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It is shown that for any morphism, φ : g→h, of Lie algebras the vector space un-
derlying the Lie algebra h is canonically a g-homogeneous formal manifold with
the action of g being highly nonlinear and twisted by Bernoulli numbers. This
fact is obtained from a study of the 2-coloured operad of formal homogeneous
spaces whose minimal resolution gives a new conceptual explanation of both Ziv
Ran’s Jacobi–Bernoulli complex and Fiorenza–Manetti’s L∞-algebra structure
on the mapping cone of a morphism of two Lie algebras. All these constructions
are iteratively extended to the case of a morphism of arbitrary L∞-algebras.

1. Introduction

1.1. The theory of operads and props gives a universal approach to the defor-
mation theory of many algebraic and geometric structures [Merkulov and Vallette
2007]. It also gives a conceptual explanation of the well-known “experimental”
observation that a deformation theory is controlled by a differential graded (dg,
for short) Lie algebra or, more generally, a L∞-algebra. What happens is the
following:

(I) an algebraic or a (germ of) geometric structure, s, on a vector space V (which
is an object in the corresponding category, S, of algebraic or geometric structures)
can often be interpreted as a morphism, αs :O

S
→EndV , in the category of operads

(or props), where OS and EndV are operads (or props) canonically associated to
the category S and the vector space V ;

(II) the operad/prop OS often admits a unique minimal1 dg resolution, OS
∞

, which,
by definition, is a free dg operad/prop generated by some S-(bi)module E together
with a epimorphism π :OS

∞
→OS which induces an isomorphism on cohomology;

it was proven in [Merkulov and Vallette 2007] (in two different ways) that the
set of all possible morphisms, OS

∞
→ EndV , can be identified with the set of

Maurer–Cartan elements of a uniquely defined Lie (or, more generally, filtered

MSC2000: primary 18D50; secondary 11B68, 55P48.
Keywords: operad, Lie algebra, Bernoulli number.

1In fact there is no need to work with minimal resolutions: any free resolution of OS will do.
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L∞-) algebra G := HomS(E,EndV )[−1] whose Lie brackets can be read directly
from the generators and differential of the minimal resolution OS

∞
;

(III) thus, to our algebraic or geometric structure s there corresponds a Maurer–
Cartan element γs := π ◦ αs in G; twisting G by γs one obtains finally a Lie (or
L∞-) algebra Gs which controls the deformation theory of the structure s we began
with.

Many important dg Lie algebras in homological algebra and geometry (such as
Hochschild, Schouten and Frölicher–Nijenhuis algebras) are proven in [Kontsevich
and Soibelman 2000; Merkulov 2006; 2005; Merkulov and Vallette 2007; van der
Laan 2002] to be of this operadic or propic origin. For example, if s is a structure
of an associative algebra on a vector space V , then,

(i) there is an operad, Ass, uniquely associated with the category of associative
algebras, and the structure s corresponds to a morphism, αs : Ass → EndV , of
operads;

(ii) there is a unique minimal resolution, Ass∞, of Ass which is generated by the
S-module E = {K[Sn][n− 2]} and whose representations, π :Ass∞→ EndV , in
a dg space V are in one-to-one correspondence with Maurer–Cartan elements in
the Lie algebra,(

G := HomS(E,EndV )[−1] =
⊕
n≥1

HomK(V
⊗

n, V )[1− n], [ , ]G

)
,

where [ , ]G are Gerstenhaber brackets (see, for example, [Kontsevich and Soibel-
man 2000; Merkulov and Vallette 2007]);

(iii) therefore, the particular associative algebra structure s on V gives rise to the
associated Maurer–Cartan element γs := αs ◦ π in G; twisting G by γs gives the
Hochschild dg Lie algebra,

Gs =

(⊕
n

HomK(V
⊗

n, V )[1− n], [ , ]G, dH := [γs, ]G

)
,

which indeed controls the deformation theory of s.

1.2. Recently Ziv Ran introduced a so-called Jacobi–Bernoulli deformation com-
plex and used it to study deformations of pairs of geometric structures such as a
given complex manifold X and the moduli space, MX , of vector bundles on X ,
a complex manifold X and its complex compact submanifold Y , and others [Ran
2006; 2004]. The differential in this complex is, rather surprisingly, twisted by
Bernoulli numbers. Fiorenza and Manetti [2007] discovered independently the
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same thing under the name of L∞-algebra structure on the mapping cone of a mor-
phism of Lie algebras using completely different approach based on explicit homo-
topy transfer formulae of Kontsevich and Soibelman [2000] and Merkulov [1999];
they also showed its relevance to the deformation theory of complex submanifolds
in complex manifolds using the earlier results of Manetti [2005].

In view of the above paradigm one can raise a question: which operad gives rise
to a deformation complex with such an unusual differential?

We suggest an answer in this paper. Surprisingly, this answer is not a straight-
forward operadic translation of the notion of Lie atom introduced and studied in
[Ran 2006; 2004] but is based instead on another algebraic+geometric structure
which we call a formal homogeneous space and which is, by definition, a triple,
(g, h, F), consisting of a Lie algebra g, a vector space h, and a morphism,

F : g−→ Th

of Lie algebras, where Th is the Lie algebra of smooth formal vector fields on
the space h. Let HS be the 2-coloured operad whose representations are formal
homogeneous spaces, (g, h, F), and let LP be the 2-coloured operad whose rep-
resentations are Lie pairs, that is, the triples, (g, h, φ), consisting of Lie algebras
g and h as well as a morphism,

φ : g→ h

of Lie algebras. We prove in Theorem 4.1.1 below that there exists a unique non-
trivial morphism of coloured operads,

JB :HS−→ LP,

which we call the Jacobi–Bernoulli morphism because it involves Bernoulli num-
bers and eventually explains the differential in Ziv Ran’s Jacobi–Bernoulli com-
plex. It means the following: given a morphism of Lie algebras, φ : g→ h, there
is a canonically associated morphism of other Lie algebras, Fφ : g→Th, which is
determined by φ and the Lie algebra brackets [ , ] in h. It means, therefore, that
there is always a canonically associated nonlinear action of g on the space h which
is twisted by Bernoulli numbers (and is given in local coordinates by (11)).

Thus one can think of the deformation theory of any given Lie pair, φ : g→ h,
in two different worlds:

(1) the world of algebraic morphisms of Lie algebras which allows deformations
of three things — of a Lie algebra structure on g, of a Lie algebra structure on h

and of a morphism φ— and which is governed by the well-known 2-coloured dg
operad, LP∞, describing pairs of L∞-algebras and L∞-morphisms between them,
and
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(2) the world of formal g-homogeneous spaces h which allows deformations of
two things — of a Lie algebra structure on g and of its action, Fφ : g→Th, on h —
which is governed by the minimal resolution, HS∞, of the 2-coloured operad of
formal homogeneous spaces which we explicitly describe below in Theorem 2.6.1.

These two worlds have very different deformation theories. The first one is
controlled by the L∞-algebra associated with LP∞ as explained in [Merkulov and
Vallette 2007, § 5.8]. The second one, as we show in Section 4 below, naturally
gives rise to Ziv Ran’s Jacobi–Bernoulli complex. This part of our story develops
as follows: with a given Lie pair, φ : g→ h, the Jacobi–Bernoulli morphism JB
associates a Maurer–Cartan element, γφ , in the Lie algebra, Gg,h, which describes
all possible morphisms, HS∞→ Endg,h, of 2-coloured operads; this algebra Gg,h

is proven to be a Lie subalgebra of the Lie algebra of coderivations of the graded
commutative coalgebra

⊙
•
(g[1] ⊕ h) (see Proposition 2.7.1); hence the Maurer–

Cartan element γφ equips this coalgebra with an associated codifferential, dφ , and
the resulting complex coincides precisely with the Jacobi–Bernoulli complex of
Ran [2004], or, equivalently, with L∞-structure on g ⊕ h[−1] of Fiorenza and
Manetti [2007].

