
Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

mathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishers

1

Volume 2

2008
No. 3

Diophantine subsets of
function fields of curves

János Kollár





ALGEBRA AND NUMBER THEORY 2:3(2008)

Diophantine subsets of
function fields of curves

János Kollár

We consider diophantine subsets of function fields of curves and show, roughly
speaking, that they are either very small or very large. In particular, this implies
that the ring of polynomials k[t] is not a diophantine subset of the field of rational
functions k(t) for many fields k.

Let R be a commutative ring. A subset D ⊂ R is called diophantine if there are
polynomials

Fi (x, y1, . . . , yn) ∈ R[x, y1, . . . , yn]

such that the system of equations

Fi (r, y1, . . . , yn) = 0 ∀i

has a solution (y1, . . . , yn) ∈ Rn if and only if r ∈ D.
Equivalently, if there is a (possibly reducible) algebraic variety X R over R and

a morphism π : X R → A1
R such that D = π(X R(R)). In this situation we call

dioph(X R, π) := π(X R(R)) ⊂ R

the diophantine set corresponding to X R and π .
A characterization of diophantine subsets of Z was completed in connection

with Hilbert’s 10th problem, but a description of diophantine subsets of Q is still
not known. In particular, it is not known if Z is a diophantine subset of Q or not.
(See [Poonen 2003] or the volume [Denef et al. 2000] for surveys and many recent
results.)

In this paper we consider analogous questions where R = k(t) is a function
field of one variable and k is an uncountable large field of characteristic 0. That
is, for any k-variety Y with a smooth k-point, Y (k) is Zariski dense. Examples of
uncountable large fields are

(1) C or any uncountable algebraically closed field,

(2) R or any uncountable real closed field, and

MSC2000: primary 11U05; secondary 14G25, 14M20, 14G27.
Keywords: diophantine set, rationally connected variety.
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(3) Qp, Q((x)) or the quotient field of any uncountable local Henselian domain.

Roughly speaking, we show that for such fields, a diophantine subset of k(t) is
either very small or very large. The precise result is somewhat technical, but here
are two easy-to-state consequences which serve as motivating examples.

Corollary 1. Let k be an uncountable large field of characteristic 0. Then k[t] is
not a diophantine subset of k(t).

Corollary 2. Let k be an uncountable large field of characteristic 0 and

K2 ⊃ K1 ⊃ k(t)

finite field extensions. Then K1 is a diophantine subset of K2 if and only if K1 = K2.

The latter gives a partial answer to a question of Bogomolov: When is a subfield
K1 ⊂ K2 diophantine in K2?

It is possible that both of these corollaries hold for any field k. Unfortunately,
my method says nothing about countable fields. The geometric parts of the proof
for Propositions 12 and 13 (see 16 and 20) work for any uncountable field, but
the last step 23 uses in an essential way that k is large.

We use two ways to measure how large a diophantine set is.

3 (Diophantine dimension and polar sets). Let B be a smooth, projective, irre-
ducible curve over k. One can think of a rational function f ∈ k(B) as a section of
the first projection π1 : B ×P1

→ B. This establishes a one-to-one correspondence

k(B) ∪ {∞} ↔ { sections of π1 : B × P1
→ B }.

Any section σ : B → B × P1 can be identified with its image, which gives a point
in the Chow variety of curves of B × P1. This gives an injection

k(B) ∪ {∞} ↪→ Chow1(B × P1).

Let U be a countable (disjoint) union of k-varieties and D ⊂ U (k) a subset.
Define the diophantine dimension of D over k as the smallest n ∈{−1, 0, 1, . . . ,∞}

such that D is contained in a countable union of irreducible k-subvarieties of U of
dimension ≤ n. It is denoted by d-dimk D. Note that d-dimk D = −1 if and only
if D = ∅ and d-dimk D ≤ 0 if and only if D is countable.

In particular, we can talk about the diophantine dimension of

dioph(X, f ) ⊂ k(B) ⊂ Chow1(B × P1).

For f ∈ k(B), let pole( f ) denote its divisor of poles. For D ⊂ k(B), set

Polen(D) := { pole( f ) : f ∈ D and deg pole( f ) = n }.

