proof. The result for ordinary Del Pezzo surfaces can be found in [Manin 1986,
Theorem 23.9]. (The statement there is given only for d ≤ 6, but the d = 7 case is
an easy calculation.) The result holds for generalized Del Pezzo surfaces via the
identification described in Lemma 3.3. �

Thus the action of GK factors through (a subgroup of) the finite group W (Rd).

Proposition 6.2. Let Y be a generalized Del Pezzo surface defined over the field
K containing a K-rational point. Then N 1(Y )= N 1(Y )GK .

Recall that if S is a set on which the group G acts, the standard notation

SG
= {s : gs = s for all g ∈ G}

denotes the set of fixed points of the action.

Proof. A result of Colliot-Thélène and Sansuc [1987, Theorem 2.1.2, Claim (iii)]
assures that under the hypotheses of the proposition, Pic(Y )=Pic(Y )GK . Since the
intersection form on Pic(Y ) is nondegenerate, we have Pic(Y ) = N 1(Y ). Finally,
to show N 1(Y )= Pic(Y ) it suffices to prove that a divisor is numerically trivial on
Pic(Y ) if it is numerically trivial on Pic(Y ).
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Suppose D ∈ Pic Y is numerically trivial in Pic Y . Let E be any divisor class
on Y . Recall that the action of GK on N 1(Y ) factors through the finite Weyl group
W (Rd), so the GK-orbit of E is finite. Say this orbit is {E1, . . . , Es}. Since GK

preserves the intersection form on Y and D is GK-invariant,

〈D, E〉 =
1
s

∑
i

〈D, Ei 〉 =

〈
D,

1
s

∑
i

Ei

〉
= 0

because (1/s)
∑

Ei lies in (Pic Y )GK = Pic Y .
With the above results put together, N 1(Y ) = Pic(Y ) = Pic(Y )GK = N 1(Y )GK ,

which proves the proposition. �

We now explain the relation between the effective cone of Y and that of Y .

Proposition 6.3. The effective cone of Y is equal to the cone of GK-invariant ef-
fective classes of Y , that is,

Eff1(Y )= Eff1(Y )GK .

Proof. By Proposition 6.2, we have N 1(Y )= N 1(Y )GK . It is clear that

Eff1(Y )⊆ Eff1(Y )GK .

To show the reverse inclusion, first note that if D is any effective divisor on
Eff1(Y ), with L being a finite Galois extension of K over which D is defined,
then

∑
σ∈Gal(L/K) σ(D) ∈ Eff1(Y ). For any D ∈ Eff1(Y )GK that is defined over a

finite Galois extension L/K, we have

D =
1

# Gal(L/K)

∑
σ∈Gal(L/K)

σ(D).

This completes the proof. �

The action of GK on N 1(Y ) induces an action both on the set of (−1)-curves
and on the set of (−2)-curves.

Corollary 6.4. A set of generators for the effective cone of Y consists of , for each
orbit of GK on the sets of (−1)-curves and (−2)-curves, the sum of the classes in
that orbit. �

Note that this set of generators may fail to be minimal. (See rows 3, 6 and 9 of
Table 8 for examples.)

6B. Orbit root systems. We will use the following construction in Section 7A in
the case of GK acting on the root system RY ⊂ N 1(Y ) (as in Theorem 5.4) of Y ,
in order to obtain a root system in N 1(Y ).
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Definition 6.5. Let R ⊂ V be a possibly reducible root system with a chosen set
5 of positive roots. Suppose a group G acts linearly on V in such a way that it
permutes the elements of R, preserves the inner product between elements of R
and preserves positivity. In this case, we say that G acts on R. The set

O(R,G) :=
{∑

x∈O

x : O is a G-orbit of an element of R
}

is called the orbit root system of R with respect to G. (We show below that O(R,G)
is indeed a root system.)

Proposition 6.6. Let R ⊂ V be an irreducible root system with a chosen positive
system 5. Suppose G acts on R. Then O(R,G) is an irreducible root system as
in Table 5. The simple (respectively, positive) roots of O(R,G) are the sums of
elements of orbits of simple (respectively, positive) roots of R.

Proof. Any group action which preserves inner products and positivity must nec-
essarily act as an automorphism of the Dynkin diagram. Indeed, the group takes
nonsimple roots to nonsimple roots, and thus takes simple roots to simple roots.
Thus the group acts on the vertices of the Dynkin diagram; since the edges (and
edge labelings) are determined by the inner product, they are preserved by the
group. We check case by case that all nontrivial admissible group actions on irre-
ducible Dynkin diagrams are listed in Table 5. In each case, a direct calculation
shows that O(R,G) is indeed a root system of the listed type. �

A list similar to Table 5 has been compiled by Kac [1990, Propositions 7.9 and
7.10]. The main difference between our list and Kac’s is that we use the sum
of roots in an orbit, while he uses the average; because of this difference Kac’s
approach sometimes gives the dual root system to ours.

Lemma 6.7. Let R ⊂ V be a possibly reducible root system with a chosen positive
system 5. Suppose G acts on R. Then G acts on the irreducible components of
R in the following sense. If R =

⋃n
i=1 Ri is a decomposition of R into irreducible

components and g ∈ G, the image g(Ri ) for any i is one of the irreducible compo-
nents R j .

R G O(R,G)

A2n Z/2Z Bn

A2n+1 Z/2Z Bn+1

Dn Z/2Z Cn−1

D4 Z/3Z or S3 G2

E6 Z/2Z F4

Table 5. Nontrivial irreducible orbit root systems.
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Proof. One way to see this is by considering the Dynkin diagram D of R. Each
component Ri corresponds to a connected component of the graph D. As noted
above, the group G acts as a graph automorphism of D. Then each element of G
must take connected components of D to connected components. �

To avoid confusion between the actions of G on R and on the set of irreducible
components of R, we refer to orbits in the latter set as “component orbits”.

Proposition 6.8. Let R⊂ V be a possibly reducible root system with a chosen pos-
itive system 5. Suppose G acts on R. Let R1, . . . , Rk be irreducible components
of R which form a set of component orbit representatives, that is, each component
orbit contains exactly one of the Ri . For each i , let Gi ⊂ G be the subgroup fixing
Ri . Then O(R,G) is a root system and

O(R,G)∼=
k⋃

i=1

O(Ri ,Gi ). (∗)

Proof. First, note the right-hand side is indeed a root system. For by Proposition
6.6, each O(Ri ,Gi ) is a root system contained in the subspace spanned by Ri

(since each element of O(Ri ,Gi ) is a sum of one or more elements of Ri ). Then
if i 6= j , by assumption Ri and R j are distinct irreducible components of R, so
they span perpendicular subspaces of V . Therefore O(Ri ,Gi ) and O(R j ,G j ) are
perpendicular. Hence the union on the right-hand side of (∗) is a perpendicular
union of root systems.

Now, the spans of the component orbits are pairwise perpendicular, so we may
treat them separately. We consider the orbit i = 1, the others being similar. Let
the component orbit of R1 consist of the components R1,1 = R1, R1,2, . . . , R1,p.
Choosing elements g1 = idG, g2, . . . , gp ∈ G such that gi R1 = R1,i for each i , we
get isomorphisms

(span R1, R1)∼= (span R1,2, R1,2)∼= · · · ∼= (span R1,p, R1,p).

Under this identification we have an isomorphism of the diagonal

1⊂ (span R1)
p ∼= (span R1,1)⊕ · · ·⊕ (span R1,p)

with span(R1) by projection onto the first factor. Note that this projection preserves
angles and ratios of lengths, but divides all lengths by a factor of

√
p. One can

check that the projection takes O(R1,1 ∪ · · · ∪ R1,p,G) to O(R1,G1), as desired.
More precisely, if O is the orbit of r ∈ R1 under G1, then O∪g2O∪· · ·∪gpO is the

orbit of r under G. Then gi
∑

x∈O x =
∑

x∈gi O
x is an element of O(R1,i , gi G1g−1

i )

where gi G1g−1
i is the subgroup of G fixing R1,i , while

∑p
i=1 gi

∑
x∈O x is an el-

ement of O(R1,1 ∪ · · · ∪ R1,p,G), which lies in 1. It is projected to the element∑
x∈O x of O(R1,G1). �
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Corollary 6.9. In the setting of Proposition 6.8,

W (O(R,G))∼=
k∏

i=1

W (O(Ri ,Gi )). �

7. Nef cone volume of nonsplit generalized Del Pezzo surfaces

Let Y be a nonsplit generalized Del Pezzo surface of degree at most 7, defined
over a perfect field K. As in Section 6 we continue to assume that Y contains a
K-rational point. Then GK=Gal(K/K) acts on the set of (−2)-curves on Y and on
the associated root system. In this situation, we can construct an orbit root system
as in Definition 6.5. As in the split case (Theorem 1.3), this allows us to relate the
nef cone volume of Y to a volume associated to an ordinary Del Pezzo surface of
the same degree. In Section 7B, we compute this volume for all nonsplit Del Pezzo
surfaces of degree at least 5.

7A. Nef cone volume of pairs. Using Proposition 6.1, we can associate to a gen-
eralized Del Pezzo surface Y of degree d ≤ 7 the pair (Y , HY ), where HY ⊂W (Rd)

is the image of GK under the homomorphism

GK→ Aut
(
N 1(Y ), 〈 · , · 〉,−KY

)
∼=W (Rd).

Note that GK and therefore also HY acts on the set of (−2)-curves on Y and also
on the set of its (−1)-curves.

Remark 7.1. To every generalized Del Pezzo surface Y over K there is the asso-
ciated pair (Y , HY ), as described above. The “realization problem for pairs” is to
describe which pairs (Y , H) are obtained in this manner. That is, for which pairs
(Y , H), consisting of a split generalized Del Pezzo surface Y over K of degree d
and a subgroup H ⊂W (Rd) acting on the set of (−2)-curves, is there a Y defined
over K such that Y = Y ×K K and H = HY is the image of GK in W (Rd)?

Corn has shown that every pair (X , H), with X a split ordinary Del Pezzo sur-
face of degree 6 and H ⊂ W (R6) arbitrary, is realizable in the above sense [Corn
2005, Theorem 5.1].

We use pairs to circumvent this realization problem. This allows us to prove
comparison theorems without having to address realization (see Corollary 7.5).

We now define the nef cone volume α(Y, H) of a pair (Y, H) where Y is any
split generalized Del Pezzo surface of degree d ≤ 7 and H is any subgroup of
W (Rd) that acts on the set of (−2)-curves on Y . It follows from Lemma 3.8 that
H also acts on the set of (−1)-curves. Note that there is no restriction on H if Y
is ordinary.

For such a pair (Y, H), define N 1(Y, H) to be N 1(Y )H . Motivated by Corollary
6.4, we define Eff1(Y, H) to be the cone in N 1(Y, H)R generated by the sum of
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the classes in each orbit of H acting on the sets of (−1)-curves and (−2)-curves
of Y . We naturally get a dual cone

Nef(Y, H) := {C ∈ N 1(Y, H)R : 〈D,C〉 ≥ 0 for all D ∈ Eff1(Y, H)}.

We then have the hyperplane

HY,H := {C ∈ N 1(Y, H)R : 〈C,−KY 〉 = 1}

and the polytope

PY,H := Nef(Y, H)∩HY,H .

And so we define α(Y, H) := Vol(PY,H ), with respect to the Leray measure dµ
defined in the analogous manner to the way it was defined in Section 2.

It is immediate from Proposition 6.2 and Corollary 6.4 that if Y is any general-
ized Del Pezzo surface (not necessarily split), then α(Y )= α(Y , HY ).

Lemma 7.2. Assume that Y is split and let H1, H2 be two conjugate subgroups in
W (Rd). Then α(Y, H1)= α(Y, H2).

Proof. Let w ∈W (Rd) be such that H2=wH1w
−1. Let Oi , i ∈ I , denote the orbits

of the (−1)- and (−2)-classes under H1. By definition, Eff1(Y, H1) is generated
by the sums

∑
D∈Oi

D, i ∈ I . A simple calculation shows that the orbits of these
classes under H2 are given by wOi , i ∈ I . We have

α(Y, H1)=Vol
(
{C ∈ N 1(Y, H1)R : 〈−KY ,C〉 = 1, 〈C,

∑
D∈Oi

D〉 ≥ 0 for all i ∈ I }
)
.

Making use of the fact that elements of W (Rd) preserve the intersection form and
anticanonical class and noting that elements of W (Rd) are orthogonal transforma-
tions and thus preserve volumes, we compute

α(Y, H2)=Vol
(
{C ∈ N 1(Y, H2)R : 〈−KY ,C〉=1, 〈C,

∑
D∈Oi

wD〉≥0 ∀i ∈ I }
)

=Vol
(
{C ∈ N 1(Y, H2)R : 〈−KY , w

−1C〉=1, 〈w−1C,
∑

D∈Oi

D〉≥0 ∀i ∈ I }
)

=Vol
(
w{C ∈ N 1(Y, H1)R : 〈−KY ,C〉=1, 〈C,

∑
D∈Oi

D〉≥0 ∀i ∈ I }
)

=α(Y, H1). �

Corollary 7.3. Let Y1 and Y2 be generalized Del Pezzo surfaces of degree d ≤ 7,
defined over a perfect field K, which are geometrically isomorphic, that is, Y1∼=Y2.
Let H1 and H2 denote the images of GK under the respective homomorphisms
GK→W (Rd). If H1 and H2 are conjugate in W (Rd), then α(Y1)= α(Y2). �
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We arrive at the following analogue of Theorem 1.3. That theorem provided a
comparison between the nef cone volumes of a split generalized Del Pezzo sur-
face and of a split ordinary Del Pezzo surface of the same degree. The following
theorem generalizes this to the nef cone volumes of pairs.

Theorem 7.4. Let Y be a split generalized Del Pezzo surface of degree d ≤ 7,
X a split ordinary Del Pezzo surface of the same degree, and H a subgroup of
W (Rd) acting on the set of (−2)-curves on Y . Let RY be the root system whose
simple roots are the (−2)-curves on Y , and let O(RY , H) be the orbit root system
associated to the action of H on RY as in Definition 6.5. Then

α(Y, H)=
α(X, H)

#W (O(RY , H))
.

Proof. The proof of this theorem is a generalization of the argument that proves
Theorem 1.3. Using Lemma 3.3, we identify N 1(X) and N 1(Y ). This gives an
identification of N 1(X, H) and N 1(Y, H). As before, Nef(Y, H) is the intersec-
tion of Nef(X, H) with the closure of a chamber defined by the simple roots of
O(RY , H). As in the proof of Theorem 1.3, the chambers of the Weyl group
W (O(RY , H)) intersect only along boundaries, which have zero volume. They
fill N 1(Y ). There are #W (O(RY , H)) of the chambers. From here, the proof is
completed by the same steps as in the proof of Theorem 1.3. �

We arrive at our third main result, the computation of the nef cone volume of a
generalized Del Pezzo surface over an arbitrary perfect field.

Corollary 7.5. Let Y be a generalized Del Pezzo surface of degree d ≤ 7 over the
perfect field K and X a split ordinary Del Pezzo surface of the same degree. Let
Y = Y ×K K, and identify N 1(Y ) with N 1(X) as in Lemma 3.3. Let HY ⊂ W (Rd)

be the image of GK . Let RY ⊂ Rd be the root system whose simple roots are
(−2)-curves on Y . Then

α(Y )= α(Y , HY )=
α(X, HY )

#W (O(RY , HY ))
. �

Using Proposition 6.6 and Corollary 6.9, the integer appearing in the denomi-
nator is straightforward to compute. This reduces the computation of the nef cone
volume of an arbitrary generalized Del Pezzo surface over a nonclosed field to the
computation of the nef cone volume of a pair involving a split ordinary Del Pezzo
surface.

7B. Pairs involving ordinary Del Pezzo surfaces of high degree. As examples,
let us compute α(X) for the various possible nonsplit ordinary Del Pezzo surfaces
X of degree d ≥ 5.
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For d ≥ 7 there are very few possible nontrivial Galois actions on X , and we list
these cases briefly.
(1) There are no nontrivial possibilities with d = 9: we must have X ∼= P2, the

Galois action is trivial, and α(X)= 1
3 .

(2) For d = 8, the only nontrivial form occurs when X is a twist of P1
× P1

in which the Galois action permutes the two generating rulings. In this case
α(X)= 1

2 .
(3) For d = 7, the only possible nontrivial form occurs when X is the blowup

of two conjugate rational points on P2, so the Galois action interchanges the
points. In this case α(X)= 1

6 .
For d = 5, 6 there are many more cases. For the remainder of this section, let X

be a possibly nonsplit ordinary Del Pezzo surface of degree 5 or 6 defined over a
nonclosed perfect field K. Let X = X×K K. As above, we have α(X)= α(X , HX )

where HX is the image of the Galois group in W (Rd). We compute α(X) by finding
the values of α(X , H) for all subgroups H of W (Rd). (As noted in Remark 7.1, it
is not obvious which subgroups H of W (Rd) arise as images of Galois groups, so
a priori some values α(X , H) might not correspond to any α(X).)

For the case d = 6, recall that X is obtained by blowing up three noncollinear
points in P2 and the cone Eff1(X) is minimally generated by the (−1)-curves on
X . Let E1, E2, E3 denote the exceptional curves and L denote the pullback of
a line. The set of (−1)-curves is shown schematically in Figure 1: the vertices
correspond to the generating classes for Eff1(X), with the convenient shorthand
L i j = L− Ei − E j . Two classes intersect if and only if the corresponding vertices
in the graph are connected by an edge.

Table 6 lists the subgroups of W (R6)=W (A1)×W (A2)∼=Z/2Z×S3∼= D6. By
Lemma 7.2, it suffices to consider subgroups up to conjugacy. For each conjugacy
class, we choose a representative subgroup H and give the order #H of H , the orbit
structure of H on the generators of Eff1(X), the rank ρ of N 1(X , H), the number
m of generators in the minimal generating set of Eff1(X , H), and finally the nef
cone volume α(X , H). We describe H in terms of generators, using the generator

E1

E2

E3

L12

L13

L23

Figure 1. Configuration of (−1)-curves on an ordinary Del Pezzo
surface of degree 6.
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H #H Orbit structure ρ m α(X,H)

〈s123, s12, s23〉 12
〈s23s123, s23s12〉 6 {E1, E2, E3, L12, L13, L23} 1 1 1
〈s123s12s23〉 6

〈s12, s23〉 6
〈s12s23〉 3 {E1, E2, E3}, {L12, L13, L23} 2 2 1

3

〈s123, s23〉 4 {E1, L23}, {E2, E3, L12, L13} 2 2 1
2

〈s123s12〉 2 {E1, L12}, {E2, L13}, {E3, L23} 2 2 1
2

〈s123〉 2 {E1, L23}, {E2, L13}, {E3, L12} 3 3 1
8

〈s12〉 2 {E1, E2}, {E3}, {L12}, {L13, L23} 3 4 1
12

〈e〉 1 {E1}, {E2}, {E3}, {L12}, {L13}, {L23} 4 6 1
72

Table 6. Values of α(X , H) for a split ordinary Del Pezzo surface
X of degree 6.

s123 := sL−E1−E2−E3 (180◦ rotation) of W (A1) and the generators s12 := sE1−E2

(flip swapping E1 and E2) and s23 := sE2−E3 (flip swapping E2 and E3) of W (A2).
Given H , we may compute α(X , H) as follows. We explicitly compute the

sums of elements in each orbit of the action of H on the generators of Eff1(X),
obtaining a set of generators of the cone Eff1(X , H). We compute the dual cone
in N 1(X , H), obtaining Nef(X , H). Intersecting with the hyperplane HX ,H gives
the polytope PX ,H , whose volume is α(X , H). For the case when d = 5, recall
that X is the blowup of P2 at 4 points in general position. Similarly to the case
d = 6, the cone Eff1(X) is generated by the (−1)-curves Ei for 1 ≤ i ≤ 4 and
L i j = L − Ei − E j for 1≤ i < j ≤ 4.

Figure 2 uses a different diagram to exhibit the full symmetry of the configura-
tion of these 10 curves with respect to W (R5)=S5. (It seems impossible to make
visible all of the symmetries in a diagram analogous to Figure 1). Here the minimal

4

5

3

2

1

Figure 2. Configuration of (−1)-curves on an ordinary Del Pezzo
surface of degree 5.
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generators of Eff1(X) correspond to edges of the graph, and two generating classes
intersect if and only if the corresponding edges do not share a common vertex. The
action of W (R5)=S5 corresponds to permuting the 5 vertices. Table 7 shows the

[12] [13] [14] [15] [23] [24] [25] [34] [35] [45]
E1 E2 E3 E4 L34 L24 L23 L14 L13 L12

Table 7. Correspondence of edges in Figure 2 to generators of the
effective cone of an ordinary Del Pezzo surface of degree 5.

