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Group actions and rational ideals
Martin Lorenz

We develop the theory of rational ideals for arbitrary associative algebras R with-
out assuming the standard finiteness conditions, noetherianness or the Goldie
property. The Amitsur–Martindale ring of quotients replaces the classical ring
of quotients which underlies the previous definition of rational ideals but is not
available in a general setting.

Our main result concerns rational actions of an affine algebraic group G on
R. Working over an algebraically closed base field, we prove an existence and
uniqueness result for generic rational ideals in the sense of Dixmier: for every
G-rational ideal I of R, the closed subset of the rational spectrum Rat R that is
defined by I is the closure of a unique G-orbit in Rat R. Under additional Goldie
hypotheses, this was established earlier by Mœglin and Rentschler (in character-
istic 0) and by Vonessen (in arbitrary characteristic), answering a question of
Dixmier.

Introduction

0.1. Rational ideals have been rather thoroughly explored in various settings. In the
simplest case, that of an affine commutative algebra R over an algebraically closed
base field k, rational ideals of R are the same as maximal ideals. More generally,
this holds for any affine k-algebra satisfying a polynomial identity [Procesi 1973].
For other classes of noncommutative algebras R, rational ideals are identical with
primitive ideals, that is, annihilators of irreducible R-modules. Examples of such
algebras include group algebras of polycyclic-by-finite groups over an algebraically
closed base field k containing a nonroot of unity [Lorenz and Passman 1979] and
enveloping algebras of finite-dimensional Lie algebras over an algebraically closed
field k of characteristic 0 [Mœglin 1980; Irving and Small 1980]. Rational ideals
of enveloping algebras have been the object of intense investigation by Dixmier,
Joseph and many others from the late 1960s through the 80s; see Section 0.6
below. The fundamental results concerning algebraic group actions on rational
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Keywords: algebraic group, rational action, prime ideal, rational ideal, primitive ideal, generic
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ideal spectra, originally developed in the context of enveloping algebras, were later
extended to general noetherian (or Goldie) algebras by Mœglin and Rentschler
[1981, 1984, 1986b, 1986a] (for characteristic 0) and by Vonessen [1996, 1998]
(for arbitrary characteristic). Currently, the description of rational ideal spectra in
algebraic quantum groups is a thriving research topic; see the monograph [Brown
and Goodearl 2002] for an introduction. Again, rational ideals turn out to coin-
cide with primitive ideals for numerous examples of quantum groups [Brown and
Goodearl 2002, II.8.5].

0.2. The aim of the present article is to liberate the theory of rational ideals of
the standard finiteness conditions, noetherianness or the Goldie property, that are
traditionally assumed in the literature. Thus, rational ideals are defined and ex-
plored here for an arbitrary associative algebra R (with 1) over some base field k.
The Amitsur–Martindale ring of quotients will play the role of the classical ring of
quotients which underlies the usual definition of rational ideals but need not exist
in general.

Specifically, for any prime ideal P of R, the center of the Amitsur–Martindale
ring of quotients of R/P , denoted by C(R/P) and called the extended centroid of
R/P , is an extension field of k. The prime P will be called rational if

C(R/P)= k.

In the special case where R/P is right Goldie, C(R/P) coincides with the center
of the classical ring of quotients of R/P; so our notion of rationality reduces to the
familiar one in this case. Following common practice, we will denote the collection
of all rational ideals of R by Rat R; so

Rat R ⊆ Spec R,

where Spec R is the collection of all prime ideals of R, as usual.

0.3. Besides always being available, the extended centroid turns out to lend itself
rather nicely to our investigations. In fact, some of our arguments appear to be
more straightforward than earlier proofs in more restrictive settings which were
occasionally encumbered by the fractional calculus in classical rings of quotients
and by the necessity to ensure the transfer of the Goldie property under various
constructions. Section 1 is preliminary in nature and serves to deploy the definition
and basic properties of extended centroids in a form suitable for our purposes.
In particular, we show that all primitive ideals are rational under fairly general
circumstances; see Proposition 6.

After sending out the first version of this article, we learned that much of the
material in this section was previously known, partly even for nonassociative rings.
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For the convenience of the reader, we have opted to leave our proofs intact while
also indicating, to the best of our knowledge, the original source of each result.

0.4. In Section 2, we consider actions of a group G by k-algebra automorphisms
on R. Such an action induces G-actions on the extended centroid C(R) and on the
set of ideals of R. Recall that a proper G-stable ideal I of R is said to be G-prime
if AB ⊆ I for G-stable ideals A and B of R implies that A ⊆ I or B ⊆ I . In this
case, the subring C(R/I )G of G-invariants in C(R/I ) is an extension field of k.
The G-prime I is called G-rational if

C(R/I )G = k.

We will denote the collections of all G-primes and all G-rational ideals of R by
G-Spec R and G-Rat R, respectively; so

G-Rat R ⊆ G-Spec R.

The action of G on the set of ideals of R preserves both Spec R and Rat R. Writ-
ing the corresponding sets of G-orbits as G\ Spec R and G\ Rat R, the assignment

P 7→

⋂
g∈G

g.P

always yields a map
G\ Spec R −→ G-Spec R. (0-1)

Under fairly mild hypotheses, (0-1) is surjective: this certainly holds whenever
every G-orbit in R generates a finitely generated ideal of R; see Proposition 8(b).
In Proposition 12 we show that (0-1) always restricts to a map

G\ Rat R −→ G-Rat R. (0-2)

More stringent conditions are required for (0-2) to be surjective. If the group G is
finite then (0-1) is easily seen to be a bijection, and it follows from Lemma 10 that
(0-2) is bijective as well.

0.5. Section 3 focuses on rational actions of an affine algebraic k-group G on R;
the basic definitions will be recalled at the beginning of the section. Working over
an algebraically closed base field k, we show that (0-2) is then a bijection:

Theorem 1. Let R be an associative algebra over the algebraically closed field
k and let G be an affine algebraic group over k acting rationally by k-algebra
automorphisms on R. Then the map

P 7→

⋂
g∈G

g.P

yields a surjection Rat R � G-Rat R whose fibres are the G-orbits in Rat R.
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The theorem quickly reduces to the situation where G is connected. Theorem 22
below gives a description of the fibre of the map Rat R → G-Rat R over any
given G-rational ideal of R for connected G. This description allows us to prove
transitivity of the G-action on the fibres by simply invoking an earlier result of
Vonessen [1998, Theorem 4.7] on subfields of the rational function field k(G) that
are stable under the regular G-action. Under suitable Goldie hypotheses, Theorem
1 is due to Mœglin and Rentschler [1986a, Théorème 2] in characteristic 0 and to
Vonessen [1998, Theorem 2.10] in arbitrary characteristic. The basic outline of our
proof of Theorem 1 via the description of the fibres as in Theorem 22 is adapted
from the groundbreaking work of Mœglin, Rentschler and Vonessen. However, the
generality of our setting necessitates a complete reworking of the material and our
presentation contains numerous simplifications over the original arguments.

0.6. The systematic investigation of rational ideals in the enveloping algebra U (g)
of a finite-dimensional Lie algebra g over an algebraically closed field k of char-
acteristic 0 was initiated in [Nouazé and Gabriel 1967; Gabriel 1971]. As men-
tioned in Section 0.1, it was eventually established that “rational” is tantamount
to “primitive” for ideals of U (g); over an uncountable base field k, this is due to
Dixmier [1977]. The reader is referred to the standard reference [Dixmier 1996]
for a detailed account of the theory of primitive ideals in enveloping algebras; for an
updated survey, see [Rentschler 1987]. Here we just mention that the original mo-
tivation behind Theorem 1 and its predecessors was a question of Dixmier [1972]
(see also [Dixmier 1996, Problem 11]) concerning primitive ideals of U (g). Specif-
ically, if G is the adjoint algebraic group of g then, for any ideal k of g and any prim-
itive ideal Q of U (g), the ideal I = Q∩U (k) of U (k) is G-rational [Dixmier 1977].
Dixmier asked if the following are true for I :

(a) I =
⋂

g∈G g.P for some primitive ideal P of U (k), and

(b) any two such primitive ideals belong to the same G-orbit.

The earlier version of Theorem 1, due to Mœglin and Rentschler, settled both (a)
and (b) in the affirmative. Letting Prim U (k) denote the collection of all primitive
ideals of U (k) endowed with the Jacobson–Zariski topology, (a) says that the set

{J ∈ Prim U (k) | J ⊇ I }

is the closure of the orbit G.P in Prim U (k). Following Dixmier [1972] such P
are called generic for I . The uniqueness of generic orbits as in (b) was proved for
solvable g in [Borho et al. 1973] and generally (over uncountable k) in [Rentschler
1979]; this fact was instrumental for the proof that the Dixmier and Duflo maps are
injective in the solvable and algebraic case, respectively [Rentschler 1974; Duflo
1982].
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0.7. In future work, we hope to address some topological aspects of Rat R en-
dowed with the Jacobson–Zariski topology from Spec R. Finally, it remains to
bring the machinery developed herein to bear on new classes of algebras that lack
the traditional finiteness conditions.