I think of Polen(D) as a subset of the k-points of the n-th symmetric power Sn B.
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Taking each point with multiplicity r ≥ 1 gives embeddings Sm B → Srm B,
whose image I denote by r · Sm B.

With these definitions, the main result is the following theorem illustrating the
“very small or very large” dichotomy.

Theorem 4. Let k be an uncountable large field of characteristic 0 and B a smooth,
projective, irreducible curve over k. Let Xk(B) be a (possibly reducible) algebraic
variety of dimension n over k(B) and πk(B) : Xk(B) → A1

k(B) a morphism. Then
either

(1) d-dimk dioph(Xk(B), πk(B)) ≤ n, or

(2) d-dimk dioph(Xk(B), πk(B)) = ∞ and there is a 0-cycle Pa ∈ Sa B and r > 0
such that for every m > 0 there is a smooth, irreducible k-variety Dm and a
morphism ρm : Dm → Sa+rm B such that

(a) Dm(k) 6= ∅,
(b) Polea+rm

(
dioph(Xk(B), πk(B))

)
⊃ ρm(Dm(k)), and

(c) the Zariski closure of ρm(Dm(k)) contains Pa + r · Sm B ⊂ Sa+rm B.

5 (Proof of the Corollaries). In trying to write a subset D ⊂ k(B) as

D = dioph(Xk(B), πk(B)),

we do not have an a priori bound on dim Xk(B); thus the assertion

d-dimk dioph(Xk(B), πk(B)) = ∞

is hard to use. The Corollaries 1 and 2 both follow from the more precise results
about the distribution of poles.

If B =P1, then a rational function with at least 2 poles on P1 is not a polynomial;
thus Theorem 4 implies Corollary 1.

Next consider Corollary 2. Let K1 = k(B1) ( K2 = k(B2) be a degree d > 1 ex-
tension of function fields of smooth, projective, irreducible k-curves. By Riemann–
Roch, any zero cycle of degree ≥ 2g(B1) defined over k is the polar set of some
f ∈ k(B1). Pulling back gives a map j : Sm B1 → Smd B2; thus

Polen(K1) =

{
j ((Sm B1)(k)) if n = md ≥ 2dg(B1), and

∅ if d -n.

If b1 6= b2 ∈ B2 map to the same point of B1, then a 0-cycle in j (Sm B1) contains
either both b1 and b2 or neither. Thus the Zariski closed set j (Sm B1) never contains
a set of the form Pa + r · Sm B2. By (2.c) of Theorem 4, this shows that K1 is not
diophantine in K2, proving Corollary 2.
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Example 6. (1) The bound n in (1) of Theorem 4 is actually sharp, as shown by
the following.

Note first that any k(t)-solution of x3
+ y3

= 1 is constant. Set

Xn := (x3
1 + y3

1 = · · · = x3
n + y3

n = 1) ⊂ A2n

and
π : (x1, y1, . . . , xn, yn) 7→ x1 + x2t + · · · + xntn−1.

Then dim X = n and for k = C or k = R, dioph(Xn, π) is the set of all degree
≤ n − 1 polynomials.

Using similar constructions one can see that any (finite dimensional) k-algebraic
subset of k(t) is diophantine when k is algebraically closed or real closed. These
are the “small” diophantine subsets of k(t).

(2) The somewhat unusual looking condition about the Zariski closure of Dm in
(2.c) of Theorem 4 is also close to being optimal. For g ∈ k(t) and r > 0 consider
the diophantine set

Lg,r := { f ∈ k(t) : ∃ h such that f = ghr
}.

Then, up to some lower dimensional contribution coming from possible cancella-
tions between poles and zeros of g and hr ,

Polen(Lg,r ) =

{
pole(g) + r · (Sm B)(k) if n = deg pole(g) + rm, and

∅ otherwise.

7. If k = C then our proof shows that in case (2) of Theorem 4 there is a finite set
P ⊂ B(C) such that for every p ∈ B(C) \ P there is an f p ∈ dioph(X, π) with a
pole at p.

