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The intersection of a curve with a union of
translated codimension-two subgroups

in a power of an elliptic curve
Evelina Viada

Let E be an elliptic curve. An irreducible algebraic curve C embedded in E g is
called weak-transverse if it is not contained in any proper algebraic subgroup of
E g , and transverse if it is not contained in any translate of such a subgroup.

Suppose E and C are defined over the algebraic numbers. First we prove
that the algebraic points of a transverse curve C that are close to the union of all
algebraic subgroups of E g of codimension 2 translated by points in a subgroup
0 of E g of finite rank are a set of bounded height. The notion of closeness is
defined using a height function. If 0 is trivial, it is sufficient to suppose that C is
weak-transverse.

The core of the article is the introduction of a method to determine the finite-
ness of these sets. From a conjectural lower bound for the normalized height of a
transverse curve C , we deduce that the sets above are finite. Such a lower bound
exists for g ≤ 3.

Concerning the codimension of the algebraic subgroups, our results are best
possible.

1. Introduction

Let A be a semiabelian variety over Q of dimension g. An irreducible algebraic
subvariety V of A defined over Q is weak-transverse if V is not contained in any
proper algebraic subgroup of A, and transverse if it is not contained in any translate
of such a subgroup.

Given an integer r with 1 ≤ r ≤ g and a subset F of A(Q), we define the set

Sr (V, F)= V (Q) ∩

⋃
codim B≥r

(B + F),

where B runs over all semiabelian subvarieties of A of codimension at least r and

B + F = {b + f : b ∈ B, f ∈ F}.

MSC2000: primary 11G05; secondary 11D45, 11G50, 14K12.
Keywords: heights, diophantine approximation, elliptic curves, counting algebraic points.
Supported by the SNF (Swiss National Science Foundation).
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250 Evelina Viada

For r > g, we define Sr (V, F) to be the empty set. We denote the set Sr (V, ATor)

simply by Sr (V ). Note that

Sr+1(V, F)⊂ Sr (V, F).

A natural question to ask would be: For which sets F and integers r is the set
Sr (V, F) not Zariski-dense in V ?

Sets of this kind, for r = g, appear in the literature in the context of the Mordell–
Lang, Manin–Mumford and Bogomolov conjectures. More recently Bombieri,
Masser and Zannier [Bombieri et al. 1999] proved that S2(C) is finite for a trans-
verse curve C in a torus. They investigated, for the first time, intersections with
the union of all algebraic subgroups of a given codimension. This opens a vast
number of conjectures for subvarieties of semiabelian varieties.

In this article we consider the elliptic case for curves. Let E be an elliptic curve
and C an irreducible algebraic curve in Eg, both defined over Q. Let ‖ · ‖ be a
seminorm on Eg(Q) induced by a height function. For ε ≥ 0, we set

Oε = {ξ ∈ Eg(Q) : ‖ξ‖ ≤ ε}.

Let 0 ⊆ Eg(Q) be a subgroup of finite rank. Define 0ε = 0+ Oε.

Conjecture 1.1. Let C ⊂ Eg.

(i) If C is weak-transverse, S2(C) is finite.

(ii) If C is transverse, S2(C, 0) is finite.

(iii) If C is weak-transverse, there exists ε > 0 such that S2(C,Oε) is finite.

(iv) If C is transverse, there exists ε > 0 such that S2(C, 0ε) is finite.

The transversality hypothesis is crucially stronger than weak transversality. One
should note carefully which hypothesis is assumed in each of the four statements.

Clearly (iv) implies (ii) by setting ε = 0, and similarly (iii) implies (i).
The union of all algebraic subgroups of codimension g is exactly the torsion of

Eg. Then, C ∩ 0ε ⊂ Sg(C, 0ε) ⊂ S2(C, 0ε). So, Conjecture 1.1(iii) implies the
Bogomolov Theorem [Ullmo 1998; Zhang 1998], and (iv) implies Mordell–Lang
plus Bogomolov [Poonen 1999].

Partial results related to (i) and (ii) have been proved. In [Viada 2003] we solved
a weak form of (i), namely we assumed the stronger hypothesis that C is transverse.
If E has CM (complex multiplication) then S2(C) is finite. If E has no CM then
S(g/2)+2(C) is finite. In [Rémond and Viada 2003] a weak version of (ii) was pre-
sented. Again if E has CM the result is optimal. If E has no CM the codimension
of the algebraic subgroups depends on 0. In addition, we show that (i) and (ii) are
equivalent. There are no trivial implications between (iii) and (iv), because of the
different hypotheses on C .
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These known proofs rely on Northcott’s theorem: a set is finite if and only if
it has bounded height and degree. To prove that the degree is bounded one uses
Siegel’s Lemma and an essentially optimal generalized Lehmer’s Conjecture. Up
to a logarithmic factor, the generalized Lehmer conjecture is presently known for
a point in a torus [Amoroso and David 1999] and in a CM abelian variety [David
and Hindry 2000]. This method has some disadvantages: it is only known to
work for transverse curves and for ε= 0, and a quasioptimal generalized Lehmer’s
Conjecture is not likely to be proved in a near future for a general abelian variety.

In this article we introduce a different method. First, we bound the height also
for weak-transverse curves.

Theorem 1.2. There exists ε > 0 such that:

(i) If C is weak-transverse, S2(C,Oε) has bounded height.

(ii) If C is transverse, S2(C, 0ε) has bounded height.

The proof of both statements uses a Vojta inequality, as stated in Proposition 2.1
of [Rémond and Viada 2003]. The second assertion is proved in Theorem 1.5 of
the same paper. To prove the first assertion (see Section 7), we embed S2(C,Oε)

into two sets associated to a transverse curve. We then manage to apply a Vojta
inequality on each of these two sets.

As a second result, we prove:

Theorem 1.3. For r ≥ 2, the following statements are equivalent:

(i) If C is weak-transverse, there exists ε > 0 such that Sr (C,Oε) is finite.

(ii) If C is transverse, there exists ε > 0 such that Sr (C, 0ε) is finite.

That (i) implies (ii) is elementary, but the converse implication is not as easy
as the equivalence of (i) and (ii) in Conjecture 1.1. In particular we make use of
Theorem 1.2 (see Section 7).

In the third instance, we show how to avoid the use of the Siegel Lemma and
the generalized Lehmer Conjecture. Instead, we use Dirichlet’s Theorem and a
conjectural effective version of the Bogomolov Theorem. Bogomolov’s Theorem
states that the set of points of small height on a curve of genus at least 2 is finite. We
defineµ(C) as the supremum of the reals ε(C) such that Sg(C,Oε(C))=C∩Oε(C) is
finite. The essential minimum of C is µ(C)2. (Often in the literature the notation
Oε corresponds to what we write as Oε2 ; thus in the references given below the
bounds are given for the essential minimum and not for its square root µ(C) as we
do here.)

Nonoptimal effective lower bounds for µ(C) are given by S. David and P.
Philippon [2002, Theorem 1.4; 2007, Theorem 1.6]. The lower bound we need
is the elliptic analogue of [Amoroso and David 2003, Theorem 1.4], which gives
a quasioptimal lower bound for the essential minimum of a variety.
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The following conjecture is a weak form of [David and Philippon 2007, Con-
jecture 1.5(ii)] where the line bundle is fixed.

Conjecture 1.4. Let A = E1 ×· · ·× Eg be a product of elliptic curves defined over
a number field k. Let L be the tensor product of the pullbacks of symmetric line
bundles on Ei via the natural projections. Let C ⊂ A be an irreducible transverse
curve defined over Q. Let η be any positive real. Then there exists a constant
c(g, A, η)= c(g, degL A, hL(A), [k : Q], η) such that, for

ε(C, η)= c(g, A, η)(degL C)−1/(2(g−1))−η,

the set
C(Q)∩ Oε(C,η)

is finite.

In Section 11, we prove:

Theorem 1.5. Conjecture 1.4 implies Conjecture 1.1.

Conjecture 1.4 can be stated for subvarieties of A. Galateau [2007] proved that
such a conjecture holds for varieties of codimension 1 or 2 in a product of elliptic
curves. Then, for g ≤ 3, Conjecture 1.1 holds unconditionally.

Theorems 1.2 and 1.5 are optimal with respect to the codimension of the alge-
braic subgroups; see Remark 9.2.

We have already pointed out that Conjecture 1.1 implies the Bogomolov Con-
jecture and the Mordell–Lang plus Bogomolov Theorem. Let us emphasize that
our Theorem 1.5 does not give a new proof of the Bogomolov Conjecture, as we
assume such an effective result. On the other hand, it gives a new proof of the
Mordell–Lang plus Bogomolov Theorem, under the assumption of Conjecture 1.4.

The proof of Theorem 1.5 is based on the observation that a union of sets is
finite if and only if

(1) the union can be taken over finitely many sets, and

(2) all sets in the union are finite.

Showing (1) is a typical problem of Diophantine approximation. The proof
relies on Dirichlet’s Theorem on the rational approximation of reals. The fact that
we consider small neighborhoods enables us to move the algebraic subgroups “a
bit”. So we can consider only subgroups of bounded degree, of which there are
finitely many; see Proposition A, Section 12.

Step (2) takes place in the context of height theory. Its proof relies on Conjecture
1.4. The bound ε(C, η) depends on the invariants of the ambient variety and on the
degree of C . A weaker dependence on the degree of C would not be enough for
our application. Also the independence of the bound from the field of definition
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of C proves useful. Playing on Conjecture 1.4, we produce a sharp lower bound
for the essential minimum of the image of a curve under certain morphisms (see
Proposition B and Section 13).

The effectiveness aspect of our method is noteworthy; the use of a Vojta in-
equality makes Theorem 1.2, and consequently Theorem 1.5, ineffective. Though,
the rest of the method is effective. Indeed, in Section 14, we prove a weaker, but
effective analogue of Theorem 1.5.

Theorem 1.6. Assume Conjecture 1.4. If C is transverse, there exists an effective
ε > 0 such that the set S2(C,Oε) is finite.

A bound for the number of points of small height on the curve would then imply
a bound on the cardinality of S2(C,Oε) for C transverse and ε small (Theorem 14.3).

The toric version of Theorem 1.6 was independently studied by P. Habegger in
his Ph.D. thesis [2007]. He follows the idea of using a Bogomolov-type bound,
proved in the toric case in [Amoroso and David 2003, Theorem 1.4]. He proves
the finiteness of S2(C,Oε), for ε > 0 and C a transverse curve in a torus.

2. Preliminaries

Morphisms and their height. Let (R, | · |) be a hermitian ring, that means R is a
domain and | · | an absolute value on R.

We denote by Mr,g(R) the module of r × g matrices with entries in R.
For F = ( fi j ) ∈ Mr,g(R), we define the height of F as the maximum of the

absolute value of its entries

H(F)= max
i j

| fi j |.

Let E be an elliptic curve defined over a number field. The ring of endomor-
phism End E is isomorphic either to Z (if E does not have CM) or to an order in
an imaginary quadratic field (if E has CM). We consider on End E the standard
absolute value of C. This absolute value does not depend on the embedding of
End E in C. An intrinsic definition of absolute value on End E can be given using
the Rosati involution.

We identify a morphism φ : Eg
→ Er with a matrix in Mr,g(End E). The set of

morphisms of height bounded by a constant is finite.
In the following, we aim to be as transparent as possible, polishing statements

from technicality. Therefore, we principally present proofs for E without CM
Then End E is identified with Z and a morphism φ with an integral matrix. In the
final section, we explain how to deal with the technical complication of a ring of
endomorphisms of rank 2 and with a product of elliptic curves instead of a power.
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Small points. On E , we fix a symmetric very ample line bundle L. On Eg, we
consider the bundle L which is the tensor product of the pullbacks of L via the
natural projections on the factors. Degrees are computed with respect to the polar-
ization L .

Usually Eg(Q) is endowed with the L-canonical Néron–Tate height h′. Though,
to simplify constants, we prefer to define on Eg the height of the maximum

h(x1, . . . , xg)= max
i
(h(xi )).

where h(·) on E(Q) is the L-canonical Néron–Tate height. The height h is the
square of a norm ‖ · ‖ on Eg(Q)⊗ R. For a point x ∈ Eg(Q), we write ‖x‖ for
‖x ⊗ 1‖.

Note that h(x)≤ h′(x)≤ gh(x). Hence, the two norms induced by h and h′ are
equivalent.

For a ∈ End E , we denote by [a] the multiplication by a. For y ∈ Eg(Q) we
have ∥∥[a]y

∥∥= |a| · ‖y‖.

The height of a nonempty set S ⊂ Eg(Q) is the supremum of the heights of its
elements. The norm of S is the nonnegative square root of its height.

For ε ≥ 0, we denote

Oε = Oε,Eg = {ξ ∈ Eg(Q) : ‖ξ‖ ≤ ε}.

Subgroups. Let M be a R-module. The R-rank of M is the supremum of the
cardinality of a set of R-linearly independent elements of M . If M has finite rank
s, a maximal free set of M is a set of s linearly independent elements of M . If M
is a free R-module of rank s, we call a set of s generators of M , integral generators
of M .

Note that a free Z-module of finite rank is a lattice; in the literature, what we
call integral generators can be called basis, and what we define as maximal free set
is a basis of the vector space given by tensor product with the quotient field of R.

We say that (M, ‖ · ‖) is a hermitian R-module if M is an R-module and ‖ · ‖

is a norm on the tensor product of M with the quotient field of R. For an element
p ∈ M we write ‖p‖ for ‖p ⊗ 1‖.

Let E be an elliptic curve. In the following, we will simply say module for an
End E-module.

Note that any subgroup of Eg(Q) of finite rank is contained in a submodule of
finite rank. Conversely, a submodule of Eg of finite rank is a subgroup of finite
rank.

Let 0 be a subgroup of finite rank of Eg(Q). We define

0ε = 0+ Oε.
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The saturated module 00 of the coordinates group of 0 (in short of 0) is a sub-
module of E(Q) defined as

00 = {φ(y) ∈ E for φ : Eg
→ E and N y ∈ 0 with N ∈ Z∗

}. (2-1)

Note that 0g
0 = 00 × · · · × 00 is a submodule of Eg invariant via the image or

preimage of isogenies. Furthermore, it contains 0 and it is a module of finite rank.
Thus to prove finiteness statements for 0 it is enough to prove them for 0g

0 .
We denote by s the rank of 00. Let γ1, . . . , γs be a maximal free set of 00. We

denote the associated point of E s by

γ = (γ1, . . . , γs).

For p = (p1, . . . , ps)∈ E s we define 0p as the saturated module of 〈p1, . . . , ps〉.

3. Some geometry of numbers

We present a property from the geometry of numbers and extend it to points of
Eg(Q). The idea is that, if in Rn we consider n linearly independent vectors and
move them within a “small” angle, they will still be linearly independent. The norm
of a linear combination of such vectors depends on the norm of these vectors, on
their angles, and on the norm of the coefficients of the combination. Such estimates
are frequent in the geometry of numbers.

Lemma 3.1 (compare [Schlickewei 1997, Theorem 1.1; Viada 2003, Lemma 3]).
Every hermitian free Z-module of rank n admits integral generators ρ1, . . . , ρn

such that

c0(n)
∑

i

|αi |
2
‖ρi‖

2
≤

∥∥∥∥∑
i

αiρi

∥∥∥∥2

for all integers αi , where c0(n) is a constant depending only on n.

Proof. A hermitian free Z-module (0, ‖·‖) of rank n is a lattice in the metric space
0R given by tensor product with R. The proof now follows that of [Viada 2003,
Lemma 3] (page 57, from line 19 onwards), with n instead of r and ρi instead
of gi . �

This lemma allows us to explicit the comparison constant for two norms on a
finite-dimensional vector space over the quotient field of R.

Proposition 3.2. Let (M, ‖ · ‖) be a hermitian R-module, where R is a finitely
generated free Z-module. Let p1, . . . , ps be R-linearly independent elements of
M. Then there exists an effective positive constant c1(p, τ ) such that

c1(p, τ )
∑

i

|bi |
2
R‖pi‖

2
≤

∥∥∥∥∑
i

bi pi

∥∥∥∥2
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for all b1, . . . , bs ∈ R, where p = (p1, . . . , ps) and τ = (1, τ2, . . . , τt) are integral
generators of R.

Proof. The submodule of M defined by 0Z = 〈p1, . . . , ps, . . . , τt p1, . . . , τt ps〉Z

has rank st over Z. Clearly, for 1 ≤ i ≤ t and 1 ≤ j ≤ s the elements τi p j are
integral generators of 0Z. Consider the normed space (M ⊗Z R, ‖·‖), in which 0Z

is embedded, and endow 0Z with the induced metric.
Apply Lemma 3.1 to (0Z, ‖·‖) with n = st . Then, there exist integral generators

ρ1, . . . , ρst of 0Z satisfying∥∥∥∥∑
i

αiρi

∥∥∥∥2

≥ c0(st)
∑

i

|αi |
2
‖ρi‖

2
≥ c0(st)

∑
i

|αi |
2 min

k
‖ρk‖

2, (3-1)

for all α1, . . . , αst ∈ Z.
We decompose the elements b1, . . . , bs ∈ R as

bi =

t∑
j=1

αi jτ j

with αi j ∈ Z. We set

α = (α11, . . . , α1t , . . . , αs1, . . . , αst) ∈ Zst .

Next we write

pτ = (τ1 p1, . . . , τt p1, τ1 p2, . . . , τt p2, . . . , τ1 ps, . . . , τt ps)
T

∈ 0st
Z ,

ρ = (ρ1, . . . , ρst)
T

∈ 0st
Z ,

where the superscript T indicates the transpose, as usual. Let P ∈ SLst(Z) be the
base change matrix such that

pτ = Pρ.

Then ∑
i

bi pi =

∑
i j

αi jτ j pi = α · pτ = α · (Pρ)= (αP) · ρ.

Passing to the norms and using relation (3-1) with the coefficients (α1, . . . ,αst)=

αP , we deduce∥∥∥∥∑
i

bi pi

∥∥∥∥2

= ‖(αP) · ρ‖
2
≥ c0(st)|αP|

2
2 min

k
‖ρk‖

2,
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where | · |2 is the standard Euclidean norm. On the other hand, the triangle inequal-
ity gives

|bi |
2
R ≤ max

k
|τk |

2
R

( t∑
j=1

|αi j |

)2

≤ t max
k

|τk |
2
R

t∑
j=1

|αi j |
2.

We deduce

‖
∑

i bi pi‖
2∑

i |bi |
2
R‖pi‖

2
≥

c0(st)
t max j |τ j |

2
R

mini ‖ρi‖
2

maxi ‖pi‖
2

|αP|
2
2

|α|
2
2
.

We shall still estimate |αP|
2
2/|α|

2
2 independently of α. For a linear operator A and

a row vector β, there holds the classical norm relation |βA|2 ≤ H(A)|β|2. For
A = P−1 and β = αP , we deduce

|αP|
2
2

|α|
2
2

≥
1

H(P−1)2
.

Then
‖
∑

i bi pi‖
2∑

i |bi |
2
R‖pi‖

2
≥

c0(st)
t max j |τ j |

2
R

mini ‖ρi‖
2

maxi ‖pi‖
2

1
H(P−1)2

or equivalently ∥∥∥∑ bi pi

∥∥∥2
≥ c1(p, τ )

∑
i

|bi |
2
R‖pi‖

2,

where

c1(p, τ )=
c0(st)

t max j |τ j |
2
R

mini ‖ρi‖
2

maxi ‖pi‖
2

1
H(P−1)2

. �

The following unsurprising proposition has some surprising implications; it al-
lows us to prove Theorems 1.2 and 1.3.

Proposition 3.3. Let p1, . . . , ps be linearly independent points of E(Q) and p =

(p1, . . . , ps). Let τ be a set of integral generators of End E. Then, there exist
positive reals c2(p, τ ) and ε0(p, τ ) such that

c2(p, τ )
∑

i

|bi |
2
‖pi‖

2
≤

∥∥∥∥∑
i

bi (pi − ξi )− bζ
∥∥∥∥2

for all b1, . . . , bs, b ∈ End E with |b| ≤ maxi |bi | and for all ξ1, . . . , ξs, ζ ∈ E(Q)
with ‖ξi‖, ‖ζ‖ ≤ ε0(p, τ ).

In particular p1 − ξ1, . . . , ps − ξs are linearly independent points of E.

Proof. Recall that the norm on End E is compatible with the height norm on E(Q),
that is, ‖bi pi‖ = |bi |End E‖pi‖. Thus (End E, | · |) is a hermitian free Z-module of
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rank 1 if E has no CM or 2 is E has CM. Furthermore, (E, ‖ · ‖) is a hermitian
End E-module.

Apply Proposition 3.2 with R = End E , M = E and τ = (1) if End E ∼= Z or
τ = (1, τ2) if End E ∼= Z + τ2Z. For b1, . . . , bs ∈ End E , we obtain∥∥∥∑ bi pi

∥∥∥2
≥ c1(p, τ )

∑
i

|bi |
2
‖pi‖

2. (3-2)

Let ‖ξi‖, ‖ζ‖ ≤ ε. Since |b| ≤ max |bi | the triangle inequality implies∥∥∥∥∑
i

bi (pi − ξi )− bζ
∥∥∥∥ ≥

∥∥∥∥∑
i

bi pi

∥∥∥∥− ε
∑

i

|bi | − ε|b|

≥

∥∥∥∥∑
i

bi pi

∥∥∥∥− 2ε
∑

i

|bi |.

Squaring and keeping in mind that
(∑s

i=1 |bi |
)2

≤ s
∑s

i=1 |bi |
2, we deduce∥∥∥∥∑

i

bi (pi − ξi )− bζ
∥∥∥∥2

≥

∥∥∥∥∑
i

bi pi

∥∥∥∥2

− 4ε
∥∥∥∥∑

i

bi pi

∥∥∥∥∑
i

|bi | + 4ε2
(∑

i

|bi |

)2

≥

∥∥∥∥∑
i

bi pi

∥∥∥∥2

− 4sε
(∑

i

|bi |
2
)

max
i

‖pi‖.

Choose

ε ≤ ε0(p, τ ) =
c1(p, τ )

8s
mini ‖pi‖

2

maxi ‖pi‖
. (3-3)

Using relation (3-2), we deduce∥∥∥∥∑
i

bi (pi −ξi )−bζ
∥∥∥∥2

≥ c1(p,τ )
∑

i

|bi |
2
‖pi‖

2
−

1
2 c1(p,τ )

(∑
i

|bi |
2
)

min
i

‖pi‖
2

≥
1
2 c1(p,τ )

∑
i

|bi |
2
‖pi‖

2.

Set, for example,
c2(p, τ )=

1
2 c1(p, τ ), (3-4)

where c1(p, τ ) is defined at the end of the previous proof (page 257).
The preceding relation, with b = 0, implies in particular that only the trivial

linear combination of p1 − ξ1, . . . , ps − ξs is zero. �

We next state a lemma that will enable us to choose a nice maximal free set of00,
the saturated module of a submodule 0 of E(Q) of finite rank, as defined in relation
(2-1). There is nothing deep here, as we are working with finite-dimensional vector
spaces.
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Lemma 3.4 (Quasiorthonormality). Let 00 be the saturated module of 0. Let s be
the rank of 00. Then for any real K > 0, there exists a maximal free set γ1, . . . , γs

of 00, with ‖γi‖ ≥ K , such that for all b1, . . . , bs ∈ End E∥∥∥∥∑
i

biγi

∥∥∥∥2

≥
1
9

∑
i

|bi |
2
‖γi‖

2.

Proof. Recall that End E is an order in an imaginary quadratic field k. Furthermore,
the height norm ‖·‖ makes 00 a hermitian End E-module. Let 0free be a submodule
of 00 isomorphic to its free part. Then 0free is a k vector space of dimension s. Its
tensor product with C over k is a normed C vector space of dimension s, and 0free is
isomorphic to 0free

⊗1. Using for instance the Gram–Schmidt orthonormalization
algorithm in 0free

⊗k C, we can choose an orthonormal basis

vi = gi ⊗ ρi .

So ∥∥∥∥∑
i

bivi

∥∥∥∥2

=

∑
i

|bi |
2.

Decompose ρi = ri1 + τri2 for 1, τ integral generators of End E and ri j ∈ R.
Choose δ= (2(1 + |τ |)maxi ‖gi‖)

−1 and rationals qi j such that qi j = ri j +di j with
|di j | ≤ δ (use the density of the rationals).

Define

γ ′

i = gi ⊗ (qi1 + τqi2)= (qi1 + τqi2)g1 ⊗ 1 ∈ 0free
⊗ 1,

and
δi = gi ⊗ (di1 + τdi2).

Then vi = γ ′

i + δi , with ‖δi‖ ≤ ‖gi‖(1 + |τ |)δ ≤
1
2 . The triangle inequality gives

2
∥∥∥∥∑

i

biγ
′

i

∥∥∥∥2

≥

∥∥∥∥∑
i

bivi

∥∥∥∥2

− 2
∥∥∥∥∑

i

biδi

∥∥∥∥2

.

The orthonormality of vi and ‖δi‖ ≤
1
2 implies that

2
∥∥∥∥∑

i

biγ
′

i

∥∥∥∥2

≥

∑
i

|bi |
2
− 2

∑
i

|bi |
2 1

4
=

1
2

∑
i

|bi |
2.

Finally ‖γ ′

i ‖ ≤ ‖vi‖ +‖δi‖ ≤
3
2 , so∥∥∥∥∑

i

biγ
′

i

∥∥∥∥2

≥
1
9

∑
i

|bi |
2
‖γ ′

i ‖
2.
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It is evident that for any integer n0 the same relation holds:∥∥∥∥∑
i

bi n0γ
′

i

∥∥∥∥2

≥
1
9

∑
i

|bi |
2
‖n0γ

′

i ‖
2.

Let n0 be an integer such that n0 ≥ 2K . Note that

‖γ ′

i ‖ ≥ ‖vi‖ −‖δi‖ ≥
1
2 ,

so
‖n0γ

′

i ‖ ≥ K .

Thus the maximal free set γi = n0γ
′

i satisfies the desired conditions. �

We cannot directly choose an orthonormal basis in 0free, because the norm has
values in R and not in Q. What one can prove is that for any small positive real δ,
there exists a maximal free set γ1, . . . , γs such that∥∥∥∥∑

i

biγi

∥∥∥∥2

≥
(1 − δ)2

(1 + δ)2

∑
i

|bi |
2
‖γi‖

2.

4. Gauss-reduced morphisms

The aim of this section is to show that we can consider our union over Gauss-
reduced algebraic subgroups, instead of over all algebraic subgroups.

Let B be an algebraic subgroup of Eg of codimension r . Then B ⊂ kerφB for a
surjective morphism φB : Eg

→ Er . Conversely, we denote by Bφ the kernel of a
surjection φ : Eg

→ Er . Then Bφ is an algebraic subgroup of Eg of codimension r .
The matrices in Mr×g(End E) of the form

φ = (aIr |L)=

 a . . . 0 a1,r+1 . . . a1,g
...

...
...

...

0 . . . a ar,r+1 . . . ar,g

 ,
with H(φ) = |a| and entries having no common factors (up to units), will play a
key role in this work. For r = g, such a morphism becomes the identity, and L
shall be forgotten. These matrices have three main advantages:

• The restriction of φ to the set Er
× {0}

g−r is just the multiplication by a.

• The image of Oε⊂ Eg under φ is contained in the image of Ogε∩ (Er
×{0}

g−r ).
Similarly, the image of 0g

0 under φ is contained in the image of 0r
0 × {0}

g−r .

• The matrix φ has small height compared to other matrices with same zero
component of the kernel.
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Definition 4.1 (Gauss-reduced morphisms). We say that a surjective morphism
φ : Eg

→ Er is Gauss-reduced of rank r if the following conditions are satisfied:

(i) There exists a ∈ (End E)∗ such that aIr is a submatrix of φ, with Ir the r -
identity matrix.

(ii) H(φ)= |a|.

(iii) If there exists f ∈ End E and φ′
: Eg

→ Er such that φ = f φ′ then f is an
isomorphism.

We say that an algebraic subgroup is Gauss-reduced if it is the kernel of a Gauss-
reduced morphism.

Remark 4.2. If End E ∼= Z, condition (iii) simply says that the greatest common
divisor of the entries of φ is 1 and f = ±1. Also when End E ∼= Z, we make
condition (ii) more restrictive, requiring that H(φ)= a, instead of H(φ)= |a|; this
assumption simplifies the notation. Obviously Bφ = B−φ , so all lemmas below
hold with this “up to units” definition of Gauss-reduced.

A morphism φ′ given by a reordering of the rows of a morphism φ, has the same
kernel as φ. Saying that aIr is a submatrix of φ fixes one permutation of the rows
of φ.

A reordering of the columns, on the other hand, corresponds to a permutation
of the coordinates. Statements will be proved for Gauss-reduced morphisms of the
form φ= (aI |L). For any other reordering of the columns the proofs are analogous.
Since there are finitely many permutations of g columns, the finiteness statements
will follow.

The following lemma is a simple useful trick to keep in mind.

Lemma 4.3. Let φ : Eg
→ Er be Gauss-reduced of rank r.

(i) For ξ = (ξ1, . . . , ξg) ∈ Oε, there exists a point ξ ′
= (ξ ′′, {0}

g−r ) ∈ Ogε such
that

φ(ξ)= φ(ξ ′)= [a]ξ ′′.

(ii) For y = (y1, . . . , yg)∈0
g
0 , there exists a point y′

= (y′′, {0}
g−r )∈0r

0 ×{0}
g−r

such that
φ(y)= φ(y′)= [a]y′′.

Proof. Up to a reordering of the columns, the morphism φ has the form

φ =

 a . . . 0 a1,r+1 . . . a1,g
...

...
...

...

0 . . . a ar,r+1 . . . ar,g

 ,
with H(φ)= |a|.
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(i) Consider a point ξ ′′
∈ Er such that [a]ξ ′′

= φ(ξ). Since

‖ξ ′′
‖ =

‖φ(ξ)‖

|a|
= max

i

∥∥∑
j ai jξ j

∥∥
|a|

and |a| = maxi j |ai j |, we obtain

‖ξ ′′
‖ ≤ gε.

Define ξ ′
= (ξ ′′, {0}

g−r ). Clearly

φ(ξ ′)= [a]ξ ′′
= φ(ξ).

(ii) Note that φ(y) ∈ 0r
0. Since 00 is a division group, the point y′′ such that

[a]y′′
= φ(y),

belongs to 0r
0. Define y′

= (y′′, {0}
g−r ). Then φ(y′)= [a]y′′

= φ(y). �

In the next result we show that the zero components of Bφ , for φ ranging over
all Gauss-reduced morphisms of rank r , are all possible abelian subvarieties of Eg

of codimension r . This is proved using the classical Gauss algorithm, where the
pivots have maximal absolute values.

Lemma 4.4. Let ψ : Eg
→ Er be a morphism of rank r. Then:

(i) For every N ∈ End E∗,

BNψ ⊂ Bψ + (Er
Tor × {0}

g−r ).

(ii) There exists a Gauss-reduced morphism φ : Eg
→ Er of rank r such that

Bψ ⊂ Bφ + (Er
Tor × {0}

g−r ).

Proof. (i) Let b ∈ BNψ . Then Nψ(b)= 0, so ψ(b)= t with t a N -torsion point in
Er . Let ψ1 be an invertible r -submatrix of ψ . Up to a reordering of the columns,
we can suppose ψ = (ψ1|ψ2). Let t ′ be a torsion point in Er such that ψ1(t ′)= t .
Then ψ(b − (t ′, 0))= 0. Thus b ∈ Bψ + (Er

Tor × {0}
g−r ).

(ii) The Gauss algorithm gives an invertible integral r -matrix 1 such that, up to
the order of the columns, 1ψ is of the form

1ψ =

 a . . . 0 a1,r+1 . . . a1,g
...

...
...

...

0 . . . a ar,r+1 . . . ar,g

 ,
with H(1ψ)= |a| (potentially there are common factors of the entries).

Let b ∈ Bψ . Then ψ(b)= 0, so 1ψ(x)= 0. It follows that

Bψ ⊂ B1ψ .
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Take N ∈ End E∗ such that N |1ψ and such that if f |(1ψ/N ) then f is a unit (if
End E ∼= Z, then N is simply the greatest common divisor of the entries of 1ψ).
Define

φ =1ψ/N .

Clearly φ is Gauss-reduced and Bψ ⊂ B1ψ = BNφ . By part (i) of this lemma
applied to Nφ, we conclude

Bψ ⊂ Bφ + (Er
Tor × {0}

g−r ). �

Note that, in the previous lemma, a reordering of the columns of ψ or φ induces
the same reordering of the coordinates of Er

Tor × {0}
g−r .

