
Algebra &
Number
Theory

Volume 2

2008
No. 5

mathematical sciences publishers



Algebra & Number Theory
www.jant.org

EDITORS

MANAGING EDITOR

Bjorn Poonen
University of California

Berkeley, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad University of Michigan, USA

Hélène Esnault Universität Duisburg-Essen, Germany

Hubert Flenner Ruhr-Universität, Germany

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada
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Homology and cohomology of quantum
complete intersections

Petter Andreas Bergh and Karin Erdmann

Dedicated to Luchezar Avramov on the occasion of his sixtieth birthday

We construct a minimal projective bimodule resolution for every finite-dimen-
sional quantum complete intersection of codimension two. Then we use this
resolution to compute both the Hochschild cohomology and homology for such
an algebra. In particular, we show that the cohomology vanishes in high degrees,
while the homology is always nonzero.

1. Introduction

The notion of quantum complete intersections originates from the work by Manin
[1987], who introduced the concept of quantum symmetric algebras. These alge-
bras were used by Avramov, Gasharov and Peeva [1997] to study modules behaving
homologically as modules over commutative complete intersections. In particular,
they introduced quantum regular sequences of endomorphisms of modules, thus
generalizing the classical notion of regular sequences.

Benson, Erdmann and Holloway [2007] defined and studied a new rank variety
theory for modules over finite-dimensional quantum complete intersections. For
this theory to work, it is essential that the commutators defining the quantum com-
plete intersection be roots of unity, so that a linear combination of the generators
behave itself as a generator. In this setting, at least for quantum complete intersec-
tions of codimension two, the Hochschild cohomology ring is infinite-dimensional,
and a priori there might be connections between rank varieties and the support
varieties defined by Snashall and Solberg [2004] (see also [Erdmann et al. 2004]).

Whether or not the higher Hochschild cohomology groups of a finite-dimen-
sional algebra of infinite global dimension can vanish, known as “Happel’s ques-
tion”, was unknown until the appearance of [Buchweitz et al. 2005]. In that pa-
per, the authors constructed a four-dimensional selfinjective algebra whose total

MSC2000: primary 16E40; secondary 81R50, 16U80, 16S80.
Keywords: quantum complete intersection, Hochschild cohomology, Hochschild homology.
The authors are grateful for support through the EC contract MRTN-CT-2003-505078 (LieGrits).
This work was carried out while Bergh was working at the University of Oxford.
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502 Petter Andreas Bergh and Karin Erdmann

Hochschild cohomology is five-dimensional, thus giving a negative answer to Hap-
pel’s question. The algebra they constructed is the smallest possible noncommu-
tative quantum complete intersection.

In this paper we study finite-dimensional quantum complete intersections of
codimension two. For such an algebra, we construct a minimal projective bimodule
resolution, and use this to compute the Hochschild homology and cohomology. In
particular, we show that the higher Hochschild cohomology groups vanish if and
only if the commutator element is not a root of unity, whereas the Hochschild
homology groups never vanish. Thus we obtain a large class of algebras having
the same homological properties as the algebra used in [Buchweitz et al. 2005].

2. The minimal projective resolution

Throughout this paper, let k be a field and q ∈ k a nonzero element. In the main
results, this element is assumed not to be a root of unity, implying indirectly that
k is an infinite field. We fix two integers a, b ≥ 2, and denote by A the k-algebra

A = k〈X, Y 〉/(Xa, XY − qY X, Y b).

This is a finite-dimensional algebra of dimension ab, and it is justifiably a quantum
complete intersection of codimension 2; it is the quotient of the quantum symmetric
algebra

k〈X, Y 〉/(XY − qY X)

by the quantum regular sequence Xa and Y b (as defined in [Avramov et al. 1997,
Section 2]). We denote the generators of A by x and y, and use the set

{yi x j
} 0≤i<b, 0≤ j<a

as a k-basis. The opposite algebra of A is denoted by Aop, and the enveloping
algebra A⊗k Aop by Ae.

We now construct explicitly a minimal projective bimodule resolution

P : · · · → P2
d2
−→ P1

d1
−→ P0

µ
−→ A→ 0,

in which Pn is free and of rank n+ 1, viewing the bimodules as left Ae-modules.
The generators 1⊗ 1 of Pn are labeled ε(i, j) for i, j ≥ 0, such that

Pn =
⊕

i+ j=n

Ae ε(i, j).
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For each s ≥ 0, define the four elements of Ae:

τ1(s)= qs(1⊗ x)− (x ⊗ 1)

τ2(s)= (1⊗ y)− qs(y⊗ 1)

γ1(s)=
a−1∑
j=0

q js(xa−1− j
⊗ x j )

γ2(s)=
b−1∑
j=0

q js(y j
⊗ yb−1− j ).

Let P0
µ
−→ A be the multiplication map w ⊗ z 7→ wz. The kernel of this map is

generated by τ1(0) and τ2(0). Now let R1 and R2 be the commutative subalgebras
of A generated by x and y, respectively. The annihilator of τi (0), viewed as an
element of Re

i , is γi (0), and the complex

· · · → Re
i
τi (0)
−−→ Re

i
γi (0)
−−→ Re

i
τi (0)
−−→ Re

i
µ
−→ Ri → 0

is a minimal projective bimodule resolution of Ri [Holm 2000].

In general, given any algebra 0 and an automorphism 0
ψ
−→ 0, we may endow

every 0-module X with a new module structure by restricting scalars via ψ . In
this way, we obtain a new module ψ X , whose underlying set is the same as that of
X , but where scalar multiplication is given by

γ · x = ψ(γ )x

for γ ∈ 0 and x ∈ X . This new module is the twist of X with respect to ψ . A
homomorphism X→ Y of 0-modules induces a homomorphism

ψ X→ ψY

of twisted modules.
Now for i = 1, 2, define an algebra automorphism Re

i
σi
−→ Re

i by

σ1 : x ⊗ 1 7→ x ⊗ 1, 1⊗ x 7→ q(1⊗ x),

σ2 : y⊗ 1 7→ q(y⊗ 1), 1⊗ y 7→ 1⊗ y.

When we twist the above resolution of Ri by the automorphism σ s
i for some s ≥ 0,

then multiplication by τi (0) and γi (0) become multiplication by τi (s) and γi (s),
respectively. We denote this twisted resolution by Ri (s).
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We now define a double complex

...
��

...
��

...
��

Aeε(0, 2)
��

Aeε(1, 2)
��

oo Aeε(2, 2)
��

oo · · ·oo

Aeε(0, 1)
��

Aeε(1, 1)
��

oo Aeε(2, 1)
��

oo · · ·oo

Aeε(0, 0) Aeε(1, 0)oo Aeε(2, 0)oo · · ·oo

whose total complex P turns out to be the projective bimodule resolution we are
seeking. Along row 2s we use the resolution R1(bs), and along row 2s+1 we use
the resolution R1(bs+ 1). Explicitly, the row maps are given by

ε(2r, 2s) 7→ γ1(bs)ε(2r − 1, 2s),

ε(2r + 1, 2s) 7→ τ1(bs)ε(2r, 2s),

ε(2r, 2s+ 1) 7→ γ1(bs+ 1)ε(2r − 1, 2s+ 1),

ε(2r + 1, 2s+ 1) 7→ τ1(bs+ 1)ε(2r, 2s+ 1).

Similarly, along column 2r we use the resolution R2(ar), and along column 2r+1
we use the resolution R2(ar + 1), introducing a sign in the odd columns. The
column maps are therefore given by

ε(2r, 2s) 7→ γ2(ar)ε(2r, 2s− 1),

ε(2r, 2s+ 1) 7→ τ2(ar)ε(2r, 2s),

ε(2r + 1, 2s) 7→ −γ2(ar + 1)ε(2r + 1, 2s− 1),

ε(2r + 1, 2s+ 1) 7→ −τ2(ar + 1)ε(2r + 1, 2s).

It is straightforward to verify that these maps indeed define a double complex; all
the four different types of squares commute. The transpose of the matrices defining
the maps in the resulting double complex are given by



γ1(0) −τ2(as+1) 0 0 0 0 · · · 0
0 τ1(1) γ2(as) 0 0 0 · · · 0
0 0 γ1(b) −τ2(a[s−1]+1) 0 0 · · · 0
0 0 0 τ1(b+1) γ2(a[s−1]) 0 · · · 0
...

...
. . .

. . .
. . .

. . .
...

0 0 · · · 0 γ1(bs) −τ2(1) 0
0 0 · · · 0 0 τ1(bs+1) γ2(0)


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for the map at stage 2(s+ 1), and

τ1(0) τ2(as) 0 0 0 0 · · · 0
0 γ1(1) −γ2(a[s−1]+1) 0 0 0 · · · 0
0 0 τ1(b) τ2(a[s−1]) 0 0 · · · 0
0 0 0 γ1(b+1) −γ2(a[s−2]+1) 0 · · · 0
...

...
. . .

. . .
. . .

. . .
...

0 0 · · · 0 γ1(b[s−1]+1) −γ2(1) 0
0 0 · · · 0 0 τ1(bs) τ2(0)


for the map at stage 2s+ 1.

Now, for each n ≥ 0, denote the generator ε(i, n − i) by f n
i , so that the n-th

bimodule in the total complex P is

Pn =

n⊕
i=0

Ae f n
i ,

the free Ae-module of rank n+ 1 having generators

{ f n
0 , f n

1 , . . . , f n
n }.

Then the maps Pn
dn
−→ Pn−1 in P are given by

d2t : f 2t
i 7→

{
γ2(

ai
2 ) f 2t−1

i + γ1(
2bt−bi

2 ) f 2t−1
i−1 , for i even,

−τ2(
ai−a+2

2 ) f 2t−1
i + τ1(

2bt−bi−b+2
2 ) f 2t−1

i−1 , for i odd,

d2t+1 : f 2t+1
i 7→

{
τ2(

ai
2 ) f 2t

i + γ1(
2bt−bi+2

2 ) f 2t
i−1, for i even,

−γ2(
ai−a+2

2 ) f 2t
i + τ1(

2bt−bi+b
2 ) f 2t

i−1, for i odd,

where we use the convention f n
−1 = f n

n+1 = 0. The following result shows that the
complex is exact.

Proposition 2.1. The complex P is exact, and is therefore a minimal projective
resolution

P : · · · → P2
d2
−→ P1

d1
−→ P0

µ
−→ A→ 0

of the left Ae-module A.

Proof. We will show that the complex P⊗A k is exact, and a minimal projective
resolution of the A-module k. Then the arguments in [Green and Snashall 2004]
show that the complex P is exact.
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When applying −⊗A k to Ae
= A⊗k Aop, the elements x and y in Aop become

zero, and so the elements τi (s)⊗ 1 and γi (s)⊗ 1 are just given by

τ1(s)⊗ 1=−(x ⊗ 1),

τ2(s)⊗ 1=−qs(y⊗ 1),

γ1(s)⊗ 1= (xa−1
⊗ 1),

γ2(s)⊗ 1= q(b−1)s(yb−1
⊗ 1).

We shall identify these elements with −x , −qs y, xa−1 and q(b−1)s yb−1, respec-
tively. Moreover, whenever the commutator element q is involved, its precise
power does not affect the dimensions of the vector spaces we are considering,
so we shall write q∗ for simplicity.

Fix a number n≥ 0. The free bimodule Pn has generators ε(i, j), with n= i+ j
and i, j ≥ 0. When the degree is not ambiguous, we shall denote the element

ε(i, j)⊗ 1 ∈ Pn ⊗A k

by e j , and we shall denote the map

Pn ⊗A k
dn⊗1
−−−→ Pn−1⊗A k

by d̂n . Moreover, we denote by Ui the left A-submodule of Pn−1⊗A k generated
by d̂n(e j ), so that

Im d̂n =U0+ · · ·+Un ⊆ Pn−1⊗A k.

We now compute the dimensions of these modules Ui . Assume first that n is
even. Then

U0 = Axa−1e0,

Ui = A[(q∗y)ei−1+ (q∗x)ei ], for odd 0< i < n,

Ui = A
[
(q∗yb−1)ei−1+ (q∗xa−1)ei

]
, for even 0< i < n,

Un = Ayb−1en−1,

and so we see that dim U0 = b, dim Un = a, and otherwise dim Ui = ab− 1 and
dim U j = a+ b+ 1 for i odd and j even. When n is odd, then

U0 = Axe0,

Ui = A[(−q∗y)ei−1+ (q∗xa−1)ei ], for odd 0< i < n,

Ui = A
[
(q∗yb−1)ei−1+ (q∗x)ei

]
, for even 0< i < n,

Un = Ayen−1,
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and so in this case we see that dim U0= b(a−1), dim Un = a(b−1), and otherwise
dim Ui = a(b− 1)+ 1 and dim U j = b(a− 1)+ 1 for i odd and j even.

Our aim is to compute the dimensions of various intersections and sums obtained
from the modules Ui . In order to do this, we need the fact that for any elements
z1, z2 ∈ A, the implication

z1x s
= z2 yt

H⇒ z1 = v1 yt
+w1xa−s and z2 = v2x s

+w2 yb−t (2-1)

holds, where vi and wi are some elements in A depending on z1 and z2. To see
this, write

z1 = g0+ g1 y+ · · ·+ gb−1 yb−1 and z2 = h0+ h1 y+ · · ·+ hb−1 yb−1,

where the gi and hi are polynomials in x . Then∑
i

hi yt+i
= z2 yt

= z1x s
=

∑
j

(q− js g j x s)y j ,

and comparing the coefficients of y j , we find that g j x s
= 0 for j < t . Therefore,

for these values of j , the polynomial g j must be a multiple of xa−s . Then we can
write ∑

j<t

g j y j
= w1xa−s

for some w1 ∈ A, giving

z1 =
∑
j<t

g j y j
+

∑
j≥t

g j y j
= w1xa−s

+ v1 yt ,

where v1 =
∑

j≥t g j y j−t . This proves the statement for z1, and the proof for z2 is
similar.

We now compute the intersections of pairs of the modules Ui . Suppose n is
even, and fix an even integer 0≤ j ≤ n. If u belongs to U j ∩U j+1, then there are
elements z1, z2 ∈ A such that

u = z1
[
(q∗yb−1)e j−1+ (q∗xa−1)e j

]
= z2[(q∗y)e j + (q∗x)e j+1].

The coefficients of e j−1 and e j+1 must be zero, whereas those of e j must be equal,
giving

(z1q∗)xa−1
= (z2q∗)y.

By (2-1), there are elements v1, v2, w1, w2 ∈ A such that

z1q∗ = v1 y+w1x, z2q∗ = v2xa−1
+w2 yb−1,

hence u ∈ Ayxa−1e j . Conversely, any element in Ayxa−1e j belongs to U j ∩U j+1,
showing

U j ∩U j+1 = Ayxa−1e j ,
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and that the dimension of this intersection is b− 1. Similarly, we compute three
other types of intersections using the same method, and record everything in the
table:

n j intersection dimension

even even U j ∩U j+1 = Ayxa−1e j b− 1
even odd U j ∩U j+1 = Ayb−1xe j a− 1
odd even U j ∩U j+1 = Ayxe j (a− 1)(b− 1)
odd odd U j ∩U j+1 = Ayb−1xa−1e j 1

Next we show that the equality

(U0+U1+ · · ·+Us)∩Us+1 =Us ∩Us+1 (2-2)

holds for any s ≥ 1. Suppose first that both n and s are even. The inclusion
Us ∩Us+1 ⊆ (U0 +U1 + · · · +Us) ∩Us+1 obviously holds, so suppose u is an
element belonging to (U0+U1+ · · ·+Us)∩Us+1. Then u can be written as

u = z0xa−1e0+ z1[(q∗y)e0+ (q∗x)e1] + · · · + zs
[
(q∗yb−1)es−1+ (q∗xa−1)es

]
= zs+1[(q∗y)es + (q∗x)es+1],

in which the coefficient of es+1 must be zero. Moreover, the coefficients of es must
be equal, that is,

(zs+1q∗)y = (zsq∗)xa−1,

and so from (2-1) we see that there exist elements v,w ∈ A such that

zs+1 = vxa−1
+wyb−1.

This gives
u = (vxa−1

+wyb−1) q∗yes = vq∗xa−1 yes,

and we see directly that u belongs to Us ∩Us+1. Equation (2-2) therefore holds
when n and s are even, and the same arguments show that the equality holds re-
gardless of the parity of n and s.

Using what we just showed, an induction argument gives the equality

dim(U0+ · · ·+Us)=

s∑
i=0

dim Ui −

s−1∑
i=0

dim(Ui ∩Ui+1).

Then by counting dimensions, we see that the dimension of Im d̂n is given by

dim Im d̂n =

{
tab+ 1, when n = 2t,
(t + 1)ab− 1, when n = 2t + 1.
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The exactness of the complex P⊗A k now follows easily; the image of d̂n+1 is
contained in the kernel of d̂n , and the dimension of Pn⊗A k is ab(n+1). It follows
that Im d̂n+1 and Ker d̂n are of the same dimension.

As for minimality, it suffices to show that Im d̂n does not have a projective
summand. This follows from the description of this module as the sum of Ui .
Namely, we see directly that the element yb−1xa−1

∈ A annihilates each Ui , and
therefore also Im d̂n . �

3. Hochschild (co)homology

Having obtained the bimodule resolution of A = k〈X, Y 〉/(Xa, XY − qY X, Y b),
we turn now to its Hochschild homology and cohomology groups. Let B be a
bimodule, and recall that the Hochschild homology of A with coefficients in B,
denoted HH∗(A, B), is the k-vector space

HH∗(A, B)= TorAe

∗
(B, A),

where B is viewed as a right Ae-module. Dually, the Hochschild cohomology of
A with coefficients in B, denoted HH∗(A, B), is the k-vector space

HH∗(A, B)= Ext∗Ae(A, B),

where B is viewed as a left Ae-module. Of particular interest is the case B = A,
namely the Hochschild homology and cohomology of A, denoted HH∗(A) and
HH∗(A), respectively. Now, by viewing A and B as left Ae-modules, it follows
from [Cartan and Eilenberg 1956, VI.5.3] that D(HH∗(A, B)) is isomorphic, as a
vector space, to TorAe

∗
(D(B), A), where D denotes the usual k-dual Homk(−, k).