If k = R, then we guarantee many poles, but one may not get any real poles. To
get examples, note that h ∈ R(t) is everywhere nonnegative on R if and only if h
is a sum of two squares. Thus for any g ∈ R(t), the set

L1(g) := { f ∈ R(t) : f (t) ≤ g(t) ∀t ∈ R}

is diophantine. L1(g) is infinite dimensional but if g ∈ R[t] then no element of
L1(g) has a real pole.

From the point of view of our proof a more interesting example is the diophan-
tine set

L2(g) := { f ∈ R(t) : ∃ c ∈ R, f 2(t) ≤ c2
· g2(t) ∀t ∈ R}.

The elements of L2(g) are unbounded everywhere yet no element of L2(g) has a
pole in R if g is a polynomial.

This leads to the following question.
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Question 8. Is R[t]R, the set of all rational functions without poles in R, diophan-
tine?

There should be some even stronger variants of the “very small or very large”
dichotomy, especially over C. As a representative case, I propose the following.

Conjecture 9. Let D ⊂ C(t) be a diophantine subset which contains a Zariski
open subset of C[t]. (Meaning, for instance, that D contains a Zariski open subset
of the space of degree ≤ n polynomials for infinitely many n.) Then C(t) \ D is
finite.

In connection with Bogomolov’s question, I would hazard the following:

Conjecture 10. Let k be a large field and K1 ⊂ K2 function fields of k-varieties.
Then K1 is diophantine in K2 if and only if K1 is algebraically closed in K2.

11. The proof of Theorem 4 relies on the theory of rational curves on algebraic
varieties. A standard reference is [Kollár 1996], but nonexperts may prefer the
more introductory [Araujo and Kollár 2003].

The proof is divided into three steps.
First we show that if d-dimk dioph(Xk(B), π) ≥ n + 1 then there is a rationally

connected (see 18) subvariety Zk(B) ⊂ Xk(B) such that π |Z is nonconstant and
Zk(B) has a smooth k(B)-point. This relies on the bend and break method of [Mori
1979]. In a similar context it was first used in [Graber et al. 2005].

Then we show, using the deformation of combs technique developed in [Kollár
et al. 1992; Kollár 1996; 2004; Graber et al. 2003], that for any such Zk(B), there
are infinitely many k-varieties Sm and maps Sm ×B 99K Zk(B) which give injections
Sm(k) ↪→ Zk(B)(k(B)).

Both of these steps are geometric, but the statements are formulated to work
over an arbitrary field L .

Finally, if k is a large field, then each Sm(k) is “large”, which shows that
Zk(B)(k(B)) is “very large”.

For all three steps it is better to replace π : Xk(B) → A1
k(B) with a morphism of

k-varieties f : X → B × P1.

Proposition 12. Let L be any field and B a smooth, projective, irreducible curve
over L. Let f : X → B × P1 be an L-variety of dimension n + 1 and consider the
corresponding diophantine set dioph(X L(B), f ) ⊂ L(B). Then either

(1) d-dimL dioph(X L(B), f ) ≤ n, or

(2) there is a subvariety Z ⊂ X such that
(a) Z → B × P1 is dominant,
(b) the generic fiber of Z → B is rationally connected, and
(c) there is a rational section σ : B 99K Z whose image is not contained in

Sing Z.
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Proposition 13. Let L be an infinite field and B a smooth, projective, irreducible
curve over L. Let f : Z → B × P1 be a smooth, projective L-variety such that

(1) Z → B × P1 is dominant,

(2) the generic fiber of Z → B is separably rationally connected, and

(3) there is a section σ : B → Z.

Then, for some r > 0 and for all m > 0 in an arithmetic progression, there are

(4) a smooth, irreducible L-variety Sm with an L-point, and

(5) a dominant rational map σm : Sm × B 99K Z which commutes with projection
to B,

such that the Zariski closure of the image of f ◦ σm : Sm 99K Chow1(B × P1)

contains

[ f ◦ σ(B)] + r [{b1} × P1
] + · · · + r [{bm} × P1

] for every bi ∈ B(L).

