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The intersection of a curve with a union of
translated codimension-two subgroups

in a power of an elliptic curve
Evelina Viada

Let E be an elliptic curve. An irreducible algebraic curve C embedded in E g is
called weak-transverse if it is not contained in any proper algebraic subgroup of
E g , and transverse if it is not contained in any translate of such a subgroup.

Suppose E and C are defined over the algebraic numbers. First we prove
that the algebraic points of a transverse curve C that are close to the union of all
algebraic subgroups of E g of codimension 2 translated by points in a subgroup
0 of E g of finite rank are a set of bounded height. The notion of closeness is
defined using a height function. If 0 is trivial, it is sufficient to suppose that C is
weak-transverse.

The core of the article is the introduction of a method to determine the finite-
ness of these sets. From a conjectural lower bound for the normalized height of a
transverse curve C , we deduce that the sets above are finite. Such a lower bound
exists for g ≤ 3.

Concerning the codimension of the algebraic subgroups, our results are best
possible.

1. Introduction

Let A be a semiabelian variety over Q of dimension g. An irreducible algebraic
subvariety V of A defined over Q is weak-transverse if V is not contained in any
proper algebraic subgroup of A, and transverse if it is not contained in any translate
of such a subgroup.

Given an integer r with 1 ≤ r ≤ g and a subset F of A(Q), we define the set

Sr (V, F)= V (Q) ∩

⋃
codim B≥r

(B + F),

where B runs over all semiabelian subvarieties of A of codimension at least r and

B + F = {b + f : b ∈ B, f ∈ F}.

MSC2000: primary 11G05; secondary 11D45, 11G50, 14K12.
Keywords: heights, diophantine approximation, elliptic curves, counting algebraic points.
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For r > g, we define Sr (V, F) to be the empty set. We denote the set Sr (V, ATor)

simply by Sr (V ). Note that

Sr+1(V, F)⊂ Sr (V, F).

A natural question to ask would be: For which sets F and integers r is the set
Sr (V, F) not Zariski-dense in V ?

Sets of this kind, for r = g, appear in the literature in the context of the Mordell–
Lang, Manin–Mumford and Bogomolov conjectures. More recently Bombieri,
Masser and Zannier [Bombieri et al. 1999] proved that S2(C) is finite for a trans-
verse curve C in a torus. They investigated, for the first time, intersections with
the union of all algebraic subgroups of a given codimension. This opens a vast
number of conjectures for subvarieties of semiabelian varieties.

In this article we consider the elliptic case for curves. Let E be an elliptic curve
and C an irreducible algebraic curve in Eg, both defined over Q. Let ‖ · ‖ be a
seminorm on Eg(Q) induced by a height function. For ε ≥ 0, we set

Oε = {ξ ∈ Eg(Q) : ‖ξ‖ ≤ ε}.

Let 0 ⊆ Eg(Q) be a subgroup of finite rank. Define 0ε = 0+ Oε.

Conjecture 1.1. Let C ⊂ Eg.

(i) If C is weak-transverse, S2(C) is finite.

(ii) If C is transverse, S2(C, 0) is finite.

(iii) If C is weak-transverse, there exists ε > 0 such that S2(C,Oε) is finite.

(iv) If C is transverse, there exists ε > 0 such that S2(C, 0ε) is finite.

The transversality hypothesis is crucially stronger than weak transversality. One
should note carefully which hypothesis is assumed in each of the four statements.

Clearly (iv) implies (ii) by setting ε = 0, and similarly (iii) implies (i).
The union of all algebraic subgroups of codimension g is exactly the torsion of

Eg. Then, C ∩ 0ε ⊂ Sg(C, 0ε) ⊂ S2(C, 0ε). So, Conjecture 1.1(iii) implies the
Bogomolov Theorem [Ullmo 1998; Zhang 1998], and (iv) implies Mordell–Lang
plus Bogomolov [Poonen 1999].

Partial results related to (i) and (ii) have been proved. In [Viada 2003] we solved
a weak form of (i), namely we assumed the stronger hypothesis that C is transverse.
If E has CM (complex multiplication) then S2(C) is finite. If E has no CM then
S(g/2)+2(C) is finite. In [Rémond and Viada 2003] a weak version of (ii) was pre-
sented. Again if E has CM the result is optimal. If E has no CM the codimension
of the algebraic subgroups depends on 0. In addition, we show that (i) and (ii) are
equivalent. There are no trivial implications between (iii) and (iv), because of the
different hypotheses on C .
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These known proofs rely on Northcott’s theorem: a set is finite if and only if
it has bounded height and degree. To prove that the degree is bounded one uses
Siegel’s Lemma and an essentially optimal generalized Lehmer’s Conjecture. Up
to a logarithmic factor, the generalized Lehmer conjecture is presently known for
a point in a torus [Amoroso and David 1999] and in a CM abelian variety [David
and Hindry 2000]. This method has some disadvantages: it is only known to
work for transverse curves and for ε= 0, and a quasioptimal generalized Lehmer’s
Conjecture is not likely to be proved in a near future for a general abelian variety.

In this article we introduce a different method. First, we bound the height also
for weak-transverse curves.

Theorem 1.2. There exists ε > 0 such that:

(i) If C is weak-transverse, S2(C,Oε) has bounded height.

(ii) If C is transverse, S2(C, 0ε) has bounded height.

The proof of both statements uses a Vojta inequality, as stated in Proposition 2.1
of [Rémond and Viada 2003]. The second assertion is proved in Theorem 1.5 of
the same paper. To prove the first assertion (see Section 7), we embed S2(C,Oε)

into two sets associated to a transverse curve. We then manage to apply a Vojta
inequality on each of these two sets.

As a second result, we prove:

Theorem 1.3. For r ≥ 2, the following statements are equivalent:

(i) If C is weak-transverse, there exists ε > 0 such that Sr (C,Oε) is finite.

(ii) If C is transverse, there exists ε > 0 such that Sr (C, 0ε) is finite.

That (i) implies (ii) is elementary, but the converse implication is not as easy
as the equivalence of (i) and (ii) in Conjecture 1.1. In particular we make use of
Theorem 1.2 (see Section 7).

In the third instance, we show how to avoid the use of the Siegel Lemma and
the generalized Lehmer Conjecture. Instead, we use Dirichlet’s Theorem and a
conjectural effective version of the Bogomolov Theorem. Bogomolov’s Theorem
states that the set of points of small height on a curve of genus at least 2 is finite. We
defineµ(C) as the supremum of the reals ε(C) such that Sg(C,Oε(C))=C∩Oε(C) is
finite. The essential minimum of C is µ(C)2. (Often in the literature the notation
Oε corresponds to what we write as Oε2 ; thus in the references given below the
bounds are given for the essential minimum and not for its square root µ(C) as we
do here.)

Nonoptimal effective lower bounds for µ(C) are given by S. David and P.
Philippon [2002, Theorem 1.4; 2007, Theorem 1.6]. The lower bound we need
is the elliptic analogue of [Amoroso and David 2003, Theorem 1.4], which gives
a quasioptimal lower bound for the essential minimum of a variety.
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The following conjecture is a weak form of [David and Philippon 2007, Con-
jecture 1.5(ii)] where the line bundle is fixed.

Conjecture 1.4. Let A = E1 ×· · ·× Eg be a product of elliptic curves defined over
a number field k. Let L be the tensor product of the pullbacks of symmetric line
bundles on Ei via the natural projections. Let C ⊂ A be an irreducible transverse
curve defined over Q. Let η be any positive real. Then there exists a constant
c(g, A, η)= c(g, degL A, hL(A), [k : Q], η) such that, for

ε(C, η)= c(g, A, η)(degL C)−1/(2(g−1))−η,

the set
C(Q)∩ Oε(C,η)

is finite.

In Section 11, we prove:

Theorem 1.5. Conjecture 1.4 implies Conjecture 1.1.

Conjecture 1.4 can be stated for subvarieties of A. Galateau [2007] proved that
such a conjecture holds for varieties of codimension 1 or 2 in a product of elliptic
curves. Then, for g ≤ 3, Conjecture 1.1 holds unconditionally.

Theorems 1.2 and 1.5 are optimal with respect to the codimension of the alge-
braic subgroups; see Remark 9.2.

We have already pointed out that Conjecture 1.1 implies the Bogomolov Con-
jecture and the Mordell–Lang plus Bogomolov Theorem. Let us emphasize that
our Theorem 1.5 does not give a new proof of the Bogomolov Conjecture, as we
assume such an effective result. On the other hand, it gives a new proof of the
Mordell–Lang plus Bogomolov Theorem, under the assumption of Conjecture 1.4.

The proof of Theorem 1.5 is based on the observation that a union of sets is
finite if and only if

(1) the union can be taken over finitely many sets, and

(2) all sets in the union are finite.

Showing (1) is a typical problem of Diophantine approximation. The proof
relies on Dirichlet’s Theorem on the rational approximation of reals. The fact that
we consider small neighborhoods enables us to move the algebraic subgroups “a
bit”. So we can consider only subgroups of bounded degree, of which there are
finitely many; see Proposition A, Section 12.

Step (2) takes place in the context of height theory. Its proof relies on Conjecture
1.4. The bound ε(C, η) depends on the invariants of the ambient variety and on the
degree of C . A weaker dependence on the degree of C would not be enough for
our application. Also the independence of the bound from the field of definition
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of C proves useful. Playing on Conjecture 1.4, we produce a sharp lower bound
for the essential minimum of the image of a curve under certain morphisms (see
Proposition B and Section 13).

The effectiveness aspect of our method is noteworthy; the use of a Vojta in-
equality makes Theorem 1.2, and consequently Theorem 1.5, ineffective. Though,
the rest of the method is effective. Indeed, in Section 14, we prove a weaker, but
effective analogue of Theorem 1.5.

Theorem 1.6. Assume Conjecture 1.4. If C is transverse, there exists an effective
ε > 0 such that the set S2(C,Oε) is finite.

A bound for the number of points of small height on the curve would then imply
a bound on the cardinality of S2(C,Oε) for C transverse and ε small (Theorem 14.3).

The toric version of Theorem 1.6 was independently studied by P. Habegger in
his Ph.D. thesis [2007]. He follows the idea of using a Bogomolov-type bound,
proved in the toric case in [Amoroso and David 2003, Theorem 1.4]. He proves
the finiteness of S2(C,Oε), for ε > 0 and C a transverse curve in a torus.

2. Preliminaries

Morphisms and their height. Let (R, | · |) be a hermitian ring, that means R is a
domain and | · | an absolute value on R.

We denote by Mr,g(R) the module of r × g matrices with entries in R.
For F = ( fi j ) ∈ Mr,g(R), we define the height of F as the maximum of the

absolute value of its entries

H(F)= max
i j

| fi j |.

Let E be an elliptic curve defined over a number field. The ring of endomor-
phism End E is isomorphic either to Z (if E does not have CM) or to an order in
an imaginary quadratic field (if E has CM). We consider on End E the standard
absolute value of C. This absolute value does not depend on the embedding of
End E in C. An intrinsic definition of absolute value on End E can be given using
the Rosati involution.

We identify a morphism φ : Eg
→ Er with a matrix in Mr,g(End E). The set of

morphisms of height bounded by a constant is finite.
In the following, we aim to be as transparent as possible, polishing statements

from technicality. Therefore, we principally present proofs for E without CM
Then End E is identified with Z and a morphism φ with an integral matrix. In the
final section, we explain how to deal with the technical complication of a ring of
endomorphisms of rank 2 and with a product of elliptic curves instead of a power.
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Small points. On E , we fix a symmetric very ample line bundle L. On Eg, we
consider the bundle L which is the tensor product of the pullbacks of L via the
natural projections on the factors. Degrees are computed with respect to the polar-
ization L .

Usually Eg(Q) is endowed with the L-canonical Néron–Tate height h′. Though,
to simplify constants, we prefer to define on Eg the height of the maximum

h(x1, . . . , xg)= max
i
(h(xi )).

where h(·) on E(Q) is the L-canonical Néron–Tate height. The height h is the
square of a norm ‖ · ‖ on Eg(Q)⊗ R. For a point x ∈ Eg(Q), we write ‖x‖ for
‖x ⊗ 1‖.

Note that h(x)≤ h′(x)≤ gh(x). Hence, the two norms induced by h and h′ are
equivalent.

For a ∈ End E , we denote by [a] the multiplication by a. For y ∈ Eg(Q) we
have ∥∥[a]y

∥∥= |a| · ‖y‖.

The height of a nonempty set S ⊂ Eg(Q) is the supremum of the heights of its
elements. The norm of S is the nonnegative square root of its height.

For ε ≥ 0, we denote

Oε = Oε,Eg = {ξ ∈ Eg(Q) : ‖ξ‖ ≤ ε}.

Subgroups. Let M be a R-module. The R-rank of M is the supremum of the
cardinality of a set of R-linearly independent elements of M . If M has finite rank
s, a maximal free set of M is a set of s linearly independent elements of M . If M
is a free R-module of rank s, we call a set of s generators of M , integral generators
of M .

Note that a free Z-module of finite rank is a lattice; in the literature, what we
call integral generators can be called basis, and what we define as maximal free set
is a basis of the vector space given by tensor product with the quotient field of R.

We say that (M, ‖ · ‖) is a hermitian R-module if M is an R-module and ‖ · ‖

is a norm on the tensor product of M with the quotient field of R. For an element
p ∈ M we write ‖p‖ for ‖p ⊗ 1‖.

Let E be an elliptic curve. In the following, we will simply say module for an
End E-module.

Note that any subgroup of Eg(Q) of finite rank is contained in a submodule of
finite rank. Conversely, a submodule of Eg of finite rank is a subgroup of finite
rank.