1. The extended centroid

Throughout this section, R will denote an associative ring. It is understood that all
rings have a 1 which is inherited by subrings and preserved under homomorphisms.

1.1. The Amitsur–Martindale ring of quotients. Let E = E(R) denote the filter
consisting of all (two-sided) ideals I of R such that

l. annR I = {r ∈ R | r I = 0} = 0.

The right Amitsur–Martindale ring of quotients, introduced for prime rings R by
Martindale [1969b] and in general by Amitsur [1972], is defined by

Qr(R)= lim
−→
I∈E

Hom(IR, RR).

Explicitly, the elements of Qr(R) are equivalence classes of right R-module maps
f : IR → RR with I ∈ E; the map f is defined to be equivalent to f ′

: I ′

R → RR

(I ′
∈ E) if f and f ′ agree on some ideal J ⊆ I ∩ I ′, J ∈ E. In this case, f and f ′

actually agree on I ∩ I ′; see [Amitsur 1972, Lemma 1]. The sum of two elements
q, q ′

∈ Qr(R), represented by

f : IR → RR (I ∈ E) and f ′
: I ′

R → RR (I ′
∈ E),

respectively, is defined to be the class of

f + f ′
: I ∩ I ′

→ R.

Similarly, the product qq ′
∈ Qr(R) is the class of the composite

f ◦ f ′
: I ′ I → R.

This makes Qr(R) into a ring; the identity element is the class of the identity map
IdR on R. Sending an element r ∈ R to the equivalence class of the map

λr : R → R, x 7→ r x

yields an embedding of R as a subring of Qr(R). Suppose the element q ∈ Qr(R)
is represented by f : IR → RR (I ∈ E). Then the equality f ◦ λr = λ f (r) (r ∈ I )
shows that q I ⊆ R.
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We summarize the foregoing and some easy consequences thereof in the follow-
ing proposition. Complete details can be found in [Amitsur 1972] and in [Passman
1989, Proposition 10.2], for example.

Proposition 2. The ring Qr(R) has the following properties:

(i) There is a ring embedding R ↪→ Qr(R);

(ii) for each q ∈ Qr(R), there exits I ∈ E with q I ⊆ R;

(iii) if q I = 0 for q ∈ Qr(R) and I ∈ E then q = 0;

(iv) given f : IR → RR with I ∈ E, there exists q ∈ Qr(R) with qr = f (r) for all
r ∈ I .

Moreover, Qr(R) is characterized by these properties: any other ring satisfying
(i)–(iv) is R-isomorphic to Qr(R).

1.2. The extended centroid. The extended centroid of R is defined to be the center
of Qr(R); it will be denoted by C(R):

C(R)= Z(Qr(R)).

It is easy to see from Proposition 2 that C(R) coincides with the centralizer of R
in Qr(R):

C(R)= CQr(R)(R)= { q ∈ Qr(R) | qr = rq for all r ∈ R }.

In particular, the center Z(R) of R is contained in C(R). Moreover, an element
q ∈ Qr(R) belongs to C(R) if and only if q is represented by an (R, R)-bimodule
map f : I → R with I ∈ E; in this case, every representative

f ′
: I ′

R → RR (I ′
∈ E)

of q is an (R, R)-bimodule map; see [Amitsur 1972, Theorem 3].

1.2.1. By reversing sides, one can define the left ring of quotients Q`(R) and its
center C`(R) = Z(Q`(R)) as above. However, we will mainly be concerned with
semiprime rings, that is, rings R having no nonzero ideals of square 0. In that case,

l. annR I = r. annR I

holds for every ideal I of R; so the definition of E(R) is symmetric. Moreover,
any q ∈ C(R) is represented by an (R, R)-bimodule map f : I → R with I ∈ E.
The class of f in Q`(R) is an element q ′

∈ C`(R), and the map q 7→ q ′ yields an
isomorphism C(R) ∼

−→ C`(R). In the following, we shall always work with Qr(R)
and C(R).
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1.2.2. Let R be semiprime. Then one knows that C(R) is a von Neumann regular
ring. Moreover, R is prime if and only if C(R) is a field; see [Amitsur 1972,
Theorem 5].

1.3. Central closure. Rings R such that C(R)⊆ R are called centrally closed. In
this case, C(R)= Z(R). For every semiprime ring R, the subring RC(R) of Qr(R)
is a semiprime centrally closed ring called the central closure of R; see [Baxter
and Martindale 1979, Theorem 3.2]. If R is prime then so is the central closure
RC(R) by Proposition 2(ii).

Lemma 3 [Martindale 1969b]. Let R be a prime centrally closed ring and let S be
an algebra over the field C = C(R). Then:

(a) Every nonzero ideal I of R ⊗C S contains an element 0 6= r ⊗ s with r ∈ R,
s ∈ S.

(b) If S is simple then every nonzero ideal I of R ⊗C S intersects R nontrivially.
Consequently, R ⊗C S is prime.

(c) If I is a prime ideal of R ⊗C S such that I ∩ R = 0 then I = R ⊗C (I ∩ S).

Proof. (a) Fix a C-basis {si } of S. Consider an element 0 6= t =
∑

i ri ⊗si ∈ I with
a minimal number of nonzero R-coefficients ri among all nonzero elements of I
and choose i0 with r = ri0 6= 0. Then the element

r xt − t xr =

∑
i 6=i0

(r xri − ri xr)⊗ si

must be zero for all x ∈ R. Hence r xri = ri xr holds for all i , and by [Martindale
1969b, Theorem 1], there are ci ∈ C such that ri = rci . Therefore, t = r ⊗ s with
s =

∑
i ci si ∈ S.

(b) If S is simple then we can make s = 1 in (a), and so 0 6= r ∈ I ∩ R. Since R
is prime, it follows that R ⊗C S is prime as well.

(c) Suppose for a contradiction that I ) R⊗C (I ∩S). Replacing S by S/(I ∩S),
we may assume that I 6= 0 but I ∩ R = 0 and I ∩ S = 0. Choosing r ⊗ s ∈ I as in
(a), we obtain that

I ⊇ S(r ⊗ s)R = r R ⊗C Ss.

Since I is prime, we must have r ∈ I or s ∈ I , whence the desired contradiction. �

1.4. Examples.

1.4.1. If R is a simple ring, or a finite product of simple rings, then E(R)={R}, and
hence Qr(R)= R by Proposition 2(i)(ii). Thus, R is certainly centrally closed in this
case. Less trivial examples of centrally closed rings include crossed products R∗F
with R a simple ring and F a free semigroup on at least two generators [Passman
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1989, Theorem 13.4] and Laurent power series rings R((x)) over centrally closed
rings R [Martindale et al. 1990].

1.4.2. If R is semiprime right Goldie then C(R) = Z(Qcl(R)), the center of the
classical ring of quotients of R. Indeed, Qcl(R) coincides with the maximal ring of
quotients Qmax(R) in this case; see, for example, [Lambek 1976, Proposition 4.6.2].
Furthermore, the Amitsur–Martindale ring of quotients Qr(R) is R-isomorphic to
the subring of Qmax(R) consisting of all q ∈ Qmax(R) such that q I ⊆ R for some
I ∈ E(R); see [Passman 1991, Chapter 24] or [Montgomery 1980, Chapter 3]. This
isomorphism yields an isomorphism C(R)∼= Z(Qmax(R)).

1.4.3. Let R be a semiprime homomorphic image of the enveloping algebra U (g)
of a finite-dimensional Lie algebra g over some base field k. Answering a question
of Rentschler, we show here that

Qr(R) consists of all ad g-finite elements of Qcl(R).

Here

ad : U (g)→ Endk Qcl(R)

is the standard adjoint action, given by ad x(q)= xq −qx for x ∈ g and q ∈ Qcl(R),
and q is called ad(g)-finite if the k-subspace ad U (g)(q) of Qcl(R) is finite-dimen-
sional.

Proof. Recall from Section 1.4.2 that

Qr(R)= { q ∈ Qcl(R) | q I ⊆ R for some I ∈ E(R) }.

First consider q ∈Qr(R). Letting Rn and In = I ∩Rn (n ≥0) denote the filtrations of
R and I , respectively, that are induced by the canonical filtration of U (g) [Dixmier
1996, 2.3.1], we have I = Is R and q Is ⊆ Rt for suitable s, t ≥ 0. Since both Is

and Rt are ad(g)-stable, it follows that ad U (g)(q)Is ⊆ Rt . Furthermore,

l. annQcl(R) Is = l. annQcl(R) I = 0;

so ad U (g)(q) embeds into Homk(Is, Rt) proving that q is ad(g)-finite. Conversely,
suppose that q ∈ Qcl(R) is ad(g)-finite and let {qi }

m
1 be a k-basis of ad U (g)(q).

Each Di = {r ∈ R | qir ∈ R} is an essential right ideal of R, and hence

I =

m⋂
i=1

Di = { r ∈ R | ad U (g)(q)r ⊆ R }

is an essential right ideal of R which is also ad(g)-stable, since this holds for
ad U (g)(q) and R. Therefore, I ∈ E(R) which shows that q ∈ Qr(R). �
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1.5. Centralizing homomorphisms. A ring homomorphism ϕ : R → S is called
centralizing if the ring S is generated by ϕ(R) and the centralizer

CS(ϕ(R))= {s ∈ S | sϕ(r)= ϕ(r)s for all r ∈ R}.