Taking intersections with the algebraic points of our curve, part (ii) of the pre-
vious lemma translates immediately as

Lemma 4.5. Let C ⊂ Eg be an algebraic curve (transverse or not). For any real
ε ≥ 0

Sr (C, (0
g
0 )ε)=

⋃
φ Gauss-reduced

rk(φ)=r

C(Q)∩ (Bφ + (0
g
0 )ε).

Proof. By definition

Sr (C, (0
g
0 )ε)⊇

⋃
φ Gauss-reduced

rk(φ)=r

C(Q)∩ (Bψ + (0
g
0 )ε).

On the other hand, by Lemma 4.4(ii), we see that

C(Q)∩ (Bψ + (0
g
0 )ε)⊂ C(Q)∩ (Bφ + (Er

Tor × {0}
g−r )+ (0

g
0 )ε),

with φ Gauss-reduced of rank r . Moreover (Er
Tor × {0}

g−r )⊂ Oε ⊂ (0
g
0 )ε. �

5. Relation between transverse and weak-transverse curves

We discuss here how we can associate to a couple (C, 0), where C is a trans-
verse curve and 0 a subgroup of finite rank, a weak-transverse curve C ′ and vice
versa. There are properties which are easier for C and others for C ′. Using this
association, we will try to gain advantages from both situations.

From transverse to weak-transverse. Let C be transverse in Eg. If 0 has rank 0,
we set C ′

= C . If rk 0 ≥ 1, consider the saturated module 00 of rank s associated
to 0, as defined in relation (2-1). Let γ1, . . . , γs be a maximal free set of 00. We
denote the associated point of E s by

γ = (γ1, . . . , γs).
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We define
C ′

= C × γ.

Since C is transverse and the γi are End E-linearly independent, the curve C ′ is
weak-transverse. For suppose to the contrary that C ′ were contained in an algebraic
subgroup Bφ of codimension 1, with φ= (a1, . . . , ag+s). Take a point y1 ∈ E such
that a1 y1 =

∑g+s
i=g+1 aiγi−g and define y = (y1, 0, . . . , 0) ∈ Eg. Then C ⊂ Bφ1 + y

with φ1 = (a1, . . . , ag), contradicting that C is transverse.

From weak-transverse to transverse. Let C ′ be weak-transverse in En . If C ′ is
transverse, we set C = C ′ and 0 = 0. Suppose that C ′ is not transverse. Let
H0 be the abelian subvariety of smallest dimension g such that C ′

⊂ H0 + p for
p ∈ H⊥

0 (Q) and let H⊥

0 be the orthogonal complement of H0 with respect to the
canonical polarization. Then En is isogenous to H0 × H⊥

0 . Furthermore H0 is
isogenous to Eg and H⊥

0 is isogenous to E s , where s = n − g. Let j0, j1 and j2 be
such isogenies. We fix the isogeny

j = ( j1 × j2) ◦ j0 : En
→ H0 × H⊥

0 → Eg
× E s,

which sends H0 to Eg
× 0 and H⊥

0 to 0 × E s . Then

j (C ′)⊂ (Eg
× 0)+ j (p),

with j (p)= (0, . . . , 0, p1, . . . , ps).
We consider the natural projection on the first g coordinates

π : Eg
× E s

→ Eg, j (C ′) 7→ π( j (C ′)).

We define
C = π( j (C ′)) and 0 = 〈p1, . . . , ps〉

g.

Since H0 has minimal dimension, the curve C is transverse in Eg.
Note that

j (C ′)= C × (p1, . . . , ps).

In addition j (C ′) is weak-transverse, because C ′ is. Therefore, 〈p1, . . . , ps〉 has
rank s; indeed if

∑s
i=1 ai pi = 0, then j (C ′)⊂ Bφ for φ = ({0}

g, a1, . . . , as).

Weak-transverse up to an isogeny. Statements on boundedness of heights or finite-
ness of sets are invariant under an isogeny of the ambient variety. Namely, given
an isogeny j of Eg, Theorems 1.2 and 1.5 hold for a curve if and only if they
hold for its image via j . Thus, the previous discussion shows that without loss of
generality, we can assume that a weak-transverse curve C ′ in En is of the form

C ′
= C × p,

where
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(i) C is transverse in Eg,

(ii) p = (p1, . . . , ps) ∈ E s is such that the module 〈p1, . . . , ps〉 has rank s, and

(iii) n = g + s.

This simplifies the setting for weak-transverse curves.

Implying Mordell–Lang plus Bogomolov for curves. Note that

Sg(C,Oε)= C ∩ Oε and Sg(C(0
g
0 )ε)= C ∩ (0

g
0 )ε.

Moreover S2(C, · )⊃ Sg(C, · ). This immediately shows that Conjecture 1.1 implies
the Bogomolov Theorem for weak-transverse curves and the Mordell–Lang and
Bogomolov Theorems for transverse curves. We want to show that Conjecture 1.1
implies these theorems for all curves of genus ≥ 2.

In Eg a curve of genus 2 is a translate of an elliptic curve isogenous to E . If
C is not transverse, then C ( H0 + p with H0 an algebraic subgroup of minimal
dimension satisfying such inclusion. Let π : Eg

→ Eg/H⊥

0 be the natural projection
and let ψ : Eg/H⊥

0 → Ek be an isogeny. Then ‖ψπ(x)‖ � ‖x‖. In Ek , consider
the transverse curve C ′

=ψπ(C − p) and 0′
=ψπ〈0,0p〉. Note that ψπ(TorEg )⊂

TorEk . Then
Sg(C, (0

g
0 )ε)⊂ π−1

|C Sk(C ′, (0′g
0)ε′).

The map π−1
|C has finite fiber. Applying Conjecture 1.1 to C ′

⊂ Ek we deduce that
Sg(C, (0

g
0 )ε) is finite.

Note that such a proof works only for Sg(C, · ), because the projectionψπ(B)⊂
Ek of an algebraic subgroup B of Eg of codimension r may not have codimension
r in Ek . It could even be all of Ek .

6. Quasispecial morphisms

Just as Gauss-reduced morphisms play a key role for transverse curves, quasi-
special morphisms play a key role for weak-transverse curves. In particular, for
small ε, quasispecial morphisms are enough to cover the whole of Sr (C × p,Oε);
this is Lemma 6.2 below.

To motivate quasispecialness, suppose that C × p is weak-transverse in Eg+s

with C transverse in Eg. A point of C × p is of the form (x, p). The last s-
coordinates are constant and just the x varies. This two parts must be treated
differently. Saying that a morphism φ̃ = (φ|φ′) is quasispecial ensures that the
rank of φ is maximal (note that φ acts on x). In particular, this allows us to apply
the Gauss algorithm on the first g columns of φ̃.

Definition 6.1 (Quasispecial morphism). A surjective morphism φ̃ : Eg+s
→ Er is

quasispecial if there exist N ∈ End E∗, morphisms φ : Eg
→ Er and φ′

: E s
→ Er

such that
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(i) φ̃ = (Nφ|φ′),

(ii) φ = (aIr |L) is Gauss-reduced of rank r , and

(iii) if there exists f ∈ End E and φ̃′
: Eg+s

→ Er such that φ̃ = f φ̃′, then f is an
isomorphism.

We do not require that φ̃ be Gauss-reduced; the fact is that H(φ′) might not
be controlled by NH(φ). This extra condition will define special morphisms (see
Definition 10.1).

Lemma 6.2. Let C× p be weak-transverse in Eg+s with C transverse in Eg. Then,
there exists ε > 0 such that

Sr (C × p,Oε)⊂

⋃
φ̃ quasispecial

rk φ̃=r

(C(Q)× p)∩ (Bφ̃ + Oε).

We can choose ε ≤ ε0(p, τ ), where ε0(p, τ ) is as in Proposition 3.3.

Proof. Take (x, p) ∈ Sr (C × p,Oε). Then (x, p) ∈ (C(Q)× p)∩ (Bψ̃ + Oε) for a
morphism ψ̃ = (ψ |ψ ′) : Eg+s

→ Er of rank r . In other words, there exists a point
(ξ, ξ ′) ∈ Oε such that

ψ̃((x, p)+ (ξ, ξ ′))= 0.

First, we show that ψ has rank r . Suppose, on the contrary, that the rank of ψ
were less than r . Then a linear combination of the rows of ψ is trivial, namely

(λ1, . . . , λr )ψ = 0.

Since ψ(x +ξ)+ψ ′(p+ξ ′)= 0, the same linear combination of the r coordinates
of ψ ′(p + ξ ′) is trivial, namely

(λ1, . . . , λr )ψ
′(p + ξ ′)= 0.

Apply Proposition 3.3 with (b1, . . . , bs) = (λ1, . . . , λr )ψ
′, (ξ1, . . . , ξs) = −ξ ′,

ζ = 0 and b = 0. This implies that, if ε ≤ ε0(p, τ ), then the points p1 + ξ ′

1, . . . ,

ps + ξ ′
s are linearly independent. It follows that

(λ1, . . . , λr )ψ
′
= 0.

Hence, the rank of ψ̃ would be less than r , contradicting the fact that the rank of
ψ̃ is r .

Since the rank of ψ is r , we can apply the Gauss algorithm using pivots in ψ of
maximal absolute values in ψ (clearly we cannot require that they have maximal
absolute values in ψ̃). Let1 be an invertible matrix, given by the Gauss algorithm,
such that 1ψ̃ = (φ1|φ2) with f Ir a submatrix of φ1.
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We next get rid of possible common factors. Take N1, n1 ∈ End E∗ such that
N1|φ1 and n1|1ψ̃ . Further suppose that, if f |(φ1/N1) or f |(1ψ̃/n1) then f is a
unit of End E (if End E ∼= Z, then N1 is the greatest common divisor of the entries
of φ1 and n1 the greatest common divisor of the entries of 1ψ̃ ). Then

1ψ̃ = n1(Nφ|φ′)

with N = N1/n1, φ = φ1/N1 and φ′
= φ2/n1. We define

φ̃ = (Nφ|φ′).

Clearly φ̃ is quasispecial. In addition

Bψ̃ ⊂ B1ψ̃ = Bn1φ̃
.

By Lemma 4.4(i), with ψ = φ̃ and N = n1, we deduce that

Bψ̃ ⊂ Bφ̃ + Er
Tor × {0}

g+s−r .

Since (x, p) ∈ Bψ̃ + Oε, we obtain (x, p) ∈ Bφ̃ + Oε with φ̃ quasispecial. �

7. Estimates for the height: the proof of Theorem 1.2

As mentioned, Theorem 1.2(ii) is part of Theorem 1.5 in [Rémond and Viada 2003].
In this section, we adapt the proof given there to part (i) of Theorem 1.2.

In view of Section 5, we can assume, without loss of generality, that a weak-
transverse curve C ′ in En has the form

C ′
= C × p,

where C and p satisfy conditions (i)–(iii) on page 265.

Definition 7.1. Let p be a point in E s and ε a nonnegative real. We define Gε
p as

the set of points θ ∈ E2 for which there exist a matrix A ∈ M2,s(End E), an element
a ∈ End E with 0< |a| ≤ H(A), points ξ ∈ E s and ζ ∈ E2 of norm at most ε such
that

[a]θ = A(p + ξ)+ [a]ζ.

We identify Gε
p with the subset Gε

p × {0}
g−2 of Eg.

Recall that 0p is the saturated module of the coordinates of p.
Now we embed S2(C × p,Oε) in two sets related to the transverse curve C . We

then use the Vojta inequality on these new sets.

Lemma 7.2. The natural projection on the first g coordinates,

Eg
× E s

→ Eg, (x, y) 7→ x,
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defines an injection

S2(C × p,Oε/2gs) ↪→ S2(C, (0g
p)ε) ∪

⋃
φ:Eg

→E2

Gauss-reduced

C(Q)∩ Bφ + Gε
p.

Proof. Let (x, p) ∈ S2(C × p,Oε/2gs). By Lemma 6.2, (x, p) ∈ Bφ̃ + Oε/2gs , with
φ̃ = (Nφ|φ′) : Eg+s

→ E2 quasispecial of rank 2. Hence

φ̃((x, p)+ (ξ, ξ ′))= 0,

for (ξ, ξ ′) ∈ Oε/2gs . We can write the equality as

Nφ(x)+ Nφ(ξ)+φ′(p + ξ ′)= 0.

By the definition of quasispecialness φ is Gauss-reduced, so

φ = (aI2|L).

By Lemma 4.3(i) applied to φ and ξ , we can assume that

ξ = (ξ1, ξ2, 0, . . . 0) ∈ Oε/2s .

Suppose first that NH(φ)≥ H(φ̃). Let ζ be a point in E2
× {0}

g−2 such that

N [a]ζ = (φ′(ξ ′), 0 . . . , 0).

Then

‖ζ‖ =
‖φ′(ξ ′)‖

NH(φ)
≤
ε

2
.

Let y be a point in E2
× {0}

g−2 such that

N [a]y = (φ′(p), 0, . . . , 0).

Since 0p is saturated, y ∈ 02
p × {0}

g−2. Then

Nφ(x + ξ + ζ + y)= 0

with y + ξ + ζ ∈ 0
g
p + Oε. So

x ∈ S2(C, (0g
p )ε).

Now suppose that NH(φ) < H(φ̃) or, equivalently, NH(φ) < H(φ′). Let θ ′ be
a point in E2 such that

N [a]θ ′
= φ′(p + ξ ′)+ N [a]

(
ξ1

ξ2

)
,
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and θ = (θ ′, {0}
g−r ). Then θ ∈ Gε

p. Moreover

Nφ(x + θ)= Nφ(x)+ Nφ(θ)

= Nφ(x)+ N [a]θ ′
= Nφ(x)+φ′(p + ξ ′)+ N [a]

(
ξ1

ξ2

)
= Nφ(x)+ Nφ(ξ)+φ′(p + ξ ′)

= φ̃((x, p)+ (ξ, ξ ′))= 0.

Thus x ∈ BNφ + Gε
p, and by Lemma 4.4(i),

x ∈ Bφ + (E2
Tor × {0}

g−2)+ Gε
p.

Note that Gε
p + (E2

Tor × {0}
g−2)⊂ Gε

p. Hence,

x ∈ C(Q)∩ Bφ + Gε
p. �

Lemma 7.3 (Counterpart to [Rémond and Viada 2003, Lemma 3.2]). For φ : Eg
→

E2 Gauss-reduced of rank 2, we have the set inclusion

(Bφ + Gε
p) ⊂

{
P + θ : P ∈ Bφ, θ ∈ Gε

p and max(‖θ‖, ‖P‖)≤ 2g‖P + θ‖
}
.

Proof. Take x ∈ (Bφ + Gε
p) with φ = (aIr |L) Gauss-reduced of rank 2. Then

x = P+θ with P ∈ Bφ and θ ∈Gε
p and φ(x−θ)=0. By definition Gε

p ⊂ E2
×{0}

g−2,
so φ(θ)= [a]θ . Then

‖θ‖ =
‖φ(θ)‖

H(φ)
=

‖φ(x)‖
H(φ)

≤ g‖x‖.

So
‖P‖ = ‖x − θ‖ ≤ (g + 1)‖x‖ = (g + 1)‖P + θ‖. �

Lemma 3.3(1) of [Rémond and Viada 2003] is a statement on the morphism;
therefore it holds with no need for any remarks.

Lemma 7.4 (Counterpart to [Rémond and Viada 2003, Lemma 3.3(2)]). There
exists an effective ε2 > 0 such that, for all ε ≤ ε2, any sequence of elements in Gε

p
admits a subsequence in which every two elements θ , θ ′ satisfy∥∥∥∥ θ

‖θ‖
−

θ ′

‖θ ′‖

∥∥∥∥≤
1

16gc1
,

where c1 depends on C and is as defined in [Rémond and Viada 2003, Proposition
2.1].

Proof. We decompose two elements θ and θ ′ in a given sequence of elements of
Gε

p as
[a]θ = A(p + ξ)+ [a]ζ, [a′

]θ ′
= A′(p + ξ ′)+ a′ζ ′,
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with A, A′
∈ M2,s(End E) and 0< |a| ≤ H(A), 0< |a′

| ≤ H(A′). Define y and y′

such that

[a]y = A(p) and [a′
]y′

= A′(p).

Since the sphere of radius 1 is compact in (〈p1, . . . , ps〉 × 〈p1, . . . , ps〉)⊗ R, we
can extract a subsequence such that, for any two elements y and y′,∥∥∥∥ y

‖y‖
−

y′

‖y′‖

∥∥∥∥≤
1

48gc1
.

Note that ∥∥∥∥ θ

‖θ‖
−

y
‖θ‖

∥∥∥∥=

∥∥∥∥ A(ξ)+ [a]ζ

A(p + ξ)+ [a]ζ

∥∥∥∥
and ∥∥∥∥ y

‖θ‖
−

y
‖y‖

∥∥∥∥=

∣∣∣∣‖A(p)‖ −‖A(p + ξ)+ [a]ζ‖

‖A(p + ξ)+ [a]ζ‖

∣∣∣∣≤ ∥∥∥∥ A(ξ)+ [a]ζ

A(p + ξ)+ [a]ζ

∥∥∥∥,
and the same relations for primed variables. We deduce that∥∥∥∥ θ

‖θ‖
−

θ ′

‖θ ′‖

∥∥∥∥≤

∥∥∥∥ y
‖y‖

−
y′

‖y′‖

∥∥∥∥+

∥∥∥∥ y
‖θ‖

−
y

‖y‖

∥∥∥∥+

∥∥∥∥ y′

‖θ ′‖
−

y′

‖y′‖

∥∥∥∥
+

∥∥∥∥ θ

‖θ‖
−

y
‖θ‖

∥∥∥∥+

∥∥∥∥ θ ′

‖θ ′‖
−

y′

‖θ ′‖

∥∥∥∥
≤

∥∥∥∥ y
‖y‖

−
y′

‖y′‖

∥∥∥∥+ 2
∥∥∥∥ A(ξ)+ [a]ζ

A(p+ξ)+ [a]ζ

∥∥∥∥+ 2
∥∥∥∥ A′(ξ ′)+ [a′

]ζ ′

A′(p+ξ ′)+ [a′]ζ ′

∥∥∥∥.
Choose

ε ≤ ε2 = min(ε0(p, τ ), ε′

0(p, τ )), (7-1)

where ε0(p, τ ) is defined in (3-3), c2(p, τ ) is defined in (3-4) and

ε′

0(p, τ )=
c2(p, τ )1/2min‖pi‖

96(s + 1)c1
.

Note that ‖A(p + ξ)+ [a]ζ‖ = ‖Ak(p + ξ)+ aζk‖ for k = 1 or 2 and A =
(A1

A2

)
.

Proposition 3.3 applied with b1, . . . , bs = Ak , ξ = −ξ , ζ = −ζk and b = a, implies

‖A(p + ξ)+ [a]ζ‖ ≥ H(A)c2(p, τ )1/2min‖pi‖

(same relation with ′).
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It follows that∥∥∥∥ θ

‖θ‖
−

θ ′

‖θ ′‖

∥∥∥∥
≤

1
48gc1

+ ε
2H(A)(s + 1)

H(A)c2(p, τ )1/2 min ‖pi‖
+ ε

2H(A′)(s + 1)
H(A′)c2(p, τ )1/2 min ‖pi‖

≤
1

48gc1
+

1
48gc1

+
1

48gc1
,

where in the last inequality we use ε ≤ ε′

0(p, τ ). �

We are ready to conclude.

Proof of Theorem 1.2(i). In view of Lemma 7.2, we shall prove that there exists
ε > 0 such that S2(C, (0

g
p )ε) and

⋃
φ:Eg

→E2

Gauss-reduced
C(Q) ∩ Bφ + Gε

p have bounded
height.

By Theorem 1.2(ii), there exists ε1 > 0 such that for ε ≤ ε1, the first set has
bounded height.

It remains to show that there exists ε2 > 0 such that, for ε ≤ ε2, the second set
has bounded height. The proof follows, step by step, the proof of [Rémond and
Viada 2003, Theorem 1.5]. In view of Lemma 7.3 and 7.4, all conditions for the
proof of that theorem are satisfied. The proof is then exactly equal to the one in
[Rémond and Viada 2003, p. 1927–1928]. �

Remark 7.5. In Theorem 1.5 of [Rémond and Viada 2003] we showed that for
ε1 = 1/(2gc1), the set S2(C, 0ε1) has bounded height. The constant c1 depends
on the invariants of the curve C . This constant is defined in Proposition 2.1 of the
same reference and it is effective. On the other hand, the height of S2(C, 0ε1) is
bounded by a constant which is not known to be effective, unless 0 has rank 0.

For C × p, we have shown that for

ε′

2 =
min(1, c2(p, τ ))min ‖pi‖

2

28g(s + 1)2 max ‖pi‖c1

the set S2(C × p,Oε′2) has bounded height; see relation (7-1) and Lemma 7.2. As
in the previous case, the height of S2(C × p,Oε′2) is bounded by a constant which,
in general, is not known to be effective.

8. Summary of notation

We stop to recapitulate and fix the notations for the rest of the article.
For simplicity, we assume that End E ∼= Z. In this case the saturated module

of a group coincides with its division group. According to Remark 4.2, we use
H(φ) = a in the definition of a Gauss-reduced morphism and N ∈ N∗ in the
definition of quasispecialness.
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• Let E be an elliptic curve without CM over Q.

• Let C be a transverse curve in Eg over Q.

• Let

φ =

 φ1
...

φr

=

 a . . . 0 L1
...

...
...

0 . . . a Lr


be a Gauss-reduced morphism of rank 1≤r ≤g, with L i ∈Zg−r and H(φ)=a.

• Let 0 be a subgroup of finite rank of Eg(Q).

• Let 00 be the division group of 0 and s its rank (the definition is given in
relation (2-1)).

• Choose ε1 > 0 so that S2(C, (0
g
0 )ε1) has bounded height; the definition is

consistent in view of Theorem 1.2 (ii).

• Let K1 be the norm of S2(C, (0
g
0 )ε1).

• Let γ = (γ1, . . . , γs) be a point of E s(Q) such that γ1, . . . , γs is a maximal
free set of 00 satisfying the conditions of Lemma 3.4 with K =3gK1. Namely,
for all integers bi

1
9

∑
i

|bi |
2
‖γi‖

2
≤

∥∥∥∥∑
i

biγi

∥∥∥∥2

(8-1)

and
min

i
‖γi‖ ≥ 3gK1. (8-2)

• Let C × γ be the associated weak-transverse curve in Eg+s .

• Let φ̃ = (Nφ|φ′) : Eg+s
→ Er be a quasispecial morphism with N ∈ N∗.

• Choose ε2 > 0 so that S2(C × γ,Oε2) has bounded height; this definition is
consistent in view of Theorem 1.2(i).

• Let K2 be the norm of S2(C × γ,Oε2).

• Let p = (p1, . . . , ps) ∈ E s be a point such that the rank of 〈p1, . . . , ps〉 is s.

• Let 0p be the division group of 〈p1, . . . , ps〉 (in short the division group of
p).

• Let cp and εp be the constants (c2(p, τ ))1/2 and ε0(p, τ ) defined in Proposi-
tion 3.3 for the point p and τ = 1 (please note the square root in cp).

• Let C × p be the associated weak-transverse curve in Eg+s .

• Choose ε3 > 0 so that S2(C × p,Oε3) has bounded height; the definition is
consistent in view of Theorem 1.2 (i).

• Let K3 be the norm of S2(C × p,Oε3).
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9. Equivalence of the strong statements: the proof of Theorem 1.3

The following theorem implies Theorem 1.3 immediately; in addition it gives ex-
plicit inclusions. Once more, we emphasize that we need to assume that Sr (C ×

p,Oε) has bounded height in order to embed it in a set of the type Sr (C, 0ε′).
Therefore we assume r ≥ 2 and ε ≤ ε3 in part (ii).

Theorem 9.1. Let ε ≥ 0.

(i) The map x → (x, γ ) defines an injection

Sr (C, 0ε) ↪→ Sr (C × γ,Oε).

(Recall that γ is a maximal free set of 00.)

(ii) For 2 ≤ r and ε ≤ min(εp, ε3), the map (x, p)→ x defines an injection

Sr (C × p,Oε) ↪→ Sr (C, (0g
p)εK4),

where K4 = (g + s)max
(

1,
g(K3 + ε)

cp mini ‖pi‖

)
. (Recall that 0p is the division

group of p.)

Proof. (i) Let x ∈ Sr (C, 0ε). There exists a surjective φ : Eg
→ Er and points

y ∈ 0 and ξ ∈ Oε such that
φ(x + y + ξ)= 0.

Since γ = (γ1, . . . , γs) is a maximal free set of 00, there exists a positive integer
N and a matrix G ∈ Mr,s(Z) such that

[N ]y = Gγ.

We define
φ̃ = (Nφ|φG).

Then φ̃((x, γ )+ (ξ, 0)) = Nφ(x + ξ)+φG(γ ) = Nφ(x + ξ + y) = 0, so

(x, γ ) ∈ Sr (C × γ,Oε).

(ii) Take (x, p) ∈ Sr (C × p,Oε). Thanks to Lemma 6.2, the assumption ε ≤ εp

implies
(x, p) ∈ (Bφ̃ + Oε)

with φ̃ = (Nφ|φ′) quasispecial. Hence

φ̃((x, p)+ (ξ, ξ ′))= 0

for (ξ, ξ ′) ∈ Oε. Equivalently,

Nφ(x + ξ)= −φ′(p + ξ ′). (9-1)
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By the definition of quasispecialness, φ is Gauss-reduced of rank r . Let

φ =

 φ1
...

φr

=

 a . . . 0 L1
...

...
...

0 . . . a Lr

 ,
with L i ∈ Zg−r and H(φ)= a.

Since 0p is the division group of p, the point y′ defined by

N [a]y′
= φ′(p)

belongs to 0r
p .

Let ζ ′ be a point of Er such that

N [a]ζ ′
= φ̃(ξ, ξ ′).

We define

y = (y′, 0, . . . , 0) ∈ 0r
p × {0}

g−r , ζ = (ζ ′, 0, . . . , 0) ∈ Er
× {0}

g−r .

We have

Nφ(y)= N [a]y′
= φ′(p)Nφ(ζ )= N [a]ζ ′

= φ̃(ξ, ξ ′).

It follows that

Nφ(x + y + ζ ) = Nφ(x)+φ′(p)+ φ̃(ξ, ξ ′)= φ̃((x, p)+ (ξ, ξ ′)) = 0.

Thus

x ∈ C(Q)∩ (BNφ +0g
p + O‖ζ‖).

In order to finish the proof, we shall prove

‖ζ‖ ≤ εK4.

By the definition of ζ we see that

‖ζ‖ = ‖ζ ′
‖ =

‖φ̃(ξ, ξ ′)‖

Na
≤ (g + s)

max(H(φ′), Na)
Na

‖(ξ, ξ ′)‖

≤ (g + s)
max(H(φ′), Na)

Na
ε.

We claim that
max(H(φ′), Na)

Na
≤

K4

g + s
.
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Let φ′
= (bi j ). We shall prove that H(φ′) = maxi j |bi j | ≤

K4
g+s

Na. Let |bkl | =

H(φ′). Consider the k-th row of the system (9-1)

Nφk(x)+ Nφk(ξ)= −

∑
j

bk j (p j + ξ ′

j ).

The triangle inequality gives

‖φk(x)‖
a

+
‖φk(ξ)‖

a
≥

‖
∑

j bk j (p j + ξ ′

j )‖

Na
. (9-2)

Since ε ≤ ε3 and r ≥ 2, we have (x, p) ∈ S2(C × p,Oε3), which has norm K3.
Hence

‖x‖ ≤ ‖(x, p)‖ ≤ K3.

Since a = H(φ), we see that

‖φk(x)‖
a

≤ (g − r + 1)K3 and
‖φk(ξ)‖

a
≤ (g − r + 1)ε.

Substituting in (9-2),

(g − r + 1)(K3 + ε)≥

∥∥∑
j bk j (p j + ξ ′

j )
∥∥

Na
.

Recall that ε ≤ εp. Hence, Proposition 3.3 with (b1, . . . , bs) = (bk1, . . . , bks),
(ξ1, . . . , ξs)= −ξ ′ and ζ = 0, implies that

(g − r + 1)(K3 + ε) ≥
1

Na

(
cp

2
∑

j

|bk j |
2
‖p j‖

2
)1/2

≥
cp H(φ′)

Na
min

i
‖pi‖.

Whence

H(φ′)≤
K4

g + s
Na. �

The inclusion in Theorem 9.1(ii) has been proved only for a set Sr (C × p,Oε)

known to have bounded height. If the norm K3 of Sr (C × p,Oε) goes to infinity,
the set (0g

p)εK4 tends to be the whole of Eg.

Remark 9.2. We would like to show that our Theorems 1.2 and 1.5 are optimal.
Take 0 = 〈(y1, 0, . . . , 0)〉, where y1 is a nontorsion point in E(Q). Since C is
transverse, the projection π1 of C(Q) on the first factor E(Q) is surjective. Let
xn ∈ C(Q) such that π1(xn) = ny1. So xn − n(y1, 0, . . . , 0) has first coordinate
zero, and belongs to the algebraic subgroup 0× Eg−1. Then, for all n ∈ N we have

xn ∈ Bφ=(1,0,...,0) +0.

This shows that xn ∈ S1(C, 0), so S1(C, 0) does not have bounded height. By
Theorem 9.1(i), neither does S1(C × y1).
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10. Special morphisms and an important inclusion

We can actually show a stronger inclusion than the one in Theorem 9.1(i). The set
Sr (C, 0ε) can be included in a subset of Sr (C ×γ,Oε), namely the subset defined
by special morphisms.

Definition 10.1 (Special morphisms). A surjective morphism φ̃ : Eg+s
→ Er is

special if φ̃ = (Nφ|φ′) is quasispecial and satisfies the further condition

H(φ̃)= NH(φ).

Equivalently, φ̃ is special if and only if

(i) φ̃ is Gauss-reduced, and

(ii) H(φ̃)Ir is a submatrix of the matrix consisting of the first g columns of φ̃.

Proof of the equivalence of the two definitions. That the first definition implies
the second is clear. For the converse, take the decomposition φ̃ = (A|φ′), with
A ∈ Mr×g(Z) and φ′

∈ Mr×s(Z). Let N be the greatest common divisor of the
entries of A. Define φ = A/N and a = H(φ̃)/N . Then φ = (aIr |L ′) is Gauss-
reduced and φ̃ = (Nφ|φ′). �

A nice remark is that the obstruction to showing unconditionally that Sr (C×p,Oε)
is included in Sr (C, (0

g
p )ε′) is exactly due to the nonspecial morphisms. Sets of

the form
(C(Q)× p)∩ (Bφ̃ + Oε)

not having bounded height can be included in Sr (C, (0
g
p )ε′) if φ̃ is special; indeed

in general

ε′
= c(g, s)

H(φ̃)
H(A)

ε

for any φ̃ = (A|φ′).

Proposition 10.2. Let 2 ≤ r and ε ≤ min(ε1, K1/g). The map x → (x, γ ) defines
an injection⋃

φ Gauss-reduced
rkφ=r

C(Q)∩
(
Bφ + (0

g
0 )ε
)
↪→

⋃
φ̃=(Nφ|φ′) special

rk φ̃=r

(C(Q)× γ )∩ (Bφ̃ + Oε).

Proof. Let x ∈C(Q)∩(Bφ+0
g
0 +Oε), with φ Gauss-reduced of rank r . Equivalently,

there exist y ∈ 0
g
0 and ξ ∈ Oε ⊂ Eg such that

φ(x + y + ξ)= 0.
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Since γ1, . . . , γs is a maximal free set of 00, there exists an integer N and a matrix
G ∈ Mr,s(Z) such that

[N ]y = G(γ ).

Let n be the greatest common divisor of the entries of (Nφ|φG). We define

φ̃ =
1
n
(Nφ|φG).

Clearly

(Nφ|φG) ((x, γ )+ (ξ, 0))= Nφ(x)+φG(γ )+ Nφ(ξ)= Nφ(x + y + ξ)= 0.

Thus
nφ̃
(
(x, γ )+ (ξ, 0)

)
= 0. (10-1)

Equivalently,
(x, γ ) ∈ (C(Q)× γ )∩ (Bnφ̃ + Oε).

By Lemma 4.4(i) with ψ = φ̃ and N = n, it follows

(x, γ ) ∈ (C(Q)× γ )∩ (Bφ̃ + Oε).