In particular, by taking B = A, we see that

dimk HHn(A)= dimk TorAe

n (D(A), A)

for all n ≥ 0.
Our algebra A is Frobenius; it is easy to check that the map A

φ
−→ D(A) of left

A-modules, defined by

φ(1) :
∑

0≤ j≤b−1
0≤i≤a−1

c j,i y j x i
7→ cb−1,a−1,

is an isomorphism. To such a Frobenius isomorphism, one can always associate a
k-algebra automorphism A

ν
−→ A, a Nakayama automorphism, with the (defining)

property that

w ·φ(1)= φ(1) · ν(w)
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for all elements w ∈ A. In our case, the elements x and y generate A, and since

x ·φ(1)= φ(1) · q1−bx and y ·φ(1)= φ(1) · qa−1 y,

we see that the automorphism defined by

ν : x 7→ q1−bx, y 7→ qa−1 y

is a Nakayama automorphism. The composite map φ ◦ ν−1 is then a bimodule
isomorphism between the right Ae-modules ν A1 and D(A), where the scalar action
on ν A1 is given by

u · (w1⊗w2)= ν(w2)uw1.

Consequently, we see that

dimk HHn(A)= dimk TorAe

n (ν A1, A)

for all n ≥ 0.
Now let α, β ∈k be nonzero scalars, and let A

ψ
−→ A be the automorphism defined

by x 7→ αx and y 7→ βy. Tensoring the deleted projective bimodule resolution PA

with the right Ae-module ψ A1, we obtain an isomorphism

· · · // ψ A1⊗Ae Pn+1

o

��

1⊗dn+1 // ψ A1⊗Ae Pn

o

��

1⊗dn // ψ A1⊗Ae Pn−1

o

��

// · · ·

· · · //⊕n+1
i=0 (ψ A1)en+1

i

δ
ψ
n+1 //

⊕n
i=0(ψ A1)en

i
δ
ψ
n //⊕n−1

i=0 (ψ A1)en−1
i

// · · ·

of complexes, where {en
0, en

1, . . . , en
n} is the standard generating set of n+1 copies

of ψ A1. The map δψn is then given by

δ
ψ
2t : yu xve2t

i 7→
Kψ

1 (t, i, u, v)yu+b−1xve2t−1
i + Kψ

2 (t, i, u, v)yu xv+a−1e2t−1
i−1 , for i even,

[q(ai−a+2+2v)/2
−β]yu+1xve2t−1

i
+[αq(2bt−bi−b+2+2u)/2

− 1]yu xv+1e2t−1
i−1 , for i odd,

δ
ψ
2t+1 : yu xve2t+1

i 7→{
[β − q(ai+2v)/2

]yu+1xve2t
i + Kψ

3 (t, i, u, v)yu xv+a−1e2t
i−1, for i even,

Kψ
4 (t, i, u, v)yu+b−1xve2t

i + [αq(2bt−bi+b+2u)/2
− 1]yu xv+1e2t

i−1, for i odd,

where we use the convention en
−1 = en

n+1 = 0. Here the elements Kψ
j (t, i, u, v),

which are scalars whose values depend on the parameters ψ , t , i , u and v, are
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defined as follows:

Kψ
1 (t, i, u, v)=

b−1∑
j=0

q j (ai+2v)/2βb−1− j ,

Kψ
2 (t, i, u, v)=

a−1∑
j=0

q j (2bt−bi+2u)/2α j ,

Kψ
3 (t, i, u, v)=

a−1∑
j=0

q j (2bt−bi+2+2u)/2α j ,

Kψ
4 (t, i, u, v)=

b−1∑
j=0

q j (ai−a+2+2v)/2βb−1− j .

When q is not a root of unity, and the characteristic of k does not divide a or b,
these scalars are all nonzero when the automorphism ψ is either the identity or the
Nakayama automorphism. For, in this case, the elements are of the form

qs(1+ qm
+ q2m

+ · · ·+ qrm)

for some m, s ∈Z and r = a−1 or r = b−1. When m = 0, this element is nonzero
since the characteristic of k does not divide a or b, and, if it was zero for some
m 6= 0, then q would be a root of unity because of the equality

(1+ qm
+ q2m

+ · · ·+ qrm)(1− qm)= 1− q(r+1)m .

In the following result we use this complex to compute the Hochschild homology
of our algebra A.

Theorem 3.1. When q is not a root of unity, the Hochschild homology of A is given
by

dimk HHn(A)=


a+ b− 1, when n = 0,
a+ b, when n ≥ 1 and char k divides both a and b,
a+ b− 1, when n ≥ 1 and char k divides one of a and b,
a+ b− 2, when n ≥ 1 and char k does not divide a or b.

Proof. We need to compute the homology groups of the above complex in the case
when ψ is the identity automorphism on A, that is, when α= 1= β. We do this by
computing Ker δ1

2t for t ≥ 1 and Ker δ1
2t+1 for t ≥ 0, and we treat these two cases

separately.

Ker δ1
2t . The image under the map δ1

2t of a basis vector

yu xve2t
i ∈

2t⊕
i=0

Ae2t
i



512 Petter Andreas Bergh and Karin Erdmann

is given by
K 1

1 (t, i, u, v)yu+b−1xve2t−1
i + K 1

2 (t, i, u, v)yu xv+a−1e2t−1
i−1 , for i even,

[q(ai−a+2+2v)/2
− 1]yu+1xve2t−1

i
+[q(2bt−bi−b+2+2u)/2

− 1]yu xv+1e2t−1
i−1 , for i odd.

From the definition of the scalars K 1
1 and K 1

2 , we see that

K 1
1 (t, i, u, v)= 0 ⇐⇒ i = 0, v = 0, char k|b,

K 1
2 (t, i, u, v)= 0 ⇐⇒ i = 2t, u = 0, char k|a,

and therefore we first compute the dimension of Ker δ1
2t under the assumption that

the characteristic of k does not divide a or b.
First, we count the number of single basis vectors in

⊕2t
i=0 Ae2t

i belonging to
Ker δ1

2t . For even i , we have

δ1
2t(y

u xve2t
i )= 0 for all even i ⇐⇒ u+ b− 1≥ b and v+ a− 1≥ a

⇐⇒ 1≤ u ≤ b− 1 and 1≤ v ≤ a− 1,

from which we obtain (b− 1)(a− 1)(t + 1) vectors (there are t + 1 even numbers
in the set {0, 1, . . . , 2t}). For odd i , we have

δ1
2t(y

u xve2t
i )= 0 for all odd i ⇐⇒ u+ 1≥ b and v+ 1≥ a

⇐⇒ u = b− 1 and v = a− 1,

giving t vectors (there are t odd numbers in the set {0, 1, . . . , 2t}). Next, we count
the other single basis vectors which are mapped to zero, starting with those for
which i is even. The element e2t−1

2t is zero by definition. Hence when i = 2t and
v+ a− 1≥ a, that is, when 1≤ v ≤ a− 1, we see that yu xve2t

i maps to zero. But
the vectors for which u is nonzero were counted above. Hence the new vectors are
xve2t

2t for 1 ≤ v ≤ a− 1. Similarly, the element e2t−1
−1 is zero by definition. Hence

when i = 0 and u + b− 1 ≥ b, that is, when 1 ≤ u ≤ b− 1, we see that yu xve2t
i

maps to zero. But here the vectors for which v is nonzero were counted above,
and so the new vectors are yue2t

0 for 1≤ u ≤ b−1. It is easy to see that except for
these a+b−2 new vectors, there is no other single basis vector yu xve2t

i in Ker δ1
2t

for which i is even, since both K 1
1 (t, i, u, v) and K 1

2 (t, i, u, v) are always nonzero.
Moreover, when i is odd, neither e2t−1

i nor e2t−1
i−1 are zero, and the coefficients

[q(ai−a+2+2v)/2
− 1], and [q(2bt−bi−b+2+2u)/2

− 1]

are both nonzero. Hence in this case there are no new basis vectors mapped to
zero.
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Now we count the number of nontrivial linear combinations of two or more
basis vectors in

⊕2t
i=0 Ae2t

i belonging to Ker δ1
2t . Let i be even. If the first term of

δ1
2t(y

u xve2t
i ) is nonzero, then the only way to “kill” it is to involve the second term

of δ1
2t(y

u+b−1xv−1e2t
i+1). Thus to get a nontrivial linear combination, we see that

u, v and i must satisfy u = 0, 1 ≤ v ≤ a − 1 and i = 0, 2, . . . , 2t − 2. For these
parameter values, the second term of δ1

2t(y
u xve2t

i ) vanishes, as does the first term
of δ1

2t(y
u+b−1xv−1e2t

i+1). Therefore, for a suitable nonzero scalar C(a, b, i, u, v),
the linear combination

xve2t
i +C(a, b, i, u, v)yb−1xv−1e2t

i+1

is mapped to zero for 1≤ v ≤ a−1 and i = 0, 2, . . . , 2t−2, and there are (a−1)t
such elements. If the second term of δ1

2t(y
u xve2t

i ) is nonzero, then the only way
to “kill” it is to involve the first term of δ1

2t(y
u−1xv+a−1e2t

i−1). To get a nontrivial
linear combination, the parameters u, v and i must satisfy 1 ≤ u ≤ b− 1, v = 0
and i = 2, 4, . . . , 2t , and for these values the first term of δ1

2t(y
u xve2t

i ) and the
second term of δ1

2t(y
u−1xv+a−1e2t

i−1) vanish. Thus, for a suitable nonzero scalar
C ′(a, b, i, u, v), the linear combination

yue2t
i +C ′(a, b, i, u, v)yu−1xa−1e2t

i−1

is mapped to zero for 1 ≤ u ≤ b− 1 and i = 2, 4, . . . , 2t , and there are (b− 1)t
such elements.

We have now accounted for all the elements of Ker δ1
2t , when the characteristic

of k does not divide a or b. If the characteristic of k divides a, then we must add
to our list the element e2t

2t . Similarly, if the characteristic of k divides b, then we
must add to our list the element e2t

0 . Finally, if the characteristic of k divides both a
and b, then we must add both these two elements to our list (and they are different
elements since t ≥ 1). Summing up, we see that the total dimension of Ker δ1

2t is
given by

dimk Ker δ1
2t =


abt + ab− 1, when char k does not divide a or b,
abt + ab+ 1, when char k divides both a and b,
abt + ab, otherwise.

Ker δ1
2t+1. The image under the map δ1

2t+1 of a basis vector

yu xve2t+1
i ∈

2t+1⊕
i=0

Ae2t+1
i
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is given by{
[1− q(ai+2v)/2

]yu+1xve2t
i + K 1

3 (t, i, u, v)yu xv+a−1e2t
i−1, for i even

K 1
4 (t, i, u, v)yu+b−1xve2t

i + [q
(2bt−bi+b+2u)/2

− 1]yu xv+1e2t
i−1, for i odd.

From the definition of the elements K 1
3 and K 1

4 , we see that they are always
nonzero, contrary to the case above where there were parameters for which K 1

1 and
K 1

2 vanished. Therefore, the characteristic of k does not matter when we compute
the dimension of Ker δ1

2t+1.
We follow the same procedure as we did for Ker δ1

2t . First we count the number
of single basis vectors in

⊕2t+1
i=0 Ae2t+1

i belonging to Ker δ1
2t+1. For even i , we

have

δ1
2t+1(y

u xve2t+1
i )= 0 for all even i ⇐⇒ u+ 1≥ b and v+ a− 1≥ a

⇐⇒ u = b− 1 and 1≤ v ≤ a− 1,

resulting in (a − 1)(t + 1) vectors (there are (t + 1) even numbers in the set
{0, 1, . . . , 2t + 1}). When i is odd, we have

δ1
2t+1(y

u xve2t+1
i )= 0 for all odd i ⇐⇒ u+ b− 1≥ b and v+ 1≥ a

⇐⇒ 1≤ u ≤ b− 1 and v = a− 1,

giving (b−1)(t+1) vectors (there are (t+1) odd numbers in the set {0, 1, . . . , 2t+
1}). Next, we count the other single basis vectors in

⊕2t+1
i=0 Ae2t+1

i belonging to
Ker δ1

2t+1, starting with those for which i is even. The element e2t
−1 is zero; hence

for i = 0 the second term in δ1
2t+1(y

u xve2t+1
i ) vanishes. If now v = 0, then the

coefficient [1−q(ai+2v)/2
] vanishes, and therefore the vector yue2t+1

0 maps to zero
for 0≤ u ≤ b−1. There are b such vectors, and none of them was counted above.
Moreover, it is not hard to see that there is no other vector yu xve2t+1

i in Ker δ1
2t+1

for which i is even. As for the case when i is odd, the element e2t
2t+1 is zero by

definition, and the coefficient [q(2bt−bi+b+2u)/2
− 1] vanishes for i = 2t + 1 and

u = 0. Therefore, the vector xve2t+1
2t+1 maps to zero for 0 ≤ v ≤ a − 1. These a

vectors have not been counted before, and Ker δ1
2t+1 does not contain more vectors

yu xve2t+1
i for which i is odd.

At last we count the number of nontrivial linear combinations of two or more
basis vectors in

⊕2t+1
i=0 Ae2t+1

i belonging to Ker δ1
2t+1. Let i be even, and suppose

the first term of δ1
2t+1(y

u xve2t+1
i ) is nonzero. The only way to cancel this term is to

involve the second term of δ1
2t+1(y

u+1xv−1e2t+1
i+1 ). Now, the first term in the latter

vanishes, as does the second term of δ1
2t+1(y

u xve2t+1
i ), since v must be nonzero.

Thus, for a suitable nonzero scalar C ′′(a, b, i, u, v), the element

yu xve2t+1
i +C ′′(a, b, i, u, v)yu+1xv−1e2t+1

i+1



Homology and cohomology of quantum complete intersections 515

belongs to Ker δ1
2t+1, when the parameters satisfy 0≤ u ≤ b−2, 1≤ v ≤ a−1 and

i = 0, 2, . . . , 2t . There are (a−1)(b−1)(t+1) such elements. Finally, suppose the
second term of δ1

2t+1(y
u xve2t+1

i ) is nonzero. To cancel it, we must involve the first
term in δ1

2t+1(y
u−b+1xv+a−1e2t+1

i−1 ), and so we see that the only possibility for u and
v is u = b−1 and v= 0. Therefore, for a suitable nonzero scalar C ′′′(a, b, i, u, v),
the element

yb−1e2t+1
i +C ′′′(a, b, i, u, v)xa−1e2t+1

i−1

is mapped to zero for i = 2, 4, . . . , 2t . There are t such linear combinations.
All the elements of Ker δ1

2t+1 are now accounted for, and so when summing up
we obtain the dimension of this vector space:

dimk Ker δ1
2t+1 = abt + ab+ a+ b− 1.

Using the identities

dimk Ker δ1
n + dimk Im δ1

n = dimk An+1
= (n+ 1)ab,

we can now calculate the Hochschild homology of A. The dimension formula gives
dimk Im δ1

2t+1 = abt + ab− a− b+ 1, in particular dimk Im δ1
1 = 2ab− a− b+ 1,

giving
dimk HH0(A)= dimk A− dimk Im δ1

1 = a+ b− 1.

Applying the formula to the results we obtained, when computing Ker δ1
2t ,

dimk Im δ1
2t+2 =


abt + ab+ 1, when char k does not divide a or b,
abt + ab− 1, when char k divides both a and b,
abt + ab, otherwise,

and so by calculating dimk HHn(A) = dimk Ker δ1
n − dimk Im δ1

n+1 for n ≥ 1, we
get

dimk HHn(A)=


a+ b− 2, when char k does not divide a or b,
a+ b, when char k divides both a and b,
a+ b− 1, otherwise.

This completes the proof. �

In particular, since a and b are both at least 2, the Hochschild homology of A
does not vanish in high degrees (or in any degree). This was conjectured by Han
[2006] to hold for all finite-dimensional algebras of infinite global dimension, and
in the same paper it was proved that this conjecture holds for monomial algebras.

The converse of this conjecture always holds when the algebra modulo its radical
is separable over the ground field. Namely, in this situation, if the global dimension
of the algebra is finite, then the algebra has finite projective dimension as a bimod-
ule, and hence its Hochschild homology vanishes in high degrees. The same holds
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of course for Hochschild cohomology, and following this easy observation, Happel
[1989] remarked that “the converse seems to be not known”. Thus the cohomology
version of Han’s conjecture came to be known as “Happel’s question”. However,
this cohomology version is false in general; it was proved in [Buchweitz et al.
2005] that there do exist finite-dimensional algebras of infinite global dimension
for which Hochschild cohomology vanishes in high degrees. The counterexample
used in the paper was precisely our algebra A with a = 2 = b, and the following
result shows that the same holds for arbitrary a and b. Contrary to the homology
case, the dimensions of the cohomology groups do not depend on the characteristic
of k.

Theorem 3.2. When q is not a root of unity, the Hochschild cohomology of A is
given by

dimk HHn(A)=


2, for n = 0,
2, for n = 1,
1, for n = 2,
0, for n ≥ 3.

In particular, the Hochschild cohomology of A vanishes in high degrees.

Proof. It is well known and easy to see that, in general, HH0(A) is isomorphic to
the center of A, that is, the subalgebra

{w ∈ A | wz = zw for all z ∈ A}.