Surjective ring homomorphisms are clearly centralizing, and composites of cen-
tralizing homomorphisms are again centralizing. Note also that any centralizing
homomorphism ϕ : R → S sends the center Z(R) of R to Z(S). Finally, ϕ induces
a map

Spec S → Spec R, P 7→ ϕ−1(P).

For any q ∈ Qr(R), we define the ideal Dq of R by

Dq = {r ∈ R | q Rr ⊆ R}. (1-1)

By Proposition 2(ii), Dq ∈ E(R). If q ∈ C(R) then the description of the ideal Dq

simplifies to

Dq = {r ∈ R | qr ⊆ R}.

Lemma 4. Let ϕ : R → S be a centralizing homomorphism of rings. Put

Cϕ =
{

q ∈ C(R)
∣∣ l. annS ϕ(Dq)= 0

}
.

Then RCϕ is a subring of Qr(R) containing R. The map ϕ extends uniquely to a
centralizing ring homomorphism ϕ̃ : RCϕ → SC(S). In particular, ϕ̃(Cϕ)⊆ C(S).

Proof. Put

Rϕ =
{

q ∈ Qr(R)
∣∣ l. annS ϕ(Dq)= 0

}
.

Since R = {q ∈ Qr(R) | 1 ∈ Dq}, we certainly have R ⊆ Rϕ . For q, q ′
∈ Qr(R),

one easily checks that Dq ′ Dq ⊆ Dq ∩ Dq ′ ⊆ Dq+q ′ and Dq ′ Dq ⊆ Dqq ′ . Moreover,
if ϕ(Dq) and ϕ(Dq ′) both have zero left annihilator in S then so does ϕ(Dq ′ Dq)=

ϕ(Dq ′)ϕ(Dq). This shows that q + q ′
∈ Rϕ and qq ′

∈ Rϕ for q, q ′
∈ Rϕ; so Rϕ is

a subring of Qr(R) containing R. Since Cϕ = Z(Rϕ), it follows that RCϕ is also a
subring of Qr(R) containing R.

Now let q ∈ Cϕ be given. Then ϕ(Dq)S = ϕ(Dq)CS(ϕ(R)) ∈ E(S). Define
q : ϕ(Dq)S → S by

q
(∑

i

ϕ(xi )ci

)
=

∑
i

ϕ(qxi )ci
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for xi ∈ Dq , ci ∈CS(ϕ(R)). To see that q is well-defined, note that, for each d ∈ Dq ,
we have ∑

i

ϕ(xi )ciϕ(qd)=

∑
i

ϕ(xi )ϕ(qd)ci =

∑
i

ϕ(xi qd)ci

=

∑
i

ϕ(qxi d)ci =

∑
i

ϕ(qxi )ϕ(d)ci

=

∑
i

ϕ(qxi )ciϕ(d).

Thus, if
∑

i ϕ(xi )ci =
∑

j ϕ(y j )e j with xi , y j ∈ Dq and ci , e j ∈ CS(ϕ(R)) then
the above computation gives

0=

(∑
i

ϕ(xi )ci −
∑

j

ϕ(y j )e j

)
ϕ(q Dq)=

(∑
i

ϕ(qxi )ci −
∑

j

ϕ(qy j )e j

)
ϕ(Dq),

and so 0 =
∑

i ϕ(qxi )ci −
∑

j ϕ(qy j )e j . Therefore, q is well-defined.
It is straightforward to check that q is an (S, S)-bimodule map. Hence, the

class of q in Qr(R) is an element ϕ̃(q) ∈ C(S). The map q 7→ ϕ̃(q) is a ring
homomorphism Cϕ → C(S) which yields the desired extension

ϕ̃ : RCϕ → SC(S),

ϕ̃(
∑

i

ri qi )=

∑
i

ϕ(ri )ϕ̃(qi ),

for ri ∈ R, qi ∈ Cϕ . Well-definedness and uniqueness of ϕ̃ follow easily from the
fact that, given finitely many xi ∈ Rϕ , there is an ideal D of R with l. annS ϕ(D)=0
and xi D ⊆ R for all i . �

In the special case where both R and S are commutative domains in Lemma 4
above, we have Qr(R) = C(R) = Fract R, the classical field of fractions of R,
and similarly for S. Moreover, RCϕ = RP is the localization of R at the prime
P = Kerϕ and the map RCϕ → SC(S) is the usual map RP → Fract S.

1.6. Extended centroids and primitive ideals. By Schur’s Lemma, the endomor-
phism ring EndR V of any simple R-module VR is a division ring. The following
lemma is well-known in the special case of noetherian (or Goldie) rings (see, for
example, [Dixmier 1996, 4.1.6]); for general rings, the lemma was apparently first
observed by Martindale [1969a, Theorem 12]. Since the latter result is stated in
terms of the so-called complete ring of quotients, we include the proof for the
reader’s convenience.

Lemma 5. Let VR be a simple R-module, and let P = annR V be its annihilator.
Then the canonical embedding Z(R/P) ↪→ Z(EndR V ) extends to an embedding
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of fields
C(R/P) ↪→ Z(EndR V ).

Proof. We may assume that P = 0. For a given q ∈ C(R), we wish to define an
endomorphism δq ∈ Z(EndR V ). To this end, note that every x ∈ V can be written
as x = vd for suitable d ∈ Dq , v ∈ V . Define

δq(x)= v(dq) ∈ V .

To see that this is well-defined, assume that vd = v′d ′ holds for v, v′
∈ V and

d, d ′
∈ Dq . Then (

v(dq)− v′(d ′q)
)
Dq = (vd − v′d ′)(q Dq)= 0

and so v(dq) − v′(d ′q) = 0. It is straightforward to check that δq ∈ EndR V .
Moreover, for any δ ∈ EndR V and vd ∈ V , one computes

δδq(vd)= δ(v(dq))= δ(v)(dq)= δq(δ(v)d)= δqδ(vd).

Thus, δq ∈ Z(EndR V ). The map C(R) → Z(EndR V ), q 7→ δq , is easily seen to
be additive. Furthermore, for q, q ′

∈ C(R), d ∈ Dq , d ′
∈ Dq ′ and v ∈ V , one has

δqq ′(vd ′d)= v(d ′dqq ′)= v(d ′q ′)(dq)= δq(δq ′(vd ′)d)= δq(δq ′(vd ′d)).

Thus, the map is a ring homomorphism; it is injective because C(R) is a field. �

1.7. Rational algebras and ideals. An algebra R over some field k will be called
rational (or k-rational) if R is prime and C(R)= k. A prime ideal P of R will be
called rational if R/P is a rational k-algebra. In view of Section 1.2.1, the notion
of rationality is left-right symmetric.

We remark that rational k-algebras are called closed over k in [Erickson et al.
1975] where such algebras are investigated in a nonassociative context. Alterna-
tively, one could define a prime k-algebra R to be rational if the field extension
C(R)/k is algebraic; for noetherian (or Goldie) algebras, this version of rationality
is adopted in many places in the literature (for example, [Brown and Goodearl
2002]). However, we will work with the above definition throughout.

1.7.1. By Section 1.3 the central closure RC(R) of any prime ring R is C(R)-
rational.

1.7.2. The Schur division rings EndR V considered in Section 1.6 are division
algebras over k, and their centers are extension fields of k. We will say that the
algebra R satisfies the weak Nullstellensatz if Z(EndR V ) is algebraic over k for
every simple R-module VR .

Proposition 6. If R is a k-algebra satisfying the weak Nullstellensatz and k is
algebraically closed then all primitive ideals of R are rational.
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Proof. By hypothesis, Z(EndR V ) = k holds for every simple R-module VR . It
follows from Lemma 5 that P = annR V satisfies C(R/P)= k. �

For an affine commutative k-algebra R, the Schur division algebras in question
are just the quotients R/P , where P is a maximal ideal of R. The classical weak
Nullstellensatz is equivalent to the statement that R/P is always algebraic over k;
see [Lang 2002, Theorem IX.1.4]. Thus affine commutative algebras do satisfy the
weak Nullstellensatz.

Many noncommutative algebras satisfying the weak Nullstellensatz are known;
see [McConnell and Robson 2001, Chapter 9] for an overview. In fact, as long as
the cardinality of the base field k is larger than dimk R, the weak Nullstellensatz is
guaranteed to hold; see [McConnell and Robson 2001, Corollary 9.1.8] or [Brown
and Goodearl 2002, II.7.16]. This applies, for example, to any countably generated
algebra over an uncountable field k.