We next show that φ̃ is special. By assumption, the morphism φ is Gauss-
reduced. By the definition of φ̃, the greatest common divisor of its entries is 1. In
order to conclude that φ̃ is special, we still have to show that

H(φ̃)= Na

or equivalently
H(φ′)≤ Na.

The proof is similar to the last part of the proof of Theorem 9.1(ii).
Let φ′

= (bi j )= φG. Let |bkl | = maxi j |bi j | = H(φ′). Let φk be the k-th row of
φ. Consider the k-th row of the system (10-1):

nN (φk(x)+φk(ξ))= −n
∑

j

bk jγ j .

Then
‖φk(x)‖

a
+

‖φk(ξ)‖

a
≥

1
Na

∥∥∥∥∑
j

bk jγ j

∥∥∥∥.
Clearly x ∈ Sr (C, (0

g
0 )ε). Since ε ≤ ε1, we have x ∈ S2(C, (0

g
0 )ε1), which has

norm bounded by K1. So
‖x‖ ≤ K1.

Since H(φk)≤ H(φ)= a,

‖φk(x)‖
a

≤ (g − r + 1)K1.



278 Evelina Viada

Furthermore,
‖φk(ξ)‖

a
≤ (g − r + 1)ε.

Then

(g − 1)(K1 + ε)≥
1

Na

∥∥∥∥∑
j

bk jγ j

∥∥∥∥.
From relations (8-1) with (b1, . . . , bs)= (bk1, . . . , bks) and (8-2), we deduce

(g−1)(K1+ε) ≥
1

Na

(
1
9

∑
j

|bk j |
2
‖γ j‖

2
)1/2

≥
H(φ′)

3Na
min

j
‖γ j‖ ≥

H(φ′)

3Na
3gK1.

We assumed that ε ≤ K1/g, so H(φ′)≤ Na. �

This inclusion is important; the Bogomolov-type bounds are given for inter-
sections with Oε and not with 0ε. Actually there exist bounds for ε such that
C ∩ 0ε is finite. They are deduced using the Bogomolov-type bounds and their
dependence on the degree of the curve is not sharp enough for our purpose. To
overcome this obstacle and solve the problem with 0ε, we use Proposition 10.2
and the Bogomolov-type bounds for C × γ intersected with Bφ̃ + Oε, where φ̃ is
special of rank 2.

11. Proof of Theorem 1.5: Structure

Sections 12 and 13 below will develop the core of the proof of Theorem 1.5. In
Proposition A we show that the union can be taken over finitely many sets, while
in Proposition B we show that each set in the union is finite.

We prefer to present first the proof of Theorem 1.5 assuming Propositions A and
B, and then to prove them. We hope that, knowing a priori the aim of sections 12
and 13, the reader gets the right inspiration to handle the proofs.

Proof of Theorem 1.5. Assuming Conjecture 1.4, we prove Conjecture 1.1(iv). In
view of Theorem 1.3, part (iii) is also proved. Parts (i) and (ii) are then obtained
by setting ε = 0.

Choose

n = 2(g + s)− 3,

δ1 =
min(ε4, ε2)

(g + s)2
, where ε4 is as in Proposition B,

δ = δ1 M ′−1−1/(2n)
, where M ′

= max
(
2, dK2/δ1e

2
)n .
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Recall that 0δ ⊂ (0
g
0 )δ. Apply Lemma 4.5, replacing ε by δ. Then

S2(C, 0δ)⊂

⋃
φ Gauss-reduced

rkφ=2

C(Q)∩ (Bφ + (0
g
0 )δ).

Observing that δ < δ1 <min(ε1, K1/g) and applying Proposition 10.2 (again with
ε = δ) we obtain an injection⋃

φ Gauss-reduced
rkφ=2

C(Q)∩ (Bφ + (0
g
0 )δ) ↪→

⋃
φ̃=(Nφ|φ′) special

rk φ̃=2

(C(Q)× γ )∩ (Bφ̃ + Oδ).

Note that δ = δ1 M ′−(1+1/(2n)) and δ1 ≤ ε2. Then, Proposition A(ii) in Section 12
below, with ε = δ1, r = 2 (and n already defined as 2(g + s)− 4 + 1), shows that⋃

φ̃ special
rk φ̃=2

(C(Q)× γ )∩ (Bφ̃ + Oδ)

is a subset of ⋃
φ̃ special
H(φ̃)≤M ′

rk φ̃=2

(C(Q)× γ )∩
(
Bφ̃ + O(g+s)δ1/H(φ̃)1+1/(2n)

)
. (11-1)

Observe that in (11-1), φ̃ ranges over finitely many morphisms, because H(φ̃) is
bounded by M ′.

We have chosen δ1 ≤ ε4/(g + s)2. Proposition B(ii) in Section 13 below with
ε = (g + s)δ1, implies that for all φ̃ = (Nφ|φ′) special of rank 2, the set

(C(Q)× γ )∩
(
Bφ̃ + O(g+s)δ1/H(φ)1+1/(2n)

)
is finite. Note that H(φ)≤ H(φ̃), thus also the sets

(C(Q)× γ )∩
(
Bφ̃ + O(g+s)δ1/H(φ̃)1+1/(2n)

)
appearing in (11-1) are finite.

It follows that, the set S2(C, 0δ) is contained in the union of finitely many finite
sets. So it is finite. �

Despite our proof relying on Dirichlet’s Theorem and a Bogomolov-type bound,
a direct use of these two theorems is not sufficient to prove Theorem 1.5. Using
Dirichlet’s Theorem in a more natural way, one can prove that, for r ≥ 2,

Sr (C, 0ε) ⊂

⋃
H(φ)≤M(ε)

rkφ=r

C(Q)∩
(
Bφ +0ε

)
.
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On the other hand, a direct use of the Bogomolov type bound shows that

C(Q)∩
(
Bφ + Oε/H(φ)2

)
is finite, for φ of rank at least 2. Even if we forget 0, the discrepancy between ε
and ε/H(φ)2 does not look encouraging, and it took us a long struggle to overcome
the problem. In Propositions A and B, we succeed in overcoming the mismatch;
in both statements we obtain neighborhoods of radius ε/H(φ)1+1/(2n).

Warning: One might think that, since we consider only morphisms φ such that
H(φ) ≤ M , it might be enough to choose ε′

= ε/M2. However, M = M(ε) is an
unbounded function of ε as ε tends to 0.

12. Proof of Theorem 1.5:
The box principle and the reduction to a finite union

In Lemma 12.2, we approximate a Gauss-reduced morphism by a Gauss-reduced
morphism of bounded height. Such an approximation allows us to restrict our
attention to unions over finitely many algebraic subgroups, instead of over all al-
gebraic subgroups; this is Proposition A, already mentioned. We start by recalling
Dirichlet’s Theorem on the rational approximation of reals.

Theorem 12.1 (Dirichlet, 1842; see [Schmidt 1980, p. 24, Theorem 1]). Suppose
that α1, . . . , αn are real numbers and that Q ≥ 2 is an integer. There exist integers
f, f1, . . . , fn such that

1 ≤ f < Qn and |αi f − fi | ≤
1
Q

for 1 ≤ i ≤ n. (12-1)

Lemma 12.2. Let Q ≥ 2 be an integer. Let φ = (aIr |L) ∈ Mr×g(Z) be Gauss-
reduced. There exists a Gauss-reduced ψ = ( f Ir |L ′) ∈ Mr×g(Z) such that

(i) H(ψ)= f ≤ Qrg−r2
+1 and

(ii)
∣∣∣ψf −

φ

a

∣∣∣≤ Q−1/2 f
−1−

1
2(rg−r2

+1) .

Here the norm | · | of a matrix is the maximum of the absolute values of its entries.

Proof. If a ≤ Qrg−r2
+1 no approximation is needed, since φ itself satisfies the

conclusion. So we can assume that

φ =

 a . . . 0 L1
...

...
...

0 . . . a Lr


is a Gauss-reduced morphism such that H(φ) = a > Qrg−r2

+1. Consider the
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element

α =

(
1,

L1

a
, . . . ,

Lr

a

)
= (α1, α2, . . . , αrg−r2+1) ∈ Rrg−r2

+1.

Set n = rg−r2
+1. Apply Dirichlet’s Theorem to α to select integers f, f1, . . . , fn

satisfying (12-1); they can be assumed to have greatest common divisor 1. Define

w =
1
f
( f1, . . . , fn)=

1
f
( f1, L ′

1, . . . , L ′

r ),

with L ′

i ∈ Zg−r . We claim that

f1 = f, | fi | ≤ f.

Indeed, (12-1) for i = 1 yields ∣∣∣∣ f1
f

− 1
∣∣∣∣≤ 1

Q f
,

so | f − f1| < 1. Since f and f1 are integers, we must have f = f1. Similarly,
by (12-1) for i = 2, . . . , n, we have | fi/ f −αi | ≤ 1/(Q f ). This implies that
| fi | ≤ f + 1/Q. We deduce that | fi | ≤ f .

It follows that

ψ =

 f . . . 0 L ′

1
...

...

0 . . . f L ′
r


is a Gauss-reduced morphism of rank r with H(ψ)= f .

Relation (12-1) immediately gives

f ≤ Qn

and ∣∣∣∣ψf −
φ

a

∣∣∣∣≤ 1
Q f

≤
1

Q1/2 f 1+1/(2n) ,

where in the last inequality we have used the inequality Q1/2
≥ f 1/(2n). �

At last we can prove our first main proposition; the union can be taken over
finitely many algebraic subgroups. If φ has large height and Bφ is close to x ,
with x in a set of bounded height, then there exists ψ with height bounded by a
constant such that Bψ is also close to x . One shall be careful that, in the following
inclusions, on the left-hand side we consider a neighborhood of Bφ of fixed radius,
while on the right-hand side the neighborhood becomes smaller as the height of ψ
grows. This is a crucial gain with respect to the simpler approximation (obtained
by a direct use of Dirichlet’s Theorem) where the neighborhoods have constant
radius on both sides.
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Proposition A. Assume r ≥ 2.

(i) If 0< ε ≤ ε1, then⋃
φ Gauss-reduced

rkφ=r

C(Q)∩
(
Bφ +

(
0

g
0

)
ε/M1+1/(2n)

)
⊂

⋃
ψ Gauss-reduced

rkψ=r
H(ψ)≤M

C(Q)∩
(
Bψ + (0

g
0 )gε/H(ψ)1+1/(2n)

)
,

where n = rg − r2
+ 1 and M = max

(
2, dK1/εe

2
)n .

(ii) If 0< ε ≤ ε2, then⋃
φ̃ special
rk φ̃=r

(C(Q)× γ )∩
(
Bφ̃ + Oε/M ′1+1/(2n)

)
⊂

⋃
ψ̃ special
rk ψ̃=r

H(ψ̃)≤M ′

(C(Q)× γ )∩
(
Bψ̃ + O(g+s)ε/H(ψ̃)1+1/(2n)

)
,

where n = r(g + s)− r2
+ 1 and M ′

= max
(
2, dK2/εe

2
)n .

Proof. (i) Let φ = (aIr |L) be Gauss-reduced of rank r .
First consider the case H(φ)≤ M . Then ε/M1+1/(2n)

≤ ε/H(φ)1+1/(2n). Obvi-
ously

C(Q)∩ (Bφ +0
g
0 + Oε/M1+1/(2n))⊂ C(Q)∩ (Bφ +0

g
0 + Oε/H(φ)1+1/(2n))

is contained in the right-hand side.
Secondly consider the case H(φ)>M . We shall show that there existsψ Gauss-

reduced with H(ψ)≤ M such that

C(Q)∩
(
Bφ +0

g
0 + Oε/M1+1/(2n)

)
⊂ C(Q)∩

(
Bψ +0

g
0 + Ogε/H(ψ)1+1/(2n)

)
.

We fix Q = max
(
2, dK1/εe

2
)
. Recall that n = rg − r2

+ 1. By Lemma 12.2,
there exists a Gauss-reduced morphism

ψ =

 f . . . 0 L ′

1
...

...

0 . . . f L ′
r


such that

H(ψ)= f ≤ M

and ∣∣∣∣ψf −
φ

a

∣∣∣∣≤ 1
Q1/2 f 1+1/(2n) . (12-2)
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Let x ∈ C(Q) ∩ (Bφ + 0
g
0 + Oε/M1+1/(2n)). Then there exist y ∈ 0

g
0 and ξ ∈

Oε/M1+1/(2n) such that
φ(x − y − ξ)= 0.

We want to show that there exist y′
∈ 0

g
0 and ξ ′

∈ Ogε/ f 1+1/(2n) such that

ψ(x − y′
− ξ ′)= 0.

Let y′′ be a point such that
[a]y′′

= φ(y).

Since 00 is a division group, y′′
∈ 0r

0. We define

y′
= (y′′, 0) ∈ 0r

0 × {0}
g−r ,

whence
ψ(y′)= [ f ]y′′.

Let ξ ′′ be a point such that

[ f ]ξ ′′
= ψ(x − y′),

and define ξ ′
= (ξ ′′, 0). Then

ψ(ξ ′)= [ f ]ξ ′′
= ψ(x − y′) and ψ(x − y′

− ξ ′)= 0.

It follows that
x ∈ C(Q)∩ (Bψ +0

g
0 + O‖ξ ′‖).

In order to finish the proof, we are going to prove that

‖ξ ′
‖ ≤

gε
f 1+1/(2n) .

By definition

‖ξ ′
‖ = ‖ξ ′′

‖ =
‖ψ(x − y′)‖

f
.

Consider the equivalence

aψ(x − y′)= aψ(x)− aψ(y′)= aψ(x)− a[ f ]y′′

= aψ(x)− f φ(y)= aψ(x)− f φ(x)+ f φ(ξ).

Then

‖ξ ′
‖ =

1
a f
∥∥ f φ(ξ)− f φ(x)+ aψ(x)

∥∥≤
1
a
‖φ(ξ)‖ +

1
a f
∥∥aψ(x)− f φ(x)

∥∥.
We estimate separately each norm on the right.
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On the one hand,

1
a
‖φ(ξ)‖ ≤ (g − r + 1)‖ξ‖ ≤

(g − 1)ε
M1+1/(2n) ≤

(g − 1)ε
f 1+1/(2n) ,

because ‖ξ‖ ≤ ε/M1+1/(2n) and f ≤ M.
On the other hand, since the rank of φ is at least 2 and ε ≤ ε1, we have x ∈

S2(C, (0
g
0 )ε1), which has norm K1. Thus

‖x‖ ≤ K1.

Using relation (12-2) and that Q ≥ dK1/εe
2, it follows that

1
a f

‖aψ(x)− f φ(x)‖ ≤

∣∣∣∣ψf −
φ

a

∣∣∣∣ ‖x‖ ≤
1

Q1/2 f 1+1/(2n) ‖x‖

≤
ε‖x‖

K1 f 1+1/(2n) ≤
ε

f 1+1/(2n) .

We obtain

‖ξ ′
‖ ≤

(g − 1)ε
f 1+1/(2n) +

ε

f 1+1/(2n) ≤
gε

f 1+1/(2n) ,

concluding the proof of part (i) of the proposition.

(ii) We fix Q = max(2, dK2/εe
2). Let φ̃ = (Nφ|φ′) : Eg+s

→ Er be special. From
conditions (i) and (ii) of Definition 10.1 we know that

φ̃ = (bIr |∗)

is Gauss-reduced and H(φ̃)= b.
As in part (i) of the proof, if H(φ̃) ≤ M ′ then ε/M ′1+1/(2n)

≤ ε/H(φ̃)1+1/(2n)

and the set
(C(Q)× γ )∩ (Bφ̃ + Oε/M ′1+1/(2n))

is contained in the right-hand side.
Now, suppose that H(φ̃) > M ′. Recall that n = r(g + s)− r2

+ 1. By Lemma
12.2 (applied with φ = φ̃ and ψ = ψ̃) there exists a Gauss-reduced ψ̃ = ( f Ir |∗)

such that H(ψ̃)= f ≤ M ′ and∣∣∣∣ φ̃b −
ψ̃

f

∣∣∣∣≤ 1
Q1/2 f 1+1/(2n) . (12-3)

Then ψ̃ is special, since it satisfies (i) and (ii) in Definition 10.1.
The proof is now similar to that of part (i). We want to show that, if φ̃((x, γ )+ξ)

vanishes for ξ ∈ Oε/M ′1+1/2n , then ψ̃((x, γ )+ξ ′) vanishes for ξ ′
∈ O

(g+s)ε/H(ψ̃ )1+1/2n .
Let ξ ′′ be a point in Er such that

[ f ]ξ ′′
= −ψ̃(x, γ ).
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We define ξ ′
= (ξ ′′, {0}

g−r+s). Then

ψ̃((x, γ )+ (ξ ′, 0))= 0.

It follows that

(x, γ ) ∈ (C(Q)× γ )∩ (Bψ̃ + O‖ξ ′‖),

where ψ̃ is special and H(ψ̃)≤ M ′.
It remains to prove that

‖ξ ′
‖ ≤

(g + s)ε
H(ψ̃)1+1/(2n)

.

Obviously

bψ̃(x, γ )= f
(
φ̃(x, γ )− φ̃(x, γ )

)
+ bψ̃(x, γ ).

According to the definition of ξ ′,

‖ξ ′
‖ = ‖ξ ′′

‖ =
‖ψ̃(x, γ )‖

f
=

1
b f

∥∥ f
(
φ̃(x, γ )− φ̃(x, γ )

)
+ bψ̃(x, γ )

∥∥
≤

1
b

∥∥φ̃(x, γ )∥∥+
1

b f

∥∥bψ̃(x, γ )− f φ̃(x, γ )
∥∥.

We estimate the two norms on the right.
On the one hand,

‖φ̃(x, γ )‖
b

=
‖φ̃(ξ)‖

b
≤ (g−r +1+s)‖ξ‖ ≤

(g−r +1+s)ε

M ′1+1/(2n) ≤
(g−r +1+s)ε

f 1+1/(2n) ,

where in the last inequality we have used that f ≤ M ′.
On the other hand, by the definition of ε2, we know that the norm of the set

S2(C × γ,Oε2) is bounded by K2. Since ε ≤ ε2, we have (x, γ ) ∈ S2(C × γ,Oε2).
Therefore

‖(x, γ )‖ ≤ K2.

Using relation (12-3) and the inequality Q ≥ dK2/εe
2, we estimate

1
b f

∥∥bψ̃(x, γ )− f φ̃(x, γ )
∥∥≤

∣∣∣∣ φ̃b −
ψ̃

f

∣∣∣∣‖(x, γ )‖ ≤
‖(x, γ )‖

Q1/2 f 1+1/(2n)

≤
ε‖(x, γ )‖

(K2) f 1+1/(2n) ≤
ε

f 1+1/(2n) .

Since r ≥ 2, we conclude that

‖ξ ′
‖ ≤

(g − 1 + s)ε
f 1+1/(2n) +

ε

f 1+1/(2n) =
(g + s)ε

H(ψ̃)1+1/(2n)
. �
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13. Proof of Theorem 1.5:
The essential minimum and the finiteness of each intersection

Up until now we have used, several times, the boundedness of the height of our
sets. In this section we often use the fact that we are working with a curve.

In the following, we set
n = 2(g + s)− 3.

We would like to use Conjecture 1.4 to provide ε > 0 such that, for all φ Gauss-
reduced of rank r = 2, the set

(C(Q)× γ )∩
(
Bφ + Oε/H(φ)1+1/(2n)

)
(13-1)

is finite. This set is simply

φ−1
|C×γ

(
φ(C × γ )∩φ(Oε/H(φ)1+1/(2n))

)
.

Further
φ(Oε/H(φ)1+1/(2n))⊂ Ogε/H(φ)1/(2n),

because if ζ ∈ Oε/H(φ)1+1/(2n) then ‖φ(ζ )‖ ≤ gH(φ)‖ζ‖ ≤ gεH(φ)−1/(2n). Thus,
the set (13-1) is contained in the preimage of

φ(C × γ )∩ Ogε/H(φ)1/(2n) .

If we can ensure that there exists ε > 0 such that, for all morphisms φ Gauss-
reduced of rank r = 2,

gεH(φ)−1/(2n) < µ(φ(C × γ )), (13-2)

then the set (13-1) is finite.
The direct use of a Bogomolov-type bound, even an optimal one, is not suc-

cessful in the following sense: For a curve X ⊂ Eg and any η > 0, Conjecture
1.4 provides an invariant ε(X, η) such that ε(X, η) < µ(X). To ensure (13-2), we
could naively require that

gεH(φ)−1/(2n)
≤ ε(φ(C × γ ), η)

for all φ Gauss-reduced of rank r = 2. But this can be fulfilled only for ε = 0.
We need to throw new light on the problem in order to prove (13-2); via some

isogenies, we construct a helping curve D and then we relate its essential minimum
to C × γ . We then apply Conjecture 1.4 to D. In this way we manage to provide
a good lower bound for the essential minimum of C × γ . We take advantage of
the fact that µ([b]C) = bµ(C), while ε([b]C, η) = ε(C, η)/b1/(g−1)+2η for any
positive integers b.
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Let

φ =

(
φ1

φ2

)
=

(
a 0 L1

0 a L2

)
be a Gauss-reduced morphism of rank 2 with H(φ)= a. We introduce the notation
x̄ = (x3, . . . , xg), and recall that n = 2(g + s)− 3.

We define
a0 = ba1/(2n)

c.

We associated to the morphism φ an isogeny

8 : Eg
→ Eg, (x1, . . . , xg) 7→ (a0φ(x), x3, . . . , xg).

We then relate it to the isogenies

A :Eg
→ Eg, (x1, . . . , xg) 7→ (x1, x2, ax3, . . . , axg),

A0 :Eg
→ Eg, (x1, . . . , xg) 7→ (x1, x2, a0x3, . . . , a0xg),

L :Eg
→ Eg, (x1, . . . , xg) 7→ (x1 + L1(x̄), x2 + L2(x̄), x3, . . . , xg).

Definition 13.1 (Helping curve). We define the curve D to be an irreducible com-
ponent of A−1

0 L A−1(C), where ( · )−1 simply means the inverse image.

The obvious relation
[a0a]D =8(C)

is going to play a key role in the following.
We need to estimate degrees, since the Bogomolov-type bound depends on the

degree of the curve.

Lemma 13.2. (i) The degree of the curve φ(C) in E2 is bounded by 6ga2 deg C.

(ii) The degree of the curve D in Eg is bounded by 12g2a2(g−2)
0 a2(g−1) deg C.

Proof. (i) Consider

degφ(C)=

2∑
i=1

φ(C) · Hi ,

where Hi is the coordinate divisor given by 3xi = 0. The intersection number
φ(C) · Hi is bounded by the degree of the morphism φi|C : C → E . Recall that
φ =

(
φ1
φ2

)
. By Bézout’s Theorem, degφi|C is at most 3ga2 deg C ; see [Viada 2003,

p. 61]. Therefore
degφ(C)≤ 6ga2 deg C.

(ii) Let X be a generic transverse curve in Eg. By [Hindry 1988, Lemma 6(i)],
we deduce that

deg A−1(X)≤ 2a2(g−2) deg X, deg A−1
0 (X)≤ 2a2(g−2)

0 deg X.
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To estimate the degree of L(X), we proceed as in part (i). We write

deg L(X)=

g∑
i=1

L(X) · Hi ,

where Hi is given by 3xi = 0. The intersection number L(X)· Hi is bounded by the
degree of the morphism L ′

i|X : X → E , where L ′

i is the i th. row of L . By Bézout’s
Theorem, deg L ′

i|X is at most 3ga2 deg X . Therefore

deg L(X)≤ 3g2a2 deg X.

We conclude that

deg D ≤ deg A−1
0 L A−1(C)≤ 2a2(g−2)

0 deg L A−1(C)

≤ 6g2a2(g−2)
0 a2 deg A−1(C)≤ 12g2a2(g−2)

0 a2a2(g−2) deg C. �

The next proposition is a lower bound for the essential minimum of the image of
a curve under Gauss-reduced morphisms. It reveals the dependence on the height
of the morphism. While the first bound is an immediate application of Conjecture
1.4, the second estimate is subtle. Our lower bound for µ(8(C + y)) grows with
H(φ). On the contrary, the Bogomolov-type lower bound ε(8(C + y)) goes to
zero as (a0 H(φ))−1/(g−1)−η — a nice gain.

Potentially, this suggests an interesting question; to investigate the behavior of
the essential minimum under a general morphism.

Proposition 13.3. Assume Conjecture 1.4 and take y ∈ Eg(Q) and η > 0. Then:

(i) µ(φ(C + y)) > ε1(C, η)a−(1+2η),

where ε1(C, η) is an effective constant depending on C and η. (Recall that
a = H(φ).)

(ii) µ (8(C + y)) > ε2(C, η)a
1/(g−1)−8(g+s)(g−1)η
0 ,

where ε2(C, η) is an effective constant depending on C , g and η. (Recall that
a0 = ba1/(2n)

c.)

Proof. Recall the Bogomolov-type bound given in Conjecture 1.4: for a transverse
irreducible curve X in Eg over Q and any η > 0,

ε(X, η)=
c(g, E, η)

deg X1/(2 codim X)+η < µ(X).

(i) Observe that φ(C)⊂ E2 has codimension 1.
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Let q ′
= φ(y). So φ(C + y)= φ(C)+q ′. Since C is irreducible, transverse and

defined over Q, so is φ(C)+ q ′. Conjecture 1.4 gives

µ(φ(C + y))= µ(φ(C)+ q ′) > ε(φ(C)+ q ′, η)=
c(2, E, η)

(deg(φ(C)+ q ′))1/2+η
.

Degrees are preserved by translations; hence Lemma 13.2(i) implies that

deg(φ(C)+ q ′)= degφ(C)≤ 9ga2 deg C.

If follows that

ε(φ(C)+ q ′, η)≥
c(2, E, η)

(9ga2 deg C)1/2+η
.

Define

ε1(C, η)=
c(2, E, η)

(9g deg C)1/2+η
.

Then

µ(φ(C + y))≥
ε1(C, η)

a1+2η .

(ii) Let q ∈ Eg be a point such that [a0a]q =8(y). Then

8(C + y)= [a0a]
(

A−1
0 L A−1(C)+ q

)
= [a0a](D + q).

Therefore
µ (8(C + y))= (a0a)µ(D + q). (13-3)

We now estimate µ(D+q) using Conjecture 1.4. The curve D+q is irreducible
by the definition of D. Since C is transverse and defined over Q, so is D+q. Thus

µ(D + q) > ε(D + q, η)=
c(g, E, η)

deg(D + q)1/(2(g−1))+η .

Translations by a point preserve degrees, so Lemma 13.2(ii) gives

deg(D + q)= deg D ≤ 12g2a2(g−2)
0 a2(g−1) deg C.

Then

ε(D + q, η)≥
c(g, E, η)

(12g2 deg C)1/(2(g−1))+η

(
a2(g−2)

0 a2(g−1))− 1
2(g−1)−η.

Define

ε2(C, η)=
c(g, E, η)

(12g2 deg C)1/(2(g−1))+η .

So

µ(D + q)≥ ε2(C, η)a
−1+

1
g−1 −2(g−2)η

0 a−1−2(g−1)η.
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Substitute into (13-3), to obtain

µ(8(C + y)) > ε2(C, η)a
1

g−1 −2(g−2)η

0 a−2(g−1)η.

Recall that a0 is the integral part of a1/(2n), where n = 2(g+s)−3. So 2a0 ≥ a1/(2n)

and
a2(g−1)η

≤ (2a0)
4n(g−1)η.

Further, 2(g − 2)+ 4n(g − 1)≤ 8(g + s)(g − 1), so

µ(8(C + y)) > ε2(C, η)a
1/(g−1)−8(g+s)(g−1)η
0 . �

We now come to our second main proposition: each set in the union is finite.
The proof of (i) case (1) below is delicate. In general µ(π(C)) ≤ µ(C), for π a
projection on some factors. We shall rather find a kind of reverse inequality. On a
set of bounded height this will be possible.

Proposition B. Assume Conjecture 1.4. There exists ε4 > 0 with the following
properties:

(i) For ε ≤ ε4, for all y ∈ 02
0 ×{0}

g−2 and for all Gauss-reduced morphisms φ of
rank 2, the set (

C(Q)+ y
)
∩
(
Bφ + Oε/H(φ)1+1/(2n)

)
is finite.

(ii) For ε ≤ ε4/(g + s) and for all special morphisms φ̃ = (Nφ|φ′) of rank 2, the
set

(C(Q)× γ )∩
(
Bφ̃ + Oε/H(φ)1+1/(2n)

)
is finite.

(Recall that n = 2(g + s)− 3.)

Proof. (i) Choose

η ≤ η0 =
1

24(g + s)(g − 1)2
.

Define

m = max

(
2,
(

K1

ε2(C, η)

) g−1
1−8(g+s)(g−1)2η

)
,

and choose

ε ≤ min
(
ε1,

K1

g
,
ε1(C, η)

gm4n

)
,

where ε1(C, η) and ε2(C, η) are as in Proposition 13.3.
Recall that H(φ)= a. We distinguish two cases:

(1) a0 = ba1/(2n)
c ≥ m,
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(2) a0 = ba1/(2n)
c ≤ m.

Case (1): a0 ≥ m. Let x + y ∈ (C(Q)+ y)∩ (Bφ + Oε/a1+1/(2n)), where

y = (y1, y2, 0, . . . , 0) ∈ 02
0 × {0}

g−2.

Then
φ(x + y)= φ(ξ)

for ‖ξ‖ ≤ ε/a1+1/(2n).
We have chosen ε ≤ ε1, so x ∈ S2(C, (0

g
0 )ε1) which is a set of norm K1. Then

‖x‖ ≤ K1.

Recall that 8(z1, . . . , zg)= (a0φ(z), z3, . . . , zg). So

8(x + y)= (a0φ(x + y), x3, . . . , xg)= (a0φ(ξ), x3, . . . , xg).

Therefore

‖8(x + y)‖ = ‖(a0φ(ξ), x3, . . . , xg)‖ ≤ max (a0‖φ(ξ)‖, ‖x‖) .

Since ‖ξ‖ ≤ εa−(1+1/(2n)), a0 ≤ a1/(2n) and ε ≤ K1/g, we have

a0‖φ(ξ)‖ ≤ a0(g − r + 1)
ε

a1/(2n) ≤ K1.

Also ‖x‖ ≤ K1. Thus
‖8(x + y)‖ ≤ K1.

In view of the hypothesis a0 ≥ m, we have

K1 ≤ ε2(C, η)a0
1

g−1 −8(g+s)(g−1)η
.

In Proposition 13.3(ii) we have proved that

ε2(C, η)a0
1

g−1 −8(g+s)(g−1)η
< µ(8(C + y)).

So
‖8(x + y)‖ ≤ K1 < µ(8(C + y)).

We deduce that 8(x + y) belongs to the finite set

8(C + y)∩ OK1 .

The morphism C + y → 8(C + y) has finite fiber. We can conclude that since
ε ≤ min(ε1, K1/g), for every φ Gauss-reduced of rank 2 with a0 = ba1/(2n)

c ≥ m,
the set

(C(Q)+ y)∩
(
Bφ + Oε/H(φ)1+1/(2n)

)
is finite.
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Case (2): a0 ≤ m. Let x+y ∈ (C(Q)+y)∩(Bφ+Oε/a1+1/(2n)), where y ∈02
0×{0}

g−2.
Then

φ(x + y)= φ(ξ)

for ‖ξ‖ ≤ ε/a1+1/(2n). However we have chosen ε ≤ ε1(C, η)/gm4n . Hence

‖φ(x + y)‖ = ‖φ(ξ)‖ ≤
gε

a1/(2n) ≤
ε1(C, η)

m4na1/(2n) .

We are working under the hypothesis a0 = ba1/(2n)
c ≤ m and m ≥ 2, so a <

(2a0)
2n

≤ m4n. Furthermore, η ≤ η0 <
1

4n implies that a2η < a1/(2n). Thus

a1+2η < m4na1/(2n).

And consequently

‖φ(x + y)‖ ≤
ε1(C, η)

m4na1/(2n) <
ε1(C, η)

a1+2η .

In Proposition 13.3(i) we proved that

ε1(C, η)
a1+2η < µ(φ(C + y)).

We deduce that φ(x + y) belongs to the finite set

φ(C + y)∩ Oε1(C,η)m−4na−1/(2n) .