H #H Orbit structure ρ m α(X,H)

〈(12), (12345)〉 120
〈(12)(34), (253)〉 60 {E1, E2, E3, E4, L12,

〈(1234), (13)(24), (12543)〉 20 L13, L14, L23, L24, L34}
1 1 1

〈(12)(34), (13542)〉 10

〈(12), (1234)〉 24 {E1, E2, E3, L14, L24, L34},

〈(123), (12)(34), (14)(23)〉 12 {E4, L12, L13, L23}
2 2 2

3

〈(12), (34), (345)〉 12
〈(12)(34), (345)〉 6 {E1}, {L12, L13, L14}, 2 2 1

2
〈(12), (345)〉 6 {E2, E3, E4, L23, L24, L34}

〈(12), (123)〉 6 {E1, E2, L34}, {E3, L14, L24},

〈(123)〉 3 {E4, L13, L23}, {L12}
3 4 5

24

{E1, E4, L12, L14, L34},
〈(12345)〉 5

{E2, E3, L13, L23, L24}
1 1 1

{E1}, {E2, E3, L24, L34},
〈(12)(34), (13)(24)〉 4

{E4, L23}, {L12, L13}, {L14}
3 4 1

6

{E1, E3, L14, L34}, {E2, L24},
〈(12), (34)〉 4

{E4, L12, L13, L23}
2 2 2

3

〈(12), (34), (13)(24)〉 8 {E1, L14}, {E2, L24}, {E3, L34},

〈(1234)〉 4 {E4, L12, L13, L23}
2 2 2

3

{E1}, {E2, L24}, {E3, L34},
〈(12)(34)〉 2

{E4 L23}, {L12, L13}, {L14}
3 4 1

6

{E1}, {E2, L34}, {E3, L24},
〈(12)〉 2

{E4 L23}, {L12}, {L13}, {L14}
4 7 1

24

{E1}, {E2}, {E3}, {E4}, {L12},
〈e〉 1

{L13}, {L14}, {L23}, {L24}, {L34}
5 10 1

144

Table 8. Values of α(X , H) for a split ordinary Del Pezzo surface
X of degree 7.
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correspondence between the edges of the diagram and the generating classes, where
we use the notation [i j] to indicate the edge connecting vertex i with vertex j .

The enumeration of the conjugacy classes of subgroups of S5 has been made by
Götz Pfeiffer and is available online [Pfeiffer 2007]. Table 8 contains the values
of α(X , H) for the various possible conjugacy classes of subgroups of S5.
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Divisibility sequences for elliptic curves
with complex multiplication

Marco Streng

Elliptic divisibility sequences arise as sequences of denominators of the integer
multiples of a rational point on an elliptic curve. Silverman proved that almost
every term of such a sequence has a primitive divisor (that is, a prime divisor
that has not appeared as a divisor of earlier terms in the sequence). If the elliptic
curve has complex multiplication, then we show how the endomorphism ring
can be used to index a similar sequence and we prove that this sequence also has
primitive divisors. The original proof fails in this context and will be replaced
by an inclusion-exclusion argument and sharper diophantine estimates.

1. Introduction

Consider an elliptic curve E , given by a general Weierstrass model with coefficients
in the ring of integers OL of a number field L . Fix an L-valued point P of infinite
order on E . For n ∈ Z, define the coprime OL-ideals An and Bn by

x(n P)OL = An B−2
n . (1.1)

We call the sequence B1, B2, B3, . . . an elliptic divisibility sequence. Such a
sequence satisfies the strong divisibility property

gcd(Bm, Bn)= Bgcd(m,n) (m, n ∈ Z),

which in particular implies the (weak) divisibility property: if m |n, then Bm | Bn .
By a primitive divisor of the term Bn , we mean a prime p | Bn that does not

divide any term Bm with n -m. Silverman proved that almost every term in an
elliptic divisibility sequence has a primitive divisor [Silverman 1988]. This is the
elliptic curve analogue of a theorem of Zsigmondy for Q∗ [Bang 1886; Zsigmondy
1892].

MSC2000: primary 14H52; secondary 14K22.
Keywords: complex multiplication, divisibility sequence, elliptic curve, endomorphism, primitive

divisor, Zsigmondy.

183

http://pjm.math.berkeley.edu/ant
http://dx.doi.org/10.2140/ant.2008.2-2


184 Marco Streng

If the curve E has complex multiplication, then (1.1) makes sense for all n in
the endomorphism ring O = End L(E) and hence we get a sequence indexed by O

instead of only Z. We extend this definition to ideals a of O by setting

Ba =

∑
α∈a

Bα,

the ideal generated by the ideals Bα for α ∈ a. We will prove that this indeed
extends the definition (in the sense that BαO = Bα), and that the resulting ideal-
indexed sequence satisfies the strong divisibility property Ba+ Bb = Ba+b. By the
elliptic divisibility sequence associated to P , we will mean this sequence, indexed
by ideals of O.

By a primitive divisor of the term Ba, we now mean a prime p | Ba which does
not divide any term Bb with a -b. Our main theorem is a Zsigmondy-type theorem
for elliptic curves with complex multiplication.

Main Theorem. Let E,O and P be as above. Then for all but finitely many in-
vertible O-ideals a, the ideal Ba has a primitive divisor.

The Main Theorem applies both in the case O = Z and in the complex multi-
plication case, that is, when O is a quadratic order, but is a new result only in the
latter case.

The number of primitive divisors. If not all endomorphisms of E over L are
defined over L , then our Main Theorem implies the following result on the number
of primitive divisors in the Z-indexed sequence B1, B2, B3, . . . . Let K ′ be the field
of fractions of O ′ = End L(E).

Corollary 1.2. Define, for n ∈ Z, the numbers

rn = #{p ∈ N : p |n, p is a prime ramifying in O ′Z and p -n, p - [OK ′ : O
′
]},

sn = #{p ∈ N : p |n and p is a prime splitting in O ′/Z}.

Then for almost all n, the term Bn has at least rn + sn + 1 primitive divisors, of
which at least sn split in K ′L/L.

In particular, this shows the existence of lots of split primitive divisors in ellip-
tic divisibility sequences coming from elliptic curves over Q that have complex
multiplication. It seems that there are also many inert primitive divisors, but we
cannot prove this. There are conjectures by Cornelissen and Zahidi [2007] about
the existence of inert primitive divisors that imply results related to Hilbert’s Tenth
Problem over Q.

The size of the primitive part. For any integer n, we define the primitive part
DZ

n of Bn to be the L-ideal dividing Bn such that every prime divisor of DZ
n is a

primitive divisor of Bn and no divisor of Bn/DZ
n is a primitive divisor of Bn . Our
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methods also yield estimates on the size of the primitive part of Z-indexed elliptic
divisibility sequences that are sharper than what can be gotten with Silverman’s
original proof. We use the notation ‖DZ

n ‖ := NL/Q(DZ
n )

1/[L:Q] for the “size” of the
ideal DZ

n and we denote the canonical height of the point P by ĥ(P).
Silverman’s proof can be optimized to give an estimate

log ‖DZ
n ‖ ≥ ĥ(P)

(
1−

∑
p |n

1
p2 − o(1)

)
n2,

where 0.5477 < 1−
∑

p p−2 < 0.5478 for the sum over all primes. If we apply
our methods, we get the following sharper estimate.

Proposition 1.3. For all ε > 0,

log ‖DZ
n ‖ = ĥ(P) sn n2

+ O(nε) (as n→∞),

where
sn =

∑
m |n

µ(m)m−2
=

∏
p |n

(1− p−2)

is between ζ(2)−1 > 0.6079 and 1.

In fact, the proof gives O(d(n)(log n)(log log n)4) instead of O(nε), where d(n)
is the number of divisors of n.

Division polynomials. An alternative approach to defining elliptic divisibility se-
quences is by using division polynomials. If E/L is an elliptic curve, given by
a Weierstrass model, then for any integer n ∈ Z, the n-th division polynomial of
E is the polynomial ψn = ψE,n ∈ L[x, y] ⊂ L(E), as given for short Weierstrass
models in [Silverman 1986] and [Washington 2003] and in general in [Ayad 1992].
If P ∈ E(L) is a fixed L-valued point on E , then we call the sequence (ψn(P))n∈Z

an elliptic divisibility sequence of division polynomial type.
Along with the division polynomials ψn , one usually also defines polynomials

φn = φE,n ∈ L[x] for which we have

[n]∗x =
φn

ψ2
n
. (1.4)

This explains the similarity between Bn and ψn(P): both represent the square root
of the denominator of x(n P), but they can differ because ψn(P) and φn(P) may
not be integers, and because there may be cancellation of factors in (1.4). However,
Bn andψn(P) differ only in finitely many valuations. For a more precise statement,
see [Ayad 1992].

The division polynomials satisfy the recurrence relation

ψm+nψm−n = ψm+1ψm−1ψ
2
n −ψn+1ψn−1ψ

2
m for m, n ∈ Z. (1.5)
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Ward [1948] extensively studied sequences of integers that satisfy both this recur-
rence and the divisibility property; he called them elliptic divisibility sequences.
Later, his terminology was adopted for the sequences (ψn(P))n and (Bn)n . In
fact, every sequence of integers (ψn)n that satisfies (1.5) and the initial conditions
ψ0 = 0, ψ1 = 1, ψ2ψ3 6= 0, ψ2 |ψ4, excepting some degenerate cases, is of the
form ψn =ψE,n(P) for some elliptic curve E/C and some point P ∈ E(C) [Ward
1948, Theorem 12.1].

Chudnovsky and Chudnovsky [1986] suggested letting sequences of division
polynomial type be indexed by the endomorphism ring of the elliptic curve, using
division polynomials ψα for arbitrary endomorphisms α. The special cases where
the curve has complex multiplication by

√
−1 or a primitive third root of unity

were studied by Ward [1950] and Durst [1952] respectively. The CM division
polynomialsψα and their computational aspects have recently been studied in more
detail by Satoh [2004].

2. Formal groups

Let Lv be the completion of the number field L with respect to a normalized dis-
crete valuation v. Denote the ring of v-integers of Lv by Rv and let E be an elliptic
curve, given by a Weierstrass equation

y2
+ a1xy+ a3 = x3

+ a2x2
+ a4x + a6 (2.1)

with coefficients in Rv. For n ≥ 1, define subsets En(Lv) of E(Lv) by

En(Lv) = {P ∈ E(Lv) : v(x(P))≤−2n} ∪ {O}.

We want to study these sets because for n ≥ 1, we have that

v(Bα)≥ n ⇐⇒ αP ∈ En(Lv). (2.2)

The formal group of E gives a means of studying En(Lv).
We have two main goals in this section. First we will generalize part of the

theory of formal groups as in [Silverman 1986] to arbitrary isogenies instead of
only multiplication by integers in Z. This will result in the identity

v(Bαβ)= v(Bα)+ v(β)

which holds if v(Bα) is sufficiently large (see Proposition 2.8 and Lemma 3.4).
This is very useful, because it bounds the part of the growth of Bα that is caused
by the occurrence of higher powers of nonprimitive divisors.

At the end of this section, we will prove that the sets En(Lv) are modules over
the endomorphism ring O (see Corollary 2.10). By (2.2), this implies the divisibility
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property
Bα | Bαβ α, β ∈ O.

Formal groups and isogenies. We start by associating homomorphisms of formal
groups to arbitrary isogenies of elliptic curves.

Let z = −x/y and w = −1/y. Then the Weierstrass equation of the elliptic
curve E becomes

w = z3
+ a1zw+ a2z2w+ a3w

2
+ a4zw2

+ a6w
3. (2.3)

Let w(T ) ∈ Lv[[T ]] be the unique power series such that (2.3) is satisfied with
z = T . Then (T, w(T )) is a “formal point” on the curve (2.3).

We define a homomorphism of rings P : Lv(E)→ Lv((T )) from the function
field of E to the field of Laurent series over Lv by z 7→ T, w 7→w(T ). One could
think of P as the map which “evaluates” elliptic functions in the formal point
(T, w(T )).

As z is a uniformizer at the point at infinity O of E , we see that P maps functions
that are regular at O to power series in Lv[[T ]].

Suppose that E ′ is another elliptic curve, also given by a Weierstrass equation
with coefficients in Rv. We use ′ in the notation to specify functions and so on
related to E ′. To any isogeny φ : E → E ′ that is defined over Lv, we associate a
power series

Fφ(T )= P(φ∗z′) ∈ Lv[[T ]]. (2.4)

This power series is a homomorphism of formal groups. We will not check this,
since it will follow trivially from Lemma 2.6 below. Notice that Fφ(T ) has no
constant term, so we get a map F∗φ : Lv((T ))→ Lv((T )), f (T ) 7→ f (Fφ(T )). We
now have a commutative diagram

Lv(E)
P

z 7→T
w 7→w(T )

// Lv((T ))

Lv(E ′)

φ∗

OO

P′

z′ 7→T
w′ 7→w′(T )

// Lv((T )).

F∗φ

OO

(2.5)

We only need to check the commutativity of the diagram for the generators z′ and
w′ of Lv(E ′). For z′, it holds by definition. For w′, it follows from the fact that its
image on the top right satisfies the Weierstrass equation for E ′ with z′ = T .

As z is a uniformizer at O , the space of differentials that are regular at O is
�E,O = Lv,O(E) dz and we get a map

Lv,O(E) dz→ Lv[[T ]] dT, gdz 7→ P(g) dT,

which we also denote by P.
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Let ω ∈�E,O denote the invariant differential

ω =
dx

2y+ a1x + a3
,

and write ω̂(T ) for P(ω). As ω is an invariant differential of the curve E , we see
that ω̂(T ) is an invariant differential of the formal group Ê of E . In fact, the dz-
coefficient of ω̂ is 1, so it is the (unique) normalized invariant differential of the
formal group Ê of E .

The integral log(T ) of ω̂ is an isomorphism of formal groups from Ê to the
additive formal group Ga . Denote the inverse by exp(T ).

Lemma 2.6. For any isogeny φ : E→ E ′ over Lv, we have

Fφ(T )= expÊ ′(c logÊ(T )),

where c ∈ Lv is such that φ∗ω′ = cω.

Proof. If we apply P to the identity φ∗ω′ = cω, then we get ω̂ ′(Fφ(T ))= cω̂(T ).
The result is obtained by integration, followed by application of expÊ ′ . �

Recall that Rv is the ring of v-integers of Lv. Let M be the maximal ideal of
Rv and l = Rv/M the residue field. Reduction of the Weierstrass equation gives a
cubic curve Ẽ over l. We denote the group of nonsingular points by Ẽns(l)⊂ Ẽ(l).

Let E0(Lv) be the group of Lv-valued points that reduce to points in Ẽns(l)
modulo v. Reduction modulo v then is a group homomorphism E0(Lv)→ Ẽns(l)
with kernel E1(Lv). By [Silverman 1986, VII.2.2], we have an isomorphism of
groups

E1(Lv)→ Ê(M),

P 7→ z(P),
(2.7)

where the inverse sends u ∈M to the point P ∈ E(Lv) with coordinates z(P)= u,
w(P) = w(u). For any point P ∈ E1(Lv), the fact that (x(P), y(P)) satisfies
the Weierstrass equation implies that 2v(y(P))= 3v(x(P)), and hence v(z(P))=
−

1
2v(x(P)). In particular, the sets En(Lv) are subgroups of E(Lv) and correspond

to the groups Ê(Mn) through the isomorphism (2.7).
Now let φ : E→ E ′ be an isogeny defined over Lv, where we assume that both

E and E ′ are given by Weierstrass equations with coefficients in R. Furthermore,
let c be the unique element of Lv such that φ∗ω′ = cω.

Proposition 2.8. If both v(x(P)) and v(x(P))− 2v(c) are strictly smaller than
−2v(p)/(p− 1), then

v
(
x ′(φ(P))

)
= v

(
x(P)

)
− 2v(c).
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Proof. By the isomorphism E1(Lv)∼= Ê(M) above and Lemma 2.6, we have

z′(φ(P))= Fφ(z(P))= expÊ ′
(
c logÊ (z(P))

)
.

By [Silverman 1986, IV.6.4], both logÊ(u) and expÊ ′(u) converge for u ∈M

with v(u) > v(p)/(p−1) and both preserve the valuation. Therefore, we find that
v
(
x ′(φ(P))

)
=−2v

(
z′(φ(P))

)
=−2v

(
z(P)

)
− 2v(c)= v

(
x(P)

)
− 2v(c). �

Formal groups and Complex Multiplication. The main theorem of this section
is the following.

Theorem 2.9. For any α ∈ O = End Lv (E), the power series Fα(T ) ∈ Lv[[T ]] has
v-integral coefficients. In other words, the homomorphism of formal groups Fα(T )
is defined over Rv.

Corollary 2.10. For any n ≥ 1, the group En(Lv) is an O-submodule of E(Lv).
Moreover, we have an isomorphism of O-modules

En(Lv)/En+1(Lv)∼= l,

where l is the residue field of Lv.

Proof of the corollary. First of all, the theorem shows that Ê(Mn) is an O-module
with the action of α given by z 7→ Fα(z). Now for any P ∈ En(Lv), convergence
of Fα(z(P)) implies convergence of w

(
Fα(z(P))

)
. But by (2.5), Fα(z(P)) and

w
(
Fα(z(P))

)
can only converge to z(αP) and w(αP) respectively. In particular,

the isomorphism of groups En(Lv)∼= Ê(Mn) is an isomorphism of O-modules.
The second statement follows from the obvious isomorphism

Ê(Mn)/Ê(Mn+1)∼=Mn/Mn+1. �

As we will see, Theorem 2.9 follows easily from the theory of Néron models.
However, we will also give a more elementary proof. The elementary proof actually
consists of proofs for two special cases that together cover every case. One proof
uses continuity of the coefficients of Fα(T ) as functions of α and works only if p
splits in the field of fractions of O. The other uses explicit equations for isogenies,
but fails in the exceptional case where p = 2 and 2 splits in O.

For both the Néron model proof and the elementary proof, we will need to
deal with changes of coordinates in the Weierstrass equations, so we will use the
following lemma.

Lemma 2.11. Every isomorphism ψ : E→ E ′ over Lv of elliptic curves given by
Weierstrass equations is of the form

ψ(x, y)= (u2x + r, u3 y+ u2sx + t)
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with u ∈ L∗v and r, s, t ∈ Lv. Such an isomorphism satisfies ψ∗ω′ = u−1ω. More-
over, if v(u)≥ 0 and both E and E ′ have v-integral coefficients, then r , s and t are
v-integral.

Proof. This is exactly what is proven in the proof of [Silverman 1986, VII.1.3(d)].
�

Corollary 2.12. Letψ and u be as above. If v(u)=0, then the power series Fψ(T )
associated to ψ as in (2.4) has v-integral coefficients.

Proof. From the equations above, we compute

φ∗z′ =
u−1z+ ru−3w

1− su−1z− tu−3w
.

As u−1, r, s, t ∈ Rv, we find that Fψ(T ) has coefficients in Rv. �

Proof using Néron models. Suppose that the elliptic curves E1 and E2 are given
by Weierstrass equations with coefficients in Rv and let φ : E1→ E2 be an isogeny,
defined over Lv.

Lemma 2.13. If the Weierstrass equation for E2 is minimal, that is, v(1) is min-
imal among all Weierstrass models of E2 with coefficients in Rv, then Fφ(T ) has
v-integral coefficients.

Proof. Let E1, E2 be the closed subschemes of P2
Rv given by the Weierstrass equa-

tions of E1, E2 and denote the smooth parts by E0
1, E0

2. We will prove, using the
Néron model, that the map φ : E1→ E2 can be extended to a morphism of schemes
φ : E0

1→ E0
2 over Rv.

We then localize this morphism at the closed point s of the zero section of E0
2.

Let z2 =−x2/y2, w2 =−1/y2 be the coordinate functions of E2. The completion
of the local ring

OE0
2,s
= Rv[z2, w2](z2)

with respect to the ideal (z2) is exactly the ring Rv[[z2]] of power series in z2, where
we identify w2 with the power series w2(z2) that was defined below (2.3). As φ
maps the zero section to the zero section, it induces a morphism Rv[[z2]]→ Rv[[z1]].
The image of z2 under this morphism is exactly Fφ(z1), so Fφ(T ) has coefficients
in Rv.

It remains to prove that the extension of φ exists. Let N denote the Néron model
of E2 over Rv as in [Bosch, Lütkebohmert and Raynaud 1990, 1.2.1 and 1.3.2] or
[Silverman 1994, § IV.5 and IV.6.1]. Then N is a smooth Rv-scheme with generic
fibre NLv = E2 which satisfies the following universal property: for any smooth
Rv-scheme X and any morphism of Lv-schemes f : X Lv → E2, there exists a
unique morphism of Rv-schemes g : X→N extending f in the sense that gLv = f .
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The special fibre Nl of N may consist of multiple components. One of them
contains the special fibre of the identity section. Let N0 denote N with all other
components of Nl removed. Then by [Bosch, Lütkebohmert and Raynaud 1990,
1.5.5] or [Silverman 1994, IV.9.1], we have E0

2 = N0. Moreover, by the universal
property of the Néron model, φ extends to a unique morphism of Rv-schemes
φ : E0

1→ N and since the special fibre of E0
1 has only one component, the image

lies inside N0
= E0

2. �

Proof of Theorem 2.9. If the Weierstrass model of E is minimal, then Lemma
2.13 proves Theorem 2.9. Otherwise, let E ′′ be a minimal model. By a change of
coordinates z′= u−1z′′, w′= u−3w′′ with v(u)≥ 0, we obtain a model E ′ from the
minimal model E ′′ such that v(1(E ′)) = v(1(E)). Write Fα, F ′α and F ′′α for the
power series associated to α with respect to the different models. We know that F ′′α
has v-integral coefficients, so F ′α(T )= u−1 F ′′α (uT ) also has v-integral coefficients.
As v(1(E))= v(1(E ′)), it follows from Corollary 2.12 that Fα(T ) has v-integral
coefficients. �

Elementary proof. Let K be the field of fractions of O.