1.8. Scalar extensions. We continue to let R denote an algebra over some field k.
For any given k-algebra A, we have an embedding

Qr(R)⊗k A ↪→ Qr(R ⊗k A)

which extends the canonical embedding R⊗k A ↪→ Qr(R⊗k A). For, let q ∈ Qr(R)
be represented by the map f : IR → RR with I ∈ E(R). Then I ⊗k A ∈ E(R ⊗k A).
Sending q to the class of the map f ⊗ IdA we obtain a ring homomorphism

Qr(R)→ Qr(R ⊗k A)

extending the canonical embedding

R ↪→ R ⊗k A ↪→ Qr(R ⊗k A).

By Proposition 2(ii)(iii), the image of Qr(R) in Qr(R ⊗k A) commutes with A and
the resulting map

Qr(R)⊗k A → Qr(R ⊗k A)

is injective. Moreover, since f ⊗ IdA is an (R ⊗k A, R ⊗k A)-bimodule map if f
is an (R, R)-bimodule map, the embedding of Qr(R) into Qr(R ⊗k A) sends C(R)
to C(R ⊗k A). Thus, if A is commutative, this yields an embedding

C(R)⊗k A ↪→ C(R ⊗k A). (1-2)

The following lemma is the associative case of [Erickson et al. 1975, Theorem
3.5].

Lemma 7. Assume that R is rational. Then, for every field extension K/k, the
K -algebra RK = R ⊗k K is rational.
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Proof. By Lemma 3(b), we know that RK is prime. Moreover, for any given
q ∈ C(RK ), we may choose an element 0 6= x ∈ Dq ∩ R. Fix a k-basis {ki } for K .
The map

qi : I = Rx R
q·

−→ RK
proj
� R ⊗ ki

∼
−→ R

is an (R, R)-bimodule map. Hence qi is multiplication with some ci ∈ k, by hy-
pothesis on R, and all but finitely many ci are zero. Therefore, the map I

q·

−→RK

is multiplication with k =
∑

i ci ki ∈ K . Consequently, q = k ∈ K . �

2. Group actions

In this section, we assume that a group G acts by automorphisms on the ring R;
the action will be written as G × R → R, (g, r) 7→ g.r .

2.1. Let M be a set with a left G-action G × M → M , (g,m) 7→ g.m. For any
subset X of M ,

G X = stabG X = {g ∈ G | g.X = X}

will denote the isotropy group of X . Furthermore, we put

(X : G)=

⋂
g∈G

g.X ;

this is the largest G-stable subset of M that is contained in X . We will be primarily
concerned with the situation where M = R and X is an ideal of R in which case
(X : G) is also an ideal of R.

2.2. G-primes. The ring R is said to be G-prime if R 6= 0 and the product of any
two nonzero G-stable ideals of R is again nonzero. A G-stable ideal I of R is
called G-prime if R/I is a G-prime ring for the G-action on R/I coming from
the given action of G on R. In the special case where the G-action on R is trivial,
G-primes of R are just the prime ideals of R in the usual sense. Recall that the
collection of all G-prime ideals of R is denoted by G-Spec R while Spec R is the
collection of all ordinary primes of R.

Proposition 8. (a) There is a well-defined map

Spec R −→ G-Spec R , P 7→ (P : G).

(b) Assume that, for each r ∈ R, the G-orbit G.r generates a finitely generated
ideal of R. Then the map in (a) is surjective. In particular, all G-primes of R
are semiprime in this case.

Proof. It is straightforward to check that (P : G) is G-prime for any prime ideal P
of R; so (a) is clear.
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For (b), consider a G-prime ideal I of R. We will show that there is an ideal P of
R which is maximal subject to the condition (P : G)= I ; the ideal P is then easily
seen to be prime. In order to prove the existence of P , we use Zorn’s Lemma. So
let {I j } be a chain of ideals of R such that (I j : G)= I holds for all j . We need to
show that the ideal I∗ =

⋃
j I j satisfies (I∗ : G) = I . For this, let r ∈ (I∗ : G) be

given. Then the ideal (G.r) that is generated by G.r is contained in (I∗ : G) and
(G.r) is a finitely generated G-stable ideal of R. Therefore, (G.r) ⊆ (I j : G) for
some j and so r ∈ I , as desired. �

For brevity, we will call G-actions satisfying the finiteness hypothesis in (b)
above locally ideal finite. Clearly, all actions of finite groups as well as all group
actions on noetherian rings are locally ideal finite. Another important class of
examples are the locally finite actions in the usual sense: by definition, these are
G-actions on some k-algebra R such that the G-orbit of each r ∈ R generates a
finite-dimensional k-subspace of R. This includes the rational actions of algebraic
groups to be considered in Section 3. In all these cases, Proposition 8 is a standard
result; the argument given above is merely a variant of earlier proofs.

2.3. G-primes and the extended centroid. The G-action on R extends uniquely
to an action of G on Qr(R): if q ∈ Qr(R) is represented by f : IR → RR (I ∈ E)
then g.q ∈ Qr(R) is defined to be the class of the map g. f : g.I → R that is given
by

(g. f )(g.x)= g. f (x)

for x ∈ I . Therefore, G also acts on the extended centroid C(R) of R. As usual,
the ring of G-invariants in C(R) will denoted by C(R)G .

Proposition 9. If R is G-prime then C(R)G is a field. Conversely, if R is semiprime
and C(R)G is a field then R is G-prime.

Proof. We follow the outline of the proof of [Amitsur 1972, Theorem 5].
First assume that R is G-prime and let 0 6= q ∈ C(R)G be given. Then q Dq is a

nonzero G-stable ideal of R, and hence l. annR(q Dq) = 0 because R is G-prime.
So q Dq ∈ E(R). Moreover,

annR(q)= {r ∈ R | rq = 0} ⊆ l. annR(q Dq)

and so annR(q)= 0. Therefore, the map Dq → q Dq , r 7→ qr = rq, is an (R, R)-
bimodule isomorphism which is G-equivariant. The class of the inverse map be-
longs to C(R)G and is the desired inverse for q .

Next, assume that R is semiprime but not G-prime. Then there exists a nonzero
G-stable ideal I of R such that J = l. annR(I ) 6= 0. Since R is semiprime, the sum
I + J is direct and I + J ∈ E(R). Define maps f, f ′

: I + J → R by

f (i + j)= i and f ′(i + j)= j.
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Letting q and q ′ denote the classes of f and f ′, respectively, in Qr(R) we have
f, f ′

∈ C(R)G and f f ′
= 0. Therefore, C(R)G is not a field. �

The following technical lemma will be crucial. Recall that G I denotes the
isotropy group of I .

Lemma 10. Let P be a prime ideal of R.

(a) For every subgroup of H ≤ G, the canonical map R/(P : G) � R/(P : H)
induces an embedding of fields

C(R/(P : G))G ↪→ C(R/(P : H))G(P:H) .

The degree of the field extension is at most [G : G(P:H)].

(b) If P has a finite G-orbit then we obtain an isomorphism of fields

C(R/(P : G))G ∼
−→ C(R/P)G P .

Proof. (a) After factoring out the ideal (P : G) we may assume that (P : G)= 0, R
is G-prime, and C(R)G is a field; see Propositions 8 and 9. Consider the canonical
map

ϕ : R � S := R/(P : H).

Using the notation of Lemma 4, we have C(R)G ⊆Cϕ . Indeed, for each q ∈C(R)G ,
the ideal Dq is nonzero and G-stable, and hence Dq * P . Therefore, ϕ(Dq) is a
nonzero H -stable ideal of the H -prime ring S, and so ϕ(Dq) ∈ E(S). The map
Cϕ → C(S) constructed in Lemma 4 yields an embedding C(R)G ↪→ C(S): the
image of q ∈ C(R)G is the class of the map f : ϕ(Dq) → S that is defined by
f (ϕ(x)) = ϕ(qx) for x ∈ Dq . Since ϕ is G(P:H)-equivariant, one computes, for
x ∈ Dq and g ∈ G(P:H),

(g. f )(g.ϕ(x))= g. f (ϕ(x))= g.ϕ(qx)= ϕ(g.(qx))

= ϕ(q(g.x))= f (ϕ(g.x))= f (g.ϕ(x));

so g. f = f . Therefore the image of C(R)G is contained in C(S)G(P:H) .
It remains to show that[

C(S)G(P:H) : C(R)G
]
≤ [G : G(P:H)]

if the latter number is finite. To this end, put

N =

⋂
g∈G

g−1G(P:H)g;

this is a normal subgroup of G which has finite index in G and is contained in
G(P:H). Since (P : H)= (P : G(P:H)), the foregoing yields embeddings of fields

C(R)G ↪→ C(S)G(P:H) = C
(
R/(P : G(P:H))

)G(P:H)
↪→ C(R/(P : N ))N ′

,
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where N ′
:=G(P:H)∩G(P:N ). The image of C(R)G under the composite embedding

is contained in C(R/(P : N ))G(P:N ) and, by Galois theory,[
C(R/(P : N ))N ′

: C(R/(P : N ))G(P:N )
]
≤ [G(P:N ) : N ′

] ≤ [G : G(P:H)].

