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In an earlier paper by one of us (Behrend), Donaldson–Thomas type invariants
were expressed as certain weighted Euler characteristics of the moduli space.
The Euler characteristic is weighted by a certain canonical Z-valued construc-
tible function on the moduli space. This constructible function associates to any
point of the moduli space a certain invariant of the singularity of the space at the
point.

Here we evaluate this invariant for the case of a singularity that is an isolated
point of a C∗-action and that admits a symmetric obstruction theory compatible
with the C∗-action. The answer is (−1)d , where d is the dimension of the Zariski
tangent space.

We use this result to prove that for any threefold, proper or not, the weighted
Euler characteristic of the Hilbert scheme of n points on the threefold is, up to
sign, equal to the usual Euler characteristic. For the case of a projective Calabi–
Yau threefold, we deduce that the Donaldson–Thomas invariant of the Hilbert
scheme of n points is, up to sign, equal to the Euler characteristic. This proves a
conjecture of Maulik, Nekrasov, Okounkov and Pandharipande.

Introduction

The first purpose of this paper is to introduce symmetric obstruction theories. In a
nutshell, these are obstruction theories for which the space of infinitesimal defor-
mations is the dual of the space of infinitesimal obstructions.

As an example of an obstruction theory, consider the intersection of two smooth
varieties V , W inside an ambient smooth variety M . The intersection X carries an
obstruction theory. This is the 2-term complex of vector bundles

E = [�M |X
resV − resW //�V |X ⊕�W |X ]

considered as an object of the derived category D(X) of X , taking up degrees −1
and 0. We see that infinitesimal deformations of X are classified by h0(E∨)= TX ,
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the sheaf of derivations on X . Moreover, the obstructions to the smoothness of
X are contained in h1(E∨), which is called the obstruction sheaf, notation ob =

h1(E∨). Note that h0(E∨) is intrinsic to X , but h1(E∨) is not. In fact, if X is
smooth, all obstructions vanish, but h1(E∨) may be nonzero, although it is always
a vector bundle, in this case.

This obstruction theory E is symmetric, if M is a complex symplectic manifold,
i.e., hyperkähler, and V , W are Lagrangian submanifolds. In fact, the symplectic
form σ induces a homomorphism TX → �M , defined by v 7→ σ(v,−). The fact
that V and W are Lagrangian, i.e., equal to their own orthogonal complements with
respect to σ , implies that there is an exact sequence

0 −→ TX −→�M |X −→�V |X ⊕�W |X −→�X −→ 0.

Assuming for simplicity that X is smooth and hence this is an exact sequence of
vector bundles, we see that ob = h1(E∨)=�X and hence TX is, indeed, dual to ob.

In more abstract terms, what makes an obstruction theory E symmetric is a
nondegenerate symmetric bilinear form of degree 1

β : E
L
⊗ E −→ OX [1].

If M is an arbitrary smooth scheme, then �M is a symplectic manifold in a
canonical way, and the graph of any closed 1-form ω is a Lagrangian submanifold.
Thus the scheme theoretic zero locus X = Z(ω) of ω is an example of the above,
the second Lagrangian being the zero section.

As a special case of this, we may consider the Jacobian locus X = Z(d f ) of a
regular function on a smooth variety M . It is endowed with a canonical symmet-
ric obstruction theory. In Donaldson–Thomas theory, where the moduli space is
heuristically the critical locus of the holomorphic Chern–Simons functional, there
is a canonical symmetric obstruction theory; see [Thomas 2000].

Unfortunately, we are unable to prove that every symmetric obstruction theory
is locally given as the zero locus of a closed 1-form on a smooth scheme, even
though we see no reason why this should not be true.

The best we can do is to show that the most general local example of a symmetric
obstruction theory is the zero locus of an almost closed 1-form on a smooth scheme.
A form ω is almost closed if its differential dω vanishes on the zero locus Z(ω).

For the applications we have in mind we also need equivariant versions of all of
the above, in the presence of a Gm-action.

Weighted Euler characteristics and Gm-actions. In [Behrend 2005] a new (as far
as we can tell) invariant of singularities was introduced. For a singularity (X, P)
the notation was

νX (P).
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The function νX is a constructible Z-valued function on any Deligne–Mumford
stack X . In [Behrend 2005], the following facts were proved about νX :

• If X is smooth at P , then νX (P)= (−1)dim X .

• νX (P) νY (Q)= νX×Y (P, Q).

• If X = Z(d f ) is the singular locus of a regular function f on a smooth variety
M , then

νX (P)= (−1)dim M(1 −χ(FP)),

where FP is the Milnor fibre of f at P .

• Let X be a projective scheme endowed with a symmetric obstruction theory. The
associated Donaldson–Thomas type invariant (or virtual count) is the degree of the
associated virtual fundamental class. In this case, νX (P) is the contribution of the
point P to the Donaldson–Thomas type invariant, in the sense that

#vir(X)= χ(X, νX )=

∑
n∈Z

n χ({νX = n}).

We define the weighted Euler characteristic of X to be

χ̃(X)= χ(X, νX ).

The last property shows the importance of νX (P) for the calculation of Donald-
son–Thomas type invariants.

In this paper we calculate the number νX (P) for certain kinds of singularities.
In fact, we will assume that X admits a Gm-action and a symmetric obstruction
theory, which are compatible with each other. Moreover, we assume P to be an
isolated fixed point for the Gm-action. We prove that

νX (P)= (−1)dim TX |P , (1)

in this case.
We get results of two different flavors from this:

• If the scheme X admits a globally defined Gm-action with isolated fixed points
and around every fixed point admits a symmetric obstruction theory compatible
with the Gm-action we obtain

χ̃(X)=

∑
P

(−1)dim TX |P , (2)

the sum extending over the fixed points of the Gm-action. This is because nontrivial
Gm-orbits do not contribute, the Euler characteristic of Gm being zero, and νX being
constant on such orbits.
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• If X is projective, with globally defined Gm-action and symmetric obstruction
theory, these two structures being compatible, we get

#vir(X)= χ̃(X)=

∑
P

(−1)dim TX |P . (3)

An example. It may be worth pointing out how to prove (1) in a special case. As-
sume the multiplicative group Gm acts on affine n-space An in a linear way with
nontrivial weights r1, . . . , rn ∈ Z, so that the origin P is an isolated fixed point. Let
f be a regular function on An , which is invariant with respect to the Gm-action.
This means that f (x1, . . . , xn) is of degree zero, if we assign to xi the degree ri .
Let X = Z(d f ) be the scheme-theoretic critical set of f . The scheme X inherits
a Gm-action. It also carries a symmetric obstruction theory which is compatible
with the Gm-action.

Assume that f ∈ (x1, . . . , xn)
3. This is not a serious restriction. It ensures that

TX |P = TAn |P and hence that dim TX |P = n.
Let ε ∈ R, ε > 0 and η ∈ C, η 6= 0 be chosen such that the Milnor fiber of f at

the origin may be defined as

FP = {x ∈ Cn
| f (x)= η and |x |< ε}.

It is easy to check that FP is invariant under the S1-action on Cn induced by our
Gm-action. Moreover, the S1-action on FP has no fixed points. This implies im-
mediately that χ(FP)= 0 and hence that νX (P)= (−1)n .

Even though we consider this example (Z(d f ), P) to be the prototype of a
singularity admitting compatible Gm-actions and symmetric obstruction theories,
we cannot prove that every such singularity is of the form (Z(d f ), P). We can
only prove that a singularity with compatible Gm-action and symmetric obstruction
theory looks like (Z(ω), P), where ω is an almost closed Gm-invariant 1-form on
An , rather than the exact invariant 1-form d f . This is why the proof of (1) is more
involved, in the general case. Rather than the Milnor fiber, we use the expression
of νX (P) as a linking number, found in Proposition 4.22 of [Behrend 2005].

Lagrangian intersections. One amusing application of (3) is the following for-
mula. Assume M is a complex symplectic manifold with a Hamiltonian C∗-action,
all of whose fixed points are isolated. Let V and W be invariant Lagrangian sub-
manifolds. Assume their intersection is compact. Finally, assume that the Zariski
tangent space of the intersection at every fixed point is even-dimensional. Then we
can express the intersection number as an Euler characteristic:

deg([V ] ∩ [W ])= χ(V ∩ W ).

Hilbert schemes. Our result is a powerful tool for computing weighted Euler char-
acteristics. It is a replacement for the lacking additivity of χ̃ over strata.
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As an example of the utility of (1), we will show in this paper that

χ̃(Hilbn Y )= (−1)nχ(Hilbn Y ), (4)

for every smooth scheme Y of dimension 3.
In particular, if Y is projective and Calabi–Yau (i.e., has a chosen trivialization

ωY = OY ), we get that

#vir(Hilbn Y )= (−1)nχ(Hilbn Y ),

where #vir is the virtual count à la Donaldson–Thomas [2000]. This latter formula
was conjectured by Maulik, Nekrasov, Okounkov and Pandharipande in [Maulik
et al. 2003]. Using the McMahon function M(t) =

∏
∞

n=1(1 − tn)−n , we can also
express this result as

∞∑
n=0

#vir(Hilbn Y ) tn
= M(−t)χ(Y ).

The strategy for proving (4) is as follows. We first consider the open Calabi–Yau
threefold A3. We exploit a suitable Gm-action on A3 to prove (4) for Y = A3, using
Formula (2). At this point, we can drop all Calabi–Yau assumptions.