Let 0 be a subgroup of finite rank of Eg(Q). We define

0ε = 0+ Oε.
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The saturated module 00 of the coordinates group of 0 (in short of 0) is a sub-
module of E(Q) defined as

00 = {φ(y) ∈ E for φ : Eg
→ E and N y ∈ 0 with N ∈ Z∗

}. (2-1)

Note that 0g
0 = 00 × · · · × 00 is a submodule of Eg invariant via the image or

preimage of isogenies. Furthermore, it contains 0 and it is a module of finite rank.
Thus to prove finiteness statements for 0 it is enough to prove them for 0g

0 .
We denote by s the rank of 00. Let γ1, . . . , γs be a maximal free set of 00. We

denote the associated point of E s by

γ = (γ1, . . . , γs).

For p = (p1, . . . , ps)∈ E s we define 0p as the saturated module of 〈p1, . . . , ps〉.

3. Some geometry of numbers

We present a property from the geometry of numbers and extend it to points of
Eg(Q). The idea is that, if in Rn we consider n linearly independent vectors and
move them within a “small” angle, they will still be linearly independent. The norm
of a linear combination of such vectors depends on the norm of these vectors, on
their angles, and on the norm of the coefficients of the combination. Such estimates
are frequent in the geometry of numbers.

Lemma 3.1 (compare [Schlickewei 1997, Theorem 1.1; Viada 2003, Lemma 3]).
Every hermitian free Z-module of rank n admits integral generators ρ1, . . . , ρn

such that

c0(n)
∑

i

|αi |
2
‖ρi‖

2
≤

∥∥∥∥∑
i

αiρi

∥∥∥∥2

for all integers αi , where c0(n) is a constant depending only on n.

Proof. A hermitian free Z-module (0, ‖·‖) of rank n is a lattice in the metric space
0R given by tensor product with R. The proof now follows that of [Viada 2003,
Lemma 3] (page 57, from line 19 onwards), with n instead of r and ρi instead
of gi . �

This lemma allows us to explicit the comparison constant for two norms on a
finite-dimensional vector space over the quotient field of R.

Proposition 3.2. Let (M, ‖ · ‖) be a hermitian R-module, where R is a finitely
generated free Z-module. Let p1, . . . , ps be R-linearly independent elements of
M. Then there exists an effective positive constant c1(p, τ ) such that

c1(p, τ )
∑

i

|bi |
2
R‖pi‖

2
≤

∥∥∥∥∑
i

bi pi

∥∥∥∥2
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for all b1, . . . , bs ∈ R, where p = (p1, . . . , ps) and τ = (1, τ2, . . . , τt) are integral
generators of R.

Proof. The submodule of M defined by 0Z = 〈p1, . . . , ps, . . . , τt p1, . . . , τt ps〉Z

has rank st over Z. Clearly, for 1 ≤ i ≤ t and 1 ≤ j ≤ s the elements τi p j are
integral generators of 0Z. Consider the normed space (M ⊗Z R, ‖·‖), in which 0Z

is embedded, and endow 0Z with the induced metric.
Apply Lemma 3.1 to (0Z, ‖·‖) with n = st . Then, there exist integral generators

ρ1, . . . , ρst of 0Z satisfying∥∥∥∥∑
i

αiρi

∥∥∥∥2

≥ c0(st)
∑

i

|αi |
2
‖ρi‖

2
≥ c0(st)

∑
i

|αi |
2 min

k
‖ρk‖

2, (3-1)

for all α1, . . . , αst ∈ Z.
We decompose the elements b1, . . . , bs ∈ R as

bi =

t∑
j=1

αi jτ j

with αi j ∈ Z. We set

α = (α11, . . . , α1t , . . . , αs1, . . . , αst) ∈ Zst .

Next we write

pτ = (τ1 p1, . . . , τt p1, τ1 p2, . . . , τt p2, . . . , τ1 ps, . . . , τt ps)
T

∈ 0st
Z ,

ρ = (ρ1, . . . , ρst)
T

∈ 0st
Z ,

where the superscript T indicates the transpose, as usual. Let P ∈ SLst(Z) be the
base change matrix such that

pτ = Pρ.

Then ∑
i

bi pi =

∑
i j

αi jτ j pi = α · pτ = α · (Pρ)= (αP) · ρ.

Passing to the norms and using relation (3-1) with the coefficients (α1, . . . ,αst)=

αP , we deduce∥∥∥∥∑
i

bi pi

∥∥∥∥2

= ‖(αP) · ρ‖
2
≥ c0(st)|αP|

2
2 min

k
‖ρk‖

2,



The intersection of a curve with a union of translated subgroups 257

where | · |2 is the standard Euclidean norm. On the other hand, the triangle inequal-
ity gives

|bi |
2
R ≤ max

k
|τk |

2
R

( t∑
j=1

|αi j |

)2

≤ t max
k

|τk |
2
R

t∑
j=1

|αi j |
2.

We deduce

‖
∑

i bi pi‖
2∑

i |bi |
2
R‖pi‖

2
≥

c0(st)
t max j |τ j |

2
R

mini ‖ρi‖
2

maxi ‖pi‖
2

|αP|
2
2

|α|
2
2
.

We shall still estimate |αP|
2
2/|α|

2
2 independently of α. For a linear operator A and

a row vector β, there holds the classical norm relation |βA|2 ≤ H(A)|β|2. For
A = P−1 and β = αP , we deduce

|αP|
2
2

|α|
2
2

≥
1

H(P−1)2
.

Then
‖
∑

i bi pi‖
2∑

i |bi |
2
R‖pi‖

2
≥

c0(st)
t max j |τ j |

2
R

mini ‖ρi‖
2

maxi ‖pi‖
2

1
H(P−1)2

or equivalently ∥∥∥∑ bi pi

∥∥∥2
≥ c1(p, τ )

∑
i

|bi |
2
R‖pi‖

2,

where

c1(p, τ )=
c0(st)

t max j |τ j |
2
R

mini ‖ρi‖
2

maxi ‖pi‖
2

1
H(P−1)2

. �

The following unsurprising proposition has some surprising implications; it al-
lows us to prove Theorems 1.2 and 1.3.

Proposition 3.3. Let p1, . . . , ps be linearly independent points of E(Q) and p =

(p1, . . . , ps). Let τ be a set of integral generators of End E. Then, there exist
positive reals c2(p, τ ) and ε0(p, τ ) such that

c2(p, τ )
∑

i

|bi |
2
‖pi‖

2
≤

∥∥∥∥∑
i

bi (pi − ξi )− bζ
∥∥∥∥2

for all b1, . . . , bs, b ∈ End E with |b| ≤ maxi |bi | and for all ξ1, . . . , ξs, ζ ∈ E(Q)
with ‖ξi‖, ‖ζ‖ ≤ ε0(p, τ ).

In particular p1 − ξ1, . . . , ps − ξs are linearly independent points of E.

Proof. Recall that the norm on End E is compatible with the height norm on E(Q),
that is, ‖bi pi‖ = |bi |End E‖pi‖. Thus (End E, | · |) is a hermitian free Z-module of
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rank 1 if E has no CM or 2 is E has CM. Furthermore, (E, ‖ · ‖) is a hermitian
End E-module.

Apply Proposition 3.2 with R = End E , M = E and τ = (1) if End E ∼= Z or
τ = (1, τ2) if End E ∼= Z + τ2Z. For b1, . . . , bs ∈ End E , we obtain∥∥∥∑ bi pi

∥∥∥2
≥ c1(p, τ )

∑
i

|bi |
2
‖pi‖

2. (3-2)

Let ‖ξi‖, ‖ζ‖ ≤ ε. Since |b| ≤ max |bi | the triangle inequality implies∥∥∥∥∑
i

bi (pi − ξi )− bζ
∥∥∥∥ ≥

∥∥∥∥∑
i

bi pi

∥∥∥∥− ε
∑

i

|bi | − ε|b|

≥

∥∥∥∥∑
i

bi pi

∥∥∥∥− 2ε
∑

i

|bi |.

Squaring and keeping in mind that
(∑s

i=1 |bi |
)2

≤ s
∑s

i=1 |bi |
2, we deduce∥∥∥∥∑

i

bi (pi − ξi )− bζ
∥∥∥∥2

≥

∥∥∥∥∑
i

bi pi

∥∥∥∥2

− 4ε
∥∥∥∥∑

i

bi pi

∥∥∥∥∑
i

|bi | + 4ε2
(∑

i

|bi |

)2

≥

∥∥∥∥∑
i

bi pi

∥∥∥∥2

− 4sε
(∑

i

|bi |
2
)

max
i

‖pi‖.

Choose

ε ≤ ε0(p, τ ) =
c1(p, τ )

8s
mini ‖pi‖

2

maxi ‖pi‖
. (3-3)

Using relation (3-2), we deduce∥∥∥∥∑
i

bi (pi −ξi )−bζ
∥∥∥∥2

≥ c1(p,τ )
∑

i

|bi |
2
‖pi‖

2
−

1
2 c1(p,τ )

(∑
i

|bi |
2
)

min
i

‖pi‖
2

≥
1
2 c1(p,τ )

∑
i

|bi |
2
‖pi‖

2.

Set, for example,
c2(p, τ )=

1
2 c1(p, τ ), (3-4)

where c1(p, τ ) is defined at the end of the previous proof (page 257).
The preceding relation, with b = 0, implies in particular that only the trivial

linear combination of p1 − ξ1, . . . , ps − ξs is zero. �

We next state a lemma that will enable us to choose a nice maximal free set of00,
the saturated module of a submodule 0 of E(Q) of finite rank, as defined in relation
(2-1). There is nothing deep here, as we are working with finite-dimensional vector
spaces.
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Lemma 3.4 (Quasiorthonormality). Let 00 be the saturated module of 0. Let s be
the rank of 00. Then for any real K > 0, there exists a maximal free set γ1, . . . , γs

of 00, with ‖γi‖ ≥ K , such that for all b1, . . . , bs ∈ End E∥∥∥∥∑
i

biγi

∥∥∥∥2

≥
1
9

∑
i

|bi |
2
‖γi‖

2.

Proof. Recall that End E is an order in an imaginary quadratic field k. Furthermore,
the height norm ‖·‖ makes 00 a hermitian End E-module. Let 0free be a submodule
of 00 isomorphic to its free part. Then 0free is a k vector space of dimension s. Its
tensor product with C over k is a normed C vector space of dimension s, and 0free is
isomorphic to 0free

⊗1. Using for instance the Gram–Schmidt orthonormalization
algorithm in 0free

⊗k C, we can choose an orthonormal basis

vi = gi ⊗ ρi .

So ∥∥∥∥∑
i

bivi

∥∥∥∥2

=

∑
i

|bi |
2.

Decompose ρi = ri1 + τri2 for 1, τ integral generators of End E and ri j ∈ R.
Choose δ= (2(1 + |τ |)maxi ‖gi‖)

−1 and rationals qi j such that qi j = ri j +di j with
|di j | ≤ δ (use the density of the rationals).

Define

γ ′

i = gi ⊗ (qi1 + τqi2)= (qi1 + τqi2)g1 ⊗ 1 ∈ 0free
⊗ 1,

and
δi = gi ⊗ (di1 + τdi2).

Then vi = γ ′

i + δi , with ‖δi‖ ≤ ‖gi‖(1 + |τ |)δ ≤
1
2 . The triangle inequality gives

2
∥∥∥∥∑

i

biγ
′

i

∥∥∥∥2

≥

∥∥∥∥∑
i

bivi

∥∥∥∥2

− 2
∥∥∥∥∑

i

biδi

∥∥∥∥2

.

The orthonormality of vi and ‖δi‖ ≤
1
2 implies that

2
∥∥∥∥∑

i

biγ
′

i

∥∥∥∥2

≥

∑
i

|bi |
2
− 2

∑
i

|bi |
2 1

4
=

1
2

∑
i

|bi |
2.

Finally ‖γ ′

i ‖ ≤ ‖vi‖ +‖δi‖ ≤
3
2 , so∥∥∥∥∑

i

biγ
′

i

∥∥∥∥2

≥
1
9

∑
i

|bi |
2
‖γ ′

i ‖
2.
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It is evident that for any integer n0 the same relation holds:∥∥∥∥∑
i

bi n0γ
′

i

∥∥∥∥2

≥
1
9

∑
i

|bi |
2
‖n0γ

′

i ‖
2.

Let n0 be an integer such that n0 ≥ 2K . Note that

‖γ ′

i ‖ ≥ ‖vi‖ −‖δi‖ ≥
1
2 ,

so
‖n0γ

′

i ‖ ≥ K .

Thus the maximal free set γi = n0γ
′

i satisfies the desired conditions. �

We cannot directly choose an orthonormal basis in 0free, because the norm has
values in R and not in Q. What one can prove is that for any small positive real δ,
there exists a maximal free set γ1, . . . , γs such that∥∥∥∥∑

i

biγi

∥∥∥∥2

≥
(1 − δ)2

(1 + δ)2

∑
i

|bi |
2
‖γi‖

2.

4. Gauss-reduced morphisms

The aim of this section is to show that we can consider our union over Gauss-
reduced algebraic subgroups, instead of over all algebraic subgroups.

Let B be an algebraic subgroup of Eg of codimension r . Then B ⊂ kerφB for a
surjective morphism φB : Eg

→ Er . Conversely, we denote by Bφ the kernel of a
surjection φ : Eg

→ Er . Then Bφ is an algebraic subgroup of Eg of codimension r .
The matrices in Mr×g(End E) of the form

φ = (aIr |L)=

 a . . . 0 a1,r+1 . . . a1,g
...

...
...

...