We also briefly discuss in our paper a strong homotopy extension of all the above
constructions. It is proven that there exits a morphism of 2-coloured dg operads,

JB∞ :HS∞ −→ LP∞,

which associates a formal homogeneous∞ space to any triple, (g, h, φ∞), consist-
ing of L∞-algebras g and h and a L∞-morphism φ∞ : g→ h. Hence there exists
an associated Jacobi–Bernoulli∞ complex which has the same graded vector space
structure as Ziv Ran’s Jacobi–Bernoulli complex but a more complicated differen-
tial (and hence a more complicated L∞-algebra structure on the mapping cone of
φ∞). We first show an iterative procedure for computing JB∞ in full generality and
then, motivated by the deformation quantization of Poisson structures [Kontsevich
2003], give explicit formulae for the natural composition

JB 1
2∞
:HS∞

JB∞
−→ LP∞→ LP 1

2∞
,

where LP 1
2∞

is the 2-coloured operad describing L∞-morphisms, φ∞ : g→ h,
between ordinary dg Lie algebras.

1.3. In this paper we extensively use the language of (coloured) operads. For an
introduction of the theory of operads we refer to [Markl et al. 2002; Merkulov
2008b] and especially to [Berger and Moerdijk 2007; Kontsevich and Soibelman
2000; Longoni and Tradler 2003]. Some key ideas of this language can be grasped
by looking at the basic example of the 2-coloured endomorphism operad, Endg,h,
canonically associated to an arbitrary pair of vector spaces g and h as follows: (a)
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as an S-module the operad Endg,h is given, by definition, by a collection of vector
spaces, { ⊕

m+n=N

K[SN ]⊗Sm×Sn
Hom

(
g
⊗

m
⊗ h

⊗
n, g⊕ h

)}
N≥1

on which the permutation groups SN naturally act; (b) the operadic compositions
in Endg,h are given, by definition, by plugging the output of one linear map into a
particular input (of the same “colour” g or h) of another map. These compositions
satisfy numerous “associativity” conditions which, when axiomatized, are used as
the definition of an arbitrary 2-coloured operad.

1.4. Notations. If V =
⊕

i∈Z V i is a graded vector space, then V [k] is the graded
vector space with V [k]i :=V i+k . For any pair of natural numbers m<n the ordered
set {m,m+ 1, . . . , n− 1, n} is denoted by [m, n]. The ordered set [1, n] is further
abbreviated to [n]. For a finite set J the symbol (−1)J stands for (−1)cardinality of J .
For a subdivison, [n] = I1 t I2 t . . . t Ik , of the naturally ordered set [n] into k
disjoint naturally ordered subsets, we denote by σ(I1t I2t . . .t Ik) the associated
permutation [n] → I1 t I2 t . . . t Ik and by (−1)σ(I1t...tIk) the sign of the latter.
We work throughout over a field K of characteristic zero.

2. Operad of Lie actions and its minimal resolution

2.1. Motivation. Ran [2006; 2004] introduced a notion of Lie atom as a means to
describe relative deformation problems in which deformations (controlled by some
Lie algebra, say, g) of a geometric object leave some (controlled by another Lie
algebra, say, h) aspect invariant. More precisely, a Lie atom (for algebra to module
[Ran 2006]) is defined as a collection of data (g, h, 〈 , 〉, φ) consisting of

(i) a Lie algebra g with Lie brackets [ , ],

(ii) a vector space h equipped with a g-module structure, that is, with a linear
map,

〈 , 〉 : g⊗ h −→ h,

a⊗m 7→ 〈a,m〉,
satisfying the equation,

〈[a, b],m〉 = 〈a, 〈b,m〉〉− (−1)ab
〈b, 〈a,m〉〉,

and

(iii) a morphism, φ : g → h, of g-modules, that is, a linear map from g to h

satisfying the equation

φ([a, b])= 〈a, φ(b)〉 = −(−1)ab
〈b, φ(a)〉

for any a, b ∈ g.
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According to a general philosophy of the deformation theory outlined in Section
1.1, one might attempt to introduce a 2-coloured operad of Lie atoms, resolve it
and then study the associated deformation complex of Lie atoms. It is easy to
see, however, that the resulting deformation complex must be much larger than the
Jacobi–Bernoulli complex and the theory of operads, if pushed in that direction,
does not explain the results of Ran [2006; 2004].

This fact forces us to work with different versions of atoms which we call formal
(affine) homogeneous spaces.

2.2. Definition. An affine homogeneous space is a collection of data (g, h, 〈 , 〉, φ)
consisting of

(i) a Lie algebra g with Lie brackets [ , ],

(ii) a vector space h equipped with a g-module structure, 〈 , 〉 : g⊗ h→ h, and

(iii) a linear map, φ : g→ h, satisfying the equation

φ([a, b])= 〈a, φ(b)〉− (−1)ab
〈b, φ(a)〉

for any a, b ∈ g.

The only difference between the definition of Lie atom in Section 2.1 and the
present one lies in item (iii). This difference is substantial: for example, a pair of
Lie algebras g and h together with a morphism, φ : g→ h, of Lie algebras makes
a Lie atom, (g, h, 〈 , 〉, φ), with 〈a,m〉 := [φ(a),m] but does not make an affine
homogeneous space as the condition (iii) in Section 2.2 is not satisfied.

The terminology is justified by the following lemma.

Lemma 2.2.1. An affine homogeneous space structure on a pair, (g, h), consisting
of a Lie algebra g and a vector space h is the same as a morphism of Lie algebras,

F : g−→ Taff
h ,

where Taff
h is the Lie algebra of affine vector fields on h.

Proof. A Lie algebra, Th, of smooth formal vector fields on h is, by definition, the
Lie algebra of derivations of the graded commutative ring,

Oh :=

∏
n≥0

n⊙
h∗,

of smooth formal functions on h. Its subalgebra, Taff
h , consists, by definition, of

those vector fields, V ∈ Th, whose values, V (λ), on arbitrary linear functions,
λ ∈ h∗, lie in the subspace K⊕ h∗ ⊂ Oh. Thus,

Taff
h = End(h)⊕ h,
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and the map F : g−→ Taff
h gives rise to a pair of linear maps,

F0 : g→ h and F1 : g→ End(h).

The map F1 can be equivalently interpreted as a linear map F̂1 : g⊗ h→ h. Now
it is a straightforward to check that the conditions for F to be a morphism of Lie
algebras are precisely conditions (ii) and (iii) in Section 2.2 for the maps φ := F0

and 〈 , 〉 := −F̂1. �

Example 2.2.2. Let g and h be Lie algebras. And ψt : g → h is a smooth 1-
parameter family of morphisms of Lie algebras, with −ε < t < ε and ε > 0. There
is a naturally associated affine homogeneous space (g, h, 〈 , 〉, φ) with

〈a,m〉 := [ψ0(a),m] and φ :=
dψt

dt

∣∣∣
t=0

for any a ∈ g, m ∈ h. Indeed, the condition (ii) in Section 2.2 is obviously satisfied,
while the differentiation of the equality,

ψt([a, b])= [ψt(a), ψt(b)],

at t = 0 gives the condition (iii).