Proof of Theorem 2.9 assuming that p splits in K/Q. For any nonnegative integer
n, consider the map 8n : Kv→ Lv, mapping α ∈ Kv to the n-th coefficient of the
power series expÊ ′(α logÊ(T )) ∈ Lv[[T ]]. The goal is to prove that 8n(O) ⊂ Rv
for every n. As p splits in K/Q, we have Qp = Kv, so O ⊂ Zp. The map 8n is
continuous, because it is a polynomial map. Moreover, as Ê is defined over R, we
have 8n(Z)⊂ R. Since Z is dense in Zp, we are done. �

The ring O = End Lv (E) is an order in the imaginary quadratic field K ; hence
it is generated as a ring over Z by a single element α. We have a homomorphism
of rings O→ End Lv (Ê) and we wish to show that the image is contained in the
subring End Rv (Ê). It therefore suffices to prove that the generator α of O maps to
an element of End Rv (Ê). We will use the formulas of Vélu [1971] that describe
an isogeny explicitly in terms of its kernel. Therefore, we want to pick α in such
a way that v(N (α))= 0 so that we know that the α-torsion is v-integral.

We make such a choice as follows: let p > 0 be the rational prime such that
v(p) > 0 and let α0 be any generator of O. Write α = α0 + n with n ∈ Z. Then
N (α) = N (α0)+ nTr(α0)+ n2 is a quadratic polynomial in n, and hence has at
most two zeroes modulo p. The only case in which we cannot pick an integer n
with p - N (α) is when p = 2 and the polynomial has two distinct roots modulo 2,
that is, p = 2 splits in O.

Lemma 2.14. Let E/Lv be an elliptic curve, given by a Weierstrass equation with
coefficients a1, . . . , a6 ∈ Rv and let 0 be a finite subgroup of E(Lv). Then there is
an elliptic curve E ′, together with an isogeny σ : E → E ′ with kernel 0 such that
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the coefficients of Fσ (T ) and the coefficients of the Weierstrass equation for E ′ are
in the ring B = Z[a1, . . . , a6, x(Q), y(Q) : Q ∈ 0] and moreover σ ∗ω′ = ω.

Proof. Vélu’s article [1971] gives a Weierstrass equation for an elliptic curve E ′

and an isogeny σ : E → E ′ with kernel 0. The coefficients of the Weierstrass
equation are computed explicitly as elements of B. Moreover, the isogeny σ is
given as follows. Let S be a complete set of representatives of 0/{±1}. Then

σ ∗x ′ = x +
∑
Q∈S

( tQ

x − xQ
+

uQ

(x − xQ)2

)
,

σ ∗y′ = y+
∑
Q∈S

(
uQ

2y+ a1x + a3

(x − xQ)3
+

tQ(a1(x − xQ)+ (y− yQ))+ vQ

(x − xQ)2

)
,

where for each Q ∈ S, Vélu gives tQ, uQ and vQ explicitly as elements of B.
The power series w(T ) = P(− 1

y ) has coefficients in Z[a1, . . . , a6] and starts
with T 3. Therefore, P(x) = T/w(T ) and P(y) = −1/w(T ) have coefficients in
Z[a1, . . . , a6] and start with T−2 and −T−3 respectively. The formula above now
shows that P(σ ∗x ′) and P(σ ∗y′) have coefficients in B and the lowest degree terms
are respectively T−2 and −T−3. As a consequence, Fσ (T )=−P(σ ∗y) is a power
series over B with lowest degree term T . �

Proof of Theorem 2.9 if v(2) = 0 or 2 does not split in O/Z . As we have noted
before, we can pick α such that O= Z[α] and v(N (α))= 0 and it suffices to prove
the theorem for such an α.

Without loss of generality, we may assume that Lv contains the coordinates of
all points in the kernel E[α] of α.

Apply Lemma 2.14 with 0 = E[α] to get an isogeny σ with kernel E[α]. Then
by [Silverman 1986, III.4.11], there is an isomorphism ψ : E ′ → E such that
α = ψ ◦ σ .

Notice that every point in E[α] is N (α)-torsion, so its coordinates are v-integral
by [Silverman 1986, VII.3.4]. Therefore, both Fσ (T ) and E ′ have v-integral co-
efficients. The power series Fψ(T ) also has v-integral coefficients because of
Corollary 2.12 and v(u) = −v(α) = 0. As Fα(T ) = Fψ◦ σ (T ) = Fψ(Fσ (T )),
this finishes the proof. �

Integrality of torsion points. We finish our discussion of formal groups with a
result on integrality of O-torsion points.

Let F be any formal group over Rv and suppose that End Rv (F) contains a sub-
ring O isomorphic to an order in a number field. Identify f (T )∈O with f ′(0)∈ Rv
and let p= O∩M.
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Lemma 2.15. View F(M) as an O-module. Then for any torsion element z ∈
F(M), the annihilator of z is p-primary, that is, not divisible by a prime different
from p.

Proof. For any α ∈ O ⊂ R, denote the corresponding element of End Rv (F) by
[α]. Suppose that z has annihilator a. Write a = bc, where c is p-primary and b

is coprime to p. We need to prove b = O. So suppose that b 6= O. Take any pair
of elements α ∈ c \ a and β ∈ b \ p, so αβ ∈ a. Now [α] z is a nonzero element
of F(M) that is in the kernel of [β]. But [β](T ) = βT + · · · is an isomorphism,
because v(β)= 0. Contradiction. �

Now suppose again that E/Lv is an elliptic curve, given by a Weierstrass equation
with coefficients in Rv. Let O= End Lv (E) and p=M∩O.

Corollary 2.16. Suppose that Q ∈ E(Lv) is a torsion point. If the annihilator of
Q is not p-primary, then x(Q) is v-integral. �

3. Elliptic divisibility sequences with complex multiplication

Let E/L be an elliptic curve, given by a Weierstrass equation with coefficients in
the ring of integers of the number field L . Let O= End L(E) and let K be the field
of fractions of O. There is a natural choice of an embedding of K into L mapping
an endomorphism to the element of L by which it multiplies invariant differentials
of E .

Fix a point P ∈ E(L) and let (Bα)α∈O be defined by x(αP)OL = AαB−2
α (with

Aα and Bα coprime). For an example, see Table 1.
In the previous section, we have defined O-submodules En(Lv) of E(Lv) for

which
v(Bα)≥ n⇐⇒ αP ∈ En(Lv). (3.1)

As a consequence, we get the following result.

Lemma 3.2. For all α, β ∈ O, if α |β, then Bα | Bβ . �

The elliptic divisibility sequence associated to P is the sequence (Ba)a, indexed
by ideals a of O and given by

Ba =

∑
α∈a

Bα.

In other words, for every discrete valuation v of L , we have

v(Ba)=min
α∈a

v(Bα).

By Lemma 3.2, we have BαO = Bα for every α ∈ O. Moreover, by definition we
have the weak divisibility property: if a |b, then Ba | Bb. Actually, we even have
the following strong divisibility property.
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α Bα
1 1 = 1
1+ i 1+ i
2 (1+ i)2 = 2
2+ i 2− i
2+ 2i (3)(1+ i)3

3 (3+ 2i)(3− 2i) = 13
3+ i (1+ i)(2+ i)(4− i)
3+ 2i (5+ 4i)(6− i)
3+ 3i (1+ i)(3+ 2i)(3− 2i)
4 (1+ i)4(3)(7) = 22

· 3 · 7
4+ i (5− 2i)(14− i)
4+ 2i (1+ i)2(4+ i)(2− i)(16+ 9i)
4+ 3i (2+ i)(14− 9i)(32+ 23i)
4+ 4i (1+ i)5(3)(7)(8+ 7i)(8− 7i)
5 (2+ i)2(2− i)2(6+ 5i)(6− 5i) = 52

· 61
5+ i (1+ i)(6+ i)(5− 4i)(31− 20i)
5+ 2i (11+ 4i)(2+ 7i)(40+ 17i)
5+ 3i (1+ i)(14+ i)(5+ 2i)(159− 40i)
5+ 4i (17− 10i)(27− 2i)(173+ 172i)
...

...

6 (1+ i)2(3+ 2i)(3− 2i)(239) = 2 · 13 · 239
7 (1469+ 84i)(1469− 84i) = 2165017
8 (1+ i)6(3)(7)(31)(8+ 7i)(8− 7i)(16+ i)(16− i) = 23

· 3 · 7 · 31 · 113
·257

Table 1. The curve E : y2
= x3

− 2x has CM by Z[i] via
i(x, y) = (−x, iy). This table gives the sequence defined by
P = (−1, 1). The nonprimitive divisors are underlined in both
the Z[i]-indexed sequence on the left and the Z-indexed sequence
on the right. Some primitive divisors on the right are not primitive
on the left.

Lemma 3.3. For any pair of O-ideals a, b, we have

Ba+b = Ba+ Bb.

Proof. The divisibility property implies that the left hand side divides the right.
Now let v be a discrete valuation of L and let n be the valuation of the right hand
side. Then v(Ba), v(Bb) ≥ n, so αP and βP are in the group En(Lv) for all
α ∈ a, β ∈ b. As every element of a+ b is of the form α + β and we have that
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(α + β)P = αP + βP , it follows that γ P ∈ En(Lv) for every γ ∈ a+ b, so the
valuation of the right hand side is at least n. �

Notice that any interpolation of the O-indexed sequence to an ideal-indexed se-
quence is completely determined by the strong divisibility property.

We call a prime q of L a primitive divisor of Ba if it divides Ba, but does not
divide any Bb with a -b. Given q, there is a unique ideal rq of O such that q is a
primitive divisor of Brq . We call rq the rank of apparition of q. Notice that rq is
the annihilator of P in the O-module E(Lq)/E1(Lq), which is the reduction of E
modulo q if E is nonsingular modulo q. For any ideal a of O, we have

q | Ba ⇐⇒ rq |a.

For any a, we can factor the ideal Ba as a product of an ideal Da and an ideal
Ba/Da in such a way that all primes dividing Da are primitive divisors of Ba

and all primes dividing Ba/Da are not. We call Da the primitive part of Ba. In the
same way, we can define the primitive part of the classical Z-indexed sequence and
denote it by DZ

n . The Main Theorem is equivalent to the statement that Da = OL

for only finitely many a coprime to the conductor.

Valuations. For any discrete valuation v of L , let p be the characteristic of the
residue field. For any ideal a of O, set v(a)=minα∈a v(α), or equivalently v(a)=
v(a OL). From the theory of formal groups, we get the following important property
of elliptic divisibility sequences.

Lemma 3.4. For every pair of nonzero integral O-ideals a, b, if v(Ba) >
v(p)
p−1 , then

v(Bab)= v(Ba)+ v(b).

Proof. Assume first that a and b are principal, say a = αO and b = βO. Then the
statement follows immediately from Proposition 2.8 applied to the map β and the
point αP .

Now let a and b be arbitrary. We claim

v(Bab)=min
α∈a
β∈b

v(Bαβ).

Proof of the claim: If α∈a, β ∈b, then αβ ∈ab, so “≤” follows from the divisibility
property. On the other hand, let γ ∈ ab be such that v(Bγ ) is minimal. Then
v(Bab)= v(Bγ ). We can write γ in the form γ = α1β1+ · · · + αnβn , so by (3.1),
we have

v(Bγ )≥ min
1≤i≤n

v(Bαiβi )≥min
α∈a
β∈b

v(Bαβ),

which proves the claim.
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Notice that by the divisibility property, v(Bα) ≥ v(Ba) >
v(p)
p−1 for all α ∈ a, so

the claim implies

v(Bab)=min
α∈a
β∈b

(v(Bα)+ v(β))=min
α∈a

v(Bα)+min
β∈b

v(β)= v(Ba)+ v(b). �

Lemma 3.4 for Z-indexed sequences is also given by Silverman [1988] for L=Q

and Cheon and Hahn [1998; 1999] for L an arbitrary number field. The versions
in [Silverman 1988] and [Cheon and Hahn 1999] are correct, but, unfortunately,
[Cheon and Hahn 1998] omits the condition v(Bm) > v(p)/(p− 1) and mentions
only the weaker condition v(Bm) > 0, which is too weak, as we can see from the
following example.

Example 3.5. Let E/Q be given by the Weierstrass equation y2
+xy= x3

+x2
−2x

and let P = (− 1
4 ,

7
8) ∈ E(Q). Then P is a nontorsion point and 2P = (121

64 ,
913
512),

so B1 = 2, B2 = 8, so that ord2(B2) 6= ord2(B1)+ord2(2), contradicting Lemma 1
of [Cheon and Hahn 1998].

Suppose that v is normalized, that is, v(L∗)=Z. If v(p)< p−1, then the conditions
v(Ba) > 0 and v(Ba) > v(p)/(p−1) are equivalent. Notice that we can only have
v(p) ≥ p− 1 if v is ramified or p = 2, so there are only finitely many valuations
for which we cannot use the weaker condition v(Ba) > 0.

In fact, if L = Q and 2 divides the coefficient a1 of the Weierstrass equation
(2.1), then the duplication formula [Silverman 1986, III.2.3(d)] tells us that even
in the case v(2) > 0 we may use the condition v(Bm) > 0.

For the finitely many remaining valuations, we will use an asymptotic version.
The first step is the following lemma.

Lemma 3.6. For any pair of elements α, β ∈ Z, if v(Bα) > 0, then

v(Bαβ)≥ v(Bα),

where we have equality if and only if v(β)= 0.

Proof. Let n = v(Bα). By Corollary 2.10, the O-module En(Lv)/En+1(Lv) is
isomorphic to the residue field l of Lv. If v(β)=0, then β induces an automorphism
of l, and hence we have equality. Otherwise, β acts as multiplication by 0 on l and
we have v(Bαβ) > n. �

For any valuation v, let r be the positive generator of rv ∩Z, where rv is the rank
of apparition of v.

Lemma 3.7. There is a bound Fv ∈ Z such that for all integers m ∈ rZ, we have
|v(Bm)− v(m)| ≤ Fv.

Proof. Let r > 0 be a generator of rv ∩Z, let k be the smallest integer greater than
v(p)/(p−1) and let p l be the largest power of p dividing m/r . Then Lemma 3.6
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gives v(Bm)= v(Br p l ), so we may assume m = r p l . If l ≥ k, then Lemma 3.4 with
b= (p l−k), a= (r pk) gives v(Bm)− v(m)= v(Br pk )− v(r pk), which is constant
and there are only finitely many remaining possibilities for l. �

Corollary 3.8. For all pairs (m, n)∈ (rZ×Z), we have |v(Bmn)−v(Bm)−v(n)|≤
2Fv. �

For every ideal a of O, set N (a)= [O : a].

Corollary 3.9. For every ideal a of O, we have v(Ba)≤ Fv + v(N (a)).

Proof. By the divisibility property, we have v(Ba)≤ v(BN (a))≤ v(N (a))+ Fv. �

Silverman’s proof. In [1988], Silverman proved that for O = Z, all but finitely
many terms have a primitive divisor. His proof generalizes to arbitrary number
fields L , but not to sequences indexed by quadratic imaginary orders. We will
now look at Silverman’s proof and see what goes wrong if we try to apply it to
sequences indexed by (ideals of) the endomorphism ring.

Let V∞ be the set of archimedean valuations of L that restrict to the standard
absolute value on Q. Let V 0 be the set of nonarchimedean valuations of L that
are normalized in the sense that each satisfies | 1p |v = p for some prime number
p ∈ Z. For every v ∈ V = V∞ ∪ V 0, let nv = [Lv :Qv]. For fractional ideals I of
L , set ‖I‖ =

∣∣NL/Q(I )
∣∣1/[L:Q]. Let hx be the height on E relative to x , defined by

hx(P) = h(x(P)), where h is the logarithmic height on Q as given in [Silverman
1986, § VIII.6]. Then by definition

hx(αP)=
∑
v∈V

nv
[L :Q]

log max{|x(αP)|v, 1}

= log ‖B2
α‖+

∑
v∈V∞

nv
[L :Q]

log max{|x(αP)|v, 1}. (3.10)

A theorem of Siegel [Silverman 1986, IX.3.1] says that the (finitely many) terms in
the final sum are o(1) hx(αP) as ‖α‖ tends to infinity, where o(1) denotes some-
thing which tends to 0. At the same time, those terms are clearly nonnegative,
so

(1− o(1)) hx(αP)≤ log ‖B2
α‖ ≤ hx(αP) as ‖α‖→∞.

We express this in terms of the canonical height function ĥ : E(Q)→R, as defined
in [Silverman 1986, § VIII.9]. That function satisfies

ĥ(P)= (deg( f ))−1h( f (P))+ O(1)

for every function f ∈ L(E) and hence ĥ(φ(P))= deg(φ) ĥ(P) for every isogeny
of elliptic curves φ. As the degree of multiplication by α is ‖α‖2 and the degree
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of the function x is 2, we get

(1− o(1)) ‖α‖2 ĥ(P)≤
1
2

log ‖B2
α‖ ≤ ‖α‖

2 ĥ(P)+ O(1) as ‖α‖→∞.

The classical proof of the existence of primitive divisors is based on these esti-
mates, combined with the following result. Let DZ

n be the primitive part of Bn in
the Z-indexed sequence, so Bn/DZ

n is the greatest OL-ideal dividing Bn that is not
divisible by any primitive divisors of Bn .

Lemma 3.11. There is a positive integer N such that for all n ∈ Z,

Bn

DZ
n

∣∣∣ N
∏

p

p Bn/p,

where the product ranges over the primes dividing n.

Proof. Let v be a discrete valuation of L , normalized by v(L∗)= Z and let q⊂ OL

be the prime ideal corresponding to v.
Suppose that the valuation of the left hand side is positive. Then q is not a

primitive divisor of Bn , so there is a prime p |n for which v(Bn/p) > 0.
Let r > 0 be such that rZ= rv ∩Z and let q > 0 be the rational prime such that

v(q) > 0. If v(q) < q − 1, then apply Lemma 3.4 with a = (n/p) and b = (p).
This yields v(Bn)= v(Bn/p)+v(p), which is at most equal to the valuation of the
right hand side.

For the finitely many valuations with v(q)≥ q− 1, we apply Corollary 3.8 and
find that v(Bn)≤ v(Bn/p)+v(p)+2Fv. Hence the assertion follows if we take N
such that v(N )≥ 2Fv for those finitely many valuations. �

The lemma and the estimates together imply

log ‖DZ
n ‖ ≥ log ‖Bn‖− log ‖n‖−

∑
p |n

log ‖Bn/p‖− log ‖N‖

≥

(
1− o(1)−

∑
p |n

p−2
)

n2 ĥ(P) (n→∞),

where 1−
∑

p |n p−2
≥ 0.547. From some point on, ‖DZ

n ‖ has to be greater than
1, which proves the following theorem.

Theorem 3.12 ([Silverman 1988]). For all but finitely many n ∈N, Bn has a prim-
itive divisor in the Z-indexed sequence.
�

Unfortunately, this proof does not work for elliptic divisibility sequences with
complex multiplication, since there are too many primes of small norm: if we
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repeat the argument for example with O= Z[i], then the estimate becomes

log ‖Dα‖ ≥

(
1− o(1)−

∑
p |α

|p|−2
)
|α|2 ĥ(P).

If 30 |α, then 1+ i, 2+ i, 2− i and 3 are prime divisors of α and
∑

p |α |p|
−2
≥

1
2 +

1
9 +

1
5 +

1
5 > 1, which makes the estimate useless.

The proof of Theorem 3.12 that we have seen is an inclusion-exclusion argument
with a single inclusion and one exclusion for every prime, which is insufficient in
the general case as we have just shown. Therefore, we will go all the way with the
inclusion-exclusion principle.

Notice that every inclusion gives an o(1), so if we have a growing number of
inclusions, then we need to know more about the o(1) functions involved. Further-
more, inclusion-exclusion works best with unique factorization, so we really need
the ideal-indexed sequence and our estimates will need to hold for the ideal-indexed
sequence as well.

We start with the estimates for the element-indexed sequence.

David’s Theorem. The more explicit version of Siegel’s theorem that we will use
is David’s theorem. It estimates linear forms in elliptic logarithms and the result is
similar to Baker’s result for ordinary logarithms.

Let L ⊂ C be a number field, k an integer and E/L an elliptic curve, together
with a lattice 3 and a complex analytic isomorphism f : C/3 → E(C). For
1≤ i ≤ k, fix an L-valued point Pi ∈ E(L) and an elliptic logarithm ui of Pi , that
is, a complex number ui such that f (ui )= Pi .

Theorem 3.13 (David). Let L be the linear form X1u1+· · ·+Xkuk in the variables
X1, . . . , Xk . There exists a constant F , depending on E , L , f and the Pi , such that
for all b= (b1, . . . , bk)∈ Ln , if B=maxi {H(bi )} is sufficiently large and L(b) 6=0,
then

log |L(b)|>−F log(B) (log log(B))k+1.

Proof. This is a special case of [David 1995, Théorème 2.1]. �

Corollary 3.14. Let E be an elliptic curve, given by a general Weierstrass equa-
tion with coefficients in a number field L and let P ∈ E(L) be a point of infinite
order. For any archimedean valuation v of L , there is a constant G such that for
all α ∈ O with ‖α‖ large enough,

log |x(αP)|v < G log ‖α‖ (log log ‖α‖)4.

Proof. Completion with respect to v gives an embedding of L into C. Now let
u1, u2 ∈ C be generators of the period lattice 3 of E , define F = ([− 1

2 ,
1
2 ]u1 +

[−
1
2 ,

1
2 ]u2) and let u3 ∈ C be an elliptic logarithm of P . Take b3 = α and let
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b1, b2 ∈ Z be such that L= b1u1+ b2u2+ b3u3 is in F. Then f (L)= αP and on
the compact set F, we have x( f (z))= z−2g(z) for a holomorphic, hence bounded,
function g. Therefore, there is a constant C such that

log |x(αP)| ≤ −2 log |L| +C

< 2F log(B)(log log(B))4+C

if B =maxi |bi | is large enough.
As −b1u1 is the integer multiple of u1 that is nearest to the intersection of the

line u1R with the line αu3+ u2R, we see that |b1| is bounded by a linear function
in |α|. In the same way, |b2| is also bounded by a linear function in |α|. �

If we apply this to (3.10), then we get

log ‖Bα‖ = ‖α‖2 ĥ(P) + O(log ‖α‖ (log log ‖α‖)4) (‖α‖→∞).