The morphism C + y → φ(C + y) has finite fiber. Since ε ≤ ε1(C, η)/(gm4n), we
conclude that for all φ Gauss-reduced of rank 2 with a0 = ba1/(2n)

c ≤ m, the set

(C(Q)+ y)∩
(
Bφ + Oε/H(φ)1+1/(2n)

)
is finite.

For the curve C , define

ε(C)= min(ε1(C, η0), ε2(C, η0)).

Note that (
ε(C)
gK1

)8(g+s)g

≤
ε1(C, η)

gm4n .

Thus, we could for instance choose

ε4 = min

(
ε1,

K1

g
,

(
ε(C)
gK1

)8(g+s)g
)
.

Proof of (ii). We want to show that, for every φ̃ = (Nφ|φ′) special of rank 2,
there exists φ Gauss-reduced of rank 2 and y ∈ 02

0 × {0}
g−2 such that the map
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(x, γ )→ x + y defines an injection

(C(Q)× γ )∩
(
Bφ̃ + Oε/H(φ)1+1/(2n)

)
↪→ (C(Q)+ y)∩

(
Bφ + O(g+s)ε/H(φ)1+1/(2n)

)
.

(13-4)
We then apply part (i) of this proposition; if (g + s)ε ≤ ε4, then

(C(Q)+ y)∩
(
Bφ + O(g+s)ε/H(φ)1+1/(2n)

)
is finite. So if ε ≤ ε4/(g + s), the set

(C(Q)× γ )∩
(
Bφ̃ + Oε/H(φ)1+1/(2n)

)
is finite too.

Let us prove the inclusion (13-4). Let φ̃ = (Nφ|φ′) be special of rank 2. By
definition of special φ = (aIr |L) is Gauss-reduced of rank 2. Let

(x, γ ) ∈ (C(Q)× γ )∩
(
Bφ̃ + Oε/H(φ)1+1/(2n)

)
.

Then, there exists ξ ∈ Oε/H(φ)1+1/(2n) such that

φ̃((x, γ )+ ξ)= 0.

Equivalently,
Nφ(x)+φ′(γ )+ φ̃(ξ)= 0.

Let y′
∈ E2 be a point such that

N [a]y′
= φ′(γ ).

Since 00 is a division group,

y = (y′, 0, . . . , 0) ∈ 02
0 × {0}

g−2

and
Nφ(y)= N [a]y′

= φ′(γ ).

Therefore
Nφ(x + y)+ φ̃(ξ)= 0.

Let ξ ′′
∈ E2 be a point such that

N [a]ξ ′′
= φ̃(ξ).

We define ξ ′
= (ξ ′′, {0}

g−2). Then

Nφ(ξ ′)= N [a]ξ ′′
= φ̃(ξ),

and
Nφ(x + y + ξ ′)= 0.
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Since φ̃ is special H(φ̃)= Na. Furthermore ‖ξ‖ ≤ ε/a1+1/(2n). We deduce

‖ξ ′
‖ = ‖ξ ′′

‖ =
‖φ̃(ξ)‖

Na
≤
(g + s)ε
a1+1/(2n) .

In conclusion
Nφ(x + y + ξ ′)= 0

with ‖ξ ′
‖ ≤ (g + s)ε/a1+1/(2n) and y ∈ 02

0 × {0}
g−2. Equivalently,

(x + y) ∈ (C(Q)+ y)∩
(
BNφ + O(g+s)ε/H(φ)1+1/(2n)

)
.

By Lemma 4.4(i), with ψ = φ, we deduce that

(x + y) ∈ (C(Q)+ y)∩
(
Bφ + O(g+s)ε/H(φ)1+1/(2n)

)
,

with y ∈ 02
0 × {0}

g−2 and φ Gauss-reduced of rank 2.
This proves relation (13-4) and concludes the proof. �

14. The effectiveness aspect

An effective weak height bound. We give an effective bound for the height of
S1(C,Oε) for C transverse.

Theorem 14.1. Let C be transverse. For every real ε ≥ 0, the norm of the set
S1(C,Oε) is bounded by K0 max(1, ε), where K0 is an effective constant depending
on the degree and the height of C.

Proof. If x ∈ S1(C,Oε), there exist φ : Eg
→ E and ξ ∈ Oε such that φ(x − ξ)= 0.

Now the proof follows that of [Viada 2003, Theorem 1, p. 55], where we replace ĥ
by h, y by φ, p by x and ĥ(y(p))= 0 by h(φ(x))= c0(degφ)h(ξ) with h(ξ)≤ ε2.

�
The strong hypotheses and an effective weak theorem.

Proof of Theorem 1.6. The proof is similar to the proof of Theorem 1.5 given in
Section 11.

Theorem 14.1 implies that for r ≥ 1 the norm of the set Sr (C,O1) is bounded
by an effective constant K0. Define

η0 =
1

24g2 ,

ε(C)= min
(
ε1(C, η0), ε2(C, η0)

)
, where ε1, ε2 are as in Proposition 13.3,

δ1 =
1
g

min
(

1, K0
g
,
(
ε(C)
gK0

)8g2)
,

δ = δ1 M
−1−

1
2(2g−3) , where M = max

(
2,
⌈K0
δ1

⌉2
)2g−3

.
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In Section 12, Proposition A(i) with 0= 0, ε1 = 1 and K1 = K0, we have shown
that ⋃
φ Gauss-reduced

rk(φ)=2

C(Q)∩
(
Bφ + Oδ

)
⊂

⋃
φ Gauss-reduced

rk(φ)=2 H(φ)≤M

C(Q)∩
(
Bφ + Ogδ1/H(φ)1+1/(2(2g−3))

)
.

In Section 13, Proposition B(i) with y = 0, s = 0 and n = 2g − 3, K1 = K0, we
have shown that for all φ Gauss-reduced of rank 2, the set

C(Q)∩
(
Bφ + Ogδ1/H(φ)1+1/(2(2g−3))

)
is finite. It follows that ⋃

φ Gauss-reduced
rk(φ)=2

C(Q)∩ (Bφ + Oδ)

is finite. By Lemma 4.5(i) we deduce that S2(C,Oδ) is finite. This shows that
Theorem 1.6 holds for

ε ≤
1

g4g min(1, K −1
0 )4g min

(
1, K0,

(
ε(C)
gK0

)8g2)4g

. �

An effective bound for the cardinality of the sets. We have just shown that for C
transverse, ε can be made effective. The purpose of this section is to indicate an
effective bound for the cardinality of S2(C,Oε), under the following conjecture:

Conjecture 14.2 (S. David; personal communication). Let C be a transverse curve
in A. There exist constants c′ and c′′, each depending on g, degL A, hL(A), [k : Q],
such that, for

ε(C)=
c′

(degL V )1/(2 codim V ) and 2(C)= c′′(degL C)g,

the cardinality of C(Q)∩ Oε(C) is bounded by 2(C).

This is the abelian analogue to [Amoroso and David 2003, Conjecture 1.2].

Theorem 14.3. Let C be transverse. Assume that Conjecture 14.2 holds. Then,
there exists an effective ε > 0 such that the cardinality of S2(C,Oε) is bounded by
an effective constant.

Proof. Let δ and δ1 be as defined in the previous proof.
By Proposition A(i) in Section 12 we deduce that

S2(C,Oδ)⊂

⋃
φ Gauss-reduced

H(φ)≤M

C(Q)∩
(
Bφ + Ogδ1/H(φ)1+1/(2(2g−3))

)
.
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Note that, for any curve D and positive integers n, the cardinality of [n]D ∩Onε(D)

is still 2(D). Going through the proofs of Proposition B(i) in Section 13, we see
that

#S2(C,Oδ)≤

∑
H(φ)≤M

#
(
φ−1

|C
(φ(C)∩ Oε(φ(C)))

)
,

where φ|C : C → φ(C) is the restriction of φ to C . Recall from [Viada 2003, p. 61]
that the fiber of φ|C has cardinality at most 3gH(φ)2 ≤ 3gM2. We set

1max = max
H(φ)≤M

#(φ(C)∩ Oε(φ(C)).

We deduce
#S2(C,Oδ)≤ 3gM31max.

By Lemma 13.2(i), degφ(C)≤ (3gH(φ))2 deg C . Conjecture 14.2 implies that

1max ≤ (3gH(φ))2g2(C),

with 2(C) explicitly given. We conclude that

#S2(C,Oδ)≤ (3g)2g+1 M2g+32(C). (14-1)

By Theorem 14.1 the constant K0 is effective. So M is also effective. Thus the
bound (14-1) is effective, for C transverse. �

Similar computations imply a bound for the cardinality of S2(C, 0δ).
For δ ≤ ε4(g + s)−2 M ′−1−1/(4g+4s−6) we obtain

#S2(C, 0δ)≤ c1(g)M ′c2(g,s)2(C).

Here c1(g) (and c2(g, s)) are effective constants depending only on g (and s). The
number M ′ depends explicitly on C , g and K2, while ε4 depends explicitly on C ,
g, s and K1. In view of Theorem 9.1, the above bound also implies a bound for
the cardinality of S2(C × γ,Oδ/(g+s)K4).

However, Theorem 1.2 does not give effective K1 or K2. Consequently neither
M ′ nor ε4 are effective. An effective estimate for K1 or K2 would imply an effective
Mordell Conjecture. This gives an indication of the difficulty to extend effective
height proofs from transverse curves to weak-transverse curves.

15. Final remarks

The CM case. The proofs in 2–7 hold whether or not E has CM. Since Conjecture
1.4 is stated for any E , Proposition B holds unchanged for E with CM.

We can extend Proposition A to Gauss-reduced φ ∈ Mr,g(Z + τZ) as follows.
Decompose φ = φ1 + τφ2 for φi ∈ Mr,g(Z), then let the morphism ψ = (φ1|φ2)

act on (x, τ x)+ (y, τ y)+ (ξ, τξ) for x ∈ Sr (C, (0
g
0 )ε), y ∈ 0

g
0 and ξ ∈ Oε. Apply

Proposition A to ψ . Constants will depend on τ .



The intersection of a curve with a union of translated subgroups 297

From powers to products. In a power there are more algebraic subgroups than in
a product where not all the factors are isogenous. If we consider a product of non-
CM elliptic curves, then the matrix of a morphism φ is simply an integral matrix
where the entries corresponding to nonisogenous factors are zeros. So nothing
changes with respect to our proofs.

If the curve is in a product of elliptic curves in general, we extend the definition
of Gauss-reduced, introducing constants c1(τ ) and c2(τ ), such that the element a
on the diagonal has norm satisfying c1(τ )H(φ)≤ |a| ≤ c2(τ )H(φ).

We leave the details to the reader.
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Diophantine subsets of
function fields of curves

János Kollár

We consider diophantine subsets of function fields of curves and show, roughly
speaking, that they are either very small or very large. In particular, this implies
that the ring of polynomials k[t] is not a diophantine subset of the field of rational
functions k(t) for many fields k.

Let R be a commutative ring. A subset D ⊂ R is called diophantine if there are
polynomials

Fi (x, y1, . . . , yn) ∈ R[x, y1, . . . , yn]

such that the system of equations

Fi (r, y1, . . . , yn)= 0 ∀i

has a solution (y1, . . . , yn) ∈ Rn if and only if r ∈ D.
Equivalently, if there is a (possibly reducible) algebraic variety X R over R and

a morphism π : X R → A1
R such that D = π(X R(R)). In this situation we call

dioph(X R, π) := π(X R(R))⊂ R

the diophantine set corresponding to X R and π .
A characterization of diophantine subsets of Z was completed in connection

with Hilbert’s 10th problem, but a description of diophantine subsets of Q is still
not known. In particular, it is not known if Z is a diophantine subset of Q or not.
(See [Poonen 2003] or the volume [Denef et al. 2000] for surveys and many recent
results.)

In this paper we consider analogous questions where R = k(t) is a function
field of one variable and k is an uncountable large field of characteristic 0. That
is, for any k-variety Y with a smooth k-point, Y (k) is Zariski dense. Examples of
uncountable large fields are

(1) C or any uncountable algebraically closed field,

(2) R or any uncountable real closed field, and

MSC2000: primary 11U05; secondary 14G25, 14M20, 14G27.
Keywords: diophantine set, rationally connected variety.
Partial financial support was provided by the NSF under grant number DMS-0500198.
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(3) Qp,Q((x)) or the quotient field of any uncountable local Henselian domain.

Roughly speaking, we show that for such fields, a diophantine subset of k(t) is
either very small or very large. The precise result is somewhat technical, but here
are two easy-to-state consequences which serve as motivating examples.

Corollary 1. Let k be an uncountable large field of characteristic 0. Then k[t] is
not a diophantine subset of k(t).

Corollary 2. Let k be an uncountable large field of characteristic 0 and

K2 ⊃ K1 ⊃ k(t)

finite field extensions. Then K1 is a diophantine subset of K2 if and only if K1 = K2.

The latter gives a partial answer to a question of Bogomolov: When is a subfield
K1 ⊂ K2 diophantine in K2?

It is possible that both of these corollaries hold for any field k. Unfortunately,
my method says nothing about countable fields. The geometric parts of the proof
for Propositions 12 and 13 (see 16 and 20) work for any uncountable field, but
the last step 23 uses in an essential way that k is large.

We use two ways to measure how large a diophantine set is.

3 (Diophantine dimension and polar sets). Let B be a smooth, projective, irre-
ducible curve over k. One can think of a rational function f ∈ k(B) as a section of
the first projection π1 : B ×P1

→ B. This establishes a one-to-one correspondence

k(B)∪ {∞} ↔ { sections of π1 : B × P1
→ B }.

Any section σ : B → B × P1 can be identified with its image, which gives a point
in the Chow variety of curves of B × P1. This gives an injection

k(B)∪ {∞} ↪→ Chow1(B × P1).

Let U be a countable (disjoint) union of k-varieties and D ⊂ U (k) a subset.
Define the diophantine dimension of D over k as the smallest n ∈{−1, 0, 1, . . . ,∞}

such that D is contained in a countable union of irreducible k-subvarieties of U of
dimension ≤ n. It is denoted by d-dimk D. Note that d-dimk D = −1 if and only
if D = ∅ and d-dimk D ≤ 0 if and only if D is countable.

In particular, we can talk about the diophantine dimension of

dioph(X, f )⊂ k(B)⊂ Chow1(B × P1).

For f ∈ k(B), let pole( f ) denote its divisor of poles. For D ⊂ k(B), set

Polen(D) := { pole( f ) : f ∈ D and deg pole( f )= n }.

I think of Polen(D) as a subset of the k-points of the n-th symmetric power Sn B.
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Taking each point with multiplicity r ≥ 1 gives embeddings Sm B → Srm B,
whose image I denote by r · Sm B.

With these definitions, the main result is the following theorem illustrating the
“very small or very large” dichotomy.

Theorem 4. Let k be an uncountable large field of characteristic 0 and B a smooth,
projective, irreducible curve over k. Let Xk(B) be a (possibly reducible) algebraic
variety of dimension n over k(B) and πk(B) : Xk(B) → A1

k(B) a morphism. Then
either

(1) d-dimk dioph(Xk(B), πk(B))≤ n, or

(2) d-dimk dioph(Xk(B), πk(B)) = ∞ and there is a 0-cycle Pa ∈ Sa B and r > 0
such that for every m > 0 there is a smooth, irreducible k-variety Dm and a
morphism ρm : Dm → Sa+rm B such that

(a) Dm(k) 6= ∅,
(b) Polea+rm

(
dioph(Xk(B), πk(B))

)
⊃ ρm(Dm(k)), and

(c) the Zariski closure of ρm(Dm(k)) contains Pa + r · Sm B ⊂ Sa+rm B.

5 (Proof of the Corollaries). In trying to write a subset D ⊂ k(B) as

D = dioph(Xk(B), πk(B)),

we do not have an a priori bound on dim Xk(B); thus the assertion

d-dimk dioph(Xk(B), πk(B))= ∞

is hard to use. The Corollaries 1 and 2 both follow from the more precise results
about the distribution of poles.

If B =P1, then a rational function with at least 2 poles on P1 is not a polynomial;
thus Theorem 4 implies Corollary 1.

Next consider Corollary 2. Let K1 = k(B1)( K2 = k(B2) be a degree d > 1 ex-
tension of function fields of smooth, projective, irreducible k-curves. By Riemann–
Roch, any zero cycle of degree ≥ 2g(B1) defined over k is the polar set of some
f ∈ k(B1). Pulling back gives a map j : Sm B1 → Smd B2; thus

Polen(K1)=

{
j ((Sm B1)(k)) if n = md ≥ 2dg(B1), and

∅ if d -n.

If b1 6= b2 ∈ B2 map to the same point of B1, then a 0-cycle in j (Sm B1) contains
either both b1 and b2 or neither. Thus the Zariski closed set j (Sm B1) never contains
a set of the form Pa + r · Sm B2. By (2.c) of Theorem 4, this shows that K1 is not
diophantine in K2, proving Corollary 2.
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Example 6. (1) The bound n in (1) of Theorem 4 is actually sharp, as shown by
the following.

Note first that any k(t)-solution of x3
+ y3

= 1 is constant. Set

Xn := (x3
1 + y3

1 = · · · = x3
n + y3

n = 1)⊂ A2n

and
π : (x1, y1, . . . , xn, yn) 7→ x1 + x2t + · · · + xntn−1.

Then dim X = n and for k = C or k = R, dioph(Xn, π) is the set of all degree
≤ n − 1 polynomials.

Using similar constructions one can see that any (finite dimensional) k-algebraic
subset of k(t) is diophantine when k is algebraically closed or real closed. These
are the “small” diophantine subsets of k(t).

(2) The somewhat unusual looking condition about the Zariski closure of Dm in
(2.c) of Theorem 4 is also close to being optimal. For g ∈ k(t) and r > 0 consider
the diophantine set

Lg,r := { f ∈ k(t) : ∃ h such that f = ghr
}.

Then, up to some lower dimensional contribution coming from possible cancella-
tions between poles and zeros of g and hr ,

Polen(Lg,r )=

{
pole(g)+ r · (Sm B)(k) if n = deg pole(g)+ rm, and

∅ otherwise.

7. If k = C then our proof shows that in case (2) of Theorem 4 there is a finite set
P ⊂ B(C) such that for every p ∈ B(C) \ P there is an f p ∈ dioph(X, π) with a
pole at p.

If k = R, then we guarantee many poles, but one may not get any real poles. To
get examples, note that h ∈ R(t) is everywhere nonnegative on R if and only if h
is a sum of two squares. Thus for any g ∈ R(t), the set

L1(g) := { f ∈ R(t) : f (t)≤ g(t) ∀t ∈ R}

is diophantine. L1(g) is infinite dimensional but if g ∈ R[t] then no element of
L1(g) has a real pole.

From the point of view of our proof a more interesting example is the diophan-
tine set

L2(g) := { f ∈ R(t) : ∃ c ∈ R, f 2(t)≤ c2
· g2(t) ∀t ∈ R}.

The elements of L2(g) are unbounded everywhere yet no element of L2(g) has a
pole in R if g is a polynomial.

This leads to the following question.
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Question 8. Is R[t]R, the set of all rational functions without poles in R, diophan-
tine?

There should be some even stronger variants of the “very small or very large”
dichotomy, especially over C. As a representative case, I propose the following.

Conjecture 9. Let D ⊂ C(t) be a diophantine subset which contains a Zariski
open subset of C[t]. (Meaning, for instance, that D contains a Zariski open subset
of the space of degree ≤ n polynomials for infinitely many n.) Then C(t) \ D is
finite.

In connection with Bogomolov’s question, I would hazard the following:

Conjecture 10. Let k be a large field and K1 ⊂ K2 function fields of k-varieties.
Then K1 is diophantine in K2 if and only if K1 is algebraically closed in K2.

11. The proof of Theorem 4 relies on the theory of rational curves on algebraic
varieties. A standard reference is [Kollár 1996], but nonexperts may prefer the
more introductory [Araujo and Kollár 2003].

The proof is divided into three steps.
First we show that if d-dimk dioph(Xk(B), π) ≥ n + 1 then there is a rationally

connected (see 18) subvariety Zk(B) ⊂ Xk(B) such that π |Z is nonconstant and
Zk(B) has a smooth k(B)-point. This relies on the bend and break method of [Mori
1979]. In a similar context it was first used in [Graber et al. 2005].

Then we show, using the deformation of combs technique developed in [Kollár
et al. 1992; Kollár 1996; 2004; Graber et al. 2003], that for any such Zk(B), there
are infinitely many k-varieties Sm and maps Sm ×B 99K Zk(B) which give injections
Sm(k) ↪→ Zk(B)(k(B)).

Both of these steps are geometric, but the statements are formulated to work
over an arbitrary field L .

Finally, if k is a large field, then each Sm(k) is “large”, which shows that
Zk(B)(k(B)) is “very large”.

For all three steps it is better to replace π : Xk(B) → A1
k(B) with a morphism of

k-varieties f : X → B × P1.

Proposition 12. Let L be any field and B a smooth, projective, irreducible curve
over L. Let f : X → B × P1 be an L-variety of dimension n + 1 and consider the
corresponding diophantine set dioph(X L(B), f )⊂ L(B). Then either

(1) d-dimL dioph(X L(B), f )≤ n, or

(2) there is a subvariety Z ⊂ X such that
(a) Z → B × P1 is dominant,
(b) the generic fiber of Z → B is rationally connected, and
(c) there is a rational section σ : B 99K Z whose image is not contained in

Sing Z.
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Proposition 13. Let L be an infinite field and B a smooth, projective, irreducible
curve over L. Let f : Z → B × P1 be a smooth, projective L-variety such that

(1) Z → B × P1 is dominant,

(2) the generic fiber of Z → B is separably rationally connected, and

(3) there is a section σ : B → Z.

Then, for some r > 0 and for all m > 0 in an arithmetic progression, there are

(4) a smooth, irreducible L-variety Sm with an L-point, and

(5) a dominant rational map σm : Sm × B 99K Z which commutes with projection
to B,

such that the Zariski closure of the image of f ◦ σm : Sm 99K Chow1(B × P1)

contains

[ f ◦ σ(B)] + r [{b1} × P1
] + · · · + r [{bm} × P1

] for every bi ∈ B(L).

14 (Spaces of sections). Let L be any field, B a smooth, projective, irreducible
curve over L and f : X → B a projective morphism. A section of f (defined over
some L ′

⊃ L) can be identified with the corresponding L ′-point in the Chow variety
of 1-cycles Chow1(X). All sections 6(X/B) defined over L form an open set of
Chow1(X). Indeed, if H is an ample line bundle on B of degree d then a 1-cycle
C is a section if and only if C is irreducible (an open condition) and (C · f ∗H)= d
(an open and closed condition). This procedure realizes Xk(B)(k(B)) as the set of
k-points of a countable union of algebraic k-varieties 6(X/B)=

⋃
i 6i .

The choice of the6i is not canonical. Given X → B, we get “natural” irreducible
components, but for fixed generic fiber Xk(B), these components depend on the
choice of X . Any representation gives, however, the same constructible sets. We
usually make a further decomposition. Since every variety is a finite set-theoretic
union of locally closed smooth subvarieties, we may choose the 6i such that each
one is smooth and irreducible.

As an explicit example, consider B = P1. Then k(B)∼= k(t) and every f ∈ k(t)
can be uniquely written (up to scalars) as

f =
a0 + a1t + · · · + antn

b0 + b1t + · · · + bntn ,

where the nominator and the denominator are relatively prime and at least one of
an or bn is nonzero. For any n, all such f form an open subset

6n ⊂ P(a0 : a1 : · · · : an : b0 : b1 : · · · : bn)∼= P2n+1.
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15 (Very dense subsets). Let U be an irreducible variety over a field L . We say
that a subset D ⊂ U (L) is Zariski very dense if D is not contained in a countable
union of L-subvarieties Vi ( U .

It is easy to see that for any D, there are countably many closed, irreducible
L-subvarieties Wi ⊂ U such that D ⊂

⋃
i Wi (L) and D ∩ Wi (L) is Zariski very

dense in Wi for every i . There is a unique irredundant choice of these Wi .

16 (Proof of Proposition 12). Write X =
⋃

X i as a finite set-theoretic union of
locally closed, smooth, connected varieties. If Proposition 12 holds for each X i

then it also holds for X ; thus we may assume that X is smooth and irreducible. Let
X ′

⊃ X be a smooth compactification such that f extends to f ′
: X ′

→ B × P1.
As before, there are countably many disjoint, irreducible, smooth L-varieties⋃
i 6i = 6(X ′/B) and morphisms ui : B ×6i → X ′ commuting with projection

to B giving all L-sections of f ′. As in 15, there are countably many disjoint,
irreducible, smooth L-varieties Si ⊂6(X ′/B) such that each Si (L) is Zariski very
dense in Si and the L-sections of X ′

→ B are exactly given by
⋃

i Si (L).
Composing ui with f ′, we obtain maps

f ′

∗
: Si →6 ⊂ Chow1(B × P1).

There are 2 distinct possibilities. Either

(1) dimL f ′
∗
(Si )≤ n whenever ui (B × Si )∩ X 6= ∅, or

(2) there is an i0 such that dimL f ′
∗
(Si0)≥ n + 1 and ui0(B × Si0)∩ X 6= ∅.

In the first case dioph(X ′, f ′) is contained in the union of the constructible sets
f ′
∗
(Si ), thus we have (1) of Proposition 12. This is always the case if L is countable.
In the second case we construct Z as required by (2) of Proposition 12 using

only the existence of ui0 : B × Si0 → X . Set S := Si0 and u := ui0 . We can replace
X ′ by a desingularization of the closure of the image u(B × S). By shrinking S we
may assume that u lifts to u : B × S → X ′.

For a point x ∈ X ′ let Sx ⊂ S be the subvariety parametrizing those sections that
pass through x .

Let us now fix b ∈ B(L) such that u({b}×S) is dense in X ′

b and let x run through
X ′

b, the fiber of X ′ over b. Since every section intersects X ′

b,

S =

⋃
x∈X ′

b

Sx and so f ′

∗
(S)=

⋃
x∈X ′

b

f ′

∗
(Sx).

By assumption dimL f ′
∗
(S) ≥ n + 1 and dimL X ′

b = n; hence dimL f ′
∗
(Sx) ≥ 1 for

general x ∈ X ′

b(L). In particular, there is a 1-parameter family of sections Cx ⊂ Sx

such that
f ′

◦ u : B × C → X → B × P1
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is a nonconstant family of sections passing through the point f ′(x).
By 17, this leads to a limit 1-cycle of the form

A + {b} × P1
+ (other fibers of π1)

where A is a section of π1 : B × P1
→ B.

Correspondingly, we get a limit 1-cycle in X ′ of the form

Ax + Rx + (other rational curves)

where Ax is a section of X ′
→ B which dominates A and Rx is a connected union

of rational curves which dominates {b} × P1. Note also that x ∈ Rx .
Thus we conclude that for general x ∈ X ′

b(L), there is a connected union of
rational curves x ∈ Rx ⊂ X ′

b which dominates {b} × P1.
As in 19, let us take the relative MRC-fibration f ′

: X ′
w

99KW ′ 99K B.
For very general x ∈ X ′(L) let X ′

x be the fiber of w containing x . By 19, X ′
x is

closed in X ′ and every rational curve in X ′ that intersects X ′
x is contained in X ′

x .
In particular, Rx ⊂ X ′

x and hence X ′
x dominates {b} × P1.

Let now p ∈ S(L) be a general point and C ⊂ X ′ the corresponding section. By
assumption S(L) is Zariski dense in S; hence we may assume that w is smooth at
the generic point of C . Let Z ′

⊂w−1(w(C)) be the unique irreducible component
that dominates C and Z = Z ′

∩ X . It satisfies all the required properties. �

17 (Bend-and-break for sections [Mori 1979; Kollár 1996, § II.5; Graber et al.
2005, Lemma 3.2]). Let h : Y → B be a proper morphism onto a smooth projective
curve B. Let C be a smooth curve and u : B × C → Y a nonconstant family of
sections passing through a fixed point y ∈ Y .

Then C can not be a proper curve and for a suitable point c ∈ C \ C the corre-
sponding limit 1-cycle is of the form

6y = Ay + Ry,

where Ay is a section of h (which need not pass through y) and Ry is a nonempty
union of rational curves contained in finitely many fibers of h. Furthermore, Ay +

Ry is connected and y ∈ Ry .
This holds whether we take the limit in the Chow variety of 1-cycles, in the

Hilbert scheme or in the space of stable maps.

18 (Rationally connected varieties [Kollár et al. 1992; Kollár 1996, Chapter IV;
Araujo and Kollár 2003, Section 7]). Let k be a field and K ⊃ k an uncountable
algebraically closed field. A smooth projective k-variety X is called rationally
connected or RC if for every pair of points x1, x2 ∈ X (K ) there is a K -morphism
f : P1

→ X such that f (0)= x1 and f (∞)= x2. X is called separably rationally
connected or SRC if for every point x ∈ X (K ) there is a K -morphism f : P1

→ X
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such that f (0)= x and f ∗TX is an ample vector bundle. (That is, a sum of positive
degree line bundles.) Furthermore, f : P1

→ X can be taken to be an embedding
if dim X ≥ 3. It is known that SRC implies RC and the two notions are equivalent
in characteristic 0.

We may not have any rational curves over k, but we can work with the universal
family of these maps f : P1

→ X . Thus, if dim X ≥ 3 and p ∈ X is a k-point, then
there is an irreducible, smooth k-variety U and a k-morphism G : U × P1

→ X
such that

(1) G(U × {0})= p,

(2) Gu : {u} × P1
→ Xk is an embedding for every u ∈ U (k), and

(3) G∗
uTX is ample for every u ∈ U (k).

By [Kollár 1999, Theorem 1.4], if k is large then we can choose U such that
U (k) 6= ∅.

19 (MRC fibrations [Kollár et al. 1992; Kollár 1996, § IV.5]). Let K ⊃ k be as
above. Let X be a smooth projective k-variety and g : X → S a k-morphism.
There is a unique (up to birational maps) factorization

g : X
w

99K W
h

99K S

such that

(1) for general p ∈ W (K ), the fiber w−1(p) is closed in X and rationally con-
nected, and

(2) for very general p ∈ W (K ) (that is, for p in a countable intersection of dense
open subsets) every rational curve in X (K )which intersectsw−1(p) and maps
to a point in S is contained in w−1(p).

The map w : X 99K W is called the (relative) maximal rationally connected
fibration or MRC fibration of X → S. Note that if X contains very few rational
curves (for example, if X is an Abelian variety or a K3 surface) then X = W .

20 (Proof of Proposition 13). Here we essentially reverse the procedure of the
first part. Instead of degenerating a 1-parameter family of sections to get a 1-
cycle consisting of a section plus rational curves, we start with a section, add to
it suitably chosen rational curves and prove that this 1-cycle can be written as the
limit of sections in many different ways.

We assume that Z is smooth, projective. If necessary, we take its product with
P3 to achieve that dim Z ≥ 4. This changes the space of sections 6(Z/B) but it
does not change the image of 6(Z/B) in L(B).

Apply 18 to X = ZL(B) and the point p = σ(B) to get

G : UL(B) × P1
→ ZL(B).



308 János Kollár

Next replace UL(B) by an L-variety τ : U → B such that G extends to

g : U × P1
→ Z .

By shrinking U if necessary, we may assume that for general b ∈ B(L), the corre-
sponding

gb : Ub × P1
→ Zb

is a family of smooth rational curves passing through σ(b) and g∗
b,uTZb is ample

for every u ∈ Ub where gb,u is the restriction of gb to {u} × P1.
Given distinct points b1, . . . , bm ∈ B(L), let B(b1, . . . , bm) be the comb assem-

bled from B and m copies of P1 where we attach P1
i to B at bi (see 21).

By [Kollár 2004, Theorem 16], there are b1, . . . , bm0 ∈ B(L) and an embedding

σ(g1, . . . , gm0) : B(b1, . . . , bm0)→ Z

given by σ on B and by gi := gbi ,ui on P1
i for some ui ∈ Ubi such that the image,

denoted by B(g1, . . . , gm0) ⊂ Z is defined over L and its normal bundle is as
positive as one wants. In particular, by 22, B(g1, . . . , gm0) gives a smooth point of
the Hilbert scheme of Z . Furthermore, for any further distinct points bm0+1, . . . , bm

and gi for i = m0 + 1, . . . ,m, the resulting

σ(g1, . . . , gm) : B(b1, . . . , bm)→ Z

also gives a smooth point of the Hilbert scheme of Z .
Let Sm denote the smooth locus of the corresponding L-irreducible component

of the Hilbert scheme of Z . B(g1, . . . , gm) gives an L-point of Sm ; hence Sm is
geometrically irreducible. By 22 the general point of Sm corresponds to a section
of f , the universal family is a product over a dense open subset of Sm and we have
a dominant rational map σm : Sm × B 99K Z .