Example 2.2.3. Let (g=
⊕

i∈Z gi , [ , ], d) be a nilpotent dg Lie algebra. There is
an associated gauge action of the nilpotent group G0 := {eg

|g∈g0
} on the subspace

g1 given by

R : G0× g1
−→ g1,

(eg, 0) 7→ eadg0− eadg − 1
adg

dg,

where adg stands for the adjoint action by g. This action makes the pair (g0, g1)

into an affine homogeneous space.

2.3. Operad of affine homogeneous spaces. This is a 2-coloured operad gener-
ated by the labelled corollas2

??
?

��
�•

1

1 2

=− ??
?

��
�•

1

2 1
,

O�
O�

�_
�_

��
�•

1

σ(1) σ (2)

σ ∈ S2 , and
O�
O�
•

1

1

2All our graphs are by default directed with the flow running from the bottom to the top.
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representing the operations [ , ] :
∧2 g→ g, −〈 , 〉 : g⊗ h→ h and φ : g→ h,

modulo the obvious relations

??
?

��
�•
•

��
� ??
?

1

1 2
3

+ ??
?

��
�•
•

��
� ??
?

1

3 1
2

+ ??
?

��
�•
•

��
� ??
?

1

2 3
1

= 0,

O�
O�

�_
�_

��
�•
•

��
� ??
?

1

1 2
3

+

O�
O�

�_
�_

��
�•

1

1 •
�_

�_
}}

}
32

−

O�
O�

�_
�_

��
�•

1

2 •
�_

�_
}}

}
31

= 0,

O�
O�
•
•

��
� ??
?

1

1 2

+

O�
O�

�_
�_

��
�•

1

1 • ??
?

2

−

O�
O�

�_
�_

��
�•

1

2 • ??
?

1

= 0.

The interpretation in Lemma 2.2.1 of the notion of affine homogeneous space
prompts us to introduce its generalization.

2.4. Definition. A formal homogeneous space is a triple, (g, h, F), consisting of
a Lie algebra g, a vector space h and a morphism of Lie algebras,

F : g−→ Th,

where Th is the Lie algebra of smooth formal vector fields on h.

Example 2.4.1. Let a Lie group G with the Lie algebra g act on a vector space
h viewed as a smooth manifold (that is, the action may not necessarily preserve
the linear structure on h). Then there is an associated formal homogeneous space,
g→ Th.

Example 2.4.2. Let g be the Lie algebra of formal vector fields on Rn , and let
Rcoor be the space of infinite jets of smooth maps, Rn

→ Rn . There is a canonical
morphism of Lie algebras,

g−→ TRcoor ,

which, for any point t in Rcoor , restricts to an isomorphism of vector spaces,
g→ (TRcoor )t , where (TRcoor )t is tangent vector space at t . This observation lies
in the heart of the so-called formal geometry which provides us with a formal
homogeneous space approach to many problems in differential geometry such as
pseudogroup structures, foliations, characteristic classes, and so on (see [Bernšteı̆n
and Rosenfel′d 1973] and references cited there).

Example 2.4.3. Let X ⊂ h be an analytic submanifold of h = Kn . There is an
associated formal homogeneous space (g, h) with g being the Lie subalgebra of
Th consisting of analytic vector fields on h tangent to X along X .
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Example 2.4.4. It will be proven below in Theorem 4.1.1 that for any morphism
of Lie algebras, φ : g→ h, there is a canonically associated formal homogeneous
space Fφ : g→Th with Fφ uniquely and rather nontrivially determined by both φ
and the Lie algebra brackets [ , ] in h.

In accordance with the general operadic paradigm [Merkulov and Vallette 2007,
§ 1], in order to obtain the deformation theory of formal homogeneous spaces one
has to first describe the associated operad, HS, and then compute its minimal dg
resolution HS∞. The first step is very easy.

2.5. Operad of formal homogeneous spaces. An arbitrary formal vector field,
h ∈ Th, on a vector space h is uniquely determined by its Taylor components,{
hn ∈ HomK(h

⊙
n, h)

}
n≥0, with

h =
∑

a

ha(x)
∂

∂xa
1−1
←→

{
hn '

1
n!

∂nha(x)
∂xb1 . . . ∂xbn

∣∣∣
x=0

}
n≥0

implying that an arbitrary linear map F : g→Th is uniquely described by a collec-
tion of its components

{
Fn ∈ HomK(g⊗ h

⊙
n, h)

}
n≥0. Thus a 2-coloured operad,

HS, whose representations,

ρ :HS−→ Endg,h,

in an arbitrary pair of vector spaces (g, h) are the same as formal homogeneous
space structures on (g, h), can be described as follows.

Definition 2.5.1. The operad formal homogeneous spaces, HS, is a 2-coloured
operad generated3 by corollas

??
?

��
�•

1

1 2

=− ??
?

��
�•

1

2 1
,

O�
O�

��
��•�R

�R
�_

�_
*j*j*j*j*j*j

...

1

1 2 3 n

=

O�
O�

��
��•�R

�R
�_

�_
*j*j*j*j*j*j

...

1

1 σ(2)σ (3) σ (n)

∀σ ∈ Sn−1, n ≥ 0, (1)

which correspond to the Lie brackets, [ , ], in g and, respectively, to the Taylor
component, Fn , of the map F , modulo the relations,

??
?

��
�•
•

��
� ??
?

1

1 2
3

+ ??
?

��
�•
•

��
� ??
?

1

3 1
2

+ ??
?

��
�•
•

��
� ??
?

1

2 3
1

= 0, (2)

3 That is, spanned by all possible graphs built from the corollas described in (1) by gluing the
output leg of one corolla to an input leg (with the same — “straight” or “wavy” — colour) of another
corolla.
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corresponding to the Jacobi identities for [ , ], and

O�
O�

��
��•�R

�R
�_

�_
*j*j*j*j*j*j

...

1

3 4 n•
��

� ::
:

1 2

+

∑
[3,n]=I1tI2
|I1|≥0,|I2|≥0


O�
O�

��
��•�L

�L
�_

�_
*j*j*j*j*j*j

...

1

1 •
��

��

2
�L
�L
�U

�U
(h(h(h(h

...
︸ ︷︷ ︸

I2︸ ︷︷ ︸
I1

−

O�
O�

��
��•�L

�L
�_

�_
*j*j*j*j*j*j

...

1

2 •
��

��

1
�L
�L
�U

�U
(h(h(h(h

...
︸ ︷︷ ︸

I2︸ ︷︷ ︸
I1


= 0, n≥ 2, (3)

corresponding to the compatibility of Fn with the Lie algebra structures in g and Th.
Here the summation runs over all splittings of the ordered set [3, n] := {3, 4, . . . , n}
into two (possibly empty) disjoint subsets I1 and I2.

2.5.2. Dilation symmetry. For any λ ∈ K∗ := K \ {0} let

ψλ : h −→ h,

x 7→ λx,

be the associated dilation automorphism of h. It induces an automorphism of the
Lie algebra of formal vector fields,

dψλ : Th −→ Th.

Therefore, the group K∗ acts on the set of Lie action structures on a given pair,
(g, h), of vector spaces,

φ : g→ Th −→ φλ := dψλ ◦φ : g→ Th.

It implies that the group K∗ acts as an automorphism group of the operad HS as
follows:

??
?

��
�•

1

1 2

−→ ??
?

��
�•

1

1 2 ,

O�
O�

��
��•�R

�R
�_

�_
*j*j*j*j*j*j

...

1

1 2 3 n

−→ λn−1
O�
O�

��
��•�R

�R
�_

�_
*j*j*j*j*j*j

...

1

1 2 3 n
.