Attaching points to the ideal-indexed sequence. David’s theorem uses points
on elliptic curves, but we need the estimates also for the ideal-indexed sequence.
Therefore, for every ideal a of O, we will define a point aP . These points will not
all lie on E , but they will lie on a finite set of isogenous curves.

For any α ∈ O, let E[α] be the kernel of [α]. Then for any ideal a, we define

E[a] =
⋂
α∈a

E[α]

and we get a quotient isogeny

a : E→ E/E[a] =: Ea

which is defined over L [Silverman 1986, III.4.13.2]. Let C be the set of integral
O-ideals modulo equivalence, where we call a and b equivalent if there exists an
element x ∈ K ∗ such that a= xb. By [Cox 1989, Proposition 7.4], the set C is the
union of the class groups of the orders O ′ ⊂ OK that contain O, hence it is finite.
If a and b are in the same class in C, then the curves Ea and Eb are isomorphic
over L . For each class [a] 6= [O] in C, we fix an elliptic curve E[a], together with
a Weierstrass equation with coefficients in OL , such that E[a] is isomorphic to Ea.
For the trivial class, we take E[O] = E . Then we have an isogeny a : E → E[a]
which is defined up to automorphism of E[a].

For any pair of ideals a, b such that a |b, there exists a unique quotient isogeny
λ= λa,b such that b= λ◦a [Silverman 1986, III.4.11]. As both a and b are defined
over L , so is λ.

For every ideal a, the point aP ∈ E[a](L) is defined up to automorphism of E[a].
We now define Ãa and B̃a to be the coprime OL-ideals such that

x(aP)OL = Ãa B̃−2
a .
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It follows from Corollary 2.10 that B̃a depends only on the ideal a and the choice
of Weierstrass equation, but not on the automorphism. Moreover, αP = (αO)P
(up to automorphism), so if a is principal, then B̃a = Ba.

For every ideal class [a], define the invariant differential

ω[a] = ωE[a] =
dxE[a]

yE[a]

and the fractional OL-ideal

C[a] =
a∗ω[a]

ωE
(aOL)

−1.

Note that the ideal C[a] does not depend on the choice of a representative a and
that C[O] equals OL .

Let V be the set of normalized discrete valuations of L . For any v in V , let
p = pv be the prime number such that v(p) > 0 and let tv be the least integer
greater than v(p)/(p−1)+C[a]−C[b] for all [a], [b]. It exists, because the set of
ideal classes is finite.

Lemma 3.15. Let a |b be O-ideals and v ∈ V a normalized discrete valuation. If
v(B̃a)≥ tv, then

v(B̃b)= v(B̃a)+ v(b)− v(a)+ v(C[b])− v(C[a]).

Proof. This result follows if we apply Proposition 2.8 to the isogeny λ = λa,b ,
which satisfies v(λ∗ω[b]/ω[a])= v(b)− v(a)+ v(C[b])− v(C[a]). �

Corollary 3.16. Let v, a be as above. If v(B̃a)≥ tv, then v(Ba)= v(B̃a)−v(C[a]).

Proof. For any α ∈ a, we have

v(Bα)= v(B̃α)= v(B̃a)+ v(α)− v(a)− v(C[a])≥ v(B̃a)− v(C[a]),

where the inequality is an equality if v(α)= v(a). As v(Ba)=min{v(Bα) : α ∈ a},
the result follows. �

From now on we restrict to invertible ideals a. For the general case, see Section 4.
Let S be the subset of valuations v ∈ V such that tv = 1.

Lemma 3.17. For every v ∈ S and every invertible O-ideal a, we have v(B̃a) =

v(Ba).

Proof. Notice first of all that v ∈ S implies v(C[a])= 0 for all a. By Corollary 3.16,
the only thing we need to prove is that if v(Ba) > 0, then v(B̃a) > 0.

Let a = αO+ βO. Then αa−1 and βa−1 are coprime O-ideals, so we can take
a ∈ αa−1 and b ∈ βa−1 such that a+b= 1. Then 0> v(x(αP))≥ v(x(aaP)) and
0 > v(x(βP)) ≥ v(x(baP)). As E[a],1(Lv) is a group, we find v(x(aP)) < 0, so
we are done. �
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For the finitely many valuations that are not in S, we will be satisfied with the
following asymptotic version.

Lemma 3.18. For any invertible O-ideal a and any v ∈ V , we have

v(Ba)= v(B̃a)+ O
(
v(N (a))

)
(N (a)→∞).

Proof. If v(B̃a)≥ tv, then the assertion follows from Corollary 3.16. Otherwise, it
is equivalent to Corollary 3.9. �

If we apply Lemma 3.17 to the valuations in S and Lemma 3.18 to the rest, then
we find

log N (Ba)= log N (B̃a)+ O(log N (a)) (N (a)→∞). (3.19)

Next, we apply David’s Theorem, so let v be any archimedean valuation of L .

Proposition 3.20. There is a constant G such that for all but finitely many invert-
ible O-ideals a,

log |x(aP)|v < G log ‖a‖ (log log ‖a‖)4.

Proof. First of all, notice that it suffices to prove this for every ideal class separately.
So fix [a] ∈ C and a representative ã of [a].

Let 3 = u1Z+ u2Z be a lattice such that E[a],Lv (C) ∼= C/3 and let u3 ∈ C be
such that u3(mod 3) corresponds to [̃a]P .

For any a ∈ [a], let b3 = α/β be a generator of a/̃a. Then the point aP corre-
sponds to b3u3 (mod 3).

Let b1, b2 ∈ Z be such that L = b1u1 + b2u2 + b3u3 is in a fixed fundamental
parallelogram for 3. Then by David’s theorem,

log |x(aP)|< 2F log(B) (log log(B))4

if B = maxi H(bi ) is large enough. Notice that the denominator of b3 divides ã,
so log H(b3) = log ‖b3‖ + O(1) = log ‖a‖ + O(1). At the same time, b1 and b2

are bounded by a linear function in ‖b3‖, so we find the desired result. �

Theorem 3.21. For all invertible O-ideals a, we have

log ‖Ba‖ = ‖a‖
2 ĥ(P) + O(log ‖a‖ (log log ‖a‖)4) (‖a‖→∞),

where ‖a‖ = [O : a]1/[K :Q].

Proof. If we apply Proposition 3.20 to (3.10), then we get

log ‖B̃a‖ = ĥ(aP) + O(log ‖a‖(log log ‖a‖)4).

The left hand side is log ‖Ba‖+O(log ‖a‖) by (3.19). If O= OK , then [Silverman
1994, II.1.5] says that a has degree ‖a‖2. In general, it is [Shimura 1998, Proposi-
tion II.10]. �
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Corollary 3.22. For any pair of nonzero invertible O-ideals a, b such that ‖a‖ is
suitably large,

Ba | Bb ⇐⇒ a |b.

In particular, for any pair of nonzero elements α, β such that ‖α‖ is suitably large,

Bα | Bβ ⇐⇒ α |β.

Proof. Suppose that Ba | Bb. If d = (a, b), then Bd = (Ba, Bb) = Ba and d |a. If d

strictly contains a, then this contradicts the bounds of Theorem 3.21. �

Proof of the Main Theorem. We will now use the estimates and an inclusion-
exclusion argument to prove the existence of primitive divisors.

We have seen in Lemma 3.4 that only a small part of the growth of Ba comes
from higher powers of nonprimitive divisors. We “neglect” this by introducing
B ′a =

∏
b |a Db, in which these higher powers are eliminated.

Lemma 3.23. For all a and almost every discrete valuation v, we have

v(B ′a)≤ v(Ba)≤ v(B ′a)+ v(a).

With an added Fv + log N (a) on the right hand side, the inequality holds for all v.
In particular, ∣∣log ‖Ba‖− log ‖B ′a‖

∣∣≤ log ‖a‖+C.

Proof. Let v be any discrete valuation of L . The first inequality is true by definition.
Now suppose that v(Ba)>0 and let r be the rank of apparition of v. If v(p)< p−1,
then Lemma 3.4 implies v(Ba) ≤ v(Bar) = v(Br)+ v(a) = v(B ′a)+ v(a). For the
finitely many valuations with v(p) ≥ p − 1, Corollary 3.9 shows that the same
holds with an added Fv + log N (a).

The final statement follows if one sums over all v. �

We will now prove the Main Theorem for ideals coprime to the index f =
[OK : O]. For the general case, see Section 4.

Proof. Let µ be the Möbius function for the set of ideals of O coprime to f , so

µ(b)=

{
0 if a square of an ideal divides b,

(−1)n if b is a product of n distinct primes.

The inclusion-exclusion principle yields

log ‖Da‖ =

∑
b |a

µ(b) log ‖B ′a/b‖

=

∑
b |a

µ(b) log ‖Ba/b‖ O(log ‖a‖),
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to which we can apply Theorem 3.21 and get

log ‖Da‖ = ĥ(P)
∑
b |a

µ(b) ‖a/b‖2 +
∑
b |a

O(log ‖a‖ (log log ‖a‖)4)

= ‖a‖2 ĥ(P)
∏
p |a

(1−‖p‖−2) + O(‖a‖ε).

The product is at least ∏
p≤‖a‖

(1− p−1)2,

and Mertens’ Theorem [Hardy and Wright 1938, 22.9 Theorem 430] states that∏
p≤X

(1− p−1)∼
e−γ

log X
(X→∞),

where γ ≈ 0.5772 is the Euler constant. If we pick ε < 2, then this finishes the
proof of the Main Theorem for ideals coprime to the index f . In the general case,
inclusion-exclusion is harder and we will show how to do it in Section 4.

For Z-indexed sequences, regardless of whether the curve has complex multi-
plication, (3.24) is exactly Proposition 1.3. �

We will now prove the corollary about splitting behavior of primitive divisors
in Z-indexed sequences over CM curves. Let K ′ be the field of fractions of O ′ =

End L(E).

Corollary 3.24. Suppose that not all endomorphisms of E over L are defined over
L. Define for n ∈ Z, the numbers

rn = #{p ∈ N : p |n, p is a prime ramifying in O ′/Z and p - [OK ′ : O
′
]},

sn = #{p ∈ N : p |n and p is a prime splitting in O ′/Z}.

Then for almost all n, the term Bn has at least rn + sn + 1 primitive divisors, of
which at least sn split in K ′L/L.

Proof. Let σ denote the unique nontrivial automorphism of K L/L . Notice that
Bσ(a) = σ(Ba) for every O-ideal a.

Suppose that n is large enough such that Ba has a primitive divisor (in the O-
ideal-indexed sequence) for all a with ‖a‖ ≥

√
n.

For any prime number p |n that splits in K/Q, write (p) = pσ(p). Then Bn/p

has a primitive divisor q ⊂ OL . If q is ramified or inert in K L/L , then σ(q) = q,
so q is also a divisor of Bn/σ(p), contradicting the assumption that q is primitive at
Bn/p. Therefore, q is a prime of L that splits in K L/L and is a primitive of Bn in
the N-indexed sequence.
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There are at least rn + 1 more primitive divisors, because Bn itself also has a
primitive divisor as well as each Bn/p where p = p2 is a ramifying prime divisor
of n. �

4. The general case

We will now show how to give a proof of the Main Theorem even for ideals that
may not be coprime to the index [OK :O]. The set of all ideals does not have unique
factorization, so the Möbius functions become more tricky. Moreover, when we do
inclusion-exclusion with invertible ideals that are not coprime to [OK : O], we will
encounter ideals that are not invertible. The first thing we need to do is therefore
to generalize Theorem 3.21 to ideals that may not be invertible.

The only part of the proof of Theorem 3.21 that uses invertibility of the ideal a

is the part of the proof of Lemma 3.17 that states that if v(Ba) > 0, then v(B̃a) > 0.
We prove this in the general case for a smaller set of valuations S′. Recall that S
was the set of all normalized discrete valuations v of L for which v(p) < p − 1
and v(C[a]) = 0 for all [a]. We let S′ be the set of valuations in S for which
also v([OK : O])= 0 and the Weierstrass equation of E[a] is nonsingular for every
[a] ∈ C. Notice that S′ still contains all but finitely many valuations of V .

Lemma 4.1. For every v ∈ S′ and every O-ideal a, we have that v(B̃a)= v(Ba).

Proof. The only thing left to prove is that if v(Ba)> 0, then v(B̃a)> 0. We already
know this for invertible ideals a. Write a = bc, where b is coprime to the index
f = [OK : O] and c divides f n for some integer n. Without loss of generality, we
may assume that all points in E[c] [ f n

] are defined over Lv and that v(Lv) = Z.
We claim that the reduction morphism

E[b](Lv)[ f n
] → (E[b](Lv)/E[b],1(Lv))[ f n

] (4.2)

is an isomorphism of O-modules. This morphism of O-modules is injective by
[Silverman 1986, VII.3.4] or Lemma 2.15 and since E[b] has good reduction mod-
ulo v and v( f ) = 0, both sides have the same cardinality f 2n [Silverman 1986,
III.6.4(b)], which proves the claim.

Now consider the point bP ∈ E[b](Lv). Since the lemma is already proved for
invertible ideals, we know that (bP + E[b],1(Lv)) is γ -torsion for every γ ∈ c.
As (4.2) is an isomorphism of O-modules, this implies that there is a point Q ∈
E[b](Lv)[c] such that bP ≡ Q modulo E[b],1(Lv). In particular, by Lemma 2.13
(or also Proposition 2.8 if we remove some more valuations from S), cbP ≡ cQ
modulo E[bc],1(Lv) and cQ = O on E[bc]. �

It follows that Theorem 3.21 holds for all ideals a of O.
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Next, we do inclusion-exclusion in general. Let µ(a, b) be defined recursively
for b |a by

µ(a, a)= 1 and
∑
c |b |a

µ(a, b)= 0 (for all c |a with c 6= a).

Previously, µ(a, b) depended only on a/b and we denoted it by µ(a/b).
The inclusion-exclusion principle, Lemma 3.23 and Theorem 3.21 give

log ‖Da‖ = ĥ(P)
∑
b |a

µ(a, b) ‖b‖2 +
∑
b |a

O(log ‖a‖ (log log ‖a‖)4).

The set of ideals of O is the direct sum of the sets of ideals of the localizations of
O at its primes. Therefore, the Möbius function of the ideals of O is the product of
the Möbius functions of the localizations at the primes of O.

Lemma 4.3. Let p be a prime ideal of O and I ⊂ Op a nontrivial invertible ideal
of the localization. Then there is a unique ideal J0 | I (which is not necessarily
invertible) such that J0 6= I and such that for every ideal J | I with J 6= I , we have
J | J0. Moreover, the norm of this ideal is N (I )/N (p).

Note that in terms of the Möbius functions, we have µ(I, J0)=−1 and µ(I, J )=0
for all J 6= I, J0.

Proof. It is clear that any two ideals as in the lemma are equal, so we only need to
prove the existence. If p is invertible, then the statement holds with J0 = I/p.

So suppose that p is singular and let p be the rational prime with p | p. Let n be
such that O=Z+nOK and set O ′=Z+(n/p)OK . Let R and R′ be the localizations
of O and O ′ at the O-ideal p. As I is invertible, it is principal, say I = αR. Let
J0 = αR′. We need to show that every R-ideal J that strictly contains I contains
J0.

If we allow fractional ideals, then without loss of generality, we may assume
α = 1, so I = R and J0 = R′. Let ω ∈ R′ be such that R′ = Z(p)+ωZ(p) and let
T, N ∈ Z(p) be such that ω2

− Tω+ N = 0. We need to prove ω ∈ J . Take any
element γ of J \ R. We have γ = a+ bω with a, b ∈Q. After multiplication by a
power of p, we may assume γ ∈ (1/p)R \ R, so pa and b are both in Z(p), but not
both in pZ(p). If a ∈ Z(p), then b 6∈ pZ(p), hence ω= b−1(γ −a) ∈ J . Otherwise,
γ pω = apω+ bp(Tω− N ) is in J and so is pω, hence apω is in J and ap ∈ R∗.

Finally, from the construction, we get N (I )/N (J0)=[R′ : R]= p=[R : pR′]=
N (p). �

We conclude that if a is invertible, then

log ‖Da‖ = ‖a‖
2 ĥ(P)

∏
p |a

(1−‖p‖−2) + O(‖a‖ε), (4.4)
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which proves the Main Theorem.
The following example shows why we restrict to invertible ideals in our main

result. Suppose that the index [OK : O] is a prime number p and that p is inert
in OK . For any O-ideal a, we have aOK ⊃ a ⊃ paOK . If a is p-primary, then
aOK = pnOK for some n. On the other hand, any group a which is strictly between
pnOK and pn+1OK , is an O-module and there are p+ 1 such groups. We find

µ(pnOK , a)=


1 if a= pnOK ,
−1 if a is strictly between pn−1OK and pnOK ,
p if a= pn−1OK ,
0 otherwise.

The inclusion-exclusion principle now gives

log ‖Dpn−1OK ‖ = ĥ(P)(p2n−1
− (p+ 1)p2n−2

+ pp2n−3)+ O(n log(n)4)

= O(n log(n)4).

Only the error term remains, so we cannot conclude from this that there exists a
primitive divisor. On the other hand, the size of the error term does leave some
space for primitive divisors, so other methods are needed to give a result on prim-
itive divisors of Ba for noninvertible ideals a.
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The Coleman–Mazur eigencurve is proper
at integral weights

Frank Calegari

We prove that the Coleman–Mazur eigencurve is proper (over weight space) at
integral weights in the center of weight space.

1. Introduction

The eigencurve E is a rigid analytic space parameterizing overconvergent — and
hence classical — modular eigenforms of finite slope. Since Coleman and Mazur’s
original work [1998], there have been numerous generalizations [Buzzard 2008;
Chenevier 2004], as well as alternative constructions using modular symbols [Ash
and Stevens ≥ 2008] and p-adic representation theory [Emerton 2006]. In spite of
these advances, several elementary questions about the geometry of E remain. One
such question was raised by Coleman and Mazur: does there exist a p-adic family
of finite slope overconvergent eigenforms over a punctured disk, and converging,
at the puncture, to an overconvergent eigenform of infinite slope? Another way
of phrasing this question is to ask whether the projection π : E → W satisfies
the valuative criterion for properness1. In [Buzzard and Calegari 2006], this was
proved in the affirmative for the particular case of tame level N = 1 and p= 2. The
proof, however, was quite explicit and required (at least indirectly) that the curve
X0(N p) have genus zero. In this note, we work with general p and arbitrary tame
level, although our result only applies at certain arithmetic weights in the center of
weight space.

Recall that the Cp-points of W are the continuous homomorphisms from the
Iwasawa algebra

3 := Zp[[lim
←
(Z/N pkZ)×]]

to Cp. Let χ denote the cyclotomic character. Our main theorem is:

MSC2000: 11F11.
Keywords: p-adic modular forms, the eigencurve, overconvergent modular forms.
Supported in part by the American Institute of Mathematics.

1The curve E has infinite degree over weight space W, and so the projection π : E→W cannot
technically be proper.

209

http://pjm.math.berkeley.edu/ant
http://dx.doi.org/10.2140/ant.2008.2-2


210 Frank Calegari

Theorem 1.1. Let E be the p-adic eigencurve of tame level N . Let D denote the
closed unit disk, and let D× denote D with the origin removed. Let h : D×→ E be
a morphism such that π ◦ h extends to D. Suppose, moreover, that (π ◦ h)(0)= κ ,
where κ is of the form

κ = χ k
·ψ,

for k ∈Z and ψ a finite order character of conductor dividing N. Then there exists
a map h̃ : D→ E making the following diagram commute:

D×
h - E

D
?

-

h̃

-

W

π

?

Our strategy in proving Theorem 1.1 follows that of [Buzzard and Calegari
2006]. We first try to prove that finite slope overconvergent eigenforms extend far
into the supersingular region whereas forms of infinite slope do not. Then, since a
limit of highly overconvergent forms is also highly overconvergent, this leads to a
contradiction. The main technical improvement is Corollary 3.2, which we deduce
from a lemma of Wan (who attributes the result to Coleman). It is plausible that the
properness of the eigencurve is a global manifestation of a purely local theorem;
such an idea was suggested to the author — at least at integral weights — by Mark
Kisin. However, even with current advances in the technology of local Galois
representations, a natural conjectural statement implying properness has not yet
been formulated. One issue to bear in mind is that slightly stronger statements one
may conjecture are false. For example, there exists a pointwise sequence of finite
slope forms converging to an infinite slope form [Coleman and Stein 2004].

2. Overconvergent modular forms

Let N ≥ 5 be an integer coprime to p; let X = X1(N ); and let X0(p)= X (01(N )∩
00(p)). Since N ≥ 5, the curves X and X0(p) are the compactifications of smooth
moduli spaces. The curve X comes equipped with a natural sheaf ω, which, away
from the cusps, is the pushforward of the sheaf of differentials on the universal
modular curve. If p ≥ 5, let A be a characteristic zero lift of the Hasse invari-
ant with coefficients in W (Fp)[[q]], and thus, A ∈ H 0(X/W (Fp), ω

⊗(p−1)) by
the q-expansion principle. We further insist that A has trivial character. Such
an A always exists, for example, A = E p−1. Let X0(p, r) ⊆ X an

0 (p) denote the
connected component containing ∞ of the affinoid {x ∈ X an

0 (p); |A(x)| ≥ |r |}.
Standard arguments imply that |A(x)| on X0(p, r) is independent of the choice of
A, provided that v(r) < 1.
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Let r ∈Cp be an element with p/(p+1)>v(r)>0. Let χ denote the cyclotomic
character; let ψ denote a finite order character of conductor dividing N ; and let
k ∈ Z.