For a given m, it is not always possible to choose bm0+1, . . . , bm such that the
set b1, . . . , bm is defined over L . To achieve this, choose a generically finite and
dominant map ρ : U 99K AL

dim U . For general c ∈ Adim U (L), its preimage ρ−1(c)
gives deg ρ general points in U which are defined over L . Thus we can choose
b1, . . . , bm to be defined over L whenever m − m0 is a multiple of deg ρ.

Let us now consider f∗(Sm)⊂ Chow1(B × P1). By construction, it contains

f∗(B(g1, . . . , gm))= A + r({b1} × P1)+ · · · + r({bm} × P1)

where A = f ◦ σ(B) is a section of B × P1 and r ≥ 1 is the common (geometric)
degree of the maps

f ◦ gb,u : {u} × P1
→ {b} × P1

⊂ B × P1.
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The combs B(g1, . . . , gm)⊂ Z have some obvious deformations where we keep
B fixed and vary the points bi and the maps gi with them. By construction, the
points bi can vary independently. The images of these 1-cycles in B × P1 are of
the form

A + r({b′

1} × P1)+ · · · + r({b′

m} × P1),

where the b′

i vary independently. �

21 (Combs). A comb assembled from B and m copies of P1 attached at the points
bi is a curve B(b1, . . . , bm) obtained from B and {b1, . . . , bm}×P1 by identifying
the points bi ∈ B and (bi , 0) ∈ {bi } × P1.

A comb (with m teeth) can be pictured as below:

b1 b2 bmr r r

P1
1 P1

2 P1
m

B

· · · · · ·

22 (Deformation of reducible curves). Let X be a smooth projective variety and
C ⊂ X a connected curve with ideal sheaf IC . Assume that C has only nodes
as singularities. By the smoothness criterion of the Hilbert scheme [Grothendieck
1962, exposé 221, p. 21], if H 1(C, (IC/IC

2)∗)=0 then [C] is a smooth point of the
Hilbert scheme Hilb(X) and there is a unique irreducible component HC ⊂Hilb(X)
containing [C]. Let UC → HC be the universal family.

If, in addition, (IC/IC
2)∗ is generated by global sections, then a general point

of HC corresponds to a smooth curve and the natural map UC → X is dominant.

23 (Proof of Theorem 4). Let us start with the k(B)-variety Xk(B). We can write
it as the generic fiber of a quasiprojective k-variety X → B and extend πk(B) to
f : X → B × P1. If (1) of Theorem 4 fails then using Proposition 12 we obtain
Z ⊂ X . Take a compactification Z and a resolution Z1 → Z such that the composite
map Z1 99K B × P1 is a morphism. Next apply Proposition 13 to Z1 → B × P1.
We obtain, for every m in an arithmetic progression, a dominant family of sections
σm : Sm × B → Z1.

There is a dense open subset Dm ⊂ Sm such that for every q ∈ Dm(k),

(1) the corresponding section σm({q} × B)⊂ Z1 intersects Z , and

(2) the corresponding rational function f ◦σm : {q}× B → P1 has exactly a +rm
poles where a is the number of poles of f ◦ σ(B).
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Thus the composite map

ρm := pole ◦ f ◦ σm : Dm → Sa+rm B

is defined. The condition (2.b) of Theorem 4 holds by construction and the Zariski
closure of ρm(Dm) contains Pa+r ·Sm B ⊂ Sa+rm B by (5) of Proposition 13, where
Pa denotes the polar divisor of the section σ , that is, the 0-cycle

f ◦ σ(B)∩ (B × {∞}).

Sm has a smooth k-point by Proposition 13 and k-points are Zariski dense since
k is a large field. Thus Dm(k) is Zariski dense in Dm . This implies both (2.a) and
(2.c) of Theorem 4.

Finally, Dm(k) is Zariski very dense in Dm by Lemma 24 and

d-dimk dioph(X, π)≥ d-dimk ρm(Dm(k))= dimk ρm(Dm)≥ dimk Sm B = m,

where the middle equality holds by Lemma 24. Thus d-dimk dioph(X, π)= ∞.
The only remaining issue is that our m runs through an arithmetic progression

and is not arbitrary. If the progression is m = b + m′c then

a + r(b + m′c)= (a + rb)+ (rc)m′,

so by changing a 7→ a + rb, r 7→ rc we get Theorem 4. �

Lemma 24. Let X be a smooth and irreducible variety over a large field k such that
X (k) 6= ∅. Then X (k) is not contained in the union of fewer than |k| subvarieties
Xλ ( X. In particular, if k is uncountable then X (k) is Zariski very dense in X.

Proof. Assume to the contrary that X (k) 6=∅ but X (k)⊂
⋃
λ∈3 Xλ where |3|< |k|

and Xλ 6= X .
If dim X ≥ 2, then pick p ∈ X (k) and let {Ht : t ∈ P1

k} be a general pencil of
hypersurface sections of X passing through p. Since |3|< |k|, there is an Ht such
that Ht is smooth at p and Ht 6⊂ Xλ for every λ. Thus Ht(k)⊂

⋃
λ∈3(Ht ∩ Xλ) is

a lower dimensional counterexample. Thus it is enough to prove Lemma 24 when
X is a curve. Then lower dimensional k-subvarieties are just points, thus we need
to show that |X (k)| = |k|.

Let {Ht : t ∈ P1
} be a linear system on X × X which has (p, p) as a base point

and whose general member is smooth at (p, p). Since k is large, each Ht contains
a k-point different from (p, p). Thus |X (k)| = |X (k)× X (k)| ≥ |k|. �
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Symmetric obstruction theories and Hilbert
schemes of points on threefolds

Kai Behrend and Barbara Fantechi

In an earlier paper by one of us (Behrend), Donaldson–Thomas type invariants
were expressed as certain weighted Euler characteristics of the moduli space.
The Euler characteristic is weighted by a certain canonical Z-valued construc-
tible function on the moduli space. This constructible function associates to any
point of the moduli space a certain invariant of the singularity of the space at the
point.

Here we evaluate this invariant for the case of a singularity that is an isolated
point of a C∗-action and that admits a symmetric obstruction theory compatible
with the C∗-action. The answer is (−1)d , where d is the dimension of the Zariski
tangent space.

We use this result to prove that for any threefold, proper or not, the weighted
Euler characteristic of the Hilbert scheme of n points on the threefold is, up to
sign, equal to the usual Euler characteristic. For the case of a projective Calabi–
Yau threefold, we deduce that the Donaldson–Thomas invariant of the Hilbert
scheme of n points is, up to sign, equal to the Euler characteristic. This proves a
conjecture of Maulik, Nekrasov, Okounkov and Pandharipande.

Introduction

The first purpose of this paper is to introduce symmetric obstruction theories. In a
nutshell, these are obstruction theories for which the space of infinitesimal defor-
mations is the dual of the space of infinitesimal obstructions.

As an example of an obstruction theory, consider the intersection of two smooth
varieties V , W inside an ambient smooth variety M . The intersection X carries an
obstruction theory. This is the 2-term complex of vector bundles

E = [�M |X
resV − resW //�V |X ⊕�W |X ]

considered as an object of the derived category D(X) of X , taking up degrees −1
and 0. We see that infinitesimal deformations of X are classified by h0(E∨)= TX ,

MSC2000: 00A05.
Keywords: symmetric obstruction theories, Hilbert schemes, Calabi–Yau threefolds, C∗ actions, S1

actions, Donaldson–Thomas invariants, MNOP conjecture.
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the sheaf of derivations on X . Moreover, the obstructions to the smoothness of
X are contained in h1(E∨), which is called the obstruction sheaf, notation ob =

h1(E∨). Note that h0(E∨) is intrinsic to X , but h1(E∨) is not. In fact, if X is
smooth, all obstructions vanish, but h1(E∨) may be nonzero, although it is always
a vector bundle, in this case.

This obstruction theory E is symmetric, if M is a complex symplectic manifold,
i.e., hyperkähler, and V , W are Lagrangian submanifolds. In fact, the symplectic
form σ induces a homomorphism TX → �M , defined by v 7→ σ(v,−). The fact
that V and W are Lagrangian, i.e., equal to their own orthogonal complements with
respect to σ , implies that there is an exact sequence

0 −→ TX −→�M |X −→�V |X ⊕�W |X −→�X −→ 0.

Assuming for simplicity that X is smooth and hence this is an exact sequence of
vector bundles, we see that ob = h1(E∨)=�X and hence TX is, indeed, dual to ob.

In more abstract terms, what makes an obstruction theory E symmetric is a
nondegenerate symmetric bilinear form of degree 1

β : E
L
⊗ E −→ OX [1].

If M is an arbitrary smooth scheme, then �M is a symplectic manifold in a
canonical way, and the graph of any closed 1-form ω is a Lagrangian submanifold.
Thus the scheme theoretic zero locus X = Z(ω) of ω is an example of the above,
the second Lagrangian being the zero section.

As a special case of this, we may consider the Jacobian locus X = Z(d f ) of a
regular function on a smooth variety M . It is endowed with a canonical symmet-
ric obstruction theory. In Donaldson–Thomas theory, where the moduli space is
heuristically the critical locus of the holomorphic Chern–Simons functional, there
is a canonical symmetric obstruction theory; see [Thomas 2000].

Unfortunately, we are unable to prove that every symmetric obstruction theory
is locally given as the zero locus of a closed 1-form on a smooth scheme, even
though we see no reason why this should not be true.

The best we can do is to show that the most general local example of a symmetric
obstruction theory is the zero locus of an almost closed 1-form on a smooth scheme.
A form ω is almost closed if its differential dω vanishes on the zero locus Z(ω).

For the applications we have in mind we also need equivariant versions of all of
the above, in the presence of a Gm-action.

Weighted Euler characteristics and Gm-actions. In [Behrend 2005] a new (as far
as we can tell) invariant of singularities was introduced. For a singularity (X, P)
the notation was

νX (P).
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The function νX is a constructible Z-valued function on any Deligne–Mumford
stack X . In [Behrend 2005], the following facts were proved about νX :

• If X is smooth at P , then νX (P)= (−1)dim X .

• νX (P) νY (Q)= νX×Y (P, Q).

• If X = Z(d f ) is the singular locus of a regular function f on a smooth variety
M , then

νX (P)= (−1)dim M(1 −χ(FP)),

where FP is the Milnor fibre of f at P .

• Let X be a projective scheme endowed with a symmetric obstruction theory. The
associated Donaldson–Thomas type invariant (or virtual count) is the degree of the
associated virtual fundamental class. In this case, νX (P) is the contribution of the
point P to the Donaldson–Thomas type invariant, in the sense that

#vir(X)= χ(X, νX )=

∑
n∈Z

n χ({νX = n}).

We define the weighted Euler characteristic of X to be

χ̃(X)= χ(X, νX ).

The last property shows the importance of νX (P) for the calculation of Donald-
son–Thomas type invariants.

In this paper we calculate the number νX (P) for certain kinds of singularities.
In fact, we will assume that X admits a Gm-action and a symmetric obstruction
theory, which are compatible with each other. Moreover, we assume P to be an
isolated fixed point for the Gm-action. We prove that

νX (P)= (−1)dim TX |P , (1)

in this case.
We get results of two different flavors from this:

• If the scheme X admits a globally defined Gm-action with isolated fixed points
and around every fixed point admits a symmetric obstruction theory compatible
with the Gm-action we obtain

χ̃(X)=

∑
P

(−1)dim TX |P , (2)

the sum extending over the fixed points of the Gm-action. This is because nontrivial
Gm-orbits do not contribute, the Euler characteristic of Gm being zero, and νX being
constant on such orbits.
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• If X is projective, with globally defined Gm-action and symmetric obstruction
theory, these two structures being compatible, we get

#vir(X)= χ̃(X)=

∑
P

(−1)dim TX |P . (3)

An example. It may be worth pointing out how to prove (1) in a special case. As-
sume the multiplicative group Gm acts on affine n-space An in a linear way with
nontrivial weights r1, . . . , rn ∈ Z, so that the origin P is an isolated fixed point. Let
f be a regular function on An , which is invariant with respect to the Gm-action.
This means that f (x1, . . . , xn) is of degree zero, if we assign to xi the degree ri .
Let X = Z(d f ) be the scheme-theoretic critical set of f . The scheme X inherits
a Gm-action. It also carries a symmetric obstruction theory which is compatible
with the Gm-action.

Assume that f ∈ (x1, . . . , xn)
3. This is not a serious restriction. It ensures that

TX |P = TAn |P and hence that dim TX |P = n.
Let ε ∈ R, ε > 0 and η ∈ C, η 6= 0 be chosen such that the Milnor fiber of f at

the origin may be defined as

FP = {x ∈ Cn
| f (x)= η and |x |< ε}.

It is easy to check that FP is invariant under the S1-action on Cn induced by our
Gm-action. Moreover, the S1-action on FP has no fixed points. This implies im-
mediately that χ(FP)= 0 and hence that νX (P)= (−1)n .

Even though we consider this example (Z(d f ), P) to be the prototype of a
singularity admitting compatible Gm-actions and symmetric obstruction theories,
we cannot prove that every such singularity is of the form (Z(d f ), P). We can
only prove that a singularity with compatible Gm-action and symmetric obstruction
theory looks like (Z(ω), P), where ω is an almost closed Gm-invariant 1-form on
An , rather than the exact invariant 1-form d f . This is why the proof of (1) is more
involved, in the general case. Rather than the Milnor fiber, we use the expression
of νX (P) as a linking number, found in Proposition 4.22 of [Behrend 2005].

Lagrangian intersections. One amusing application of (3) is the following for-
mula. Assume M is a complex symplectic manifold with a Hamiltonian C∗-action,
all of whose fixed points are isolated. Let V and W be invariant Lagrangian sub-
manifolds. Assume their intersection is compact. Finally, assume that the Zariski
tangent space of the intersection at every fixed point is even-dimensional. Then we
can express the intersection number as an Euler characteristic:

deg([V ] ∩ [W ])= χ(V ∩ W ).

Hilbert schemes. Our result is a powerful tool for computing weighted Euler char-
acteristics. It is a replacement for the lacking additivity of χ̃ over strata.
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As an example of the utility of (1), we will show in this paper that

χ̃(Hilbn Y )= (−1)nχ(Hilbn Y ), (4)

for every smooth scheme Y of dimension 3.
In particular, if Y is projective and Calabi–Yau (i.e., has a chosen trivialization

ωY = OY ), we get that

#vir(Hilbn Y )= (−1)nχ(Hilbn Y ),

where #vir is the virtual count à la Donaldson–Thomas [2000]. This latter formula
was conjectured by Maulik, Nekrasov, Okounkov and Pandharipande in [Maulik
et al. 2003]. Using the McMahon function M(t) =

∏
∞

n=1(1 − tn)−n , we can also
express this result as

∞∑
n=0

#vir(Hilbn Y ) tn
= M(−t)χ(Y ).

The strategy for proving (4) is as follows. We first consider the open Calabi–Yau
threefold A3. We exploit a suitable Gm-action on A3 to prove (4) for Y = A3, using
Formula (2). At this point, we can drop all Calabi–Yau assumptions.

Let Fn be the punctual Hilbert scheme. It parameterizes subschemes of A3 of
length n which are entirely supported at the origin. Let νn be the restriction of
νHilbn A3 to Fn . Formula (4) for Y = A3 is equivalent to

χ(Fn, νn)= (−1)nχ(Fn). (5)

Finally, using more or less standard stratification arguments, we express χ̃(Hilbn Y )
in terms of χ(Fn, νn). This uses the fact that the punctual Hilbert scheme of Y at
a point P is isomorphic to Fn . Then (5) implies (4).

Conventions. We will work over the field of complex numbers. All stacks will be
of Deligne–Mumford type. All schemes and stacks will be of finite type over C.
Hence the derived category Dqcoh(OX ), of complexes of sheaves of OX -modules
with quasicoherent cohomology is equivalent to the derived category D(Qcoh-OX )

of the category of quasicoherent OX -modules (see Proposition 3.7 in Exposé II of
SGA6). To fix ideas, we will denote by D(X) the latter derived category and call it

the derived category of X . We will often write E ⊗ F instead of E
L
⊗ F , for objects

E, F of D(X).
Let X be a Deligne–Mumford stack. We will write L X for the cutoff at −1 of the

cotangent complex of X . Thus, if U → X is étale and U → M a closed immersion
into a smooth scheme M , we have, canonically,

L X |U = [I/I 2
→�M |X ],
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where I is the ideal sheaf of U in M and we think of the homomorphism I/I 2
→

�M |X of coherent sheaves on U as a complex concentrated in the interval [−1, 0].
We will also call L X the cotangent complex of X , and hope the reader will forgive
this abuse of language. The cotangent complex L X is an object of D(X).

We will often use homological notation for objects in the derived category. This
means that En = E−n , for a complex · · · → E i

→ E i+1
→ · · · in D(X).

For a complex of sheaves E , we denote the cohomology sheaves by hi (E).
Let us recall a few sign conventions: If E = [E1

α
−→ E0] is a complex concen-

trated in the interval [−1, 0], then

E∨
= [E∨

0
−α∨

−→ E∨

1 ]

is a complex concentrated in the interval [0, 1]. Thus the shifted dual E∨
[1] is

given by

E∨
[1] = [E∨

0
α∨

−→ E∨

1 ]

and concentrated, again, in the interval [−1, 0].
If θ : E → F is a homomorphism of complexes concentrated in the interval

[−1, 0], such that θ = (θ1, θ0), then the shifted dual θ∨
[1] : F∨

[1] → E∨
[1] is

given by θ∨
[1] = (θ∨

0 , θ
∨

1 ).

Suppose E = [E1
α

−→ E0] and F = [F1
β

−→ F0] are complexes concentrated in
the interval [−1, 0] and θ : E → F and η : E → F homomorphisms of complexes.
Then a homotopy from η to θ is a homomorphism h : E0 → F1 such that h ◦ α =

θ1 − η1 and β ◦ h = θ0 − η0.

1. Symmetric obstruction theories

Nondegenerate symmetric bilinear forms.

Definition 1.1. Let X be a scheme or a Deligne–Mumford stack. Let E ∈ Db
coh(OX )

be a perfect complex. A nondegenerate symmetric bilinear form of degree 1 on E
is a morphism

β : E
L
⊗ E −→ OX [1]

in D(X), which is

(i) symmetric, which means that

β(e ⊗ e′)= (−1)deg(e) deg(e′)β(e′
⊗ e);

(ii) nondegenerate, which means that β induces an isomorphism

θ : E −→ E∨
[1].
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Remark 1.2. The isomorphism θ : E → E∨
[1] determines β as the composition

E ⊗ E
θ⊗id // E∨

[1] ⊗ E
tr[1] //OX [1].

Symmetry of β is equivalent to the condition

θ∨
[1] = θ.

Usually, we will find it more convenient to work with θ , rather than β. Thus we
will think of a nondegenerate symmetric bilinear form of degree 1 on E as an
isomorphism θ : E → E∨

[1], satisfying θ∨
[1] = θ .

Remark 1.3. Above, we have defined nondegenerate symmetric bilinear forms of
degree 1. One can generalize the definition to any degree n ∈ Z. Only the case
n = 1 will interest us in this paper.

Example 1.4. Let F be a vector bundle on X and let α : F → F∨ a symmetric
bilinear form. Define the complex E = [F → F∨

], by putting F∨ in degree 0 and
F in degree −1. Then E∨

[1] = E . Define θ = (θ1, θ0) by θ1 = idF and θ0 = idF∨ :

E

θ

��

= [F α //

1
��

F∨
]

1
��

E∨
[1] = [F α // F∨

]

Then E is a perfect complex with perfect amplitude contained in [−1, 0]. More-
over, θ is a nondegenerate symmetric bilinear form on E . Note that θ is an iso-
morphism, and hence the form it defines is nondegenerate, whether or not α is
nondegenerate.

Example 1.5. Let f be a regular function on a smooth variety M . The Hessian of
f defines a symmetric bilinear form on TM |X , where X = Z(d f ). So there is an
induced symmetric bilinear form on the complex [TM |X →�M |X ].

Lemma 1.6. Let E be a complex of vector bundles on X , concentrated in the
interval [−1, 0]. Let θ : E → E∨

[1] be a homomorphism of complexes. Assume
that θ∨

[1] = θ , as morphisms in the derived category. Then Zariski-locally on the
scheme X (or étale locally on the stack X ) we can represent the derived category
morphism given by θ as a homomorphism of complexes (θ1, θ0):

E

θ

��

= [E1

θ1
��

α // E0]

θ0
��

E∨
[1] = [E∨

0
α∨

// E∨

1 ]

such that θ1 = θ∨

0 .
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Proof. Let us use notation θ = (ψ1, ψ0). Then the equality of derived category
morphisms θ∨

[1] = θ implies that, locally, θ∨
[1] = (ψ∨

0 , ψ
∨

1 ) and θ = (ψ1, ψ0)

are homotopic. So let h : E0 → E∨

0 be a homotopy:

hα = ψ1 −ψ∨

0 ,

α∨h = ψ0 −ψ∨

1 .

Now define

θ0 =
1
2(ψ0 +ψ∨

1 ),

θ1 =
1
2(ψ1 +ψ∨

0 ).

One checks, using h, that (θ1, θ0) is a homomorphism of complexes, and as such,
homotopic to (ψ1, ψ0). Thus (θ1, θ0) represents the derived category morphism θ ,
and has the required property. �

The next lemma shows that for amplitude 1 objects, every nondegenerate sym-
metric bilinear form locally looks like the one given in Example 1.4. Again, locally
means étale locally, but in the scheme case Zariski locally.

Lemma 1.7. Suppose that A ∈ Db
coh(OX ) is of perfect amplitude contained in

[−1, 0], and that η : A → A∨
[1] is an isomorphism satisfying η∨

[1] = η. Then
we can locally represent A by a homomorphism of vector bundles α : E → E∨

satisfying α∨
= α and the isomorphism η by the identity.

Proof. Start by representing the derived category object A by an actual complex
of vector bundles α : A1 → A0, and the morphism η : A → A∨

[1] by an actual
homomorphism of complexes (η1, η0). Then pick a point P ∈ X and lift a basis of
cok(α)(P) to A0. replace A0 by the free OX -module on this bases, and pull back
to get a quasiisomorphic complex.

Now any representative of η has, necessarily, that η0 is an isomorphism in a
neighborhood of P . By Lemma 1.6, we can assume that η1 = η∨

0 . Then both η0

and η1 are isomorphisms of vector bundles. Now use η0 to identify A0 with A∨

1 . �

Isometries.

Definition 1.8. Consider perfect complexes A and B, endowed with nondegenerate
symmetric forms θ : A → A∨

[1] and η : B → B∨
[1]. An isomorphism 8 : B → A,

such that the diagram

B

η

��

8 // A

θ
��

B∨
[1] A∨

[1]
8∨

[1]oo

commutes in D(X), is called an isometry 8 : (B, η)→ (A, θ).
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Note that because η and θ are isomorphisms, the condition on 8 is equivalent
to 8−1

=8∨
[1], if we use η and θ to identify A with B.

We include the following lemma on the local structure of isometries for the
information of the reader. Since we do not use it in the sequel, we omit the (lengthy)
proof.

Lemma 1.9. Let A and B be perfect, of amplitude contained in [−1, 0]. Suppose
θ : A → A∨

[1] and η : B → B∨
[1] are nondegenerate symmetric forms. Let

8 : B → A be an isometry.
Suppose that (A, θ) and (B, η) are represented as in Example 1.4 or Lemma

1.7. Thus,

A = [E
α
→ E∨

] and B = [F
β
→ F∨

],

for vector bundles E and F on X. Moreover, θ and η are the respective identities.
Assume that rk(F) = rk(E). Then, étale locally in X (Zariski locally if X is a

scheme), we can find a vector bundle isomorphism

φ : F −→ E,

such that α ◦φ = φ∨−1
◦β, and (φ, φ∨−1) represents 8:

B

8

��

= [F
β //

φ

��

F∨
]

φ∨−1

��
A = [E α // E∨

]

In particular, (φ−1, φ∨) represents 8∨
[1].

Symmetric obstruction theories. Recall from [Behrend and Fantechi 1997] that
a perfect obstruction theory for the scheme (or Deligne–Mumford stack) X is a
morphism φ : E → L X in D(X), where E is perfect, of amplitude in [−1, 0], we
have h0(φ) : h0(E) → �X is an isomorphism and h−1

: h−1(E) → h−1(L X ) is
onto.

We denote the coherent sheaf h1(E∨) by ob and call it the obstruction sheaf of
the obstruction theory. It contains in a natural way the obstructions to the smooth-
ness of X . Even though we do not include E in the notation, ob is by no means an
intrinsic invariant of X .

Any perfect obstruction theory for X induces a virtual fundamental class [X ]
vir

for X . We leave the obstruction theory out of the notation, even though [X ]
vir

depends on it. The virtual fundamental class is an element of Ark E(X), the Chow
group of algebraic cycles modulo rational equivalence. The degree of [X ]

vir is
equal to the rank of E .
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Definition 1.10. Let X be a Deligne–Mumford stack. A symmetric obstruction
theory for X is a triple (E, φ, θ) where φ : E → L X is a perfect obstruction theory
for X and θ : E → E∨

[1] a nondegenerate symmetric bilinear form.

We will often refer to such an E as a symmetric obstruction theory, leaving the
morphisms φ and θ out of the notation.

Remark 1.11. It is shown in [Behrend 2005] that for symmetric obstruction the-
ories, the virtual fundamental class is intrinsic to X , namely it is the degree zero
Aluffi class of X .

Proposition 1.12. Every symmetric obstruction theory has expected dimension
zero.

Proof. Recall that the expected dimension of E → L X is the rank of E . If E → L X

is symmetric, we have rk E = rk(E∨
[1])= − rk E∨

= − rk E and hence rk E = 0.
�

By this proposition, the following definition makes sense.

Definition 1.13. Assume X is proper and we have given a symmetric obstruction
theory for X . We define the virtual count of X to be the number

#vir(X)= deg[X ]
vir

=

∫
[X ]vir

1.

If X is a scheme (or an algebraic space), the virtual count is an integer. In general
it may be a rational number.

Proposition 1.14. For a symmetric obstruction theory E → L X , the obstruction
sheaf is canonically isomorphic to the sheaf of differentials:

ob =�X .

Proof. We have ob = h1(E∨)= h0(E∨
[1])= h0(E)=�X . �

Corollary 1.15. For a symmetric obstruction theory,

h−1(E)= Hom(�X ,OX )= TX .

Proof. We always have h−1(E)= ob∨. �

Definition 1.16. Let E and F be symmetric obstruction theories for X . An iso-
morphism of symmetric obstruction theories is an isometry8 : E → F commuting
with the maps to L X .

Remark 1.17. Let f : X → X ′ be an étale morphism of Deligne–Mumford stacks,
and suppose that X ′ has a symmetric obstruction theory E ′. Then f ∗E ′ is naturally
a symmetric obstruction theory for X .
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Conversely, if we are given symmetric obstruction theories E for X and E ′ for
X ′, we will say that the morphism f is compatible with the obstruction theories if
E is isomorphic to f ∗E ′ as symmetric obstruction theory.

Remark 1.18. If X and X ′ are Deligne–Mumford stacks with symmetric obstruc-
tion theories E and E ′, then p∗

1 E ⊕ p∗

2 E ′ is naturally a symmetric obstruction
theory for X × X ′. We call it the product symmetric obstruction theory.

Example 1.19. Let M be smooth and ω a closed 1-form on M . Let X = Z(ω)
be the scheme-theoretic zero locus of ω. Consider ω as a linear epimorphism
ω∨

: TM → I , where I is the ideal sheaf of X in M . Let us denote the restriction to
X of the composition of ω∨ and d : I →�M by ∇ω. It is a linear homomorphism
of vector bundles ∇ω : TM |X →�M |X . Because ω is closed, ∇ω is symmetric and,
as we have seen in Example 1.4, defines a symmetric bilinear form on the complex
E = [TM |X →�M |X ].

The morphism φ : E → L X as in the diagram

E

φ

��

= [TM |X
∇ω //

ω∨

��

�M |X ]

1
��

L X = [I/I 2 d // �M |X ]

makes E into a symmetric obstruction theory for X . In particular, note that Ex-
ample 1.5 gives rise to a symmetric obstruction theory on the Jacobian locus of a
regular function.

Let us remark that for the symmetry of ∇ω and hence the symmetry of the
obstruction theory given by ω, it is sufficient that ω be almost closed, which means
that dω ∈ I�2

M .

A remark on the lci case. We will show that the existence of a symmetric obstruc-
tion theory puts strong restrictions on the singularities X can have.

For the following proposition, it is important to recall that we are working in
characteristic zero.

Proposition 1.20. Let E → L X be a perfect obstruction theory, symmetric or not.
A criterion for the obstruction sheaf to be locally free is that X be a reduced local
complete intersection.

Proof. As the claim is local, we may assume that E has a global resolution E =

[E1 → E0], that X ↪→ M is embedded in a smooth scheme M (with ideal sheaf
I ) and that E → L X is given by a homomorphism of complexes [E1 → E0] −→

[I/I 2
→ �M |X ]. We may even assume that E0 → �M |X is an isomorphism of

vector bundles.
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Under the assumption that X is a reduced local complete intersection, I/I 2 is
locally free and that I/I 2

→ �M |X is injective. Then a simple diagram chase
proves that we have a short exact sequence of coherent sheaves

0 −→ h−1(E)−→ E1 −→ I/I 2
−→ 0.

Hence, h−1(E) is a subbundle of E1 and ob = h−1(E)∨. In particular, ob is locally
free. (We always have h−1(E)= ob∨; the converse is generally false.) �

Corollary 1.21. If X is a reduced local complete intersection and admits a sym-
metric obstruction theory, then X is smooth.

Proof. Because ob = �X , the sheaf �X is locally free. This implies that X is
smooth. �

Examples.

Lagrangian intersections. Let M be an algebraic symplectic manifold and V , W
two Lagrangian submanifolds. Let X be the scheme-theoretic intersection. Then
X carries a canonical symmetric obstruction theory.

To see this, note first of all that for a Lagrangian submanifold V ⊂ M , the normal
bundle is equal to the cotangent bundle, NV/M = �V . The isomorphism is given
by v 7−→ σ(v,−), where σ is the symplectic form, which maps NV/M = TM/TV

to �V = T ∨

V . It is essentially the definition of Lagrangian, that this map is an
isomorphism of vector bundles on V .

Next, note that the obstruction theory for X as an intersection of V and W can
be represented by the complex

E = [�M
resV − resW //�V ⊕�W ]

∣∣
X .

The shifted dual is

E∨
[1] = [ TV ⊕ TW //TM ]

∣∣
X .

Define θ : TM →�V ⊕�W as the canonical map TM → NV/M ⊕ NW/M given by
the projections, multiplied by the scalar factor 1

2 . Then (θ∨, θ) defines a morphism
of complexes E∨

[1] → E∨:

E∨
[1] =

��

[TV ⊕ TW //

θ∨

��

TM ]

θ

��
E = [ �M // �V ⊕�W ]

One checks that (θ∨, θ) is a quasiisomorphism. Since (θ∨, θ)∨[1] = (θ∨, θ), this
morphism of complexes defines a symmetric bilinear form on E∨

[1], hence on E .
Thus E is a symmetric obstruction theory on X .
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Sheaves on Calabi–Yau threefolds. Let Y be an integral proper 3-dimensional Gor-
enstein Deligne–Mumford stack (for example a projective threefold). By the Gor-
enstein assumption, Y admits a dualizing sheaf ωY , which is a line bundle over
Y , also called the canonical bundle. Let ωY → OY be a nonzero homomorphism,
giving rise to the short exact sequence

0 −→ ωY −→ OY −→ OD −→ 0,

so that D is an anticanonical divisor on Y . In fact, D is a Cartier divisor. Of course,
D may be empty (this case we refer to as the Calabi–Yau case). Finally, choose an
arbitrary line bundle L on Y . Often we are only interested in the case L = OY .

Now let us define a certain moduli stack M of sheaves on Y . For an arbitrary
C-scheme S, let M(S) be the groupoid of pairs (E, φ). Here E is a sheaf of OY×S-
modules, such that

(i) E coherent,
(ii) E is flat over S,
(iii) E is perfect as an object of the derived category of Y ×S, i.e., locally admits

finite free resolutions, (by Cor. 4.6.1 of Exp. III of SGA 6, this is a condition which
may be checked on the fibres of π : Y × S → S).