Let Fn be the punctual Hilbert scheme. It parameterizes subschemes of A3 of
length n which are entirely supported at the origin. Let νn be the restriction of
νHilbn A3 to Fn . Formula (4) for Y = A3 is equivalent to

χ(Fn, νn)= (−1)nχ(Fn). (5)

Finally, using more or less standard stratification arguments, we express χ̃(Hilbn Y )
in terms of χ(Fn, νn). This uses the fact that the punctual Hilbert scheme of Y at
a point P is isomorphic to Fn . Then (5) implies (4).

Conventions. We will work over the field of complex numbers. All stacks will be
of Deligne–Mumford type. All schemes and stacks will be of finite type over C.
Hence the derived category Dqcoh(OX ), of complexes of sheaves of OX -modules
with quasicoherent cohomology is equivalent to the derived category D(Qcoh-OX )

of the category of quasicoherent OX -modules (see Proposition 3.7 in Exposé II of
SGA6). To fix ideas, we will denote by D(X) the latter derived category and call it

the derived category of X . We will often write E ⊗ F instead of E
L
⊗ F , for objects

E, F of D(X).
Let X be a Deligne–Mumford stack. We will write L X for the cutoff at −1 of the

cotangent complex of X . Thus, if U → X is étale and U → M a closed immersion
into a smooth scheme M , we have, canonically,

L X |U = [I/I 2
→�M |X ],
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where I is the ideal sheaf of U in M and we think of the homomorphism I/I 2
→

�M |X of coherent sheaves on U as a complex concentrated in the interval [−1, 0].
We will also call L X the cotangent complex of X , and hope the reader will forgive
this abuse of language. The cotangent complex L X is an object of D(X).

We will often use homological notation for objects in the derived category. This
means that En = E−n , for a complex · · · → E i

→ E i+1
→ · · · in D(X).

For a complex of sheaves E , we denote the cohomology sheaves by hi (E).
Let us recall a few sign conventions: If E = [E1

α
−→ E0] is a complex concen-

trated in the interval [−1, 0], then

E∨
= [E∨

0
−α∨

−→ E∨

1 ]

is a complex concentrated in the interval [0, 1]. Thus the shifted dual E∨
[1] is

given by

E∨
[1] = [E∨

0
α∨

−→ E∨

1 ]

and concentrated, again, in the interval [−1, 0].
If θ : E → F is a homomorphism of complexes concentrated in the interval

[−1, 0], such that θ = (θ1, θ0), then the shifted dual θ∨
[1] : F∨

[1] → E∨
[1] is

given by θ∨
[1] = (θ∨

0 , θ
∨

1 ).

Suppose E = [E1
α

−→ E0] and F = [F1
β

−→ F0] are complexes concentrated in
the interval [−1, 0] and θ : E → F and η : E → F homomorphisms of complexes.
Then a homotopy from η to θ is a homomorphism h : E0 → F1 such that h ◦ α =

θ1 − η1 and β ◦ h = θ0 − η0.

1. Symmetric obstruction theories

Nondegenerate symmetric bilinear forms.

Definition 1.1. Let X be a scheme or a Deligne–Mumford stack. Let E ∈ Db
coh(OX )

be a perfect complex. A nondegenerate symmetric bilinear form of degree 1 on E
is a morphism

β : E
L
⊗ E −→ OX [1]

in D(X), which is

(i) symmetric, which means that

β(e ⊗ e′)= (−1)deg(e) deg(e′)β(e′
⊗ e);

(ii) nondegenerate, which means that β induces an isomorphism

θ : E −→ E∨
[1].
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Remark 1.2. The isomorphism θ : E → E∨
[1] determines β as the composition

E ⊗ E
θ⊗id // E∨

[1] ⊗ E
tr[1] //OX [1].

Symmetry of β is equivalent to the condition

θ∨
[1] = θ.

Usually, we will find it more convenient to work with θ , rather than β. Thus we
will think of a nondegenerate symmetric bilinear form of degree 1 on E as an
isomorphism θ : E → E∨

[1], satisfying θ∨
[1] = θ .

Remark 1.3. Above, we have defined nondegenerate symmetric bilinear forms of
degree 1. One can generalize the definition to any degree n ∈ Z. Only the case
n = 1 will interest us in this paper.

Example 1.4. Let F be a vector bundle on X and let α : F → F∨ a symmetric
bilinear form. Define the complex E = [F → F∨

], by putting F∨ in degree 0 and
F in degree −1. Then E∨

[1] = E . Define θ = (θ1, θ0) by θ1 = idF and θ0 = idF∨ :

E

θ

��

= [F α //

1
��

F∨
]

1
��

E∨
[1] = [F α // F∨

]

Then E is a perfect complex with perfect amplitude contained in [−1, 0]. More-
over, θ is a nondegenerate symmetric bilinear form on E . Note that θ is an iso-
morphism, and hence the form it defines is nondegenerate, whether or not α is
nondegenerate.

Example 1.5. Let f be a regular function on a smooth variety M . The Hessian of
f defines a symmetric bilinear form on TM |X , where X = Z(d f ). So there is an
induced symmetric bilinear form on the complex [TM |X →�M |X ].

Lemma 1.6. Let E be a complex of vector bundles on X , concentrated in the
interval [−1, 0]. Let θ : E → E∨

[1] be a homomorphism of complexes. Assume
that θ∨

[1] = θ , as morphisms in the derived category. Then Zariski-locally on the
scheme X (or étale locally on the stack X ) we can represent the derived category
morphism given by θ as a homomorphism of complexes (θ1, θ0):

E

θ

��

= [E1

θ1
��

α // E0]

θ0
��

E∨
[1] = [E∨

0
α∨

// E∨

1 ]

such that θ1 = θ∨

0 .
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Proof. Let us use notation θ = (ψ1, ψ0). Then the equality of derived category
morphisms θ∨

[1] = θ implies that, locally, θ∨
[1] = (ψ∨

0 , ψ
∨

1 ) and θ = (ψ1, ψ0)

are homotopic. So let h : E0 → E∨

0 be a homotopy:

hα = ψ1 −ψ∨

0 ,

α∨h = ψ0 −ψ∨

1 .

Now define

θ0 =
1
2(ψ0 +ψ∨

1 ),

θ1 =
1
2(ψ1 +ψ∨

0 ).

One checks, using h, that (θ1, θ0) is a homomorphism of complexes, and as such,
homotopic to (ψ1, ψ0). Thus (θ1, θ0) represents the derived category morphism θ ,
and has the required property. �

The next lemma shows that for amplitude 1 objects, every nondegenerate sym-
metric bilinear form locally looks like the one given in Example 1.4. Again, locally
means étale locally, but in the scheme case Zariski locally.

Lemma 1.7. Suppose that A ∈ Db
coh(OX ) is of perfect amplitude contained in

[−1, 0], and that η : A → A∨
[1] is an isomorphism satisfying η∨

[1] = η. Then
we can locally represent A by a homomorphism of vector bundles α : E → E∨

satisfying α∨
= α and the isomorphism η by the identity.

Proof. Start by representing the derived category object A by an actual complex
of vector bundles α : A1 → A0, and the morphism η : A → A∨

[1] by an actual
homomorphism of complexes (η1, η0). Then pick a point P ∈ X and lift a basis of
cok(α)(P) to A0. replace A0 by the free OX -module on this bases, and pull back
to get a quasiisomorphic complex.

Now any representative of η has, necessarily, that η0 is an isomorphism in a
neighborhood of P . By Lemma 1.6, we can assume that η1 = η∨

0 . Then both η0

and η1 are isomorphisms of vector bundles. Now use η0 to identify A0 with A∨

1 . �

Isometries.

Definition 1.8. Consider perfect complexes A and B, endowed with nondegenerate
symmetric forms θ : A → A∨

[1] and η : B → B∨
[1]. An isomorphism 8 : B → A,

such that the diagram

B

η

��

8 // A

θ
��

B∨
[1] A∨

[1]
8∨

[1]oo

commutes in D(X), is called an isometry 8 : (B, η)→ (A, θ).
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Note that because η and θ are isomorphisms, the condition on 8 is equivalent
to 8−1

=8∨
[1], if we use η and θ to identify A with B.

We include the following lemma on the local structure of isometries for the
information of the reader. Since we do not use it in the sequel, we omit the (lengthy)
proof.

Lemma 1.9. Let A and B be perfect, of amplitude contained in [−1, 0]. Suppose
θ : A → A∨

[1] and η : B → B∨
[1] are nondegenerate symmetric forms. Let

8 : B → A be an isometry.
Suppose that (A, θ) and (B, η) are represented as in Example 1.4 or Lemma

1.7. Thus,

A = [E
α
→ E∨

] and B = [F
β
→ F∨

],

for vector bundles E and F on X. Moreover, θ and η are the respective identities.
Assume that rk(F) = rk(E). Then, étale locally in X (Zariski locally if X is a

scheme), we can find a vector bundle isomorphism

φ : F −→ E,

such that α ◦φ = φ∨−1
◦β, and (φ, φ∨−1) represents 8:

B

8

��

= [F
β //

φ

��

F∨
]

φ∨−1

��
A = [E α // E∨

]

In particular, (φ−1, φ∨) represents 8∨
[1].