Definition 2.1. The overconvergent modular forms of weight χ k
·ψ , level N , and

radius of convergence r are sections of H 0(X0(p, r), ω⊗k) on which the diamond
operators act via ψ . We denote this space by M(Cp, N , χ k

·ψ, r). The space of
overconvergent modular forms of weight χ k

·ψ and level N is

M(Cp, N , χ k
·ψ) :=

⋃
|r |<1

M(Cp, N , χ k
·ψ, r).

The space M(Cp, N , χ k
·ψ, r) has a natural Banach space structure. If χ k

= 1,
the norm ‖ · ‖ is the supremum norm.

Let κ ∈W(Cp) denote a point in weight space. Recall that the Eisenstein series
E(κ) is defined away from zeroes of the Kubota–Leopoldt zeta function ζ(κ) by
the following formulas:

E(κ)= 1+
2
ζ(κ)

∞∑
n=1

σ ∗κ (n)q
n, σ ∗κ (n)=

d|n∑
(d,p)=1

κ(d)d−1.

The coefficients of E(κ) are rigid analytic functions on W away from the zeroes
of ζ . If κ is trivial on the roots of unity in Qp, then, as a q-expansion, E(κ)
is congruent to 1 modulo the maximal ideal of Zp. Coleman’s idea is to define
overconvergent forms of weight κ using the formal q-expansion E(κ). Before we
recall the definition, we also recall some elementary constructions related to weight
space. If

Zp,N := lim
←
(Z/N pkZ)×,

there is a natural isomorphism Zp,N ' (Z/N qZ)× × (1+ qZp), where q = p if
p is odd, and q = 4 otherwise. If a ∈ Zp,N , then 〈〈a〉〉 denotes the projection of a
onto the second factor, and τ(a) = a/〈〈a〉〉 the projection onto the first. The rigid
analytic space W has a natural group structure. Denote the connected component
of the identity of W by B; the component group of W is (Z/N qZ)×. If κ ∈W(Cp),
then let 〈κ〉 denote the weight a 7→ κ(〈〈a〉〉) and τ(κ) the weight a 7→ κ(τ(a)); 〈κ〉
is the natural projection of κ onto B. If χ denotes the cyclotomic character, then
for any characterψ of (Z/q NZ)×, there is a unique congruence class modulo p−1
(or modulo 2 if p = 2) such that for any k ∈ Z in this congruence class, τ(η ·χ−k)

has conductor dividing N . We fix once and for all a choice of representative k ∈ Z

for this congruence class.

We now recall the definition of overconvergent modular forms of weight κ:
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Definition 2.2. Overconvergent modular forms of weight κ and tame level N are
q-expansions of the form V E〈κ·χ−k〉 · F , where F ∈ M(Cp, N , χ k

· τ(κ ·χ−k)).

This is not exactly the definition that occurs in Section 2.4 of [Coleman and Mazur
1998], since we have chosen to work with 00(p) structure rather than 01(p) struc-
ture. Yet both definitions are easily seen to be equivalent, using, for example,
Theorem 2.2.2 of the same reference. We do not define the radius of convergence
of an overconvergent form of general weight.

3. Hasse invariants

In this section, we prove some estimates for the convergence of certain overcon-
vergent modular forms related to Hasse invariants. As in Section 2, let A be a
characteristic zero lift of the Hasse invariant with coefficients in W (Fp)[[q]] for
p ≥ 5.

Lemma 3.1. Let v(r) < 1/(p+ 1), and let x be a point on X0(p, r). Then

A(x)
VA(x)

≡ 1 mod
p

A(x)p+1 .

Proof. This follows directly from Lemma 2.1 of [Wan 1998], after noting that the
argument remains unchanged if E p−1 is replaced by A. �

Corollary 3.2. Suppose that v(r)<1/(p+1). Then log(A/VA)∈M(Cp, N , 1, r).
If s ∈ Cp is sufficiently small, then (A/VA)s ∈ M(Cp, N , 1, r).

Proof. From Lemma 3.1, we deduce that A/VA − 1 has norm less than one on
X0(p, r), which implies the first claim. Moreover, ‖s · log(A/VA)‖� 1 for suffi-
ciently small s, and hence, if s is sufficiently small,

(A/VA)s = exp
(
s · log(A/VA)

)
is well defined and lies in M(Cp, N , 1, r). �

Remark. When p = 2 or 3, the conclusions of Corollary 3.2 still hold with A
replaced by the classical modular forms E4 and E6 respectively, as can be seen by
a direct computation. To aid the reader in such a computation, let f =1(2τ)/1(τ)
and g= (1(3τ)/1(τ))1/2 be uniformizers for X0(2) and X0(3) respectively. Then

E4

VE4
=

1+ 28 f
1+ 24 f

,
E6

VE6
=

1− 2 · 35g− 39g2

1+ 2 · 32g− 33g2 .

4. Families of eigenforms

Let h : D×→ E denote an analytic family of overconvergent modular eigenforms
of finite slope such that π ◦ h extends to D, and suppose that (π ◦ h)(0) = κ ,



The Coleman–Mazur eigencurve is proper at integral weights 213

where κ is of the form κ = χ k
· ψ with k ∈ Z and a finite order character ψ of

conductor dividing N . We assume that the image of h lies in the cuspidal locus
since the Eisenstein locus is finite and hence proper; see [Buzzard and Calegari
2006, Theorem 8.2]. Any weight in W(Cp) sufficiently close to κ lies in the set
κ ·B∗, where B∗ is defined as{

η(s) : a 7→ 〈〈a〉〉4s
∣∣ s ∈ Cp, v(s) >−3

}
if p = 2,{

η(s) : a 7→ 〈〈a〉〉6s
∣∣ s ∈ Cp, v(s) >−3

2

}
if p = 3,{

η(s) : a 7→ 〈〈a〉〉s(p−1)
∣∣∣ s ∈ Cp, v(s) >−1+ 1

p−1

}
if p ≥ 5.

Our B∗ is normalized slightly differently from that of [Coleman and Mazur 1998,
p. 28], as we have included extra factors in the exponent, merely to avoid potentially
troublesome notational issues later on. After shrinking D, if necessary, we may
assume that (π ◦ h)(D×) ⊂ κ ·B∗. Given t ∈ D, we may consider h(t) to be a
normalized eigenform in M(Cp, N , κ · η(s(t))), for some η(s(t)) ∈ B∗(Cp) and
analytic function s(t). By assumption, Uh(t)=λ(t)h(t) for some analytic function
λ(t) which does not vanish on D×. By considering q-expansions, we deduce that
h(0) exists as a p-adic modular form in the sense of Katz [1973] — for a more
detailed proof, see [Buzzard and Calegari 2006, p. 229]. If p ≥ 5, let A be as in
Section 2, otherwise let A= E6 if p= 3 or A= E4 if p= 2. The modular form A
has weight χ p−1

= η(1) if p ≥ 5, and weights χ6
= η(1) and χ4

= η(1) if p = 3
and 2 respectively. Thus (shrinking D again if necessary), we may construct a map

g : D×→ M(Cp, N , κ)

via the formula g(t)= h(t)/As(t). This map is well defined as an easy consequence
of Corollary B4.2.5 of [Coleman 1997], namely that Es/As is overconvergent of
weight zero where Es is the Eisenstein series of weight η(s).

Lemma 4.1. Suppose that v(r) < 1/(p+ 1). After shrinking D, if necessary, the
image of g lands in M(Cp, N , κ, r p).

Proof. By construction, g(t) lies in M(Cp, N , κ, µ) for some µ with v(µ) > 0.
Since κ is of the form χ k

· ψ , we may therefore realize g(t) as a section of
H 0(X0(p, µ), ω⊗k). Here we use the fact that ψ has conductor coprime to p.
Consider the operator Ut = U (A/VA)s(t), where U is the usual operator on over-
convergent modular forms [Coleman 1996; 1997]. If s(t) is sufficiently small, then
by Corollary 3.2, the factor (A/VA)s(t) lies in M(Cp, N , 1, r). On the other hand,

Ut(g(t))=U (h(t)/VAs(t))= (λ(t)h(t)/As(t))= λ(t)g(t).

If g(t) ∈ M(Cp, N , κ, µ), then (A/VA)s(t)g(t) ∈ M(Cp, N , κ,max{r, µ}), and
hence it follows that Ut g(t) lies in M(Cp, N , κ,max{r p, µp

}). Thus, since λ(t) 6=0
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for t ∈ D×, we deduce from the equality g(t) = λ(t)−1Ut(g(t)) that g(t) lies in
M(Cp, N , κ,max{µp, r p

}). By induction, we deduce that g(t)∈M(Cp, N , κ, r p).
�

As remarked above, the q-expansion g(0) = h(0) is a Katz p-adic modular
form of weight κ , and moreover, by assumption, lies in the kernel of U . The
argument now proceeds exactly as in Section 8 of [Buzzard and Calegari 2006].
Namely, as in the proof of Theorem 8.2 of loc. cit., we deduce that h(0) is lies in
M(Cp, N , χ k

·ψ, r p) for any r satisfying the conditions of Lemma 4.1, namely,
v(r)<1/(p+1). In particular, we may choose an r such that h(0)∈M(Cp, N , χ k

·

ψ, r p) and v(r p) > 1/(p+1). Yet this is in direct contradiction to Lemma 6.13 of
[Buzzard and Calegari 2006] (note Remark 6.14), which says that modular forms
in the kernel of U cannot converge beyond 1/(p+ 1). This completes the proof.
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A finiteness property of torsion points
Matthew Baker, Su-ion Ih and Robert Rumely

Let k be a number field, and let G be either the multiplicative group Gm/k or an
elliptic curve E/k. Let S be a finite set of places of k containing the archimedean
places. We prove that if α ∈G(k) is nontorsion, then there are only finitely many
torsion points ξ ∈G(k)tors that are S-integral with respect to α. We also formulate
conjectural generalizations for dynamical systems and for abelian varieties.

Introduction

Let k be a number field, with ring of integers Ok and algebraic closure k. In this
paper we prove finiteness theorems for torsion points that are integral with respect
to a given nontorsion point, for the multiplicative group Gm/k and for elliptic
curves E/k. We then attempt to place these results in a conceptual framework,
and conjecture generalizations to dynamical systems and abelian varieties.

Let S be a finite set of places of k containing the archimedean places. Given
α, β ∈ P1(k), let cl(α), cl(β) be their Zariski closures in P1

Ok
. By definition, β

is S-integral relative to α if cl(β) does not meet cl(α) outside S. Thus, β is S-
integral relative to α if and only if for each place v of k not in S, and each pair of
k-embeddings σ : k(β) ↪→ kv, τ : k(α) ↪→ kv, we have ‖σ(β), τ (α)‖v = 1 under
the spherical metric on P1(kv). Equivalently, for all σ , τ ,{

|σ(β)− τ(α)|v ≥ 1 if |τ(α)|v ≤ 1,
|σ(β)|v ≤ 1 if |τ(α)|v > 1.

Theorem 0.1. Let k be a number field, and let S be a finite set of places of k
containing all the archimedean places. Fix α ∈ P1(k) with Weil height h(α) > 0;
that is, identifying P1(k) with k ∪ {∞}, α is not 0 or ∞ or a root of unity. Then
there are only finitely many roots of unity in k that are S-integral with respect to α.

Similarly, let E/k be an elliptic curve, and let E/Spec(Ok) be a model of E .

MSC2000: primary 11G05; secondary 11J71, 11J86, 37F10, 11G50.
Keywords: elliptic curve, equidistribution, canonical height, torsion point, integral point.
Work supported in part by NSF grant DMS-0300784.
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Theorem 0.2. Let k be a number field, and let S be a finite set of places of k
containing all the archimedean places. If α ∈ E(k) is nontorsion (has canonical
height ĥ (α)> 0), there are only finitely many torsion points ξ ∈ E(k) tors which are
S-integral with respect to α.

By S-integrality we mean that the Zariski closures of ξ and α in E/Spec(Ok) do not
meet outside fibres above S. Since any two models are isomorphic outside a finite
set of places, it follows from the theorem that the finiteness property is independent
of the choice of the set S and the model E.

The main ingredients of the proofs of Theorems 0.1 and 0.2 are linear forms
in logarithms (Baker’s theorem for Gm , and David/Hirata-Kohno’s theorem for
elliptic curves), properties of local height functions, and a strong form of equidis-
tribution for torsion points at all places v. In outline, both theorems are proved as
follows. By base change, one reduces to the case where α is rational over k. Given
a place v of k, let kv be the algebraic closure of the completion kv, and let λv be
the normalized canonical local height occurring in the decomposition of the global
height. On the one hand, well known properties of local and global heights can be
used to show that since α is nontorsion, for any torsion point ξn one has

0 < ĥ (α) =
1

[k(ξn) : k]

∑
v

∑
σ : k(ξn)/k↪→kv

λv(α− σ(ξn)), (1)

where σ : k(ξn)/k ↪→ kv means σ is an embedding of k(ξn) in kv fixing k. On the
other hand, if {ξn} is a sequence of distinct torsion points which are S-integral with
respect to α, then for each v, by equidistribution and the normalization of λv,

lim
n→∞

1
[k(ξn) : k]

∑
σ : k(ξn)/k↪→kv

λv(α− σ(ξn)) = 0 . (2)

By the integrality hypothesis, the outer sum in (1) can be restricted to v ∈ S, allow-
ing the limit and the sum to be interchanged. This gives ĥ (α) = 0, contradicting
the assumption that α is nontorsion.

Examples show that the conclusion is false if α is a torsion point, and that it
can fail if {ξn} is merely a sequence of small points (that is, a sequence of points
with ĥ (ξn)→ 0). In particular, our results cannot be strengthened to theorems of
Bogomolov type.

The paper is divided into three sections. In Section 1, we prove Theorem 0.1
for Gm ; in Section 2, we prove Theorem 0.2 for elliptic curves. In Section 3,
we attempt to provide perspective on these results, comparing them with other
arithmetic finiteness theorems, and formulating conjectural generalizations.

Throughout the paper, we use the following notation. For each place v of k, let
kv be the completion of k at v and let |x |v be the normalized absolute value which
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coincides with the modulus of additive Haar measure on kv. If v is archimedean
and kv∼=R, then |x |v=|x |, while if kv∼=C then |x |v=|x |2. If v is nonarchimedean
and lies over the rational prime p, then |p|v = p−[kv :Qp]. For 0 6=α ∈ k, the product
formula reads ∏

v

|α|v = 1 .

If kv is an algebraic closure of kv, there is a unique extension of |x |v to kv,
also denoted |x |v. Given a finite extension L/k, for each place w of L we have the
normalized absolute value |x |w on Lw. If we embed Lw in kv, then |x |w=|x | [Lw :kv]v

for each x ∈ Lw. Write log x for the natural logarithm of x . Given β ∈ L and a
place v of k, as σ ranges over all embeddings of L into kv fixing k we have∑

σ : L/k↪→kv

log |σ(β)|v =
∑
w |v

log |β|w . (3)

The absolute Weil height of α ∈ k (also called the naive height) is defined to be

h(α) =
1
[k :Q]

∑
v

max(0, log |α|v),

with the convention that log 0 = −∞. It is well known that for α ∈ Q, h(α) is
independent of the field k containing Q(α) used to compute it, so h extends to a
function on Q. Furthermore h(α)≥ 0, with h(α)= 0 if and only if α = 0 or α is a
root of unity.

1. The finiteness theorem for Gm

Limitations. Before giving the proof of Theorem 0.1, we note some examples that
limit possible strengthenings of the theorem.

(A) The hypothesis h(α) > 0 is necessary. To see this, take k = Q. If α = 0 or
α =∞, then each root of unity ζn is integral with respect to α at all finite places.
If α = 1, then each root of unity whose order is divisible by at least two distinct
primes is integral with respect to α at all finite places. If α= ζN is a primitive N -th
root of unity with N > 1, let ζm be a primitive m-th root of unity with (m, N )= 1
and m > 1. Then ζ−1

N ζm is a primitive m N -th root of unity whose order is divisible
by at least two distinct primes, so 1−ζ−1

N ζm is a unit in Z, the ring of all algebraic
integers, and ζN − ζm is also a unit. This holds for all conjugates of ζN and ζm .
Hence ζm is integral with respect to α at all finite places.

(B) When h(α)> 0, one can ask if the theorem could be strengthened to a result of
Bogomolov type: is there a number B = B(α) > 0 such that there are only finitely
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many points β ∈ k with h(β) < B which are S-integral with respect to α? That is,
could finiteness for roots of unity be strengthened to finiteness for small points?

The following example1 shows this is not possible (see [Autissier 2006] for
similar examples). Take k =Q, α = 2, and S = {∞}. For each n, let βn be a root
of the polynomial

fn(x) = x2n
−1(x − 2)− 1 .

Here fn(x+1) is Eisenstein with respect to the prime p= 2, so fn(x) is irreducible
over Q. Note that each βn is a unit. By Rouché’s theorem, βn has one conjugate
very near 2 and the rest of its conjugates very close to the unit circle; this can be
used to show that limn→∞ h(βn)= 0. Finally, βn−2 is also a unit, so βn is integral
with respect to 2 at all finite places.

Proof of Theorem 0.1. By replacing k with k(α), and S with the set of places Sk(α)

lying over S, we are reduced to proving the theorem when α ∈ k. Indeed, if ζ is
a root of unity which is S-integral with respect to α over k, then each k-conjugate
of ζ is Sk(α)-integral with respect to α over k(α).

Suppose α ∈ k, and that there are infinitely many distinct roots of unity ζn which
are S-integral with respect to α. For each n, we will evaluate the sum

An =
1

[k(ζn) :Q]

∑
v of k

∑
σ : k(ζn)/k↪→kv

log(|σ(ζn)−α|v) (4)

in two different ways. On the one hand, we will see that each An = 0. On the other
hand, by applying the integrality hypothesis, A. Baker’s theorem on linear forms in
logarithms, and a strong form of equidistribution for roots of unity, we will show
that limn→∞ An = h(α) > 0. This contradiction will give the desired result. The
details are as follows.

First, using (3), formula (4) can be rewritten as

An =
1

[k(ζn) :Q]

∑
w of k(ζn)

log |ζn −α|w .

Since α is not a root of unity, we have ζn−α 6= 0; hence the product formula gives
An = 0.

Next, take v /∈ S. If |α|v>1, we have |σ(ζn)−α|v=|α|v for each σ : k(ζn)/k ↪→
kv, by the ultrametric inequality. On the other hand, if |α|v ≤ 1, the integrality
hypothesis gives |σ(ζn)−α|v = 1. It follows that for each v /∈ S

1
[k(ζn) :Q]

∑
σ : k(ζn)/k↪→kv

log(|σ(ζn)−α|v) =
1
[k :Q]

max(0, log |α|v), (5)

1The authors thank Pascal Autissier for correcting an error in an earlier version of this example.
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so

An =
∑
v∈S

1
[k(ζn) :Q]

∑
σ :k(ζn)/k↪→kv

log(|σ(ζn)−α|v)+
1
[k :Q]

∑
v /∈S

max(0, log |α|v).

Now let n→∞. Since S is finite, we can interchange the limit and the sum over
v ∈ S, obtaining

0=
∑
v∈S

(
lim

n→∞

1
[k(ζn) :Q]

∑
σ :k(ζn)/k↪→kv

log(|σ(ζn)−α|v)

)
+

1
[k :Q]

∑
v /∈S

max(0, log |α|v).

We will now show that for each v ∈ S,

lim
n→∞

1
[k(ζn) :Q]

∑
σ :k(ζn)/k↪→kv

log(|σ(ζn)−α|v) =
1
[k :Q]

max(0, log |α|v). (6)

Inserting this in the previous equation gives h(α)= 0, a contradiction.
For each nonarchimedean v ∈ S, (6) is trivial if |α|v > 1 or |α|v < 1. In the first

case |σ(ζn)−α|v = |α|v for all n and all σ , and in the second case |σ(ζn)−α|v = 1
for all n and all σ . Hence we can assume that |α|v = 1. We can then apply the
following result, part (i) of which is a special case of the Tate–Voloch conjecture
for semiabelian varieties proved by Scanlon [1999].

Lemma 1.1. Let v be nonarchimedean, and suppose |α|v = 1. Then

(i) there is a bound M(α) > 0 such that |ζ − α|v ≥ M(α) for all roots of unity
ζ ∈ kv and

(ii) for each 0 < r < 1, there are only finitely many roots of unity ζ ∈ kv with
|ζ −α|v < r .

Proof. Since α is not a root of unity, (i) follows immediately from (ii). For (ii),
note that if ζ and ζ ′ are roots of unity with |ζ − α|v < r and |ζ ′ − α|v < r , then
|ζ − ζ ′|v < r and so ζ ′′ = ζ−1ζ ′ is a root of unity with |1− ζ ′′|v < r . There are
only finitely many such ζ ′′. Indeed, if p is the rational prime under v, the only
roots of unity ξ ∈ kv with |1−ξ |v < 1 are those with order pn for some n. If ξ is a
primitive pn-th root of unity, then |1−ξ |v = p−[kv :Qp]/pn−1(p−1) so 1> r > |1−ξ |v
for only finitely many n. �

Assuming v is nonarchimedean and |α|v = 1, let M(α) be as in Lemma 1.1. Fix
0 < r < 1, and let N (r) be the number of roots of unity in kv with |ζ − α|v < r .
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For each ζn and each σ : k(ζn)/k→ kv, we have |σ(ζn)−α|v ≤ 1, so

0 ≥ lim
n→∞

1
[k(ζn) :Q]

∑
σ : k(ζn)/k↪→kv

log(|σ(ζn)−α|v)

≥ lim
n→∞

1
[k(ζn) :Q]

(
([k(ζn) : k] − N (r)) log r + N (r) · log M(α)

)
=

1
[k :Q]

log r.