0 . . . a ar,r+1 . . . ar,g

 ,
with H(φ) = |a| and entries having no common factors (up to units), will play a
key role in this work. For r = g, such a morphism becomes the identity, and L
shall be forgotten. These matrices have three main advantages:

• The restriction of φ to the set Er
× {0}

g−r is just the multiplication by a.

• The image of Oε⊂ Eg under φ is contained in the image of Ogε∩ (Er
×{0}

g−r ).
Similarly, the image of 0g

0 under φ is contained in the image of 0r
0 × {0}

g−r .

• The matrix φ has small height compared to other matrices with same zero
component of the kernel.
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Definition 4.1 (Gauss-reduced morphisms). We say that a surjective morphism
φ : Eg

→ Er is Gauss-reduced of rank r if the following conditions are satisfied:

(i) There exists a ∈ (End E)∗ such that aIr is a submatrix of φ, with Ir the r -
identity matrix.

(ii) H(φ)= |a|.

(iii) If there exists f ∈ End E and φ′
: Eg

→ Er such that φ = f φ′ then f is an
isomorphism.

We say that an algebraic subgroup is Gauss-reduced if it is the kernel of a Gauss-
reduced morphism.

Remark 4.2. If End E ∼= Z, condition (iii) simply says that the greatest common
divisor of the entries of φ is 1 and f = ±1. Also when End E ∼= Z, we make
condition (ii) more restrictive, requiring that H(φ)= a, instead of H(φ)= |a|; this
assumption simplifies the notation. Obviously Bφ = B−φ , so all lemmas below
hold with this “up to units” definition of Gauss-reduced.

A morphism φ′ given by a reordering of the rows of a morphism φ, has the same
kernel as φ. Saying that aIr is a submatrix of φ fixes one permutation of the rows
of φ.

A reordering of the columns, on the other hand, corresponds to a permutation
of the coordinates. Statements will be proved for Gauss-reduced morphisms of the
form φ= (aI |L). For any other reordering of the columns the proofs are analogous.
Since there are finitely many permutations of g columns, the finiteness statements
will follow.

The following lemma is a simple useful trick to keep in mind.

Lemma 4.3. Let φ : Eg
→ Er be Gauss-reduced of rank r.

(i) For ξ = (ξ1, . . . , ξg) ∈ Oε, there exists a point ξ ′
= (ξ ′′, {0}

g−r ) ∈ Ogε such
that

φ(ξ)= φ(ξ ′)= [a]ξ ′′.

(ii) For y = (y1, . . . , yg)∈0
g
0 , there exists a point y′

= (y′′, {0}
g−r )∈0r

0 ×{0}
g−r

such that
φ(y)= φ(y′)= [a]y′′.

Proof. Up to a reordering of the columns, the morphism φ has the form

φ =

 a . . . 0 a1,r+1 . . . a1,g
...

...
...

...

0 . . . a ar,r+1 . . . ar,g

 ,
with H(φ)= |a|.
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(i) Consider a point ξ ′′
∈ Er such that [a]ξ ′′

= φ(ξ). Since

‖ξ ′′
‖ =

‖φ(ξ)‖

|a|
= max

i

∥∥∑
j ai jξ j

∥∥
|a|

and |a| = maxi j |ai j |, we obtain

‖ξ ′′
‖ ≤ gε.

Define ξ ′
= (ξ ′′, {0}

g−r ). Clearly

φ(ξ ′)= [a]ξ ′′
= φ(ξ).

(ii) Note that φ(y) ∈ 0r
0. Since 00 is a division group, the point y′′ such that

[a]y′′
= φ(y),

belongs to 0r
0. Define y′

= (y′′, {0}
g−r ). Then φ(y′)= [a]y′′

= φ(y). �

In the next result we show that the zero components of Bφ , for φ ranging over
all Gauss-reduced morphisms of rank r , are all possible abelian subvarieties of Eg

of codimension r . This is proved using the classical Gauss algorithm, where the
pivots have maximal absolute values.

Lemma 4.4. Let ψ : Eg
→ Er be a morphism of rank r. Then:

(i) For every N ∈ End E∗,

BNψ ⊂ Bψ + (Er
Tor × {0}

g−r ).

(ii) There exists a Gauss-reduced morphism φ : Eg
→ Er of rank r such that

Bψ ⊂ Bφ + (Er
Tor × {0}

g−r ).

Proof. (i) Let b ∈ BNψ . Then Nψ(b)= 0, so ψ(b)= t with t a N -torsion point in
Er . Let ψ1 be an invertible r -submatrix of ψ . Up to a reordering of the columns,
we can suppose ψ = (ψ1|ψ2). Let t ′ be a torsion point in Er such that ψ1(t ′)= t .
Then ψ(b − (t ′, 0))= 0. Thus b ∈ Bψ + (Er

Tor × {0}
g−r ).

(ii) The Gauss algorithm gives an invertible integral r -matrix 1 such that, up to
the order of the columns, 1ψ is of the form

1ψ =

 a . . . 0 a1,r+1 . . . a1,g
...

...
...

...

0 . . . a ar,r+1 . . . ar,g

 ,
with H(1ψ)= |a| (potentially there are common factors of the entries).

Let b ∈ Bψ . Then ψ(b)= 0, so 1ψ(x)= 0. It follows that

Bψ ⊂ B1ψ .
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Take N ∈ End E∗ such that N |1ψ and such that if f |(1ψ/N ) then f is a unit (if
End E ∼= Z, then N is simply the greatest common divisor of the entries of 1ψ).
Define

φ =1ψ/N .

Clearly φ is Gauss-reduced and Bψ ⊂ B1ψ = BNφ . By part (i) of this lemma
applied to Nφ, we conclude

Bψ ⊂ Bφ + (Er
Tor × {0}

g−r ). �

Note that, in the previous lemma, a reordering of the columns of ψ or φ induces
the same reordering of the coordinates of Er

Tor × {0}
g−r .

Taking intersections with the algebraic points of our curve, part (ii) of the pre-
vious lemma translates immediately as

Lemma 4.5. Let C ⊂ Eg be an algebraic curve (transverse or not). For any real
ε ≥ 0

Sr (C, (0
g
0 )ε)=

⋃
φ Gauss-reduced

rk(φ)=r

C(Q)∩ (Bφ + (0
g
0 )ε).

Proof. By definition

Sr (C, (0
g
0 )ε)⊇

⋃
φ Gauss-reduced

rk(φ)=r

C(Q)∩ (Bψ + (0
g
0 )ε).

On the other hand, by Lemma 4.4(ii), we see that

C(Q)∩ (Bψ + (0
g
0 )ε)⊂ C(Q)∩ (Bφ + (Er

Tor × {0}
g−r )+ (0

g
0 )ε),

with φ Gauss-reduced of rank r . Moreover (Er
Tor × {0}

g−r )⊂ Oε ⊂ (0
g
0 )ε. �

5. Relation between transverse and weak-transverse curves

We discuss here how we can associate to a couple (C, 0), where C is a trans-
verse curve and 0 a subgroup of finite rank, a weak-transverse curve C ′ and vice
versa. There are properties which are easier for C and others for C ′. Using this
association, we will try to gain advantages from both situations.

From transverse to weak-transverse. Let C be transverse in Eg. If 0 has rank 0,
we set C ′

= C . If rk 0 ≥ 1, consider the saturated module 00 of rank s associated
to 0, as defined in relation (2-1). Let γ1, . . . , γs be a maximal free set of 00. We
denote the associated point of E s by

γ = (γ1, . . . , γs).
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We define
C ′

= C × γ.

Since C is transverse and the γi are End E-linearly independent, the curve C ′ is
weak-transverse. For suppose to the contrary that C ′ were contained in an algebraic
subgroup Bφ of codimension 1, with φ= (a1, . . . , ag+s). Take a point y1 ∈ E such
that a1 y1 =

∑g+s
i=g+1 aiγi−g and define y = (y1, 0, . . . , 0) ∈ Eg. Then C ⊂ Bφ1 + y

with φ1 = (a1, . . . , ag), contradicting that C is transverse.

From weak-transverse to transverse. Let C ′ be weak-transverse in En . If C ′ is
transverse, we set C = C ′ and 0 = 0. Suppose that C ′ is not transverse. Let
H0 be the abelian subvariety of smallest dimension g such that C ′

⊂ H0 + p for
p ∈ H⊥

0 (Q) and let H⊥

0 be the orthogonal complement of H0 with respect to the
canonical polarization. Then En is isogenous to H0 × H⊥

0 . Furthermore H0 is
isogenous to Eg and H⊥

0 is isogenous to E s , where s = n − g. Let j0, j1 and j2 be
such isogenies. We fix the isogeny

j = ( j1 × j2) ◦ j0 : En
→ H0 × H⊥

0 → Eg
× E s,

which sends H0 to Eg
× 0 and H⊥

0 to 0 × E s . Then

j (C ′)⊂ (Eg
× 0)+ j (p),

with j (p)= (0, . . . , 0, p1, . . . , ps).
We consider the natural projection on the first g coordinates

π : Eg
× E s

→ Eg, j (C ′) 7→ π( j (C ′)).

We define
C = π( j (C ′)) and 0 = 〈p1, . . . , ps〉

g.

Since H0 has minimal dimension, the curve C is transverse in Eg.
Note that

j (C ′)= C × (p1, . . . , ps).

In addition j (C ′) is weak-transverse, because C ′ is. Therefore, 〈p1, . . . , ps〉 has
rank s; indeed if

∑s
i=1 ai pi = 0, then j (C ′)⊂ Bφ for φ = ({0}

g, a1, . . . , as).

Weak-transverse up to an isogeny. Statements on boundedness of heights or finite-
ness of sets are invariant under an isogeny of the ambient variety. Namely, given
an isogeny j of Eg, Theorems 1.2 and 1.5 hold for a curve if and only if they
hold for its image via j . Thus, the previous discussion shows that without loss of
generality, we can assume that a weak-transverse curve C ′ in En is of the form

C ′
= C × p,

where
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(i) C is transverse in Eg,

(ii) p = (p1, . . . , ps) ∈ E s is such that the module 〈p1, . . . , ps〉 has rank s, and

(iii) n = g + s.

This simplifies the setting for weak-transverse curves.

Implying Mordell–Lang plus Bogomolov for curves. Note that

Sg(C,Oε)= C ∩ Oε and Sg(C(0
g
0 )ε)= C ∩ (0

g
0 )ε.

Moreover S2(C, · )⊃ Sg(C, · ). This immediately shows that Conjecture 1.1 implies
the Bogomolov Theorem for weak-transverse curves and the Mordell–Lang and
Bogomolov Theorems for transverse curves. We want to show that Conjecture 1.1
implies these theorems for all curves of genus ≥ 2.

In Eg a curve of genus 2 is a translate of an elliptic curve isogenous to E . If
C is not transverse, then C ( H0 + p with H0 an algebraic subgroup of minimal
dimension satisfying such inclusion. Let π : Eg

→ Eg/H⊥

0 be the natural projection
and let ψ : Eg/H⊥

0 → Ek be an isogeny. Then ‖ψπ(x)‖ � ‖x‖. In Ek , consider
the transverse curve C ′

=ψπ(C − p) and 0′
=ψπ〈0,0p〉. Note that ψπ(TorEg )⊂

TorEk . Then
Sg(C, (0

g
0 )ε)⊂ π−1

|C Sk(C ′, (0′g
0)ε′).

The map π−1
|C has finite fiber. Applying Conjecture 1.1 to C ′

⊂ Ek we deduce that
Sg(C, (0

g
0 )ε) is finite.

Note that such a proof works only for Sg(C, · ), because the projectionψπ(B)⊂
Ek of an algebraic subgroup B of Eg of codimension r may not have codimension
r in Ek . It could even be all of Ek .

6. Quasispecial morphisms

Just as Gauss-reduced morphisms play a key role for transverse curves, quasi-
special morphisms play a key role for weak-transverse curves. In particular, for
small ε, quasispecial morphisms are enough to cover the whole of Sr (C × p,Oε);
this is Lemma 6.2 below.

To motivate quasispecialness, suppose that C × p is weak-transverse in Eg+s

with C transverse in Eg. A point of C × p is of the form (x, p). The last s-
coordinates are constant and just the x varies. This two parts must be treated
differently. Saying that a morphism φ̃ = (φ|φ′) is quasispecial ensures that the
rank of φ is maximal (note that φ acts on x). In particular, this allows us to apply
the Gauss algorithm on the first g columns of φ̃.

Definition 6.1 (Quasispecial morphism). A surjective morphism φ̃ : Eg+s
→ Er is

quasispecial if there exist N ∈ End E∗, morphisms φ : Eg
→ Er and φ′

: E s
→ Er

such that
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(i) φ̃ = (Nφ|φ′),

(ii) φ = (aIr |L) is Gauss-reduced of rank r , and

(iii) if there exists f ∈ End E and φ̃′
: Eg+s

→ Er such that φ̃ = f φ̃′, then f is an
isomorphism.

We do not require that φ̃ be Gauss-reduced; the fact is that H(φ′) might not
be controlled by NH(φ). This extra condition will define special morphisms (see
Definition 10.1).

Lemma 6.2. Let C× p be weak-transverse in Eg+s with C transverse in Eg. Then,
there exists ε > 0 such that

Sr (C × p,Oε)⊂

⋃
φ̃ quasispecial

rk φ̃=r

(C(Q)× p)∩ (Bφ̃ + Oε).

We can choose ε ≤ ε0(p, τ ), where ε0(p, τ ) is as in Proposition 3.3.

Proof. Take (x, p) ∈ Sr (C × p,Oε). Then (x, p) ∈ (C(Q)× p)∩ (Bψ̃ + Oε) for a
morphism ψ̃ = (ψ |ψ ′) : Eg+s

→ Er of rank r . In other words, there exists a point
(ξ, ξ ′) ∈ Oε such that

ψ̃((x, p)+ (ξ, ξ ′))= 0.