2.6. Minimal resolution of HS. This is, by definition, a free4 2-coloured operad,
HS∞, equipped with a decomposable differential δ and with an epimorphism of
dg operads,

π : (HS∞, δ)−→ (HS, 0),

which induces an isomorphism in cohomology. Here we understand (HS, 0) as a
dg operad with the trivial differential. A minimal resolution is defined uniquely up
to an isomorphism.

4That is, generated by a family of corollas with no relations.
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Theorem 2.6.1. The minimal resolution, HS∞, is a free 2-coloured operad gener-
ated by m-corollas,

•

zz
zz

z
��
��... 3

33
3

DD
DD

D

1 2 ... m

m ≥ 2, (4)

of degree 2−m with skewsymmetric input legs,

•

zz
zz

z
��
��... 3

33
3

DD
DD

D

1 2 ... m

= (−1)σ ••

zz
zz

z
��
��... 3

33
3

DD
DD

D

σ(1)σ (2) ... σ (m)

∀ σ ∈ Sn,

and (m, n)-corollas,

O�
O�




kkkkkkkk
pppppp
...

1 2 . . .m

•
�R
�R

�_
�_

*j*j*j*j*j*j

...

1

m+1 . . . m+n

m ≥ 1, n ≥ 0,m+ n ≥ 2, (5)

of degree 1−m with skewsymmetric m input legs in “straight” colour and sym-
metric n input legs in “wavy” colour,

O�
O�




kkkkkkkk
pppppp
...

1 . . . m

•
�R
�R

�_
�_

*j*j*j*j*j*j

...

1

m+1 . . . m+n

= (−1)σ
O�
O�




kkkkkkkk
pppppp
...

σ(1) ... σ(m)

•
�R
�R

�_
�_

*j*j*j*j*j*j

...

1

m+1 . . . m+n

=

O�
O�




kkkkkkkk
pppppp
...

1 . . .m

•
�R
�R

�_
�_

*j*j*j*j*j*j

...

1

τ(m+1) ... τ(m+n)

for any σ ∈Sn and any τ ∈Sm . The differential is given on the generating corollas
by

δ ••

zz
zz

z
��
��
... 3

33
3

DD
DD

D

1 2 m-1 m

=

∑
[m]=J1tJ2
|J1|≥2,|J2|≥1

(−1)J1(J2+1)+σ(J1tJ2) ••

uuuuuu

•

��
�� 22

22

��
��
...︸︷︷︸
J1

︸ ︷︷ ︸
J2

		
		
... 66

66
HHHHH and

δ
O�
O�




kkkkkkkk
pppppp
...

1 2 . . .m

•
�R
�R

�_
�_

*j*j*j*j*j*j

...

1

m+1 . . . m+n

=

∑
[m]=J1tJ2
|J1|≥2,|J2|≥0

(−1)(J1+1)J2+σ(J1tJ2)
O�
O�




kkkkkkkk
pppppp
...
•
�R
�R

�_
�_

*j*j*j*j*j*j

...

1

m+1 . . . m+n•
��

�
��
� 77
7
...︸︷︷︸
J1

︸︷︷︸
J2

−

∑
[m]=J1tJ2

[m+1,m+n]=I1tI2
|J1|≥1,|J2|≥1
|I1|≥0,|I2|≥0

(−1)J1(J2+1)+σ(J1tJ2)
O�
O�
O�
O�


pppppp
...
•

�_
�_

*j*j*j*j*j*j

...

1

•




pppppp
... �_

�_
*j*j*j*j*j*j

...

︸︷︷︸
J1︸︷︷︸
J2

︸︷︷︸
I1︸︷︷︸

I2

where (−1)σ(J1tJ2) is the sign of the permutation [m] → [J1 t J2].
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Proof. It is a straightforward but tedious calculation to check that δ2
=0. We define

a projection π :HS∞→HS by its values on the generators,

π

(
•

zz
zz

z
��
��... 3

33
3

DD
DD

D

1 2 ... m

)
=

 ??
?

��
�•

1

1 2

for m = 2,

0 otherwise,

and

π

( O�
O�




kkkkkkkk
pppppp
...

1 2 . . .m

•
�R
�R

�_
�_

*j*j*j*j*j*j

...

1

m+1 . . . m+n

)
=


O�
O�

��
��•�R

�R
�_

�_
*j*j*j*j*j*j

...

1

1 2 3 n+1

for m = 1,

0 otherwise,

and notice that it commutes with the differentials and induces a surjection in co-
homology. Thus to prove that π is a quasiisomorphism it is enough to show that
the cohomology H(HS∞) is contained in HS.

Let

. . .⊂ F−p ⊂ F−p+1 ⊂ . . .⊂ F0 =HS∞

be a filtration with F−p being a subspace of HS∞ = {HS∞(n)}n≥1 spanned by
graphs with at least p wavy internal edges. This filtration is exhaustive and, as each
HS∞(n) is a finite-dimensional vector space, bounded, and hence the associated
spectral sequence (Er , dr )r≥0 is convergent to H(HS∞). The 0-th term of this
sequence has the differential given by

d0 ••

zz
zz

z
��
��
... 3

33
3

DD
DD

D

1 2 m-1 m

=

∑
[m]=J1tJ2
|J1|≥2,|J2|≥1

(−1)J1(J2+1)+σ(J1tJ2) ••

uuuuuu

•

��
�� 22

22

��
��
...︸︷︷︸
J1

︸ ︷︷ ︸
J2

		
		
... 66

66
HHHHH

,
and

d0

O�
O�




kkkkkkkk
pppppp
...

1 2 . . .m

•
�R
�R

�_
�_

*j*j*j*j*j*j

...

1

m+1 . . . m+n

=

∑
[m]=J1tJ2
|J1|≥2,|J2|≥0

(−1)(J1+1)J2+σ(J1tJ2)
O�
O�




kkkkkkkk
pppppp
...
•
�R
�R

�_
�_

*j*j*j*j*j*j

...

1

m+1 . . . m+n•
��

�
��
� 77
7
...︸︷︷︸
J1

︸︷︷︸
J2

.

To compute the cohomology H(E0, d0) = E1 we consider an increasing filtra-
tion,

0⊂ F0 ⊂ . . .⊂ Fp ⊂ Fp+1 ⊂ . . . ,

of E0 with Fp being a subspace spanned by graphs whose vertices of type (5)
have total homological degree ≥ −p. It is again bounded and exhaustive so the
associated spectral sequence, {Er , ∂r }r≥0, converges to E1. The differential in E0
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is given by

∂0 ••

zz
zz

z
��
��
... 3

33
3

DD
DD

D

1 2 m-1 m

=

∑
[m]=J1tJ2
|J1|≥2,|J2|≥1

(−1)J1(J2+1)+σ(J1tJ2) ••

uuuuuu

•

��
�� 22

22

��
��
...︸︷︷︸
J1

︸ ︷︷ ︸
J2

		
		
... 66

66
HHHHH and

∂0

O�
O�




kkkkkkkk
pppppp
...

1 2 . . .m

•
�R
�R

�_
�_

*j*j*j*j*j*j

...

1

m+1 . . . m+n

= 0.

Thus modulo actions of finite groups, the complex (E0, ∂0) is isomorphic to the
direct sum of tensor powers of the well-known complex (L∞, δ), the minimal res-
olution of the operad of Lie algebras, tensored with trivial complexes. We conclude
immediately that E1 = H(E0, ∂0) is a 2-coloured operad generated by corollas

??
?

��
�•

1

1 2

and
O�
O�




kkkkkkkk
pppppp
...

1 2 . . .m

•
�R
�R

�_
�_

*j*j*j*j*j*j

...