The center of our algebra A is the vector space spanned by the “first” and the
“last” elements in its basis, namely the elements 1 and yb−1xa−1. Hence HH0(A)
is 2-dimensional.

To compute the Hochschild cohomology groups of positive degree, we compute
the homology of the complex obtained prior to Theorem 3.1, in the case when ψ
is the Nakayama automorphism ν. In this case, the scalars α and β are given by

α = q1−b, and β = qa−1.

We apply the same method as we did when computing homology; we compute
Ker δν2t for t ≥ 1 and Ker δν2t+1 for t ≥ 0, treating the two cases separately.

Ker δν
2t . The result when applying the map δν2t to a basis vector

yu xve2t
i ∈

2t⊕
i=0

(ν A1)e2t
i
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is given by
K ν

1 (t, i, u, v)yu+b−1xve2t−1
i + K ν

2 (t, i, u, v)yu xv+a−1e2t−1
i−1 , for i even

[q(ai−a+2+2v)/2
− qa−1

]yu+1xve2t−1
i

+[q(2bt−bi−3b+4+2u)/2
− 1]yu xv+1e2t−1

i−1 , for i odd.

From the definition of the elements K ν
1 and K ν

2 , we see that

K ν
1 (t, i, u, v)= 0 ⇐⇒ i = 0, v = a− 1, char k|b,

K ν
2 (t, i, u, v)= 0 ⇐⇒ i = 2t, u = b− 1, char k|a,

and so we first compute the dimension of Ker δν2t in the case when the characteristic
of k does not divide a or b.

First, we count the number of single basis vectors in
⊕2t

i=0(ν A1)e2t
i belonging

to Ker δν2t . As in the homology case, we have

δν2t(y
u xve2t

i )= 0 for all even i ⇐⇒ u+ b− 1≥ b and v+ a− 1≥ a

⇐⇒ 1≤ u ≤ b− 1 and 1≤ v ≤ a− 1,

δν2t(y
u xve2t

i )= 0 for all odd i ⇐⇒ u+ 1≥ b and v+ 1≥ a

⇐⇒ u = b− 1 and v = a− 1,

from which we obtain (b − 1)(a − 1)(t + 1) + t vectors. Next, we count the
other single basis vectors in

⊕2t
i=0(ν A1)e2t

i belonging to Ker δν2t . Since K ν
1 and

K ν
2 are always nonzero, the number of such vectors for which i is even is the

same as in the homology case, namely a + b − 2. As for the vectors for which
i is odd, it is no longer true that the coefficients are always nonzero. The co-
efficient [q(ai−a+2+2v)/2

− qa−1
] vanishes when i = 1 and v = a − 2, whereas

[q(2bt−bi−3b+4+2u)/2
− 1] vanishes when i = 2t − 1 and u = b − 2. Both these

cases will occur, since t is at least 1 when we compute Ker δν2t . However, these
coefficients need to vanish simultaneously for the basis vector to belong to Ker δν2t ,
and this only happens when t = 1, since then 2t − 1 = 1. Thus, when t = 1 the
vector yb−2xa−2e2

1 maps to zero, whereas when t ≥2 there are no new basis vectors
in Ker δν2t for which i is odd.

Now we count the number of nontrivial linear combinations of two or more
basis vectors in

⊕2t
i=0(ν A1)e2t

i belonging to Ker δν2t . These elements are precisely
the same as in the homology case, and we do not encounter problems because of
the “new” basis vector in Ker δν2 we obtained above. Therefore, the number of such
linear combinations is (a− 1)t + (b− 1)t .

We now look at what happens when the characteristic of k divides a or b. If
char k divides a, then we must add the vector xa−1e2t

0 to the list of single basis
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vectors mapped to zero. However, this vector already appears in one of the non-
trivial linear combinations; hence it does not contribute to the total dimension.
Similarly, when char k divides b, then the new vector yb−1e2t

2t belongs to the list
of single basis vectors mapped to zero. But again this vector already appears in
one of the nontrivial linear combinations, and it will therefore not contribute to the
total dimension. This argument is still valid if char k divides both a and b. This
shows that the dimension of Ker δν2t is independent of the characteristic of k.

In total, we see that the dimension of Ker δν2t is almost the same as it was in the
homology case when the characteristic of k did not divide a or b; we need one
additional vector when t = 1. Therefore, the dimension is given by

dimk Ker δν2t =

{
2ab, when t = 1,
abt + ab− 1, when t ≥ 2.

Ker δν
2t+1. The image under the map δν2t+1 of a basis vector

yu xve2t+1
i ∈

2t+1⊕
i=0

(ν A1)e2t+1
i

is given by{
[qa−1

− q(ai+2v)/2
]yu+1xve2t

i + K ν
3 (t, i, u, v)yu xv+a−1e2t

i−1, for i even,

K ν
4 (t, i, u, v)yu+b−1xve2t

i + [q
(2bt−bi−b+2+2u)/2

− 1]yu xv+1e2t
i−1, for i odd.

Now, from the definition of the scalars K ν
3 and K ν

4 , we see that K ν
3 is always

nonzero, while we have

K ν
4 (t, i, u, v)= 0 ⇐⇒ i = 1, v = a− 2, char k|b.

Therefore, we first compute the dimension of Ker δν2t+1 under the assumption that
the characteristic of k does not divide b.

First, we count the number of single basis vectors in
⊕2t+1

i=0 (ν A1)e2t+1
i belonging

to Ker δν2t+1. As in the homology case, we have

δν2t+1(y
u xve2t+1

i )= 0 for all even i ⇐⇒ u+ 1≥ b and v+ a− 1≥ a

⇐⇒ u = b− 1 and 1≤ v ≤ a− 1,

δν2t+1(y
u xve2t+1

i )= 0 for all odd i ⇐⇒ u+ b− 1≥ b and v+ 1≥ a

⇐⇒ 1≤ u ≤ b− 1 and v = a− 1,

from which we obtain (a− 1)(t + 1)+ (b− 1)(t + 1) vectors. Next, we count the
other single basis vectors in

⊕2t+1
i=0 (ν A1)e2t+1

i belonging to Ker δν2t+1, treating first
the ones for which i is even. When i = 0, the second term of δν2t+1(y

u xve2t+1
i )

vanishes, and the first term then vanishes if u = b − 1 or v = a − 1. Some of
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these vectors are among the ones counted above, the new ones are yb−1e2t+1
0 and

yu xa−1e2t+1
0 for 0 ≤ u ≤ b − 2. Except for these b elements, there are no other

single basis elements in Ker δν2t+1 for which i is even. As for those for which i is
odd, we see that the first term of δν2t+1(y

u xve2t+1
i ) vanishes when i = 2t + 1. In

this case, the second term vanishes if u = b− 1 or v = a− 1, and of these vectors
the ones which have not been counted before are the a elements xa−1e2t+1

2t+1 and
yb−1xve2t+1

2t+1 for 0≤ v ≤ a−2. It is not hard to see that Ker δν2t+1 does not contain
any other element yu xve2t+1

i for which i is odd.
Finally, we count the number of nontrivial linear combinations of two or more

basis elements in
⊕2t+1

i=0 (ν A1)e2t+1
i belonging to Ker δν2t+1. In the homology case,

these were
yu xve2t+1

i +C ′′(a, b, i, u, v)yu+1xv−1e2t+1
i+1

for 0≤ u ≤ b− 2, 1≤ v ≤ a− 1 and i = 0, 2, . . . , 2t , and

yb−1e2t+1
i +C ′′′(a, b, i, u, v)xa−1e2t+1

i−1

for i = 2, 4, . . . , 2t , where C ′′ and C ′′′ are suitable scalars. The t latter elements
also belong to Ker δν2t+1, but among the (a−1)(b−1)(t+1) first elements there are
some combinations that are not mapped to zero. Namely, we must discard the b−1
elements for which i = 0 and v = a− 1, since we showed above that yu xa−1e2t+1

0
maps to zero for 0≤ u ≤ b−2. Similarly, we must discard the a−1 combinations
for which i = 2t and u = b−2, since yb−1xve2t+1

2t+1 maps to zero for 0≤ v ≤ a−2.
However, when t = 0, then the situations i = 0 and i = 2t are the same, and the
element

yb−2xa−1e1
0+C ′′(a, b, i, u, v)yb−1xa−2e1

1

has been discarded twice. Thus the total number of nontrivial linear combinations
is (a − 1)(b− 1)(t + 1)+ t − (a − 1)− (b− 1) when t ≥ 1, and one more when
t = 0.

What happens when char k divides b? The element yu xa−2e2t+1
1 is not mapped

to zero for any u, and it does not “interfere” with one of the nontrivial linear combi-
nations. Hence the dimension of Ker δν2t+1 is also independent of the characteristic
of k.

In total, we see that the dimension of Ker δν2t+1 differs from that in the homology
case, since we need to subtract (a−1)+(b−1) when t ≥ 1 and (a−1)+(b−1)−1
when t = 0. Thus, the dimension is given by

dimk Ker δν2t+1 =

{
ab+ 2, when t = 0,
abt + ab+ 1, when t ≥ 1.

We can now calculate the positive degree cohomology groups. We have

dimk Ker δν1 = ab+ 2,
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and, since dimk Ker δν2 = 2ab, we must have dimk Im δν2 = ab, giving

dimk HH1(A)= dimk Ker δν1 − dimk Im δν2 = 2.

Furthermore, since dimk Ker δν3 = 2ab+ 1, we must have dimk Im δν3 = 2ab− 1,
giving

dimk HH2(A)= dimk Ker δν2 − dimk Im δν3 = 1.

Similarly, direct computations show that the cohomology groups HHn(A) vanish
when n ≥ 3, thereby completing the proof. �

When the commutator element q is a root of unity, it is not hard to see that the
dimensions of infinitely many of the kernels in the complex we used to compute
(co)homology will increase. Therefore, the Hochschild homology of A is still
nonzero in all degrees, while it is no longer true that all the higher Hochschild
cohomology groups vanish. We record this fact in the final result, which also gives
the multiplicative structure of the Hochschild cohomology ring when q is not a
root of unity.

Theorem 3.3. The Hochschild cohomology ring HH∗(A) is finite-dimensional if
and only if q is not a root of unity. When this is the case, the algebra is isomorphic
to the (five-dimensional graded) fibre product

k[U ]/(U 2)×k k〈V,W 〉/(V 2, V W +W V,W 2),

where U is in degree zero and V and W are in degree one.

Proof. Suppose q is not a root of unity. Recall first the initial part

P2
d2
−→ P1

d1
−→ P0

µ
−→ A→ 0

of the projective bimodule resolution of A, where µ is the multiplication map. The
maps d1 and d2 are defined on generators as follows:

d1 : f 1
0 7→ [(1⊗ y)− (y⊗ 1)] f 0

0 ,

f 1
1 7→ [(1⊗ x)− (x ⊗ 1)] f 0

0 ,

d2 : f 2
0 7→

[
(1⊗ yb−1)+ (y⊗ yb−2)+ · · ·+ (yb−1

⊗ 1)
]

f 1
0 ,

f 2
1 7→ [q(1⊗ x)− (x ⊗ 1)] f 1

0 + [(1⊗ y)− q(y⊗ 1)] f 1
1 ,

f 2
2 7→

[
(1⊗ xa−1)+ (x ⊗ xa−2)+ · · ·+ (xa−1

⊗ 1)
]

f 1
1 .

Define two bimodule maps

g : P1→ A,
{

f 1
0 7→ y,

f 1
1 7→ 0,

h : P1→ A,
{

f 1
0 7→ 0,

f 1
1 7→ x .
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One checks directly that
g ◦ d2 = 0= h ◦ d2,

and that neither of the two maps is liftable through d1. Consequently they represent
the two basis elements of HH1(A)= Ext1Ae(A, A).

We may identify the degree zero part of HH∗(A) with the center of A, the two-
dimensional vector space spanned by the elements 1 and yb−1xa−1. The latter
element annihilates both g and h; hence HH∗(A) is isomorphic to the k-fibre prod-
uct of the algebra generated by yb−1xa−1 with the algebra generated by g and h.
Since the Hochschild cohomology ring of a finite-dimensional algebra is always
graded commutative (see [Snashall and Solberg 2004, Corollary 1.2]), both g and
h square to zero. Therefore, as HH2(A) is one-dimensional, we are done if we can
show that the product hg ∈ HH2(A) is nonzero.

Define a bimodule map g0 : P1→ P0 by

g0 : f 1
0 7→ (y⊗ 1) f 0

0 , f 1
1 7→ 0.

It is not hard to see that there exists an element w ∈ Ae such that the map g1 : P2→

P1, defined by

g1 : f 2
0 7→ w f 1

0 , f 2
1 7→ q(y⊗ 1) f 1

1 , f 2
2 7→ 0

gives a commutative diagram

P2

g1

��

d2 // P1

g0

��

g

  
P1

d1 // P0
µ // A.

The product hg ∈HH2(A) is then represented by the composite map h ◦ g1, under
which the images of the generators in P2 are given by

h ◦ g1 : f 2
0 7→ 0, f 2

1 7→ qyx, f 2
2 7→ 0.

This map is not liftable through d2, and therefore it represents a nonzero element
of HH2(A). Consequently, the product hg is nonzero. �
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Tate resolutions for Segre embeddings
David A. Cox and Evgeny Materov

We give an explicit description of the terms and differentials of the Tate resolu-
tion of sheaves arising from Segre embeddings of Pa

× Pb. We prove that the
maps in this Tate resolution are either coming from Sylvester-type maps, or from
Bezout-type maps arising from the so-called toric Jacobian.

1. Introduction

Let V and W be dual vector spaces of dimension N+1 over a field K of characteris-
tic 0. It is known that there is a relation between complexes of free graded modules
over the exterior algebra E =

∧
V and coherent sheaves on projective space P(W ).

More precisely, the Bernstein–Gel’fand–Gel’fand (BGG) correspondence [1978]
establishes an equivalence between the derived category of bounded complexes
of coherent sheaves on P(W ) and the stable category of complexes of finitely
generated graded modules over E . The essential part of this correspondence is
given via the Tate resolutions, namely for any coherent sheaf F on P(W ) there
exists a bi-infinite exact sequence

T •(F) : · · · → T−1(F)→ T 0(F)→ T 1(F)→ · · ·

of free graded E-modules. The terms of Tate resolution were described explicitly
by Eisenbud, Fløystad and Schreyer [2003a] in the form

T p(F)=
⊕

i

Ê(i − p)⊗ H i(P(W ),F(p− i)
)
,

where
Ê = ωE = HomK (E, K )=

∧
W

as an E-module.
While the terms of Tate resolutions are described explicitly, the maps are much

more difficult to describe. The knowledge of the maps give us, for example, an

MSC2000: primary 13D02; secondary 14M25.
Keywords: Tate resolution, Segre embedding, toric Jacobian.
E. Materov was partially supported by the Russian Foundation for Basic Research, grant 05-01-
00517, by grant 06-01-91063 from the Japanese Society for the Promotion of Science and the Russian
Foundation for Basic Research, and by NM project 45.2007 of the Siberian Federal University grant.
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opportunity to compute generalized resultants (see, for example, [Eisenbud et al.
2003b] or [Khetan 2003; 2005]).

Cox [2007] found an explicit construction of the Tate resolution for the d-fold
Veronese embedding

νd : P
n
→ P(

n+d
d )−1

of Pn when F = νd∗OPn (k). The construction of differentials in Tate resolution
involves the Bezoutian of n + 1 homogeneous polynomials of degree d in n + 1
variables. In this paper, we find a similar description of the Tate resolution arising
from the Segre embedding

ν : Pa
×Pb

→ Pab+a+b

of the sheaf ν∗OPa×Pb(k, l). The shape of the Tate resolution depends only on the
pair (k, l) and there are three types of possible resolutions:

Type 1: − a ≤ k− l ≤ b,

Type 2: k− l > b,

Type 3: k− l <−a.

We prove that Type 1 maps involve the toric Jacobian of a sequence bilinear forms
f0, . . . , fa+b in x0, . . . , xa , y0, . . . , yb given by

f j =
∑
i,k

ai jk xi yk, 0≤ j ≤ a+ b.

This result resembles the Bezout-type formulas for hyperdeterminants of a three-
dimensional matrix A = (ai jk) discussed in [Gel′fand et al. 1994, Chapter 14,
Theorem 3.19]. The resolutions of Type 2 and 3 are similar to each other and both
arise from the Sylvester forms of f0, . . . , fa+b. Notice that similar formulas appear
in the study of Bondal type formulas for hyperdeterminants of A (see [Gel′fand
et al. 1994, Chapter 14, Theorem 3.18]).

The situations considered in this paper and [Cox 2007] are special cases when
F is a push-forward of L= O(m1, . . . ,mr ) in the projective embedding

ν : Pl1 × · · ·×Plr → P(Sd1 K l1+1
⊗ · · ·⊗ Sdr K lr+1)

which is a combination of Segre and Veronese embeddings. This case will be
studied in a different paper [Cox and Materov ≥ 2008]. We conjecture that the
maps in the Tate resolutions are essentially the same as in Weyman–Zelevinsky
complexes [1994] or the same as in the resultant spectral sequences from [Gel′fand
et al. 1994, Chapter 4, Section 3].

Here is the outline of our paper. In Section 2 we give a definition of the Tate
resolution and explain its basic properties. We then enter the main part of the
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paper: in Section 3 we describe the terms of Tate resolution arising from Segre
embeddings of sheaves on products of projective spaces, and in Section 4 we find
explicit forms for corresponding differentials.