It suffices to show that the image of C(R)G is actually equal to C(R/(P : N ))G(P:N ) .
Therefore, replacing H by N , it suffices to show that

If H E G and [G : G(P:H)]<∞ then C(R)G maps onto C(S)G(P:H) . (2-1)

To this end, we will prove the following:

Claim 11. Let t ∈ C(S)G(P:H) be given. There exists a G-stable ideal I of R such
that 0 6= ϕ(I )⊆ Dt and such that, for every x ∈ I , there exists an x ′

∈ R satisfying

ϕ(g.x ′)= tϕ(g.x) for all g ∈ G. (2-2)

Note that G-stability of I and the condition ϕ(I ) ⊆ Dt ensure that tϕ(g.x) ∈ S
holds for all g ∈ G, x ∈ I . Moreover, any G-stable ideal I satisfying 0 6= ϕ(I )
belongs to E(R). Indeed, l. annS ϕ(I )= 0 since S is H -prime, and hence l. annR I
is contained in (P : G)= 0. Finally, the element x ′ is uniquely determined by (2-2)
for any given x , because, if x ′′

∈ R also satisfies (2-2) then ϕ(g.x ′)=ϕ(g.x ′′) holds
for all g ∈ G and so x ′

− x ′′
∈ (P : G)= 0. Therefore, assuming Claim 11 for now,

we can define a map

f : I → R , x 7→ x ′.

It is easy to check that f is G-equivariant. Furthermore, for r1, r2 ∈ R,

ϕ(g.(r1x ′r2))= ϕ(g.r1)ϕ(g.x ′)ϕ(g.r2)= ϕ(g.r1)tϕ(g.x)ϕ(g.r2)

= tϕ(g.r1)ϕ(g.x)ϕ(g.r2)= tϕ(g.(r1xr2)).

This shows that f is (R, R)-bilinear. Hence, defining q to be the class of f , we
obtain the desired element q ∈ C(R)G mapping to our given t ∈ C(S)G(P:H) , thereby
proving (2-1).

It remains to construct I as in the claim. Put

D =

( ⋂
x,y∈G

x−1 y /∈G(P:H)

x .(P : H)+ y.(P : H)
)[G:G(P:H)]−1

.

Then D is a G-stable ideal of R satisfying 0 6= ϕ(D). For the latter note that the
finitely many ideals x .(P : H)+ y.(P : H) are H -stable, since H is normal, and
none of them is contained in (P : H). By the Chinese remainder theorem [Brown
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and Lorenz 1996, 1.3], the image of the map

µ : R � � //

∈

∏
g∈G/G(P:H)

R/g.(P : H) ∼ //

∈

∏
g∈G/G(P:H)

S

∈

r � // (r + g.(P : H))g∈G/G(P:H)
� //

(
ϕ(g−1.r)

)
g∈G/G(P:H)

contains the ideal
∏

g∈G/G(P:H)
ϕ(D). Now put

I =
(
ϕ−1(Dt) : G

)
D.

This is certainly a G-stable ideal of R satisfying ϕ(I )⊆ Dt . Suppose that ϕ(I )=0.
Since ϕ(D) is a nonzero H -stable ideal of the H -prime ring S, we must have(

ϕ−1(Dt) : G
)
=

⋂
g∈G/G(P:H)

g.ϕ−1(Dt)⊆ (P : H)

and so g.ϕ−1(Dt)⊆ (P : H) for some g ∈ G. But then

g.ϕ−1(Dt)$ ϕ−1(Dt)

which is impossible because ϕ−1(Dt) is G(P:H)-stable and G(P:H) has finite index
in G. Therefore, ϕ(I ) 6= 0. Finally, if x ∈ I then ϕ(g.x) ∈ Dtϕ(D) for all g ∈ G,
and hence tϕ(g.x) ∈ ϕ(D). Therefore,(

tϕ(g−1.x)
)

g∈G/G(P:H)
= µ(x ′)

for some x ′
∈ R, that is,

ϕ(g−1.x ′)=
(
tϕ(g−1.x)

)
holds for all g ∈ G/G(P:H). Since ϕ and t are G(P:H)-invariant, it follows that

ϕ
(
(gh)−1.x ′

)
=

(
tϕ((gh)−1.x)

)
holds for all g ∈ G/G(P:H), h ∈ G(P:H). Therefore, ϕ(g.x ′)= tϕ(g.x) for all g ∈ G,
as desired.

(b) This is just (2-1) with H = 1. �

2.4. G-rational ideals. Assume now that R is an algebra over some field k, as in
Section 1.7, and that G acts on R by k-algebra automorphisms. A G-prime ideal I
of R will be called G-rational if C(R/I )G = k. One can check as in Section 1.2.1
that the notion of G-rationality is left-right symmetric.

Lemma 10 (a) with H = 1 immediately implies the following:

Proposition 12. The map Spec R → G-Spec R, P 7→ (P : G), in Proposition 8
restricts to a map Rat R → G-Rat R.
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Unfortunately, the map Rat R → G-Rat R above need not be surjective, even
when the G-action on R is locally ideal finite in the sense of Proposition 8 (b).

Example 13. Let F ⊃ k be any nonalgebraic field extension satisfying FG
= k for

some subgroup G of Gal(F/k). For example, F could be chosen to be the rational
function field k(t) over an infinite field k and G = k

∗ acting via λ. f (t)= f (λ−1t)
for λ∈k

∗. The G-action on F is clearly locally ideal finite and Qr(F)= C(F)= F .
Therefore, the zero ideal of F is G-rational, but F has no rational ideals.

2.5. Algebras over a large algebraically closed base field. We continue to assume
that R is an algebra over some field k and that G acts on R by k-algebra auto-
morphisms. The following lemma is a version of [Mœglin and Rentschler 1981,
Lemme 3.3].

Lemma 14. Let I ∈ Spec R be given. Put C = C(R/I ) and consider the natural
map of C-algebras

ψ : RC = R ⊗k C � (R/I )⊗k C � (R/I )C

where (R/I )C ⊆ Qr(R/I ) is the central closure of R/I . Then:

(a) Ĩ = Kerψ is a C-rational ideal of RC .

(b) If I ∈ G-Rat R then, letting G act on RC by C-linear extension of the action
on R, we have (

Ĩ : G
)
= I ⊗k C.

Proof. Part (a) is clear, since RC/ Ĩ ∼= (R/I )C is C-rational; see Section 1.7.1.
For (b), note that the map ψ is G-equivariant for the diagonal G-action on

RC = R ⊗k C and the usual G-action on (R/I )C ⊆ Qr(R/I ). Therefore, Ĩ is
stable under all automorphisms g ⊗ g with g ∈ G, and hence we have

(g ⊗ 1)
(
Ĩ
)
= (1 ⊗ g−1)

(
Ĩ
)
.

We conclude that (
Ĩ : G

)
=

⋂
g∈G

(1 ⊗ g)
(
Ĩ
)
= I ⊗k C,

where the last equality uses the fact that Ĩ ∩ R = I and our hypothesis CG
= k; see

[Bourbaki 1981, Corollary to Proposition V.10.6]. �

As an application of the lemma, we offer the following “quick and dirty” exis-
tence result for generic rational ideals.

Proposition 15. Let R be a countably generated algebra over an algebraically
closed base field k of infinite transcendence degree over its prime subfield and
assume that the group G is countably generated. Then every prime ideal I ∈

G-Rat R has the form I = (P : G) for some P ∈ Rat R.
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Proof. Let a prime I ∈ G-Rat R be given and let k0 denote the prime subfield of k.
By hypothesis on R, we have

dimk R ≤ ℵ0.

Choosing a k-basis B of R which contains a k-basis for I and adjoining the struc-
ture constants of R with respect to B to k0, we obtain a countable field K with
k0 ⊆ K ⊆ k. Putting R0 =

∑
b∈B K b we obtain a K -subalgebra of R such that

R = R0 ⊗K k and I = I0 ⊗K k, where I0 = I ∩ R0. At the cost of adjoining
at most countably many further elements to K , we can also make sure that R0 is
stable under the action of G. Thus, R0/I0 is a G-stable K -subalgebra of R/I and
R/I = (R0/I0)⊗K k. Put C = C(R0/I0) and note that (1-2) implies that CG

= K ,
because C(R/I )G = k. Thus, I0 ∈ G-Rat R0 and Lemma 14 yields an ideal

Ĩ0 ∈ Rat(R0 ⊗K C)

such that (
Ĩ0 : G

)
= I0 ⊗K C.

Furthermore, since R0/I0 is countable, the field C is countable as well; this follows
from Proposition 2. By hypothesis on k, there is a k0-embedding of C into k; see
[Bourbaki 1981, Corollary 1 to Théorème V.14.5]. Finally, Lemma 7 implies that
P = Ĩ0 ⊗C k is a rational ideal of (R0 ⊗K C)⊗C k = R satisfying

(P : G)= (I0 ⊗K C)⊗C k = I,

as desired. �

3. Rational actions of algebraic groups

In this section, we work over an algebraically closed base field k. Throughout,
the group G will be an affine algebraic group over k and R will be a k-algebra on
which G acts by k-algebra automorphisms. The Hopf algebra of regular functions
on G will be denoted by k[G]. The notations introduced in Section 2 remain in
effect. In addition, ⊗ will stand for ⊗k.