First, we show that ψ has rank r . Suppose, on the contrary, that the rank of ψ
were less than r . Then a linear combination of the rows of ψ is trivial, namely

(λ1, . . . , λr )ψ = 0.

Since ψ(x +ξ)+ψ ′(p+ξ ′)= 0, the same linear combination of the r coordinates
of ψ ′(p + ξ ′) is trivial, namely

(λ1, . . . , λr )ψ
′(p + ξ ′)= 0.

Apply Proposition 3.3 with (b1, . . . , bs) = (λ1, . . . , λr )ψ
′, (ξ1, . . . , ξs) = −ξ ′,

ζ = 0 and b = 0. This implies that, if ε ≤ ε0(p, τ ), then the points p1 + ξ ′

1, . . . ,

ps + ξ ′
s are linearly independent. It follows that

(λ1, . . . , λr )ψ
′
= 0.

Hence, the rank of ψ̃ would be less than r , contradicting the fact that the rank of
ψ̃ is r .

Since the rank of ψ is r , we can apply the Gauss algorithm using pivots in ψ of
maximal absolute values in ψ (clearly we cannot require that they have maximal
absolute values in ψ̃). Let1 be an invertible matrix, given by the Gauss algorithm,
such that 1ψ̃ = (φ1|φ2) with f Ir a submatrix of φ1.
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We next get rid of possible common factors. Take N1, n1 ∈ End E∗ such that
N1|φ1 and n1|1ψ̃ . Further suppose that, if f |(φ1/N1) or f |(1ψ̃/n1) then f is a
unit of End E (if End E ∼= Z, then N1 is the greatest common divisor of the entries
of φ1 and n1 the greatest common divisor of the entries of 1ψ̃ ). Then

1ψ̃ = n1(Nφ|φ′)

with N = N1/n1, φ = φ1/N1 and φ′
= φ2/n1. We define

φ̃ = (Nφ|φ′).

Clearly φ̃ is quasispecial. In addition

Bψ̃ ⊂ B1ψ̃ = Bn1φ̃
.

By Lemma 4.4(i), with ψ = φ̃ and N = n1, we deduce that

Bψ̃ ⊂ Bφ̃ + Er
Tor × {0}

g+s−r .

Since (x, p) ∈ Bψ̃ + Oε, we obtain (x, p) ∈ Bφ̃ + Oε with φ̃ quasispecial. �

7. Estimates for the height: the proof of Theorem 1.2

As mentioned, Theorem 1.2(ii) is part of Theorem 1.5 in [Rémond and Viada 2003].
In this section, we adapt the proof given there to part (i) of Theorem 1.2.

In view of Section 5, we can assume, without loss of generality, that a weak-
transverse curve C ′ in En has the form

C ′
= C × p,

where C and p satisfy conditions (i)–(iii) on page 265.

Definition 7.1. Let p be a point in E s and ε a nonnegative real. We define Gε
p as

the set of points θ ∈ E2 for which there exist a matrix A ∈ M2,s(End E), an element
a ∈ End E with 0< |a| ≤ H(A), points ξ ∈ E s and ζ ∈ E2 of norm at most ε such
that

[a]θ = A(p + ξ)+ [a]ζ.

We identify Gε
p with the subset Gε

p × {0}
g−2 of Eg.

Recall that 0p is the saturated module of the coordinates of p.
Now we embed S2(C × p,Oε) in two sets related to the transverse curve C . We

then use the Vojta inequality on these new sets.

Lemma 7.2. The natural projection on the first g coordinates,

Eg
× E s

→ Eg, (x, y) 7→ x,
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defines an injection

S2(C × p,Oε/2gs) ↪→ S2(C, (0g
p)ε) ∪

⋃
φ:Eg

→E2

Gauss-reduced

C(Q)∩ Bφ + Gε
p.

Proof. Let (x, p) ∈ S2(C × p,Oε/2gs). By Lemma 6.2, (x, p) ∈ Bφ̃ + Oε/2gs , with
φ̃ = (Nφ|φ′) : Eg+s

→ E2 quasispecial of rank 2. Hence

φ̃((x, p)+ (ξ, ξ ′))= 0,

for (ξ, ξ ′) ∈ Oε/2gs . We can write the equality as

Nφ(x)+ Nφ(ξ)+φ′(p + ξ ′)= 0.

By the definition of quasispecialness φ is Gauss-reduced, so

φ = (aI2|L).

By Lemma 4.3(i) applied to φ and ξ , we can assume that

ξ = (ξ1, ξ2, 0, . . . 0) ∈ Oε/2s .

Suppose first that NH(φ)≥ H(φ̃). Let ζ be a point in E2
× {0}

g−2 such that

N [a]ζ = (φ′(ξ ′), 0 . . . , 0).

Then

‖ζ‖ =
‖φ′(ξ ′)‖

NH(φ)
≤
ε

2
.

Let y be a point in E2
× {0}

g−2 such that

N [a]y = (φ′(p), 0, . . . , 0).

Since 0p is saturated, y ∈ 02
p × {0}

g−2. Then

Nφ(x + ξ + ζ + y)= 0

with y + ξ + ζ ∈ 0
g
p + Oε. So

x ∈ S2(C, (0g
p )ε).

Now suppose that NH(φ) < H(φ̃) or, equivalently, NH(φ) < H(φ′). Let θ ′ be
a point in E2 such that

N [a]θ ′
= φ′(p + ξ ′)+ N [a]

(
ξ1

ξ2

)
,
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and θ = (θ ′, {0}
g−r ). Then θ ∈ Gε

p. Moreover

Nφ(x + θ)= Nφ(x)+ Nφ(θ)

= Nφ(x)+ N [a]θ ′
= Nφ(x)+φ′(p + ξ ′)+ N [a]

(
ξ1

ξ2

)
= Nφ(x)+ Nφ(ξ)+φ′(p + ξ ′)

= φ̃((x, p)+ (ξ, ξ ′))= 0.

Thus x ∈ BNφ + Gε
p, and by Lemma 4.4(i),

x ∈ Bφ + (E2
Tor × {0}

g−2)+ Gε
p.

Note that Gε
p + (E2

Tor × {0}
g−2)⊂ Gε

p. Hence,

x ∈ C(Q)∩ Bφ + Gε
p. �

Lemma 7.3 (Counterpart to [Rémond and Viada 2003, Lemma 3.2]). For φ : Eg
→

E2 Gauss-reduced of rank 2, we have the set inclusion

(Bφ + Gε
p) ⊂

{
P + θ : P ∈ Bφ, θ ∈ Gε

p and max(‖θ‖, ‖P‖)≤ 2g‖P + θ‖
}
.

Proof. Take x ∈ (Bφ + Gε
p) with φ = (aIr |L) Gauss-reduced of rank 2. Then

x = P+θ with P ∈ Bφ and θ ∈Gε
p and φ(x−θ)=0. By definition Gε

p ⊂ E2
×{0}

g−2,
so φ(θ)= [a]θ . Then

‖θ‖ =
‖φ(θ)‖

H(φ)
=

‖φ(x)‖
H(φ)

≤ g‖x‖.

So
‖P‖ = ‖x − θ‖ ≤ (g + 1)‖x‖ = (g + 1)‖P + θ‖. �

Lemma 3.3(1) of [Rémond and Viada 2003] is a statement on the morphism;
therefore it holds with no need for any remarks.

Lemma 7.4 (Counterpart to [Rémond and Viada 2003, Lemma 3.3(2)]). There
exists an effective ε2 > 0 such that, for all ε ≤ ε2, any sequence of elements in Gε

p
admits a subsequence in which every two elements θ , θ ′ satisfy∥∥∥∥ θ

‖θ‖
−

θ ′

‖θ ′‖

∥∥∥∥≤
1

16gc1
,

where c1 depends on C and is as defined in [Rémond and Viada 2003, Proposition
2.1].

Proof. We decompose two elements θ and θ ′ in a given sequence of elements of
Gε

p as
[a]θ = A(p + ξ)+ [a]ζ, [a′

]θ ′
= A′(p + ξ ′)+ a′ζ ′,
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with A, A′
∈ M2,s(End E) and 0< |a| ≤ H(A), 0< |a′

| ≤ H(A′). Define y and y′

such that

[a]y = A(p) and [a′
]y′

= A′(p).

Since the sphere of radius 1 is compact in (〈p1, . . . , ps〉 × 〈p1, . . . , ps〉)⊗ R, we
can extract a subsequence such that, for any two elements y and y′,∥∥∥∥ y

‖y‖
−

y′

‖y′‖

∥∥∥∥≤
1

48gc1
.

Note that ∥∥∥∥ θ

‖θ‖
−

y
‖θ‖

∥∥∥∥=

∥∥∥∥ A(ξ)+ [a]ζ

A(p + ξ)+ [a]ζ

∥∥∥∥
and ∥∥∥∥ y

‖θ‖
−

y
‖y‖

∥∥∥∥=

∣∣∣∣‖A(p)‖ −‖A(p + ξ)+ [a]ζ‖

‖A(p + ξ)+ [a]ζ‖

∣∣∣∣≤ ∥∥∥∥ A(ξ)+ [a]ζ

A(p + ξ)+ [a]ζ

∥∥∥∥,
and the same relations for primed variables. We deduce that∥∥∥∥ θ

‖θ‖
−

θ ′

‖θ ′‖

∥∥∥∥≤

∥∥∥∥ y
‖y‖

−
y′

‖y′‖

∥∥∥∥+

∥∥∥∥ y
‖θ‖

−
y

‖y‖

∥∥∥∥+

∥∥∥∥ y′

‖θ ′‖
−

y′

‖y′‖

∥∥∥∥
+

∥∥∥∥ θ

‖θ‖
−

y
‖θ‖

∥∥∥∥+

∥∥∥∥ θ ′

‖θ ′‖
−

y′

‖θ ′‖

∥∥∥∥
≤

∥∥∥∥ y
‖y‖

−
y′

‖y′‖

∥∥∥∥+ 2
∥∥∥∥ A(ξ)+ [a]ζ

A(p+ξ)+ [a]ζ

∥∥∥∥+ 2
∥∥∥∥ A′(ξ ′)+ [a′

]ζ ′

A′(p+ξ ′)+ [a′]ζ ′

∥∥∥∥.
Choose

ε ≤ ε2 = min(ε0(p, τ ), ε′

0(p, τ )), (7-1)

where ε0(p, τ ) is defined in (3-3), c2(p, τ ) is defined in (3-4) and

ε′

0(p, τ )=
c2(p, τ )1/2min‖pi‖

96(s + 1)c1
.

Note that ‖A(p + ξ)+ [a]ζ‖ = ‖Ak(p + ξ)+ aζk‖ for k = 1 or 2 and A =
(A1

A2

)
.

Proposition 3.3 applied with b1, . . . , bs = Ak , ξ = −ξ , ζ = −ζk and b = a, implies

‖A(p + ξ)+ [a]ζ‖ ≥ H(A)c2(p, τ )1/2min‖pi‖

(same relation with ′).
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It follows that∥∥∥∥ θ

‖θ‖
−

θ ′

‖θ ′‖

∥∥∥∥
≤

1
48gc1

+ ε
2H(A)(s + 1)

H(A)c2(p, τ )1/2 min ‖pi‖
+ ε

2H(A′)(s + 1)
H(A′)c2(p, τ )1/2 min ‖pi‖

≤
1

48gc1
+

1
48gc1

+
1

48gc1
,

where in the last inequality we use ε ≤ ε′

0(p, τ ). �

We are ready to conclude.

Proof of Theorem 1.2(i). In view of Lemma 7.2, we shall prove that there exists
ε > 0 such that S2(C, (0

g
p )ε) and

⋃
φ:Eg

→E2

Gauss-reduced
C(Q) ∩ Bφ + Gε

p have bounded
height.

By Theorem 1.2(ii), there exists ε1 > 0 such that for ε ≤ ε1, the first set has
bounded height.

It remains to show that there exists ε2 > 0 such that, for ε ≤ ε2, the second set
has bounded height. The proof follows, step by step, the proof of [Rémond and
Viada 2003, Theorem 1.5]. In view of Lemma 7.3 and 7.4, all conditions for the
proof of that theorem are satisfied. The proof is then exactly equal to the one in
[Rémond and Viada 2003, p. 1927–1928]. �

Remark 7.5. In Theorem 1.5 of [Rémond and Viada 2003] we showed that for
ε1 = 1/(2gc1), the set S2(C, 0ε1) has bounded height. The constant c1 depends
on the invariants of the curve C . This constant is defined in Proposition 2.1 of the
same reference and it is effective. On the other hand, the height of S2(C, 0ε1) is
bounded by a constant which is not known to be effective, unless 0 has rank 0.

For C × p, we have shown that for

ε′

2 =
min(1, c2(p, τ ))min ‖pi‖

2

28g(s + 1)2 max ‖pi‖c1

the set S2(C × p,Oε′2) has bounded height; see relation (7-1) and Lemma 7.2. As
in the previous case, the height of S2(C × p,Oε′2) is bounded by a constant which,
in general, is not known to be effective.

8. Summary of notation

We stop to recapitulate and fix the notations for the rest of the article.
For simplicity, we assume that End E ∼= Z. In this case the saturated module

of a group coincides with its division group. According to Remark 4.2, we use
H(φ) = a in the definition of a Gauss-reduced morphism and N ∈ N∗ in the
definition of quasispecialness.
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• Let E be an elliptic curve without CM over Q.

• Let C be a transverse curve in Eg over Q.

• Let

φ =

 φ1
...