2. Basic definitions and properties of Tate resolutions

2.1. Graded exterior algebras. Given V and W as above, the algebras S=Sym W
and E =

∧
V are graded by the following convention: deg(ei ) = 1 for a basis

e0, e1, . . . , eN of W and deg(e∗i ) = −1 for the dual basis e∗0, e∗1, . . . , e∗N of V , so
that E−i =

∧i V . Define E(p) as the graded E-module with E(p)q = E p+q . Then
any free graded E-module is an E-module of the form

M =
⊕

i

E(−i)⊗ Vi ,

where Vi is a finite-dimensional K -vector space with Vi = {0} for almost all i .
Note that Vi gives the degree i generators of M , because

(E(−i)⊗ Vi )i = E(−i)i ⊗ Vi = E0⊗ Vi = Vi .

The dual to E algebra Ê = ωE = HomK (E, K ) is a left E-module with the
graded components

Êi = HomK (E−i , K )= HomK
(∧i V, K

)
.

The perfect pairing ∧i V ×
∧i W → K

implies Êi =
∧i W and Ê =

∧
W . Moreover, Ê is Gorenstein, that is, Ê is isomor-

phic to E with a shift in grading. Namely, the isomorphism∧i V ⊗
∧N+1W →

∧N+1−i W

implies

Ê = E(−N − 1)⊗
∧N+1W,

and therefore Ê ∼= E(−N−1) (noncanonically) via a map
∧N+1W ∼= K . For later

purposes, we note the canonical isomorphism

HomE
(
Ê(p)⊗ A, Ê(q)⊗ B

)
0 ' HomK

(∧p−q W ⊗ A, B
)
, (2-1)

where the subscript 0 denotes graded homomorphisms of degree zero.
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2.2. Tate resolutions. By [Eisenbud et al. 2003a] or [Fløystad 2000] a coherent
sheaf F on P(W ) determines a Tate resolution T •(F), which is an (unbounded)
acyclic complex

T •(F) : · · · → T−1(F)→ T 0(F)→ T 1(F)→ · · ·

of free graded E-modules with the terms

T p(F)=
⊕

i

Ê(i − p)⊗ H i(P(W ),F(p− i)
)
.

For example, in degree k we have

T p(F)k =
⊕

i

∧i−p+k W ⊗ H i(P(W ),F(p− i)
)

since Ê(i − p)k = Êi−p+k =
∧i−p+k W . The Tate resolution is defined by each

differential d p
: T p(F)→ T p+1(F) since T≥p(F) is a minimal injective resolution

of ker(d p) and T<p(F) is a minimal projective resolution of ker(d p) [Eisenbud
2005].

When the context is clear, we will write H i (F( j)) instead of H i
(
P(W ),F( j)

)
.

Lemma 2.1. For fixed k, T p(F)k = 0 if either p> k+m or p< k− N −1, where
m = dim(supp(F)).

Proof. Since H i (F(p− i))= 0 if i < 0 or i >m, we may assume 0≤ i ≤m. Then
the inequalities k+m < p, i ≤ m easily imply

i − p+ k ≤ m− p+ k <−p+ p = 0,

so that
∧i−p+k W = 0. Analogously, if k− N − 1> p, i ≥ 0, then

i − p+ k ≥−p+ k >−p+ p+ N + 1= N + 1,

so that we have again
∧i−p+k W = 0. �

Lemma 2.2. If i < j , then the map

d p
i, j : Ê(i − p)⊗ H i (F(p− i))→ Ê( j − p− 1)⊗ H j (F(p+ 1− j))

from the i-th summand of T p(F) to the j-th summand of T p+1(F) is zero.

Proof. Let

A = H i (F(p− i)) and B = H j (F(p+ 1− j)).

By (2-1), d p
i, j lies in

HomE
(
Ê(i − p)⊗ A, Ê( j − p− 1)⊗ B

)
0 ' HomK

(∧i− j+1W ⊗ A, B
)
.
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It follows that d p
i, j = 0 when i+1< j and that d p

i,i+1 is constant. Then minimality
implies that d p

i,i+1 = 0. �

Finding an explicit expression for differentials d p
: T p(F)→ T p+1(F) seems

to be a difficult problem. By Lemma 2.2, the general maps from the i-th summand
of T p(F) in the Tate resolution T •(F) have the form

Ê(i − p)⊗ H i (F(p− i))→
⊕
j≥0

Ê(i − j − p− 1)⊗ H i− j (F(p+ 1− i + j)).

The “horizontal” cmponent of this map is explicitly known:

Ê(i − p)⊗ H i (F(p− i))→ Ê(i − p− 1)⊗ H i (F(p+ 1− i)),

f ⊗m 7→
∑

i

f e∗i ⊗ ei m.

By (2-1), this corresponds to the multiplication map

W ⊗ H i (F(p− i))→ H i (F(p+ 1− i)).

One of the main results of this paper is an explicit description the entire differential
d p
: T p(F)→ T p+1(F) in some special situations.

3. Tate resolutions for Segre embeddings of Pa × Pb

Let X =Pa
×Pb, with coordinate ring S = K [x, y] for variables x= (x0, . . . , xa),

y = (y0, . . . , yb). The ring S has a natural bigrading where the x variables have
degree (1, 0) and the y variables have degree (0, 1). The graded piece of S in
degree s, t will be denoted Ss,t . Set

W = H 0(X,OX (1, 1))= S1,1

and let

ν : X = Pa
×Pb

→ P(W )' Pab+a+b

be the Segre embedding. The sheaf

F= ν∗OX (k, l) (3-1)

has Tate resolution T •(F) with

T p(F)=
⊕

i

Ê(i − p)⊗ H i (F(p− i))

=

⊕
i

Ê(i − p)⊗ H i(X,OX (k+ p− i, l + p− i)
)
.
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In general, we say that the summand Ê(i − p) ⊗ H i (F(p − i)) of T p(F) has
cohomological level i . Since

H i(X,OX (k+ p− i, l + p− i)
)
= 0

for i /∈ {0, a, b, a+b}, we see that T p(F) has at most four nonzero cohomological
levels.

In Section 2.2, we observed that the “horizontal” components of the differentials
d p
: T p(F)→ T p+1(F) are explicitly known. The main result of this paper is a

description of the “diagonal” components of these maps.

3.1. Regularity. We recall that a coherent sheaf F is called m-regular if

H i (F(m− i))= 0, for all i > 0.

If F is m-regular, then it is known that it is also (m + 1)-regular. The regularity
of F, denoted reg(F), is the unique integer m such that F is m-regular, but not
(m− 1)-regular. It follows from the definition of regularity if m = reg(F), then

T p(F)= Ê(−p)⊗ H 0(F(p)), for p ≥ m,

and the Tate resolution has the form

· · · → T m−2(F)→ T m−1(F)→ Ê(−m)⊗ H 0(F(m))→ · · · .

We now compute the regularity of the sheaf F defined in (3-1).

Lemma 3.1. reg(F)=max
{
−min{k, l},min{b− k, a− l}

}
.

Proof. Let m0 denote the right-hand side of the above equation and let m ≥ m0.
Then Serre duality implies

Ha+b(F(m− (a+ b))
)
= Ha+b(X,OX

(
k+m− (a+ b), l +m− (a+ b)

))
' H 0(X,OX

(
b− k− (m+ 1), a− l − (m+ 1)

))∗
.

Since m≥m0 implies m≥b−k or m≥a−l, we see that Ha+b
(
F(m−(a+b))

)
=0.

Next we use the Künneth formula to write

Ha(F(m− a))= Ha(X,OX (k+m− a, l +m− a)
)

= H 0(Pa,O(k+m− a))⊗ Ha(Pb,O(l +m− a)) ⊕

Ha(Pa,O(k+m− a))⊗ H 0(Pb,O(l +m− a)).

Since m ≥ m0 implies m ≥ −k and m ≥ −l, we see that k +m − a ≥ −a, which
implies Ha(Pa,O(k+m−a))= 0. Furthermore, Ha(Pb,O(l+m−a))= 0 when
a 6= b, and when a = b, we have l+m−a = l+m−b≥−b, which again implies
Ha(Pb,O(l +m− a))= 0. Hence Ha(F(m− a))= 0, and H b(F(m− b))= 0 is
proved similarly.
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It follows that m0≥ reg(F). To prove equality, we will let m=m0−1 and show
that H i (F(m− i)) 6= 0 for some i > 0. We consider two cases.

Case 1: m0 = min{b − k, a − l} ≥ −min{k, l}. This implies the inequalities
b− k− (m+ 1)≥ 0 and a− l − (m+ 1)≥ 0. Hence

Ha+b(F(m− (a+ b))
)
' H 0(X,OX

(
b− k− (m+ 1), a− l − (m+ 1)

))∗
6= 0.

Case 2: m0 = −min{k, l} > min{b− k, a− l}. If m0 = −k, then k +m − a =
−a−1, so that Ha(Pa,O(k+m−a)) 6= 0. We also have m0>min{b−k, a−l}, so
that m0 > b− k or m0 > a− l. The former is impossible since m0 =−k, and then
the latter implies l +m− a ≥ 0, so that H 0(Pb,O(l +m− a)) 6= 0. By Künneth,

0 6= Ha(Pa,O(k+m− a))⊗ H 0(Pb,O(l +m− a))⊆ Ha(F(m− a)).

The proof when m0 =−l is similar. �

To see what this says about the Tate resolution of F, we define

p+ =max
{
−min{k, l},min{b− k, a− l}

}
,

p− =min
{
−min{k, l},min{b− k, a− l}

}
− 1.

(3-2)

Then we have the following result.

Lemma 3.2.

T p(F)=

Ê(−p)⊗ Sk+p,l+p p ≥ p+

Ê(a+ b− p)⊗ S∗b−k−1−p,a−l−1−p p ≤ p−.

Proof. The assertion for p ≥ p+ follows immediately from Lemma 3.1 and the
discussion preceding the lemma. For p ≤ p−, note that

Ha+b(F(p− (a+ b))
)
' H 0(X,OX (b− k− (p+ 1), a− l − (p+ 1))

)∗
= S∗b−k−1−p,a−k−1−p

and that

Ha+b−i(F(p− (a+ b− i))
)
' H i(X,OX (b− k− 1− p− i, a− l − 1− p− i)

)∗
= H i (G(−p− i)),

where G = ν∗OX (b − k − 1, a − l − 1). Applying Lemma 3.1 to G, we see that
H i (G(−p− i))= 0 whenever i > 0 and

−p ≥max
{
−min{b− k− 1, a− l − 1},min{b− (b− k− 1), a− (a− l − 1)}

}
,

which is equivalent to p ≤ p−. �

Lemma 3.2 tells us that for p− and below, the Tate resolution lives at cohomo-
logical level a+ b, and for p+ and above, it lives at cohomological level 0.
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3.2. The shape of the resolution. For k, l ∈ Z, the Tate resolution of

F= ν∗OX (k, l)

on X = Pa
×Pb has one of the following three types:

Type 1: − a ≤ k− l ≤ b,

Type 2: k− l > b,

Type 3: k− l <−a.

We will prove three lemmas, one for each type.

Lemma 3.3 (Type 1). Assume that F has Type 1. Then p− =−min{k, l} − 1 and
p+ =min{b− k, a− l}. Furthermore, if p− < p < p+, then

T p(F) =

Ê(a+ b− p)⊗ S∗b−k−1−p,a−l−1−p⊕
Ê(−p)⊗ Sk+p,l+p.

Proof. Since a and b are positive, the inequality −a ≤ k − l ≤ b implies that
−min{k, l} ≤ min{b− k, a− l}. Using (3-2), we get the desired formulas for p−

and p+.
Now assume that p− < p < p+. Recall that Ha(F(p− a)) is isomorphic to

H 0(Pa,O(k+ p− a))⊗ Ha(Pb,O(l + p− a))

⊕Ha(Pa,O(k+ p− a))⊗ H 0(Pb,O(l + p− a)).

If the second summand is nonzero, then k+ p−a <−a and l+ p−a ≥ 0, which
implies k − l < −a, a contradiction. If the first summand is nonzero, then a = b,
k+ p−a≥ 0 and l+ p−a<−a. These imply k−l > a= b, again a contradiction.
Hence Ha(F(p− a))= 0. A similar argument shows that H b(F(p− b))= 0. �

Thus, when F has Type 1, the differential d p
: T p(F)→ T p+1(F) looks like

Ê(a+ b− p)⊗S∗b−k−1−p,a−l−1−p
//

d p
a+b,0

**

Ê(a+ b− p− 1)⊗S∗b−k−p−2,a−l−p−2⊕ ⊕
Ê(−p)⊗Sk+p,l+p // Ê(−p− 1)⊗Sk+p+1,l+p+1.

Hence a Type 1 Tate resolution has cohomological levels a+ b (the top row) and
0 (the bottom row). Section 4.1 will discuss d p

a+b,0.
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Lemma 3.4 (Type 2). Assume that F has Type 2. Then p−=b−k−1 and p+=−l.
Furthermore, if p− < p < p+, then

T p(F)= Ê(b− p)⊗ Sk+p−b,0⊗ S∗0,−l−p−1.

Proof. Since a and b are positive, the inequality k − l > b implies min{k, l} = l,
min{b− k, a− l} = b− k. Using k− l > b again, (3-2) gives the desired formulas
for p− and p+.

Now assume that p− < p < p+. Then

Ha+b(F(p− (a+ b))
)
' H 0(X,OX (b− k− 1− p, a− l − 1− p)

)∗
= 0

since p > p− = b− k − 1. Furthermore, p < p+ = −l implies l + p− b < 0, so
that

H b(Pa,O(k+ p− b))⊗ H 0(Pb,O(l + p− b))= 0.

Hence, by Künneth and Serre duality on Pb,

H b(F(p− b))' H b(X,OX (k+ p− b, l + p− b)
)

' H 0(Pa,O(k+ p− b))⊗ H b(Pb,O(l + p− b))

' Sk+p−b,0⊗ S∗0,−l−p−1.

Finally, if a 6= b, we also have

Ha(Pb,O(l + p− a))= 0,

and H 0(Pb,O(l+p−a))=0 also holds since l+p−a<0. Hence Ha(F(p−a))=0
when a 6= b. A similar argument shows that H 0(F(p))= 0. �

Lemma 3.4 tells us that for Type 2 Tate resolutions, the only nonzero diagonal
maps appear in T p−(F)→ T p−+1(F):

Ê(a+ 1+ k)⊗ S∗0,a+k−l−b
d p−

a+b,b

++
Ê(k)⊗ S0,0⊗ S∗0,k−l−b−1

(at cohomological levels a+ b and b) and in T p+−1(F)→ T p+(F):

Ê(b+ 1+ l)⊗ Sk−l−b−1,0⊗ S∗0,0
d p+−1

b,0
**
Ê(l)⊗ Sk−l,0

(at cohomological levels b and 0). The diagonal maps d p−
a+b,b and d p+−1

b,0 will be
discussed in Section 4.2.
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Lemma 3.5 (Type 3). Assume that F has Type 3. Then p−=a−l−1 and p+=−k.
Furthermore, if p− < p < p+, then

T p(F)= Ê(a− p)⊗ S∗
−k−p−1,0⊗ S0,l+p−a.

Proof. The proof is similar to the proof of Lemma 3.4 and hence is omitted. �

Lemma 3.5 tells us that for Type 3 Tate resolutions, the only nonzero diagonal
maps appear in T p−(F)→ T p−+1(F):

Ê(b+ 1+ l)⊗ S∗b−k+l−a,0
d p−

a+b,a

++
Ê(l)⊗ S∗l−k−a−1,0⊗ S0,0

(at cohomological levels a+ b and a) and in T p+−1(F)→ T p+(F):

Ê(a+ 1+ k)⊗ S∗0,0⊗ S0,l−k−a−1
d p+−1

a,0
++
Ê(k)⊗ S0,l−k

(at cohomological levels a and 0). The diagonal maps d p−
a+b,a and d p+−1

a,0 will be
discussed in Section 4.2.

Remark 3.6. We finish this section by noting that some of the Tate resolutions
considered here can be found in [Fløystad 2004]. Specifically, let W1 and W2 be
finite-dimensional K -vector spaces, and consider the Tate resolution associated to
F= ν∗L, where

L= OP(W1)×P(W2)(−2, a)⊗
∧a+1W1,

dim W1 = a+ 1, and

ν : P(W1)×P(W2)→ P(W1⊗W2)

is the Segre embedding. The results of our paper apply to this Tate resolution.
Now consider a surjective map W ∗1 ⊗W ∗2 →W ∗. This gives a projection

π : P(W1⊗W2) 99K P(W )

whose center is disjoint from the image of the Segre map. By [Fløystad 2004,
Section 1.2], the Tate resolution for F gives a Tate resolution for G=π∗F. Fløystad
shows that this projected Tate resolution has the form

· · ·→ T−1(G)→ T 0(G)= Ê(a)⊗W ∗1 → T 1(G)= Ê(a−1)⊗W ∗2 → T 2(G)→· · ·

with the map d0
: T 0(G)→ T 1(G) coming from the surjection W ∗1 ⊗W ∗2 → W ∗

[Fløystad 2004, Theorem 2.1].
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4. The maps in the Tate resolution for Segre embeddings of Pa × Pb

4.1. Type 1 diagonal maps. We will use the toric Jacobian from [Cox 1996, §4].
The fan for Pa

×Pb has a+ b+ 2 1-dimensional cone generators

e0, . . . , ea, e′0, . . . , e′b,

corresponding to x0, . . . , xa, y0, . . . , yb. The generators e1, . . . , ea, e′0, . . . , e′b−1
are linearly independent. Given f0, . . . , fa+b ∈ S1,1, the toric Jacobian is

J ( f0, . . . , fa+b)=
1

x0 yb
det



f0 · · · fa+b

∂ f0/∂x1 · · · ∂ fa+b/∂x1
...

...

∂ f0/∂xa · · · ∂ fa+b/∂xa

∂ f0/∂y0 · · · ∂ fa+b/∂y0
...

...