Since r < 1 is arbitrary, the limit in (6) is 0, verifying (6) in this case.
Now suppose v is archimedean. To simplify notation, view k as a subfield of C

and identify kv with C. (Thus, the way k is embedded depends on the choice of v.)
By Jensen’s formula [Conway 1973, p. 280] applied to f (z)= z−α,

1
2π

∫ 2π

0
log |eiθ

−α| dθ = max(0, log |α|). (7)

Here |x | can be replaced by |x |v, since |x |v is either |x | or |x |2.
The Gal(k/k)-conjugates of roots of unity equidistribute in the unit circle. We

will give a direct proof of this below, but we note that it also follows from Bilu’s
theorem [1997] and restriction of scalars, or from the equidistribution theorem for
polynomial dynamical systems given in [Baker and Hsia 2005]. Those theorems
show that if µn is the discrete measure

µn =
1

[k(ζn) : k]

∑
σ : k(ζn)/k↪→C

δσ(ζn)(x),

where δP(x) is the Dirac measure with mass 1 at P , then the µn converge weakly
to the Haar measure µ= (1/2π)dθ on the unit circle.

If |α|v > 1 or |α|v < 1 then log |z−α|v is continuous on the unit circle. In these
cases, (6) follows from (7) and weak convergence. If |α|v = 1 then log |z−α|v is
not continuous on |z|=1 and weak convergence is not enough to give

∫
|z|=1 log |z−

α|v dµn(z)→ 0: there could be a problem if some conjugate of ζn were extremely
close to α,or if too many conjugates of ζn clustered near α.

The first problem is solved by A. Baker’s theorem on lower bounds for linear
forms in logarithms [Baker 1975, Theorem 3.1, p. 22]. We are assuming that
|α|v = 1, and α is not a root of unity. Fix a branch of log with log z = log |z|+ iθ ,
for −π < θ ≤ π , and write logα = iθ0. For another branch, log 1 = 2π i . The
following is a special case of Baker’s theorem. (In his statement of the theorem,
Baker uses an exponential height having bounded ratio with H(β)= eh(β).)

Proposition 1.2 (A. Baker). There is a constant C = C(α) > 0 such that for each
β = a/N ∈Q, with a, N ∈ Z coprime,

| iθ0−β · 2π i | ≥ e−C ·max(1,h(β)) ,

where h(β)= log max(|a|, |N |) is the Weil height of β.
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The second problem is settled by a strong form of equidistribution for roots of
unity, proved starting on page 226. It says that for any 0 < γ < 1, the conjugates
of the ζn are asymptotically equidistributed in arcs of length [k(ζn) : k]−γ . Note
that weak convergence is equivalent to equidistribution in arcs of fixed length.

Proposition 1.3 (Strong equidistribution). Let k ⊂ C be a number field. Then the
Gal(k/k)-conjugates of the roots of unity in k (viewed as embedded in C) are
strongly equidistributed in the unit circle, in the following sense.

Given an arc I in the unit circle, write µ(I ) = 1
2π length(I ) for its normalized

Haar measure. If ζ ∈ k is a root of unity, put

N (ζ, I ) = #
{
σ(ζ ) ∈ I : σ ∈ Gal(k/k)

}
.

Fix 0< γ < 1. Then for all roots of unity ζ and all I ,

N (ζ, I )
[k(ζ ) : k]

= µ(I )+ Ok,γ ([k(ζ ) : k]−γ ). (8)

Assuming Proposition 1.3, we will now complete the proof of Theorem 0.1 by
showing that (6) holds for archimedean v such that |α|v = 1.

Let µ = (1/2π) dθ be the normalized Haar measure on the unit circle, and for
each n, put

µn =
1

[k(ζn) : k]

∑
σ : k(ζn)/k→C

δσ(ζn)(x).

Then the µn are supported on the unit circle and converge weakly to µ as n→∞.
We must show that∫

|z|=1
log |z−α| dµn(z) =

1
[k(ζn) : k]

∑
σ

log(|σ(ζn)−α|) → 0 .

The idea is to split the integrand log |z−α| into two parts: a continuous “back-
ground” function that can be handled by weak convergence, and a function with a
logarithmic pole at α supported in a small neighborhood of α. The terms nearest α
can then be dealt with using Baker’s theorem, while the other terms can be treated
by strong equidistribution. Define

largα,ε(z) =min(0, log(|θ − θ0|/ε)),

taking largα,ε(θ0) = −∞. Then there is a continuous function gα,ε(z) on |z| = 1
for which log |z−α| = largα,ε(z)+ gα,ε(z).

Fix 0< ε < 1. We will show that for all sufficiently large n,∣∣∣∫
|z|=1

log |z−α| dµn(z)
∣∣∣ < 6ε . (9)
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Note that
∫ ε

0 log(t/ε) dt=−ε. For the remainder of the proof, we restrict to |z|=1;
write α = eiθ0 where −π < θ0 ≤ π , and write z = eiθ where θ0−π < θ ≤ θ0+π .
Recalling that

∫
|z|=1 log |z−α| dµ(z)= 0, we have∫

|z|=1
gα,ε(z) dµ(z) = −

∫
|z|=1

largα,ε(z) dµ(z) = −2
∫ ε

0
log(θ/ε)

dθ
2π
=
ε

π
.

By weak convergence, it follows that for all sufficiently large n,∣∣∣∫
|z|=1

gα,ε(z) dµn(z)
∣∣∣ < ε. (10)

To obtain (9), it suffices to show that for all sufficiently large n,∣∣∣∫
|z|=1

largα,ε(z) dµn(z)
∣∣∣ < 5ε .

For each interval [c, d] let Iα([c, d]) be the arc {αe2π i t
: t ∈ [c, d]}. Noting that

largα,ε(z) is supported on Iα([−ε, ε]), put D = Dn = d[k(ζn) : k]1/2e and divide
Iα([−ε, ε]) into 2D equal subarcs. Taking γ = 2/3 in Proposition 1.3, it follows
that if n is sufficiently large, each such subarc contains at most 2ε[k(ζn) : k]1/2

conjugates of ζn .
First consider the union of the two central subarcs, Iα([−ε/D, ε/D]). Let N be

the order of ζn . Let σ0(ζn)= e2π ia/N be the conjugate of ζn closest to α= eiθ0 . We
can assume that |a/N | ≤ 1, which implies that h(a/N ) = max(log |a|, log N ) =
log N . By Baker’s theorem,

|2π(a/N )− θ0| > e−C max(1,log N ) .

Hence if n is sufficiently large,

largα,ε(σ0(ζn)) > −C log N − log ε ≥ −C log N .

Since there are at most 4ε[k(ζn) : k]1/2 conjugates of ζn in Iα([−ε/D, ε/D]),

0 ≥
∫

Iα([−ε/D,ε/D])
largα,ε(|z−α|) dµn(z) > −4

C log N
[k(ζn) : k]1/2

ε .

Note that [k(ζn) : k] ≥ [Q(ζn) : Q]/[k : Q] = ϕ(N )/[k : Q]. For all large N ,
ϕ(N ) ≥ N 1/2, so there is a constant B such that [k(ζn) : k]1/2 ≥ B N 1/4. Thus for
all sufficiently large n,∣∣∣∫

Iα([−ε/D,ε/D])
log |z−α| dµn(z)

∣∣∣ < ε. (11)

Finally, consider the remaining subarcs. For `= 1, . . . , D− 1, if

z ∈ Iα
(
[`ε/D, (`+ 1)ε/D]

)
or z ∈ Iα

(
[−(`+ 1)ε/D,−`ε/D]

)
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then 0≥ largα,ε(z)≥ log(`/D). As before, by Proposition 1.3, for sufficiently large
n, each subarc contains at most 2 [k(ζn) : k] (ε/D) conjugates of ζn . It follows that

0 ≥
∫

Iα([−ε,ε])\Iα([−ε/D,ε/D])
largα,ε(z) dµn(z)

≥ 2 ·
D−1∑
`=1

log
(
(
`ε

D
)/ε

)
·

2ε
D

> 4
∫ ε

0
log(t/ε) dt = −4ε . (12)

Combining (10), (11), and (12) gives (9), which completes the proof of Theorem
0.1. �

In the course of writing this paper, the authors learned of several results related
to Theorem 0.1, some of which imply it in special cases.

A. Bang’s theorem [1886] says that if α 6= ±1 is a nonzero rational number,
then for all sufficiently large integers n there is a prime p such that the order of
α modulo p is exactly n. This can be rephrased as saying that for all sufficiently
large n, there exists a primitive n-th root of unity ζn and a nonzero prime ideal p

of Z[ζn] such that α ≡ ζn (mod p). Since all primitive n-th roots are conjugate
over Q, this implies Theorem 0.1 in the case α ∈ Q. A. Schinzel [1974] gave an
effective generalization of Bang’s theorem to arbitrary number fields; Schinzel’s
theorem implies Theorem 0.1 for number fields k which are linearly disjoint from
the maximal cyclotomic field Qab, and α ∈ k.

J. Silverman [1995] has shown that if α ∈ Q is an algebraic unit which is not
a root of unity, there are only finitely many m for which 8m(α) is a unit, where
8m(x) is the m-th cyclotomic polynomial. In fact, if d = [Q(α) : Q] he shows
there is an absolute, effectively computable constant C such that the number of
such m’s is at most

C · d1+0.7/ log log d .

In the case when α is a unit, this yields Theorem 0.1 in the same situations as
Schinzel’s theorem.

G. Everest and T. Ward [1999, Lemma 1.10] show that if F(x) ∈ Z[x] is monic
and irreducible, with roots α1, . . . , αd , and if F(x) is not a constant multiple of
x or a cyclotomic polynomial 8m(x), then the quantity 1n(F) =

∏d
i=1(α

n
i − 1)

satisfies

lim
n→∞

1
n

log1n(F) = m(F) > 0 , (13)

where m(F) = deg(F) · h(αi ) is the logarithm of the Mahler measure of F(x).
When k =Q, and α = α1 is an algebraic integer, the product formula tells us that∏
v of Q |1n(F)|v = 1, so for all large n there must be some nonarchimedean v and

some αi such that |αn
i − 1|v < 1, and this in turn means there is some n-th root of

unity ζ with |αi − ζ |v < 1. This implies there are infinitely many roots of unity
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which are not integral with respect to some αi , as also follows from Theorem 0.1.
However, the Everest–Ward theorem does not yield Theorem 0.1.

Strong equidistribution for roots of unity. We will now prove Proposition 1.3, the
strong equidistribution theorem for roots of unity. At least when k =Q, the result
is well known to analytic number theorists, but we are not aware of a reference in
the literature.

The proof rests on the following lemma, for which we thank Carl Pomerance.
Let ϕ(N ) denote Euler’s function and let d(N )=

∑
m |N ,m≥1 1 be the divisor func-

tion. We write λ(m) for the number of distinct primes dividing m, and use θ(x) to
denote a quantity satisfying −|x | ≤ θ(x)≤ |x |.

Lemma 1.4 (Pomerance). Fix an integer Q > 1 and an integer b coprime to Q.
Then for each integer N ≥ 1 divisible by Q and each interval (C, D] ⊂ R,

#
{
a ∈ (C, D] ∩Z : (a, N )= 1, a ≡ b (mod Q)

}
=

ϕ(N )
Nϕ(Q)

(D−C)+ θ(d(N )).

In particular, the error depends only on N , and not on Q or (C, D].

Proof. Let p1, . . . , pr be the distinct primes dividing N but not Q. (If there are
no such primes, take p1 · · · pr = 1 below.) Take b0 ∈ Z with b0 ≡ b (mod Q),
b0 ≡ 0 (mod p1 . . . pr ). Then{
a ∈ (C, D] ∩Z : a ≡ b (mod Q), (a, N )= 1}

= {a ∈ (C, D] ∩Z : Q |a− b0, p1, . . . , pr -a− b0
}
.

If m is a positive integer dividing p1 · · · pr , put

rm,b,Q(C, D)= # {a ∈ (C, D] ∩Z : Qm |a− b0} .

Then

rm,b,Q(C, D) =
⌊d−b0

Qm

⌋
−

⌊c−b0
Qm

⌋
=

1
Qm

(D−C)+ θ(1).

Carrying out inclusion/exclusion relative to the primes p1, . . . , pr , we have

#
{
a ∈ (C, D] ∩Z : a ≡ b (mod Q), (a, N )= 1

}
=

∑
m | p1···pr

(−1)λ(m) rm,b,Q(C, D)=
1
Q

r∏
i=1

(
1− 1

pi

)
(D−C)+ θ(d(p1 · · · pr ))

=
ϕ(N )

Nϕ(Q)
(D−C)+ θ(d(N )). �

Proof of Proposition 1.3. Let ζN denote a primitive N -th root of unity. There are
only finitely many subfields of k, so there are only finitely subfields of the form
kN = k∩Q(ζN ) for some N . For each N there is a minimal Q for which kN = kQ ,
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and then Q(ζQ)⊂Q(ζN ) so Q |N . We will call Q=QN the cyclotomic conductor
of ζN relative to k, and write TN = [Q(ζQN ) : kN ].

As Q(ζN ) is galois over Q, it is linearly disjoint from k over kN , and

Gal(k(ζN )/k)∼= Gal(Q(ζN )/kN ).

Since kN ⊂Q(ζQN )⊂Q(ζN ), the conjugates of ζN over k are a union of TN sets
of the form

{e2π ia/N
: a ≡ bi (mod QN ), (a, N )= 1},

for certain numbers bi coprime to QN .
Let I be an arc of the unit circle corresponding to an angular interval (θ1, θ2].

Put (C, D] = (N/2π)(θ1, θ2]. Then e2π ia/N
∈ I if and only if a ∈ (C, D]. By

Lemma 1.4,

N (ζN , I ) = TN ·
ϕ(N )

Nϕ(QN )
·

N
2π
(θ2− θ1) + θ(TN · d(N )). (14)

Recall that for any δ > 0, if N is sufficiently large then d(N )≤ N δ and ϕ(N )≥
N 1−δ [Hardy and Wright 1954, Theorem 315, p. 260, and Theorem 327, p. 267].
Take δ such that 0< 2δ < 1− γ . Noting that [k(ζN ) : k] = TN ϕ(N )/ϕ(QN ), and
that ϕ(QN ) is bounded independent of N , (14) gives

N (ζN , I )
[k(ζN ) : k]

= µ(I )+ Oγ (N−γ ). (15)

Since [k(ζN ) : k]≤ N , the error bound in (15) holds with N replaced by [k(ζN ) : k].
Since [k(ζN ) : k]/N γ

→∞ as N→∞, adjoining or removing endpoints of I will
not affect the form of the estimate, so (8) applies to all intervals. �

2. The finiteness theorem for elliptic curves

Preliminaries. Let k be a number field, and let E/k be an elliptic curve. We can
assume E is defined by a Weierstrass equation

y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6 (16)

with coefficients in Ok . More precisely, E is the hypersurface in P2/Spec(k) de-
fined by the homogenization of (16). Let 1 be its discriminant.

Given a nonarchimedean place v of k and points α, β ∈ E(k), we will say that β
is integral with respect to α at v if the Zariski closures cl(β) and cl(α) do not meet
in the model Ev/Spec(Ov) defined by the homogenization of (16). Equivalently,
if ‖z, w‖v is the restriction of the spherical metric on P2(kv) to E(kv) [Rumely
1989, §1.1], then for each pair of embeddings σ, τ : k/k ↪→ kv,

‖σ(β), τ (α)‖v = 1 .
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If S is a set of places of k containing all the archimedean places, we say β is
S-integral with respect to α if β is integral with respect to α at each v /∈ S.

Write ĥ (α) for the canonical height on E(k), defined by

ĥ (α) =
1
2

lim
n→∞

1
4n hP1(x([2n

]α)) =
1
3

lim
n→∞

1
4n hP2([2n

]α),

where hP1 (respectively, hP2) is the naive height on P1(k) (respectively, P2(k)), x
is the coordinate function on the Weierstrass model (16), and [m] is multiplication
by m on E(k). (For a discussion of ĥ (α) and its properties, see [Silverman 1986,
pp. 227–231 and 365–366; or 1994, § VI].) Recall that ĥ (α) ≥ 0, that ĥ ([m]α)=
m2 ĥ (α) for all m, and that ĥ (α)= 0 if and only if α ∈ E(k)tors. From these facts
it follows (as is well known) that if ξ ∈ E(k)tors, then

ĥ (α) = ĥ (α− ξ). (17)

There is also a decomposition of ĥ (α) as a sum of local terms. For each place v
of k, let λv(P) be the local Néron–Tate height function on E(kv). For compatibility
with our absolute values we normalize λv(P) so that λv(P)= [kv :Qp] ·λv,Sil(P),
where λv,Sil(P) is the local Néron–Tate height defined in Silverman [1986, p. 365].
For each 0 6= α ∈ E(k) we have

ĥ (α) =
1
[k :Q]

∑
v of k

λv(α); (18)

see [Silverman 1986, Theorem 18.2, p. 365]. Only finitely many terms in the sum
are nonzero.

If L/k is a finite extension, for each place w of L there is a normalized local
Néron–Tate height λw(P) on E(Lw). If we fix a kv-isomorphism Lw ∼= kv, then
for all P ∈ E(kv),

λw(P) = [Lw : kv] λv(P). (19)

It follows that if β ∈ E(L), then for each place v of k, as σ runs over all embeddings
of L into kv fixing k, ∑

σ : L/k↪→kv

λv(σ (β)) =
∑
w |v

λw(β). (20)

We will use the following explicit formulas.

Proposition 2.1. Let k be a number field, and let E/k be an elliptic curve. Let v
be a place of k.

(i) If v is archimedean, fix an isomorphism E(kv) ∼= C/3 for an appropriate
lattice3⊂C. Let σ(z,3) be the Weierstrass σ-function, let1(3)=g2(3)

3
−

27g3(3)
2 be the discriminant of 3, and let η : C→ R be the R-linearized
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period map associated to the Weierstrass ζ-function ζ(z,3). If P ∈ E(kv)
corresponds to z ∈ C, then

λv(P) = −log
(
|1(3)1/12e−zη(z)/2σ(z,3)|v

)
.

If µv(z) is the additive Haar measure on E(kv) that gives E(kv) ∼= C/3

total mass 1, then ∫
E(kv)

λv(z) dµv(z) = 0 .

(ii) If v is nonarchimedean and E has split multiplicative reduction at v (so E is
kv-isomorphic to a Tate curve), fix a Tate isomorphism E(kv)∼= k×v /q

Z where
q ∈ k×v satisfies |q|v = |1/j (E)|v < 1. Let B2(x) = x2

− x + 1
6 be the second

Bernoulli polynomial, and put

λ̃v(x)=
1
2

B2

( x
ordv(q)

)
(−log |q|v).

If P ∈ E(kv) corresponds to z ∈ k×v , with z chosen so that |q|v < |z|v ≤ 1, then

λv(P) = −log |1− z|v + λ̃v(ordv(z)).

If µv is the Haar measure dx/ordv(q), which gives the loop R/(Z·ordv(q))
total mass 1, then ∫ ordv(q)

0
λ̃v(x) dµv(x) = 0 .

(iii) If v is nonarchimedean and E has good reduction at v, let ‖z, w‖v be the
spherical metric on E(kv) induced by a projective embedding E ↪→P2 corre-
sponding to a minimal Weierstrass model for E at v. Then for each P ∈ Ev(kv)

λv(P) = −log ‖P, O‖v .

Proof. This is a summary of results in [Silverman 1994, § VI]; see in particular
Theorems 1.1 (p. 455), 3.2 (p. 466), 3.3 (p. 468) and 4.1 (p. 470). �

The finiteness theorem. For the convenience of the reader, we recall Theorem 0.2
from the Introduction:

Theorem 0.2. Let k be a number field, and let S be a finite set of places of k
containing all the archimedean places. If α ∈ E(k) is nontorsion (has canonical
height ĥ (α)> 0), there are only finitely many torsion points ξ ∈ E(k) tors which are
S-integral with respect to α.

Again there are limitations to possible strengthenings of the theorem:
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(A) As noted by Silverman, it is necessary that α be nontorsion. If α= O and S
is the set of archimedean places, then by Cassels’ generalization of the Lutz–Nagell
theorem (Proposition 2.4 below), each torsion point whose order is divisible by at
least two distinct primes is S-integral with respect to α.

Similarly, if α is a torsion point of order N > 1, let S contain all places of bad
reduction for E . Then for each q coprime to N , all q-torsion points are S-integral
with respect to α.

(B) When ĥ (α) > 0, Zhang has pointed out that Theorem 0.2 cannot in gen-
eral be strengthened to a result of Bogomolov type. A result of E. Ullmo [1995,
Theorem 2.4] shows that if E has good reduction at all finite places, then for each
ε > 0, there are infinitely many distinct points β ∈ E(k) with ĥ (β) < ε which are
S∞-integral with respect to α, where S∞ is the set of archimedean places of k.

Proof of Theorem 0.2. The argument is similar to the proof of Theorem 0.1, but
requires more machinery. It should be possible to axiomatize some of the argu-
ments and combine both proofs, but for overall clarity of exposition we have chosen
not to.