φr

=

 a . . . 0 L1
...

...
...

0 . . . a Lr


be a Gauss-reduced morphism of rank 1≤r ≤g, with L i ∈Zg−r and H(φ)=a.

• Let 0 be a subgroup of finite rank of Eg(Q).

• Let 00 be the division group of 0 and s its rank (the definition is given in
relation (2-1)).

• Choose ε1 > 0 so that S2(C, (0
g
0 )ε1) has bounded height; the definition is

consistent in view of Theorem 1.2 (ii).

• Let K1 be the norm of S2(C, (0
g
0 )ε1).

• Let γ = (γ1, . . . , γs) be a point of E s(Q) such that γ1, . . . , γs is a maximal
free set of 00 satisfying the conditions of Lemma 3.4 with K =3gK1. Namely,
for all integers bi

1
9

∑
i

|bi |
2
‖γi‖

2
≤

∥∥∥∥∑
i

biγi

∥∥∥∥2

(8-1)

and
min

i
‖γi‖ ≥ 3gK1. (8-2)

• Let C × γ be the associated weak-transverse curve in Eg+s .

• Let φ̃ = (Nφ|φ′) : Eg+s
→ Er be a quasispecial morphism with N ∈ N∗.

• Choose ε2 > 0 so that S2(C × γ,Oε2) has bounded height; this definition is
consistent in view of Theorem 1.2(i).

• Let K2 be the norm of S2(C × γ,Oε2).

• Let p = (p1, . . . , ps) ∈ E s be a point such that the rank of 〈p1, . . . , ps〉 is s.

• Let 0p be the division group of 〈p1, . . . , ps〉 (in short the division group of
p).

• Let cp and εp be the constants (c2(p, τ ))1/2 and ε0(p, τ ) defined in Proposi-
tion 3.3 for the point p and τ = 1 (please note the square root in cp).

• Let C × p be the associated weak-transverse curve in Eg+s .

• Choose ε3 > 0 so that S2(C × p,Oε3) has bounded height; the definition is
consistent in view of Theorem 1.2 (i).

• Let K3 be the norm of S2(C × p,Oε3).
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9. Equivalence of the strong statements: the proof of Theorem 1.3

The following theorem implies Theorem 1.3 immediately; in addition it gives ex-
plicit inclusions. Once more, we emphasize that we need to assume that Sr (C ×

p,Oε) has bounded height in order to embed it in a set of the type Sr (C, 0ε′).
Therefore we assume r ≥ 2 and ε ≤ ε3 in part (ii).

Theorem 9.1. Let ε ≥ 0.

(i) The map x → (x, γ ) defines an injection

Sr (C, 0ε) ↪→ Sr (C × γ,Oε).

(Recall that γ is a maximal free set of 00.)

(ii) For 2 ≤ r and ε ≤ min(εp, ε3), the map (x, p)→ x defines an injection

Sr (C × p,Oε) ↪→ Sr (C, (0g
p)εK4),

where K4 = (g + s)max
(

1,
g(K3 + ε)

cp mini ‖pi‖

)
. (Recall that 0p is the division

group of p.)

Proof. (i) Let x ∈ Sr (C, 0ε). There exists a surjective φ : Eg
→ Er and points

y ∈ 0 and ξ ∈ Oε such that
φ(x + y + ξ)= 0.

Since γ = (γ1, . . . , γs) is a maximal free set of 00, there exists a positive integer
N and a matrix G ∈ Mr,s(Z) such that

[N ]y = Gγ.

We define
φ̃ = (Nφ|φG).

Then φ̃((x, γ )+ (ξ, 0)) = Nφ(x + ξ)+φG(γ ) = Nφ(x + ξ + y) = 0, so

(x, γ ) ∈ Sr (C × γ,Oε).

(ii) Take (x, p) ∈ Sr (C × p,Oε). Thanks to Lemma 6.2, the assumption ε ≤ εp

implies
(x, p) ∈ (Bφ̃ + Oε)

with φ̃ = (Nφ|φ′) quasispecial. Hence

φ̃((x, p)+ (ξ, ξ ′))= 0

for (ξ, ξ ′) ∈ Oε. Equivalently,

Nφ(x + ξ)= −φ′(p + ξ ′). (9-1)
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By the definition of quasispecialness, φ is Gauss-reduced of rank r . Let

φ =

 φ1
...

φr

=

 a . . . 0 L1
...

...
...

0 . . . a Lr

 ,
with L i ∈ Zg−r and H(φ)= a.

Since 0p is the division group of p, the point y′ defined by

N [a]y′
= φ′(p)

belongs to 0r
p .

Let ζ ′ be a point of Er such that

N [a]ζ ′
= φ̃(ξ, ξ ′).

We define

y = (y′, 0, . . . , 0) ∈ 0r
p × {0}

g−r , ζ = (ζ ′, 0, . . . , 0) ∈ Er
× {0}

g−r .

We have

Nφ(y)= N [a]y′
= φ′(p)Nφ(ζ )= N [a]ζ ′

= φ̃(ξ, ξ ′).

It follows that

Nφ(x + y + ζ ) = Nφ(x)+φ′(p)+ φ̃(ξ, ξ ′)= φ̃((x, p)+ (ξ, ξ ′)) = 0.

Thus

x ∈ C(Q)∩ (BNφ +0g
p + O‖ζ‖).

In order to finish the proof, we shall prove

‖ζ‖ ≤ εK4.

By the definition of ζ we see that

‖ζ‖ = ‖ζ ′
‖ =

‖φ̃(ξ, ξ ′)‖

Na
≤ (g + s)

max(H(φ′), Na)
Na

‖(ξ, ξ ′)‖

≤ (g + s)
max(H(φ′), Na)

Na
ε.

We claim that
max(H(φ′), Na)

Na
≤

K4

g + s
.
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Let φ′
= (bi j ). We shall prove that H(φ′) = maxi j |bi j | ≤

K4
g+s

Na. Let |bkl | =

H(φ′). Consider the k-th row of the system (9-1)

Nφk(x)+ Nφk(ξ)= −

∑
j

bk j (p j + ξ ′

j ).

The triangle inequality gives

‖φk(x)‖
a

+
‖φk(ξ)‖

a
≥

‖
∑

j bk j (p j + ξ ′

j )‖

Na
. (9-2)

Since ε ≤ ε3 and r ≥ 2, we have (x, p) ∈ S2(C × p,Oε3), which has norm K3.
Hence

‖x‖ ≤ ‖(x, p)‖ ≤ K3.

Since a = H(φ), we see that

‖φk(x)‖
a

≤ (g − r + 1)K3 and
‖φk(ξ)‖

a
≤ (g − r + 1)ε.

Substituting in (9-2),

(g − r + 1)(K3 + ε)≥

∥∥∑
j bk j (p j + ξ ′

j )
∥∥

Na
.

Recall that ε ≤ εp. Hence, Proposition 3.3 with (b1, . . . , bs) = (bk1, . . . , bks),
(ξ1, . . . , ξs)= −ξ ′ and ζ = 0, implies that

(g − r + 1)(K3 + ε) ≥
1

Na

(
cp

2
∑

j

|bk j |
2
‖p j‖

2
)1/2

≥
cp H(φ′)

Na
min

i
‖pi‖.

Whence

H(φ′)≤
K4

g + s
Na. �

The inclusion in Theorem 9.1(ii) has been proved only for a set Sr (C × p,Oε)

known to have bounded height. If the norm K3 of Sr (C × p,Oε) goes to infinity,
the set (0g

p)εK4 tends to be the whole of Eg.

Remark 9.2. We would like to show that our Theorems 1.2 and 1.5 are optimal.
Take 0 = 〈(y1, 0, . . . , 0)〉, where y1 is a nontorsion point in E(Q). Since C is
transverse, the projection π1 of C(Q) on the first factor E(Q) is surjective. Let
xn ∈ C(Q) such that π1(xn) = ny1. So xn − n(y1, 0, . . . , 0) has first coordinate
zero, and belongs to the algebraic subgroup 0× Eg−1. Then, for all n ∈ N we have

xn ∈ Bφ=(1,0,...,0) +0.

This shows that xn ∈ S1(C, 0), so S1(C, 0) does not have bounded height. By
Theorem 9.1(i), neither does S1(C × y1).
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10. Special morphisms and an important inclusion

We can actually show a stronger inclusion than the one in Theorem 9.1(i). The set
Sr (C, 0ε) can be included in a subset of Sr (C ×γ,Oε), namely the subset defined
by special morphisms.

Definition 10.1 (Special morphisms). A surjective morphism φ̃ : Eg+s
→ Er is

special if φ̃ = (Nφ|φ′) is quasispecial and satisfies the further condition

H(φ̃)= NH(φ).

Equivalently, φ̃ is special if and only if

(i) φ̃ is Gauss-reduced, and

(ii) H(φ̃)Ir is a submatrix of the matrix consisting of the first g columns of φ̃.

Proof of the equivalence of the two definitions. That the first definition implies
the second is clear. For the converse, take the decomposition φ̃ = (A|φ′), with
A ∈ Mr×g(Z) and φ′

∈ Mr×s(Z). Let N be the greatest common divisor of the
entries of A. Define φ = A/N and a = H(φ̃)/N . Then φ = (aIr |L ′) is Gauss-
reduced and φ̃ = (Nφ|φ′). �

A nice remark is that the obstruction to showing unconditionally that Sr (C×p,Oε)
is included in Sr (C, (0

g
p )ε′) is exactly due to the nonspecial morphisms. Sets of

the form
(C(Q)× p)∩ (Bφ̃ + Oε)

not having bounded height can be included in Sr (C, (0
g
p )ε′) if φ̃ is special; indeed

in general

ε′
= c(g, s)

H(φ̃)
H(A)

ε

for any φ̃ = (A|φ′).

Proposition 10.2. Let 2 ≤ r and ε ≤ min(ε1, K1/g). The map x → (x, γ ) defines
an injection⋃

φ Gauss-reduced
rkφ=r

C(Q)∩
(
Bφ + (0

g
0 )ε
)
↪→

⋃
φ̃=(Nφ|φ′) special

rk φ̃=r

(C(Q)× γ )∩ (Bφ̃ + Oε).

Proof. Let x ∈C(Q)∩(Bφ+0
g
0 +Oε), with φ Gauss-reduced of rank r . Equivalently,

there exist y ∈ 0
g
0 and ξ ∈ Oε ⊂ Eg such that

φ(x + y + ξ)= 0.
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Since γ1, . . . , γs is a maximal free set of 00, there exists an integer N and a matrix
G ∈ Mr,s(Z) such that

[N ]y = G(γ ).

Let n be the greatest common divisor of the entries of (Nφ|φG). We define

φ̃ =
1
n
(Nφ|φG).

Clearly

(Nφ|φG) ((x, γ )+ (ξ, 0))= Nφ(x)+φG(γ )+ Nφ(ξ)= Nφ(x + y + ξ)= 0.

Thus
nφ̃
(
(x, γ )+ (ξ, 0)

)
= 0. (10-1)

Equivalently,
(x, γ ) ∈ (C(Q)× γ )∩ (Bnφ̃ + Oε).

By Lemma 4.4(i) with ψ = φ̃ and N = n, it follows

(x, γ ) ∈ (C(Q)× γ )∩ (Bφ̃ + Oε).

We next show that φ̃ is special. By assumption, the morphism φ is Gauss-
reduced. By the definition of φ̃, the greatest common divisor of its entries is 1. In
order to conclude that φ̃ is special, we still have to show that

H(φ̃)= Na

or equivalently
H(φ′)≤ Na.

The proof is similar to the last part of the proof of Theorem 9.1(ii).
Let φ′

= (bi j )= φG. Let |bkl | = maxi j |bi j | = H(φ′). Let φk be the k-th row of
φ. Consider the k-th row of the system (10-1):

nN (φk(x)+φk(ξ))= −n
∑

j

bk jγ j .

Then
‖φk(x)‖

a
+

‖φk(ξ)‖

a
≥

1
Na

∥∥∥∥∑
j

bk jγ j

∥∥∥∥.
Clearly x ∈ Sr (C, (0

g
0 )ε). Since ε ≤ ε1, we have x ∈ S2(C, (0

g
0 )ε1), which has

norm bounded by K1. So
‖x‖ ≤ K1.

Since H(φk)≤ H(φ)= a,

‖φk(x)‖
a

≤ (g − r + 1)K1.
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Furthermore,
‖φk(ξ)‖

a
≤ (g − r + 1)ε.

Then

(g − 1)(K1 + ε)≥
1

Na

∥∥∥∥∑
j

bk jγ j

∥∥∥∥.
From relations (8-1) with (b1, . . . , bs)= (bk1, . . . , bks) and (8-2), we deduce

(g−1)(K1+ε) ≥
1

Na

(
1
9

∑
j

|bk j |
2
‖γ j‖

2
)1/2

≥
H(φ′)

3Na
min

j
‖γ j‖ ≥

H(φ′)

3Na
3gK1.

We assumed that ε ≤ K1/g, so H(φ′)≤ Na. �

This inclusion is important; the Bogomolov-type bounds are given for inter-
sections with Oε and not with 0ε. Actually there exist bounds for ε such that
C ∩ 0ε is finite. They are deduced using the Bogomolov-type bounds and their
dependence on the degree of the curve is not sharp enough for our purpose. To
overcome this obstacle and solve the problem with 0ε, we use Proposition 10.2
and the Bogomolov-type bounds for C × γ intersected with Bφ̃ + Oε, where φ̃ is
special of rank 2.

11. Proof of Theorem 1.5: Structure

Sections 12 and 13 below will develop the core of the proof of Theorem 1.5. In
Proposition A we show that the union can be taken over finitely many sets, while
in Proposition B we show that each set in the union is finite.