∂ f0/∂yb−1 · · · ∂ fa+b/∂yb−1


. (4-1)

Since fi ∈ S1,1=W , we see that J ( f0, . . . , fa+b)∈ Sb,a , where (b, a) is the “critical
degree,” often denoted ρ in the literature on toric residues.

This toric Jacobian is closely related to the (a+1)×(a+b+1)×(b+1) hyper-
determinant discussed in [Gel′fand et al. 1994, 14.3.D]. The connection becomes
especially clear when we use the graph interpretation from [Gel′fand et al. 1994,
pp. 473–474]. The idea is as follows.

Fix distinct monomials f0, . . . , fa+b ∈ S1,1. These give a bipartite graph G with
a+b+2 vertices x0, . . . , xa, y0, . . . , yb and a+b+1 edges given by the monomials,
where f` = xi y j is regarded as the edge connecting xi to y j . The incidence matrix
of G is the (a+b+2)× (a+b+1) matrix whose rows correspond to vertices and
columns correspond to edges, and where an entry is 1 if the vertex lies on the edge
and is 0 otherwise.

Let M denote the square matrix obtained from the incidence matrix by removing
the bottom row. Then we have the following result.

Lemma 4.1. Let f0, . . . , fa+b∈ S1,1 be distinct monomials and let M be the matrix
described above.

(1) The toric Jacobian of f0, . . . , fa+b is given by

J ( f0, . . . , fa+b)= det M
∏
` f`∏

i xi
∏

j y j
.

(2) det M ∈ {0,±1}, and det M =±1 if and only if G is a tree.
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Proof. Each f` is homogeneous of degree 1 in x0, . . . , xa , so f`=
∑

i xi
∂ f`
∂xi

. Hence
the toric Jacobian J ( f0, . . . , fa+b) can be written as

1
x0 yb

det



x0 ∂ f0/∂x0 · · · x0 ∂ fa+b/∂x0

∂ f0/∂x1 · · · ∂ fa+b/∂x1
...

...

∂ f0/∂xa · · · ∂ fa+b/∂xa

∂ f0/∂y0 · · · ∂ fa+b/∂y0
...

...

∂ f0/∂yb−1 · · · ∂ fa+b/∂yb−1



=
1∏

i xi
∏

j y j
det



x0 ∂ f0/∂x0 · · · x0 ∂ fa+b/∂x0

x1 ∂ f0/∂x1 · · · x1 ∂ fa+b/∂x1
...

...

xa ∂ f0/∂xa · · · xa ∂ fa+b/∂xa

y0 ∂ f0/∂y0 · · · y0 ∂ fa+b/∂y0
...

...

yb−1 ∂ f0/∂yb−1 · · · yb−1 ∂ fa+b/∂yb−1


.

For a fixed `, we have f` = xi y j , which implies

f` = xi
∂ f`
∂xi
= y j

∂ f`
∂y j

,

and all other partials vanish. Hence the `-th column is a multiple of f`, and once
we factor out f`, we are left with the `-th column of the truncated incidence matrix
M . Thus

J ( f0, . . . , fa+b)=
f0 · · · fa+b∏

i xi
∏

j y j
det(M).

The second part of the lemma is a standard consequence of the Matrix Tree The-
orem [Bondy and Murty 1981, Chapter 12] which counts the number of spanning
trees of a graph. �

Now that we have the toric Jacobian, the next step is to introduce duplicate sets
of variables

X= (X0, . . . , Xa), Y= (Y0, . . . , Yb), x= (x0, . . . , xa), y= (y0, . . . , yb).

These give the polynomial ring

S⊗ S = k[X,Y, x, y]
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and the ring homomorphism

S = k[x, y] → S⊗ S

defined by xi 7→ X i + xi , yi 7→ Yi + yi . The image of F ∈ S in S⊗ S is denoted
F̃ , so that

F̃(X,Y, x, y)= F(X+ x,Y+ y) ∈ S⊗ S.

From a canonical point of view, the map F 7→ F̃ is comultiplication in the natural
Hopf algebra structure on S.

The toric Jacobian J gives a linear map

J :
∧a+b+1W → Sb,a ⊂ S

and hence a map
J̃ :
∧a+b+1W → S⊗ S.

Looking at homogeneous pieces, we have a decomposition

J̃ =
⊕
α,β

Jα,β,

where
Jα,β :

∧a+b+1W → Sb−α,a−β ⊗ Sα,β
lies in

HomK
(∧a+b+1W, Sb−α,a−β ⊗ Sα,β

)
' HomK

(∧a+b+1W ⊗ S∗b−α,a−β, Sα,β
)
.

Using (2-1), Jα,β gives an element of

HomE
(
Ê(a+ b− p)⊗ S∗b−α,a−β, Ê(−p− 1)⊗ Sα,β

)
,

which by abuse of notation we write as

Jα,β : Ê(a+ b− p)⊗ S∗b−α,a−β→ Ê(−p− 1)⊗ Sα,β . (4-2)

In Section 4.3 we will show that the map d p
a+b,0 from a Type 1 Tate resolution (see

the discussion of following Lemma 3.3) can be chosen to be Jk+p+1,l+p+1.

4.2. Type 2 and 3 diagonal maps. The diagonal maps appearing the Type 2 and
3 Tate resolutions discussed in Section 3.2 are easy to describe. We begin with the
map

δ :
∧a+1W → S0,a+1

defined as follows: given f0, . . . , fa ∈W , we get the Sylvester form

δ( f0, . . . , fa)= det(`i j ),

where fi =
∑a

j=0 `i j x j for `i j ∈ S0,1.
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Now fix α ≥ 0. The multiplication map S0,a+1⊗ S0,α→ S0,a+1+α induces

S0,a+1→ S∗0,α ⊗ S0,a+1+α

and gives the composition∧a+1W
δ
−→ S0,a+1→ S∗0,α ⊗ S0,a+1+α.

This gives maps

δα :
∧a+1W ⊗ S0,α→ S0,a+1+α,

δ∗α :
∧a+1W ⊗ S∗0,a+1+α→ S∗0,α

and hence (by abuse of notation) maps

δα : Ê(a+ 1+ k)⊗ S0,α→ Ê(k)⊗ S0,a+1+α,

δ∗α : Ê(a+ 1+ k)⊗ S∗0,a+1+α→ Ê(k)⊗ S∗0,α.
(4-3)

In Section 4.3 we will show that the diagonal map d p−
a+b,b from a Type 2 Tate

resolution (see the discussion following Lemma 3.4) and the map d p+−1
a,0 from a

Type 3 Tate resolution (see the discussion following Lemma 3.5) can be chosen to
be δ∗k−l−b−1 and δl−k−a−1 respectively.

We next consider the map

δ′ :
∧b+1W → Sb+1,0

defined as follows: given f0, . . . , fb ∈W ,

δ′( f0, . . . , fa)= det(`′i j ),

where fi =
∑b

j=0 `
′

i j y j for `′i j ∈ S1,0.
As above, β ≥ 0 gives the multiplication map Sb+1,0⊗ Sβ,0→ Sb+1+β,0 and the

composition ∧b+1W
δ′
−→ Sb+1,0→ S∗β,0⊗ Sb+1+β,0.

This gives maps

δ′β : Ê(b+ 1+ l)⊗ Sβ,0→ Ê(l)⊗ Sb+1+β,0,

δ′∗β : Ê(b+ 1+ l)⊗ S∗b+1+β,0→ Ê(l)⊗ S∗β,0.
(4-4)

In Section 4.3 we will show that the map d p+−1
b,0 from a Type 2 Tate resolution

(see the discussion following Lemma 3.4) and the map d p−
a+b,a from a Type 3 Tate

resolution (see the discussion following Lemma 3.5) can be chosen to be δ′k−l−b−1
and δ′∗l−k−a−1 respectively.



Tate resolutions for Segre embeddings 537

4.3. The main theorem. Here is the main result of this section.

Theorem 4.2. For the Tate resolution T •(F) of the sheaf F = ν∗OX (k, l), the di-
agonal maps in T p(F)→ T p+1(F) can be chosen as follows:

(1) (Type 1, −a ≤ k− l ≤ b): d p
a+b,0 = (−1)p Jk+p+1,l+p+1.

(2) (Type 2, k− l > b): d p−
a+b,b = δ

∗

k−l−b−1 and d p+−1
b,0 = δ′k−l−b−1.

(3) (Type 3, k− l <−a): d p−
a+b,a = δ

′∗

l−k−a−1 and d p+−1
a,0 = δl−k−a−1.

This uses the maps Jα,β , δα, δ∗α, δ′β , δ′∗β defined in (4-2), (4-3) and (4-4).

Proof. We begin with Type 2. Let β = k−l−b−1 and assume l = 0 for simplicity,
so that p+ = 0. We will show that

T−2(F)→ T−1(F)→ T 0(F)→ T 1(F)

can be constructed as follows using δ′β :

Ê(b+ 2)⊗ Sβ−1,0⊗ S∗0,1
d−2

// Ê(b+ 1)⊗ Sβ,0⊗ S∗0,0
δ′β

&&Ê(0)⊗ Sβ+b+1,0
d0

// Ê(−1)⊗ Sβ+b+2,1.

The differentials d−2 and d0 are the known horizontal maps. To show that this
sequence is exact, the first step is to prove that

d0
◦ δ′β = δ

′

β ◦ d−2
= 0.

Consider the following identity that holds for all f0, . . . , fb+1 ∈W :

b+1∑
i=0

(−1)i fi δ
′
(

f0 ∧ · · · f̂i · · · ∧ fb+1
)
= 0. (4-5)

If we write fi =
∑b

j=0 `
′

i j y j , then (4-5) follows from the obvious identity

det


f0 . . . fb+1

`′0,0 . . . `′b+1,0
...

...

`′0,b . . . `′b+1,b

= 0

by expanding by minors along the first row and using the definition of δ′.
By (2-1), the composition

Ê(b+ 1)⊗ Sβ,0⊗ S∗0,0
δ′β
−→ Ê(0)⊗ Sβ+b+1,0

d0

−→ Ê(−1)⊗ Sβ+b+2,1
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corresponds to a map ∧b+2W ⊗ Sβ,0⊗ S∗0,0→ Sβ+b+2,1.

We ignore S∗0,0 ' k. Using the definition of δ′β , this map is given by

f0 ∧ · · · ∧ fb+1⊗ h 7→
b+1∑
i=0

(−1)i fi h δ′
(

f0 ∧ · · · f̂i · · · ∧ fb+1
)
.

This reduces to zero (factor out h ∈ Sβ,0 and use (4-5)), so d0
◦ δ′β = 0.

If β > 0, we need to consider δ′β ◦ d−2. Arguing as above, we determine this
map by ∧b+2W ⊗ Sβ−1,0⊗ S∗0,1→ Sβ+b+1,0,

which in turn is determined by the map∧b+2W ⊗ Sβ−1,0→ Sβ+b+1,0⊗ S0,1 = Sβ+b+1,1

given by

f0 ∧ · · · ∧ fb+1⊗ h 7→
b+1∑
i=0

(−1)i fi h δ′
(

f0 ∧ · · · f̂i · · · ∧ fb+1
)

for h ∈ Sβ−1,0. As above, this reduces to zero, so that δ′β ◦ d−2
= 0.

When β = 0, we have to show that the composition

Ê(a+ b+ 2)⊗ S∗0,a+1 δ∗0
++

Ê(a+ 1)⊗ S0,0⊗ S∗0,0
δ′0

**
Ê(0)⊗ Sb+1,0

is zero. By (2-1), the composed map corresponds to a map∧a+b+2W ⊗ S∗0,a+1→ Sb+1,0,

which in turn is determined by the a map∧a+b+2W → Sb+1,0⊗ S0,a+1 = Sb+1,a+1.

Given f0, . . . , fa+b+1 ∈W , this map is given by

f0 ∧ · · · ∧ fa+b+1 7→
∑
|S|=a+1

ε(S) δ(fS) δ
′(fSc), (4-6)
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where the sum is over all subsets S ⊂ {0, . . . , a+ b+ 1} of cardinality a+ 1 and
Sc
= {0, . . . , a+ b+ 1} \ S. Furthermore,

δ(fS)= δ
(∧

i∈S fi
)
,

δ′(fSc)= δ′
(∧

i∈Sc fi
)
,

and ε(S)=±1 is the sign that appears in the Laplace expansion described below.
To show that the sum in (4-6) is zero, write

fi =

a∑
j=0

`i j x j =

b∑
j=0

`′i j y j

and consider the matrix

M=



`0,0 · · · `a+b+1,0
...

...

`0,a · · · `a+b+1,a

`′0,0 · · · `
′

a+b+1,0
...

...

`′0,b · · · `
′

a+b+1,b


.

If we multiply first a+1 rows by suitable x variables and multiply the last b+1 rows
by y variables, we get the same result, namely the row ( f0, . . . , fa+b+1). If follows
that det M = 0. If we take the Laplace expansion that involves (a + 1)× (a + 1)
minors of the first a+1 rows multiplied by (b+1)×(b+1) complementary minors
of the last b+1 rows, we get the sum in (4-6). Hence this sum is zero, which proves
that δ′0 ◦ δ

∗

0 = 0.
To complete the proof that δ′β gives the diagonal map in T−1(F)→ T 0(F), we

follow the strategy used in [Cox 2007, Theorem 1.3]. Let N ′ = (a+ 1)(b+ 1) =
dim(W ). Since Ê ' E(−N ′) and T−1(F)→ T 0(F)→ T 1(F) is

Ê(b+ 1)⊗ Sβ,0⊗ S∗0,0→ Ê(0)⊗ Sβ+b+1,0
d0

−→ Ê(−1)⊗ Sβ+b+2,1,

the kernel of d0 has dim(Sβ,0 ⊗ S∗0,0) minimal generators of degree N ′ − b − 1.
Since we have proved that δ′β maps into this kernel, it suffices to prove that this
map is injective in degree N ′− b− 1, namely that

δ′β :
∧N ′W ⊗ Sβ,0→

∧N ′−b−1W ⊗ Sβ+b+1,0

is injective (as above, we ignore S∗0,0). A basis of
∧N ′W is given by

x0 y0 ∧ · · · ∧ x0 yb ∧ω,
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where ω is the wedge product of the remaining N ′ − b − 1 monomials of W in
some order. Since

δ′(x0 y0 ∧ · · · ∧ x0 yb)= xb+1
0 ,

we see that for h ∈ Sβ,0,

δ′β(x0 y0 ∧ · · · ∧ x0 yb ∧ω⊗ h)= ω⊗ xb+1
0 h+ · · · ∈

∧N ′−b−1W ⊗ Sβ+b+1,0,

where the omitted terms involve basis elements of
∧N ′−b−1W different from ω.

The desired injectivity is now obvious.
This completes the proof for d p+−1

b,0 in a Type 2 Tate resolution when l = 0 and
k = β + b + 1. The proof for arbitrary l is similar, and the same proof easily
adapts to d p+−1

a,0 in a Type 3 Tate resolution. As for d p− , we note that applying
HomE(−, K )⊗K Ê to T p(F) gives T a+b−p(G), where G= ν∗OX (−a−1−k,−b−
1− l). This duality interchanges Type 2 and Type 3 resolutions. Then our results
for

d p+−1
b,0 and d p+−1

a,0

and dualize to give the desired results for

d p−
a+b,a and d p−

a+b,b.

It remains to consider Type 1 Tate resolutions. This case will be more compli-
cated since there are two sets of variables to keep track of: the original variables
x, y and the duplicates X,Y introduced in Section 4.1.

Let α = k + p + 1 and β = k + p + 1. We will show that the crucial part of
T p(F)→ T p+1(F)→ T p+2(F) can be chosen to be

Ê(a+b−p)⊗ S∗b−α,a−β
d p

a+b,a+b//

(−1)p Jα,β

((

Ê(a+b−p−1)⊗S∗b−α−1,a−β−1

(−1)p+1 Jα+1,β+1

((

⊕
Ê(−p−1)⊗Sα,β

d p+1
0,0 // Ê(−p−2)⊗ Sα+1,β+1.

This first step is to show that this is a complex, that is, the composition

T p(F)→ T p+1(F)→ T p+2(F)

is zero. Since the horizontal maps behave properly, it suffices to show that

d p+1
0,0 ◦ Jα,β = Jα+1,β+1 ◦ d p

a+b,a+b. (4-7)
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Using (2-1), this is equivalent to showing that the diagram

∧a+b+2W ⊗ S∗b−α,a−β
d p

a+b,a+b//

Jα,β
��

∧a+b+1W ⊗ S∗b−α−1,a−β−1

Jα+1,β+1

��
W ⊗ Sα,β

d p+1
0,0 // Sα+1,β+1

commutes. A key point is that on the top, d p
a+b,a+b uses X,Y, while on the bottom,

d p+1
0,0 uses x, y. We can recast the commutativity of this diagram as saying that

d p+1
0,0 ◦ Jα,β = Jα+1,β+1 ◦ d p

a+b,a+b

as maps ∧a+b+2W → Sb−α,a−β︸ ︷︷ ︸
X,Y

⊗ Sα+1,β+1︸ ︷︷ ︸
x,y

.

Given a+b+2 elements of W , we write them as f0, . . . , fa+b+1 when using x, y
and as F0, . . . , Fa+b+1 when using X,Y. Then (4-7) is equivalent to the identity

a+b+1∑
i=0

(−1)i fi Jα,β
(

f0 ∧ · · · f̂i · · · ∧ fa+b+1
)

=

a+b+1∑
i=0

(−1)i Fi Jα+1,β+1
(

f0 ∧ · · · f̂i · · · ∧ fa+b+1
)

in Sb−α,a−β ⊗ Sα+1,β+1. Summing this over all α and β gives the second identity

a+b+1∑
i=0

(−1)i fi J̃
(

f0 ∧ · · · f̂i · · · ∧ fa+b+1
)

=

a+b+1∑
i=0

(−1)i Fi J̃
(

f0 ∧ · · · f̂i · · · ∧ fa+b+1
)
,

and the first identity follows from the second by taking the appropriate graded
piece. However,

• The change of variables (x, y)↔ (X,Y) interchanges fi and Fi ;

• J̃
(

f0 ∧ · · · f̂i · · · ∧ fa+b+1
)

is invariant under (x, y)↔ (X,Y).