Symmetric obstruction theories. Recall from [Behrend and Fantechi 1997] that
a perfect obstruction theory for the scheme (or Deligne–Mumford stack) X is a
morphism φ : E → L X in D(X), where E is perfect, of amplitude in [−1, 0], we
have h0(φ) : h0(E) → �X is an isomorphism and h−1

: h−1(E) → h−1(L X ) is
onto.

We denote the coherent sheaf h1(E∨) by ob and call it the obstruction sheaf of
the obstruction theory. It contains in a natural way the obstructions to the smooth-
ness of X . Even though we do not include E in the notation, ob is by no means an
intrinsic invariant of X .

Any perfect obstruction theory for X induces a virtual fundamental class [X ]
vir

for X . We leave the obstruction theory out of the notation, even though [X ]
vir

depends on it. The virtual fundamental class is an element of Ark E(X), the Chow
group of algebraic cycles modulo rational equivalence. The degree of [X ]

vir is
equal to the rank of E .
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Definition 1.10. Let X be a Deligne–Mumford stack. A symmetric obstruction
theory for X is a triple (E, φ, θ) where φ : E → L X is a perfect obstruction theory
for X and θ : E → E∨

[1] a nondegenerate symmetric bilinear form.

We will often refer to such an E as a symmetric obstruction theory, leaving the
morphisms φ and θ out of the notation.

Remark 1.11. It is shown in [Behrend 2005] that for symmetric obstruction the-
ories, the virtual fundamental class is intrinsic to X , namely it is the degree zero
Aluffi class of X .

Proposition 1.12. Every symmetric obstruction theory has expected dimension
zero.

Proof. Recall that the expected dimension of E → L X is the rank of E . If E → L X

is symmetric, we have rk E = rk(E∨
[1])= − rk E∨

= − rk E and hence rk E = 0.
�

By this proposition, the following definition makes sense.

Definition 1.13. Assume X is proper and we have given a symmetric obstruction
theory for X . We define the virtual count of X to be the number

#vir(X)= deg[X ]
vir

=

∫
[X ]vir

1.

If X is a scheme (or an algebraic space), the virtual count is an integer. In general
it may be a rational number.

Proposition 1.14. For a symmetric obstruction theory E → L X , the obstruction
sheaf is canonically isomorphic to the sheaf of differentials:

ob =�X .

Proof. We have ob = h1(E∨)= h0(E∨
[1])= h0(E)=�X . �

Corollary 1.15. For a symmetric obstruction theory,

h−1(E)= Hom(�X ,OX )= TX .

Proof. We always have h−1(E)= ob∨. �

Definition 1.16. Let E and F be symmetric obstruction theories for X . An iso-
morphism of symmetric obstruction theories is an isometry8 : E → F commuting
with the maps to L X .

Remark 1.17. Let f : X → X ′ be an étale morphism of Deligne–Mumford stacks,
and suppose that X ′ has a symmetric obstruction theory E ′. Then f ∗E ′ is naturally
a symmetric obstruction theory for X .
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Conversely, if we are given symmetric obstruction theories E for X and E ′ for
X ′, we will say that the morphism f is compatible with the obstruction theories if
E is isomorphic to f ∗E ′ as symmetric obstruction theory.

Remark 1.18. If X and X ′ are Deligne–Mumford stacks with symmetric obstruc-
tion theories E and E ′, then p∗

1 E ⊕ p∗

2 E ′ is naturally a symmetric obstruction
theory for X × X ′. We call it the product symmetric obstruction theory.

Example 1.19. Let M be smooth and ω a closed 1-form on M . Let X = Z(ω)
be the scheme-theoretic zero locus of ω. Consider ω as a linear epimorphism
ω∨

: TM → I , where I is the ideal sheaf of X in M . Let us denote the restriction to
X of the composition of ω∨ and d : I →�M by ∇ω. It is a linear homomorphism
of vector bundles ∇ω : TM |X →�M |X . Because ω is closed, ∇ω is symmetric and,
as we have seen in Example 1.4, defines a symmetric bilinear form on the complex
E = [TM |X →�M |X ].

The morphism φ : E → L X as in the diagram

E

φ

��

= [TM |X
∇ω //

ω∨

��

�M |X ]

1
��

L X = [I/I 2 d // �M |X ]

makes E into a symmetric obstruction theory for X . In particular, note that Ex-
ample 1.5 gives rise to a symmetric obstruction theory on the Jacobian locus of a
regular function.

Let us remark that for the symmetry of ∇ω and hence the symmetry of the
obstruction theory given by ω, it is sufficient that ω be almost closed, which means
that dω ∈ I�2

M .

A remark on the lci case. We will show that the existence of a symmetric obstruc-
tion theory puts strong restrictions on the singularities X can have.

For the following proposition, it is important to recall that we are working in
characteristic zero.

Proposition 1.20. Let E → L X be a perfect obstruction theory, symmetric or not.
A criterion for the obstruction sheaf to be locally free is that X be a reduced local
complete intersection.

Proof. As the claim is local, we may assume that E has a global resolution E =

[E1 → E0], that X ↪→ M is embedded in a smooth scheme M (with ideal sheaf
I ) and that E → L X is given by a homomorphism of complexes [E1 → E0] −→

[I/I 2
→ �M |X ]. We may even assume that E0 → �M |X is an isomorphism of

vector bundles.
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Under the assumption that X is a reduced local complete intersection, I/I 2 is
locally free and that I/I 2

→ �M |X is injective. Then a simple diagram chase
proves that we have a short exact sequence of coherent sheaves

0 −→ h−1(E)−→ E1 −→ I/I 2
−→ 0.

Hence, h−1(E) is a subbundle of E1 and ob = h−1(E)∨. In particular, ob is locally
free. (We always have h−1(E)= ob∨; the converse is generally false.) �

Corollary 1.21. If X is a reduced local complete intersection and admits a sym-
metric obstruction theory, then X is smooth.

Proof. Because ob = �X , the sheaf �X is locally free. This implies that X is
smooth. �

Examples.

Lagrangian intersections. Let M be an algebraic symplectic manifold and V , W
two Lagrangian submanifolds. Let X be the scheme-theoretic intersection. Then
X carries a canonical symmetric obstruction theory.

To see this, note first of all that for a Lagrangian submanifold V ⊂ M , the normal
bundle is equal to the cotangent bundle, NV/M = �V . The isomorphism is given
by v 7−→ σ(v,−), where σ is the symplectic form, which maps NV/M = TM/TV

to �V = T ∨

V . It is essentially the definition of Lagrangian, that this map is an
isomorphism of vector bundles on V .

Next, note that the obstruction theory for X as an intersection of V and W can
be represented by the complex

E = [�M
resV − resW //�V ⊕�W ]

∣∣
X .

The shifted dual is

E∨
[1] = [ TV ⊕ TW //TM ]

∣∣
X .

Define θ : TM →�V ⊕�W as the canonical map TM → NV/M ⊕ NW/M given by
the projections, multiplied by the scalar factor 1

2 . Then (θ∨, θ) defines a morphism
of complexes E∨

[1] → E∨:

E∨
[1] =

��

[TV ⊕ TW //

θ∨

��

TM ]

θ

��
E = [ �M // �V ⊕�W ]

One checks that (θ∨, θ) is a quasiisomorphism. Since (θ∨, θ)∨[1] = (θ∨, θ), this
morphism of complexes defines a symmetric bilinear form on E∨

[1], hence on E .
Thus E is a symmetric obstruction theory on X .
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Sheaves on Calabi–Yau threefolds. Let Y be an integral proper 3-dimensional Gor-
enstein Deligne–Mumford stack (for example a projective threefold). By the Gor-
enstein assumption, Y admits a dualizing sheaf ωY , which is a line bundle over
Y , also called the canonical bundle. Let ωY → OY be a nonzero homomorphism,
giving rise to the short exact sequence

0 −→ ωY −→ OY −→ OD −→ 0,

so that D is an anticanonical divisor on Y . In fact, D is a Cartier divisor. Of course,
D may be empty (this case we refer to as the Calabi–Yau case). Finally, choose an
arbitrary line bundle L on Y . Often we are only interested in the case L = OY .

Now let us define a certain moduli stack M of sheaves on Y . For an arbitrary
C-scheme S, let M(S) be the groupoid of pairs (E, φ). Here E is a sheaf of OY×S-
modules, such that

(i) E coherent,
(ii) E is flat over S,
(iii) E is perfect as an object of the derived category of Y ×S, i.e., locally admits

finite free resolutions, (by Cor. 4.6.1 of Exp. III of SGA 6, this is a condition which
may be checked on the fibres of π : Y × S → S).

The second component of the pair (E, φ) is an isomorphism φ :det E→ L of line
bundles on Y ×S. Note that the determinant det E is well-defined, by Condition (iii)
on E.

We require two more conditions on E, namely that for every point s ∈ S, denoting
the fibre of E over s by Es , we have

(iv) Es is simple, i.e., κ(s)→ Hom(Es,Es) is an isomorphism,
(v) the map induced by the trace R Hom(Es,Es)→ OYs is an isomorphism in a

neighborhood of Ds .
The last condition (v) is empty in the Calabi–Yau case. It is, for example, satis-

fied if Es is locally free of rank 1 in a neighborhood of D.
We let X be an open substack of M which is algebraic (for example, fix the

Hilbert polynomial and pass to stable objects, but we do not want to get more
restrictive than necessary). Then X is a Deligne–Mumford stack. We will now
construct a symmetric obstruction theory for X .