1

m+1 . . . m+n

modulo relations (2). The differential ∂1 in E1 is given on generators by

∂1 ??
?

��
�•

1

1 2

= 0 , and

∂1

O�
O�




kkkkkkkk
pppppp
...

1 2 . . .m

•
�R
�R

�_
�_

*j*j*j*j*j*j

...

1

m+1 . . . m+n

=

∑
[m]=J1tJ2
|J1|=2,|J2|≥0

(−1)J2+σ(J1tJ2)
O�
O�




kkkkkkkk
pppppp
...
•
�R
�R

�_
�_

*j*j*j*j*j*j

...

1

m+1 . . . m+n•
��

� 77
7︸︷︷︸

J1

︸︷︷︸
J2

.

Thus, modulo actions of finite groups, the complex (E1, ∂1) is isomorphic to the
direct sum of tensor products of trivial complexes with tensor powers of the dg
properad (S, δ) which is, by definition, generated by corollas

??
?

��
�•

1

1 2

=− ??
?

��
�•

1

2 1

and

��
��
��
� ??
??•
...

1 2 m

= (−1)σ
��

��
��
� ??
??•
...

σ(1)σ (2) σ (m)

∀ σ ∈ Sm, m ≥ 1,
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of degrees 0 and, respectively, 1−m modulo relation (2). The differential in S is
given by

δ ??
?

��
�•

1

1 2

= 0 , and

δ
��

��
��
� ??
??•
...

1 2 m

=

∑
[m]=J1tJ2
|J1|=2,|J2|≥0

(−1)J2+σ(J1tJ2)

��
��
��
� ??
??•
...

•
���** ︸︷︷︸

J2︸︷︷︸
J1

.

This complex (more precisely, a complex isomorphic to S) was studied in [Merku-
lov 2008a, § 4.1.1] where it was proven that

H(S, δ)= span〈•〉.

Thus E2 is concentrated in degree 0 so all the other terms of both our spectral
sequences degenerate and we get E2 = E∞ = E1 = E∞ ' H(HS∞). This fact
implies that H(HS∞) is generated by corollas (1) modulo relations (2) and (3)
completing thereby the proof. �

Corollary 2.6.2. The operad, HS, of formal homogeneous spaces is Koszul.

Proof. By Theorem 2.6.1, the operad HS admits a quadratic minimal model. The
claim then follows from a straightforward analogue of [Merkulov and Vallette
2007, Theorem 34] (see also [Vallette 2007]) for coloured operads. �

2.7. HS∞-algebras as Maurer–Cartan elements. An HS∞-algebra structure on
a pair of dg vector spaces (g, h) is, by definition, a morphism of 2-coloured dg op-
erads, ρ : (HS∞, δ)→ (Endg,h, d). First we give an explicit algebraic description
of such a structure.

Proposition 2.7.1. There is a one-to-one correspondence between HS∞-algebra
structures on a pair of dg vector spaces (g, h) and degree 1 codifferentials, D, in
the free graded cocommutative coalgebra without counit,

⊙
•≥1
(g[1] ⊕ h), such

that

(a) D respects the subcoalgebra
⊙
≥1
(g[1]), that is

D
(⊙≥1

(g[1])
)
⊂

⊙≥1
(g[1]);

(b) D respects the natural epimorphism of coalgebras,

c :
⊙•≥1

(g[1]⊕ h)→
⊙≥1

(g[1]),

that is, D ◦ c = c ◦ D;
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(c) D is trivial on the subcoalgebra
⊙
≥1 h, that is

D
(⊙≥1

h
)
= 0.

Proof. An arbitrary degree 1 coderivation, D, of
⊙
•≥1
(g[1] ⊕ h) is uniquely de-

termined by two collections of degree 1 linear maps,{
D′n :

n⊙
(g[1]⊕ h)=

⊕
p+q=n

p∧
g⊗

q⊙
h[p] → g[1]

}
n≥1

and

{
D′′n :

n⊙
(g[1]⊕ h)=

⊕
p+q=n

p∧
g⊗

q⊙
h[p] → h

}
n≥1.

Conditions (a) and (b) say that D′ is zero on all components
∧p g⊗

⊙q h[p] with
q 6= 0, while condition (c) says that D′′ is zero on all components

∧p g⊗
⊙q h[p]

with p= 0. Thus there is a one-to-one correspondence between degree 1 coderiva-
tions, D, in the coalgebra

⊙
•≥1
(g[1] ⊕ h), and morphisms of non-differential

2-coloured operads, ρ :HS∞→Endg,h, with D′n being the values of ρ on corollas
(4) and D′′n the values of ρ on corollas (5). Having established an explicit corre-
spondence between coderivations D and morphisms ρ, it is now a straightforward
computation (which we leave to the reader as an exercise) to check that the com-
patibility of ρ with the differentials, that is, the equation ρ ◦ δ = d ◦ ρ, translates
precisely into the equation D2

= 0. �

Recall that a L∞-structure on a vector space V is, by definition, a degree 1
codifferential µ in the free cocommutative coalgebra

⊙
≥1
(V [1]). It is often rep-

resented as a collection of linear maps,{
µn :

n∧
V → V [2− n]

}
n≥1,

satisfying a system of quadratic equations which encode the relationµ2
=0. Hence

we can reformulate Proposition 2.7.1 in this language as follows.

Corollary 2.7.2. There is a one-to-one correspondence between HS∞-algebra
structures on a pair of dg vector spaces (g, h) and L∞-structures, {µn :

∧n V →
V [2−n]}n≥1, on the vector space V := g⊕h[−1] such that, for any g1, . . . , gp ∈ g

and h1, . . . , hq ∈ g one has

πg ◦µp+q(g1, . . . , gp, h1, . . . , hq)= 0 if q 6= 1, and

πh ◦µp+q(g1, . . . , gp, h1, . . . , hq)= 0 if p = 0,

where πg : V → g and πh : V → h[−1] are the natural projections.
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It is straightforward to check that, for any dg spaces g and h, the space of
coderivations of the coalgebra

⊙
•≥1
(g[1] ⊕ h) which satisfy conditions (a)–(c)

of Proposition 2.7.1 is closed with respect to the ordinary commutator, [ , ], of
coderivations. Let us denote the Lie algebra of such coderivations by (Gg,h, [ , ]).
As a vector space,

Gg,h '

⊕
n≥1

Hom
( n∧

g, g

)
[2− n] ⊕

⊕
n≥1,p≥0

Hom
( n∧

g⊗

p⊙
h, h

)
[1− n].

Hence we get another useful reformulation of Proposition 2.7.1.

Corollary 2.7.3. There is a one-to-one correspondence between HS∞-algebra
structures on a pair of dg vector spaces (g, h) and Maurer–Cartan elements in
the Lie algebra (Gg,h, [ , ]).

Note that
Gg,h = HomS(E,Endg,h)[−1]

where E is the S-bimodule spanned as a vector space by corollas (4) and (5). The
Lie algebra we got above in Corollary 2.7.3 is an independent confirmation of the
general principle (II) in Section 1.1 (which is the same as [Merkulov and Vallette
2007, Theorem 58]). Hence, applying next principle (III) (or [Merkulov and Val-
lette 2007, Proposition 66]) we may conclude this subsection with the following
observation.

Fact 2.7.4. Let γ be an HS∞-algebra structure, HS∞
γ
→ Eg,h, on a pair of dg

spaces g and h. The deformation theory of γ is then controlled by the dg Lie
algebra (Gg,h, [ , ], d := [γ, ]).