It follows that the second identity is equivalent to the following

Assertion 4.3.
a+b+1∑

i=0

(−1)i fi J̃
(

f0 ∧ · · · f̂i · · · ∧ fa+b+1
)

(4-8)
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is invariant under (x, y)↔ (X,Y).

In particular, (4-7) is an immediate consequence of Assertion 4.3.
We will prove Assertion 4.3 by representing (4-8) as a determinant. We begin

with the formula

J ( f0 ∧ · · · ∧ fa+b)=
1
yb

det



∂ f0/∂x0 · · · ∂ fa+b/∂x0
...

...

∂ f0/∂xa · · · ∂ fa+b/∂xa

∂ f0/∂y0 · · · ∂ fa+b/∂y0
...

...

∂ f0/∂yb−1 · · · ∂ fa+b/∂yb−1


,

which follows from the proof of Lemma 4.1. This implies

J̃ ( f0 ∧ · · · ∧ fa+b)=
1

Yb+ yb
det



˜∂ f0/∂x0 · · · ˜∂ fa+b/∂x0
...

...

˜∂ f0/∂xa · · · ˜∂ fa+b/∂xa

˜∂ f0/∂y0 · · · ˜∂ fa+b/∂y0
...

...

˜∂ f0/∂yb−1 · · · ˜∂ fa+b/∂yb−1


.

It follows easily that

a+b+1∑
i=0

(−1)i fi J̃
(

f0 ∧ · · · f̂i · · · ∧ fa+b+1
)
=

1
Yb+ yb

det M,

where M is the (a+ b+ 2)× (a+ b+ 2) matrix

M=



f0 · · · fa+b+1

˜∂ f0/∂x0 · · · ˜∂ fa+b+1/∂x0
...

...

˜∂ f0/∂xa · · · ˜∂ fa+b+1/∂xa

˜∂ f0/∂y0 · · · ˜∂ fa+b+1/∂y0
...

...

˜∂ f0/∂yb−1 · · · ˜∂ fa+b+1/∂yb−1


.

To prove Assertion 4.3, it suffices to show that the determinant of the matrix M is
unchanged when we replace its top row with (F0, . . . , Fa+b+1). For this purpose,
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consider the (a+ b+ 3)× (a+ b+ 3) matrix

M=


0

M
...

0
∂̃ f0
∂yb
· · ·

∂̃ fa+b+1
∂yb

1


and observe that det M= det M. Write M as

M=


f0 · · · fa+b+1 0

0

Q̃
...

1

 .
Since f` ∈W = S1,1, we have the easily proved identity

F`− f` =−
a∑

i=0

xi
∂̃ f`
∂xi
+

b∑
j=0

Y j
∂̃ f`
∂y j

.

Multiplying the last a+ b+ 2 rows of M by −xi or Y j as appropriate and adding
to the first row gives the matrix

M′ =


F0 · · · Fa+b+1 Yb

0

Q̃
...

1

 .
Note that det M′ = det M. This is almost what we need, except for the Yb in the
first row of M′.

We claim that det Q̃ = 0. Assuming this for the moment, it follows that we
can replace Yb with 0 in M′ without changing its determinant. This easily implies
det M is unchanged when we replace its top row with (F0, . . . , Fa+b+1) and will
complete the proof of (4-7).

It remains to study det Q̃. The matrix Q̃ is obtained from

Q =



∂ f0/∂x0 · · · ∂ fa+b/∂x0
...

...

∂ f0/∂xa · · · ∂ fa+b/∂xa

∂ f0/∂y0 · · · ∂ fa+b/∂y0
...

...

∂ f0/∂yb · · · ∂ fa+b/∂yb


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by the F 7→ F̃ operation described in Section 4.1. But det Q = 0 since f` =∑a
i=0 xi ∂ f`/∂xi =

∑b
j=0 y j ∂ f`/∂y j , and then

det Q̃ = d̃et Q = 0.

Hence we have proved that the maps

T p(F)→ T p+1(F)

defined using (−1)p Jα,β give a complex. To show that the complex is exact, we
again use the strategy of [Cox 2007, Theorem 1.3]. Lemma 3.3 tells us that p+ =
min{b−k, a− l}. For simplicity, we assume b−k ≤ a− l, so that p+ = b−k. Let
β = b− k + l and p = p+− 1. Type 1 and b− k ≤ a− l imply 0 ≤ β ≤ a. Then
T p(F)→ T p+1(F) becomes

Ê(a+ k+ 1)⊗ S∗0,a−β
(−1)p Jb,β

((

⊕
Ê(k− b+ 1)⊗ Sb−1,β−1

d p
0,0 // Ê(k− b)⊗ Sb,β .

(4-9)

Let N ′ = (a + 1)(b + 1) = dim(W ). Then the shape of the Tate resolution tells
us that there are dim(Sb−1,β−1) minimal generators of degree N ′ − (k − b + 1)
and dim(S∗0,a−β) minimal generators of degree N ′ − (a + k + 1). The former are
taken care of by the known map d p

0,0, and for the latter, we see that in degree
N ′− (a+ k+ 1), the above diagram becomes

∧N ′W ⊗ S∗0,a−β
(−1)p Jb,β

((

⊕
∧N ′−a−bW ⊗ Sb−1,β−1

d p
0,0 // ∧N ′−a−b−1W ⊗ Sb,β .

(4-10)

As in [Cox 2007, Lemma 2.2], we need to show that (−1)p Jb,β is injective and
that its image has trivial intersection with the image of d p

0,0.

For the former, let θ ∈
∧N ′W be the wedge product of the monomials in W

in some order, and let ϕ ∈ S∗0,a−β satisfy Jb,β(θ ⊗ ϕ) = 0. Suppose that Yu is a
monomial in the Y variables of degree |u|= a−β. We prove ϕ(Yu)= 0 as follows.

Pick Yv such that Yu
|Yv and |v| = a, and write

Yv
= Y j1 · · · Y ja .
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Then consider the following collection f0, . . . , fa+b of monomials in W = S1,1:

x0 y j , j = 0, . . . , b and xi y ji , i = 1, . . . , a.

The graph of these monomials (in the sense of Section 4.1) is easily seen to be a
tree. Then Lemma 4.1 implies that

J ( f0 ∧ · · · ∧ fa+b)=±

∏b
j=0 x0 y j

∏a
i=1 xi y ji∏a

i=0 xi
∏b

j=0 y j
=±xb

0

a∏
i=1

y ji =±xb
0 yv.

Thus J̃ ( f0 ∧ · · · ∧ fa+b) = ±(X0 + x0)
b(Y+ y)v. Taking those terms of degree

(b, β) in (x, y), we obtain

Jb,β( f0 ∧ · · · ∧ fa+b)=±
∑
w

(
v

w

)
xb

0 Yv−w yw,

where
(v
w

)
=
∏b

j=0
(v j
w j

)
and

∑
w denotes the sum over all exponent vectors w

satisfying |w| = β and 0≤w j ≤ v j for all j . Writing θ = f0∧ · · ·∧ fa+b ∧ω, we
obtain

0= Jb,β( f0 ∧ · · · ∧ fa+b ∧ω⊗ϕ)

= ω⊗ϕ
(
Jb,β( f0 ∧ · · · ∧ fa+b)

)
+ · · ·

= ω⊗

(
±

∑
w

(
v

w

)
ϕ(Yv−w) xb

0 yw
)
+ · · · ,

where the omitted terms involve basis elements of
∧N ′−a−b−1W different from

ω. Since we are in characteristic 0, it follows that ϕ(Yv−w) = 0 for all w under
consideration. Our choice of v guarantees that our original monomial Yu is one of
these Yv−w’s. Hence ϕ(Yu) = 0, which implies ϕ = 0 since Yu was an arbitrary
monomial of degree a−β. This completes the proof (−1)p Jb,β is injective.

It remains to show that the image of this map has trivial intersection with the
image of d p

0,0. Following a suggestion of Jenia Tevelev, we use representation
theory to finish the proof.

Recall that there is a natural isomorphism

W = S1,1 ∼=W1⊗W2,

where W1 = S1,0 = Ca+1 and W2 = S0,1 = Cb+1. First, we show that an action of
the group G=SL(W1)×SL(W2) on the diagram (4-10) is G-invariant on the maps
d p

0,0 and (−1)p Jb,β . Indeed, since the map d p
0,0 is induced by the multiplication

map

W ⊗ Sb−1,β−1→ Sb,β,
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we conclude that d p
0,0 is G-invariant. Now observe that the toric Jacobian can be

written as a linear combination of monomials

J ( f0, . . . , fa+b)=
∑
µ,ν

cµ,νxµyν,

where cµ,ν are the entries of the square matrix whose determinant is a hyperdeter-
minant [Gel′fand et al. 1994, p. 473]. By [Gel′fand et al. 1992, Proposition 1.4],
the hyperdeterminant is G-invariant, so the toric Jacobian (4-1) (and respectively
the map (−1)p Jb,β) is G-invariant.

It follows from Schur’s Lemma that the images of d p
0,0 and Jb,β have trivial

intersection if the representation of G corresponding to∧N ′−a−bW⊗Sb−1,β−1=
∧ab+1

(W1⊗W2)⊗Symb−1(W1)⊗Symβ−1(W2) (4-11)

does not contain the representation corresponding to∧N ′W ⊗ S∗0,a−β =
∧ab+a+b+1

(W1⊗W2)⊗Syma−β(W ∗2 ).

To prove this, we use some basic facts from the representation theory of the special
linear group (see, for example, [Fulton and Harris 1991, §6.1 and §15.3]). Given
a partition λ = (λ1, . . . , λs) with λ1 ≥ · · · ≥ λs ≥ 0, we get a Young diagram
Dλ, which consists of s rows of boxes, all starting at the same column, of lengths
λ1 ≥ · · · ≥ λs .

For a vector space V over K , Sλ(V ) denotes the irreducible SL(V )-representa-
tion corresponding to the partition λ. We use notation

λ= (da1
1 , . . . , da`

` )

to denote the partition having ai copies of the integer di for 1 ≤ i ≤ `. The corre-
sponding Young diagram Dλ has ai rows of boxes of length di . Thus λ= (d) gives
the symmetric product Sλ(V )= Symd(V ) and λ= (1d) gives the exterior product
Sλ(V )=

∧d V .
Recall that Sλ(V ) = 0 when the Young diagram of λ has more than dim V

nonzero rows, and that two Young diagrams give the same SL(V )-representation
if and only if one can be obtained from the other by adding or deleting columns of
height dim V at the beginning of the Young diagram.

By the Cauchy formula [Fulton and Harris 1991, §6.1], we have the following
decomposition for the exterior powers of W =W1⊗W2:∧ab+1W =

∧ab+1
(W1⊗W2)=

⊕
|λ|=ab+1

Sλ(W1)⊗Sλ′(W2),

where the direct sum runs over all partitions λ of ab+1 with at most dim W1=a+1
rows, at most dim W2 = b+1 columns, and λ′ is the conjugate partition to λ. Note
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that the representation corresponding to the highest power of determinant
∧N ′W

is one-dimensional, that is, a trivial representation.
When we combine this with (4-11), we see that it is enough to show that it cannot

happen simultaneously that Sλ(W1)⊗ Symb−1(W1) contains the trivial represen-
tation and Sλ′(W2)⊗ Symβ−1(W2) contains Syma−β(W ∗2 ). Since dim W1 = a+ 1
and dim W2 = b+1, we can assume that the Young diagram of λ has at most a+1
rows (otherwise Sλ(W1)= 0) and at most b+1 columns (otherwise Sλ′(W2)= 0).

By the Pieri formula [Fulton and Harris 1991, (6.8)], for any partition λ, we
have

Sλ(W1)⊗Symb−1(W1)∼=
⊕
ν

Sν(W1),

where the sum is over all ν whose Young diagram is obtained by adding b−1 boxes
to the Young diagram of λ, with no two boxes in the same column. Note also that
each ν is a partition of (ab+ 1)+ (b− 1) = (a+ 1)b. Since Dλ has |λ| = ab+ 1
boxes and fits inside a (a+ 1)× (b+ 1) rectangle, the only way for ν to give the
trivial representation is for Dλ to be the Young diagram.

λ =

b -�

a

?

6

You can see how adding b− 1 boxes to the bottom row (the dashed boxes in the
drawing) gives the trivial representation, since Dν is trivial if and only if it consists
entirely of columns of height a+ 1.

This shows that the only case when

Sλ(W1)⊗Symb−1(W1)

contains the trivial representation is when λ= (ba, 1). Hence, λ′ must be

(a+ 1, ab−1).

On the other hand, Syma−β(W ∗2 ) corresponds to the partition (ba−β) [Fulton and
Harris 1991, §15.5, Exercise 15.50], so from the Pieri formula we see that it is
impossible to get (ba−β) from the tensor product Sλ′(W2)⊗Symβ−1(W2) by adding
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β−1 boxes to (a+1, ab−1), no two in the same column, and then deleting columns
of height b+ 1.

The final step is to prove exactness when T p
→ T p+1 is given by

Ê(a+ k+ 1)⊗ S∗b−α,a−β
(−1)p Jα,β

))

d p
a+b,a+b // Ê(a+ k)⊗ S∗b−α−1,a−β−1⊕ ⊕

Ê(k− b+ 1)⊗ Sα−1,β−1
d p

0,0 // Ê(k− b)⊗ Sα,β .

Here, we use the same conventions as in (4-9), except that we now assume that
b − α and a − β are positive. As before, the shape of the Tate resolution tells
us that there are dim(Sα−1,β−1) minimal generators of degree N ′ − (k − b + 1)
and dim(S∗b−α,a−β) minimal generators of degree N ′ − (a + k + 1). The former
are taken care of by the known map d p

0,0, and for the latter, we see that in degree
N ′− (a+ k+ 1), the above diagram becomes

∧N ′W ⊗ S∗b−α,a−β
(−1)p Jα,β

((

d p
a+b,a+b //

∧N ′−1W ⊗ S∗b−α−1,a−β−1⊕ ⊕
∧N ′−a−bW ⊗ Sα−1,β−1

d p
0,0 // ∧N ′−a−b−1W ⊗ Sα,β .

(4-12)

The map d p
a+b,a+b is injective since it is dual to the surjective multiplication map

W ⊗ Sb−α−1,a−β−1→ Sb−α,a−β . As in the proof of [Cox 2007, Theorem 1.3], it
follows immediately that the map (4-12) is injective on

∧N ′W ⊗ S∗b−α,a−β and that
the images of

∧N ′W ⊗ S∗b−α,a−β and
∧N ′−a−bW ⊗ Sα−1,β−1

have trivial intersection. This completes the proof of the theorem. �

Remark 4.4. In the proof of Section 4.3, we used the relation between the toric Ja-
cobian of f0, . . . , fa+b ∈ S1,1 and the hyperdeterminants studied in [Gel′fand et al.
1994; 1992] to prove the equivariance we needed. The theorem implies that certain
hyperdeterminants are explicitly encoded into the Tate resolutions considered here.
This is another example of the amazing amount of information contained in these
resolutions.
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Constructing simply laced Lie algebras
from extremal elements

Jan Draisma and Jos in ’t panhuis

For any finite graph 0 and any field K of characteristic unequal to 2, we con-
struct an algebraic variety X over K whose K -points parametrize K -Lie algebras
generated by extremal elements, corresponding to the vertices of the graph, with
prescribed commutation relations, corresponding to the nonedges. After that,
we study the case where 0 is a connected, simply laced Dynkin diagram of
finite or affine type. We prove that X is then an affine space, and that all points
in an open dense subset of X parametrize Lie algebras isomorphic to a single
fixed Lie algebra. If 0 is of affine type, then this fixed Lie algebra is the split
finite-dimensional simple Lie algebra corresponding to the associated finite-type
Dynkin diagram. This gives a new construction of these Lie algebras, in which
they come together with interesting degenerations, corresponding to points out-
side the open dense subset. Our results may prove useful for recognizing these
Lie algebras.

1. Introduction and main results

An extremal element of a Lie algebra L over a field K of characteristic unequal to 2
is an element x ∈L for which [x, [x,L]]⊆K x . A sandwich element is an x ∈L sat-
isfying the stronger condition [x, [x,L]] = 0. The definition of extremal elements
in characteristic 2 is more involved, which is one reason for restricting ourselves
to characteristics unequal to 2 here. Extremal elements and sandwich elements
play important roles in both classical and modern Lie algebra theory. In complex
simple Lie algebras, or their split analogues over other fields, extremal elements are
precisely the elements that are long-root vectors relative to some maximal torus.
Sandwich elements are used in the classification of simple Lie algebras in small
characteristics [Premet and Strade 1997]; they occur in the modular Lie algebras
of Cartan type, such as the Witt algebras. Sandwich elements were originally
introduced in relation with the restricted Burnside problem [Kostrikin 1981]. An
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Keywords: Lie algebras, extremal elements, generators and relations.
Draisma is supported by DIAMANT, an NWO mathematics cluster. In ’t panhuis is supported by
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important insight for the resolution of this problem is the fact that a Lie algebra
generated by finitely many sandwich elements is necessarily finite-dimensional.
While this fact was first only proved under extra assumptions, in [Zelmanov and
Kostrikin 1990] it is proved in full generality. We will use this result in what
follows.