For this, denote the universal sheaf on Y ×X by E and the projection Y ×X → X
by π . Consider the trace map R Hom(E,E)→ O and let F be its shifted cone, so
that we obtain a distinguished triangle in D(OY×X ):

O

+1

��










F // R Hom(E,E)

tr
ccGGGGGGGGG



326 Kai Behrend and Barbara Fantechi

Note that F is self-dual: F∨
= F, canonically.

Lemma 1.22. The complex

E = Rπ∗ R Hom(F, ωY )[2]

is an obstruction theory for X.

Proof. This is well-known deformation theory; see [Thomas 2000]. �

The homomorphism ωY → OY induces an isomorphism

Rπ∗(F ⊗ωY )−→ Rπ∗F,

because the cone if this homomorphism is Rπ∗(F ⊗ OD) and F ⊗ OD = 0, by
Assumption (v), above. Dualizing and shifting, we obtain an isomorphism

(Rπ∗F)∨[−1] −→
(
Rπ∗(F ⊗ωY )

)∨
[−1].

Exploiting the fact that F is self-dual, we may rewrite this as

(Rπ∗F)∨[−1] −→
(
Rπ∗ R Hom(F, ωY )

)∨
[−1],

or in other words
(Rπ∗F)∨[−1] −→ E∨

[1]. (6)

Now, relative Serre duality for the morphism π :Y ×X → X applied to F states that

Rπ∗ R Hom(F, ωY [3])= (Rπ∗F)∨,

or in other words
E = (Rπ∗F)∨[−1].

Thus, we see that (6) is, in fact, an isomorphism

θ : E −→ E∨
[1].

Lemma 1.23. The isomorphism θ : E → E∨
[1] satisfies the symmetry property

θ∨
[1] = θ .

Proof. This is just a derived version of the well-known fact that tr(AB)= tr(B A),
for endomorphisms A, B of a free module. �

Lemma 1.24. The complex E has perfect amplitude contained in the interval
[−1, 0].

Proof. Perfection is clear. To check the interval, note that by symmetry of E it
suffices to check that the interval is [−1,∞]. We have seen that E = Rπ∗F[2]. So
the interval is no wore than [−2,∞]. But h−2(E)= 0, by Assumption (iv), above.

�
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Corollary 1.25. The Deligne–Mumford stack X admits, in a natural way, a sym-
metric obstruction theory, namely

E = Rπ∗ R Hom(F, ωY )[2] = Rπ∗F[2].

We call this obstruction theory the Donaldson–Thomas obstruction theory.
In the next two propositions we mention two special cases. The first was origi-

nally introduced in [Thomas 2000], where the symmetry was pointed out, too.

Proposition 1.26. Let Y be a smooth projective threefold with trivial canonical
bundle, and let X be the fine moduli stack of stable sheaves on Y of rank r > 0,
with fixed determinant L and with Chern classes c2, c3. Then X admits a symmetric
obstruction theory.

Proof. In fact, every trivialization ωY = OY induces a symmetric obstruction theory.
�

Proposition 1.27. Let Y be a smooth projective threefold and D an effective anti-
canonical divisor on Y . Let X ′ be the scheme of torsion-free rank 1 sheaves with
trivial determinant and fixed Chern classes c2, c3. Recall that such sheaves can be
identified with ideal sheaves. Let X ⊂ X ′ be the open subscheme consisting of ideal
sheaves which define a subscheme of Y whose support is disjoint from D. Then X
admits a symmetric obstruction theory.

For example, Hilbn(Y \ D), the Hilbert scheme of length n subschemes of Y \ D
admits a symmetric obstruction theory.

Proof. Again, we would like to point out that every homomorphism ωY → OY

defining D gives rise to a symmetric obstruction theory on X . Even though the
compactification is used in its construction, this symmetric obstruction theory does
not depend on which compactification is chosen. �

Stable maps to Calabi–Yau threefolds.

Proposition 1.28. Let Y be a Calabi–Yau threefold and let X be the open locus
in the moduli stack of stable maps parameterizing immersions of smooth curves.
Then the Gromov–Witten obstruction theory of X is symmetric, in a natural way.

Proof. Let π : C → X be the universal curve and f : C → Y the universal map.
Let F be the kernel of f ∗�Y → �C , which is a vector bundle of rank 2 on C .
The Gromov–Witten obstruction theory on X is E = Rπ∗(F ⊗ωC/X )[1]. By Serre
duality for π : C → X , we have E∨

[1] = Rπ∗(F∨)[1].
As F is of rank 2, we have F = F∨

⊗det F . Because Y is Calabi–Yau, we have
det F ⊗ωC/X = OC . Putting these two facts together, we get F ⊗ωC/X = F∨ and
hence E = E∨

[1]. �
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2. Equivariant symmetric obstruction theories

A few remarks on equivariant derived categories. Let X be a scheme with an
action of an algebraic group G. Let (Qcoh-OX )

G denote the abelian category
of G-equivariant quasicoherent OX -modules. Thus, and object of (Qcoh-OX )

G is
a quasicoherent OX -module F together with descent data to the quotient stack
[X/G], in other words and isomorphism between p∗F and σ ∗F satisfying the
cocycle condition. Here p and σ are projection and action maps X × G → X ,
respectively. Denote by D(X)G the derived category of (Qcoh-OX )

G . Note that
OX is an object of D(X)G , in a natural way.

There is the forgetful functor D(X)G → D(X), which maps a complex of equi-
variant sheaves to its underlying complex of sheaves. It is an exact functor.

To simplify matters, let us make two assumptions:
(a) X admits a G-equivariant ample invertible sheaf O(1),
(b) G is a diagonalizable group, i.e., G = Spec C[W ] is the spectrum of the group
ring of a finitely generated abelian group W . Then W is canonically identified with
the character group of G.

The affine case. If X = Spec A is affine, A is W -graded. A G-equivariant OX -
module is the same thing as a W -graded A-module.

We call a W -graded A-module quasifree, if it is free as an A-module on a set
of homogeneous generators. Any quasifree W -graded A-module is isomorphic to
a direct sum of shifted copies of A. Quasifree W -graded A-modules are projective
objects in the abelian category (Qcoh-OX )

G of W -graded A-modules. Hence this
category has enough projective objects.

The global case. Let F be a G-equivariant OX -module. We can shift F by any
character w ∈ W of G. We denote the shift by F[w]. Every G-equivariant quasi-
coherent OX -module F can be written as a quotient of sheaf of the form⊕

i∈I

O(ni )[wi ]. (7)

Thus, every G-equivariant quasicoherent OX -module admits left resolutions con-
sisting of objects of form (7). More generally, every bounded above complex in
D(X)G can be replaced by a bounded above complex of objects of type (7). These
resolutions are G-equivariant.

Since objects of the form (7) are locally free as OX -modules (forgetting the
G-structure), we can use these resolutions to compute the derived functors of ⊗

and Hom(−, F). Thus we see that for G-equivariant quasicoherent OX -modules
E , F the quasicoherent OX -modules Tori (E, F) and Exti (E, F) are again G-
equivariant. More generally, we see that for bounded above objects E , F of

D(X)G , the objects E
L
⊗ F and R Hom(E, F) are again in D(X)G .
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For a G-equivariant sheaf E , we write E∨
= Hom(E,OX ). For a bounded above

object E of D(X)G , we write E∨
= R Hom(E,OX ).

Let {Ui } be an invariant affine open cover. Let F be a G-equivariant quasi-
coherent OX -module. Then, the Čech resolution C•({Ui }, F) is a right resolution
of F by G-equivariant quasicoherent OX -modules. It is an acyclic resolution for
the global section functor, showing that the cohomology groups H i (X, F) are W -
graded. More generally, let f : X → Y be a G-equivariant morphism. Then we
see that Ri f∗F are G-equivariant quasicoherent OY -modules.

Moreover, if E is a bounded below complex in D(X)G , we can construct the
associated Čech complex C({Ui }, E), which is a double complex. Passing to the
associated single complex, we see that we may replace E by a bounded below com-
plex of G-equivariant OX -modules which are acyclic for f∗, for any G-equivariant
morphism f : X → Y . Thus we see that the functor R f : D(X)→ D(Y ) passes to
a functor R f : D(X)G → D(Y )G .

The cotangent complex. If X is a G-scheme as above, the sheaf of Kähler differ-
entials �X and its dual TX =�∨

X are G-equivariant.
We can use the equivariant ample line bundle L to construct a G-equivariant

embedding X ↪→ M into a smooth G-scheme M . The cotangent complex I/I 2
→

�M |X is then naturally an object of D(X)G . The usual proof that L X is a canon-
ically defined object of D(X) works equivariantly and proves that L X is a canon-
ically defined object of D(X)G . By canonically defined, we mean that any two
constructions are related by a canonical isomorphism.

Perfect objects. We call an object E in D(X)G perfect (of perfect amplitude in the
interval [m, n]), if its underlying object of D(X) is perfect (of perfect amplitude
in the interval [m, n]).

Remark 2.1. If X is a scheme and E in D(X) is a perfect complex, of perfect
amplitude contained in [m, n], then we can write E locally as a complex

[Em
→ · · · → En

]

of free OX -modules contained in the interval [m, n]. This is essentially because if
E → E ′′ is an epimorphism of locally free coherent sheaves, the kernel is again
locally free coherent.