2.8. Geometric interpretations of HS∞-algebras. There are two ways to under-
stand HS∞-algebras geometrically.

The first one uses the language of formal manifolds [Kontsevich 2003]. Let X be
a formal manifold associated with the coalgebra

⊙
•≥1
(g[1]) and let E be a formal

manifold associated with the total space of the trivial bundle over X with typical
fiber h. The structure sheaf of E is then the coalgebra

⊙
•≥1
(g[1] ⊕ h). We have

a natural projection of formal manifolds π : E→ X and an embedding, X ⊂ E,
of X into E as a zero section. Then a HS∞-algebra structure on a pair of vector
spaces g and h is the same as a homological vector field on E which is tangent to
the submanifold X and vanishes on the fiber of the projection π .

Another geometric picture uses an idea of L∞-homogeneous formal manifolds:

Proposition 2.8.1. There is a one-to-one correspondence between representations,

ρ :HS∞ −→ Endg,h,
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and the triples, (g, h, F∞), consisting of a L∞-algebra g, a complex (h, d) and a
L∞-morphism,

F∞ : g−→ Th,

where Th is viewed as a dg Lie algebra equipped with the ordinary commutator,
[ , ], of vector fields and with the differential ∂ defined by

∂V := [d, V ], ∀V ∈ Th,

where d is interpreted as a linear vector field on h.

The proof is a straightforward calculation (see Section 2.5). We omit the details.

3. Operad of Lie pairs and its minimal resolution

3.1. Definition. A Lie pair is a collection of data (g, h, φ) consisting of

(i) Lie algebras (g, [ , ]g) and (h, [ , ]h), and

(ii) a morphism, φ : g→ h of Lie algebras.

Let LP be the 2-coloured operad whose representations, LP → Endg,h, are
structures of Lie pairs on the vector spaces g and h. This operad of Lie pairs, LP,
is, therefore, generated by the corollas

??
?

��
�•

1

1 2

=− ??
?

��
�•

1

2 1
,

O�
O�

�?
�?

�_
�_•

1

1 2

=−

O�
O�

�?
�?

�_
�_•

1

2 1

and
O�
O�
•

1

1

(6)

(which correspond, respectively, to the Lie brackets, [ , ]g, Lie brackets [ , ]h and
the morphism φ) modulo the relations

??
?

��
�•
•

��
� ??
?

1

1 2
3

+ ??
?

��
�•
•

��
� ??
?

1

3 1
2

+ ??
?

��
�•
•

��
� ??
?

1

2 3
1

= 0,

O�
O�

�?
�?

�_
�_•

•
�?

�?
�_

�_

1

1 2
3

+

O�
O�

�?
�?

�_
�_•

•
�?

�?
�_

�_

1

3 1
2

+

O�
O�

�?
�?

�_
�_•

•
�?

�?
�_

�_

1

2 3
1

= 0

(7)

(corresponding to the Jacobi identities for [ , ]g and [ , ]h), and

O�
O�
•

1

•
��

� ??
?

1 2

−

O�
O�

�?
�?

�_
�_•

• •

1

1 2

= 0
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(corresponding to the compatibility of φ with Lie brackets). It is well-known
[Markl et al. 2002] that the minimal resolution of LP is a dg free 2-coloured
operad, LP∞, whose representations, LP∞→Endg,h, describe L∞-algebra struc-
tures in vector spaces g and h together with a morphism, φ∞ : g → h, of L∞-
algebras. For completeness of the paper we show below a new short proof of this
result.

Theorem 3.1.1. The minimal resolution, LP∞, of the operad of Lie pairs is a
free 2-coloured operad generated by three families of corollas with skewsymmetric
input legs,

•

zz
zz

z
��
��... 3

33
3

DD
DD

D

1 2 ... m
, •

O�
O�

|<
|<

|<
�E
�E
... �Y

�Y
"b

"b
"b

1 2 ... n
, •

O�
O�

zz
zz

z
��
��... 3

33
3

DD
DD

D

1 2 ... p
, m ≥ 2, n ≥ 2, p ≥ 1,

of degrees 2−m, 2− n and 1− p respectively, and equipped with the differential
given by

δ ••

zz
zz

z
��
��
... 3

33
3

DD
DD

D

1 2 m-1 m

=

∑
[m]=I1tI2
|I1|≥2,|I2|≥1

(−1)I1(I2+1)+σ(I1tI2) ••

uuuuuu

•

��
�� 22

22

��
��
...︸︷︷︸
I1

︸ ︷︷ ︸
I2

		
		
... 66

66
HHHHH

,

δ •

O�
O�
•

|<
|<

|<
�E
�E

... �Y
�Y

"b
"b

"b

1 2 n-1 n

=

∑
[m]=I1tI2
|I1|≥2,|I2|≥1

(−1)I1(I2+1)+σ(I1tI2) •

O�
O�
•

z:
z:

z:
z:

•
�B
�B

�Y
�Y

	I
	I

...︸︷︷︸
I1

︸ ︷︷ ︸
I2

�D
�D
... �[

�[
$d

$d
$d

,

δ •

O�
O�
•

zz
zz

z
��
��
... 3

33
3

DD
DD

D

1 2 p-1 p

=

∑
[m]=I1tI2
|I1|≥2,|I2|≥1

(−1)I2(I1+1)+σ(I1tI2) •

O�
O�
•

uuuuuu

•

��
�� 22

22

��
��
...︸︷︷︸
I1

︸ ︷︷ ︸
I2

		
		
... 66

66
HHHHH

+

∑
[p]=I1t...tIk
|Ii |≥1,k≥2

(−1)ε+σ(I1t...tIk) •

O�
O�
•

z:
z:

z:

•

zz
zz

z
��
�

��
��
...︸︷︷︸

I1

�G
�G

... $d
$d

$d

•

		
		
��
�� ))
)

...︸︷︷︸
I2

•
DD

DD
D
##
#

99
99

...︸︷︷︸
Ik

,

(8)

where

ε = 1+
k−1∑
i=1

Ii (i − 1+ Ii+1+ . . .+ Ik).
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Proof. The projection ν : LP∞→ LP defined by

ν

 •

zz
zz

z
��
��... 3

33
3

DD
DD

D

1 2 ... m

=
 ??

?
��

�•

1

1 2

for m = 2 ,

0 otherwise ,

ν

 •

O�
O�

|<
|<

|<
�E
�E
... �Y

�Y
"b

"b
"b

1 2 ... n

=


O�
O�

�?
�?

�_
�_•

1

1 2

for n = 2 ,

0 otherwise ,

ν

 •

O�
O�
•

zz
zz

z
��
��
... 3

33
3

DD
DD

D

1 2 p-1 p

=


O�
O�
•

1

1

for p = 1 ,

0 otherwise

commutes with the differentials and is obviously surjective in cohomology. Thus to
prove that π is a quasiisomorphism it is enough to show that H(HS∞)=HS which
in turn would follow if one proves that the cohomology H(HS∞) is concentrated
in degree zero.

Let
. . .⊂ F−q ⊂ F−q+1 ⊂ . . .⊂ F0 =HS∞

be a filtration with F−q being a subspace of LP∞ = {LP∞(n)}n≥1 spanned by
graphs with at least q vertices of the form

•

O�
O�
•

zz
zz

z
��
��
... 3

33
3

DD
DD

D
.