The prominence of extremal elements in the work of Kostrikin and Zel’manov
and in modular Lie algebra theory led to the natural problem of describing all Lie
algebras generated by a fixed number of extremal elements [Cohen et al. 2001; in ’t
panhuis et al. 2007; Postma 2007; Roozemond 2005].

Example. Suppose that we want to describe all Lie algebras L generated by two
extremal elements x and y. Since [x, [x, y]] is a scalar multiple ax of x and
[y, [x, y]]=−[y, [y, x]] is a scalar multiple −by of y, L is spanned by x, y, [x, y].
There may be linear dependencies between these elements, but let us assume that
they are linearly independent. Then

a[y, x] = [y, [x, [x, y]]] = [[y, x], [x, y]]+[x, [y, [x, y]]] = 0−b[x, y] = b[y, x],

and since we have assumed that [x, y] 6= 0, we find that a = b. Hence three-
dimensional Lie algebras with a distinguished pair of extremal generators are para-
metrized by the single number a. Moreover, all algebras with a 6= 0 are mutually
isomorphic and isomorphic to the split simple Lie algebra of type A1, while the
algebra with a=0 is nilpotent and isomorphic to the three-dimensional Heisenberg
algebra. This is a prototypical example of our results. The next smallest case of
three generators is treated in [Cohen et al. 2001; Zelmanov and Kostrikin 1990]
and also by our results below. There the generic Lie algebra is split of type A2 and
more interesting degenerations exist.

We now generalize and formalize this example to the case of more generators,
where we also allow for the flexibility of prescribing that certain generators com-
mute. Thus let 0 be a finite simple graph without loops or multiple edges. Let
5 be the vertex set of 0 and denote the neighbor relation by ∼. Fixing a field K
of characteristic unequal to 2, we denote by F the quotient of the free Lie algebra
over K generated by 5 modulo the relations

[x, y] = 0 for all x, y ∈5 with x 6∼ y.

So F depends both on 0 and on K , but we will not make this dependence explicit
in the notation. We write F∗ for the space of all K -linear functions F→ K . For
every f ∈ (F∗)5, also written ( fx)x∈5, we denote by L( f ) the quotient of F by
the ideal I( f ) generated by the (infinitely many) elements

[x, [x, y]] − fx(y)x for x ∈5 and y ∈ F. (1)
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By construction, L( f ) is a Lie algebra generated by extremal elements, corre-
sponding to the vertices of 0, which commute when they are not connected in 0.
The element fx is a parameter needed to express the extremality of x ∈ 5. If 0
is not connected, then both F and L( f ) naturally split into direct sums over all
connected components of 0, so it is no restriction to assume that 0 is connected;
we will do so throughout this paper.

In the Lie algebra L(0), the elements of5 map to sandwich elements; hence by
[Zelmanov and Kostrikin 1990] this Lie algebra is finite-dimensional. For general
f ∈ (F∗)5 it turns out that dim L( f ) ≤ dim L(0); see [Cohen et al. 2001] or the
proof of Theorem 1 below. It is therefore natural to focus on the Lie algebras L( f )
of the maximal possible dimension dim L(0). This leads us to define the set

X := { f ∈ (F∗)5 | dim L( f )= dim L(0)},

the parameter space for all maximal-dimensional Lie algebras of the form L( f ).

Example. In the two-generator case above, 0 is the graph with two vertices joined
by an edge. The sandwich algebra L(0) is the three-dimensional Heisenberg al-
gebra, and the condition that dim L( f ) = 3 corresponds to our assumption above
that x, y, [x, y] be linearly independent. This linear independence forced the pa-
rameters a and b to be equal. Here X is the affine line with coordinate a. All Lie
algebras corresponding to points a 6= 0 are mutually isomorphic.

Our first main result is that X carries a natural structure of an affine algebraic
variety. To specify this structure we note that I(0) is a homogeneous ideal relative
to the natural N-grading that F inherits from the free Lie algebra generated by 5.

Theorem 1. The set X is naturally the set of K -rational points of an affine variety
of finite type defined over K . This variety can be described as follows. Fix any
finite-dimensional homogeneous subspace V of F such that V + I(0) = F. Then
the restriction map

X→ (V ∗)5, f 7→ ( fx |V )x∈5

maps X injectively onto the set of K -rational points of a closed subvariety of
(V ∗)5. This yields a K -variety structure on X which is independent of the choice
of V .

We prove this theorem in Section 2. In Section 3 we first derive some relations
between the sandwich algebra L(0) and the positive part of the complex Kac–
Moody algebra of type 0. Then we determine L(0) explicitly in the case where 0
is a simply laced Dynkin diagram of finite or affine type; by this we mean any of the
diagrams in Figure 1 without or with vertex 0, respectively. See Theorems 12 and
13. In Section 4 we study the variety X . After some observations for general 0,
we again specialize to the diagrams of Figure 1. For these we prove that X is an
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Figure 1. The simply laced Dynkin diagrams of affine type. The
notation comes from [Kac 1990], and the corresponding finite-
type diagrams are obtained by deleting vertex 0.

affine space, and that for f in an open dense subset of X , the Lie algebra L( f )
is isomorphic to a fixed Lie algebra; see Theorems 19 and 22. The latter of these
theorems is our second main result, and we paraphrase it here.

Theorem 2. Let 0 be any of the simply laced Dynkin diagrams of affine type in
Figure 1, let 00 be the finite-type diagram obtained by removing vertex 0 from 0,
and let 6 be the edge set of 0. Then X is isomorphic to the affine space of dimen-
sion |6|+1 over K , and for f in an open dense subset of X , the Lie algebra L( f )
is isomorphic to the Chevalley algebra of type 00.

Remark 3. By the Chevalley algebra of type 00 we mean the Lie algebra obtained
by tensoring a certain Z-form of the complex simple Lie algebra of type 00 with
the field K ; see Section 3.2 for details. This Lie algebra is often simple, but not
always; see [Strade 2004, Chapter 4] and [Seligman 1967].

In Section 5 we will conclude with remarks on applications and related work.

2. The variety structure of the parameter space

Recall the notation from Section 1: 0 is a connected finite graph without loops
or multiple edges, K is a field of characteristic unequal to 2, and X is the set of
all f ∈ (F∗)5 such that L( f ) has the maximal possible dimension, namely that
of L(0). To avoid formulas with many Lie brackets, we write xd · · · x1 for the
expression [xd , [ · · · [x2, x1] · · · ]]. Such an element is called a monomial in the
xi of degree d. In the proof of Theorem 1 we use the N-grading F =

⊕
∞

d=1 Fd

of F, where Fd is the span of all monomials of degree d in the elements of 5. We
also use the following terminology: A subspace V of F is called homogeneous if it
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equals
⊕

d(V∩Fd). A single element of F is homogeneous if it lies in some Fd . To
any subspace V of F we associate the homogeneous subspace gr V of F spanned
by all vd as v = v1+· · ·+ vd for vi ∈Fi runs through V . If V is an ideal, then so
is gr V .

Proof of Theorem 1. Let V be a finite-dimensional homogeneous subspace of F

such that F=V⊕I(0); such a subspace exists as L(0) is finite-dimensional [Cohen
et al. 2001; Zelmanov and Kostrikin 1990] and I(0) is homogeneous. Note that
the theorem only requires that F= V +I(0); we will argue later why this suffices.
Observe that V contains the image of 5 in L: the abelian Lie algebra spanned by
5 is clearly a quotient of L(0), so the component of I(0) in degree 1 is trivial.
From the shape of the generators (1), it is clear that the homogeneous ideal gr I( f )
associated to I( f ) contains I(0), so that F=V+I( f ) for all f , and F=V⊕I( f )
if and only if f ∈ X . We will argue that the map

9 : X→ (V ∗)5, f 7→ ( fx |V )x∈5 =: f |V

is injective, and that its image is a closed subvariety of (V ∗)5.
For each f ∈ X , let π f :F→ V be the projection onto V along I( f ). We prove

two slightly technical statements: First, for all u ∈F there exists a polynomial map
Pu : (V ∗)5→ V such that

Pu( f |V )= π f (u) for all f ∈ X;

and second, for x ∈5 and u ∈F there exists a polynomial Qx,u : (V ∗)5→ K such
that

Qx,u( f |V )= fx(u) for all f ∈ X and

Qx,u(h)= hx(u) if u ∈ V and h ∈ (V ∗)5.

We proceed by induction on the degree of u: assume that both statements are true
in all degrees less than d , and write u = u1 + u2 + u3, where u1 has degree less
than d , u2 ∈ V ∩Fd , and u3 ∈I(0)∩Fd . Then u3 can be written as a sum of terms
of the form xk · · · x1x1u′ with xi ∈ 5 and u′ of degree d − (k + 1) < d. Modulo
I( f ) for f ∈ X , this term is equal to

fx1(u
′)π f (xk · · · x1)= Qx1,u′( f |V )Pxk ···x1( f |V ),

where we used the induction hypothesis for u′ and xk · · · x1. Hence a Pu of the
form

Pu := Pu1 + u2+ terms of the form Qx1,u′Pxk ···x1

has the required property. Similarly, for x ∈5 and f ∈ X we have

fx(xk · · · x1x1u′)x = xxxk · · · x1x1u′ = Qx1,u′( f |V )Qx,xk ···x1( f |V )x mod I( f ),
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and since x 6∈ I( f ) we conclude that

fx(xk · · · x1x1u′)= Qx1,u′( f |V )Qx,xk ···x1( f |V ).

Hence we may define Qx,u by

Qx,u(h) := Qx,u1(h)+ hx(u2)+ terms of the form Qx1,u′(h)Qx,xk ···x1(h)

for h∈ (V ∗)5. This shows the existence of Pu and Qx,u . The injectivity of9 is now
immediate: any f ∈ X is determined by its restriction to V by fx(u)= Qx,u( f |V ).

We now show that im(9) is closed. For any tuple h ∈ (V ∗)5, one may try to
define a Lie algebra structure on V by setting

[u, v]h := P[u,v](h) for u, v ∈ V .

By construction, if h = f |V for some f ∈ X , then this turns V into a Lie algebra
isomorphic to L( f ). In this case the Lie bracket has the following two properties:

(i) If v ∈ V is expressed as a linear combination
∑

x1,...,xd∈5
c(xd ,...,x1)xd · · · x1 of

monomials in the elements of5, where the Lie bracket is taken in F, then the
expression

∑
x1,...,xd∈5

c(xd ,...,x1)[xd , [ · · · [x2, x1]h · · · ]h]h also equals v; and

(ii) [x, [x, u]h]h = Qx,u(h)x for all x ∈5 and u ∈ V .

Conversely, suppose that [ · , · ]h indeed defines a Lie algebra on V satisfying (i)
and (ii). Then (V, [ · , · ]h) is a Lie algebra of dimension dim L(0) that by (i) is
generated by the image of 5, and by (ii) this image consists of extremal elements.
Hence there exists an f ∈ X corresponding to this Lie algebra, and its restriction
to V is h — indeed, fx(u) is the coefficient of x in [x[x, u]h]h , which is Qx,u(h)=
hx(u) for u ∈ V . Finally, all stated conditions on h — the fact that [ · , · ]h satisfies
the Jacobi identity and anticommutativity, together with (i) and (ii) — are closed;
here we use the polynomiality of Pu and Qx,u . This proves that im(9) is closed.

Now if U is any homogeneous subspace containing V , then the restriction map
9 ′ : X → (U∗)5 is clearly also injective. Moreover, an h′ ∈ (U∗)5 lies in the
image of this map if and only if h′|V lies in im9 and h′x(u) = Qx,u(h′|V ) for
all u ∈ U . Thus im9 ′ is closed, and the maps im9 ′ → im9, h′ 7→ h′|V and
im9 → im9 ′, h 7→ h′ with h′x(u) = Qx,u(h) for u ∈ U are inverse morphisms
between im9 and im9 ′. Similarly, if V ′ is any other homogeneous vector space
complement of I(0) contained in U , then the restriction map (U∗)5→ ((V ′)∗)5

induces an isomorphism between the images of X in these spaces. This shows
that the variety structure of X does not depend on the choice of V . Finally, all
morphisms indicated here are defined over K . We conclude that we have a K -
variety structure on X that is independent of the choice of V . �

The type of reasoning in this proof will return in Section 4: in the case where 0 is
a Dynkin diagram, we will show that for f ∈ X the restriction f |V actually depends
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polynomially on even fewer values of the fx , thus embedding X into smaller affine
spaces. That these embeddings are closed can be proved exactly as we did above.

3. The sandwich algebra

For now, 0 is an arbitrary finite graph (not necessarily a Dynkin diagram). The
Lie algebra L(0) is the so-called sandwich algebra corresponding to 0. It is a
finite-dimensional nilpotent Lie algebra, and carries an N5-grading defined as fol-
lows. The weight of a word (xd , . . . , x1) over 5 is the element µ ∈ N5 whose
x-coordinate equals ∣∣{i ∈ {1, . . . , d} | xi = x}

∣∣
for all x ∈ 5. For such a word the corresponding monomial xd · · · x1 lives in the
free Lie algebra on 5, but we use the same notation for its images in F and L( f )
when this does not lead to any confusion. We will sometimes say that a monomial
xd · · · x1 ∈ L(0) has weight µ, by which we mean that the word (xd , . . . , x1) has
weight µ— the monomial xd · · · x1 itself might be 0. Now the free Lie algebra is
graded by weight, and this grading refines the grading by degree. Like the grading
by degree, the grading by weight is inherited by L(0) as all relations defining L(0)
are monomials. We write L(0)µ for the space of weightµ∈N5 and call dim L(0)µ
the multiplicity of µ.

For x ∈ 5, let αx be the element with a 1 on position x and zeros elsewhere;
that is, αx is the weight of the word (x). We define a symmetric Z-bilinear form
〈 · , · 〉 on Z5 by its values on the standard basis: for x, y ∈5 we set

〈αx , αy〉 :=


2 if x = y,
−1 if x ∼ y, and

0 otherwise.

The matrix A := (〈αx , αy〉)x,y∈5 is called the Cartan matrix of 0. The height of an
element of Z5 is by definition the sum of the coefficients of the αx in it for x ∈5.

In what follows we often need to show that certain monomials xd · · · x1 are zero
in L(0). Lemmas 6–10 show how the bilinear form comes into play. But first we
recall an elementary property of sandwich elements, to which they owe their name.

Lemma 4. Let x be a sandwich element in a Lie algebra L, and let y, z ∈ L be
arbitrary. Then xyxz = 0.

Proof. We have

xyxz = [x, y]xz+ yxxz = [x, y]xz =−[x, xy]z+ x[x, y]z

= zxxy+ x[x, y]z = x[x, y]z = xxyz− xyxz =−xyxz. �
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Remark 5. Note that we have used here that the characteristic is not 2. In the
case of characteristic 2, this lemma should be taken as part of the definition of a
sandwich element [Cohen and Ivanyos 2006].

Lemma 6. Let w = (xd , xd−1, . . . , x1) be a word over 5, and let x ∈ 5. Let xi

and x j be consecutive occurrences of x in w (that is, i > j , xi = x j = x , and
xk 6= x for all k strictly between i and j). Suppose that the letters in w strictly
between xi and x j contain at most 1 occurrence of a 0-neighbor of x , that is, the
set {k ∈ { j + 1, . . . , i − 1} | xk ∼ x} has cardinality at most 1. Then xd xd−1 · · · x1

is 0 in L(0).

Proof. Set z := xd xd−1 · · · x1. First, using the fact that on F the linear map ad(x)
commutes with ad(y) for any y ∈5 with x 6∼ y, we can move xi in z to the right
until it is directly to the left of either x j or the unique xk ∼ x between xi and x j ,
so we may assume that this was already the case to begin with.

If i = j+1 then either j = 1 and z is zero by anticommutativity, or j > 1 and the
monomial xi x j x j−1 · · · x1 = xxx j−1 · · · x1 is zero by the sandwich property of x .

Suppose, on the other hand, that xi ∼ xi−1. Then if j = 1 and i − 1 > 2, the
monomial z is zero since x2x1 is — indeed, x2 6∼ x1. On the other hand, if i−1= 2
or j > 1, then we can move x j in z to the left until it is directly to the right of xi−1.
So again, we may assume that it was there from the beginning. But now

xi xi−1x j x j−1 · · · x1 = xxi−1xx j−1 · · · x1.

If j > 1, then this monomial equals zero by Lemma 4; and if j = 1, then it is zero
by the sandwich property of x . �

Lemma 7. Let (xd , xd−1, . . . , x1) be a word with d ≥ 2 over 5, and suppose that
the weight µ of (xd−1, xd−2, . . . , x1) satisfies 〈αxd , µ〉 ≥ 0. Then xd xd−1 · · · x1= 0
in L(0).

Proof. Set w := (xd , xd−1, . . . , x1) and z := xd xd−1 · · · x1. The condition on the
bilinear form can be written as

2
∣∣{ j ∈ {1, . . . , d − 1} | x j = xd}

∣∣≥ ∣∣{ j ∈ {1, . . . , d − 1} | x j ∼ xd}
∣∣.

First we note that if the right side is 0, then z is trivially zero: then all xi with i < d
commute with xd , and there at least d − 1 ≥ 1 such factors. So we may assume
that the right side is positive, and hence so is the left side.