We begin with some reductions.
First, after replacing k by k(α), and S by the set Sk(α) of places lying over S,

we can assume that α ∈ k.
Second, after replacing k by a finite extension K/k, and replacing S with the set

SK of places of K lying above places in S, we can assume that E has semistable
reduction. Thus we can assume without loss of generality that for nonarchimedean
v, either E has good reduction, or E is kv-isomorphic to a Tate curve.

Third, after enlarging S if necessary, we can assume that S contains all v for
which |1|v 6= 1. In particular, we can assume that the model of E defined by (16)
has good reduction for all v /∈ S.

We claim that if ξn ∈ E(k) tors is any torsion point, then

ĥ (α) =
1

[k(ξn) :Q]

∑
v

∑
σ : k(ξn)/k↪→kv

λv(α− σ(ξn)). (21)

To see this, let L be the galois closure of k(ξn) in k over k. By (17) and (18), for
each conjugate σ(ξn),

ĥ (α) = ĥ (α− σ(ξn)) =
1

[L :Q]

∑
w of L

λw(α− σ(ξn)).

Averaging over all k-embeddings σ : L ↪→ k, fixing a k-embedding k ↪→ kv for
each place v of K , using (19), and noting that there are only finitely many nonzero
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terms in each sum, we have

ĥ (α)=
1
[L : k]

∑
σ : L/k↪→k

1
[L :Q]

∑
w of L

λw(α− σ(ξn))

=
1

[L :Q]

∑
v of k

∑
σ : L/k↪→kv

1
[L : k]

∑
w |v

[Lw : kv] · λv(α− σ(ξn))

=
1

[L :Q]

∑
v of k

∑
σ : L/k↪→kv

λv(α− σ(ξn)).

Since each conjugate σ(ξn) occurs [L : k(ξn)] times in the final inner sum, this is
equivalent to (21).

Suppose there were an infinite sequence of distinct torsion points {ξn} which
were S-integral with respect to α.

If v /∈ S, our initial reductions assure that E has good reduction at v. By Propo-
sition 2.1(iii) and the integrality hypothesis, λv(α− σ(ξn)) = 0 for each n and σ .
It follows that

ĥ (α) =
∑
v∈S

1
[k(ξn) : k]

∑
σ : k(ξn)/k↪→kv

λv(α− σ(ξn)). (22)

From now through page 237, we will show in a series of cases that for each
v ∈ S,

lim
n→∞

(
1

[k(ξn) :Q]

∑
σ : k(ξn)/k↪→kv

λv(α− σ(ξn))

)
= 0 . (23)

This will complete the proof of Theorem 0.2, for then, combining (22) and (23)
and letting n→∞ in (22), we would have ĥ (α)= 0, contradicting the assumption
that α is nontorsion.

The archimedean case. Let v be an archimedean place of k. To simplify notation
we view k as embedded in C and fix an isomorphism of kv with C. Thus, the way
k is embedded depends on the choice of v.

To prove (23) we will need a theorem of David and Hirata-Kohno on linear forms
in elliptic logarithms and a strong form of equidistribution for torsion points.

Proposition 2.2 (a special case of [David and Hirata-Kohno 2002, Theorem 1]).
Let E/k be an elliptic curve defined over a number field k⊂C. Fix an isomorphism
θ :C/3∼= E(C) for an appropriate lattice3⊂C. Let ω1, ω2 be generators for3.
Fix a nontorsion point α ∈ E(k) and let a ∈C be such that θ(a mod 3)= α. There
is a constant C =C(E, α) > 0 such that for all rational numbers `1/N , `2/N with
`1, `2, N ∈ Z, ∣∣∣a− (

`1
N
ω1+

`2

N
ω2

)∣∣∣ ≥ e−C max(1,log N ) .
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By the Szpiro–Ullmo–Zhang theorem [1997], the galois conjugates of the ξn are
equidistributed in E(C). As we will see, they are in fact strongly equidistributed,
in a sense analogous to that in Proposition 1.3.

If ξ ∈ E(k)tors, write Gal(k/k) · ξ for the orbit {σ(ξ) : σ ∈Gal(k/k)}. For each
set U ⊂ E(C), write

N (ξ,U ) = #
(
(Gal(k/k) · ξ)∩U

)
.

Let S ⊂ C be a bounded, convex, centrally symmetric set with 0 in its interior.
For each a ∈ C and 0 ≤ r ∈ R, write S(a, r) = {a + r z : z ∈ S}. For example, if
S= B(0, 1) then S(a, r)= B(a, r).

Let 3 ⊂ C be a lattice such that E(C) ∼= C/3. Let r0 = r0(S,3) > 0 be
the largest number such that S(a, r) injects into C/3 ∼= E(C) under the natural
projection for all a ∈C and all 0≤ r < r0. Write SE(a, r) for the image of S(a, r)
in E(C).

Proposition 2.3 (Strong equidistribution). Let k ⊂ C be a number field, and let
E/k be an elliptic curve. Then the Gal(k/k)-conjugates of the torsion points in
E(k) are strongly equidistributed in E(C) in the following sense:

Let µ be the additive Haar measure on E(C) with total mass 1. Fix γ with 0 <
γ < 1/2, and fix a bounded, convex, centrally symmetric set S with 0 in its interior.
Then for each r such that S(a, r) injects into E(C), and for all ξ ∈ E(k)tors,

N
(
ξ,SE(a, r)

)
[k(ξ) : k]

= µ
(
SE(a, r)

)
+ O([k(ξ) : k]−γ )

where the implied constant depends only on k, S, E , and γ .

The proof will be given starting on page 237.
We can now complete the proof of (23) in the archimedean case. The argument

is similar to the one in the proof of Theorem 0.1. By the Szpiro–Ullmo–Zhang
theorem [1997], or by Proposition 2.3 when S has the shape of a period parallelo-
gram (so E can be tiled with sets SE(a, r)), one knows that as n→∞ the discrete
measures

µn =
1

[k(ξn) : k]

∑
σ : k(ξn)/k↪→C

δσ(ξn)(x)

converge weakly to the Haar measure µ on E(C) having total mass 1. Proving (23)
is equivalent to showing that

lim
n→∞

∫
E(C)

λv(α− z) dµn(z) = 0 .

Choose a lattice 3 ⊂ C such that E(C) ∼= C/3, and let F be the area of a
fundamental domain for 3. After scaling 3, if necessary, we can assume that
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F = 1. After this normalization, µ coincides with Lebesgue measure. Let θ :
C/3 ∼= E(C) be an isomorphism as in the David/Hirata-Kohno theorem, and let
a ∈ C be a point with θ(a mod 3)= α.

Fix ε > 0 small enough that B(a, ε) injects into C/3, and identify B(a, ε) with
its image BE(a, ε)= θ(B(a, ε))⊂ E(C). (In particular, identify a with α). Without
loss, we can assume that ε < 1/π , so πε2 < ε. We will show that for all large n,∣∣∣∫

E(C)
λv(α− z) dµn(z)

∣∣∣ < 6ε . (24)

Put

labsα,ε(z) =


∞ if z = a,

−[kv : R] log |z−a|
ε

if z ∈ B(a, r)\{a},

0 if z ∈ E(C)\B(a, r),

and note that

0<
∫

E(C)
labsα,ε(z) dµ(z)=

∫
B(a,ε)

−[kv : R] log(|z− a|/ε) dµ(z)

= [kv : R]
∫ ε

0
−2π t log

t
ε

dt = [kv : R]
πε2

2
< ε.

By Proposition 2.1(i) there is a continuous function gα,ε(z) on E(C) such that

λv(α− z) = labsα,ε(z)+ gα,ε(z).

Since
∫

E(C) λv(α− z) dµ(z)= 0 (also by Proposition 2.1(i)), we get∣∣∣∫
E(C)

gα,ε(z) dµ(z)
∣∣∣ = ∣∣∣∫

B(a,ε)
−labsα,ε(z) dµ(z)

∣∣∣ < ε.

By weak convergence, it follows that for all sufficiently large n,∣∣∣∫
E(C)

gα,ε(z) dµn(z)
∣∣∣ < 2ε . (25)

To complete the proof of (24), it suffices to show that for all sufficiently large n,∣∣∣∫
B(a,r)

log(|z− a|/ε) dµn(z)
∣∣∣ < 2ε . (26)

For this, put D=Dn=d[k(ξn) :k]1/8e, and subdivide B(a, ε) into a disc A0(n)=
B(a, ε/D) and annuli A`(n)= B(a, (`+1)ε/D)\B(a, `ε/D) for `=1, . . . , D−1.

For the central disc, we have µ(A0(n))= πε2/D2
≤ πε2/[k(ξn) : k]1/4. Apply-

ing Proposition 2.3 when S is a disc, taking γ = 3/8, gives

N (ξn, A0(n))/[k(ξn) : k] ≤ 2µ(A0(n))
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for all sufficiently large n. If ξn has order Nn , the David/Hirata-Kohno theorem
tells us that for each conjugate σ(ξn) ∈ A0(n) (where as before we are identifying
B(a, ε) with its image θ(B(a, ε))⊂ E(C))∣∣log |σ(ξn)− a|

∣∣ ≤ C log Nn .

Using (41) and (42) below, one sees that [k(ξn) : k] ≥ N 1/2
n for all sufficiently large

n. Thus 0≤
∣∣log |σ(ξn)−α|

∣∣ ≤ 2C log[k(ξn) : k] and

0 ≤
∣∣∣∫

A0(n)
log |z−α| dµn(z)

∣∣∣ ≤ 4πε2C
log[k(ξn) : k]
[k(ξn) : k]1/4

< ε (27)

for all sufficiently large n.
For each annulus A`(n), `= 1, . . . , D− 1, one has

µ(A`(n)) = π(2`+ 1) ε2/D2 ∼= π(2`+ 1) ε2/[k(ξ) : k]1/4 .

Since A`(n) is the difference of two sets to which Proposition 2.3 applies, we find
as above that for sufficiently large n,

N (ξn, A`(n))/[k(ξn) : k] ≤ 2µ(A`(n)).

Note that on A`(n),
∣∣log(|z− α|/ε)

∣∣ ≤ −log(`/D). Summing over these annuli,
and bounding the resulting Riemann sum by an integral, we find that∣∣∣∫

B(a,ε)\A0(n)
log |z−a|

ε
dµn(z)

∣∣∣ ≤ D−1∑
`=1

−log
(
`ε/D
ε

)
· 2µ(A`(n))

< 2
∫

B(a,ε)
−2π t log(t/ε) dt = πε2 < ε.

Combining this with (27) gives (26), which completes the proof of (23) in the
archimedean case (assuming Proposition 2.3).

The nonarchimedean case. In the nonarchimedean case, the proof of (23) depends
on a well known result of Cassels on the denominators of torsion points [Silverman
1986, Theorem 3.4, p. 177]. Write Ov for the ring of integers of kv.

Proposition 2.4 (Cassels). Let kv be a local field of characteristic 0 and residue
characteristic p > 0, and let E/kv be an elliptic curve defined by a Weierstrass
equation

y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6

whose coefficients belong to Ov (note that the Weierstrass equation need not be
minimal). Let P ∈ E(kv)tors be a point of exact order m ≥ 2.

(i) If m is not a power of p, then x(P), y(P) ∈ Ov.
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(ii) If m = pn , then x(P)= a/D2, y(P)= b/D3 where a, b, D ∈ Ov and

ordv(D) ≤
ordv(p)

pn − pn−1 .

Proof. Silverman [1986, Theorem 3.4] states the theorem for torsion points be-
longing to E(kv), with a, b, D ∈ kv in part (ii) and D satisfying

ordv(D) =
⌊ ordv(p)

pn − pn−1

⌋
, (28)

where bxc denotes the floor of x . Since the Weierstrass equation for E need not
be minimal, we can replace kv by an arbitrary finite extension Lw/kv, and if ew/v
is the ramification index of Lw/kv, then for P ∈ E(Lw)tors and a, b, D ∈ Lw, (28)
becomes

ordv(D) =
1

ew/v
·

⌊ew/v ordv(p)
pn − pn−1

⌋
. (29)

This yields the result for all P ∈ E(kv) tors. �

As a consequence, we obtain the following result, part (i) of which is a special
case of the Tate–Voloch conjecture proved in [Scanlon 1999].

Corollary 2.5. Let E/kv be an elliptic curve defined over a nonarchimedean local
field. Then for each nontorsion point α ∈ E(kv):

(i) There is a number M = M(α) such that for all ξ ∈ E(kv)tors,

λv(α− ξ) ≤ M .

(ii) If E has good reduction, then for each ε > 0, there are only finitely many
ξ ∈ E(kv)tors with λv(α− ξ) > ε. If E is a Tate curve, then for each ε > 0, there
are only finitely many ξ ∈ E(kv)tors with λv(α− ξ) > ε+ 1

12(−log |1(E)|v).

Proof. After a finite base extension, we can assume that E either has good reduction
or is a Tate curve. Since (ii) implies (i), it suffices to prove (ii). Fix ε > 0.

First suppose E has good reduction. Then λv(x − y) = −log ‖x, y‖v, where
‖x, y‖v is the spherical distance on the minimal Weierstrass model for E/kv. If
ξ1, ξ2 ∈ E(kv)tors satisfy λv(α− ξi ) > ε, then ‖ξ1, α‖v, ‖ξ2, α‖v < (Nv)−ε, where
Nv is the order of the residue field of Ov. By the ultrametric inequality for the
spherical distance [Rumely 1989, § 1.1], ‖ξ1, ξ2‖v < (Nv)−ε. By translation in-
variance, ‖ξ1−ξ2, 0‖v<(Nv)−ε. Put ξ := ξ1−ξ2. By the definition of the spherical
distance, if x, y are the coordinate functions in the minimal Weierstrass model,

−log ‖ξ, 0‖v = min
(
ordv(x(ξ)), ordv(y(ξ))

)
· log(Nv).

By Cassels’ theorem, there are only finitely many torsion points for which

min
(
ordv(x(ξ)), ordv(y(ξ))

)
> ε/ log(Nv).
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Next suppose E is a Tate curve. Fix a Tate isomorphism E(kv)∼= k×v /q
Z where

|q|v = |1(E)|v < 1, and let y2
+ xy = x3

+ a4(q)x + a6(q) be the corresponding
Weierstrass equation. Let a, u1, u2 ∈ k×v correspond to α, ξ1, ξ2 respectively; we
can assume that |q|v < |a|v, |u1|v, |u2|v ≤ 1. By the formula for λv(x − y) in
Proposition 2.1(ii), if λv(α−ξi ) > ε+

1
12(−log |1(E)|v), then | a|v = |u1|v = |u2|v

and
−log |1− a−1ui |v = ordv(1− a−1ui ) · log(Nv) > ε.

Put ξ=ξ1−ξ2 and u=u−1
2 u1. Then ξ corresponds to u under the Tate isomorphism,

and ordv(1−u) > ε/ log(Nv). By the formulas for x(ξ), y(ξ) in [Silverman 1994,
p. 425],

ordv(x(ξ))= 2 ordv(1− u) and ordv(y(ξ))= 3 ordv(1− u).

Again by Cassels’ theorem, only finitely many torsion points ξ can satisfy

min
(
ordv(x(ξ)), ordv(y(ξ))

)
> ε/ log(Nv). �

We can now prove (23) when E has good reduction at v.
Fix ε > 0. Let M be the upper bound in Corollary 2.5(i), and let N be the

number of points ξ ∈ E(kv)tors with λv(α− ξ) > ε given by Corollary 2.5(ii). For
all sufficiently large n, M N/[k(ξn) : k]< ε, giving

0 ≤
1

[k(ξn) : k]

∑
σ : k/k↪→kv

λv(α−σ(ξn)) ≤
([k(ξn) : k] − N )
[k(ξn) : k]

ε+
N

[k(ξn) : k]
M < 2ε .

Thus

lim
n→∞

1
[k(ξn) : k]

∑
σ : k/k↪→kv

λv(σ (ξn)−α) = 0 .

To prove (23) when E is a Tate curve at v, we will need the following equidis-
tribution theorem of Chambert-Loir [2006, corollaire 5.5].

Fix a Tate isomorphism E(kv) ∼= kv/qZ, put L = Z · ordv(q) ⊂ R, and define a
“reduction map” r : E(k)→R/L by setting r(P)= ordv(a) (mod L) if P ∈ E(kv)
corresponds to a ∈ k×v .

For each global point P ∈ E(k), define a measure µP,v on R/L by

µP,v(z) =
1

[k(P) : k]

∑
σ : k/k↪→kv

δr(σ (P))(z)

and let µv be the Haar measure on R/L with total mass 1.

Proposition 2.6 (Chambert-Loir). For each sequence of distinct points {Pn} in
E(k) with ĥ (Pn)→ 0, the sequence of measures {µPn,v

} converges weakly to µv.
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We can now prove (23) when E is a Tate curve. Recall that {ξn} is a sequence
of distinct torsion points which are S-integral with respect to α.

Fix ε > 0. Let M be the upper bound in Corollary 2.5(i). Put a = r(α) and let
δ>0 be such thatµ((a−δ, a+δ))<ε/M , where by abuse of notation we identify a
sufficiently short interval in R with its image in R/L . By Chambert-Loir’s theorem,
µξn,v

((a− δ, a+ δ)) < 2ε/M for all sufficiently large n.
By the formulas in Proposition 2.1(ii),

∫
R/L λ̃v(z) dµv(z)= 0 and

∣∣ 1
[k(ξn) : k]

∑
σ : k/k↪→kv

λv(σ (ξn)−α)
∣∣

≤

∣∣∣∫
R/L

λ̃v(z− a) dµξn,v
(z)

∣∣∣ + M µξn,v
((a− δ, a+ δ)).

For all sufficiently large n the right side is at most 3ε. Hence

lim
n→∞

1
[k(ξn) : k]

∑
σ : k/k↪→kv

λv(σ (ξn)−α) = 0 .

This completes the proof of Theorem 0.2. �

Several results in the literature use methods related to ours.
J. Cheon and S. Hahn [1999] proved an elliptic curve analogue of Schinzel’s

theorem [1974]. Likewise, Everest and B. Nı́ Flathúin [1996] evaluate “elliptic
Mahler measures” in terms of limits involving division polynomials, obtaining re-
sults similar to (13). They use David/Hirata-Kohno’s theorem on elliptic logarithms
in place of Baker’s theorem, much as we do.

More recently, L. Szpiro and T. Tucker [2005] proved that local canonical heights
for a dynamical system can be evaluated by taking limits over “division poly-
nomials” for the dynamical system. (These polynomials have periodic points as
their roots.) Their work uses Roth’s theorem rather than Baker’s or David/Hirata-
Kohno’s theorem. It would be interesting to see if this could be brought to bear on
Conjecture 3.1 below.

Strong equidistribution for torsion points on elliptic curves. We will now prove
Proposition 2.3, the strong equidistribution theorem for galois orbits of torsion
points on elliptic curves, which was used in the proof of Theorem 0.2.

Proof of Proposition 2.3. The proof breaks into two cases, depending on whether
or not E has complex multiplication. Both cases are similar, and are modeled on
Proposition 1.3. We find an extension field over which there is a two-dimensional
geometric interpretation of the galois orbits, and by carrying out inclusion/exclu-
sion, we are able to count the number of conjugates over that field lying in a convex,
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centrally symmetric set, with a good error bound. The conjugates over the original
field can then be counted by breaking into cosets.

Case 1. Suppose E does not have complex multiplication. The action of Gal(k/k)
on E(k)tors induces an injective homomorphism

η : Gal(k/k)→ lim
←−

GL2(Z/NZ)∼=
∏

p

GL2(Zp).

By Serre’s theorem [1972, théorème 3], the image of Gal(k/k) in
∏

p GL2(Zp) is
open. Hence there is a number Q such that Im(η) contains the subgroup∏

p |Q

(1+ QM2(Zp))×
∏
p - Q

GL2(Zp).

Let GQ ⊂ Gal(k/k) be the preimage of this subgroup.

Step 1: Determining the size of a galois orbit under GQ . Let ξ ∈ E(k) tors have order
N , and put QN = gcd(Q, N ). For suitable right coset representatives σ1, . . . , σT
of GQ in Gal(k/k), the galois orbit Gal(k/k) · ξ decomposes as a disjoint union
of GQ-orbits:

Gal(k/k) · ξ =
T⋃

i=1

GQ · σi (ξ).

Since GQ is normal in Gal(k/k), the orbits GQ · σi (ξ) = σi (GQ · ξ) all have the
same size. Thus [k(ξ) : k] = T ·#(GQ · ξ). By considering the action of GQ on the
p-parts of ξ , one sees that

#(GQ ·ξ) =
∏

p |QN

p2(ordp(N )−ordp(QN ))
∏
p |N

p - QN

p2 ordp(N )
(

1− 1
p2

)
=

N 2

Q2
N
·

∏
p |N
p - Q

(
1− 1

p2

)
.

(30)

Indeed, let ξp be the p-component of ξ in E[N ] ∼=
∏

p |N (Z/pordp(N )Z)2. Identify
ξp with an element of (Z/pordp(N )Z)2: then ξp generates that group. If p divides
QN , the image of GQ in GL2(Z/pordp(N )Z) is I+ pordp(QN )M2(Z/pordp(N )Z), and

GQ · ξp = ξp + pordp(QN ) · (Z/pordp(N )Z)2 .

On the other hand, if p - QN , the image of GQ in GL2(Z/pordp(N )Z) is the full
group, so

GQ · ξp = (Z/pordp(N )Z)2\p · (Z/pordp(N )Z)2 .