The second component of the pair (E, φ) is an isomorphism φ :det E→ L of line
bundles on Y ×S. Note that the determinant det E is well-defined, by Condition (iii)
on E.

We require two more conditions on E, namely that for every point s ∈ S, denoting
the fibre of E over s by Es , we have

(iv) Es is simple, i.e., κ(s)→ Hom(Es,Es) is an isomorphism,
(v) the map induced by the trace R Hom(Es,Es)→ OYs is an isomorphism in a

neighborhood of Ds .
The last condition (v) is empty in the Calabi–Yau case. It is, for example, satis-

fied if Es is locally free of rank 1 in a neighborhood of D.
We let X be an open substack of M which is algebraic (for example, fix the

Hilbert polynomial and pass to stable objects, but we do not want to get more
restrictive than necessary). Then X is a Deligne–Mumford stack. We will now
construct a symmetric obstruction theory for X .

For this, denote the universal sheaf on Y ×X by E and the projection Y ×X → X
by π . Consider the trace map R Hom(E,E)→ O and let F be its shifted cone, so
that we obtain a distinguished triangle in D(OY×X ):

O

+1

��










F // R Hom(E,E)

tr
ccGGGGGGGGG
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Note that F is self-dual: F∨
= F, canonically.

Lemma 1.22. The complex

E = Rπ∗ R Hom(F, ωY )[2]

is an obstruction theory for X.

Proof. This is well-known deformation theory; see [Thomas 2000]. �

The homomorphism ωY → OY induces an isomorphism

Rπ∗(F ⊗ωY )−→ Rπ∗F,

because the cone if this homomorphism is Rπ∗(F ⊗ OD) and F ⊗ OD = 0, by
Assumption (v), above. Dualizing and shifting, we obtain an isomorphism

(Rπ∗F)∨[−1] −→
(
Rπ∗(F ⊗ωY )

)∨
[−1].

Exploiting the fact that F is self-dual, we may rewrite this as

(Rπ∗F)∨[−1] −→
(
Rπ∗ R Hom(F, ωY )

)∨
[−1],

or in other words
(Rπ∗F)∨[−1] −→ E∨

[1]. (6)

Now, relative Serre duality for the morphism π :Y ×X → X applied to F states that

Rπ∗ R Hom(F, ωY [3])= (Rπ∗F)∨,

or in other words
E = (Rπ∗F)∨[−1].

Thus, we see that (6) is, in fact, an isomorphism

θ : E −→ E∨
[1].

Lemma 1.23. The isomorphism θ : E → E∨
[1] satisfies the symmetry property

θ∨
[1] = θ .

Proof. This is just a derived version of the well-known fact that tr(AB)= tr(B A),
for endomorphisms A, B of a free module. �

Lemma 1.24. The complex E has perfect amplitude contained in the interval
[−1, 0].

Proof. Perfection is clear. To check the interval, note that by symmetry of E it
suffices to check that the interval is [−1,∞]. We have seen that E = Rπ∗F[2]. So
the interval is no wore than [−2,∞]. But h−2(E)= 0, by Assumption (iv), above.

�
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Corollary 1.25. The Deligne–Mumford stack X admits, in a natural way, a sym-
metric obstruction theory, namely

E = Rπ∗ R Hom(F, ωY )[2] = Rπ∗F[2].

We call this obstruction theory the Donaldson–Thomas obstruction theory.
In the next two propositions we mention two special cases. The first was origi-

nally introduced in [Thomas 2000], where the symmetry was pointed out, too.

Proposition 1.26. Let Y be a smooth projective threefold with trivial canonical
bundle, and let X be the fine moduli stack of stable sheaves on Y of rank r > 0,
with fixed determinant L and with Chern classes c2, c3. Then X admits a symmetric
obstruction theory.

Proof. In fact, every trivialization ωY = OY induces a symmetric obstruction theory.
�

Proposition 1.27. Let Y be a smooth projective threefold and D an effective anti-
canonical divisor on Y . Let X ′ be the scheme of torsion-free rank 1 sheaves with
trivial determinant and fixed Chern classes c2, c3. Recall that such sheaves can be
identified with ideal sheaves. Let X ⊂ X ′ be the open subscheme consisting of ideal
sheaves which define a subscheme of Y whose support is disjoint from D. Then X
admits a symmetric obstruction theory.

For example, Hilbn(Y \ D), the Hilbert scheme of length n subschemes of Y \ D
admits a symmetric obstruction theory.

Proof. Again, we would like to point out that every homomorphism ωY → OY

defining D gives rise to a symmetric obstruction theory on X . Even though the
compactification is used in its construction, this symmetric obstruction theory does
not depend on which compactification is chosen. �

Stable maps to Calabi–Yau threefolds.

Proposition 1.28. Let Y be a Calabi–Yau threefold and let X be the open locus
in the moduli stack of stable maps parameterizing immersions of smooth curves.
Then the Gromov–Witten obstruction theory of X is symmetric, in a natural way.

Proof. Let π : C → X be the universal curve and f : C → Y the universal map.
Let F be the kernel of f ∗�Y → �C , which is a vector bundle of rank 2 on C .
The Gromov–Witten obstruction theory on X is E = Rπ∗(F ⊗ωC/X )[1]. By Serre
duality for π : C → X , we have E∨

[1] = Rπ∗(F∨)[1].
As F is of rank 2, we have F = F∨

⊗det F . Because Y is Calabi–Yau, we have
det F ⊗ωC/X = OC . Putting these two facts together, we get F ⊗ωC/X = F∨ and
hence E = E∨

[1]. �
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2. Equivariant symmetric obstruction theories

A few remarks on equivariant derived categories. Let X be a scheme with an
action of an algebraic group G. Let (Qcoh-OX )

G denote the abelian category
of G-equivariant quasicoherent OX -modules. Thus, and object of (Qcoh-OX )

G is
a quasicoherent OX -module F together with descent data to the quotient stack
[X/G], in other words and isomorphism between p∗F and σ ∗F satisfying the
cocycle condition. Here p and σ are projection and action maps X × G → X ,
respectively. Denote by D(X)G the derived category of (Qcoh-OX )

G . Note that
OX is an object of D(X)G , in a natural way.

There is the forgetful functor D(X)G → D(X), which maps a complex of equi-
variant sheaves to its underlying complex of sheaves. It is an exact functor.

To simplify matters, let us make two assumptions:
(a) X admits a G-equivariant ample invertible sheaf O(1),
(b) G is a diagonalizable group, i.e., G = Spec C[W ] is the spectrum of the group
ring of a finitely generated abelian group W . Then W is canonically identified with
the character group of G.

The affine case. If X = Spec A is affine, A is W -graded. A G-equivariant OX -
module is the same thing as a W -graded A-module.

We call a W -graded A-module quasifree, if it is free as an A-module on a set
of homogeneous generators. Any quasifree W -graded A-module is isomorphic to
a direct sum of shifted copies of A. Quasifree W -graded A-modules are projective
objects in the abelian category (Qcoh-OX )

G of W -graded A-modules. Hence this
category has enough projective objects.

The global case. Let F be a G-equivariant OX -module. We can shift F by any
character w ∈ W of G. We denote the shift by F[w]. Every G-equivariant quasi-
coherent OX -module F can be written as a quotient of sheaf of the form⊕

i∈I

O(ni )[wi ]. (7)

Thus, every G-equivariant quasicoherent OX -module admits left resolutions con-
sisting of objects of form (7). More generally, every bounded above complex in
D(X)G can be replaced by a bounded above complex of objects of type (7). These
resolutions are G-equivariant.

Since objects of the form (7) are locally free as OX -modules (forgetting the
G-structure), we can use these resolutions to compute the derived functors of ⊗

and Hom(−, F). Thus we see that for G-equivariant quasicoherent OX -modules
E , F the quasicoherent OX -modules Tori (E, F) and Exti (E, F) are again G-
equivariant. More generally, we see that for bounded above objects E , F of

D(X)G , the objects E
L
⊗ F and R Hom(E, F) are again in D(X)G .
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For a G-equivariant sheaf E , we write E∨
= Hom(E,OX ). For a bounded above

object E of D(X)G , we write E∨
= R Hom(E,OX ).

Let {Ui } be an invariant affine open cover. Let F be a G-equivariant quasi-
coherent OX -module. Then, the Čech resolution C•({Ui }, F) is a right resolution
of F by G-equivariant quasicoherent OX -modules. It is an acyclic resolution for
the global section functor, showing that the cohomology groups H i (X, F) are W -
graded. More generally, let f : X → Y be a G-equivariant morphism. Then we
see that Ri f∗F are G-equivariant quasicoherent OY -modules.

Moreover, if E is a bounded below complex in D(X)G , we can construct the
associated Čech complex C({Ui }, E), which is a double complex. Passing to the
associated single complex, we see that we may replace E by a bounded below com-
plex of G-equivariant OX -modules which are acyclic for f∗, for any G-equivariant
morphism f : X → Y . Thus we see that the functor R f : D(X)→ D(Y ) passes to
a functor R f : D(X)G → D(Y )G .

The cotangent complex. If X is a G-scheme as above, the sheaf of Kähler differ-
entials �X and its dual TX =�∨

X are G-equivariant.
We can use the equivariant ample line bundle L to construct a G-equivariant

embedding X ↪→ M into a smooth G-scheme M . The cotangent complex I/I 2
→

�M |X is then naturally an object of D(X)G . The usual proof that L X is a canon-
ically defined object of D(X) works equivariantly and proves that L X is a canon-
ically defined object of D(X)G . By canonically defined, we mean that any two
constructions are related by a canonical isomorphism.

Perfect objects. We call an object E in D(X)G perfect (of perfect amplitude in the
interval [m, n]), if its underlying object of D(X) is perfect (of perfect amplitude
in the interval [m, n]).

Remark 2.1. If X is a scheme and E in D(X) is a perfect complex, of perfect
amplitude contained in [m, n], then we can write E locally as a complex

[Em
→ · · · → En

]

of free OX -modules contained in the interval [m, n]. This is essentially because if
E → E ′′ is an epimorphism of locally free coherent sheaves, the kernel is again
locally free coherent.

In the equivariant context, we have to forgo this convenient fact. Suppose E
in D(X)G is perfect, again of amplitude contained in [m, n]. We can, as we saw
above, write E as a bounded above complex of sheaves of form (7), all of them
coherent, i.e., with finite indexing set I . But when we cut off this infinite complex
to fit into the interval [m, n], we end up with a G-equivariant quasicoherent sheaf
which is locally free coherent as an OX -module without the G-structure, but which
is not locally quasifree and not locally projective in the category (Qcoh-OX )

G .
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Symmetric equivariant obstruction theories.

Definition 2.2. Let X be a scheme with a G-action. An equivariant perfect ob-
struction theory is a morphism E → L X in the category D(X)G , which is a perfect
obstruction theory as a morphism in D(X). (This definition is originally due to
Graber and Pandharipande [1999].)

A symmetric equivariant obstruction theory, (or an equivariant symmetric ob-
struction theory) is a pair (E → L X , E → E∨

[1]) of morphisms in the category
D(X)G , such that E → L X is an (equivariant) perfect obstruction theory and
θ : E → E∨ is an isomorphism satisfying θ∨

[1] = θ .

This is more than requiring that the obstruction theory be equivariant and sym-
metric, separately, as we can see in the following example.

Example 2.3. Let ω =
∑n

i fi dxi be an almost closed 1-form on An . Recall from
Example 1.19 that ω defines a symmetric obstruction theory

H(ω)= [TM |X
∇ω
−→�M |X ]

on the zero locus X of ω.
Define a Gm-action on An by setting the degree of xi to be ri , where ri ∈ Z.

Assume that each fi is homogeneous with respect to these degrees and denote the
degree of fi by ni . Then the zero locus X of ω inherits a Gm-action.

If we let Gm act on TM by declaring the degree of ∂/∂xi to be equal to ni , then
H(ω) is Gm-equivariant as well as the morphism H(ω)→ L X . Thus H(ω) is an
equivariant obstruction theory.

But note that H(ω) is not equivariant symmetric. This is because the identity
on H(ω) (which is θ in this case) is not Gm-equivariant if we consider it as a
homomorphism

H(ω)→ H(ω)∨[1].

Unless ni = −ri , because then the degree of ∂/∂xi is equal to its degree as the dual
of dxi .

In the case ni =−ri , the formω=
∑

fi dxi is an invariant element of0(M, �M),
or an equivariant homomorphism OM →�M . In this case we do get an equivariant
symmetric obstruction theory.

The equivariant Donaldson–Thomas obstruction theory. Let G be a diagonaliz-
able group as above. Consider a projective threefold Y , endowed with a linear
G-action. Consider a G-equivariant nonzero homomorphism ωY → OY , defining
the G-invariant anticanonical Cartier divisor D.

Proposition 2.4. Let X be as in Proposition 1.27. Then the Donaldson–Thomas
obstruction theory of Corollary 1.25 on X is G-equivariant symmetric.
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Proof. Let X ′ be the compactification of X as in Proposition 1.27. Let E be the
universal sheaf on Y × X and Z ⊂ Y × X be the universal subscheme. We have an
exact sequence

0 −→ E −→ OY×X −→ OZ −→ 0.

Let π : Y × X → X be the projection. Note that E and OZ are G-equivariant. This
follows directly from the universal mapping property of E.

The standard ample invertible sheaf on X ′ is detπ∗(OZ (n)), for n sufficiently
large. It is G-equivariant, as all ingredients in its construction are. Hence X admits
an equivariant ample invertible sheaf.

Next, notice that all the constructions involved in producing the obstruction
theory E = Rπ∗ R Hom(F, ωY )[2] work equivariantly. Hence the symmetric ob-
struction theory is equivariant.

To prove that it is equivariant symmetric, we just need to remark that the bilinear
form θ is induced from ω → OY , which is equivariant, and that Serre duality is
equivariant, because it is natural. �

Local structure in the Gm-case. Let G = Gm . We will prove that Example 2.3
describes the unique example of a symmetric Gm-equivariant obstruction theory,
at least locally around a fixed point.

Lemma 2.5. Let X be an affine Gm-scheme with a fixed point P. Let n denote
the dimension of TX |P , the Zariski tangent space of X at P. Then there exists
an invariant affine open neighborhood X ′ of P in X , a smooth Gm-scheme M of
dimension n and an equivariant closed embedding X ′ ↪→ M

Proof. Let A be the affine coordinate ring of X . The Gm-action induces a grading
on A. Let m be the maximal ideal given by the point P . We can lift an eigenbasis of
m/m2 to homogeneous elements x1, . . . , xn of m. Choose homogeneous elements
y1, . . . , ym in m in such a way that x1, . . . , xn, y1, . . . , ym is a set of generators of A
as a C-algebra. This defines a closed embedding X ↪→ An+m , which is equivariant
if we define a Gm-action on An+m in a suitable, obvious, way.

We have thus written A as a quotient of C[x, y]. Let I denote the corresponding
homogeneous ideal in C[x, y]. Then we have

m/m2
= (x, y)/

(
I + (x, y)2

)
.

Since this C-vector space is generated by x1, . . . , xn , we have, in fact,

yi ∈ I + (x, y)2 + (x),

for i = 1, . . . ,m. We can therefore find homogeneous elements f1, . . . , fm ∈ I
such that

yi − fi ∈ (x, y)2 + (x) and deg fi = deg yi ,
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for all i = 1, . . . ,m. Let g ∈ C[x, y] be the determinant of the Jacobian matrix
(∂ fi/∂y j ). We see that g is homogeneous of degree 0 and that g(0, 0)= 1. Let U ⊂

An+m be the affine open subset where g does not vanish. This is an invariant subset
containing P . Let Z ⊂ An+m be the closed subscheme defined by ( f1, . . . , fm). It
carries an induced Gm-action. The intersection M = Z ∩U is a smooth scheme of
dimension n.

As ( f1, . . . , fm) is contained in I , X is a closed subscheme of Z . Let X ′
=

X ∩ U . �

Proposition 2.6. Let X be an affine Gm-scheme with a fixed point P and let n =

dim TX |P . Furthermore, let X be endowed with a symmetric equivariant obstruc-
tion theory E → L X . Then there exists an invariant affine open neighborhood X ′

of P in X , an equivariant closed embedding X ′ ↪→ M into a smooth Gm-scheme M
of dimension n and an invariant almost closed 1-form ω on M such that X = Z(ω).
We can further construct an equivariant isometry E → H(ω) commuting with the
maps to L X , but it will not be necessary for the purposes of this paper.

Proof. We apply Lemma 2.5, to obtain the equivariant closed embedding X ′ ↪→ M .
Write X for X ′. Let A be the affine coordinate ring of X and I the ideal of 0(OM)

defining X .
Consider the object E of D(X)Gm . We can represent E by an infinite complex

[· · · → E1 → E0] of finitely generated quasifree A-modules.
Because quasifree modules are projective, if E is represented by a bounded

complex of quasifree modules as above and E → F is a morphism in D(X)G ,
then E → F can be represented by an actual morphism of complexes, without
changing E .

Thus we have morphisms of complexes of graded modules

[· · · → E1 → E0] → [I/I 2
→�M |X ]

and

θ : [· · · → E1 → E0] → [E∨

0 → E∨

1 → · · · ].

We can represent the equality of derived category morphisms θ∨
[1]= θ by a homo-

topy between θ∨
[1] and θ , because E is a bounded above complex of quasifrees.

Then, as in the proof of Lemma 1.6, we can replace θ0 by 1
2(θ0 + θ∨

1 ) and θ1 by
1
2(θ1 + θ∨

0 ), without changing the homotopy class of θ . Then θ1 = θ∨

0 .
Now we can replace E1 by cok(E2 → E1) and E∨

1 by ker(E∨

1 → E∨

2 ). Because
of the perfection of E , both cok(E2 → E1) and ker(E∨

1 → E∨

2 ) are projective
A-modules (after forgetting the grading), which are, moreover, dual to each other.

Thus we have now represented E by a complex [E1 → E0] of equivariant vector
bundles and E → L X and θ : E → E∨

[1] by equivariant morphisms of complexes.
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Moreover, θ = (θ∨

0 , θ0), for an equivariant morphism of vector bundles θ0 : E0 →

E∨

1 .
Now we remark that we may assume that the rank of E0 is equal to n. Simply

lift a homogeneous basis of �X |P to E0 and replace E0 by the quasifree module
on these n elements of E0. Then pass to an invariant open neighborhood of P
over which both E0 → �M |X and θ0 : E0 → E∨

1 are isomorphisms. Use these
isomorphisms to identify. Then our obstruction theory is given by an equivariant
homomorphism

[TM |X
α //

φ

��

�M |X ]

id
��

[I/I 2 // �M |X ]

such that α∨
= α. Note that φ is necessarily surjective.

As we may assume that�M |X and hence TM |X is given by a quasifree A-module,
we may lift φ to an equivariant epimorphism TX → I . This gives the invariant 1-
form ω. �

3. The main theorem

Preliminaries on linking numbers. Here our dimensions are all real dimensions.
We work with orbifolds. Orbifolds are differentiable stacks of Deligne–Mumford

type, which means that they are representable by Lie groupoids X1 ⇒ X0, where
source and target maps X1 → X0 are étale (i.e., local diffeomorphisms) and the
diagonal X1 → X0 × X0 is proper. If a compact Lie group G acts with finite
stabilizers on a manifold X , the quotient stack [X/G] is an orbifold.

All our orbifolds will tacitly assumed to be oriented, which means that any
presenting groupoid X1 ⇒ X0 is oriented, i.e., X0 and X1 are oriented and all
structure maps (in particular source and target X1 → X0) preserve orientations.

Given an orbifold X , presented by the groupoid X1 ⇒ X0, with proper diagonal
X1 → X0 × X0, the image of the diagonal is a closed equivalence relation on X0.
The quotient is the coarse moduli space of X .

We call an orbifold compact, if its course moduli space is compact. More gen-
erally, we call a morphism f : X → Y of orbifolds proper, if the induced map on
coarse moduli spaces is proper.

To fix ideas, let H∗(X) denote de Rham cohomology of the orbifold X . For
the definition and basic properties of this cohomology theory, see [Behrend 2004].
Note that homotopy invariance holds: the projection X × R → X induces an iso-
morphism H∗(X)→ H∗(X × R).

If f : X → Y is a proper morphism of orbifolds, there exists a wrong way map
f! : H i (X) → H i−d(Y ), where d = dim X − dim Y is the relative dimension of
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f . If Y is the point, then we also denote f! by
∫

X . We will need the following
properties of f!:

(i) Functoriality: (g ◦ f )! = g! ◦ f!.
(ii) Naturality: if v : V ⊂ Y is an open suborbifold and u : U ⊂ X the inverse

image of U under f : X → Y , we have v∗
◦ f! = g! ◦ u∗, where g : U → V is the

restriction of f .
(iii) Projection formula: f!

(
f ∗(α)∪β

)
= α ∪ f!(β).

(iv) Poincaré duality: if X is a compact orbifold, the pairing
∫

X α ∪ β between
H i (X) and H n−i (X) is a perfect pairing of finite dimensional R-vector spaces
(n = dim X ).

(v) Long exact sequence: if ι : Z ⊂ X is a closed suborbifold with open com-
plement U , there is a long exact sequence (c = dim X − dim Z )

· · ·
∂ // H i−c(Z) //ι! // H i (X) // H i (U )

∂ // H i−c+1(Z) // · · ·

In the situation of (v), we call cl(Z)= ι!(1) ∈ H c(X) the class of Z .
We could use any other cohomology theory with characteristic zero coefficients

which satisfies these basic properties.

Remark 3.1. Let T ⊂ R be an open interval containing the points 0 and 1. Let
Z and X be a compact orbifolds and h : Z × T → X a differentiable morphism
of orbifolds such that h0 : Z × {0} → X and h1 : Z × {1} → X are isomorphisms
onto closed suborbifolds Z0 and Z1 of X . We call h a differentiable homotopy
between Z0 and Z1. It is not difficult to see, using Poincaré duality and homotopy
invariance, that the existence of such an h implies that cl(Z0)= cl(Z1) ∈ H∗(X).

Linking numbers and S1-actions. Let A and B be closed submanifolds, both of di-
mension p, of a compact manifold S of dimension 2p+1. Assume that H p+1(S)=
H p(S)= 0 and that A ∩ B = ∅. For simplicity, assume also that p is odd.

Under these assumptions we can define the linking number L S(A, B) as follows.
By our assumption, the boundary map ∂ : H p(S\ B)→ H 0(B) is an isomorphism.
Let β ∈ H p(S \ B) be the unique element such that ∂β = 1 ∈ H 0(B). Via the
inclusion A → S \ B we restrict β to A and set

L S(A, B)=

∫
A
β.

Now assume A′ is another closed submanifold of S of dimension p, and A′
∩B =

∅, too. Thus L S(A′, B) is defined. We wish to compare L S(A′, B) with L S(A, B).
Suppose h : Z × T → S is a differentiable homotopy between A and A′, as in

Remark 3.1. It is an obvious, well-known fact, that if the image of h is entirely
contained in S \ B, then L S(A′, B) = L S(A, B). We wish to show that in the
presence of an S1-action, L S(A′, B)= L S(A, B), even if h(Z × T ) intersects B.
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Proposition 3.2. Let S1 act on S with finite stabilizers. Assume that A, A′ and
B are S1-invariant. Finally, assume that there exists an S1-equivariant homotopy
h : T × Z → S from A to A′. Then L S(A′, B)= L S(A, B).

Proof. The condition that h be equivariant means that S1 acts on Z with finite
stabilizers and that h is equivariant, i.e. h(t, γ · z)= γ · h(t, z), for all γ ∈ S1 and
(t, z) ∈ T × Z .

We form the quotient orbifold X = [S/S1
], which is compact of dimension 2p.

It comes together with a principal S1-bundle π : S → X . Let Ã, Ã′, B̃ and Z̃ be
the quotient orbifolds obtained from A, A′, B and Z . The homotopy h descends
to a differentiable homotopy h : T × Z̃ → X between Ã and Ã′, proving that
cl( Ã)= cl( Ã′) ∈ H p+1(X). This conclusion is all we need the homotopy h for.

Next we will construct, for a fixed B, an element η ∈ H p−1(X), such that

L S(A, B)=

∫
X
η∪ cl( Ã),

for any A, such that A ∩ B = ∅. This will conclude the proof of the proposition.
In fact, let β∈ H p(S\B), such that ∂β=1∈ H 0(B). The S1-bundle S\B → X\B̃

induces a homomorphism π! : H p(S\ B)→ H p−1(X \ B̃). Note that the restriction
H p−1(X)→ H p−1(X \ B̃) is an isomorphism, since the codimension of B̃ in X is
p + 1. Thus, there exists a unique η ∈ H p−1(X), such that

η|X\B̃ = π!β.

Hence

L S(A, B)=

∫
A
β =

∫
Ã
π!β =

∫
Ã
η =

∫
X
η∪ cl( Ã),

as claimed. The last equality follows from naturality of the wrong way maps and
the projection formula. �

The proof of νX(P) = (−1)n. We return to the convention that dimensions are
complex dimensions.

Let X be a scheme with a Gm-action. Let P ∈ X be a fixed point of this action.
The point P is called an isolated fixed point, if 0 is not a weight of the induced
action of Gm on the Zariski tangent space TX |P .

Proposition 3.3. Let M be a smooth scheme on which Gm acts with an isolated
fixed point P ∈ M. Let ω be an invariant (homogeneous of degree zero) almost
closed 1-form on M and X = Z(ω). Assume P ∈ X. Then

νX (P)= (−1)dim M .

Proof. We will use the expression of νX (P) as a linking number from Proposi-
tion 4.22 of [Behrend 2005]. We choose étale homogeneous coordinates x1, . . . , xn
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for M around P and the induced étale coordinates x1, . . . , xn, p1, . . . , pn of �M .
Since the linking number in question is defined inside a sufficiently small sphere
in �M around P (and is a topological invariant), we may as well assume that
M = Cn and P is the origin. Of course, ω is then a 1-form holomorphic (instead
of algebraic) at the origin. We write ω =

∑n
i=1 fi dxi .

As in [ibid.], for η ∈ C, η 6= 0, we write 0η for the graph of the section 1
η
ω of

�M . It is defined as a subspace of �M by the equations ηpi = fi (x). It is oriented
so that M → 0η is orientation preserving.

For t ∈ R, we write1t for the subspace of�M defined by the equations tpi = x̄i .
We orient 11 in such a way that the map Cn

→ 11 given by (x1, . . . , xn) 7→

(x1, . . . , xn, x̄1, . . . , x̄n) preserves orientation. Then we orient all other 1t by
continuity. This amounts to the same as saying that the map (p1, . . . , pn) 7→

(t p̄1, . . . , t p̄n, p1, . . . , pn) from Cn to 1t preserves orientation up to a factor of
(−1)n .

Proposition 4.22 of [ibid.] says that for sufficiently small ε >0 there exists η 6=0
such that 0′

η = 0η ∩ Sε is a manifold disjoint from 1′

1 =11 ∩ Sε and

νX (P)= L Sε (1
′

1, 0
′

η).

Here Sε is the sphere of radius ε centered at the origin P in �M . It has dimension
4n − 1. Let us fix ε and η.

The given Gm = C∗-action on M induces an action on �M = C2n . Let us denote
the degree of xi by ri . Then the degrees of pi and fi are both equal to −ri . By
restricting to S1

⊂ C∗, we get an induced S1-action on Sε . This action has finite
stabilizers, because none of the ri vanish, P being an isolated fixed point of the
Gm-action. Note that 0′

η is an S1-invariant submanifold of Sε .
Consider the map from R × S2n−1

→ Sε given by

(t, p1, . . . , pn) 7→
ε

√
1 + t2

(t p̄1, . . . , t p̄n, p1, . . . , pn).

This map is an S1-equivariant homotopy between the invariant submanifolds1′

0 =

10 ∩ Sε and 1′

1.
The fact that1′

1 is disjoint from 0′
η follows from the fact that ω is almost closed,

as explained in [ibid.]. The fact that 1′

0 is disjoint from 0′
η is trivial: 10 is (up to

orientation) the fiber of the vector bundle �M → M over the origin and 0η is the
graph of a section. But there is no reason (at least none apparent to the authors)
why there shouldn’t exist values of t other than 0 or 1, for which 1′

t = 11 ∩ Sε
intersects 0η.

Still, Proposition 3.2 implies that

L Sε (1
′

1, 0
′

η)= L Sε (1
′

0, 0
′

η).
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Let us denote the fiber of�M over the origin by10, and its intersection with Sε by
1

′

0. By the correspondence between linking numbers and intersection numbers (see
[Fulton 1984], Example 19.2.4), we see that L Sε (1

′

0, 0
′
η) is equal to the intersection

number of 10 with 0η at the origin. This number is 1, as the section 0η intersects
the fiber 10 transversally.

Since the orientations of 10 and 10 differ by (−1)n , we conclude that

νX (P)= L Sε (1
′

1, 0
′

η)= L Sε (1
′

0, 0
′

η)= (−1)n L Sε (1
′

0, 0
′

η)= (−1)n,

which is what we set out to prove. �

Theorem 3.4. Let X be an affine Gm-scheme with an isolated fixed point P. As-
sume that X admits an equivariant symmetric obstruction theory. Then

νX (P)= (−1)dim TX |P .

Proof. Let n = dim TX |P . By Proposition 2.6, we can assume that X is embedded
equivariantly in a smooth scheme M of dimension n and that X is the zero locus
of an invariant almost closed 1-form on M . Note that the embedding X ↪→ M
identifies TX |P with TM |P , so that P is an isolated point of the Gm-action on M .
Thus Proposition 3.3 implies that νX (P)= (−1)n . �

Corollary 3.5. Let X be a Gm-scheme such that all fixed points are isolated and
every fixed point admits an invariant affine open neighborhood over which there
exists an equivariant symmetric obstruction theory. Then we have

χ̃(X)=

∑
P

(−1)dim TX |P ,

the sum extending over the fixed points. Moreover, if Z ⊂ X is an invariant locally
closed subscheme, we have

χ̃(Z , X)=

∑
P∈Z

(−1)dim TX |P ,

the sum extending over the fixed points in Z.

Proof. The product property of ν implies that νX is constant on nontrivial Gm-
orbits. The Euler characteristic of a scheme on which Gm acts without fixed points
is zero. These two facts imply that only the fixed points contribute to χ̃(X) =

χ(X, νX ). �

Corollary 3.6. Let X be a projective scheme with a linear Gm-action. Let X be
endowed with an equivariant symmetric obstruction theory. Assume all fixed points
of Gm on X are isolated. Then we have

#vir(X)=

∑
P

(−1)dim TX |P ,
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the sum extending over the fixed points of Gm on X.

Proof. We use the fact that X can be equivariantly embedded into a smooth scheme
to prove that every fixed point has an invariant affine open neighborhood. Thus
Corollary 3.5 applies. The main result of [Behrend 2005], Theorem 4.18, says that
#vir

= χ̃(X). �

Application to Lagrangian intersections. Let M be an algebraic symplectic man-
ifold with a Hamiltonian Gm-action. Assume all fixed points are isolated. Let V
and W be invariant Lagrangian submanifolds, X their intersection.

Proposition 3.7. We have

χ̃(X)=

∑
P∈X

(−1)dim TX |P ,

the sum extending over all fixed points inside X.

Proof. One checks that the action of Gm being Hamiltonian, i.e., that Gm preserves
the symplectic form, implies that the symmetric obstruction theory on X is equi-
variant symmetric. �

Proposition 3.8. Assume X is compact. Then

deg([V ] ∩ [W ])=

∑
P∈X

(−1)dim TX |P ,

the sum extending over the fixed points contained in X.

Proof. Note that, in fact, the virtual number of points of X is the intersection
number of V and W . �

Corollary 3.9. Assume that X is compact and that dim TX |P is even, for all fixed
points P. Then we have

deg([V ] ∩ [W ])= χ(X).

4. Hilbert schemes of threefolds

The threefold A3. Let T = G3
m be the standard 3-dimensional torus with character

group Z3. Let T0 be the kernel of the character (1, 1, 1). Thus,

T0 = {(t1, t2, t3) ∈ T | t1t2t3 = 1}.

We let T act in the natural way on A3. Write coordinates on A3 as x, y, z,
then, as elements of the affine coordinate ring C[x, y, z] of A3, the weight of x is
(1, 0, 0), the weight of y is (0, 1, 0) and the weight of z is (0, 0, 1).

We choose on A3 the standard 3-form dx ∧dy∧dz to fix a Calabi–Yau structure.
The torus T0 acts by automorphisms of A3 preserving the Calabi–Yau structure.
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by Proposition 2.4 we obtain a T0-equivariant symmetric obstruction theory on
X = Hilbn A3.