In the equivariant context, we have to forgo this convenient fact. Suppose E
in D(X)G is perfect, again of amplitude contained in [m, n]. We can, as we saw
above, write E as a bounded above complex of sheaves of form (7), all of them
coherent, i.e., with finite indexing set I . But when we cut off this infinite complex
to fit into the interval [m, n], we end up with a G-equivariant quasicoherent sheaf
which is locally free coherent as an OX -module without the G-structure, but which
is not locally quasifree and not locally projective in the category (Qcoh-OX )

G .
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Symmetric equivariant obstruction theories.

Definition 2.2. Let X be a scheme with a G-action. An equivariant perfect ob-
struction theory is a morphism E → L X in the category D(X)G , which is a perfect
obstruction theory as a morphism in D(X). (This definition is originally due to
Graber and Pandharipande [1999].)

A symmetric equivariant obstruction theory, (or an equivariant symmetric ob-
struction theory) is a pair (E → L X , E → E∨

[1]) of morphisms in the category
D(X)G , such that E → L X is an (equivariant) perfect obstruction theory and
θ : E → E∨ is an isomorphism satisfying θ∨

[1] = θ .

This is more than requiring that the obstruction theory be equivariant and sym-
metric, separately, as we can see in the following example.

Example 2.3. Let ω =
∑n

i fi dxi be an almost closed 1-form on An . Recall from
Example 1.19 that ω defines a symmetric obstruction theory

H(ω)= [TM |X
∇ω
−→�M |X ]

on the zero locus X of ω.
Define a Gm-action on An by setting the degree of xi to be ri , where ri ∈ Z.

Assume that each fi is homogeneous with respect to these degrees and denote the
degree of fi by ni . Then the zero locus X of ω inherits a Gm-action.

If we let Gm act on TM by declaring the degree of ∂/∂xi to be equal to ni , then
H(ω) is Gm-equivariant as well as the morphism H(ω)→ L X . Thus H(ω) is an
equivariant obstruction theory.

But note that H(ω) is not equivariant symmetric. This is because the identity
on H(ω) (which is θ in this case) is not Gm-equivariant if we consider it as a
homomorphism

H(ω)→ H(ω)∨[1].

Unless ni = −ri , because then the degree of ∂/∂xi is equal to its degree as the dual
of dxi .

In the case ni =−ri , the formω=
∑

fi dxi is an invariant element of0(M, �M),
or an equivariant homomorphism OM →�M . In this case we do get an equivariant
symmetric obstruction theory.

The equivariant Donaldson–Thomas obstruction theory. Let G be a diagonaliz-
able group as above. Consider a projective threefold Y , endowed with a linear
G-action. Consider a G-equivariant nonzero homomorphism ωY → OY , defining
the G-invariant anticanonical Cartier divisor D.

Proposition 2.4. Let X be as in Proposition 1.27. Then the Donaldson–Thomas
obstruction theory of Corollary 1.25 on X is G-equivariant symmetric.
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Proof. Let X ′ be the compactification of X as in Proposition 1.27. Let E be the
universal sheaf on Y × X and Z ⊂ Y × X be the universal subscheme. We have an
exact sequence

0 −→ E −→ OY×X −→ OZ −→ 0.

Let π : Y × X → X be the projection. Note that E and OZ are G-equivariant. This
follows directly from the universal mapping property of E.

The standard ample invertible sheaf on X ′ is detπ∗(OZ (n)), for n sufficiently
large. It is G-equivariant, as all ingredients in its construction are. Hence X admits
an equivariant ample invertible sheaf.

Next, notice that all the constructions involved in producing the obstruction
theory E = Rπ∗ R Hom(F, ωY )[2] work equivariantly. Hence the symmetric ob-
struction theory is equivariant.

To prove that it is equivariant symmetric, we just need to remark that the bilinear
form θ is induced from ω → OY , which is equivariant, and that Serre duality is
equivariant, because it is natural. �

Local structure in the Gm-case. Let G = Gm . We will prove that Example 2.3
describes the unique example of a symmetric Gm-equivariant obstruction theory,
at least locally around a fixed point.

Lemma 2.5. Let X be an affine Gm-scheme with a fixed point P. Let n denote
the dimension of TX |P , the Zariski tangent space of X at P. Then there exists
an invariant affine open neighborhood X ′ of P in X , a smooth Gm-scheme M of
dimension n and an equivariant closed embedding X ′ ↪→ M

Proof. Let A be the affine coordinate ring of X . The Gm-action induces a grading
on A. Let m be the maximal ideal given by the point P . We can lift an eigenbasis of
m/m2 to homogeneous elements x1, . . . , xn of m. Choose homogeneous elements
y1, . . . , ym in m in such a way that x1, . . . , xn, y1, . . . , ym is a set of generators of A
as a C-algebra. This defines a closed embedding X ↪→ An+m , which is equivariant
if we define a Gm-action on An+m in a suitable, obvious, way.

We have thus written A as a quotient of C[x, y]. Let I denote the corresponding
homogeneous ideal in C[x, y]. Then we have

m/m2
= (x, y)/

(
I + (x, y)2

)
.

Since this C-vector space is generated by x1, . . . , xn , we have, in fact,

yi ∈ I + (x, y)2 + (x),

for i = 1, . . . ,m. We can therefore find homogeneous elements f1, . . . , fm ∈ I
such that

yi − fi ∈ (x, y)2 + (x) and deg fi = deg yi ,
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for all i = 1, . . . ,m. Let g ∈ C[x, y] be the determinant of the Jacobian matrix
(∂ fi/∂y j ). We see that g is homogeneous of degree 0 and that g(0, 0)= 1. Let U ⊂

An+m be the affine open subset where g does not vanish. This is an invariant subset
containing P . Let Z ⊂ An+m be the closed subscheme defined by ( f1, . . . , fm). It
carries an induced Gm-action. The intersection M = Z ∩U is a smooth scheme of
dimension n.

As ( f1, . . . , fm) is contained in I , X is a closed subscheme of Z . Let X ′
=

X ∩ U . �

Proposition 2.6. Let X be an affine Gm-scheme with a fixed point P and let n =

dim TX |P . Furthermore, let X be endowed with a symmetric equivariant obstruc-
tion theory E → L X . Then there exists an invariant affine open neighborhood X ′

of P in X , an equivariant closed embedding X ′ ↪→ M into a smooth Gm-scheme M
of dimension n and an invariant almost closed 1-form ω on M such that X = Z(ω).
We can further construct an equivariant isometry E → H(ω) commuting with the
maps to L X , but it will not be necessary for the purposes of this paper.

Proof. We apply Lemma 2.5, to obtain the equivariant closed embedding X ′ ↪→ M .
Write X for X ′. Let A be the affine coordinate ring of X and I the ideal of 0(OM)

defining X .
Consider the object E of D(X)Gm . We can represent E by an infinite complex

[· · · → E1 → E0] of finitely generated quasifree A-modules.
Because quasifree modules are projective, if E is represented by a bounded

complex of quasifree modules as above and E → F is a morphism in D(X)G ,
then E → F can be represented by an actual morphism of complexes, without
changing E .

Thus we have morphisms of complexes of graded modules

[· · · → E1 → E0] → [I/I 2
→�M |X ]

and

θ : [· · · → E1 → E0] → [E∨

0 → E∨

1 → · · · ].

We can represent the equality of derived category morphisms θ∨
[1]= θ by a homo-

topy between θ∨
[1] and θ , because E is a bounded above complex of quasifrees.

Then, as in the proof of Lemma 1.6, we can replace θ0 by 1
2(θ0 + θ∨

1 ) and θ1 by
1
2(θ1 + θ∨

0 ), without changing the homotopy class of θ . Then θ1 = θ∨

0 .
Now we can replace E1 by cok(E2 → E1) and E∨

1 by ker(E∨

1 → E∨

2 ). Because
of the perfection of E , both cok(E2 → E1) and ker(E∨

1 → E∨

2 ) are projective
A-modules (after forgetting the grading), which are, moreover, dual to each other.

Thus we have now represented E by a complex [E1 → E0] of equivariant vector
bundles and E → L X and θ : E → E∨

[1] by equivariant morphisms of complexes.
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Moreover, θ = (θ∨

0 , θ0), for an equivariant morphism of vector bundles θ0 : E0 →

E∨

1 .
Now we remark that we may assume that the rank of E0 is equal to n. Simply

lift a homogeneous basis of �X |P to E0 and replace E0 by the quasifree module
on these n elements of E0. Then pass to an invariant open neighborhood of P
over which both E0 → �M |X and θ0 : E0 → E∨

1 are isomorphisms. Use these
isomorphisms to identify. Then our obstruction theory is given by an equivariant
homomorphism

[TM |X
α //

φ

��

�M |X ]

id
��

[I/I 2 // �M |X ]

such that α∨
= α. Note that φ is necessarily surjective.

As we may assume that�M |X and hence TM |X is given by a quasifree A-module,
we may lift φ to an equivariant epimorphism TX → I . This gives the invariant 1-
form ω. �

3. The main theorem

Preliminaries on linking numbers. Here our dimensions are all real dimensions.
We work with orbifolds. Orbifolds are differentiable stacks of Deligne–Mumford

type, which means that they are representable by Lie groupoids X1 ⇒ X0, where
source and target maps X1 → X0 are étale (i.e., local diffeomorphisms) and the
diagonal X1 → X0 × X0 is proper. If a compact Lie group G acts with finite
stabilizers on a manifold X , the quotient stack [X/G] is an orbifold.