14 (Spaces of sections). Let L be any field, B a smooth, projective, irreducible
curve over L and f : X → B a projective morphism. A section of f (defined over
some L ′

⊃ L) can be identified with the corresponding L ′-point in the Chow variety
of 1-cycles Chow1(X). All sections 6(X/B) defined over L form an open set of
Chow1(X). Indeed, if H is an ample line bundle on B of degree d then a 1-cycle
C is a section if and only if C is irreducible (an open condition) and (C · f ∗H) = d
(an open and closed condition). This procedure realizes Xk(B)(k(B)) as the set of
k-points of a countable union of algebraic k-varieties 6(X/B) =

⋃
i 6i .

The choice of the 6i is not canonical. Given X → B, we get “natural” irreducible
components, but for fixed generic fiber Xk(B), these components depend on the
choice of X . Any representation gives, however, the same constructible sets. We
usually make a further decomposition. Since every variety is a finite set-theoretic
union of locally closed smooth subvarieties, we may choose the 6i such that each
one is smooth and irreducible.

As an explicit example, consider B = P1. Then k(B) ∼= k(t) and every f ∈ k(t)
can be uniquely written (up to scalars) as

f =
a0 + a1t + · · · + antn

b0 + b1t + · · · + bntn ,

where the nominator and the denominator are relatively prime and at least one of
an or bn is nonzero. For any n, all such f form an open subset

6n ⊂ P(a0 : a1 : · · · : an : b0 : b1 : · · · : bn) ∼= P2n+1.
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15 (Very dense subsets). Let U be an irreducible variety over a field L . We say
that a subset D ⊂ U (L) is Zariski very dense if D is not contained in a countable
union of L-subvarieties Vi ( U .

It is easy to see that for any D, there are countably many closed, irreducible
L-subvarieties Wi ⊂ U such that D ⊂

⋃
i Wi (L) and D ∩ Wi (L) is Zariski very

dense in Wi for every i . There is a unique irredundant choice of these Wi .

16 (Proof of Proposition 12). Write X =
⋃

X i as a finite set-theoretic union of
locally closed, smooth, connected varieties. If Proposition 12 holds for each X i

then it also holds for X ; thus we may assume that X is smooth and irreducible. Let
X ′

⊃ X be a smooth compactification such that f extends to f ′
: X ′

→ B × P1.
As before, there are countably many disjoint, irreducible, smooth L-varieties⋃
i 6i = 6(X ′/B) and morphisms ui : B × 6i → X ′ commuting with projection

to B giving all L-sections of f ′. As in 15, there are countably many disjoint,
irreducible, smooth L-varieties Si ⊂ 6(X ′/B) such that each Si (L) is Zariski very
dense in Si and the L-sections of X ′

→ B are exactly given by
⋃

i Si (L).
Composing ui with f ′, we obtain maps

f ′

∗
: Si → 6 ⊂ Chow1(B × P1).

There are 2 distinct possibilities. Either

(1) dimL f ′
∗
(Si ) ≤ n whenever ui (B × Si ) ∩ X 6= ∅, or

(2) there is an i0 such that dimL f ′
∗
(Si0) ≥ n + 1 and ui0(B × Si0) ∩ X 6= ∅.

In the first case dioph(X ′, f ′) is contained in the union of the constructible sets
f ′
∗
(Si ), thus we have (1) of Proposition 12. This is always the case if L is countable.
In the second case we construct Z as required by (2) of Proposition 12 using

only the existence of ui0 : B × Si0 → X . Set S := Si0 and u := ui0 . We can replace
X ′ by a desingularization of the closure of the image u(B × S). By shrinking S we
may assume that u lifts to u : B × S → X ′.

For a point x ∈ X ′ let Sx ⊂ S be the subvariety parametrizing those sections that
pass through x .

Let us now fix b ∈ B(L) such that u({b}×S) is dense in X ′

b and let x run through
X ′

b, the fiber of X ′ over b. Since every section intersects X ′

b,

S =

⋃
x∈X ′

b

Sx and so f ′

∗
(S) =

⋃
x∈X ′

b

f ′

∗
(Sx).