We prefer to present first the proof of Theorem 1.5 assuming Propositions A and
B, and then to prove them. We hope that, knowing a priori the aim of sections 12
and 13, the reader gets the right inspiration to handle the proofs.

Proof of Theorem 1.5. Assuming Conjecture 1.4, we prove Conjecture 1.1(iv). In
view of Theorem 1.3, part (iii) is also proved. Parts (i) and (ii) are then obtained
by setting ε = 0.

Choose

n = 2(g + s)− 3,

δ1 =
min(ε4, ε2)

(g + s)2
, where ε4 is as in Proposition B,

δ = δ1 M ′−1−1/(2n)
, where M ′

= max
(
2, dK2/δ1e

2
)n .



The intersection of a curve with a union of translated subgroups 279

Recall that 0δ ⊂ (0
g
0 )δ. Apply Lemma 4.5, replacing ε by δ. Then

S2(C, 0δ)⊂

⋃
φ Gauss-reduced

rkφ=2

C(Q)∩ (Bφ + (0
g
0 )δ).

Observing that δ < δ1 <min(ε1, K1/g) and applying Proposition 10.2 (again with
ε = δ) we obtain an injection⋃

φ Gauss-reduced
rkφ=2

C(Q)∩ (Bφ + (0
g
0 )δ) ↪→

⋃
φ̃=(Nφ|φ′) special

rk φ̃=2

(C(Q)× γ )∩ (Bφ̃ + Oδ).

Note that δ = δ1 M ′−(1+1/(2n)) and δ1 ≤ ε2. Then, Proposition A(ii) in Section 12
below, with ε = δ1, r = 2 (and n already defined as 2(g + s)− 4 + 1), shows that⋃

φ̃ special
rk φ̃=2

(C(Q)× γ )∩ (Bφ̃ + Oδ)

is a subset of ⋃
φ̃ special
H(φ̃)≤M ′

rk φ̃=2

(C(Q)× γ )∩
(
Bφ̃ + O(g+s)δ1/H(φ̃)1+1/(2n)

)
. (11-1)

Observe that in (11-1), φ̃ ranges over finitely many morphisms, because H(φ̃) is
bounded by M ′.

We have chosen δ1 ≤ ε4/(g + s)2. Proposition B(ii) in Section 13 below with
ε = (g + s)δ1, implies that for all φ̃ = (Nφ|φ′) special of rank 2, the set

(C(Q)× γ )∩
(
Bφ̃ + O(g+s)δ1/H(φ)1+1/(2n)

)
is finite. Note that H(φ)≤ H(φ̃), thus also the sets

(C(Q)× γ )∩
(
Bφ̃ + O(g+s)δ1/H(φ̃)1+1/(2n)

)
appearing in (11-1) are finite.

It follows that, the set S2(C, 0δ) is contained in the union of finitely many finite
sets. So it is finite. �

Despite our proof relying on Dirichlet’s Theorem and a Bogomolov-type bound,
a direct use of these two theorems is not sufficient to prove Theorem 1.5. Using
Dirichlet’s Theorem in a more natural way, one can prove that, for r ≥ 2,

Sr (C, 0ε) ⊂

⋃
H(φ)≤M(ε)

rkφ=r

C(Q)∩
(
Bφ +0ε

)
.
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On the other hand, a direct use of the Bogomolov type bound shows that

C(Q)∩
(
Bφ + Oε/H(φ)2

)
is finite, for φ of rank at least 2. Even if we forget 0, the discrepancy between ε
and ε/H(φ)2 does not look encouraging, and it took us a long struggle to overcome
the problem. In Propositions A and B, we succeed in overcoming the mismatch;
in both statements we obtain neighborhoods of radius ε/H(φ)1+1/(2n).

Warning: One might think that, since we consider only morphisms φ such that
H(φ) ≤ M , it might be enough to choose ε′

= ε/M2. However, M = M(ε) is an
unbounded function of ε as ε tends to 0.

12. Proof of Theorem 1.5:
The box principle and the reduction to a finite union

In Lemma 12.2, we approximate a Gauss-reduced morphism by a Gauss-reduced
morphism of bounded height. Such an approximation allows us to restrict our
attention to unions over finitely many algebraic subgroups, instead of over all al-
gebraic subgroups; this is Proposition A, already mentioned. We start by recalling
Dirichlet’s Theorem on the rational approximation of reals.

Theorem 12.1 (Dirichlet, 1842; see [Schmidt 1980, p. 24, Theorem 1]). Suppose
that α1, . . . , αn are real numbers and that Q ≥ 2 is an integer. There exist integers
f, f1, . . . , fn such that

1 ≤ f < Qn and |αi f − fi | ≤
1
Q

for 1 ≤ i ≤ n. (12-1)

Lemma 12.2. Let Q ≥ 2 be an integer. Let φ = (aIr |L) ∈ Mr×g(Z) be Gauss-
reduced. There exists a Gauss-reduced ψ = ( f Ir |L ′) ∈ Mr×g(Z) such that

(i) H(ψ)= f ≤ Qrg−r2
+1 and

(ii)
∣∣∣ψf −

φ

a

∣∣∣≤ Q−1/2 f
−1−

1
2(rg−r2

+1) .

Here the norm | · | of a matrix is the maximum of the absolute values of its entries.

Proof. If a ≤ Qrg−r2
+1 no approximation is needed, since φ itself satisfies the

conclusion. So we can assume that

φ =

 a . . . 0 L1
...

...
...

0 . . . a Lr


is a Gauss-reduced morphism such that H(φ) = a > Qrg−r2

+1. Consider the
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element

α =

(
1,

L1

a
, . . . ,

Lr

a

)
= (α1, α2, . . . , αrg−r2+1) ∈ Rrg−r2

+1.

Set n = rg−r2
+1. Apply Dirichlet’s Theorem to α to select integers f, f1, . . . , fn

satisfying (12-1); they can be assumed to have greatest common divisor 1. Define

w =
1
f
( f1, . . . , fn)=

1
f
( f1, L ′

1, . . . , L ′

r ),

with L ′

i ∈ Zg−r . We claim that

f1 = f, | fi | ≤ f.

Indeed, (12-1) for i = 1 yields ∣∣∣∣ f1
f

− 1
∣∣∣∣≤ 1

Q f
,

so | f − f1| < 1. Since f and f1 are integers, we must have f = f1. Similarly,
by (12-1) for i = 2, . . . , n, we have | fi/ f −αi | ≤ 1/(Q f ). This implies that
| fi | ≤ f + 1/Q. We deduce that | fi | ≤ f .

It follows that

ψ =

 f . . . 0 L ′

1
...

...

0 . . . f L ′
r


is a Gauss-reduced morphism of rank r with H(ψ)= f .

Relation (12-1) immediately gives

f ≤ Qn

and ∣∣∣∣ψf −
φ

a

∣∣∣∣≤ 1
Q f

≤
1

Q1/2 f 1+1/(2n) ,

where in the last inequality we have used the inequality Q1/2
≥ f 1/(2n). �

At last we can prove our first main proposition; the union can be taken over
finitely many algebraic subgroups. If φ has large height and Bφ is close to x ,
with x in a set of bounded height, then there exists ψ with height bounded by a
constant such that Bψ is also close to x . One shall be careful that, in the following
inclusions, on the left-hand side we consider a neighborhood of Bφ of fixed radius,
while on the right-hand side the neighborhood becomes smaller as the height of ψ
grows. This is a crucial gain with respect to the simpler approximation (obtained
by a direct use of Dirichlet’s Theorem) where the neighborhoods have constant
radius on both sides.
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Proposition A. Assume r ≥ 2.

(i) If 0< ε ≤ ε1, then⋃
φ Gauss-reduced

rkφ=r

C(Q)∩
(
Bφ +

(
0

g
0

)
ε/M1+1/(2n)

)
⊂

⋃
ψ Gauss-reduced

rkψ=r
H(ψ)≤M

C(Q)∩
(
Bψ + (0

g
0 )gε/H(ψ)1+1/(2n)

)
,

where n = rg − r2
+ 1 and M = max

(
2, dK1/εe

2
)n .

(ii) If 0< ε ≤ ε2, then⋃
φ̃ special
rk φ̃=r

(C(Q)× γ )∩
(
Bφ̃ + Oε/M ′1+1/(2n)

)
⊂

⋃
ψ̃ special
rk ψ̃=r

H(ψ̃)≤M ′

(C(Q)× γ )∩
(
Bψ̃ + O(g+s)ε/H(ψ̃)1+1/(2n)

)
,

where n = r(g + s)− r2
+ 1 and M ′

= max
(
2, dK2/εe

2
)n .

Proof. (i) Let φ = (aIr |L) be Gauss-reduced of rank r .
First consider the case H(φ)≤ M . Then ε/M1+1/(2n)

≤ ε/H(φ)1+1/(2n). Obvi-
ously

C(Q)∩ (Bφ +0
g
0 + Oε/M1+1/(2n))⊂ C(Q)∩ (Bφ +0

g
0 + Oε/H(φ)1+1/(2n))

is contained in the right-hand side.
Secondly consider the case H(φ)>M . We shall show that there existsψ Gauss-

reduced with H(ψ)≤ M such that

C(Q)∩
(
Bφ +0

g
0 + Oε/M1+1/(2n)

)
⊂ C(Q)∩

(
Bψ +0

g
0 + Ogε/H(ψ)1+1/(2n)

)
.

We fix Q = max
(
2, dK1/εe

2
)
. Recall that n = rg − r2

+ 1. By Lemma 12.2,
there exists a Gauss-reduced morphism

ψ =

 f . . . 0 L ′

1
...

...

0 . . . f L ′
r


such that

H(ψ)= f ≤ M

and ∣∣∣∣ψf −
φ

a

∣∣∣∣≤ 1
Q1/2 f 1+1/(2n) . (12-2)
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Let x ∈ C(Q) ∩ (Bφ + 0
g
0 + Oε/M1+1/(2n)). Then there exist y ∈ 0

g
0 and ξ ∈

Oε/M1+1/(2n) such that
φ(x − y − ξ)= 0.

We want to show that there exist y′
∈ 0

g
0 and ξ ′

∈ Ogε/ f 1+1/(2n) such that

ψ(x − y′
− ξ ′)= 0.

Let y′′ be a point such that
[a]y′′

= φ(y).

Since 00 is a division group, y′′
∈ 0r

0. We define

y′
= (y′′, 0) ∈ 0r

0 × {0}
g−r ,

whence
ψ(y′)= [ f ]y′′.

Let ξ ′′ be a point such that

[ f ]ξ ′′
= ψ(x − y′),

and define ξ ′
= (ξ ′′, 0). Then

ψ(ξ ′)= [ f ]ξ ′′
= ψ(x − y′) and ψ(x − y′

− ξ ′)= 0.

It follows that
x ∈ C(Q)∩ (Bψ +0

g
0 + O‖ξ ′‖).

In order to finish the proof, we are going to prove that

‖ξ ′
‖ ≤

gε
f 1+1/(2n) .

By definition

‖ξ ′
‖ = ‖ξ ′′

‖ =
‖ψ(x − y′)‖

f
.

Consider the equivalence

aψ(x − y′)= aψ(x)− aψ(y′)= aψ(x)− a[ f ]y′′

= aψ(x)− f φ(y)= aψ(x)− f φ(x)+ f φ(ξ).

Then

‖ξ ′
‖ =

1
a f
∥∥ f φ(ξ)− f φ(x)+ aψ(x)

∥∥≤
1
a
‖φ(ξ)‖ +

1
a f
∥∥aψ(x)− f φ(x)

∥∥.
We estimate separately each norm on the right.
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On the one hand,

1
a
‖φ(ξ)‖ ≤ (g − r + 1)‖ξ‖ ≤

(g − 1)ε
M1+1/(2n) ≤

(g − 1)ε
f 1+1/(2n) ,

because ‖ξ‖ ≤ ε/M1+1/(2n) and f ≤ M.
On the other hand, since the rank of φ is at least 2 and ε ≤ ε1, we have x ∈

S2(C, (0
g
0 )ε1), which has norm K1. Thus

‖x‖ ≤ K1.

Using relation (12-2) and that Q ≥ dK1/εe
2, it follows that

1
a f

‖aψ(x)− f φ(x)‖ ≤

∣∣∣∣ψf −
φ

a

∣∣∣∣ ‖x‖ ≤
1

Q1/2 f 1+1/(2n) ‖x‖

≤
ε‖x‖

K1 f 1+1/(2n) ≤
ε

f 1+1/(2n) .

We obtain

‖ξ ′
‖ ≤

(g − 1)ε
f 1+1/(2n) +

ε

f 1+1/(2n) ≤
gε

f 1+1/(2n) ,

concluding the proof of part (i) of the proposition.

(ii) We fix Q = max(2, dK2/εe
2). Let φ̃ = (Nφ|φ′) : Eg+s

→ Er be special. From
conditions (i) and (ii) of Definition 10.1 we know that

φ̃ = (bIr |∗)

is Gauss-reduced and H(φ̃)= b.
As in part (i) of the proof, if H(φ̃) ≤ M ′ then ε/M ′1+1/(2n)

≤ ε/H(φ̃)1+1/(2n)

and the set
(C(Q)× γ )∩ (Bφ̃ + Oε/M ′1+1/(2n))

is contained in the right-hand side.
Now, suppose that H(φ̃) > M ′. Recall that n = r(g + s)− r2

+ 1. By Lemma
12.2 (applied with φ = φ̃ and ψ = ψ̃) there exists a Gauss-reduced ψ̃ = ( f Ir |∗)

such that H(ψ̃)= f ≤ M ′ and∣∣∣∣ φ̃b −
ψ̃

f

∣∣∣∣≤ 1
Q1/2 f 1+1/(2n) . (12-3)

Then ψ̃ is special, since it satisfies (i) and (ii) in Definition 10.1.
The proof is now similar to that of part (i). We want to show that, if φ̃((x, γ )+ξ)

vanishes for ξ ∈ Oε/M ′1+1/2n , then ψ̃((x, γ )+ξ ′) vanishes for ξ ′
∈ O

(g+s)ε/H(ψ̃ )1+1/2n .
Let ξ ′′ be a point in Er such that

[ f ]ξ ′′
= −ψ̃(x, γ ).