All our orbifolds will tacitly assumed to be oriented, which means that any
presenting groupoid X1 ⇒ X0 is oriented, i.e., X0 and X1 are oriented and all
structure maps (in particular source and target X1 → X0) preserve orientations.

Given an orbifold X , presented by the groupoid X1 ⇒ X0, with proper diagonal
X1 → X0 × X0, the image of the diagonal is a closed equivalence relation on X0.
The quotient is the coarse moduli space of X .

We call an orbifold compact, if its course moduli space is compact. More gen-
erally, we call a morphism f : X → Y of orbifolds proper, if the induced map on
coarse moduli spaces is proper.

To fix ideas, let H∗(X) denote de Rham cohomology of the orbifold X . For
the definition and basic properties of this cohomology theory, see [Behrend 2004].
Note that homotopy invariance holds: the projection X × R → X induces an iso-
morphism H∗(X)→ H∗(X × R).

If f : X → Y is a proper morphism of orbifolds, there exists a wrong way map
f! : H i (X) → H i−d(Y ), where d = dim X − dim Y is the relative dimension of
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f . If Y is the point, then we also denote f! by
∫

X . We will need the following
properties of f!:

(i) Functoriality: (g ◦ f )! = g! ◦ f!.
(ii) Naturality: if v : V ⊂ Y is an open suborbifold and u : U ⊂ X the inverse

image of U under f : X → Y , we have v∗
◦ f! = g! ◦ u∗, where g : U → V is the

restriction of f .
(iii) Projection formula: f!

(
f ∗(α)∪β

)
= α ∪ f!(β).

(iv) Poincaré duality: if X is a compact orbifold, the pairing
∫

X α ∪ β between
H i (X) and H n−i (X) is a perfect pairing of finite dimensional R-vector spaces
(n = dim X ).

(v) Long exact sequence: if ι : Z ⊂ X is a closed suborbifold with open com-
plement U , there is a long exact sequence (c = dim X − dim Z )

· · ·
∂ // H i−c(Z) //ι! // H i (X) // H i (U )

∂ // H i−c+1(Z) // · · ·

In the situation of (v), we call cl(Z)= ι!(1) ∈ H c(X) the class of Z .
We could use any other cohomology theory with characteristic zero coefficients

which satisfies these basic properties.

Remark 3.1. Let T ⊂ R be an open interval containing the points 0 and 1. Let
Z and X be a compact orbifolds and h : Z × T → X a differentiable morphism
of orbifolds such that h0 : Z × {0} → X and h1 : Z × {1} → X are isomorphisms
onto closed suborbifolds Z0 and Z1 of X . We call h a differentiable homotopy
between Z0 and Z1. It is not difficult to see, using Poincaré duality and homotopy
invariance, that the existence of such an h implies that cl(Z0)= cl(Z1) ∈ H∗(X).

Linking numbers and S1-actions. Let A and B be closed submanifolds, both of di-
mension p, of a compact manifold S of dimension 2p+1. Assume that H p+1(S)=
H p(S)= 0 and that A ∩ B = ∅. For simplicity, assume also that p is odd.

Under these assumptions we can define the linking number L S(A, B) as follows.
By our assumption, the boundary map ∂ : H p(S\ B)→ H 0(B) is an isomorphism.
Let β ∈ H p(S \ B) be the unique element such that ∂β = 1 ∈ H 0(B). Via the
inclusion A → S \ B we restrict β to A and set

L S(A, B)=

∫
A
β.

Now assume A′ is another closed submanifold of S of dimension p, and A′
∩B =

∅, too. Thus L S(A′, B) is defined. We wish to compare L S(A′, B) with L S(A, B).
Suppose h : Z × T → S is a differentiable homotopy between A and A′, as in

Remark 3.1. It is an obvious, well-known fact, that if the image of h is entirely
contained in S \ B, then L S(A′, B) = L S(A, B). We wish to show that in the
presence of an S1-action, L S(A′, B)= L S(A, B), even if h(Z × T ) intersects B.
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Proposition 3.2. Let S1 act on S with finite stabilizers. Assume that A, A′ and
B are S1-invariant. Finally, assume that there exists an S1-equivariant homotopy
h : T × Z → S from A to A′. Then L S(A′, B)= L S(A, B).

Proof. The condition that h be equivariant means that S1 acts on Z with finite
stabilizers and that h is equivariant, i.e. h(t, γ · z)= γ · h(t, z), for all γ ∈ S1 and
(t, z) ∈ T × Z .

We form the quotient orbifold X = [S/S1
], which is compact of dimension 2p.

It comes together with a principal S1-bundle π : S → X . Let Ã, Ã′, B̃ and Z̃ be
the quotient orbifolds obtained from A, A′, B and Z . The homotopy h descends
to a differentiable homotopy h : T × Z̃ → X between Ã and Ã′, proving that
cl( Ã)= cl( Ã′) ∈ H p+1(X). This conclusion is all we need the homotopy h for.

Next we will construct, for a fixed B, an element η ∈ H p−1(X), such that

L S(A, B)=

∫
X
η∪ cl( Ã),

for any A, such that A ∩ B = ∅. This will conclude the proof of the proposition.
In fact, let β∈ H p(S\B), such that ∂β=1∈ H 0(B). The S1-bundle S\B → X\B̃

induces a homomorphism π! : H p(S\ B)→ H p−1(X \ B̃). Note that the restriction
H p−1(X)→ H p−1(X \ B̃) is an isomorphism, since the codimension of B̃ in X is
p + 1. Thus, there exists a unique η ∈ H p−1(X), such that

η|X\B̃ = π!β.

Hence

L S(A, B)=

∫
A
β =

∫
Ã
π!β =

∫
Ã
η =

∫
X
η∪ cl( Ã),

as claimed. The last equality follows from naturality of the wrong way maps and
the projection formula. �

The proof of νX(P) = (−1)n. We return to the convention that dimensions are
complex dimensions.

Let X be a scheme with a Gm-action. Let P ∈ X be a fixed point of this action.
The point P is called an isolated fixed point, if 0 is not a weight of the induced
action of Gm on the Zariski tangent space TX |P .

Proposition 3.3. Let M be a smooth scheme on which Gm acts with an isolated
fixed point P ∈ M. Let ω be an invariant (homogeneous of degree zero) almost
closed 1-form on M and X = Z(ω). Assume P ∈ X. Then

νX (P)= (−1)dim M .

Proof. We will use the expression of νX (P) as a linking number from Proposi-
tion 4.22 of [Behrend 2005]. We choose étale homogeneous coordinates x1, . . . , xn
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for M around P and the induced étale coordinates x1, . . . , xn, p1, . . . , pn of �M .
Since the linking number in question is defined inside a sufficiently small sphere
in �M around P (and is a topological invariant), we may as well assume that
M = Cn and P is the origin. Of course, ω is then a 1-form holomorphic (instead
of algebraic) at the origin. We write ω =

∑n
i=1 fi dxi .

As in [ibid.], for η ∈ C, η 6= 0, we write 0η for the graph of the section 1
η
ω of

�M . It is defined as a subspace of �M by the equations ηpi = fi (x). It is oriented
so that M → 0η is orientation preserving.

For t ∈ R, we write1t for the subspace of�M defined by the equations tpi = x̄i .
We orient 11 in such a way that the map Cn

→ 11 given by (x1, . . . , xn) 7→

(x1, . . . , xn, x̄1, . . . , x̄n) preserves orientation. Then we orient all other 1t by
continuity. This amounts to the same as saying that the map (p1, . . . , pn) 7→

(t p̄1, . . . , t p̄n, p1, . . . , pn) from Cn to 1t preserves orientation up to a factor of
(−1)n .

Proposition 4.22 of [ibid.] says that for sufficiently small ε >0 there exists η 6=0
such that 0′

η = 0η ∩ Sε is a manifold disjoint from 1′

1 =11 ∩ Sε and

νX (P)= L Sε (1
′

1, 0
′

η).

Here Sε is the sphere of radius ε centered at the origin P in �M . It has dimension
4n − 1. Let us fix ε and η.

The given Gm = C∗-action on M induces an action on �M = C2n . Let us denote
the degree of xi by ri . Then the degrees of pi and fi are both equal to −ri . By
restricting to S1

⊂ C∗, we get an induced S1-action on Sε . This action has finite
stabilizers, because none of the ri vanish, P being an isolated fixed point of the
Gm-action. Note that 0′

η is an S1-invariant submanifold of Sε .
Consider the map from R × S2n−1

→ Sε given by

(t, p1, . . . , pn) 7→
ε

√
1 + t2

(t p̄1, . . . , t p̄n, p1, . . . , pn).

This map is an S1-equivariant homotopy between the invariant submanifolds1′

0 =

10 ∩ Sε and 1′

1.
The fact that1′

1 is disjoint from 0′
η follows from the fact that ω is almost closed,

as explained in [ibid.]. The fact that 1′

0 is disjoint from 0′
η is trivial: 10 is (up to

orientation) the fiber of the vector bundle �M → M over the origin and 0η is the
graph of a section. But there is no reason (at least none apparent to the authors)
why there shouldn’t exist values of t other than 0 or 1, for which 1′

t = 11 ∩ Sε
intersects 0η.