This filtration is exhaustive and, as each L∞P(n) is a finite-dimensional vector
space, bounded, and hence the associated spectral sequence (Er , dr )r≥0 is conver-
gent to H(HS∞). The 0-th term of this sequence has the differential given by
formulae (8) without the second sum. Hence the complex (E0, d0) is isomorphic,
modulo actions of finite groups, to the tensor products of trivial complexes with
two copies of the classical complex L∞ and the complex S defined in the proof
of Theorem 2.6.1. Hence its cohomology E1= H(E0, d0) is generated by corollas
(6) and is concentrated, therefore, in degree 0. This proves that H(HS∞) is con-
centrated in degree zero which in turn implies the required result. �

4. The Jacobi–Bernoulli morphism and its strong homotopy generalization

4.1. The Jacobi–Bernoulli morphism. The following result shows that, modulo
actions of the dilation group K∗ on the operad HS (see Section 2.5.2), there exists
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a unique nontrivial morphism of 2-coloured operads HS→ LP which is identity
on the generators, ???���

• , with pure “straight” colour.

Theorem 4.1.1. There is a unique morphism of 2-coloured dg operads,

JB : (HS∞, δ)−→ (LP, 0)

such that

JB
( O�

O�
•

)
=

O�
O�
• and JB

(
??

?
��

�•

1

1 2

)
= ??

?
��

�•

1

1 2
.

It is given on the generators by

JB
(

•

zz
zz

z
��
��... 3

33
3

DD
DD

D

1 2 ... m

)
=

 ??
?

��
�•

1

1 2

for m = 2 ,

0 otherwise ,

JB
( O�

O�




kkkkkkkk
pppppp
...

1 2 . . .m

•
�R
�R

�_
�_

*j*j*j*j*j*j

...

1

m+1 . . . m+n

)
=



Bn

n!

∑
σ∈Sn

O�
O�

�?
�?

�_
�_•

•�?
�_

�_
�?
•

�?
�?

�_
�_

�_
�_

•
���

1

1
σ(1)+1

σ(n−1)+1
σ(n)+1

for m = 1 ,

0 otherwise ,

where Bn are the Bernoulli numbers, that is,
∑

n≥0
Bn
n! z

n
=

z
ez−1 , in particular,

B0 = 1, B1 =−
1
2 , B2 =

1
6 , and so on.

Proof. Since LP is concentrated in degree zero, the required morphism factors
through the canonical projection,

JB : (HS∞, δ)
π
−→ (HS, 0)−→ (LP, 0),

for some morphism of 2-coloured operads, HS −→ LP, which we denote by the
same letter JB. Thus to prove Theorem 4.1.1 we have to show the existence of a
unique morphism of operads,

JB :HS−→ LP,

such that

JB
( O�

O�
•

)
=

O�
O�
• and JB

(
??

?
��

�•

1

1 2

)
= ??

?
��

�•

1

1 2
.
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For equivariance reasons it must be of the form

JB
( O�

O�

��
��•�R

�R
�_

�_
*j*j*j*j*j*j

...

1

1 2 3 n+1

)
= cn

∑
n∈6n

O�
O�

�?
�?

�_
�_•

•�?
�_

�_
�?
•

�?
�?

�_
�_

�_
�_

•
���

1

1
σ(1)+1

σ(n−1)+1
σ(n)+1

for some cn ∈K with c0= 1. Thus to prove the theorem we have to show that there
exists a unique collection of numbers {cn} ∈ K such that, for any n ≥ 0,

JB


O�
O�

��
��•�R

�R
�_

�_
*j*j*j*j*j*j

...

1

3 4 n+2
•

��
� ::
:

1 2

+

∑
[3,n+2]=I1tI2
|I1|≥0,|I2|≥0


O�
O�

��
��•�L

�L
�_

�_
*j*j*j*j*j*j

...

1

1 •
��

��

2
�L
�L
�U

�U
(h(h(h(h

...
︸ ︷︷ ︸

I2︸ ︷︷ ︸
I1

−

O�
O�

��
��•�L

�L
�_

�_
*j*j*j*j*j*j

...

1

2 •
��

��

1
�L
�L
�U

�U
(h(h(h(h

...
︸ ︷︷ ︸

I2︸ ︷︷ ︸
I1


=0. (9)

We claim that the above equation gives an iterative procedure which uniquely spec-
ifies cn+1 in terms of c≤n starting with c0 = 1. Equation (9) is a sum of elements
of the operad LP with all input legs of “wavy” colour being symmetrized; it is
easier to control the relevant combinatorics by slightly changing the viewpoint:
Equation (9) holds in LP if and only if it holds for an arbitrary representation
ρg,h : LP → Endg,h, that is, if for arbitrary pair of Lie algebras g and h and
a morphism φ : g → h one has ρg,h(9) ≡ 0, which, as it is not hard to see, is
equivalent to the following system of equations (with c0 = 1),

∑
0≤k,l≤n
k+l≤n

ckcn+1−k
(
[φ(a1)@bl, φ(a2)@bk

]−[φ(a2)@bl, φ(a1)@bk
]
)
@bn−k−l

+cn[φ(a1), φ2(a2)]@bn
= 0 (10)

for any a1, a2 ∈ g and b ∈ h. Here we used the notation of Ran [2004]

x@bk
:= [. . . [[x, b] , b] , . . . , b]︸ ︷︷ ︸

k

, ∀ x, b ∈ h.

The second summand in (10) corresponds to the first summand in (9) while the
summand

ckcn+1−k[φ(a1)@bl, φ(a2)@bk
]@bn−k−l



428 Sergei A. Merkulov

in (10) corresponds to the summand

ckcn+1−k
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�_
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�_
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�_
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�?
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�_
�_

•
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•
�_

�_
�?

�?

•
�?

�?
�_

�_

•�?
�_

�_

•
�?

�?
�?

�_
�_

•
��

��
1

2

︸ ︷︷ ︸
I1

︸ ︷︷ ︸
I ′′2

︷ ︸︸ ︷I ′2

in the image

JB


O�
O�

��
��•�L

�L
�_

�_
*j*j*j*j*j*j

...

1

1 •
��

��

2
�L
�L
�U

�U
(h(h(h(h

...
︸ ︷︷ ︸

I2︸ ︷︷ ︸
I1

 , |I1| = k, |I2| = n− k,

which is uniquely determined by a decomposition, I2= I ′2t I ′′2 , of the indexing set
I2 into two disjoint subsets with

|I ′2| = l (and hence with |I ′′2 | = n− k− l).

Equation (10) can be rewritten as follows,

cn+1

n∑
k=0

(
[φ(a1), φ(a2)@bk

]@bn−k
− [φ(a2), φ(a1)@bk

]@bn−k)
=−cn[φ(a1), φ2(a2)]@bn

−

∑
1≤k≤n
0≤l≤n
k+l≤n

ckcn+1−k
(
[φ(a1)@bl, φ(a2)@bk

] − [φ(a2)@bl, φ(a1)@bk
]
)
@bn−k−l .

implying that if system (9) has a solution, then it is unique. For example, for n= 0,
we have

2c1 =−c0 =−1,

while for n = 1,

3c2 =−c1− c2
1 =

1
4
.

It was proven in [Ran 2004] (see Equation 1.2.4 there) that the collection cn =

Bn/n!, where Bn are the Bernoulli numbers, does solve system of equations (10),
completing the proof of existence and uniqueness of the morphism JB. �
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Corollary 4.1.2. For every morphism of Lie algebras φ : g→ h there is a canoni-
cally associated structure of formal g-homogeneous space on h, that is, a morphism
of Lie algebras,

Fφ : g−→ Th,

given in local bases {ea} in g and {eα} in h as follows,

Fφ(ea)=
∑
n≥0

Bn

n!
φγ1

a Cγ2
γ1β1

Cγ3
γ2β2

. . .Cα
γnβn

tβ1 tβ2 . . . tβn
∂

∂tα
, (11)

where Cγ

αβ are the structure constants of Lie brackets in h, [eα, eβ] =
∑

γ Cγ

αβeγ ,
φαa are the structure constants of the morphism φ, φ(ea) =

∑
α φ

α
a eα, and {tα} is

the dual basis in h∗.