3.1. G-modules. A k-vector space M is called a G-module if there is a linear
representation

ρM : G −→ GL(M)

satisfying

(a) local finiteness, that is, all G-orbits in M generate finite-dimensional sub-
spaces of M , and

(b) for every finite-dimensional G-stable subspace V ⊆ M , the induced group
homomorphism G → GL(V ) is a homomorphism of algebraic groups.
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As is well-known, these requirements are equivalent to the existence of a k-linear
map

1M : M −→ M ⊗ k[G] (3-1)

which makes M into a k[G]-comodule; see [Jantzen 2003, 2.7–2.8] or [Waterhouse
1979, 3.1–3.2] for details. We will use the Sweedler notation

1M(m)=

∑
m0 ⊗ m1 (m ∈ M)

as in [Montgomery 1993]. Writing ρM(g)(m)= g.m, we have

g.m =

∑
m0m1(g) (g ∈ G,m ∈ M). (3-2)

Linear representations ρM as above are often called rational. Tensor products
of rational representations of G are again rational, and similarly for sums, subrep-
resentations and homomorphic images of rational representations.

Example 16. If the group G is finite then G-modules are the same as (left) mod-
ules M over the group algebra kG and all linear representations of G are rational.
Indeed, in this case, k[G] is the linear dual of kG, that is, the k-vector space
of all functions G → k with pointwise addition and multiplication. The map
1M : M → M ⊗ k[G] is given by

1M(m)=

∑
x∈G

x .m ⊗ px ,

where px ∈k[G]= (kG)∗ is defined by px(y)= δx,y (Kronecker delta) for x, y ∈ G.

3.2. Some properties of G-modules. Let M be a G-module. The coaction 1M in
(3-1) is injective. In fact, extending 1M to a map

1M : M ⊗ k[G] −→ M ⊗ k[G] (3-3)

by k[G]-linearity, we obtain an automorphism of M ⊗k[G]: the inverse of 1M is
the k[G]-linear extension of the map (IdM ⊗S) ◦1M : M −→ M ⊗ k[G], where
S : k[G] → k[G] is the antipode of k[G]: (S f )(g)= f (g−1) for g ∈ G.

Furthermore, G-stable cores can be computed with 1M as follows.

Lemma 17. For any k-subspace V of M , we have

(V : G)=1−1
M (V ⊗ k[G]).

Proof. Fix a k-basis {vi } of V and let {w j } be a k-basis for a complement of V in
M . For m ∈ M , we have

1M(m)=

∑
i

vi ⊗ fi +

∑
j

w j ⊗ h j
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with uniquely determined fi , h j ∈ k[G]. Moreover,

1M(m) ∈ V ⊗ k[G] ⇐⇒ all the h j vanish

⇐⇒ g.m =

∑
i

vi fi (g) ∈ V for all g ∈ G.

This proves the lemma. �

3.3. Regular representations and intertwining formulas. The right and left reg-
ular representations of G are defined by

ρr : G −→ GL(k[G]), (ρr (x) f )(y)= f (yx),

ρ` : G −→ GL(k[G]), (ρ`(x) f )(y)= f (x−1 y),

for x, y ∈ G. Both regular representations are rational. The right regular repre-
sentation comes from the comultiplication 1 : k[G] → k[G] ⊗ k[G] of the Hopf
algebra k[G]; in the usual Sweedler notation, it is given by1 f =

∑
f1⊗ f2, where

f (xy) =
∑

f1(x) f2(y) for x, y ∈ G. Similarly, the left regular representation
comes from (S ⊗ Idk[G]) ◦1 ◦ S : k[G] → k[G] ⊗ k[G].

Now let M be a G-module. Then the rational representations

1M ⊗ ρ` : G → GL(M ⊗ k[G]) and ρM ⊗ ρ` : G → GL(M ⊗ k[G])

are intertwined by the automorphism 1M of (3-3): for all g ∈ G, we have

1M ◦ (1M ⊗ ρ`) (g)= (ρM ⊗ ρ`) (g) ◦1M . (3-4)

Similarly,
1M ◦ (ρM ⊗ ρr ) (g)= (1M ⊗ ρr ) (g) ◦1M . (3-5)

To prove (3-5), for example, one checks that both sides of the equation send m⊗ f ∈

M ⊗ k[G] to the function G → M , x 7→ xg.m f (xg).

3.4. Rational group actions. The action of G on the k-algebra R is said to be
rational if it makes R a G-module in the sense above. The map

1R : R → R ⊗ k[G]

is then a map of k-algebras; equivalently, R is a right k[G]-comodule algebra.
Since rational actions are locally finite, they are certainly locally ideal finite in the
sense of Proposition 8 (b). Therefore, the G-primes of R are exactly the ideals of
R of the form (P : G) for P ∈ Spec R. In particular, G-prime ideals of R are
semiprime; for a more precise statement, see Corollary 21 below. Moreover, the
k[G]-linear extension of 1R is an automorphism of k[G]-algebras

1R : R ⊗ k[G]
∼

−→ R ⊗ k[G]. (3-6)
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We now consider the extended G-action on the Amitsur–Martindale ring of quo-
tients Qr(R); see Section 2.3. This action is usually not rational, even if G acts
rationally on R. Part (b) of the following lemma, for classical quotient rings of
semiprime Goldie rings, is due to Mœglin and Rentschler [1986b, I.22].

Lemma 18. Assume that G acts rationally on R. Then:

(a) The centralizer

CG(T )= { g ∈ G | g.q = q for all q ∈ T }

of every subset T ⊆ Qr(R) is a closed subgroup of G.

(b) Let V ⊆ Qr(R) be a G-stable k-subspace of Qr(R). The G-action on V is
rational if and only if it is locally finite.

Proof. (a) In view of Proposition 2(iii), the condition for an element g ∈ G to
belong to CG(T ) can be stated as

∀q ∈ T, r ∈ Dq : (q − g.q)g.r = 0,

where Dq is as in (1-1). Using the notation of (3-2), we have

(q − g.q)g.r = q(g.r)− g.(qr)=

∑
qr0r1(g)−

∑
(qr)0(qr)1(g).

Thus, putting

fr,q =

∑
qr0 ⊗ r1 −

∑
(qr)0 ⊗ (qr)1 ∈ Qr(R)⊗ k[G],

we see that g ∈ CG(T ) if and only if fr,q(g)= 0 holds for all q ∈ T and all r ∈ Dq .
Since each equation fr,q(g)= 0 defines a closed subset of G, part (a) follows.

(b) Necessity is clear. So assume that the G-action on V is locally finite. Put
S = R ⊗ k[G] and consider the k[G]-algebra automorphism 1R ∈ Aut(S) as in
(3-6) and its extension 1 ∈ Aut(Qr(S)). We must show that, under the canonical
embedding Qr(R) ↪→ Qr(S) as in Section 1.8, we have

1(V )⊆ V ⊗ k[G]. (3-7)

Since the action of G on V is locally finite, we may assume that V is finite-
dimensional. Therefore, the ideal

DV =

⋂
q∈V

Dq

belongs to E(R) and DV is G-stable, since V is. Lemma 17 implies that

1(DV ⊗ k[G])= DV ⊗ k[G],

and hence
1(V )(DV ⊗ k[G])=1(V (DV ⊗ k[G]))⊆ S.
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This shows that the subspace1(V )⊆ Qr(S) actually is contained in Qr(R)⊗k[G],
and (3-7) follows from Lemma 17, since V = (V : G). �

From now on, the G-action on R is understood to be rational.

3.5. Connected groups. The group G is connected if and only if the algebra k[G]

is a domain. In this case,
k(G)= Fract k[G]

will denote the field of rational functions on G. The group G acts on k(G) by
the natural extensions of the right and left regular actions ρr and ρ` on k[G]; see
Section 3.3.

Part (a) of the following result is due to Chin [1992, Corollary 1.3]; the proof
given below has been extracted from [Vonessen 1998, 3.6]. The proof of part
(c) follows the outline of the arguments in [Mœglin and Rentschler 1986b, I.29,
2e étape].

Proposition 19. Assume that G is connected. Then:

(a) (P : G) is prime for every P ∈ Spec R. Therefore, the G-primes of R are
exactly the G-stable primes of R.

(b) Assume that R is prime and every nonzero ideal I of R satisfies (I : G) 6= 0.
Then G acts trivially on C(R).

(c) If R is G-rational then the field extension C(R)/k is finitely generated. In
fact, there is a G-equivariant k-embedding of fields C(R) ↪→ k(G), with G
acting on k(G) via the right regular representation ρr .

Proof. (a) It suffices to show that (P : G) is prime for each prime P; the last
assertion is then a consequence of Proposition 8.

By Section 3.4, we know that the homomorphism 1R : R → R ⊗ k[G] is cen-
tralizing. Therefore, there is a map

Spec(R ⊗ k[G])→ Spec R, Q 7→1−1
R (Q).

In view of Lemma 17, it therefore suffices to show that P⊗k[G] is prime whenever
P is. But the algebra k[G] is contained in some finitely generated purely transcen-
dental field extension F of k; see [Borel 1991, 18.2]. Thus, we have a centralizing
extension of algebras

(R/P)⊗ k[G] ⊆ (R/P)⊗ F.