By assumption dimL f ′
∗
(S) ≥ n + 1 and dimL X ′

b = n; hence dimL f ′
∗
(Sx) ≥ 1 for

general x ∈ X ′

b(L). In particular, there is a 1-parameter family of sections Cx ⊂ Sx

such that
f ′

◦ u : B × C → X → B × P1
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is a nonconstant family of sections passing through the point f ′(x).
By 17, this leads to a limit 1-cycle of the form

A + {b} × P1
+ (other fibers of π1)

where A is a section of π1 : B × P1
→ B.

Correspondingly, we get a limit 1-cycle in X ′ of the form

Ax + Rx + (other rational curves)

where Ax is a section of X ′
→ B which dominates A and Rx is a connected union

of rational curves which dominates {b} × P1. Note also that x ∈ Rx .
Thus we conclude that for general x ∈ X ′

b(L), there is a connected union of
rational curves x ∈ Rx ⊂ X ′

b which dominates {b} × P1.
As in 19, let us take the relative MRC-fibration f ′

: X ′
w

99KW ′ 99K B.
For very general x ∈ X ′(L) let X ′

x be the fiber of w containing x . By 19, X ′
x is

closed in X ′ and every rational curve in X ′ that intersects X ′
x is contained in X ′

x .
In particular, Rx ⊂ X ′

x and hence X ′
x dominates {b} × P1.

Let now p ∈ S(L) be a general point and C ⊂ X ′ the corresponding section. By
assumption S(L) is Zariski dense in S; hence we may assume that w is smooth at
the generic point of C . Let Z ′

⊂ w−1(w(C)) be the unique irreducible component
that dominates C and Z = Z ′

∩ X . It satisfies all the required properties. �

17 (Bend-and-break for sections [Mori 1979; Kollár 1996, § II.5; Graber et al.
2005, Lemma 3.2]). Let h : Y → B be a proper morphism onto a smooth projective
curve B. Let C be a smooth curve and u : B × C → Y a nonconstant family of
sections passing through a fixed point y ∈ Y .

Then C can not be a proper curve and for a suitable point c ∈ C \ C the corre-
sponding limit 1-cycle is of the form

6y = Ay + Ry,

where Ay is a section of h (which need not pass through y) and Ry is a nonempty
union of rational curves contained in finitely many fibers of h. Furthermore, Ay +

Ry is connected and y ∈ Ry .
This holds whether we take the limit in the Chow variety of 1-cycles, in the

Hilbert scheme or in the space of stable maps.

18 (Rationally connected varieties [Kollár et al. 1992; Kollár 1996, Chapter IV;
Araujo and Kollár 2003, Section 7]). Let k be a field and K ⊃ k an uncountable
algebraically closed field. A smooth projective k-variety X is called rationally
connected or RC if for every pair of points x1, x2 ∈ X (K ) there is a K -morphism
f : P1

→ X such that f (0) = x1 and f (∞) = x2. X is called separably rationally
connected or SRC if for every point x ∈ X (K ) there is a K -morphism f : P1

→ X
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such that f (0) = x and f ∗TX is an ample vector bundle. (That is, a sum of positive
degree line bundles.) Furthermore, f : P1

→ X can be taken to be an embedding
if dim X ≥ 3. It is known that SRC implies RC and the two notions are equivalent
in characteristic 0.

We may not have any rational curves over k, but we can work with the universal
family of these maps f : P1

→ X . Thus, if dim X ≥ 3 and p ∈ X is a k-point, then
there is an irreducible, smooth k-variety U and a k-morphism G : U × P1

→ X
such that

(1) G(U × {0}) = p,

(2) Gu : {u} × P1
→ Xk is an embedding for every u ∈ U (k), and

(3) G∗
uTX is ample for every u ∈ U (k).

By [Kollár 1999, Theorem 1.4], if k is large then we can choose U such that
U (k) 6= ∅.

19 (MRC fibrations [Kollár et al. 1992; Kollár 1996, § IV.5]). Let K ⊃ k be as
above. Let X be a smooth projective k-variety and g : X → S a k-morphism.
There is a unique (up to birational maps) factorization

g : X
w

99K W
h

99K S

such that

(1) for general p ∈ W (K ), the fiber w−1(p) is closed in X and rationally con-
nected, and

(2) for very general p ∈ W (K ) (that is, for p in a countable intersection of dense
open subsets) every rational curve in X (K ) which intersects w−1(p) and maps
to a point in S is contained in w−1(p).