Still, Proposition 3.2 implies that

L Sε (1
′

1, 0
′

η)= L Sε (1
′

0, 0
′

η).
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Let us denote the fiber of�M over the origin by10, and its intersection with Sε by
1

′

0. By the correspondence between linking numbers and intersection numbers (see
[Fulton 1984], Example 19.2.4), we see that L Sε (1

′

0, 0
′
η) is equal to the intersection

number of 10 with 0η at the origin. This number is 1, as the section 0η intersects
the fiber 10 transversally.

Since the orientations of 10 and 10 differ by (−1)n , we conclude that

νX (P)= L Sε (1
′

1, 0
′

η)= L Sε (1
′

0, 0
′

η)= (−1)n L Sε (1
′

0, 0
′

η)= (−1)n,

which is what we set out to prove. �

Theorem 3.4. Let X be an affine Gm-scheme with an isolated fixed point P. As-
sume that X admits an equivariant symmetric obstruction theory. Then

νX (P)= (−1)dim TX |P .

Proof. Let n = dim TX |P . By Proposition 2.6, we can assume that X is embedded
equivariantly in a smooth scheme M of dimension n and that X is the zero locus
of an invariant almost closed 1-form on M . Note that the embedding X ↪→ M
identifies TX |P with TM |P , so that P is an isolated point of the Gm-action on M .
Thus Proposition 3.3 implies that νX (P)= (−1)n . �

Corollary 3.5. Let X be a Gm-scheme such that all fixed points are isolated and
every fixed point admits an invariant affine open neighborhood over which there
exists an equivariant symmetric obstruction theory. Then we have

χ̃(X)=

∑
P

(−1)dim TX |P ,

the sum extending over the fixed points. Moreover, if Z ⊂ X is an invariant locally
closed subscheme, we have

χ̃(Z , X)=

∑
P∈Z

(−1)dim TX |P ,

the sum extending over the fixed points in Z.

Proof. The product property of ν implies that νX is constant on nontrivial Gm-
orbits. The Euler characteristic of a scheme on which Gm acts without fixed points
is zero. These two facts imply that only the fixed points contribute to χ̃(X) =

χ(X, νX ). �

Corollary 3.6. Let X be a projective scheme with a linear Gm-action. Let X be
endowed with an equivariant symmetric obstruction theory. Assume all fixed points
of Gm on X are isolated. Then we have

#vir(X)=

∑
P

(−1)dim TX |P ,
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the sum extending over the fixed points of Gm on X.

Proof. We use the fact that X can be equivariantly embedded into a smooth scheme
to prove that every fixed point has an invariant affine open neighborhood. Thus
Corollary 3.5 applies. The main result of [Behrend 2005], Theorem 4.18, says that
#vir

= χ̃(X). �

Application to Lagrangian intersections. Let M be an algebraic symplectic man-
ifold with a Hamiltonian Gm-action. Assume all fixed points are isolated. Let V
and W be invariant Lagrangian submanifolds, X their intersection.

Proposition 3.7. We have

χ̃(X)=

∑
P∈X

(−1)dim TX |P ,

the sum extending over all fixed points inside X.

Proof. One checks that the action of Gm being Hamiltonian, i.e., that Gm preserves
the symplectic form, implies that the symmetric obstruction theory on X is equi-
variant symmetric. �

Proposition 3.8. Assume X is compact. Then

deg([V ] ∩ [W ])=

∑
P∈X

(−1)dim TX |P ,

the sum extending over the fixed points contained in X.

Proof. Note that, in fact, the virtual number of points of X is the intersection
number of V and W . �

Corollary 3.9. Assume that X is compact and that dim TX |P is even, for all fixed
points P. Then we have

deg([V ] ∩ [W ])= χ(X).

4. Hilbert schemes of threefolds

The threefold A3. Let T = G3
m be the standard 3-dimensional torus with character

group Z3. Let T0 be the kernel of the character (1, 1, 1). Thus,

T0 = {(t1, t2, t3) ∈ T | t1t2t3 = 1}.

We let T act in the natural way on A3. Write coordinates on A3 as x, y, z,
then, as elements of the affine coordinate ring C[x, y, z] of A3, the weight of x is
(1, 0, 0), the weight of y is (0, 1, 0) and the weight of z is (0, 0, 1).

We choose on A3 the standard 3-form dx ∧dy∧dz to fix a Calabi–Yau structure.
The torus T0 acts by automorphisms of A3 preserving the Calabi–Yau structure.
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by Proposition 2.4 we obtain a T0-equivariant symmetric obstruction theory on
X = Hilbn A3.

Lemma 4.1. (a) The T0-action on X has a finite number of fixed points. These
correspond to monomial ideals in C[x, y, z].
(b) If I is such an ideal, the T0-action on the Zariski tangent space to X at I has
no invariant subspace.
(c) If I is such an ideal and d is the dimension of the Zariski tangent space to X at
I , we have (−1)d = (−1)n , in other words, the integer d has the same parity as n.

Proof. (a) Since the T0-action on A3 has the origin as unique fixed point, any
invariant subscheme must be supported at the origin. Let I ⊂ C[x, y, z] be the
corresponding ideal; I must be generated by eigenvectors of the torus action on
the polynomial ring. Any eigenvector can be written uniquely in the form m g(xyz)
where m is a monomial and g ∈ C[t] is a polynomial with g(0) 6= 0. However,
since the ideal is supported at the origin, the zero locus of g(xyz) is disjoint from
the zero locus of I , and so by Hilbert’s Nullstellensatz, the monomial m is also in
I . Hence every T0-invariant ideal is generated by monomials.

(b) Let us write A = C[x, y, z]. The tangent space in question is Hom(I, A/I ).
We will prove that none of the weights w = (w1, w2, w3) of T on HomA(I, A/I )
can satisfy w1, w2, w3 < 0 or w1, w2, w3 ≥ 0. In particular, none of these weights
can be an integer multiple of (1, 1, 1).

This will suffice, in view of the following elementary fact: Let w1, . . . , wn ∈ Z3

be characters of T . If none of the wi is an integer multiple of (1, 1, 1), there exists
a one-parameter subgroup λ : Gm ↪→ T0, such that wi ◦λ 6= 0, for all i = 1, . . . , n.

Suppose, then, that φ : I → A/I is an eigenvector of T with weight (w1, w2, w3),
with w1 ≥ 0, w2 ≥ 0 and w3 ≥ 0. Then for a monomial xa ybzc

∈ I we have
φ(xa ybzc)≡ xa+w1 yb+w2 zc+w3 mod I , which vanishes in A/I , proving that φ=0.

Now suppose φ : I → A/I is an eigenfunction whose weights satisfy w1 < 0,
w2 < 0 and w3 < 0. Let a be the smallest integer such that xa

∈ I . Then let b
be the smallest integer such that xa−1 yb

∈ I . Finally, let c be the smallest integer
such that xa−1 yb−1zc

∈ I . Then if a monomial xr yszt is in I , it follows that r ≥ a,
s ≥ b or t ≥ c.

We have

φ(xa ybzc)= xzcφ(xa−1 yb)≡ xzcxa−1+w1 yb+w2 ≡ xa+w1 yb+w2 zc mod I.

We also have

φ(xa ybzc)= xyφ(xa−1 yb−1zc)≡ xa+w1 yb+w2 zc+w3 mod I.

We conclude that

xa+w1 yb+w2 zc
− xa+w1 yb+w2 zc+w3 ∈ I.
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Since the ideal I is monomial, each of these two monomials is in I . But the latter
one cannot be in I .

(c) This is an immediate consequence of [Maulik et al. 2003], Theorem 2 in § 4.10.
In fact, this theorem states that if w1, . . . , wd are the weights of T on the tangent
space V , ∏d

i=1(−wi )∏d
i=1wi

= (−1)n

inside the field of rational functions on T . �

Proposition 4.2. For any T0-invariant locally closed subset Z of Hilbn A3 we have

χ̃(Z ,Hilbn A3)= (−1)nχ(Z).

Proof. Since there are only finitely many fixed points of T0 on X , we can use
the fact mentioned in the proof of Lemma 4.1 to find a one-parameter subgroup
Gm → T0 with respect to which all weights of all tangent spaces at all fixed points
are nonzero. Thus, all Gm-fixed points are isolated. Because Hilbn A3 admits an
equivariant embedding into projective space (see the proof of Proposition 2.4),
every fixed point has an invariant affine open neighborhood.

The symmetric obstruction theory on Hilbn
(n) A3 is equivariant symmetric with

respect to the induced Gm-action. We can therefore apply Corollary 3.5. We obtain:

χ̃(Z ,Hilbn A3)=

∑
P∈Z

(−1)n,

where the sum extends over fixed points P contained in Z . Since χ(Z) = #{P ∈

Z , P fixed}, the result follows. �

Let Fn denote the closed subset of Hilbn A3 consisting of subschemes supported
at the origin. Let νn be the restriction of the canonical constructible function
νHilbn A3 to Fn . Thus χ̃(Fn,Hilbn A3)= χ(Fn, νn). Note that all T0-fixed points of
Hilbn A3 are contained in Fn .

Let M(t) =
∏

∞

n=1(1 − tn)−n be the McMahon function. It is the generating
series for 3-dimensional partitions. Hence, if we write M(t)=

∑
∞

n=0 pntn , then pn

denotes the number of monomial ideals I in A = C[x, y, z], such that dimC A/I =

n. The number pn is the number of T0-fixed points in Fn or Hilbn A3. Thus,
pn = χ(Fn)= χ(Hilbn A3).