Since (R/P)⊗ F is clearly prime, (R/P)⊗ k[G] is prime as well as desired.
(b) We first prove the following special case of (b) which is well-known; see

[Vonessen 1993, Prop. A.1].

Claim 20. If R is a field then G acts trivially on R.
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Since G is the union of its Borel subgroups [Borel 1991, 11.10], we may assume
that G is solvable. Arguing by induction on a composition series of G [Borel 1991,
15.1], we may further assume that G is the additive group Ga or the multiplicative
group Gm. Therefore, R ⊗ k[G] is a polynomial algebra or a Laurent polynomial
algebra over R. In either case, R is the unique largest subfield of R⊗k[G], because
R ⊗ k[G] has only “trivial” units: the nonzero elements of R if R ⊗ k[G] = R[t],
and the elements of the form r tm with 0 6= r ∈ R and m ∈ Z if R ⊗k[G] = R[t±1

].
Consequently, the map 1R : R → R ⊗k[G] has image in R ⊗1 which in turn says
that G acts trivially on R. This proves Claim 20.

Now let R be a prime k-algebra such that (I : G) is nonzero for every nonzero
ideal I of R. By Claim 20, it suffices to show that the G-action on C(R) is rational,
and by Lemma 18 this amounts to showing that G-action on C(R) is locally finite.
So let q ∈ C(R) be given and consider the ideal Dq of R as in (1-1). By hypoth-
esis, we may pick a nonzero element d ∈ (Dq : G). The G-orbit G.d generates
a finite-dimensional k-subspace V ⊆ Dq . Moreover, qV is contained in a finite-
dimensional G-stable subspace W ⊆ R. Therefore, for all g, h ∈ G, we have

(g.q)(h.d)= g.(q(g−1h.d)) ∈ W,

and hence QV ⊆ W , where Q ⊆ C(R) denotes the k-subspace that is generated by
the orbit G.q. Thus, multiplication gives a linear map Q → Homk(V,W ) which
is injective, because V 6= 0 and nonzero elements of C(R) have zero annihilator in
R. This shows that Q is finite-dimensional as desired.

(c) Put C = C(R) and K = k(G), the field of rational functions on G, that is,
the field of fractions of the algebra k[G]. The algebra RK = R ⊗ K is prime by (a)
and its proof, and by (1-2) there is a tower of fields

C ↪→ Fract(C ⊗ K ) ↪→ C(RK ).

We will first show that C is a finitely generated field extension of k. Since K/k
is finitely generated, the field Fract(C ⊗ K ) is certainly finitely generated over C .
Thus, it will suffice to construct a C-algebra embedding C ⊗ C ↪→ Fract(C ⊗ K ).

To construct such an embedding, consider the natural epimorphism of C(RK )-
algebras RC ⊗C C(RK ) � RK C(RK ). By Lemma 3(b), this map is injective,
because it is clearly injective on RC . Thus,

RC ⊗C C(RK )
∼

−→ RK C(RK ). (3-8)

Let δ be the K -algebra automorphism of RK that is defined by K -linear extension
of the G-coaction 1R : R ⊗ k[G]

∼
−→ R ⊗ k[G] in (3-6):

δ =1R ⊗k[G] IdK : RK
∼

−→ RK . (3-9)
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Let δ̃ be the unique extension of δ to an automorphism of the central closure
RK C(RK ) of RK . Clearly, δ̃ sends the C(RK )= Z(RK C(RK )) to itself. We claim
that

δ̃(C)⊆ Fract(C ⊗ K ) ; (3-10)

so δ̃ also sends Fract(C ⊗ K ) to itself. In order to see this, pick q ∈ C and d ∈ Dq .
Then

δ̃(q)1R(d)= δ̃(q )̃δ(d)= δ̃(qd)=1R(qd)

holds in RK C(RK ). Here, both 1R(qd) and 1R(d) belong to

RK ⊆ RC ⊗C (C ⊗ K ).

Fixing a C-basis B for RC and writing

1R(qd)=

∑
b∈B

bxb, 1R(d)=

∑
b∈B

byb,

with xb, yb ∈ C ⊗ K , the equation above becomes∑
b∈B

b̃δ(q)yb =

∑
b∈B

bxb.

Now (3-8) yields δ̃(q)yb = xb for all b, which proves (3-10). For the desired
embedding, consider the C-algebra map

µ : C ⊗ C −→ Fract(C ⊗ K ) , c ⊗ c′
7→ c̃δ(c′). (3-11)

We wish to show that µ is injective. To this end, note that the G-action ρR on
R extends uniquely to an action ρRC on the central closure RC , and the G-action
1R ⊗ ρr on RK extends uniquely to the central closure RK C(RK ). Denoting the
latter action by ρ̃r , the intertwining formula (3-5) implies that

δ̃ ◦ ρRC(g)= ρ̃r (g) ◦ δ̃ : RC → RK C(RK )

for all g ∈ G. This yields

µ ◦ (IdC ⊗ρC(g))= ρ̃r (g) ◦µ (3-12)

for all g ∈ G. Thus, the ideal Kerµ of C ⊗C is stable under (1C ⊗ρC)(G). Finally,
since CG

= k, we may invoke [Bourbaki 1981, Corollary to Proposition V.10.6] to
conclude that Kerµ is generated by its intersection with C ⊗1, which is zero. This
shows that µ is injective, and hence the field extension C/k is finitely generated.

It remains to construct a G-equivariant embedding C ↪→ K , with G acting on
k(G) via the right regular representation ρr as above. For this, we specialize (3-11)
as follows. Write C = Fract A for some affine k-subalgebra A ⊆ C . Then

Fract(C ⊗ K )= Fract(A ⊗ k[G]),
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and hence
µ(A ⊗ A)⊆ (A ⊗ k[G])[s−1

]

for some 0 6= s ∈ A⊗k[G]. By generic flatness [Dixmier 1996, 2.6.3], there further
exists 0 6= f ∈ A ⊗ A so that (A ⊗ k[G])[µ( f )−1s−1

] is free over (A ⊗ A)[ f −1
]

via µ. Now choose some maximal ideal m of A with f /∈ m ⊗ A. Let f denote
the image of f in (A ⊗ A)/(m ⊗ A) ∼= A, and let s̄ denote the image of s in
(A ⊗ k[G])/(m ⊗ k[G])∼= k[G]. Since µ(m ⊗ A)= mµ(A ⊗ A), the map µ|A⊗A

passes down to a map

µ̄ : A
[

f −1]
−→ B := k[G]

[
µ̄( f )−1s̄−1]

making B a free A
[

f −1
]
-module. Consequently, µ̄ extends uniquely to an embed-

ding of the fields of fractions,

Fract A
[

f −1]
= C ↪→ Fract B = K .

Finally, (3-12) implies that this embedding is G-equivariant, which completes the
proof of (c). �

Returning to the case of a general affine algebraic group G, we have:

Corollary 21. Every I ∈ G-Spec R has the form I = (Q : G) for some Q ∈ Spec R
with [G : G Q]<∞. Moreover, C(I )G ∼= C(Q)G Q .

Proof. We know that I = (P : G) for some P ∈ Spec R; see Section 3.4. Let G0 be
the connected component of the identity in G; this is a connected normal subgroup
of finite index in G [Borel 1991, 1.2]. Put Q = (P : G0). Then Proposition 19(a)
tells us that Q is prime. Furthermore, I = (Q : G) and G0

⊆ G Q ; so [G : G Q]<∞.
The isomorphism C(I )G ∼= C(Q)G Q follows from Lemma 10(b). �

3.6. The fibres of the map (0-2). Assume that G is connected. Our next goal is
to give a description of the fibres of the map Rat R → G-Rat R, P 7→ (P : G) in
Proposition 12. Following [Brown and Goodearl 2002] we denote the fibre over a
given I ∈ G-Rat R by RatI R:

RatI R = {P ∈ Rat R | (P : G)= I }.

The group G acts on RatI R via the given action ρR on R.
Recall that the group G acts on the rational function field k(G) by the natural

extensions of the regular representations ρr and ρ`. We denote by

HomG(C(R/I ), k(G))

the collection of all G-equivariant k-algebra homomorphisms C(R/I ) → k(G)
with G acting on k(G) via the right regular action ρr . The left regular action ρ` of
G on k(G) yields a G-action on the set HomG(C(R/I ), k(G)).
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Theorem 22. Let I ∈ G-Rat R be given. There is a G-equivariant bijection

RatI R −→ HomG(C(R/I ), k(G)).

Proof. Replacing R by R/I , we may assume that I = 0. In particular, R is prime
by Proposition 19. We will also put C = C(R) and K = k(G) for brevity. For
every P ∈ Rat R with (P : G)= 0, we will construct an embedding of fields

ψP : C ↪→ K

such that the following hold:

(a) ψP(g.c)= ρr (g)(ψP(c)) and ψg.P = ρ`(g) ◦ψP holds for all g ∈ G, c ∈ C ;

(b) if P, Q ∈ Rat R are such that (Q : G)= (P : G)= 0 but Q 6= P then ψQ 6=ψP ;

(c) given a G-equivariant embedding ψ : C ↪→ K , with G acting on K via ρr , we
have ψ = ψP for some P ∈ Rat R with (P : G)= 0.