The map w : X 99K W is called the (relative) maximal rationally connected
fibration or MRC fibration of X → S. Note that if X contains very few rational
curves (for example, if X is an Abelian variety or a K3 surface) then X = W .

20 (Proof of Proposition 13). Here we essentially reverse the procedure of the
first part. Instead of degenerating a 1-parameter family of sections to get a 1-
cycle consisting of a section plus rational curves, we start with a section, add to
it suitably chosen rational curves and prove that this 1-cycle can be written as the
limit of sections in many different ways.

We assume that Z is smooth, projective. If necessary, we take its product with
P3 to achieve that dim Z ≥ 4. This changes the space of sections 6(Z/B) but it
does not change the image of 6(Z/B) in L(B).

Apply 18 to X = ZL(B) and the point p = σ(B) to get

G : UL(B) × P1
→ ZL(B).
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Next replace UL(B) by an L-variety τ : U → B such that G extends to

g : U × P1
→ Z .

By shrinking U if necessary, we may assume that for general b ∈ B(L), the corre-
sponding

gb : Ub × P1
→ Zb

is a family of smooth rational curves passing through σ(b) and g∗
b,uTZb is ample

for every u ∈ Ub where gb,u is the restriction of gb to {u} × P1.
Given distinct points b1, . . . , bm ∈ B(L), let B(b1, . . . , bm) be the comb assem-

bled from B and m copies of P1 where we attach P1
i to B at bi (see 21).

By [Kollár 2004, Theorem 16], there are b1, . . . , bm0 ∈ B(L) and an embedding

σ(g1, . . . , gm0) : B(b1, . . . , bm0) → Z

given by σ on B and by gi := gbi ,ui on P1
i for some ui ∈ Ubi such that the image,

denoted by B(g1, . . . , gm0) ⊂ Z is defined over L and its normal bundle is as
positive as one wants. In particular, by 22, B(g1, . . . , gm0) gives a smooth point of
the Hilbert scheme of Z . Furthermore, for any further distinct points bm0+1, . . . , bm

and gi for i = m0 + 1, . . . , m, the resulting

σ(g1, . . . , gm) : B(b1, . . . , bm) → Z

also gives a smooth point of the Hilbert scheme of Z .
Let Sm denote the smooth locus of the corresponding L-irreducible component

of the Hilbert scheme of Z . B(g1, . . . , gm) gives an L-point of Sm ; hence Sm is
geometrically irreducible. By 22 the general point of Sm corresponds to a section
of f , the universal family is a product over a dense open subset of Sm and we have
a dominant rational map σm : Sm × B 99K Z .

For a given m, it is not always possible to choose bm0+1, . . . , bm such that the
set b1, . . . , bm is defined over L . To achieve this, choose a generically finite and
dominant map ρ : U 99K AL

dim U . For general c ∈ Adim U (L), its preimage ρ−1(c)
gives deg ρ general points in U which are defined over L . Thus we can choose
b1, . . . , bm to be defined over L whenever m − m0 is a multiple of deg ρ.

Let us now consider f∗(Sm) ⊂ Chow1(B × P1). By construction, it contains

f∗(B(g1, . . . , gm)) = A + r({b1} × P1) + · · · + r({bm} × P1)

where A = f ◦ σ(B) is a section of B × P1 and r ≥ 1 is the common (geometric)
degree of the maps

f ◦ gb,u : {u} × P1
→ {b} × P1

⊂ B × P1.
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The combs B(g1, . . . , gm)⊂ Z have some obvious deformations where we keep
B fixed and vary the points bi and the maps gi with them. By construction, the
points bi can vary independently. The images of these 1-cycles in B × P1 are of
the form

A + r({b′

1} × P1) + · · · + r({b′

m} × P1),

where the b′

i vary independently. �

21 (Combs). A comb assembled from B and m copies of P1 attached at the points
bi is a curve B(b1, . . . , bm) obtained from B and {b1, . . . , bm}×P1 by identifying
the points bi ∈ B and (bi , 0) ∈ {bi } × P1.