The intersection of a curve with a union of translated subgroups 285

We define ξ ′
= (ξ ′′, {0}

g−r+s). Then

ψ̃((x, γ )+ (ξ ′, 0))= 0.

It follows that

(x, γ ) ∈ (C(Q)× γ )∩ (Bψ̃ + O‖ξ ′‖),

where ψ̃ is special and H(ψ̃)≤ M ′.
It remains to prove that

‖ξ ′
‖ ≤

(g + s)ε
H(ψ̃)1+1/(2n)

.

Obviously

bψ̃(x, γ )= f
(
φ̃(x, γ )− φ̃(x, γ )

)
+ bψ̃(x, γ ).

According to the definition of ξ ′,

‖ξ ′
‖ = ‖ξ ′′

‖ =
‖ψ̃(x, γ )‖

f
=

1
b f

∥∥ f
(
φ̃(x, γ )− φ̃(x, γ )

)
+ bψ̃(x, γ )

∥∥
≤

1
b

∥∥φ̃(x, γ )∥∥+
1

b f

∥∥bψ̃(x, γ )− f φ̃(x, γ )
∥∥.

We estimate the two norms on the right.
On the one hand,

‖φ̃(x, γ )‖
b

=
‖φ̃(ξ)‖

b
≤ (g−r +1+s)‖ξ‖ ≤

(g−r +1+s)ε

M ′1+1/(2n) ≤
(g−r +1+s)ε

f 1+1/(2n) ,

where in the last inequality we have used that f ≤ M ′.
On the other hand, by the definition of ε2, we know that the norm of the set

S2(C × γ,Oε2) is bounded by K2. Since ε ≤ ε2, we have (x, γ ) ∈ S2(C × γ,Oε2).
Therefore

‖(x, γ )‖ ≤ K2.

Using relation (12-3) and the inequality Q ≥ dK2/εe
2, we estimate

1
b f

∥∥bψ̃(x, γ )− f φ̃(x, γ )
∥∥≤

∣∣∣∣ φ̃b −
ψ̃

f

∣∣∣∣‖(x, γ )‖ ≤
‖(x, γ )‖

Q1/2 f 1+1/(2n)

≤
ε‖(x, γ )‖

(K2) f 1+1/(2n) ≤
ε

f 1+1/(2n) .

Since r ≥ 2, we conclude that

‖ξ ′
‖ ≤

(g − 1 + s)ε
f 1+1/(2n) +

ε

f 1+1/(2n) =
(g + s)ε

H(ψ̃)1+1/(2n)
. �
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13. Proof of Theorem 1.5:
The essential minimum and the finiteness of each intersection

Up until now we have used, several times, the boundedness of the height of our
sets. In this section we often use the fact that we are working with a curve.

In the following, we set
n = 2(g + s)− 3.

We would like to use Conjecture 1.4 to provide ε > 0 such that, for all φ Gauss-
reduced of rank r = 2, the set

(C(Q)× γ )∩
(
Bφ + Oε/H(φ)1+1/(2n)

)
(13-1)

is finite. This set is simply

φ−1
|C×γ

(
φ(C × γ )∩φ(Oε/H(φ)1+1/(2n))

)
.

Further
φ(Oε/H(φ)1+1/(2n))⊂ Ogε/H(φ)1/(2n),

because if ζ ∈ Oε/H(φ)1+1/(2n) then ‖φ(ζ )‖ ≤ gH(φ)‖ζ‖ ≤ gεH(φ)−1/(2n). Thus,
the set (13-1) is contained in the preimage of

φ(C × γ )∩ Ogε/H(φ)1/(2n) .

If we can ensure that there exists ε > 0 such that, for all morphisms φ Gauss-
reduced of rank r = 2,

gεH(φ)−1/(2n) < µ(φ(C × γ )), (13-2)

then the set (13-1) is finite.
The direct use of a Bogomolov-type bound, even an optimal one, is not suc-

cessful in the following sense: For a curve X ⊂ Eg and any η > 0, Conjecture
1.4 provides an invariant ε(X, η) such that ε(X, η) < µ(X). To ensure (13-2), we
could naively require that

gεH(φ)−1/(2n)
≤ ε(φ(C × γ ), η)

for all φ Gauss-reduced of rank r = 2. But this can be fulfilled only for ε = 0.
We need to throw new light on the problem in order to prove (13-2); via some

isogenies, we construct a helping curve D and then we relate its essential minimum
to C × γ . We then apply Conjecture 1.4 to D. In this way we manage to provide
a good lower bound for the essential minimum of C × γ . We take advantage of
the fact that µ([b]C) = bµ(C), while ε([b]C, η) = ε(C, η)/b1/(g−1)+2η for any
positive integers b.
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Let

φ =

(
φ1

φ2

)
=

(
a 0 L1

0 a L2

)
be a Gauss-reduced morphism of rank 2 with H(φ)= a. We introduce the notation
x̄ = (x3, . . . , xg), and recall that n = 2(g + s)− 3.

We define
a0 = ba1/(2n)

c.

We associated to the morphism φ an isogeny

8 : Eg
→ Eg, (x1, . . . , xg) 7→ (a0φ(x), x3, . . . , xg).

We then relate it to the isogenies

A :Eg
→ Eg, (x1, . . . , xg) 7→ (x1, x2, ax3, . . . , axg),

A0 :Eg
→ Eg, (x1, . . . , xg) 7→ (x1, x2, a0x3, . . . , a0xg),

L :Eg
→ Eg, (x1, . . . , xg) 7→ (x1 + L1(x̄), x2 + L2(x̄), x3, . . . , xg).

Definition 13.1 (Helping curve). We define the curve D to be an irreducible com-
ponent of A−1

0 L A−1(C), where ( · )−1 simply means the inverse image.

The obvious relation
[a0a]D =8(C)

is going to play a key role in the following.
We need to estimate degrees, since the Bogomolov-type bound depends on the

degree of the curve.

Lemma 13.2. (i) The degree of the curve φ(C) in E2 is bounded by 6ga2 deg C.

(ii) The degree of the curve D in Eg is bounded by 12g2a2(g−2)
0 a2(g−1) deg C.

Proof. (i) Consider

degφ(C)=

2∑
i=1

φ(C) · Hi ,

where Hi is the coordinate divisor given by 3xi = 0. The intersection number
φ(C) · Hi is bounded by the degree of the morphism φi|C : C → E . Recall that
φ =

(
φ1
φ2

)
. By Bézout’s Theorem, degφi|C is at most 3ga2 deg C ; see [Viada 2003,

p. 61]. Therefore
degφ(C)≤ 6ga2 deg C.

(ii) Let X be a generic transverse curve in Eg. By [Hindry 1988, Lemma 6(i)],
we deduce that

deg A−1(X)≤ 2a2(g−2) deg X, deg A−1
0 (X)≤ 2a2(g−2)

0 deg X.
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To estimate the degree of L(X), we proceed as in part (i). We write

deg L(X)=

g∑
i=1

L(X) · Hi ,

where Hi is given by 3xi = 0. The intersection number L(X)· Hi is bounded by the
degree of the morphism L ′

i|X : X → E , where L ′

i is the i th. row of L . By Bézout’s
Theorem, deg L ′

i|X is at most 3ga2 deg X . Therefore

deg L(X)≤ 3g2a2 deg X.

We conclude that

deg D ≤ deg A−1
0 L A−1(C)≤ 2a2(g−2)

0 deg L A−1(C)

≤ 6g2a2(g−2)
0 a2 deg A−1(C)≤ 12g2a2(g−2)

0 a2a2(g−2) deg C. �

The next proposition is a lower bound for the essential minimum of the image of
a curve under Gauss-reduced morphisms. It reveals the dependence on the height
of the morphism. While the first bound is an immediate application of Conjecture
1.4, the second estimate is subtle. Our lower bound for µ(8(C + y)) grows with
H(φ). On the contrary, the Bogomolov-type lower bound ε(8(C + y)) goes to
zero as (a0 H(φ))−1/(g−1)−η — a nice gain.

Potentially, this suggests an interesting question; to investigate the behavior of
the essential minimum under a general morphism.

Proposition 13.3. Assume Conjecture 1.4 and take y ∈ Eg(Q) and η > 0. Then:

(i) µ(φ(C + y)) > ε1(C, η)a−(1+2η),

where ε1(C, η) is an effective constant depending on C and η. (Recall that
a = H(φ).)

(ii) µ (8(C + y)) > ε2(C, η)a
1/(g−1)−8(g+s)(g−1)η
0 ,

where ε2(C, η) is an effective constant depending on C , g and η. (Recall that
a0 = ba1/(2n)

c.)

Proof. Recall the Bogomolov-type bound given in Conjecture 1.4: for a transverse
irreducible curve X in Eg over Q and any η > 0,

ε(X, η)=
c(g, E, η)

deg X1/(2 codim X)+η < µ(X).

(i) Observe that φ(C)⊂ E2 has codimension 1.
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Let q ′
= φ(y). So φ(C + y)= φ(C)+q ′. Since C is irreducible, transverse and

defined over Q, so is φ(C)+ q ′. Conjecture 1.4 gives

µ(φ(C + y))= µ(φ(C)+ q ′) > ε(φ(C)+ q ′, η)=
c(2, E, η)

(deg(φ(C)+ q ′))1/2+η
.

Degrees are preserved by translations; hence Lemma 13.2(i) implies that

deg(φ(C)+ q ′)= degφ(C)≤ 9ga2 deg C.

If follows that

ε(φ(C)+ q ′, η)≥
c(2, E, η)

(9ga2 deg C)1/2+η
.

Define

ε1(C, η)=
c(2, E, η)

(9g deg C)1/2+η
.

Then

µ(φ(C + y))≥
ε1(C, η)

a1+2η .

(ii) Let q ∈ Eg be a point such that [a0a]q =8(y). Then

8(C + y)= [a0a]
(

A−1
0 L A−1(C)+ q

)
= [a0a](D + q).

Therefore
µ (8(C + y))= (a0a)µ(D + q). (13-3)

We now estimate µ(D+q) using Conjecture 1.4. The curve D+q is irreducible
by the definition of D. Since C is transverse and defined over Q, so is D+q. Thus

µ(D + q) > ε(D + q, η)=
c(g, E, η)

deg(D + q)1/(2(g−1))+η .

Translations by a point preserve degrees, so Lemma 13.2(ii) gives

deg(D + q)= deg D ≤ 12g2a2(g−2)
0 a2(g−1) deg C.

Then

ε(D + q, η)≥
c(g, E, η)

(12g2 deg C)1/(2(g−1))+η

(
a2(g−2)

0 a2(g−1))− 1
2(g−1)−η.

Define

ε2(C, η)=
c(g, E, η)

(12g2 deg C)1/(2(g−1))+η .

So

µ(D + q)≥ ε2(C, η)a
−1+

1
g−1 −2(g−2)η

0 a−1−2(g−1)η.
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Substitute into (13-3), to obtain

µ(8(C + y)) > ε2(C, η)a
1

g−1 −2(g−2)η

0 a−2(g−1)η.

Recall that a0 is the integral part of a1/(2n), where n = 2(g+s)−3. So 2a0 ≥ a1/(2n)

and
a2(g−1)η

≤ (2a0)
4n(g−1)η.

Further, 2(g − 2)+ 4n(g − 1)≤ 8(g + s)(g − 1), so

µ(8(C + y)) > ε2(C, η)a
1/(g−1)−8(g+s)(g−1)η
0 . �

We now come to our second main proposition: each set in the union is finite.
The proof of (i) case (1) below is delicate. In general µ(π(C)) ≤ µ(C), for π a
projection on some factors. We shall rather find a kind of reverse inequality. On a
set of bounded height this will be possible.

Proposition B. Assume Conjecture 1.4. There exists ε4 > 0 with the following
properties:

(i) For ε ≤ ε4, for all y ∈ 02
0 ×{0}

g−2 and for all Gauss-reduced morphisms φ of
rank 2, the set (

C(Q)+ y
)
∩
(
Bφ + Oε/H(φ)1+1/(2n)

)
is finite.

(ii) For ε ≤ ε4/(g + s) and for all special morphisms φ̃ = (Nφ|φ′) of rank 2, the
set

(C(Q)× γ )∩
(
Bφ̃ + Oε/H(φ)1+1/(2n)

)
is finite.

(Recall that n = 2(g + s)− 3.)

Proof. (i) Choose

η ≤ η0 =
1

24(g + s)(g − 1)2
.

Define

m = max

(
2,
(

K1

ε2(C, η)

) g−1
1−8(g+s)(g−1)2η

)
,

and choose

ε ≤ min
(
ε1,

K1

g
,
ε1(C, η)

gm4n

)
,

where ε1(C, η) and ε2(C, η) are as in Proposition 13.3.
Recall that H(φ)= a. We distinguish two cases:

(1) a0 = ba1/(2n)
c ≥ m,
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(2) a0 = ba1/(2n)
c ≤ m.

Case (1): a0 ≥ m. Let x + y ∈ (C(Q)+ y)∩ (Bφ + Oε/a1+1/(2n)), where

y = (y1, y2, 0, . . . , 0) ∈ 02
0 × {0}

g−2.