This will prove the theorem.
In order to construct ψP , consider the K -algebra (R/P)K = (R/P)⊗ K . This

algebra is rational by Lemma 7. We have a centralizing k-algebra homomorphism

ϕP : R
1R

−→ R ⊗ k[G]
can.
−→ (R/P)K , (3-13)

where the canonical map

R ⊗ k[G] → (R/P)K

comes from the embedding k[G] ↪→ K and the epimorphism R � R/P . Since
(P : G) = 0, Lemma 17 implies that ϕP is injective. Since (R/P)K is prime,
it follows that CϕP = C holds in Lemma 4. Hence ϕP extends uniquely to a
centralizing k-algebra monomorphism

ϕ̃P : RC ↪→ (R/P)K C((R/P)K )= (R/P)K (3-14)

sending C to C((R/P)K ) = K . Thus we may define ψP := ϕ̃P |C : C ↪→ K . It
remains to verify properties (a)–(c).

Part (a) is a consequence of the intertwining formulas (3-4) and (3-5). Indeed,
(3-5) implies that ϕP(g.r)=ρr (g)(ϕP(r)) holds for all g ∈ G and r ∈ R. In view of
Proposition 2(ii), this identity is in fact valid for ϕ̃P and all r ∈ RC , which proves
the first of the asserted formulas for ψP in (a). For the second formula, consider
the map (ϕP)K that is defined by K -linear extension of (3-13) to RK = R ⊗ K ;
this is the composite

(ϕP)K : RK
δ

−→ RK
can.
� (R/P)K , (3-15)
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where δ is as in (3-9). The map (ρR ⊗ρ`)(g) gives ring isomorphisms RK
∼

−→ RK

and (R/P)K
∼

−→ (R/g.P)K such that the following diagram

RK
∼ //

can.
����

RK

can.
����

(R/P)K
∼ // (R/g.P)K

commutes. The intertwining formula (3-4) implies that, for all g ∈ G,

(ϕg.P)K ◦ (1R ⊗ ρ`)(g)= (ρR ⊗ ρ`)(g) ◦ (ϕP)K .

Restricting to R we obtain

ϕg.P = (ρR ⊗ ρ`)(g) ◦ϕP ,

and this becomes ψg.P = ρ`(g) ◦ψP on C . This finishes the proof of (a).
For (b), let

(ϕ̃P)K : (RC)K = RC ⊗ K � (R/P)K

be defined by K -linear extension of (3-14) and put P̃ = Ker(ϕ̃P)K . Let Q ∈ Rat R
be given such that (Q : G) = 0 and let Q̃ = Ker(ϕ̃Q)K be defined analogously. If
Q 6= P then Q̃ and P̃ are distinct primes of (RC)K ; in fact,

Q̃ ∩ RK 6= P̃ ∩ RK ,

because the restriction of (ϕ̃P)K to RK is given by (3-15). Since both Q̃ and P̃ are
disjoint from RC , Lemma 3(c) gives P̃ ∩ CK 6= Q̃ ∩ CK . This shows that (ψP)K

and (ψQ)K have distinct kernels, and so ψP 6= ψQ proving (b).
Finally, for (c), let ψ : C ↪→ K be some G-equivariant embedding. Define a

K -algebra map
9 : RK −→ S = RC ⊗C K

by K -linear extension of the canonical embedding R ↪→ RC . Note that, for c ∈ C ,

c ⊗ 1 = 1 ⊗ψ(c) (3-16)

holds in S. Put
P = δ(Ker9)∩ R,

with δ as in (3-9). We will show that P is the desired rational ideal.
The algebra S is K -rational, by Lemma 7, and G acts on S via ρRC ⊗C ρr , where

ρRC is the unique extension of the G-action ρR from R to the central closure RC .
The map 9 is G-equivariant for this action and the diagonal G-action ρR ⊗ ρr on
RK . Furthermore, by (3-5), the automorphism

δ−1
: RK

∼
−→ RK
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is equivariant with respect to the G-actions 1R⊗ρr on the first copy of RK and ρR⊗

ρr on the second RK . Therefore, the composite9◦δ−1
: RK → S is equivariant for

the G-actions 1R ⊗ρr on RK and ρRC ⊗C ρr on S. Now consider the centralizing
monomorphism of k-algebras

µ : R/P ↪→ RK /δ(Ker9) ∼
−→
δ−1

RK /Ker9 ↪→
9

S.

By the foregoing, we have µ(R/P) ⊆ SG , the k-subalgebra of G-invariants in
S. Since S is prime, we have Cµ = C(R/P) in Lemma 4. Hence, µ extends
uniquely to a monomorphism µ̃ : R/PC(R/P) ↪→ SC(S) = S sending C(R/P)
to C(S)= K . Therefore, µ̃(C(R/P))⊆ K G

= k, which proves that P is rational.
Furthermore, by Lemma 17, we have

(P : G)=1−1
R (P ⊗ k[G])⊆ δ−1(δ(Ker9))= Ker9.

Since 9 is mono on R, we conclude that (P : G) = 0. It remains to show that
ψ = ψP . For this, consider the map ϕ̃P of (3-14); so ψP = ϕ̃P |C . For q ∈ C ,
d ∈ Dq we have

δ(qd) mod P ⊗ K = ϕ̃P(qd)= ϕ̃P(q)ϕ̃P(d)= δ(ψP(q)d) mod P ⊗ K

because ψP(q) ∈ K and δ is K -linear. It follows that ψP(q)d − qd ∈ Ker9; so

0 = ψP(q)9(d)−9(qd)= qd ⊗C 1 = ψ(q)9(d),

where the last equality holds by (3-16). This shows that ψP(q) = ψ(q), thereby
completing the proof of the theorem. �

3.7. Proof of Theorem 1. We have to prove

(1) given I ∈ G-Rat R, there is a P ∈ Rat R such that I = (P : G);

(2) if P, P ′
∈ Rat R satisfy (P : G)= (P ′

: G) then P ′
= g.P for some g ∈ G.

3.7.1. We first show that it suffices to deal with the case of connected groups. Let
G0 denote the connected component of the identity in G, as before, and assume
that both (1) and (2) hold for G0.

In order to prove (1) for G, let I ∈ G-Rat R be given. By Corollary 21, there
exists Q ∈ Spec R with I = (Q : G), G0

⊆ G Q and C(R/Q)G Q = k. Since G Q/G0

is finite, it follows that Q is in fact G0-rational. Inasmuch as (1) holds for G0,
there exists P ∈ Rat R with Q = (P : G0). It follows that (P : G)= (Q : G)= I ,
proving (1).

Now suppose that (P : G)= (P ′
: G) for P, P ′

∈ Rat R. Putting P0
= (P : G0)

we have
(P : G)=

⋂
x∈G/G0

x .P0
=

⋂
x∈G/G0

(x .P : G0),
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a finite intersection of G0-prime ideals of R. Similarly for P ′ 0
= (P ′

: G0). The
equality (P : G) = (P ′

: G) implies that (P ′
: G0) = (x .P : G0) for some x ∈ G.

(Note that if V ⊆ g.V holds for some k-subspace V ⊆ R and some g ∈ G then we
must have V = g.V , because the G-action on R is locally finite.) Invoking (2) for
G0, we see that P ′

= yx .P for some y ∈ G0, which proves (2) for G.

3.7.2. Now assume that G is connected. In view of Theorem 22, proving (1)
amounts to showing that there is a G-equivariant k-algebra homomorphism

C(R/I )→ k(G)

with G acting on k(G) via the right regular action ρr . But this has been done in
Proposition 19(c). For part (2), it suffices to invoke Theorem 22 in conjunction with
the following result which is the special case of [Vonessen 1998, Theorem 4.7] for
connected G.

Proposition 23. Let G act on k(G) via ρr and let F be a G-stable subfield of k(G)
containing k. Let HomG(F, k(G)) denote the collection of all G-equivariant k-
algebra homomorphisms ϕ : F → k(G). Then the G-action on HomG(F, k(G))
that is given by g.ϕ = ρ`(g) ◦ϕ is transitive.

This completes the proof of Theorem 1. �

3.7.3. It is tempting to try and prove (1) above in the following more direct fashion.
Assume that R is G-prime and choose an ideal P of R that is maximal subject to
the condition (P : G) = 0. This is possible by the proof of Proposition 8(b) and
we have also seen that P is prime. I don’t know if the ideal P is actually rational.
This would follow if the field extension C(R)G ↪→ C(R/P)G P in Lemma 10 were
algebraic in the present situation. Indeed, every ideal I of R with I ) P satisfies
(I : G) 6= 0, and hence (I : H) ) P . Therefore, Proposition 19(b) tells us that
the connected component of the identity of G P acts trivially on C(R/P) and so
C(R/P) is finite over C(R/P)G P .
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