Corollary 4.1.3. For every morphism of dg Lie algebras φ : g → h there is a
canonically associated codifferential, Dφ , in the free coalgebra J :=

⊙
•
(g[1]⊕h)

making the data (J, Dφ) into the Jacobi–Bernoulli complex as defined in [Ran
2004].

Proof. Morphism of Lie algebras φ : g→ h gives rise to an associated morphism
of 2-coloured operads,

ρφ : LP−→ Endg,h.

The composition,

γφ :HS∞
JB
−→ LP

ρφ
−→ Endg,h,

gives, by Proposition 2.7.1, rise to an associated codifferential Dφ . The rest of the
proof is just a comparison of Dφ with the codifferential defined in [Ran 2004]. �

Corollary 4.1.4. For every morphism of dg Lie algebras φ : g → h there is a
canonically associated L∞-algebra structure on the vector g⊕ h[−1].

Proof. The claimed L∞-structure is given by the morphism of operads γφ as
above and Corollary 2.7.3. A straightforward inspection shows that this structure
is identical to the one constructed in [Fiorenza and Manetti 2007] with the help
of the explicit homotopy transfer formulae of [Kontsevich and Soibelman 2000;
Merkulov 1999]. �

4.2. Morphisms of L∞-algebras. The following theorem generalizes all the above
constructions to the case of an arbitrary morphism, φ∞ : g→ h, of L∞-algebras.
The proof given below provides us with an iterative construction of the morphism
J B∞ (and hence with the associated differential in the Jacobi–Bernoulli complex
or, equivalently, a L∞-algebra structure on the mapping cone g⊕ h[−1]).

Theorem 4.2.1. There exists a morphism of 2-coloured dg operads,

JB∞ : (HS∞, δ)−→ (LP∞, δ)
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making the diagram,

HS∞

π

��

JB∞ // LP∞

ν

��
HS

JB
// LP

commutative.

Proof. We have a solid arrow diagram,

LP∞

ν

��
HS∞

JB∞
;;

JB
// LP

with morphism ν being a surjective quasiisomorphism and the operad HS∞ being
cofibrant. Then the existence of the dotted arrow JB∞ making the diagram above
commutative follows immediately from the model category structure on operads.
In fact, one can see it directly using an analogue of the classical Whitehead lifting
trick (first used in the theory of CW complexes in algebraic topology): let ν−1

be an arbitrary section of the surjection ν in the category of dg spaces; as a first
step in the inductive procedure we set JB∞(C0) := ν−1

◦ JB(C0) on degree 0
generating corollas, C0, of the operad HS∞. Assume by induction that the val-
ues of a morphism JB∞ are already defined on all generating corollas of degrees
≥ −r , and let Cr+1 be a generating corolla of degree −r − 1. As δ(Cr+1) is a
linear combination of graphs built from corollas of degrees ≥−r , JB∞(δCr+1) is
a well-defined element of LP∞. Moreover, as JB∞ commutes, by the induction
assumption, with the differentials, we have an equation in the complex (LP∞, δ),

δ JB∞(δCr+1)= 0.

Since there are no nontrivial cohomology classes in (LP∞, δ) of degree −r for
r ≥ 1, we must have,

JB∞(δCr+1)= δer+1

for some er+1 ∈ LP∞. We finally set JB∞(Cr+1) := er+1 completing thereby the
inductive construction of the required morphism JB∞. �

Corollary 4.2.2. For every morphism of L∞-algebras, φ∞ : g→ h, there is an
associated codifferential, D∞, in the free coalgebra J :=

⊙
•
(g[1] ⊕ h) which

coincides precisely with Ziv Ran’s Jacobi–Bernoulli codifferential in the case of g,
h being dg Lie algebras and φ a morphism of dg Lie algebras.
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4.3. L∞-morphisms of dg Lie algebras. Let I be the ideal in the free nondiffer-
ential operad LP∞ generated by corollas

•

zz
zz

z
��
��... 3

33
3

DD
DD

D

1 2 ... m

and •

O�
O�

|<
|<

|<
�E
�E
... �Y

�Y
"b

"b
"b

1 2 ... n

with m ≥ 3 and n ≥ 3, and let (I, d I ) be the differential closure of I in the dg
operad (LP∞, δ). The quotient operad,

LP 1
2∞
:=

LP∞

(I, d I )

is a differential 2-coloured operad generated by corollas

??
?

��
�•

1

1 2
,

O�
O�

�?
�?

�_
�_•

1

1 2
, •

O�
O�

zz
zz

z
��
��... 3

33
3

DD
DD

D

1 2 ... p

p ≥ 1,

modulo relations (7); the differential is given on the generators by

δ ??
?

��
�•

1

1 2

= 0,

δ

O�
O�

�?
�?

�_
�_•

1

1 2

= 0,

δ •

O�
O�
•

zz
zz

z
��
��
... 3

33
3

DD
DD

D

1 2 p-1 p

=

∑
[m]=I1tI2
|I1|=2,|I2|≥1

(−1)p−1+σ(I1tI2) •

O�
O�
•

uuuuuu

•

��
�� 00

00︸︷︷︸
I1
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I2

		
		
... 66

66
HHHHH

+

∑
[p]=I1tI2
|I1|,|I2|≥1

(−1)σ(I1tI2) •

O�
O�
•

�A
�A

�]
�]

•

		
		
��
�� ))
)

...︸︷︷︸
I1

•
55

55
..

..

��
�
...︸︷︷︸
I2

.

Representations,
LP 1

2∞
→ Endg,h,

of this dg operad are the same as triples, (g, h, F∞), consisting of ordinary dg Lie
algebras g and h together with a L∞-morphism, F∞ : g→ h, between them. Thus
this operad describes a special class of representations of the operad LP∞ which
is, probably, the most important one in applications. For example, for any smooth
manifold M , the triple, (

∧
•TM ,D

poly
M , FK ), consisting of a Schouten Lie algebra
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of polyvector fields on M , the Hochschild dg Lie algebra, D
poly
M , of polydifferential

operators and Kontsevich’s formality morphism

FK :
∧•

TM → D
poly
M

is a representation of LP 1
2∞

.
It is not hard to describe explicitly the quotient part,

JB 1
2∞
:HS∞

JB∞
−→ LP∞

proj
−→ LP 1

2∞
,

of a morphism JB∞.

Theorem 4.3.1. The morphism of 2-coloured dg operads,

JB 1
2∞
: (HS∞, δ)−→

(
LP 1

2∞
, δ
)

is given on the generators by

JB 1
2∞

(
•

zz
zz

z
��
��... 3

33
3

DD
DD

D

1 2 ... m

)
:=

 ??
?

��
�•

1

1 2

for m = 2 ,

0 otherwise ,

JB 1
2∞

( O�
O�




kkkkkkkk
pppppp
...

1 2 . . .m

•
�R
�R

�_
�_

*j*j*j*j*j*j

...

1

m+1 . . . m+n

)
:=

Bn

n!

∑
σ∈Sn

O�
O�

�?
�?

�_
�_•

•�?
�_

�_
�?
•

�?
�?

�_
�_

�_
�_

•
��� ???��

1

1 2... m
σ(1)+m

σ(n−1)+m
σ(n)+m

where Bn are the Bernoulli numbers.

The proof is similar to that of Theorem 4.1.1. We omit the details.
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