Corollary 4.3. We have

χ(Fn, νn)= (−1)nχ(Fn)= (−1)n pn,

and hence
∞∑

n=0

χ(Fn, νn)tn
= M(−t).
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Weighted Euler characteristics of Hilbert schemes. Let Y be a smooth threefold,
and n > 0 an integer. Consider the Hilbert scheme of n points on Y , denoted
Hilbn Y . The scheme Hilbn Y is connected, smooth for n ≤ 3 and singular other-
wise, and reducible for large enough n.

Let us denote by νY the canonical constructible function on Hilbn Y . Our goal
is to calculate

χ̃(Hilbn Y )= χ(Hilbn Y, νY ).

Let us start with a useful general lemma on Hilbert schemes.

Lemma 4.4. Let f : Y → Y ′ be a morphism of projective schemes and Z ⊂ Y
a closed subscheme. Assume that f is étale in a neighborhood of Z and that the
composition Z → Y ′, which we will denote by f (Z), is a closed immersion of
schemes.

Let X be the Hilbert scheme of Y which contains Z and P the point of X cor-
responding to Z. Let X ′ be the Hilbert scheme of Y ′ which contains f (Z). Then
there exists an open neighborhood U of P in X and an étale morphism φ :U → X ′,
which sends a subscheme Z̃ → Y to the composition Z̃ → Y ′.

Proof. For the existence of the open set U and the morphism φ, see for example
Proposition 6.1, Chapter I of [Kollár 1996]. The fact that φ is étale in a neighbor-
hood of P follows from a direct application of the formal criterion. �

The closed stratum. We start by recalling the standard stratification of Hilbn Y .
The strata are indexed by partitions of n. Let α = (α1, . . . , αr ) be a length r
partition of n, i.e., α1 ≥ α2 ≥ . . . ≥ αr ≥ 1 and

∑r
i=1 αi = n. Let Hilbn

α Y be the
locus of subschemes whose support consists of r distinct points with multiplicities
α1, . . . , αr . The closed stratum is Hilbn

(n) Y . It corresponds to subschemes sup-
ported at a single point. To fix ideas, we will endow all strata with the reduced
scheme structure.

Lemma 4.5. For any threefold Y there is a natural morphism

πY : Hilbn
(n) Y → Y.

Proof. This is a part of the Hilbert–Chow morphism Hilbn Y → SnY to the sym-
metric product. A proof that this is a morphism of schemes can be found, for
example, in [Lehn 2004]. �

Note that Fn is the fiber of πA3 over the origin.

Lemma 4.6. We have a canonical isomorphism

Hilbn
(n) A3

= A3
× Fn. (8)

Moreover, νA3 = p∗νn , where p : Hilbn
(n) A3

→ Fn is the projection given by (8).
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Proof. Consider the action of the group A3 on itself by translations. We get an
induced action of A3 on Hilbn A3. Use this action to translate a subscheme sup-
ported at a point P to a subscheme supported at the origin. Obtain the morphism
p : Hilbn

(n) A3
→ Fn in this way. The product morphism πA3 × p : Hilbn

(n) A3
→

A3
× Fn is an isomorphism.
It is a formal consequence of the general properties of the canonical constructible

function, that it is constant on orbits under a group action. This implies the claim
about νA3 . �

Lemma 4.7. Consider an étale morphism of threefolds φ : Y → Y ′.
(a) Let U ⊂ Hilbn Y be the open subscheme parameterizing subschemes Z ⊂ Y ,
which satisfy: if P and Q are distinct points in the support of Z , then φ(P) 6=φ(Q).
There is an étale morphism 8̃ :U →Hilbn Y ′ sending a subscheme of Y to its image
under φ.

Hilbn
(n) Y

8

��

// U

8̃

��

// Hilbn Y

Hilbn
(n) Y ′ // Hilbn Y ′

(b) The restriction of 8̃ to Hilbn
(n) Y induces a cartesian diagram of schemes

Hilbn
(n) Y 8 //

πY

��
�

Hilbn
(n) Y ′

πY ′

��
Y

φ // Y ′

Proof. The existence and étaleness of 8̃ follows immediately from Lemma 4.4,
applied to quasiprojective covers of Y and Y ′. Part (b) is clear. �

Let φ : Y → Y ′ be an étale morphism with induced morphism 8 : Hilbn
(n) Y →

Hilbn
(n) Y ′. By Lemma 4.7, the morphism 8 extends to open neighborhoods in

Hilbn Y and Hilbn Y ′, respectively. The extension 8̃ is étale. Thus, we see that

8∗(νY ′)= νY .

Proposition 4.8. Every étale morphism φ : Y → A3 induces an isomorphism
Hilbn

(n) Y = Y × Fn . The constructible function νY |Hilbn
(n) Y is obtained by pulling

back νn via the induced projection Hilbn
(n) Y → Fn .

Proof. Combine Lemmas 4.6 and 4.7(b) with each other. �

Corollary 4.9. The morphism πY : Hilbn
(n) Y → Y is a Zariski-locally trivial fibra-

tion with fiber Fn . More precisely, there exists a Zariski open cover {Ui } of Y , such



Symmetric obstruction theories and Hilbert schemes of points on threefolds 343

that for every i , we have

(π−1
Y (Ui ), νY )= (Ui , 1)× (Fn, νn).

This is a product of schemes with constructible functions on them.

Proof. Every point of Y admits étale coordinates, defined in a Zariski open neigh-
borhood. �

Reduction to the closed stratum. From now on the threefold Y will be fixed and
we denote Hilbn

α Y by Xn
α and Hilbn Y by Xn .

Lemma 4.10. Let α = (α1, . . . , αr ) be a partition of n.
(a) Let V be the open subscheme of

∏r
i=1 Xαi parameterizing r-tuples of sub-

schemes with pairwise disjoint support. Then there is a morphism fα : V → Xn

mapping (Z1, . . . , Zr ) to Z =
⋃

i Zi . The morphism fα is étale. Its image U is
open and contains Xn

α. Let Zα = f −1
α Xn

α:

Zα //

Galois
��

�

V

fα
��

//
∏

i Xαi

Xn
α

// U // Xn

Moreover, the induced morphism Zα → Xn
α is a Galois cover with Galois group

Gα, where Gα is the automorphism group of the partition α.
(b) The scheme Zα is contained in

∏
i Xαi

(αi )
and has therefore a morphism Zα →

Y r . There is a cartesian diagram

Zα //

��
�

∏
i Xαi

(αi )

��
Y r

0
// Y r

where Y r
0 is the open subscheme in Y r consisting of r-tuples with pairwise disjoint

entries.

Proof. The existence of fα and the fact that it is étale follows from Lemma 4.4
applied to the étale map

∐r
i=1 Y → Y and the subscheme Z1 q . . .q Zr ⊂

∐r
i=1 Y .

All other facts are also straightforward to prove. �

Theorem 4.11. Let Y be a smooth scheme of dimension 3. Then for all n > 0

χ̃(Hilbn Y )= (−1)nχ(Hilbn Y ).

This implies
∞∑

n=0

χ̃(Hilbn Y )tn
= M(−t)χ(Y ).
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Proof. By formal properties of χ̃ as proved in [Behrend 2005], we can calculate
as follows, using Lemma 4.10(a):

χ̃(Xn)=

∑
α`n

χ̃(Xn
α, Xn)=

∑
α`n

χ̃(Xn
α,U )=

∑
α`n

|Gα| χ̃(Zα, V )

=

∑
α`n

|Gα| χ̃
(

Zα,
∏

i

Xαi
)
.

By Lemma 4.10(b) and Corollary 4.9, Zα → Y `(α)0 is a Zariski-locally trivial fibra-
tion with fiber

∏
i Fαi . Here we have written `(α) for the length r of the partition

(α1, . . . , αr ). We conclude:

χ̃
(

Zα,
∏

i

Xαi
)

= χ(Y `(α)0 )
∏

i

χ(Fαi , ναi )

Together with Corollary 4.3 this gives:

χ̃(Xn)= (−1)n
∑
α`n

|Gα|χ(Y
`(α)
0 )

∏
i

χ(Fαi ). (9)

Using the exact same arguments with the constant function 1 in place of ν gives
the same answer, except without the sign (−1)n . This proves our first claim. The
second one follows then directly from the result of [Cheah 1996], which says that∑

∞

n=0 χ(Hilbn Y )tn
= M(t)χ(Y ). �

The dimension zero MNOP conjecture. We now prove Conjecture 1 of [Maulik
et al. 2003]. A proof of this result was also announced by J. Li at the workshop on
Donaldson–Thomas invariants in Urbana–Champaign in March 2005.

Theorem 4.12. Let Y be a projective Calabi–Yau threefold. Then, for the virtual
count of Hilbn Y with respect to the Donaldson–Thomas obstruction theory, we
have

#vir(Hilbn Y )= (−1)nχ(Hilbn Y ).

In other words:
∞∑

n=0

#vir(Hilbn Y ) tn
= M(−t)χ(Y ).

Proof. By Theorem 4.18 of [Behrend 2005], we have

#vir(Hilbn Y )= χ̃(Hilbn Y ).

Thus the result follows from Theorem 4.11. �
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