Then
φ(x + y)= φ(ξ)

for ‖ξ‖ ≤ ε/a1+1/(2n).
We have chosen ε ≤ ε1, so x ∈ S2(C, (0

g
0 )ε1) which is a set of norm K1. Then

‖x‖ ≤ K1.

Recall that 8(z1, . . . , zg)= (a0φ(z), z3, . . . , zg). So

8(x + y)= (a0φ(x + y), x3, . . . , xg)= (a0φ(ξ), x3, . . . , xg).

Therefore

‖8(x + y)‖ = ‖(a0φ(ξ), x3, . . . , xg)‖ ≤ max (a0‖φ(ξ)‖, ‖x‖) .

Since ‖ξ‖ ≤ εa−(1+1/(2n)), a0 ≤ a1/(2n) and ε ≤ K1/g, we have

a0‖φ(ξ)‖ ≤ a0(g − r + 1)
ε

a1/(2n) ≤ K1.

Also ‖x‖ ≤ K1. Thus
‖8(x + y)‖ ≤ K1.

In view of the hypothesis a0 ≥ m, we have

K1 ≤ ε2(C, η)a0
1

g−1 −8(g+s)(g−1)η
.

In Proposition 13.3(ii) we have proved that

ε2(C, η)a0
1

g−1 −8(g+s)(g−1)η
< µ(8(C + y)).

So
‖8(x + y)‖ ≤ K1 < µ(8(C + y)).

We deduce that 8(x + y) belongs to the finite set

8(C + y)∩ OK1 .

The morphism C + y → 8(C + y) has finite fiber. We can conclude that since
ε ≤ min(ε1, K1/g), for every φ Gauss-reduced of rank 2 with a0 = ba1/(2n)

c ≥ m,
the set

(C(Q)+ y)∩
(
Bφ + Oε/H(φ)1+1/(2n)

)
is finite.
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Case (2): a0 ≤ m. Let x+y ∈ (C(Q)+y)∩(Bφ+Oε/a1+1/(2n)), where y ∈02
0×{0}

g−2.
Then

φ(x + y)= φ(ξ)

for ‖ξ‖ ≤ ε/a1+1/(2n). However we have chosen ε ≤ ε1(C, η)/gm4n . Hence

‖φ(x + y)‖ = ‖φ(ξ)‖ ≤
gε

a1/(2n) ≤
ε1(C, η)

m4na1/(2n) .

We are working under the hypothesis a0 = ba1/(2n)
c ≤ m and m ≥ 2, so a <

(2a0)
2n

≤ m4n. Furthermore, η ≤ η0 <
1

4n implies that a2η < a1/(2n). Thus

a1+2η < m4na1/(2n).

And consequently

‖φ(x + y)‖ ≤
ε1(C, η)

m4na1/(2n) <
ε1(C, η)

a1+2η .

In Proposition 13.3(i) we proved that

ε1(C, η)
a1+2η < µ(φ(C + y)).

We deduce that φ(x + y) belongs to the finite set

φ(C + y)∩ Oε1(C,η)m−4na−1/(2n) .

The morphism C + y → φ(C + y) has finite fiber. Since ε ≤ ε1(C, η)/(gm4n), we
conclude that for all φ Gauss-reduced of rank 2 with a0 = ba1/(2n)

c ≤ m, the set

(C(Q)+ y)∩
(
Bφ + Oε/H(φ)1+1/(2n)

)
is finite.

For the curve C , define

ε(C)= min(ε1(C, η0), ε2(C, η0)).

Note that (
ε(C)
gK1

)8(g+s)g

≤
ε1(C, η)

gm4n .

Thus, we could for instance choose

ε4 = min

(
ε1,

K1

g
,

(
ε(C)
gK1

)8(g+s)g
)
.

Proof of (ii). We want to show that, for every φ̃ = (Nφ|φ′) special of rank 2,
there exists φ Gauss-reduced of rank 2 and y ∈ 02

0 × {0}
g−2 such that the map
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(x, γ )→ x + y defines an injection

(C(Q)× γ )∩
(
Bφ̃ + Oε/H(φ)1+1/(2n)

)
↪→ (C(Q)+ y)∩

(
Bφ + O(g+s)ε/H(φ)1+1/(2n)

)
.

(13-4)
We then apply part (i) of this proposition; if (g + s)ε ≤ ε4, then

(C(Q)+ y)∩
(
Bφ + O(g+s)ε/H(φ)1+1/(2n)

)
is finite. So if ε ≤ ε4/(g + s), the set

(C(Q)× γ )∩
(
Bφ̃ + Oε/H(φ)1+1/(2n)

)
is finite too.

Let us prove the inclusion (13-4). Let φ̃ = (Nφ|φ′) be special of rank 2. By
definition of special φ = (aIr |L) is Gauss-reduced of rank 2. Let

(x, γ ) ∈ (C(Q)× γ )∩
(
Bφ̃ + Oε/H(φ)1+1/(2n)

)
.

Then, there exists ξ ∈ Oε/H(φ)1+1/(2n) such that

φ̃((x, γ )+ ξ)= 0.

Equivalently,
Nφ(x)+φ′(γ )+ φ̃(ξ)= 0.

Let y′
∈ E2 be a point such that

N [a]y′
= φ′(γ ).

Since 00 is a division group,

y = (y′, 0, . . . , 0) ∈ 02
0 × {0}

g−2

and
Nφ(y)= N [a]y′

= φ′(γ ).

Therefore
Nφ(x + y)+ φ̃(ξ)= 0.

Let ξ ′′
∈ E2 be a point such that

N [a]ξ ′′
= φ̃(ξ).

We define ξ ′
= (ξ ′′, {0}

g−2). Then

Nφ(ξ ′)= N [a]ξ ′′
= φ̃(ξ),

and
Nφ(x + y + ξ ′)= 0.
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Since φ̃ is special H(φ̃)= Na. Furthermore ‖ξ‖ ≤ ε/a1+1/(2n). We deduce

‖ξ ′
‖ = ‖ξ ′′

‖ =
‖φ̃(ξ)‖

Na
≤
(g + s)ε
a1+1/(2n) .

In conclusion
Nφ(x + y + ξ ′)= 0

with ‖ξ ′
‖ ≤ (g + s)ε/a1+1/(2n) and y ∈ 02

0 × {0}
g−2. Equivalently,

(x + y) ∈ (C(Q)+ y)∩
(
BNφ + O(g+s)ε/H(φ)1+1/(2n)

)
.

By Lemma 4.4(i), with ψ = φ, we deduce that

(x + y) ∈ (C(Q)+ y)∩
(
Bφ + O(g+s)ε/H(φ)1+1/(2n)

)
,

with y ∈ 02
0 × {0}

g−2 and φ Gauss-reduced of rank 2.
This proves relation (13-4) and concludes the proof. �

14. The effectiveness aspect

An effective weak height bound. We give an effective bound for the height of
S1(C,Oε) for C transverse.

Theorem 14.1. Let C be transverse. For every real ε ≥ 0, the norm of the set
S1(C,Oε) is bounded by K0 max(1, ε), where K0 is an effective constant depending
on the degree and the height of C.

Proof. If x ∈ S1(C,Oε), there exist φ : Eg
→ E and ξ ∈ Oε such that φ(x − ξ)= 0.

Now the proof follows that of [Viada 2003, Theorem 1, p. 55], where we replace ĥ
by h, y by φ, p by x and ĥ(y(p))= 0 by h(φ(x))= c0(degφ)h(ξ) with h(ξ)≤ ε2.

�
The strong hypotheses and an effective weak theorem.

Proof of Theorem 1.6. The proof is similar to the proof of Theorem 1.5 given in
Section 11.

Theorem 14.1 implies that for r ≥ 1 the norm of the set Sr (C,O1) is bounded
by an effective constant K0. Define

η0 =
1

24g2 ,

ε(C)= min
(
ε1(C, η0), ε2(C, η0)

)
, where ε1, ε2 are as in Proposition 13.3,

δ1 =
1
g

min
(

1, K0
g
,
(
ε(C)
gK0

)8g2)
,

δ = δ1 M
−1−

1
2(2g−3) , where M = max

(
2,
⌈K0
δ1

⌉2
)2g−3

.
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In Section 12, Proposition A(i) with 0= 0, ε1 = 1 and K1 = K0, we have shown
that ⋃
φ Gauss-reduced

rk(φ)=2

C(Q)∩
(
Bφ + Oδ

)
⊂

⋃
φ Gauss-reduced

rk(φ)=2 H(φ)≤M

C(Q)∩
(
Bφ + Ogδ1/H(φ)1+1/(2(2g−3))

)
.

In Section 13, Proposition B(i) with y = 0, s = 0 and n = 2g − 3, K1 = K0, we
have shown that for all φ Gauss-reduced of rank 2, the set

C(Q)∩
(
Bφ + Ogδ1/H(φ)1+1/(2(2g−3))

)
is finite. It follows that ⋃

φ Gauss-reduced
rk(φ)=2

C(Q)∩ (Bφ + Oδ)

is finite. By Lemma 4.5(i) we deduce that S2(C,Oδ) is finite. This shows that
Theorem 1.6 holds for

ε ≤
1

g4g min(1, K −1
0 )4g min

(
1, K0,

(
ε(C)
gK0

)8g2)4g

. �

An effective bound for the cardinality of the sets. We have just shown that for C
transverse, ε can be made effective. The purpose of this section is to indicate an
effective bound for the cardinality of S2(C,Oε), under the following conjecture:

Conjecture 14.2 (S. David; personal communication). Let C be a transverse curve
in A. There exist constants c′ and c′′, each depending on g, degL A, hL(A), [k : Q],
such that, for

ε(C)=
c′

(degL V )1/(2 codim V ) and 2(C)= c′′(degL C)g,

the cardinality of C(Q)∩ Oε(C) is bounded by 2(C).

This is the abelian analogue to [Amoroso and David 2003, Conjecture 1.2].

Theorem 14.3. Let C be transverse. Assume that Conjecture 14.2 holds. Then,
there exists an effective ε > 0 such that the cardinality of S2(C,Oε) is bounded by
an effective constant.

Proof. Let δ and δ1 be as defined in the previous proof.
By Proposition A(i) in Section 12 we deduce that

S2(C,Oδ)⊂

⋃
φ Gauss-reduced

H(φ)≤M

C(Q)∩
(
Bφ + Ogδ1/H(φ)1+1/(2(2g−3))

)
.



296 Evelina Viada

Note that, for any curve D and positive integers n, the cardinality of [n]D ∩Onε(D)

is still 2(D). Going through the proofs of Proposition B(i) in Section 13, we see
that

#S2(C,Oδ)≤

∑
H(φ)≤M

#
(
φ−1

|C
(φ(C)∩ Oε(φ(C)))

)
,

where φ|C : C → φ(C) is the restriction of φ to C . Recall from [Viada 2003, p. 61]
that the fiber of φ|C has cardinality at most 3gH(φ)2 ≤ 3gM2. We set

1max = max
H(φ)≤M

#(φ(C)∩ Oε(φ(C)).

We deduce
#S2(C,Oδ)≤ 3gM31max.

By Lemma 13.2(i), degφ(C)≤ (3gH(φ))2 deg C . Conjecture 14.2 implies that

1max ≤ (3gH(φ))2g2(C),

with 2(C) explicitly given. We conclude that

#S2(C,Oδ)≤ (3g)2g+1 M2g+32(C). (14-1)

By Theorem 14.1 the constant K0 is effective. So M is also effective. Thus the
bound (14-1) is effective, for C transverse. �

Similar computations imply a bound for the cardinality of S2(C, 0δ).
For δ ≤ ε4(g + s)−2 M ′−1−1/(4g+4s−6) we obtain

#S2(C, 0δ)≤ c1(g)M ′c2(g,s)2(C).

Here c1(g) (and c2(g, s)) are effective constants depending only on g (and s). The
number M ′ depends explicitly on C , g and K2, while ε4 depends explicitly on C ,
g, s and K1. In view of Theorem 9.1, the above bound also implies a bound for
the cardinality of S2(C × γ,Oδ/(g+s)K4).

However, Theorem 1.2 does not give effective K1 or K2. Consequently neither
M ′ nor ε4 are effective. An effective estimate for K1 or K2 would imply an effective
Mordell Conjecture. This gives an indication of the difficulty to extend effective
height proofs from transverse curves to weak-transverse curves.

15. Final remarks

The CM case. The proofs in 2–7 hold whether or not E has CM. Since Conjecture
1.4 is stated for any E , Proposition B holds unchanged for E with CM.

We can extend Proposition A to Gauss-reduced φ ∈ Mr,g(Z + τZ) as follows.
Decompose φ = φ1 + τφ2 for φi ∈ Mr,g(Z), then let the morphism ψ = (φ1|φ2)

act on (x, τ x)+ (y, τ y)+ (ξ, τξ) for x ∈ Sr (C, (0
g
0 )ε), y ∈ 0

g
0 and ξ ∈ Oε. Apply

Proposition A to ψ . Constants will depend on τ .
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From powers to products. In a power there are more algebraic subgroups than in
a product where not all the factors are isogenous. If we consider a product of non-
CM elliptic curves, then the matrix of a morphism φ is simply an integral matrix
where the entries corresponding to nonisogenous factors are zeros. So nothing
changes with respect to our proofs.

If the curve is in a product of elliptic curves in general, we extend the definition
of Gauss-reduced, introducing constants c1(τ ) and c2(τ ), such that the element a
on the diagonal has norm satisfying c1(τ )H(φ)≤ |a| ≤ c2(τ )H(φ).

We leave the details to the reader.
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