Lemma 4.1. (a) The T0-action on X has a finite number of fixed points. These
correspond to monomial ideals in C[x, y, z].
(b) If I is such an ideal, the T0-action on the Zariski tangent space to X at I has
no invariant subspace.
(c) If I is such an ideal and d is the dimension of the Zariski tangent space to X at
I , we have (−1)d = (−1)n , in other words, the integer d has the same parity as n.

Proof. (a) Since the T0-action on A3 has the origin as unique fixed point, any
invariant subscheme must be supported at the origin. Let I ⊂ C[x, y, z] be the
corresponding ideal; I must be generated by eigenvectors of the torus action on
the polynomial ring. Any eigenvector can be written uniquely in the form m g(xyz)
where m is a monomial and g ∈ C[t] is a polynomial with g(0) 6= 0. However,
since the ideal is supported at the origin, the zero locus of g(xyz) is disjoint from
the zero locus of I , and so by Hilbert’s Nullstellensatz, the monomial m is also in
I . Hence every T0-invariant ideal is generated by monomials.

(b) Let us write A = C[x, y, z]. The tangent space in question is Hom(I, A/I ).
We will prove that none of the weights w = (w1, w2, w3) of T on HomA(I, A/I )
can satisfy w1, w2, w3 < 0 or w1, w2, w3 ≥ 0. In particular, none of these weights
can be an integer multiple of (1, 1, 1).

This will suffice, in view of the following elementary fact: Let w1, . . . , wn ∈ Z3

be characters of T . If none of the wi is an integer multiple of (1, 1, 1), there exists
a one-parameter subgroup λ : Gm ↪→ T0, such that wi ◦λ 6= 0, for all i = 1, . . . , n.

Suppose, then, that φ : I → A/I is an eigenvector of T with weight (w1, w2, w3),
with w1 ≥ 0, w2 ≥ 0 and w3 ≥ 0. Then for a monomial xa ybzc

∈ I we have
φ(xa ybzc)≡ xa+w1 yb+w2 zc+w3 mod I , which vanishes in A/I , proving that φ=0.

Now suppose φ : I → A/I is an eigenfunction whose weights satisfy w1 < 0,
w2 < 0 and w3 < 0. Let a be the smallest integer such that xa

∈ I . Then let b
be the smallest integer such that xa−1 yb

∈ I . Finally, let c be the smallest integer
such that xa−1 yb−1zc

∈ I . Then if a monomial xr yszt is in I , it follows that r ≥ a,
s ≥ b or t ≥ c.

We have

φ(xa ybzc)= xzcφ(xa−1 yb)≡ xzcxa−1+w1 yb+w2 ≡ xa+w1 yb+w2 zc mod I.

We also have

φ(xa ybzc)= xyφ(xa−1 yb−1zc)≡ xa+w1 yb+w2 zc+w3 mod I.

We conclude that

xa+w1 yb+w2 zc
− xa+w1 yb+w2 zc+w3 ∈ I.



340 Kai Behrend and Barbara Fantechi

Since the ideal I is monomial, each of these two monomials is in I . But the latter
one cannot be in I .

(c) This is an immediate consequence of [Maulik et al. 2003], Theorem 2 in § 4.10.
In fact, this theorem states that if w1, . . . , wd are the weights of T on the tangent
space V , ∏d

i=1(−wi )∏d
i=1wi

= (−1)n

inside the field of rational functions on T . �

Proposition 4.2. For any T0-invariant locally closed subset Z of Hilbn A3 we have

χ̃(Z ,Hilbn A3)= (−1)nχ(Z).

Proof. Since there are only finitely many fixed points of T0 on X , we can use
the fact mentioned in the proof of Lemma 4.1 to find a one-parameter subgroup
Gm → T0 with respect to which all weights of all tangent spaces at all fixed points
are nonzero. Thus, all Gm-fixed points are isolated. Because Hilbn A3 admits an
equivariant embedding into projective space (see the proof of Proposition 2.4),
every fixed point has an invariant affine open neighborhood.

The symmetric obstruction theory on Hilbn
(n) A3 is equivariant symmetric with

respect to the induced Gm-action. We can therefore apply Corollary 3.5. We obtain:

χ̃(Z ,Hilbn A3)=

∑
P∈Z

(−1)n,

where the sum extends over fixed points P contained in Z . Since χ(Z) = #{P ∈

Z , P fixed}, the result follows. �

Let Fn denote the closed subset of Hilbn A3 consisting of subschemes supported
at the origin. Let νn be the restriction of the canonical constructible function
νHilbn A3 to Fn . Thus χ̃(Fn,Hilbn A3)= χ(Fn, νn). Note that all T0-fixed points of
Hilbn A3 are contained in Fn .

Let M(t) =
∏

∞

n=1(1 − tn)−n be the McMahon function. It is the generating
series for 3-dimensional partitions. Hence, if we write M(t)=

∑
∞

n=0 pntn , then pn

denotes the number of monomial ideals I in A = C[x, y, z], such that dimC A/I =

n. The number pn is the number of T0-fixed points in Fn or Hilbn A3. Thus,
pn = χ(Fn)= χ(Hilbn A3).

Corollary 4.3. We have

χ(Fn, νn)= (−1)nχ(Fn)= (−1)n pn,

and hence
∞∑

n=0

χ(Fn, νn)tn
= M(−t).
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Weighted Euler characteristics of Hilbert schemes. Let Y be a smooth threefold,
and n > 0 an integer. Consider the Hilbert scheme of n points on Y , denoted
Hilbn Y . The scheme Hilbn Y is connected, smooth for n ≤ 3 and singular other-
wise, and reducible for large enough n.

Let us denote by νY the canonical constructible function on Hilbn Y . Our goal
is to calculate

χ̃(Hilbn Y )= χ(Hilbn Y, νY ).

Let us start with a useful general lemma on Hilbert schemes.

Lemma 4.4. Let f : Y → Y ′ be a morphism of projective schemes and Z ⊂ Y
a closed subscheme. Assume that f is étale in a neighborhood of Z and that the
composition Z → Y ′, which we will denote by f (Z), is a closed immersion of
schemes.

Let X be the Hilbert scheme of Y which contains Z and P the point of X cor-
responding to Z. Let X ′ be the Hilbert scheme of Y ′ which contains f (Z). Then
there exists an open neighborhood U of P in X and an étale morphism φ :U → X ′,
which sends a subscheme Z̃ → Y to the composition Z̃ → Y ′.

Proof. For the existence of the open set U and the morphism φ, see for example
Proposition 6.1, Chapter I of [Kollár 1996]. The fact that φ is étale in a neighbor-
hood of P follows from a direct application of the formal criterion. �

The closed stratum. We start by recalling the standard stratification of Hilbn Y .
The strata are indexed by partitions of n. Let α = (α1, . . . , αr ) be a length r
partition of n, i.e., α1 ≥ α2 ≥ . . . ≥ αr ≥ 1 and

∑r
i=1 αi = n. Let Hilbn

α Y be the
locus of subschemes whose support consists of r distinct points with multiplicities
α1, . . . , αr . The closed stratum is Hilbn

(n) Y . It corresponds to subschemes sup-
ported at a single point. To fix ideas, we will endow all strata with the reduced
scheme structure.

Lemma 4.5. For any threefold Y there is a natural morphism

πY : Hilbn
(n) Y → Y.

Proof. This is a part of the Hilbert–Chow morphism Hilbn Y → SnY to the sym-
metric product. A proof that this is a morphism of schemes can be found, for
example, in [Lehn 2004]. �

Note that Fn is the fiber of πA3 over the origin.

Lemma 4.6. We have a canonical isomorphism

Hilbn
(n) A3

= A3
× Fn. (8)

Moreover, νA3 = p∗νn , where p : Hilbn
(n) A3

→ Fn is the projection given by (8).
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Proof. Consider the action of the group A3 on itself by translations. We get an
induced action of A3 on Hilbn A3. Use this action to translate a subscheme sup-
ported at a point P to a subscheme supported at the origin. Obtain the morphism
p : Hilbn

(n) A3
→ Fn in this way. The product morphism πA3 × p : Hilbn

(n) A3
→

A3
× Fn is an isomorphism.
It is a formal consequence of the general properties of the canonical constructible

function, that it is constant on orbits under a group action. This implies the claim
about νA3 . �

Lemma 4.7. Consider an étale morphism of threefolds φ : Y → Y ′.
(a) Let U ⊂ Hilbn Y be the open subscheme parameterizing subschemes Z ⊂ Y ,
which satisfy: if P and Q are distinct points in the support of Z , then φ(P) 6=φ(Q).
There is an étale morphism 8̃ :U →Hilbn Y ′ sending a subscheme of Y to its image
under φ.

Hilbn
(n) Y

8

��

// U

8̃

��

// Hilbn Y

Hilbn
(n) Y ′ // Hilbn Y ′

(b) The restriction of 8̃ to Hilbn
(n) Y induces a cartesian diagram of schemes

Hilbn
(n) Y 8 //

πY

��
�

Hilbn
(n) Y ′

πY ′

��
Y

φ // Y ′

Proof. The existence and étaleness of 8̃ follows immediately from Lemma 4.4,
applied to quasiprojective covers of Y and Y ′. Part (b) is clear. �

Let φ : Y → Y ′ be an étale morphism with induced morphism 8 : Hilbn
(n) Y →

Hilbn
(n) Y ′. By Lemma 4.7, the morphism 8 extends to open neighborhoods in

Hilbn Y and Hilbn Y ′, respectively. The extension 8̃ is étale. Thus, we see that

8∗(νY ′)= νY .

Proposition 4.8. Every étale morphism φ : Y → A3 induces an isomorphism
Hilbn

(n) Y = Y × Fn . The constructible function νY |Hilbn
(n) Y is obtained by pulling

back νn via the induced projection Hilbn
(n) Y → Fn .

Proof. Combine Lemmas 4.6 and 4.7(b) with each other. �

Corollary 4.9. The morphism πY : Hilbn
(n) Y → Y is a Zariski-locally trivial fibra-

tion with fiber Fn . More precisely, there exists a Zariski open cover {Ui } of Y , such
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that for every i , we have

(π−1
Y (Ui ), νY )= (Ui , 1)× (Fn, νn).

This is a product of schemes with constructible functions on them.

Proof. Every point of Y admits étale coordinates, defined in a Zariski open neigh-
borhood. �

Reduction to the closed stratum. From now on the threefold Y will be fixed and
we denote Hilbn

α Y by Xn
α and Hilbn Y by Xn .

Lemma 4.10. Let α = (α1, . . . , αr ) be a partition of n.
(a) Let V be the open subscheme of

∏r
i=1 Xαi parameterizing r-tuples of sub-

schemes with pairwise disjoint support. Then there is a morphism fα : V → Xn

mapping (Z1, . . . , Zr ) to Z =
⋃

i Zi . The morphism fα is étale. Its image U is
open and contains Xn

α. Let Zα = f −1
α Xn

α:

Zα //

Galois
��

�

V

fα
��

//
∏

i Xαi

Xn
α

// U // Xn

Moreover, the induced morphism Zα → Xn
α is a Galois cover with Galois group

Gα, where Gα is the automorphism group of the partition α.
(b) The scheme Zα is contained in

∏
i Xαi

(αi )
and has therefore a morphism Zα →

Y r . There is a cartesian diagram

Zα //

��
�

∏
i Xαi

(αi )

��
Y r

0
// Y r

where Y r
0 is the open subscheme in Y r consisting of r-tuples with pairwise disjoint

entries.

Proof. The existence of fα and the fact that it is étale follows from Lemma 4.4
applied to the étale map

∐r
i=1 Y → Y and the subscheme Z1 q . . .q Zr ⊂

∐r
i=1 Y .

All other facts are also straightforward to prove. �

Theorem 4.11. Let Y be a smooth scheme of dimension 3. Then for all n > 0

χ̃(Hilbn Y )= (−1)nχ(Hilbn Y ).

This implies
∞∑

n=0

χ̃(Hilbn Y )tn
= M(−t)χ(Y ).
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Proof. By formal properties of χ̃ as proved in [Behrend 2005], we can calculate
as follows, using Lemma 4.10(a):

χ̃(Xn)=

∑
α`n

χ̃(Xn
α, Xn)=

∑
α`n

χ̃(Xn
α,U )=

∑
α`n

|Gα| χ̃(Zα, V )

=

∑
α`n

|Gα| χ̃
(

Zα,
∏

i

Xαi
)
.

By Lemma 4.10(b) and Corollary 4.9, Zα → Y `(α)0 is a Zariski-locally trivial fibra-
tion with fiber

∏
i Fαi . Here we have written `(α) for the length r of the partition

(α1, . . . , αr ). We conclude:

χ̃
(

Zα,
∏

i

Xαi
)

= χ(Y `(α)0 )
∏

i

χ(Fαi , ναi )

Together with Corollary 4.3 this gives:

χ̃(Xn)= (−1)n
∑
α`n

|Gα|χ(Y
`(α)
0 )

∏
i

χ(Fαi ). (9)

Using the exact same arguments with the constant function 1 in place of ν gives
the same answer, except without the sign (−1)n . This proves our first claim. The
second one follows then directly from the result of [Cheah 1996], which says that∑

∞

n=0 χ(Hilbn Y )tn
= M(t)χ(Y ). �

The dimension zero MNOP conjecture. We now prove Conjecture 1 of [Maulik
et al. 2003]. A proof of this result was also announced by J. Li at the workshop on
Donaldson–Thomas invariants in Urbana–Champaign in March 2005.

Theorem 4.12. Let Y be a projective Calabi–Yau threefold. Then, for the virtual
count of Hilbn Y with respect to the Donaldson–Thomas obstruction theory, we
have

#vir(Hilbn Y )= (−1)nχ(Hilbn Y ).

In other words:
∞∑

n=0

#vir(Hilbn Y ) tn
= M(−t)χ(Y ).

Proof. By Theorem 4.18 of [Behrend 2005], we have

#vir(Hilbn Y )= χ̃(Hilbn Y ).

Thus the result follows from Theorem 4.11. �
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Minimal γ -sheaves
Manuel Blickle

In a seminal work Lyubeznik [1997] introduces a category F-finite modules
in order to show various finiteness results of local cohomology modules of a
regular ring R in positive characteristic. The key notion on which most of his
arguments rely is that of a generator of an F-finite module. This may be viewed
as an R finitely generated representative for the generally nonfinitely generated
local cohomology modules. In this paper we show that there is a functorial way
to choose such an R-finitely generated representative, called the minimal root,
thereby answering a question that was left open in Lyubeznik’s work. Indeed,
we give an equivalence of categories between F-finite modules and a category of
certain R-finitely generated modules with a certain Frobenius operation which
we call minimal γ -sheaves.

As immediate applications we obtain a globalization result for the parameter
test module of tight closure theory and a new interpretation of the generalized
test ideals of Hara and Takagi [2004] which allows us to easily recover the ratio-
nality and discreteness results for F-thresholds of Blickle et al. [2008].

1. Introduction

Let R be a regular ring of positive characteristic p > 0. We denote by σ : R −→ R
the Frobenius map which sends r ∈ R to its p-th power r p. We assume that R is F-
finite, which means that the Frobenius map σ is a finite morphism. In order to show
various finiteness results for the generally nonfinitely generated local cohomology
modules H i

J (R), with J being some ideal of R, Lyubeznik [1997] observes that if
one enlarges the ring R by adjoining a new, noncommutative variable represent-
ing the Frobenius morphism σ then all local cohomology modules (on which the
Frobenius acts in a natural way) are finitely generated over the resulting ring

R[σ ] =
R{σ }

〈σr − r pσ |r ∈ R〉
.

MSC2000: 13A35.
Keywords: positive characteristic, D-module, F-module, Frobenius operation.
During the preparation of this article the author was supported by the DFG Schwerpunkt Komplexe
Geometrie. Some part of the research was done while the author was visiting the Institute Mittag-
Leffler, Djursholm, Sweden. Their hospitality and financial support are greatly appreciated.

347



348 Manuel Blickle

Note that the datum of a module over this ring is the same as giving an R-module
M together with a p-linear map σM : M −→ M representing the action of σ . By
adjointness of restriction and extension, the p-linear map σM is equivalent to an
R-linear map θ : σ ∗M

def
= M ⊗σ R −→ M. This leads to the key definition:

Definition 1.1. A finitely generated R[σ ]-module M is called a unit module if the
structural morphism θ : σ ∗M −→ M is an isomorphism.

Lyubeznik [1997] shows many good properties of the category of finitely gen-
erated unit R[σ ]-modules.1 Most notably, they form an abelian category in which
every object has finite length. By observing that local cohomology modules are
finitely generated unit R[σ ]-modules he is able to conclude many strong finiteness
results about them. A systematic study of a globalized version of finitely generated
unit modules is undertaken by Emerton and Kisin [2004]. There it is shown that
the category of locally finitely generated R[σ ]-modules is (derived) equivalent to
the category of étale sheaves of Fp-vector spaces on Spec R.

A prominent role in Lyubeznik’s as well as in Emerton and Kisin’s study of
finitely generated unit R[σ ]-modules has the concept of a generator or root. A root
of a finitely generated unit R[σ ]-module M is a finitely generated R-submodule
M ⊆ M such that the structural map θM induces an inclusion γ : M ⊆ σ ∗M and
that

⋃
σ e∗M = M. Hence one may view the root γ : M −→ σ ∗M as a coherent

representative of the finitely generated unit R[σ ]-module M. Generalizing slightly
we define:

Definition 1.2. A finitely generated R-module M together with an R-linear mor-
phism γ : M −→ σ ∗M is called a γ -module, or γ -sheaf.

The Frobenius iterates of the map γ form a directed system

M
γ

−→ σ ∗M
σ ∗γ

−−−→ σ 2∗M
σ 2∗γ

−−−→ . . . ,

the limit of which we denote by GenM . One checks easily that γ induces a map
GenM −→ σ ∗GenM which is an isomorphism. By inverting this isomorphism,
GenM becomes a unit R[σ ]-module. It is shown in [Emerton and Kisin 2004] that
a finitely generated unit R[σ ]-module M is precisely a module which is isomorphic
to GenM for some γ -module (M, γ ).

Of course, different γ -modules may generate isomorphic unit R[σ ]-modules.
The obvious question whether there is a unique minimal (in an appropriate sense,
see Definition 2.7) γ -module that generates a given unit R[σ ]-module has remained
open for a long time. In the case that R is complete, a positive answer was given
already in [Lyubeznik 1997, Theorem 3.5]. In [Blickle 2004] this is extended to

1In [Lyubeznik 1997] this category is called F-finite modules. We follow here the notation of
Blickle and Böckle [≥ 2008] which in turn is taken from the monograph [Emerton and Kisin 2004].
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the case that R is local (at least if R is F-finite). The purpose of this article is to
show this in general, that is, for any F-finite regular ring R (see Theorem 2.24).
A notable point in the proof is that it does not rely on the hard finiteness result
[Lyubeznik 1997, Theorem 4.2], but only on the (easier) local case of it which is
in some sense proven here en passant (see Remark 2.14). Our main result is the
following.

Theorem 2.27. Let R be a regular ring of positive characteristic p > 0 such that
the Frobenius map is finite. Let M be a finitely generated unit R[σ ]-module, then
there is a unique minimal γ -sheaf M such that GenM ∼= M.

Moreover, the functor Gen induces an equivalence of abelian categories between
finitely generated unit R[σ ]-modules and minimal γ -sheaves.

Our approach to prove this result is not the most direct one imaginable since we
essentially develop a theory of minimal γ -sheaves from scratch (Section 2). The
benefit is that after this is established, the result on the existence of minimal roots
naturally appears as a byproduct. For this reason, it is important to isolate the key
point in the argument: For a fixed coherent γ -sheaf M , the order of nilpotency
of quotients of M is universally bounded. This is the statement of Proposition
2.11 (local case) and of the main result Theorem 2.22 (general case). The proof of
this comes down to checking that decreasing sequences of γ -subsheaves of a fixed
coherent γ -sheaf are eventually constant. This is achieved using the Chevalley
lemma in the local case, or, via duality, by invoking a key result of Hartshorne and
Speiser [1977]. The main difficulty (and the achievement in this paper) however
lies in reducing the general case to the local case.

The quite explicit nature of our proof allows us to draw a series of interest-
ing consequences. In particular, the connection to generalized test ideals [Hara
and Takagi 2004] which appeared in computing the simplest examples of minimal
gamma sheaves is quite surprising at first. In Section 3 we also give some applica-
tions of the result on the existence of minimal γ -sheaves. First, we show that the
category of minimal γ -sheaves is equivalent to the category γ -crystals of Blickle
and Böckle [≥ 2008]. We show that a notion from tight closure theory, namely the
parameter test module, is a global object (Proposition 3.3). Statements of this type
are notoriously hard in the theory of tight closure, particularly in the light of recent
evidence that localization for tight closure might fail in general. Furthermore, we
give a concrete description of minimal γ -sheaves in a very simple case (Proposition
3.5), relating it to the generalized test ideals studied in [Blickle et al. 2008]. This
viewpoint also recovers (and slightly generalizes, with new proofs) the main results
on the rationality and discreteness of jumping numbers of Blickle et al. [2008]
and the results on generators of certain D-modules of Alvarez-Montaner et al.
[2005]. A similar generalization, however using slightly different (but related, see
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Remark 2.12) methods, was recently obtained independently by Katzman et al.
[2007].

We are pleased to recently have learned that Carl Miller obtained the existence
of minimal roots in the case of dimension 1 independently in his PhD thesis [Miller
2007]. He uses the existence of minimal roots in this case as the main tool to obtain
a lower bound for the Euler characteristic of a p-torsion étale sheaf on a smooth
characteristic p curve, thereby answering a question of Pink (who considered the
case where there is no higher wild ramification). The link between the p-torsion
sheaf and the coherent minimal γ -sheaf is obtained via the Riemann–Hilbert type
correspondence of Emerton and Kisin [2004]. I expect that the results in the present
paper could be of great use for similar applications to the study of p-torsion sheaves
via coherent sheaves. For example, starting with a suitable p-torsion étale sheaf
F , one can now uniquely associate a coherent γ -sheaf M with F , and one may, as
in the work of Miller, use invariants of M, such as its degree, as an invariant for F .

The ideas in this paper have two sources. Firstly, the ongoing project of Blickle
and Böckle [≥ 2008] lead to a systematic study of γ -sheaves (the notation γ -sheaf
is chosen to remind of the notion of a generator introduced in [Lyubeznik 1997]).
Secondly, insight gained from the D-module theoretic viewpoint on generalized
test ideals developed in [Blickle et al. 2008] jointly with Mircea Mustaţă and Karen
Smith leads to the observation that these techniques can be successfully applied to
study γ -sheaves.

Notation. Throughout we fix a regular scheme X over a field k ⊇ Fq of charac-
teristic p > 0 (with q = pe fixed). We further assume that X is F-finite, that is,
the Frobenius morphism σ : X −→ X , which is given by sending f ∈ OX to f q , is a
finite morphism.2 In general, σ is affine. This allows to reduce in many arguments
below to the case that X itself is affine and I will do so if convenient. We will
use without further mention that because X is regular, the Frobenius morphism
σ : X −→ X is flat such that σ ∗ is an exact functor (see [Kunz 1969]).

2. Minimal γ –sheaves

We begin with recalling the notion of γ -sheaves and nilpotence.

Definition 2.1. A γ -sheaf on X is a pair (M, γM) consisting of a quasicoherent
OX -module M and a OX -linear map γ : M −→ σ ∗M . A γ -sheaf is called coherent
if its underlying sheaf of OX -modules is coherent.

2It should be possible to replace the assumption of F-finiteness to saying that if X is a k-scheme
with k a field such that the relative Frobenius σX/k is finite. This would extend the results given here
to desirable situations such as X of finite type over a field k with [k : kq

] = ∞. The interested reader
should have no trouble to adjust our treatment to this case.
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A γ -sheaf (M, γ ) is called nilpotent (of order n) if

γ n def
= σ n∗γ ◦ σ (n−1)∗γ ◦ . . . ◦ σ ∗γ ◦ γ = 0

for some n > 0. A γ -sheaf is called locally nilpotent if it is the union of nilpotent
γ subsheaves.

Maps of γ -sheaves are maps of the underlying OX -modules such that the obvi-
ous diagram commutes. We denote the category of coherent γ -sheaves on X by
Cohγ (X). The following proposition summarizes some properties of γ -sheaves;
for proofs and more details see [Blickle and Böckle ≥ 2008].

Proposition 2.2. (a) The set of γ -sheaves forms an abelian category.

(b) The coherent, nilpotent and locally nilpotent γ -sheaves are abelian subcate-
gories, also closed under extension.

Proof. The point in the first statement is that the OX -module kernel, cokernel and
extension of (maps of) γ -sheaves naturally carry the structure of a γ -sheaf. This
is really easy to verify so we only give the construction of the γ -structure on the
kernel as an illustration. Recall that we assume that X is regular such that σ is
flat, hence σ ∗ is an exact functor. A morphism ϕ : M −→ N of γ -sheaves is a
commutative diagram

M
ϕ

//

γM

��

N

γN

��

σ ∗M
σ ∗ϕ

// σ ∗N

from which we obtain the induced map kerϕ −→ ker(σ ∗ϕ). Since σ ∗ is exact, the
natural map σ ∗(kerϕ)−→ ker(σ ∗ϕ) is an isomorphism. Hence the composition

kerϕ −→ ker(σ ∗ϕ)
∼=

−−→ σ ∗(kerϕ)

equips kerϕ with a natural structure of a γ -sheaf.
The second part of Proposition 2.2 is also easy to verify so we leave it to the

reader (see the proof of Lemma 2.3 below). �

Lemma 2.3. A morphism ϕ : M −→ N of γ -sheaves is called nil-injective (respec-
tively, nil-surjective, nil-isomorphism) if its kernel (respectively, cokernel, both) is
locally nilpotent.

(a) If M (respectively, N ) is coherent and ϕ is nil-injective (respectively, nil-
surjective) then kerϕ (respectively, cokerϕ) is nilpotent.

(b) Kernel and cokernel of ϕ are nilpotent (of order n and m respectively) if and
only if there is, for some k ≥ 0 (k = n + m), a map ψ : N −→ σ k∗M such that
γ k

M = ψ ◦ϕ and γ k
N = σ k∗(ϕ) ◦ψ .
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(c) If N is nilpotent of order ≤ n (that is, γ n
N = 0) and N ′

⊆ N contains the kernel
of γ i

N for 1 ≤ i ≤ n, then N/N ′ is nilpotent of order ≤ n − i .

Proof. The first statement is clear since X is noetherian. For the second statement
consider the diagram obtained from the exact sequence 0 −→ K −→ M −→ N −→

C −→ 0:

0 // K //

��

M //

��

N //

��

��

ψ

wwoooooooooooo C //

0
��

0

0 // σ n∗K //

0
��

σ n∗M //

��

σ n∗N //

��

σ n∗C //

��

0

0 // σ (n+m)∗K // σ (n+m)∗M // σ (n+m)∗N // σ (n+m)∗C // 0 .

If there is a ψ as indicated, then clearly the leftmost and rightmost vertical arrows
of the first row are zero, that is, K and C are nilpotent. Conversely, let K = kerϕ
be nilpotent of degree n and C = cokerϕ be nilpotent of degree m. Then the top
right vertical arrow and the bottom left vertical arrow are zero. The fact that the
top right arrow is zero allows to define ψ as follows: Take n ∈ N , map it down
to σ n∗N . Since its image to the right is zero, take any preimage from the left and
map that element down in the diagram to σ (n+m)∗M . This procedure defines ψ(n).
To show that it is well defined and to see that the two relevant triangles commute
is not difficult by using that the bottom left vertical arrow is zero.

For the last part, consider the short exact sequence 0 −→ N ′
−→ N −→ N/N ′

−→ 0
and the diagram one obtains by considering σ (n−i)∗ and σ n∗ of this sequence:

0 // N ′ //

��

N //

γ n−i

��

N/N ′ //

��

0

0 // σ (n−i)∗N ′ //

0
��

σ (n−i)∗N //

σ (n−i)∗γ i

��

σ (n−i)∗(N/N ′) //

��

0

0 // σ n∗N ′ // σ n∗N // σ n∗(N/N ′) // 0 .

The composition of the middle vertical map is γ n
N which is zero by assumption.

To conclude that the top right vertical arrow is zero one uses the fact that

σ (n−i)∗ N ′
⊇ σ (n−i)∗ ker γ i

= ker
(
σ (n−i)∗γ i).

With this it is an easy diagram chase to conclude that the top right vertical map is
zero. �



Minimal γ -sheaves 353

Lemma 2.4. Let M
ϕ

−→ N be a map of γ -sheaves. Let N ′
⊆ N be such that

N/N ′ is nilpotent (hence N ′
⊆ N is a nil-isomorphism). Then M/(ϕ−1 N ′) is also

nilpotent.

Proof. M/(ϕ−1 N ′) injects into N/N ′. Since the latter is nilpotent, so is the former.
�

If (M, γ ) is a γ -sheaf, then σ ∗M is naturally a γ -sheaf with structural map
σ ∗γ . Furthermore, the map γ : M −→ σ ∗M is then a map of γ -sheaves which is
a nil-isomorphism, that is, kernel and cokernel are nilpotent. We can iterate this
process to obtain a directed system

M
γ

−→ σ ∗M
σ ∗γ

−−−→ σ 2∗M
σ 2∗γ

−−−→ . . .

whose limit we denote by GenM . Clearly GenM is a γ -sheaf whose structural map
γGenM is injective. In fact, it is an isomorphism since clearly σ ∗GenM ∼= GenM .
One observes that GenM = 0 if and only if M is locally nilpotent. Note that even if
M is coherent, GenM is generally not coherent. Furthermore, let M be the image
of M under the natural map M −→ GenM . Then, if M is coherent, so is M and the
map M−→→M is a nil-isomorphism. Since M is a γ -submodule of GenM whose
structural map is injective, the structural map γ of M is injective as well.

Proposition 2.5. The operation that assigns to each γ -sheaf M its image M in
GenM is an end-exact functor (preserves exactness only at the end of sequences)
from Cohγ (X) to Cohγ (X). The kernel

M◦
=

⋃
ker γ i

M

of the natural map M −→ M is the maximal locally nilpotent subsheaf of M.

Proof. The verification of the statement about M◦ is left to the reader. One has a
functorial map between the exact functors id−→Gen. An easy diagram chase shows
that the image of such a functorial map is an end-exact functor (see for example
[Katz 1996, 2.17 Appendix 1]). In the concrete situation we are in, one can also
verify this directly: right exactness is clear since M is a quotient of M . On the
other hand, if M ⊆ N is a γ -subsheaf, then N ◦

∩ M ⊆ M◦ since the former is
clearly locally nilpotent. It follows that M ⊆ N . �

Such γ -submodules with injective structural map enjoy a certain minimality prop-
erty with respect to nilpotent subsheaves:

Lemma 2.6. Let (M, γ ) be a γ -sheaf. The structural map γM is injective if and
only if M does not have a nontrivial nilpotent subsheaf.
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Proof. Assume that the structural map of M is injective. This implies that the
structural map of any γ -subsheaf of M is injective. But a γ -sheaf with injective
structural map is nilpotent if and only it is zero.

Conversely, ker γM is a nil-potent subsheaf of M . If γM is not injective it is
nontrivial. �

2.1. Definition of minimal γ –sheaves.

Definition 2.7. A coherent γ -sheaf M is called minimal if the following two con-
ditions hold:

(a) M does not have nontrivial nilpotent subsheaves;

(b) M does not have nontrivial nilpotent quotients.

We denote by Minγ (X) the subcategory of all γ -sheaves consisting of the minimal
ones.

A simple consequence of the definition is

Lemma 2.8. Let M be a γ -sheaf. If M satisfies (a) then any γ -subsheaf of M also
satisfies (a). If M satisfies (b), so does any quotient.

Proof. Immediate from the definition. �

As the preceding Lemma 2.6 shows, (a) is equivalent to the condition that the struc-
tural map γM is injective. We give a concrete description of the second condition.
Proposition 2.9. For a coherent γ -sheaf M , the following conditions are equiva-
lent.

(a) M does not have nontrivial nilpotent quotients.

(b) For any map of γ -sheaves ϕ : N −→ M , if γM(M) ⊆ (σ ∗ϕ)(σ ∗N ) (as subsets
of σ ∗M) then ϕ is surjective.