A comb (with m teeth) can be pictured as below:

b1 b2 bmr r r

P1
1 P1

2 P1
m

B

· · · · · ·

22 (Deformation of reducible curves). Let X be a smooth projective variety and
C ⊂ X a connected curve with ideal sheaf IC . Assume that C has only nodes
as singularities. By the smoothness criterion of the Hilbert scheme [Grothendieck
1962, exposé 221, p. 21], if H 1(C, (IC/IC

2)∗)=0 then [C] is a smooth point of the
Hilbert scheme Hilb(X) and there is a unique irreducible component HC ⊂Hilb(X)

containing [C]. Let UC → HC be the universal family.
If, in addition, (IC/IC

2)∗ is generated by global sections, then a general point
of HC corresponds to a smooth curve and the natural map UC → X is dominant.

23 (Proof of Theorem 4). Let us start with the k(B)-variety Xk(B). We can write
it as the generic fiber of a quasiprojective k-variety X → B and extend πk(B) to
f : X → B × P1. If (1) of Theorem 4 fails then using Proposition 12 we obtain
Z ⊂ X . Take a compactification Z and a resolution Z1 → Z such that the composite
map Z1 99K B × P1 is a morphism. Next apply Proposition 13 to Z1 → B × P1.
We obtain, for every m in an arithmetic progression, a dominant family of sections
σm : Sm × B → Z1.

There is a dense open subset Dm ⊂ Sm such that for every q ∈ Dm(k),

(1) the corresponding section σm({q} × B) ⊂ Z1 intersects Z , and

(2) the corresponding rational function f ◦σm : {q}× B → P1 has exactly a +rm
poles where a is the number of poles of f ◦ σ(B).
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Thus the composite map

ρm := pole ◦ f ◦ σm : Dm → Sa+rm B

is defined. The condition (2.b) of Theorem 4 holds by construction and the Zariski
closure of ρm(Dm) contains Pa+r ·Sm B ⊂ Sa+rm B by (5) of Proposition 13, where
Pa denotes the polar divisor of the section σ , that is, the 0-cycle

f ◦ σ(B) ∩ (B × {∞}).

Sm has a smooth k-point by Proposition 13 and k-points are Zariski dense since
k is a large field. Thus Dm(k) is Zariski dense in Dm . This implies both (2.a) and
(2.c) of Theorem 4.

Finally, Dm(k) is Zariski very dense in Dm by Lemma 24 and

d-dimk dioph(X, π) ≥ d-dimk ρm(Dm(k)) = dimk ρm(Dm) ≥ dimk Sm B = m,

where the middle equality holds by Lemma 24. Thus d-dimk dioph(X, π) = ∞.
The only remaining issue is that our m runs through an arithmetic progression

and is not arbitrary. If the progression is m = b + m′c then

a + r(b + m′c) = (a + rb) + (rc)m′,

so by changing a 7→ a + rb, r 7→ rc we get Theorem 4. �

Lemma 24. Let X be a smooth and irreducible variety over a large field k such that
X (k) 6= ∅. Then X (k) is not contained in the union of fewer than |k| subvarieties
Xλ ( X. In particular, if k is uncountable then X (k) is Zariski very dense in X.

Proof. Assume to the contrary that X (k) 6=∅ but X (k)⊂
⋃

λ∈3 Xλ where |3|< |k|

and Xλ 6= X .
If dim X ≥ 2, then pick p ∈ X (k) and let {Ht : t ∈ P1

k} be a general pencil of
hypersurface sections of X passing through p. Since |3| < |k|, there is an Ht such
that Ht is smooth at p and Ht 6⊂ Xλ for every λ. Thus Ht(k) ⊂

⋃
λ∈3(Ht ∩ Xλ) is

a lower dimensional counterexample. Thus it is enough to prove Lemma 24 when
X is a curve. Then lower dimensional k-subvarieties are just points, thus we need
to show that |X (k)| = |k|.

Let {Ht : t ∈ P1
} be a linear system on X × X which has (p, p) as a base point

and whose general member is smooth at (p, p). Since k is large, each Ht contains
a k-point different from (p, p). Thus |X (k)| = |X (k) × X (k)| ≥ |k|. �
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