Step 2: Counting translated lattice points in convex domains. Let F be a funda-
mental domain for 3; we can assume F is bounded and contains 0. Let C be such
that F⊂S(0,C). Note that since S is convex, if z1 ∈S(a1, r1) and z2 ∈S(a2, r2),
then z1+ z2 ∈ S(a1+ a2, r1+ r2). Put F = area F and S = area S.
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For each 0< t ∈R, we have area(tF)= t2 F and area S(a, r)= r2S. Each lattice
t3N is homothetic to 3N , and hence has fundamental domain tF⊂S(0, tC). Fix
x0 ∈ C. As y runs over x0+ t3, the sets y+ tF are pairwise disjoint and cover C.
If y ∈ S(a, r), then y+ tF⊂ S(a, r + tC). Hence

#
(
(x0+t3)∩S(a, r)

)
≤

area
(
S(a, r + tC)

)
area(tF)

=
r2S
F
·

1
t2+

2C Sr
F
·
1
t
+

C2S
F
. (31)

Similarly, if r > tC , take z ∈ S(a, r − tC), and let y ∈ x0 + t3 be such that
z ∈ y + tF. Then z − y ∈ tF, so z − y ∈ S(0, tC), and since S is centrally
symmetric y − z ∈ S(0, tC). Thus y = z + (y − z) ∈ S(a, r). It follows that
S(a, r − tC)⊂

⋃
y∈(x0+t3)∩S(a,r)(y+ tF), so

#
(
(x0+t3)∩S(a, r)

)
≥

area
(
S(a, r − tC)

)
area(tF)

>
r2S
F
·

1
t2−

2C Sr
F
·
1
t
−

C2S
F
. (32)

If r ≤ tC , the right side of (32) is negative, so the inequality between the first and
last quantities holds trivially.

Now let D be a positive divisor of N/QN . Taking t = QN D/N , and combining
(31), (32), we obtain∣∣∣∣ #

((
x0+

QN D
N

3N

)
∩S(a, r)

)
−

area
(
S(a, r)

)
area(F)

·
N 2

Q2
N D2

∣∣∣∣
≤

2C Sr
F
·

N
QN D

+
C2S

F
. (33)

Step 3: Inclusion/exclusion. Write3N =
1
N3, fix σi , and let x ∈3N correspond to

σi (ξ). Since E[N ] ∼=3N/3, the considerations above show there is a one-to-one
correspondence between elements of GQ · σi (ξ), and cosets y + 3 for y ∈ 3N

such that y − x ∈ QN3N and y +3 has exact order N in 3N/3. Equivalently,
y− x ∈ QN3N and y /∈ p3N for each prime p dividing N but not Q.

Let p1, . . . , pR be the distinct primes dividing N but not Q; if there are no such
primes, take p1 · · · pR = 1. Since QN and p1, · · · , pR are pairwise coprime, there
is an x0 ∈ 3N such that x0 ≡ x (mod QN3N ) and x0 ≡ 0 (mod p1 · · · pR3N ).
Then y − x0 ∈ QN3N if and only if y ∈ x0 + QN3N , and y ∈ pi3N if and
only if y ∈ x0+ pi3N . Note that if D|p1 · · · pR then QN3N ∩ D3N = QN D3N .
Recalling that r0 is the supremum over positive numbers r for which S(a, r) injects
into C/3, take a ∈C and take 0< r ≤ r0. Applying inclusion/exclusion, we obtain

#
(
GQ ·σi (ξ)∩SE(a, r)

)
=

∑
D | p1···pR

(−1)λ(D) · #
(
(x0+QN D3N )∩S(a, r)

)
, (34)

where λ(D) is the number of distinct primes dividing D.
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Inserting (33) in (34) and summing over all σi (ξ), i = 1, . . . , T , we find

N
(
ξ,SE(a, r)

)
=

area S(a, r)
F

·
T N 2

Q2
N

∏
p |N
p - Q

(
1− 1

p2

)

+ θ

(
2C Sr

F
·

T N
QN

∏
p |N
p - Q

(
1+ 1

p

))
+ θ

(C2S
F
· T 2R

)
,

where, as before, θ(x) denotes a quantity with −x ≤ θ(x)≤ x . By (30),

[k(ξ) : k] = T · #(GQ · ξ) =
T N 2

Q2
N

∏
p |N
p - Q

(
1− 1

p2

)
. (35)

Since r ≤ r0, it follows that

N
(
ξ,SE(a, r)

)
[k(ξ) : k]

=
area S(a, r)

area F
+ θ

(
2C Sr0

F
·

QN

N
∏

p |N
p - Q

(
1− 1

p

))

+ θ

(
C2S

F
·

2R Q2
N

N 2
∏

p |N
p - Q

(
1− 1

p2

))
.

Here area S(a, r)/area F = µ(SE(a, r)). Note that T is bounded by the order
of GL2(Z/QZ)), QN is bounded by Q, and

N
∏
p |N

(
1− 1

p

)
≥ N 1−ε

for each ε > 0 and each sufficiently large N . Using (35) and the fact that

1 ≥
∏

p |N ,p - Q

(
1− 1

p2

)
≥ 1/ζ(2)

one sees that the first error term is Oγ ([k(ξ) : k]−γ ) for each γ < 1/2. Similarly,
2R
≤ d(N ) ≤ N ε for each ε > 0 and each sufficiently large N . Thus the second

error term is negligible in comparison with the first. This completes the proof when
E does not have complex multiplication.

Case 2. Suppose E has complex multiplication. Let K be the CM field of E , and
let O⊂ OK be the order corresponding to E . After enlarging k if necessary, we can
assume that K ⊂ k. Let 3 ⊂ C be a lattice such that E ∼= C/3. Without loss of
generality, we can assume that 3 ⊂ K . Fix an analytic isomorphism ϑ : C/3 ∼=

E(C).
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By the theory of complex multiplication (see [Shimura 1971], [Lang 1973], or
[Silverman 1994, Chapter II]), E(k)tors is rational over kab, the maximal abelian
extension of k. Let k×A be the idèle ring of k, and for s ∈ k×A let [s, k] be the Artin
map acting on kab. Given σ ∈ Gal(k/k), take s ∈ k×A with σ |kab = [s, k], and put
w = Nk/K (s) ∈ K×A . There is an action of K×A on lattices, defined semilocally,
which associates to w and 3 a new lattice w−13. This action extends to a map
w−1
: K/3 → K/w−13. There is also a homomorphism ψ : k×A → K×, the

grössencharacter of E , which has the property that ψ(s)Nk/K (s)−13 = 3. Put
κ = ψ(s) ∈ K×.

With this notation, there is a commutative diagram

K/3

w−1

��

� � // C/3
ϑ // E(k) tors

σ

��
K/w−13

κ

��

� � // C/w−13 // E(k) tors

id
��

K/3 � � // C/3
ϑ // E(k) tors

in which the vertical arrows on the left are multiplication byw−1 and κ respectively,
and those on the right are the galois action (see [Shimura 1971, Proposition 7.40,
p. 211], or [Lang 1973, Theorem 8, p. 137]). Note that the same analytic isomor-
phism ϑ appears in the top and bottom rows. Thus, if ξ ∈ E(k) tors corresponds to
x ∈ K/3, and σ |kab = [s, k], then

σ(ξ) = ϑ(ψ(s)Nk/K (s)−1x).

This gives an explicit description of the galois action on torsion points in terms of
adelic “multiplication”.

The action of K×A in the diagram is as follows. Let L ⊂ K be a lattice. For
each rational prime p of Q, write L p = L ⊗Z Zp and K p = K⊗Q Qp; if w ∈ K×A ,
let wp be its p-component. Then w−1

p L p is a Zp-lattice in K p. There is a unique
lattice M ⊂ K such that Mp =w

−1
p L p for each p [Lang 1973, Theorem 8, p. 97],

and w−1L is defined to be M . Likewise, if x ∈ K/L , lift it to an element of
K ⊂ KA and write x p ∈ K p for its p-component; there is a y ∈ K such that
w−1

p x p (mod w−1L p) = y (mod Mp) for each p, and w−1(x (mod L)) is defined
to be y (mod M).

The order O has the form O=Z+cOK for some integer c≥ 1, and c is called the
conductor of O. The lattice3 is a proper O-lattice, meaning that O={x ∈ K : x3⊂
3}. For any order O, there are only finitely many homothety classes of proper O-
lattices [Lang 1973, Theorem 7, p. 95]. Write Op=O⊗Z Zp and OK ,p=OK⊗Z Zp.
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If p -c, then Op =OK ,p ∼=
∏

p | p OK ,p, where p runs over the primes of K lying over
p, and OK ,p is the completion of OK at p.

Let U be the kernel of the grössencharacter ψ : k×A → K×, and take W =
Nk/K (U ) ⊂ K×A . Since ψ is continuous, there is an integer Q ≥ 1 such that, for
each p |Q, the subgroup 1+QOK ,p ⊂ O×K ,p is contained in Wp and for each p - Q,
O×K ,p ⊂Wp. If w ∈W , then w−13=3, so wp ∈ O×p . Hence c |Q.

Noting that Op = OK ,p if p - Q, let WQ ⊂ K×A be the subgroup

C××
∏
p |Q

(1+ QOp)×
∏
p - Q

O×p ⊂ W ,

and let UQ be its preimage in k×A under the norm map. Put

GQ = {σ ∈ Gal(k/k) : σ |kab = [s, k] for some s ∈UQ} .

Then GQ is open and normal in Gal(k/k).

Step 1: Determining the size of a galois orbit under GQ . Fix ξ ∈ E(k)tors. Suppose
ξ has order N ; put QN = gcd(Q, N ). For suitable right coset representatives
σ1, . . . , σT of GQ in Gal(k/k), the orbit Gal(k/k) · ξ decomposes as a disjoint
union of GQ-orbits:

Gal(k/k) · ξ =
T⋃

i=1

GQ · σi (ξ).

As before, the orbits GQ · σi (ξ) = σi (GQ · ξ) all have the same size, and [k(ξ) :
k] = T · #(GQ · ξ).

Let ξ correspond to x +3 ∈ K/3. Write 3(x) for the O-lattice Ox +3; since
ξ has order N , [3(x) :3] ≥ N . More generally, for any integer m, put 3(mx) =
O ·mx +3= mOx +3. Note that

3(mx)/3 ∼=
∏
p |N

3(mx)p/3p =
∏
p |N

(mOp x +3p)/3p .

If p |Q, then GQ acts on ξp through the subgroup 1+ pordp(Q)Op ⊂ O×p . Noting
that ordp(QN ) = min(ordp(Q), ordp(N )) and that pordp(Q)x ∈ 3p if ordp(Q) ≥
ordp(N ), we have

GQ · ξp ∼= (x + pordp(Q)Op x +3p)/3p = (x +3(pordp(QN )x)p)/3p .

Thus #(GQ · ξp)= [3(pordp(QN )x)p :3p].
If p - Q, then Op = OK ,p and GQ acts on ξp through O×p

∼=
∏

p | p O×K ,p. For
each p | p, and each O-lattice L , we have L p ∼= (OK L)p where OK L is an OK -
fractional ideal. Thus ordp(L) := ordp(OK L) is well defined. Write ordp(ξ) =
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ordp(3)− ordp(3(x)). Then 3(x)p/3p ∼=
∏

p | p OK /p
ordp(ξ) and

#(GQ · ξp) = [3(x)p :3p] ·
∏
p | p

ordp(ξ)>0

(
1− 1

Np

)
,

where Np= #(OK /p) is the norm of p.
Combining these formulas, and using that∏

p |N

[3(pordp(QN )x)p :3p] = [3(QN x) :3],

we obtain
#(GQ · ξ) = [3(QN x) :3] ·

∏
p |N ,p - Q
ordp(ξ)>0

(
1− 1

Np

)
. (36)

Step 2: Counting translated lattice points in convex domains. If L is any O-lattice,
and F(L) is the area of a fundamental domain for C/L , then by Minkowski’s
theorem there is a point 0 6= ` ∈ L with |`| ≤ (4/π)1/2 F(L)1/2. Here L is a proper
O ′-lattice for some order O ′ with conductor c′ |c. There are only finitely many
such orders O ′, and for each O ′ there are only finitely many homothety classes of
proper O ′-lattices, so there are only finitely many homothety classes of O-lattices.
Hence there is a constant C1, independent of L , such that L has a fundamental
domain F(L) contained in the ball B(0,C1 · F(L)1/2). In turn, there is a constant
C , independent of L , such that F(L)⊂ S(0,C · F(L)1/2). This fact is the crux of
the argument in the CM case.

Again, if L is an O-lattice, then for each ideal $ of OK coprime to c, there
is a unique lattice $ L defined by the property that ($ L)q = ($OK L)q for all
primes q |N$ , and ($ L)q = Lq for all primes q - N$ . This lattice has index
[L :$ L] = N$ .

We will apply this taking L=3(QN x)= QN Ox+3. Note that the fundamental
domain F($3(QN x)) has area F · N$/[3(QN x) :3], where F is the area of a
fundamental domain F for 3. By the same argument leading to (33) we find that
for each x0 ∈ C∣∣∣∣#(
(x0+$3(QN x))∩S(a, r)

)
−

area S(a, r)
area F

·
[3(QN x) :3]

N$

∣∣∣∣
≤

2C Sr
F
·

(
[3(QN x) :3]

N$

)1/2
+

C2S
F
. (37)

Step 3: Inclusion/exclusion. Now consider a set S(a, r), where a ∈ C and r ≤
r0. For each σi (ξ), we will compute #

(
(GQ · σi (ξ)) ∩ SE(a, r)

)
. Fix σi , and

replace ξ by σi (ξ) in the discussion above. Let x ∈ K/3 correspond to σi (ξ),
and let p1, . . . , pR be the distinct primes of OK dividing N but not Q, for which
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ordp(3(x)) 6= ordp(3). If there are no such primes, take p1 · · · pR = 1 in the
argument below. (Note that the p j are independent of σi , since K ⊂ k and for
p - Q, σi acts on ξ through O×p .) Thus there is a one-to-one correspondence between
elements of GQ · σi (ξ), and cosets y +3 for y ∈ K such that y ∈ x +3(QN x)
and y /∈ p j3(x) for j = 1, . . . , R. Since 3(QN x) ⊂ 3(x), such y necessarily
belong to 3(x). The index [3(QN x) : 3] in (37) is independent of σi by (36),
since #(GQ · σi (ξ)) and the p j are independent of σi .

The lattices 3(QN x) and p1 · · · pR3(x) have coprime indices in 3(x), so there
is an x0 ∈3(x) such that x0≡ x (mod 3(QN x)) and x0≡ 0 (mod p1 · · · pR3(x)).
Further, for any OK -ideal $ dividing p1 · · · pR ,

3(QN x)∩
( ⋂

p j |$
p j3(x)

)
= $3(QN x).

Clearly y ∈ x +3(QN x) if and only if y ∈ x0+3(QN x), and y ∈ p j3(x) if and
only if y ∈ x0+ p j3(x). Since S(a, r) injects into C/3, by inclusion/exclusion

#
(
(GQ · σi (ξ))∩SE(a, r)

)
=

∑
$ |p1···pR

(−1)λK ($) · #
(
(x0+$3(QN x))∩S(a, r)

)
, (38)

where λK ($) is the number of distinct prime ideals of OK dividing $ .
Inserting (37) in the inclusion/exclusion formula (38) and summing over all

σi (ξ), we get

N
(
ξ,SE(a, r)

)
=

area S(a, r)
area F

· T [3(QN x) :3]
R∏

j=1

(
1− 1

Np j

)
+ θ

(
2C Sr

F
· T [3(QN x) :3]1/2

R∏
j=1

(
1+

1

Np
1/2
j

))
+ θ

(C2S
F
· T 2R

)
.

By (36), [k(ξ) : k] = T [3(QN x) :3]
∏R

j=1
(
1− 1

Np j

)
. Since r ≤ r0 and

R∏
j=1

(
1+ 1

Np
1/2
j

)
≤ 2R,

we have

N
(
ξ,SE(a, r)

)
[k(ξ) : k]

=
area S(a, r)

area F
+ θ

(C2S
F
·

T 2R

[k(ξ) : k]

)
+ θ

(
2C Sr0

F
·

T 1/22R(∏R
j=1(1− 1/Np j )

)1/2 ·
1

[k(ξ) : k]1/2

)
. (39)
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As before, area S(a, r)/area F = µ(SE(a, r)). Here T ≤ [Gal(k/k) : GQ] is
fixed. For each ε > 0 and each sufficiently large N , 2R

≤ 23K (N ) ≤ 22λ(N )
≤

d(N )2≤ N ε. Likewise,
∏R

j=1(1−1/Np)≥
∏

p |N (1−1/p)2≥C/(log log N )2 for
some constant C > 0, where the last inequality follows from [Hardy and Wright
1954, Theorem 328, p. 267]. Finally, since ξ has order N and QN ≤ Q is bounded,
[3(QN x) :3] ≥ N/Q, and so

[k(ξ) : k] ≥ T · N/Q ·C/(log log N )2 ≥ T C/Q · N 1−ε (40)

for all large N . Combining these shows that for each 0 < γ < 1/2, the first error
term is Oγ ([k(ξ) : k]−γ ). The same estimates show the second error term is neg-
ligible in comparison to the first. This completes the proof when E has complex
multiplication. �

Before leaving this section, we note that the arguments above provide lower
bounds for the degree [k(ξ) : k] in terms of the order N of ξ , as required by (27).
When E does not have complex multiplication, then since T is fixed, QN ≤ Q,
and

∏
p(1−1/p2) converges to a nonzero limit, (35) shows there is a constant C1

depending only on E such that

[k(ξ) : k] ≥ C1 N 2 . (41)

When E has complex multiplication, then since T and Q are fixed, (40) shows that
there is a constant C2 depending only on E such that

[k(ξ) : k] ≥ C2 N/(log log N )2. (42)

3. Context

Theorems 0.1 and 0.2 are the first known cases of general conjectures by the second
author (which were refined through conversations with J. Silverman and S. Zhang)
concerning dynamical systems and abelian varieties.

As before, let k be a number field, and let S be a finite set of places of k con-
taining the archimedean places. Let Ok,S be the ring of S-integers of k.

Conjecture 3.1 (Su-Ion Ih). Let R(x) ∈ k(x) be a rational function of degree at
least 2, and consider the dynamical system associated to the map R∗ : P1

→ P1.
Let α ∈ P1(k) be nonpreperiodic for R∗. Then there are only finitely many prepe-
riodic points ξ ∈ P1(k) that are S-integral with respect to α, that is, whose Zariski
closures in P1/Spec(Ok,S) do not meet the Zariski closure of α.

Conjecture 3.2 (Su-Ion Ih). Let A/k be an abelian variety, and let AS/Spec(Ok,S)

be a model of A. Let D be a nonzero effective divisor on A, defined over k, at least
one of whose irreducible components is not the translate of an abelian subvari-
ety by a torsion point, and let cl(D) be its Zariski closure in AS . Then the set



246 Matthew Baker, Su-ion Ih and Robert Rumely

Type of variety Type of rationality k k

Compact k,k-rationality Mordell–Lang Manin–Mumford
Conjecture Conjecture

Noncompact Ok ,Z-rationality Lang’s Ih’s
Conjecture Conjecture 3.2

AD,S(Z)tors, consisting of all torsion points of A(k) whose closure in AS is disjoint
from cl(D), is not Zariski dense in A.

Theorem 0.1 establishes Conjecture 3.1 for the maps R(x) = xd with |d| ≥ 2,
whose preperiodic points are 0,∞ and the roots of unity. It is possible to prove the
conjecture for Chebyshev maps by similar methods, though we do not do so here.

Theorem 0.2, in addition to being the one-dimensional case of Conjecture 3.2,
is equivalent to Conjecture 3.1 for Lattès maps. That is, if E/k is an elliptic curve,
let R ∈ k(x) be the degree 4 map on the x-coordinate corresponding to the doubling
map on E , so that the following diagram commutes:

E
[2] //

x
��

E

x
��

P1
R∗ // P1

Then β ∈ E(k) is a torsion point if and only x(β) is preperiodic for R∗.
Part of the motivation for Conjecture 3.2 is the following analogy between dio-

phantine theorems over k and k, and over Ok and Z (the ring of all algebraic inte-
gers). Let A/k be an abelian variety, and let X be a nontorsion subvariety of A (that
is, X is not the translate of an abelian subvariety by a torsion point). Recall that the
Mordell–Lang Conjecture (proved by Faltings) says that A(k) ∩ X is not Zariski
dense in X ; while the Manin–Mumford Conjecture (first proved by Raynaud) says
that A(k)tors ∩ X is not Zariski dense in X . Likewise, Lang’s conjecture (also
proved by Faltings) says that if D is an effective ample divisor on A, then the set
AD(Ok) of Ok-integral points of A not meeting supp(D) is finite. Note that A is
compact, whereas AD = A\supp(D) is noncompact.

Conjecture 3.1 is motivated by Conjecture 3.2 and the familiar analogy between
torsion points of abelian varieties and preperiodic points of rational maps.

J. Silverman [1993] proved the following result, which is somewhat related to
Conjecture 3.1: If the backward orbit of α ∈ P1(k) under a rational function R of
degree ≥ 2 is infinite, then for every β ∈P1(k), there are only finitely many points
in the forward orbit of β under R that are S-integral with respect to α.
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More recently, C. Petsche [2007] has proved Conjecture 3.1 under the additional
hypothesis that α is “totally Fatou”, meaning that for every place v of k and every
embedding σ of k into kv, σ(α) is in the v-adic Fatou set of R.

In closing, we note that an important ingredient of the proofs of Theorems 0.1
and 0.2 was a quantitative equidistribution theorem for torsion points. A quantita-
tive equidistribution theorem for points of small height with respect to an arbitrary
dynamical system on P1 has recently been proved by C. Favre and J. Rivera-
Letelier [2006, théorème 6].
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