Proof. I begin with showing the easy direction that (a) implies (b): Note that the
condition γM(M) ⊆ (σ ∗ϕ)(σ ∗N ) in (b) precisely says that the induced structural
map on the cokernel of N −→ M is the zero map, thus in particular M/ϕ(N ) is a
nilpotent quotient of M . By assumption on M , M/ϕ(N )= 0 and hence ϕ(N )= M .

Let π : M−→→C be such that C is nilpotent. Let N ⊆ M be its kernel. We
have to show that N = M . The proof is by induction on the order of nilpotency
of C (simultaneously for all C). If C = M/N is nilpotent of order 1 this means
precisely that γ (M)⊆ σ ∗N ; hence by (b) we have N = M as claimed. Now let N
be such that the nilpotency order of C def

= M/N is equal to n ≥ 2. Consider the γ -
submodule N ′

= π−1(ker γC) of M . This N ′ clearly contains N and we have that
M/N ′ ∼= C/(ker γC). By the previous Lemma 2.3 we conclude that the nilpotency
order of M/N ′ is ≤ n − 1. Thus by induction N ′

= M . Hence

M/N = N ′/N ∼= ker γC
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is of nilpotency order 1. Again by the base case of the induction we conclude that
M = N . �

By replacing N by its image ϕ(N ) in M in item (b) of Proposition 2.9 it follows
that it would be enough to consider such ϕ which are injective.

Corollary 2.10. A coherent γ -sheaf M is minimal if and only if the following two
conditions hold.
(a) The structural map of M is injective.

(b) If N ⊆ M is a subsheaf such that γ (M)⊆ σ ∗N then N = M.

The conditions in this corollary are essentially the definition of a minimal root of
a finitely generated unit R[σ ]-module in [Lyubeznik 1997]. The finitely generated
unit R[σ ]-module generated by (M, γ ) is of course GenM . Lyubeznik shows in
the case that R is a complete regular ring, that minimal roots exist. In [Blickle
2004, Theorem 2.10] I showed how to reduce the local case to the complete case
if R is F-finite. For convenience we give a streamlined argument of the result in
the local case in the language of γ -sheaves.

2.2. Minimal γ –sheaves over local rings. The difficult part in establishing the
existence of a minimal root is to satisfy condition (b) of Definition 2.7. The point
is to universally bound the order of nilpotency of any nilpotent quotient of a fixed
γ -sheaf M .

Proposition 2.11. Let (R,m) be regular, local and F-finite. Let M be a coherent
γ -sheaf and {Ni }i∈I be a collection of γ -subsheaves which is closed under finite
intersections and such that M/Ni is nilpotent for all i . Then M/

⋂
Ni is nilpotent.

Proof. Note that if N and N ′ are γ -subsheaves of M such that M/N and M/N ′

are nilpotent of order n and n′, then M/(N ∩ N ′) is nilpotent of order max{n, n′
}.

Hence, with {Ni } the family of all N ⊆ M such that M/N is nilpotent, Proposition
2.11 may be equivalently stated:

The order of nilpotency of any nilpotent quotient of M is universally bounded.

By faithful flatness of completion (together with the fact that completion commutes
with Frobenius), order of nilpotency of quotients of M is preserved by completion.
Therefore we may reduce to the case that R is complete.

Let us hence assume that R is complete, local, regular and F-finite. Since R
is via σ a free R-module of finite rank, σ ∗ is nothing but tensorisation with a
free R-module of finite rank. Such an operation commutes with the formation of
inverse limits such that σ ∗

⋂
Ni =

⋂
(σ ∗Ni ) and hence

⋂
Ni is a γ -subsheaf of

M . Clearly we may replace M by M/
⋂

Ni such that we have
⋂

Ni = 0. We
may further replace M by its image M in GenM . Thus we may assume that M has
injective structural map γ : M ⊆ σ ∗M . We have to show that M = 0.
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By the Artin–Rees Lemma (applied to M ⊆ σ ∗M) there exists t ≥ 0 such that
for all s > t ,

M ∩ msσ ∗M ⊆ ms−t(M ∩ mtσ ∗M) ⊆ ms−t M .

By Chevalley’s Theorem in the version of [Lyubeznik 1997, Lemma 3.3], for some
s � 0 (in fact s ≥ t +1 will suffice) we find Ni with Ni ⊆ms M . Possibly increasing
s we may assume that Ni 6⊆ms+1 M (unless, of course Ni =0 in which case M/Ni =

M is nilpotent ⇒ M = 0 since γM is injective, and we are done). Combining these
inclusions we get

Ni ⊆ σ ∗Ni ∩ M ⊆ σ ∗(ms M)∩ M

⊆ (ms)[q]σ ∗M ∩ M ⊆ msqσ ∗M ∩ M

⊆ msq−t M .

But since sq − t ≥ s + 1 for our choice of s ≥ t + 1 this is a contradiction (to the
assumption Ni 6= 0) and the result follows. �

Remark 2.12. An alternative way to prove this result is to use Matlis duality and
then invoke a result of Hartshorne and Speiser [1977, Proposition 1.11]. Their
result states that if U is a cofinite R[σ ]-module then the subset

Unil = { u ∈ U | σ n(u)= 0 for some n }

is annihilated by a fixed power of σ , that is, there is k ≥ 1 such that σ k(Unil)= 0.
If one applies this to the Matlis dual U = M∨ of M and the union of its σ -nilpotent
submodules (M/Ni )

∨ in the above statement, an alternative proof is obtained. This
approach via the Hartshorne–Speiser result is used in [Katzman et al. 2007] to study
F-thresholds and hence appears to be directly related to the observations we make
in Section 3.3 below.

Corollary 2.13. Let R be regular, local and F-finite and M a coherent γ -sheaf.
Then M has a nil-isomorphic subsheaf without nonzero nilpotent quotients (that is,
satisfying (b) of the definition of minimality). In particular, M is nil-isomorphic to
a minimal γ -sheaf.

Proof. Let Ni be the collection of all nil-isomorphic subsheaves of M . Since M is
coherent each M/Ni is indeed nilpotent, say of order ≤ ni . Since

M/(Ni ∩ N j )⊆ M/Ni ⊕ M/N j ,

it follows that M/(Ni ∩ N j ) is nilpotent of order ≤ max{ni , n j }. Hence the collec-
tion of nil-isomorphic subsheaves of M is closed under intersection which allows
to apply Proposition 2.11 to conclude that M/

⋂
Ni is nilpotent. Hence N def

=
⋂

Ni

is the unique smallest nil-isomorphic subsheaf of M . It is clear that N cannot have
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nonzero nilpotent quotients (since the kernel would be a strict subsheaf of N , nil-
isomorphic to M , by Proposition 2.2 (b)).

By first replacing M by M we can also achieve that condition (a) of the def-
inition of minimality holds. As condition (a) passes to subsheaves, the smallest
nil-isomorphic subsheaf of M is the sought after minimal γ -sheaf which is nil-
isomorphic to M . �

Remark 2.14. Essentially the same argument as in the proof of Proposition 2.11
shows the following: If R is local and M is a coherent γ -sheaf over R with injective
structural map, then any descending chain of γ -submodules of M stabilizes. This
was shown (with essentially the same argument) in [Lyubeznik 1997] and implies
immediately that γ -sheaves with injective structural map satisfy DCC.

If one tries to reduce the general case of Corollary 2.13 (that is, R not local) to
the local case just proven, one encounters the problem of having to deal with the
behavior of the infinite intersection

⋂
Ni under localization. This is a source of

troubles I do not know how to deal with directly. The solution to this is to take
a detour and realize this intersection in a fashion such that each term functorially
depends on M and furthermore that this functorial construction commutes with
localization. This is explained in the following section.

2.3. D(1)
X –modules and Frobenius descent. Let DX denote the sheaf of differen-

tial operators on X . This is a sheaf of rings on X which locally, on each affine
subvariety Spec R, is described as

DR =

∞⋃
i=0

D(i)
R

where D(i)
R is the subset of EndFq (R) consisting of the operators which are linear

over Rq i
, the subring of q i -th powers of elements of R. In particular

D(0)
R

∼= R, and D(1)
R = EndRq (R).

Clearly, R itself becomes naturally a left D(i)
R -module. Now denote by R(1) the

D(1)
R -R-bimodule R which has this left D(1)

R -module structure and the right R-
module structure via Frobenius, that is, for r ∈ R(1) and x ∈ R we have r · x =

xqr . With this notation we may view D(1)
R = Endr

R(R
(1)) as the right R-linear

endomorphisms of R(1). Thus we have

σ ∗( )= R(1) ⊗R : R-mod −→ D(1)
R -mod ,

which makes σ ∗ into an equivalence of categories from R-modules to D(1)
R -modules

(because, since σ is flat and R is F-finite, R(1) is a locally free right R-module of
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finite rank). Its inverse functor is given by

σ−1( )= Homr
R(R

(1), R)⊗D(1)
R

: D(1)
R -mod −→ R-mod . (2-1)

For details see [Alvarez-Montaner et al. 2005, Section 2.2]. I want to point out that
these constructions commute with localization at arbitrary multiplicative sets. Let
S be a multiplicative set of R.3 We have

S−1 D(1)
R = S−1 Endr

R(R
(1))

= Endr
S−1 R

(
(S[q])−1 R(1)

)
= Endr

S−1 R

(
(S−1 R)(1)

)
= D(1)

S−1 R .

Furthermore we have for an D(1)
R -module M :

S−1(σ−1 M)= S−1(Homr
R(R

(1), R)⊗D(1)
R

M
)

= S−1 Homr
R(R

(1), R)⊗S−1 D(1)
R

S−1 M

= Homr
S−1 R

(
(S−1 R)(1), S−1 R

)
⊗D(1)

S−1 R
S−1 M

= σ−1(S−1 M) .

These observations are summarized in the following proposition.

Proposition 2.15. Let X be F-finite and regular. Let U be an open subset (more
generally, U is locally given on Spec R as Spec S−1 R for some (sheaf of ) multi-
plicative sets on X ). Then (

D(1)
X

) ∣∣
U = D(1)

U

and for any sheaf of D(1)
X -modules M one has that

(σ−1 M)|U =
(
Homr(O(1)X ,OX

)
⊗D(1)

X
M
) ∣∣

U

∼= Homr(O(1)U ,OU
)
⊗D(1)

U
M |U = σ−1(M |U )

as OU -modules.

2.4. A criterion for minimality. The Frobenius descent functor σ−1 can be used
to define an operation on γ -sheaves which assigns to a γ -sheaf M its smallest γ -
subsheaf N with the property that M/N has the trivial (= 0) γ -structure. This is
the opposite of what the functor σ ∗ does: γ : M −→ σ ∗M is a map of γ sheaves
such that σ ∗M/γ (M) has trivial γ -structure.

We define the functor σ−1
γ from γ -sheaves to γ -sheaves as follows. Let M

γ
−→

σ ∗M be a γ -sheaf. Then γ (M) is an OX -submodule of the D(1)
X -module σ ∗M .

3Since S−1 R = (S[q])−1 R we may assume that S ⊆ Rq . This implies that S is in the center of
D(1)R such that localization in this noncommutative ring along S is harmless. With this I mean that
we may view the localization of the left R-module D(1)R at S−1 in fact as the localization of D(1)R at
the central multiplicative set (S[q])−1
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Denote by D(1)
X γ (M) the D(1)

X -submodule of σ ∗M generated by γ (M). To this
inclusion of D(1)

X -modules

D(1)
X γ (M)⊆ σ ∗M ,

we apply the Frobenius descent functor σ−1
: D(1)

X -mod −→ OX -mod defined above
in (2-1) and use that σ−1

◦ σ ∗
= id to define

σ−1
γ M def

= σ−1(D(1)
X γ (M)

)
⊆ σ−1σ ∗M = M .

In general one has

σ−1
γ (σ ∗M)= σ−1 D(1)

X σ ∗(γ )(σ ∗M)= γ (M)

since σ ∗(γ )(σ ∗M) already is a D(1)
X -subsheaf of the D(2)

X -module σ ∗(σ ∗M) =

σ 2∗M .
By construction,

σ−1
γ M ⊆ M

γ
−→ γ (M)⊆ D(1)

X γ (M)= σ ∗σ−1 D(1)
X γ (M)= σ ∗σ−1

γ M

such that σ−1
γ M is a γ -subsheaf of M .

Furthermore, the quotient M/σ−1
γ M has zero structural map. One makes the

following observation.

Lemma 2.16. Let M be a γ -sheaf. Then σ−1
γ M is the smallest subsheaf N of M

such that σ ∗N ⊇ γ (M).

Proof. Clearly σ−1 M satisfies this condition. Let N be as in the statement of
the Lemma. Then σ ∗N is a D(1)

X -subsheaf of σ ∗M containing γ (M). Hence
D(1)

X γ (M)⊆ σ ∗N . Applying σ−1 we see that σ−1 M ⊆ N . �

Therefore, the result of the lemma could serve as an alternative definition of σ−1
γ

(one would have to show that the intersection of all such N has again the property
that γ (M)⊆ σ ∗

⋂
N but this follows since σ ∗ commutes with inverse limits since

it is locally just tensorisation with a free module of finite rank). The following
lemma is the key point in our reduction to the local case. It is an immediate con-
sequence of Proposition 2.15. Nevertheless we include here a proof using only the
characterization of Lemma 2.16. Hence one may avoid the appearance of D(1)-
modules in this paper altogether but I believe it to be important to explain where
the ideas for the arguments originated, so D(1)-modules are still there.

Lemma 2.17. Let M be a γ -sheaf and let S ⊆ OX be multiplicative set. Then
S−1(σ−1

γ M)= σ−1
γ (S−1 M).

Proof. This follows from Proposition 2.15. However, this can also be proven using
only the characterization in Lemma 2.16. By this we have

σ ∗(S−1(σ−1
γ M))= S−1(σ ∗(σ−1

γ M))⊇ S−1γ (M)= γ (S−1 M) , (2-2)
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which implies that σ−1
γ (S−1 M)⊆ S−1(σ−1

γ M) because σ−1
γ (S−1 M) is smallest (by

Lemma 2.16) with respect to the inclusion shown in (2-2). To show the converse
inclusion, we consider the localization map ϕ : M −→ S−1 M and N ⊆ S−1 M is a
submodule such that γ (S−1 M)⊆ σ ∗N . Consider the diagram

M/ϕ−1 N � � //

γ

��

S−1 M/N

γ

��

σ ∗M/σ ∗(ϕ−1 N ) � � // σ ∗(S−1 M)/σ ∗N

of which the horizontal arrows are injections (using the exactness of σ ∗). By as-
sumption on N , the right vertical arrow is zero, hence also the left vertical arrow.
This implies that γ (M)⊆ σ ∗(ϕ−1 N ). By the characterization of Lemma 2.16 one
concludes that σ−1

γ M ⊆ ϕ−1 N and hence S−1σ−1
γ M ⊆ N . Applying this with

N = σ−1
γ (S−1 M) our claim follows. �

Proposition 2.18. Let M be a γ -sheaf. Then σ−1
γ M = M if and only if M has

no proper nilpotent quotient (that is, M satisfies condition (b) of the definition of
minimality).

If M is coherent, the condition on x ∈ X that the inclusion σ−1
γ (Mx) ⊆ Mx is

equality is an open condition on X.

Proof. One direction is clear since M/σ−1
γ M is a nilpotent quotient of M . We use

the characterization in Proposition 2.9. For this let N ⊆ M be such that γ (M) ⊆

σ ∗N . As σ−1
γ M was the smallest subsheaf with this property we obtain σ−1

γ M ⊆

N ⊆ M . Since M = σ−1
γ M by assumption it follows that N = M . Hence, by

Proposition 2.9, M does not have nontrivial nilpotent quotients.
By Lemma 2.17, σ−1

γ commutes with localization which means that σ−1
γ (Mx)=

(σ−1
γ M)x . Hence the second statement follows simply since both M and σ−1

γ M
are coherent (and equality of two coherent modules via a given map is an open
condition). �

Lemma 2.19. The assignment M 7→ σ−1
γ M is an end-exact functor on γ -sheaves.

Proof. Formation of the image of the functorial map id
γ

−→ σ ∗ of exact functors is
end-exact (see for example [Katz 1996, 2.17 Appendix 1]). If M is a D(1)

X -module
and A ⊆ B are OX -submodules of M then

D(1)
X A ⊆ D(1)

X B.

If M−→→N is a surjection of D(1)-modules which induces a surjection on OX -
submodules A−→→B then, clearly, D(1)

X A surjects onto D(1)
X B. Now one concludes

by observing that σ−1 is an exact functor. �
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Lemma 2.20. Let N ⊆ M be an inclusion of γ -sheaves such that σ n∗N ⊇ γ n(M)
(that is, the quotient is nilpotent of order ≤ n). Then

σ (n−1)∗(N ∩ σ−1
γ M)⊇ γ n−1(σ−1

γ M).

Proof. Consider the γ -subsheaf M ′
= (γ n−1)−1(σ (n−1)∗N ) of M . One has

σ ∗M ′
= (σ ∗γ n−1)−1(σ n∗N )⊇ γ (M)

by the assumption that γ n(M) ⊆ σ n∗N . Since σ−1
γ M is minimal with respect to

this property we have σ−1
γ M ⊆ (γ n−1)−1(σ (n−1)∗N ). Applying γ n−1 we conclude

that γ n−1(σ−1
γ M)⊆ σ (n−1)∗N . Since σ−1

γ M is a γ -sheaf we have

γ n−1(σ−1
γ M)⊆ σ (n−1)∗(σ−1

γ M)

such that the claim follows. �

2.5. Existence of minimal γ –sheaves. For a given γ -sheaf M we can iterate the
functor σ−1

γ to obtain a decreasing sequence of γ -subsheaves,

. . .⊆ M3 ⊆ M2 ⊆ M1 ⊆ M(
γ

−→ σ ∗M −→ . . .)

where Mi = σ−1
γ Mi−1. Note that each inclusion Mi ⊆ Mi−1 is a nil-isomorphism.

Proposition 2.21. Let M be a coherent γ -sheaf. Then the following conditions are
equivalent.

(a) M has a nil-isomorphic γ -subsheaf M which does not have nontrivial nilpo-
tent quotients (that is, M satisfies condition (b) in the definition of minimal
γ -sheaf ).

(b) M has a unique smallest nil-isomorphic subsheaf (equivalently, M has a
(unique) maximal nilpotent quotient).

(c) For some n ≥ 0, Mn = Mn+1.

(d) There is n ≥ 0 such that for all m ≥ n, Mm = Mm+1.

Proof. (a) ⇒ (b): Let M ⊆ M be the nil-isomorphic subsheaf of part (a) and let
N ⊆ M be another nil-isomorphic subsheaf of M . By Lemma 2.4 it follows that
M∩N is also nil-isomorphic to M . In particular M/(M∩N ) is a nilpotent quotient
of M and hence must be trivial. Thus N ⊆ M which shows that M is the smallest
nil-isomorphic subsheaf of M .

(b) ⇒ (c): Let N be this smallest subsheaf as in (b). Since each Mi is nil-
isomorphic to M , it follows that N ⊆ Mi for all i . Let n be the order of nilpotency
of the quotient M/N , that is, γ n(M) ⊆ σ n∗N . Repeated application (n times) of
Lemma 2.20 yields that Mn ⊆ N . Hence we get N ⊆ Mn+1 ⊆ Mn ⊆ N which
implies that Mn+1 = Mn .
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(c) ⇒ (d) is clear.
(d) ⇒ (a) is clear by Proposition 2.18. �

This characterization enables us to show the existence of minimal γ -sheaves by
reducing to the local case which we proved above.

Theorem 2.22. Let M be a coherent γ -sheaf. There is a unique nil-isomorphic
subsheaf M of M which does not have nontrivial nilpotent quotients.

Remark 2.23. The following proof shows that in the notation of Proposition 2.21,
M = Mn for n � 0.

Proof. By Proposition 2.21 it is enough to show that the sequence Mi is eventually
constant. Let Ui be the subset of X consisting of all x ∈ X on which

(Mi )x = (Mi+1)x (= (σ−1
γ Mi )x).

By Proposition 2.18 Ui is an open subset of X (in this step I use the key observation
Proposition 2.15) and (Mi )|Ui = (Mi+1)|Ui . By the functorial construction of the
Mi ’s the equalilty Mi = Mi+1 for one i implies equalities for all bigger i . It follows
that the sets Ui form an increasing sequence of open subsets of X whose union is
X itself by Corollary 2.13 and Proposition 2.21. Since X is noetherian, X = Ui for
some i . Hence Mi = Mi+1 so the claim follows by Proposition 2.21. �

Theorem 2.24. Let M be a coherent γ -sheaf. Then there is a functorial way to
assign to M a minimal γ -sheaf Mmin in the nil-isomorphism class of M.

Proof. We may first replace M by the nil-isomorphic quotient M which satisfies
condition (a) of Definition 2.7. Then replace M by its minimal nil-isomorphic
submodule (M) which also satisfies condition (b) of Definition 2.7 (and condition
(a) because (a) is passed to submodules). Thus the assignment

M 7→ Mmin
def
= (M)

is a functor since it is a composition of the functors M 7→ M and M 7→ M . �

Proposition 2.25. If ϕ : M −→ N is a nil-isomorphism, then ϕmin : Mmin −→ Nmin is
an isomorphism.

Proof. Clearly, ϕmin is a nil-isomorphism. Since kerϕmin is a nilpotent subsheaf
of Mmin, we have by Definition 2.7 (a) that kerϕmin = 0. Since cokerϕmin is a
nilpotent quotient of Nmin it must be zero by Definition 2.7 (b). �

Corollary 2.26. Let M be a finitely generated unit OX [σ ]-module. Then M has a
unique minimal root in the sense of [Lyubeznik 1997].
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Proof. Let M be any root of M, that is, M is a coherent γ -sheaf such that γM is
injective and GenM ∼= M. Then Mmin = M is a minimal nil-isomorphic γ -subsheaf
of M by Theorem 2.24. By Corollary 2.10 it follows that Mmin is the sought after
minimal root of M. Uniqueness is clear since the intersection of any two roots is
again a root. �

Note that the only assumption needed in this result is that X is F-finite and regular.
In particular it does not rely on the finite-length result [Lyubeznik 1997, Theo-
rem 3.2] which assumes that R is of finite type over a regular local ring (however,
in [Lyubeznik 1997] F-finiteness is not assumed).

Theorem 2.27. Let X be regular and F-finite. Then the functor

Gen : Minγ (X)−→ finitely generated unit OX [σ ]-modules

is an equivalence of categories.

Proof. The preceding corollary shows that Gen is essentially surjective. The in-
duced map on Hom sets is injective since a map of minimal γ -sheaves f is zero if
and only if its image is nilpotent (since minimal γ -sheaves do not have nilpotent
submodules) which is the condition that Gen( f )= 0. It is surjective since any map
between g : Gen(M)−→ Gen(N ) is obtained from a map of γ -sheaves M −→ σ e∗N
for some e � 0. But this induces a map M = Mmin −→ (σ e∗N )min = Nmin = N . �

3. Applications and Examples

In this section we discuss some further examples and applications of the results on
minimal γ -sheaves we obtained so far.

3.1. γ –crystals. The purpose of this section is to quickly explain the relationship
of minimal γ -sheaves to γ -crystals which were introduced in [Blickle and Böckle
≥ 2008]. The category of γ -crystals is obtained by inverting nil-isomorphisms in
Cohγ (X). In [Blickle and Böckle ≥ 2008] it is shown that the resulting category
is abelian. One has a natural functor

Cohγ (X)−→→Crysγ (X)

whose fibers we may think of consisting of nil-isomorphism classes of M . Note that
the objects of Crysγ (X) are the same as those of Cohγ (X); however a morphism
between γ -crystals M −→ N is represented by a left-fraction, that is, a diagram of
γ -sheaves M ⇐ M ′

→ M where the arrow ⇐ is a nil-isomorphism.
On the other hand we just constructed the subcategory of minimal γ -sheaves

Minγ (X)⊆ Cohγ (X) and showed that there is a functorial splitting M 7→ Mmin of
this inclusion. An immediate consequence of Proposition 2.25 is that if M and N
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are in the same nil-isomorphism class, then Mmin ∼= Nmin. The verification of this
may be reduced to considering the situation

M ⇐ M ′
⇒ N

with both maps nil-isomorphisms in which case Proposition 2.25 shows that Mmin ∼=

M ′

min
∼= Nmin. One has the following Proposition.

Proposition 3.1. Let X be regular and F-finite. Then the composition

Minγ (X) ↪−→ Cohγ (X)−→→Crysγ (X)

is an equivalence of categories whose inverse is given by sending a γ -crystal rep-
resented by the γ -sheaf M to the minimal γ -sheaf Mmin.

Proof. The existence of Mmin shows that Minγ (X) −→ Crysγ (X) is essentially
surjective. It remains to show that HomMinγ (M, N ) ∼= HomCrysγ (M, N ). A map
ϕ : M −→ N of minimal γ -sheaves is zero in Crysγ if and only if imgϕ is nilpotent.
But imgϕ is a subsheaf of the minimal γ -sheaf N , which by Definition 2.7 (a) has
no nontrivial nilpotent subsheaves. Hence imgϕ = 0 and therefore ϕ = 0. This
shows that the map on Hom sets is injective. The surjectivity follows again by
functoriality of M 7→ Mmin. �

Corollary 3.2. Let X be regular and F-finite. The category of minimal γ -sheaves
Minγ (X) is an abelian category. If ϕ : M −→ N is a morphism then

kermin ϕ = (kerϕ)min = kerϕ and cokermin ϕ = (cokerϕ)min = cokerϕ.

Proof. Since Minγ (X) is equivalent to Crysγ (X) and since the latter is abelian,
so is Minγ (X). Since ker and coker in Crysγ (X) are represented by the kernel
and cokernel of the underlying coherent sheaf the statement about ker and coker in
Minγ (X) follows, where overline and underline are as defined in Proposition 2.5
and Proposition 2.21. �

3.2. The parameter test module. We give an application to the theory of tight
closure. In [Blickle 2004, Proposition 4.5], it was shown that the parameter test
module τωA is the unique minimal root of the intersection homology unit module
L⊆ H n−d

I (R) if A = R/I is the quotient of the regular local ring R (where dim R =

n and dim A = d). Locally, the parameter test module τωA is defined as the Matlis
dual of

H d
m(A)/0

∗

Hd
m(A)

where 0∗

Hd
m(A)

is the tight closure of zero in H d
m(A). The fact that we are now able

to construct minimal γ -sheaves globally allows us to give a global candidate for
the parameter test module.
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Proposition 3.3. Let A = R/I be equi-dimensional of dimension d where R is
regular and F-finite. Then there is a submodule

L ⊆ ωA = Extn−d(R/I, R)

such that for each x ∈ Spec A we have L x ∼= τωx .

Proof. Let L ⊆ H n−d
I (R) be the unique smallest submodule of H n−d

I (R) which
agrees with H n−d

I (R) on all smooth points of Spec A. By [Blickle 2004, Theo-
rem 4.1] L exists and is a unit OX -submodule of H n−d

I (R). Let L be a minimal
generator of L, that is, a coherent minimal γ -sheaf such that GenL = L which
exists due to Theorem 2.22. Because of Proposition 2.15 it follows that L x is also
a minimal γ -sheaf and GenL x ∼= Lx . But from [Blickle 2004, Proposition 4.5] we
know that the unique minimal root of Lx is τωAx

, the parameter test module of Ax .
It follows that L x ∼= τωAx

by uniqueness. To see that L ⊆ Extn−d(R/I, R) we just
observe that Extn−d(R/I, R) with the map induced by σ ∗(R/I )= R/I [q]

−→ R/I
is a γ -sheaf which generates H n−d

I (R). Furthermore, the map

Extn−d(R/I, R)−→ σ ∗ Extn−d(R/I, R)

is injective since it is so locally and in this case the map is dual to the surjec-
tion σ ∗H d

m(R/I ) −→ H d
m(R/I ) (d = dim R/I ) via local duality for the local ring

(Rm,m). Hence by minimality of L we have the desired inclusion. �

3.3. Test ideals and minimal γ –sheaves. We consider now the simplest example
of a γ -sheaf, namely that of a free rank one R-module M (∼= R). That means that
via the identification R ∼= σ ∗ R the structural map

γ : M ∼= R
f ·

−−→ R ∼= σ ∗ R ∼= σ ∗M

is given by multiplication with an element f ∈ R. It follows that γ e is given by
multiplication by f 1+q+···+qe−1

under the identification of σ e∗ R ∼= R. It is an easy
exercise to observe that GenM ∼= R f with its usual unit R[F]-structure.

We will show that the minimal γ -subsheaf of the just described γ -sheaf M can
be expressed in terms of generalized test ideals. We recall from [Blickle et al.
2008, Lemma 2.1] that the test ideal of a principal ideal ( f ) of exponent α =

m
qe is

given by

τ( f α)= the smallest ideal J such that f m
∈ J [qe

] .

By Lemma 2.2 of op. cit. τ( f α) can also be characterized as σ−e of the D(e)-
module generated by f m . We set as a shorthand

Je = τ
(

f (1+q+q2
+···+qe−1)/qe)
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and repeat the definition

Je = the smallest ideal J of R such that f 1+q+q2
+···+qe−1

∈ J [qe
]

and we set J0 = R. Further recall from Section 2.5 that

Me = smallest ideal I of R such that f · Me−1 ⊆ I [q]

with M0 = M .

Lemma 3.4. For all e ≥ 0 one has Je = Me.

Proof. The equality is true for e = 0, 1 by definition. We first show the inclusion
Je ⊆ Me by induction on e.

M [pe
]

e ⊇ ( f · Me−1)
[qe−1

]
=
(

f qe−1
M [qe−1

]

e−1

)
=
(

f qe−1
J [qe−1

]

e−1

)
⊇ f qe−1

· f 1+q+q2
+···+qe−2

= f 1+q+q2
+···+qe−1

,

and since Je is minimal with respect to this inclusion we have Je ⊆ Me.
Now we show for all e ≥ 1 that f · Je−1 ⊆ J [q]

e . The definition of Je implies that

f 1+q+···+qe−2
∈ (J [qe

]
: f qe−1

)= (J [q]
: f )[q

e−1
]

which implies that Je−1 ⊆ (J [q]
: f ) by minimality of Je−1. Hence f · Je−1 ⊆ J [q].

Now, we can show the inclusion Me ⊆ Je by observing that by induction one has

J [q]

e ⊇ f · Je−1 ⊇ f · Me−1 .

which implies by minimality of Me that Me ⊆ Je. �

This shows that the minimal γ -sheaf Mmin, which is equal to Me for e � 0 by
Proposition 2.21, is just the test ideal τ

(
f (1+q+q2

+···+qe−1)/qe)
for e � 0. As a

consequence we have:

Proposition 3.5. Let M be the γ -sheaf given by

R
f ·

−−→ R ∼= σ ∗ R.

Then Mmin = τ
(

f (1+q+q2
+···+qe−1)/qe)

for q � 0. In particular, Mmin ⊇ τ( f
1

q−1 )

and the F-pure-threshold of f ≥
1

q−1 if and only if M is minimal.

Proof. For e � 0 the increasing sequence of rational numbers (1 + q + q2
+ · · ·+

qe−1)/qe approaches 1
q−1 . Hence

Me = τ
(

f (1+q+q2
+···+qe−1)/qe)

⊇ τ( f
1

q−1 )

for all e. If M is minimal, then all Me are equal and hence the multiplier ideals
τ( f α) must be equal to R for all α ∈ [0, 1

q−1). In particular, the F-pure-threshold
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of f ≥
1

q−1 . Conversely, if the F-pure threshold is less than 1
q−1 , then for some e

we must have that

τ
(

f (1+q+q2
+···+qe−1)/qe)

6= τ
(

f (1+q+q2
+···+qe)/qe+1)

so Me 6= Me+1 which implies that M 6= M1. So M is not minimal. �

Remark 3.6. After replacing f by f r , this also shows that r
q−1 is not an accumu-

lation point of F-thresholds of f for any f in an F-finite regular ring. In [Blickle
et al. 2008] this was shown for R essentially of finite type over a local ring since
our argument there depended on [Lyubeznik 1997, Theorem 4.2]. Even though
D-modules appear in the present article, they only do so by habit of the author; as
remarked before, they can easily be avoided.

Remark 3.7. Of course, for r = q − 1 this recovers (and slightly generalizes) the
main result in [Alvarez-Montaner et al. 2005].

Remark 3.8. I expect that this descriptions of minimal roots can be extended to a
more general setting using the modifications of generalized test ideals to modules
as introduced in the preprint [Takagi and Takahashi 2007].
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