Let the set in the left side of this inequality consist of the indices im > im−1 >

· · · > i1. By the above, m is positive. In the word w there are m pairs (i, j)
satisfying the conditions of Lemma 6 with x = xd , namely, (d, im), (im, im−1), . . . ,
(i2, i1). Now if for some such (i, j) there are less than two 0-neighbors of xd in
the interval between xi and x j , then z = 0 by Lemma 6. So we may assume that
each of these m intervals contains at least two 0-neighbors of xd . But then, by the
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inequality above, these exhaust all 0-neighbors of xd in w, so in particular there
are exactly 2 0-neighbors of xd between xi2 and xi1 , and none to the right of xi1 .
Now if i1 > 1, then z is zero because xi1 commutes with everything to the right of
it. Hence assume that i1 = 1, and note that i2 ≥ 4. If x2 6∼ x1 = xi1 , then again z is
trivially 0, so assume that x2 is a 0-neighbor of xd = x1. Then we have

xi2 · · · x3x2x1 =−xi2 · · · x3x1x2;

but in the monomial on the right there is only one 0-neighbor of xd between xi2

and x1 — hence it is zero by Lemma 6. �

Lemma 8. Let x ∈ 5 and λ ∈ N5 satisfy 〈αx , λ〉 = −1. Then L(0)αx+λ =

[x,L(0)λ].

Proof. Let w = (xd , . . . , x1) be a word over 5 of weight αx + λ. We show that
in L(0) the monomial z := xd · · · x1 is a scalar multiple of some monomial of the
form xz′, where z′ is a monomial of weight λ. Obviously, x occurs in w; let k be
maximal with xk = x . If k = 1, then we may interchange xk = x1 and xk+1 = x2

in z at the cost of a minus sign (note that d ≥ 2), so we may assume that k ≥ 2.
Suppose first that there occur 0-neighbors of x = xk to the left of xk in w. We

claim that then z = 0. Indeed, let µ and ν be the weights of (xk−1, . . . , x1) and
(xd , . . . , xk+1), respectively. Then we have

〈αx , µ〉 = 〈αx , λ〉− 〈αx , ν〉 = −1−〈αx , ν〉 ≥ 0,

where in the last inequality we use that there are occurrences of neighbors of xk ,
but none of xk itself, in the word (xd , . . . , xk+1). Now we find xk · · · x1 = 0 by
Lemma 7 (note that k ≥ 2); hence z = 0 as claimed.

So we can assume that there are no 0-neighbors of xk to the left of xk in w.
Then we may move xk in z all the way to the left; hence z is indeed equal to xz′

for some monomial z′ of weight λ. �

3.1. Relation with the root system of the Kac–Moody algebra. Recall the defi-
nition of the Kac–Moody algebra gKM over C corresponding to 0: it is the Lie
algebra generated by 3 · |5| generators, denoted Ex , Hx , Fx for x ∈5, modulo the
relations

Hx Hy = 0, Ex Fx = Hx ,

Hx Ey = 〈αx , αy〉Ey, Hx Fy = −〈αx , αy〉Fy;

and, for x 6= y, Ex Fy = 0, ad(Ex)
1−〈αx ,αy〉Ey = 0,

ad(Fx)
1−〈αx ,αy〉Fy = 0.

Endow gKM with the Z5-grading in which Ex , Hx , Fx have weights αx , 0,−αx ,
respectively. Let 8 := {β ∈ Z5 \ {0} | (gKM)β 6= 0} be the root system of gKM; it is
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equal to the disjoint union of its subsets8± :=8
⋂
(±N)5 and contains the simple

roots αx for x ∈5; we refer to [Kac 1990] for the theory of Kac–Moody algebras.
In what follows we will compare the multiplicities of weights in the K -algebra
L(0) and the C-algebra gKM.

Lemma 9. For λ ∈ N5
\8+, we have L(0)λ = 0.

Proof. We proceed by induction on the height of λ. The proposition is trivially true
for λ of height 1. Suppose now that it is true for height d − 1 ≥ 1, and consider a
word w = (xd , xd−1, . . . , x1) of weight λ 6∈8+.

Set µ := λ− αxd . If µ 6∈ 8+, then xd−1 · · · x1 = 0 by the induction hypothe-
sis, so we may assume that µ ∈ 8+. This together with µ+ αxd 6∈ 8+ implies
(by elementary sl2-theory in gKM) that 〈αxd , µ〉 ≥ 0. Now Lemma 7 shows that
xd · · · x1 = 0. �

For another relation between weight multiplicities in L(0) and gKM, recall that
a root in 8 is called real if it is in the orbit of some simple root under the Weyl
group W of gKM. In that case it has multiplicity 1 in gKM. We now call a root
β ∈8+ very real — this is nonstandard terminology — if it can be written as β =
αxd + · · ·+αx1 , for some x1, . . . , xd ∈5, such that for all i = 2, . . . , d we have

〈αxi , αxi−1 + · · ·+αx1〉 = −1.

(This implies that β = sxd · · · sx2αx1 , where the sx are the fundamental reflections
corresponding to the x ∈5.)

Lemma 10. Any very real β ∈8+ has multiplicity at most 1 in L(0).

Proof. This follows by induction on the height of β, using Lemma 8 for the induc-
tion step. �

3.2. Simply laced Dynkin diagram of finite type. In this section we assume that
0 is a Dynkin diagram of finite type, that is, one of the diagrams in Figure 1 with
vertex 0 removed. Then gKM is a finite-dimensional simple Lie algebra over C.
Now gKM has a Chevalley basis [Carter 1972, Section 4.2]. This basis consists of
the images of the Hx and one vector Eα ∈ (gKM)α for every root α ∈8, where Eαx

and E−αx may be taken as Ex and Fx , respectively. An important property that we
will need is that [Eα, Eβ] =±Eα+β for all roots α and β such that α+β is a root;
here we use that the p in [Carter 1972, Theorem 4.2.1] is 0 in the simply laced
case. The Chevalley basis spans a Z-subalgebra of gKM. Let g be the K -algebra
obtained by tensoring this Z-form with K , and let E0

x , H 0
x , F0

x be the images in g

of Ex , Hx , Fx . The Lie algebra g has a triangular decomposition

g= n−⊕ h⊕ n+,

where n± :=
⊕

β∈8±
gβ . We will refer to g as the Chevalley algebra of type 0.
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Remark 11. One can also define g as the Lie algebra of the split simply connected
algebraic group over K of type 0.

Theorem 12. Let 0 be a simply laced Dynkin diagram of finite type, obtained from
a diagram in Figure 1 by removing vertex 0. Let g be the corresponding Chevalley
algebra over the field K of characteristic unequal to 2, and let n+ be the subalgebra
generated by the E0

x . Then the map sending x ∈ 5 to E0
x induces a (necessarily

unique) isomorphism L(0)→ n+.

In the proof of this theorem we use the following well-known facts about sim-
ply laced Kac–Moody algebras of finite type: first, 〈 · , · 〉 only takes the values
−1, 0, 1, 2 on 8+×8+, and second, all roots in 8+ are very real.

Proof of Theorem 12. To prove the existence of a homomorphism π sending x to
E0

x , we verify that the relations defining L(0) hold in n+. That is, we have to prove
that

[E0
x , E0

y] = 0 for all x, y ∈5 with x 6∼ y,

ad(E0
x )

2z = 0 for all x ∈5 and all z ∈ n+.

The first statement is immediate from the relations defining gKM. For the second
relation, if z∈n+ is a root vector with root β ∈8+, then 〈β, αx 〉≥−1 by the above,
so that 〈β + 2αx , αx 〉 ≥ 3, and therefore β + 2αx 6∈8+, so that ad(Ex)

2z = 0. As
root vectors span n+, we have proved the existence of π ; uniqueness is obvious.

Now we have to show that π is an isomorphism. It is surjective since n+ is
generated by the E0

x ; this follows from the properties of the Chevalley basis in
Section 3.2. Hence it suffices to prove that dim L(0)≤ dim n+. But by Lemmas 9
and 10 and the fact that all roots are very real, we have L(0)µ = 0 for all µ 6∈8+
and dim L(0)β ≤ dim gβ for all β ∈8+. This concludes the proof. �

3.3. Simply laced Dynkin diagrams of affine type. Suppose now that 0 is a sim-
ply laced Dynkin diagram of affine type from Figure 1. Recall that the Cartan ma-
trix A has a one-dimensional kernel spanned by a unique primitive vector δ ∈N5.
Here primitive means that the greatest common divisor of the coefficients of δ on
the standard basis is 1; indeed, there always exists a vertex x0 ∈ 5 (labeled 0 in
Figure 1) with coefficient 1 in δ, and all such vertices form an Aut(0)-orbit. For
later use, we let h be the Coxeter number, which is the height of δ.

Let 50
:= 5 \ {x0}. Write 00 for the induced subgraph on 50 (which is a

Dynkin diagram of finite type) and 80 for the root system of the Chevalley alge-
bra g of type 00 defined in Section 3.2. This root system lives in the space Z5

0
,

which we identify with the elements of Z5 that are zero on x0. Retain the notation
n± ⊆ g from Section 3.2. Consider the semidirect product u := n+n g/n+, where
the second summand is endowed with the trivial Lie bracket and the natural n+-
module structure. This u is clearly a nilpotent Lie algebra; we will prove that it
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is isomorphic to L(0). In our proof we use the following Z5-grading of u: the
root spaces in n+ have their usual weight in 80

+
⊆ Z5

0
, while the image of gβ in

g/n+ ⊆ u for β ∈ {0}∪80
−

has weight δ+β. Thus the set of all weights occurring
in u is

2 :=80
+

⋃
{δ+β | β ∈80

−
}
⋃
{δ}.

Theorem 13. Let 0 be a simply laced Dynkin diagram of affine type from Figure 1,
let 00 be the subdiagram of finite type obtained by removing vertex 0, and let g be
the Chevalley algebra of type 00 over a field of characteristic unequal to 2. For
x ∈ 50, let E0

x ∈ n+ be the element of the Chevalley basis of g with simple root
αx , and for the lowest root θ ∈ 80

−
, let E0

θ ∈ g/n+ be the image of the element in
the Chevalley basis of weight θ . Then the map sending x ∈50 to E0

x and x0 to E0
θ

induces a Z5-graded isomorphism L(0)→ n+n g/n+ of Lie algebras.

Remark 14. Over C one can argue directly in the Kac–Moody algebra gKM. Then
L(0) is also the quotient of the positive nilpotent subalgebra of gKM by the root
spaces with roots of height larger than the Coxeter number h. In the proof one
uses the root multiplicities of [Kac 1990, Proposition 6.3]. One might also pursue
this approach in positive characteristic using the results of [Billig 1990], but we
have chosen to avoid defining the Kac–Moody algebra in arbitrary characteristic
and use the Chevalley basis instead.

Proof of Theorem 13. The proof is close to that of Theorem 12. We start by
verifying that the relations defining L(0) hold in u = n+ n g/n+. First, E0

x and
E0

y with x, y ∈50 commute when they are not connected in 0; this follows from
the defining equations of gKM. Second, E0

x and E0
θ commute if x ∈ 50 is not

connected to x0, as θ+αx is then not in 80. Third, each E0
x is a sandwich element

in u: for its action on n+, this follows as in the proof of Theorem 12, and for its
action on g/n+, it follows from the fact that ad(E0

x )
2g⊆ K E0

x ⊆ n+. Fourth, E0
θ is

a sandwich element as ad(E0
θ ) maps u into g/n+, which has trivial multiplication.

This shows the existence of a homomorphism π :L(0)→u. Moreover π is graded;
in particular, the weight of E0

θ is δ+ θ = αx0 .
The E0

x generate n+, and E0
θ generates the n+-module g/n+. These statements

follow from properties of the Chevalley basis in Section 3.2, and imply that π is
surjective. So we need only show that dim L(0) ≤ dim u; we prove this for each
weight in 2.

First, the roots in 80 are very real, so their multiplicities in L(0) are at most 1
by Lemma 10. Second, we claim that all roots of the form δ+β with β ∈80

−
are

also very real. This follows by induction on the height of β: For β = θ it is clear
since δ + θ = αx0 . For β 6= θ it is well known that there exists an x ∈ 50 such
that 〈αx , β〉 = 1. Then we have δ+β = (δ+β−αx)+αx , where δ+β−αx ∈2

and 〈α, δ+ β − αx 〉 = 0+ 1− 2 = −1; here we use that δ is in the radical of the
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form 〈 · , · 〉. By induction, δ+ β − αx is very real; hence so is δ+ β. This shows
that also the roots of the form δ + β with β ∈ 80

−
have multiplicity at most 1 in

L(0), again by Lemma 10.
Next we show that δ has multiplicity at most |50

| = dim h in L(0). Indeed, we
claim that L(0)δ is contained in

∑
x∈50[x,L(0)δ−αx ]. Then, by the above, each

of the summands has dimension at most 1, and we are done. The claim is true
almost by definition: any monomial of weight δ must start with some x ∈ 5, so
we need only show that monomials starting with x0 are already contained in the
sum above. Consider any monomial z := xd · · · x1 of weight δ, where xd = x0. As
the coefficient of x0 in δ is 1, none of the xi with i < d is equal to x0. But then an
elementary application of the Jacobi identity and induction shows that z is a linear
combination of monomials that do not start with x0.

Finally, we have to show that L(0)µ is 0 for µ ∈ 8+ \ 2 (we already have
L(0)µ = 0 for µ 6∈ 8+ by Lemma 9). But Lemma 7 and the fact that 〈αx , δ〉 = 0
for all x ∈ 5 together imply that [x,L(0)δ] = 0 for all x ∈ 5. So it suffices
to show that if µ ∈ 8+ is not in 2, then “µ can only be reached through δ.”
More precisely, if (xd , . . . , x1) is any word over 5 such that

∑d
j=1 αx j = µ and

µi :=
∑i

j=1 αx j ∈8+ for all i = 1, . . . , d , then there exists an i such that µi = δ.
But this follows immediately from the fact that δ is the only root of height h [Kac
1990, Proposition 6.3]. We find that every monomial corresponding to such a word
is zero, and this concludes the proof of the theorem. �

4. The parameter space and generic Lie algebras

So far we have only considered the Lie algebras L(0). Now we will be concerned
with the variety X of all parameters f ∈ (F∗)5 for which dim L( f )=dim L(0). We
collect some tools for determining X in the case of simply laced Dynkin diagrams.

4.1. Scaling. First let 0 be arbitrary again, not necessarily a Dynkin diagram.
Scaling of the generators xi has an effect on X : Given t = (tx)x∈5 in the torus
T := (K ∗)5, there is a unique automorphism of F that sends x ∈ 5 to tx x . This
gives an action of T on F, and we endow F∗ with the contragredient action. Finally,
we obtain an action of T on X by

(t f )x(y) := t−1
x fx(t−1 y) for all t ∈ T, f ∈ X, x ∈5, and y ∈ F.

Indeed, note that with this definition the automorphism of F induced by t sends
xxy− fx(y)x ∈ F to

(t x)(t x)(t y)− fx(y)t x = t2
x (xx(t y)− t−1

x fx(y)x)

= t2
x (xx(t y)− t−1

x fx(t−1(t y))x)

= t2
x (xx(t y)− (t f )x(t y)x),
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and hence the ideal I( f ) defining L( f ) to I(t f ). Therefore, this automorphism
of F induces an isomorphism L( f )→ L(t f, 0).

This scaling action of T on X will make things very easy in the case of simply
laced Dynkin diagrams, where X will turn out to be isomorphic to an affine space
with linear action of T , in which the maximal-dimensional orbits have codimension
0, 1 or 2.

Remark 15. Observe that the one-parameter subgroup t 7→ λ(t) := (t, . . . , t) ∈ T
satisfies limt→∞ λ(t) f = 0 for all f ∈ X . This shows that all irreducible compo-
nents of X contain 0; in particular, X is connected.

4.2. The extremal form. Cohen et al. [2001] proved that on any Lie algebra over
a field of characteristic unequal to 2 that is generated by finitely many extremal ele-
ments, there is a unique bilinear form κ such that xxy=κ(x, y)x for all extremal x .
Moreover, it is shown there that κ is symmetric and associative: κ(x, y)= κ(y, x)
and κ(xy, z) = κ(x, yz) for all x, y, z. We call κ the extremal form. For the
Chevalley algebra g of Section 3.2, the extremal form is nonzero on gα×gβ if and
only if α=−β. The form may have a radical contained in the Cartan subalgebra h.

On the other hand, for any f ∈ (F∗)5 (not necessarily in X ) the Lie algebra L( f )
is generated by the images of the elements of 5, which are extremal elements. In
particular, for x ∈5 we have in L( f )

fx(y)x = xxy = κ(x, y)x,

where κ is the extremal form on L( f ). So if the image of x in L( f ) is nonzero,
then fx(y)= κ(x, y).

4.3. The Premet relations. Our arguments showing that certain monomials m :=
xd · · · x1 are zero in the sandwich algebra L(0) always depended on the sandwich
properties: xxy=0 and xyxz=0 whenever x is a sandwich element and y and z are
arbitrary elements of the Lie algebra. The Premet relations of the following lemma
translate such a statement into the following statement: in L( f ) the monomial m
can be expressed in terms of monomials of degree less than d−1 and values of fxd

on monomials of degree less than d − 1.

Lemma 16 [Chernousov 1989]. Let x be a nonzero extremal element of a Lie al-
gebra L, and let fx : L→ K be the linear function with xxy = fx(y)x. Then we
have

2xyxz = fx(yz)x − fx(z)xy− fx(y)xz.

Remark 17. In characteristic 2 the definition of an extremal element x involves
the existence of a function gx such that xyxz= gx(yz)x−gx(z)xy−gx(y)xz, that
is, gx plays the role of fx/2. See [Cohen and Ivanyos 2006, Definition 14].
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4.4. The parameters. Recall from Section 2 that the restriction map X→ (V ∗)5

is injective and has a closed image; a key step in the proof was showing that for
f ∈ X the values fx(u) for x ∈ 5 and u ∈ F depend polynomially on f |V . In
what follows, this will be phrased informally as f can be expressed in f |V or f |V
determines f . In this phrase we implicitly assume that f ∈ X , that is, that L( f ) has
the maximal possible dimension. In the case of Dynkin diagrams, we will exhibit
a small number of values of f in which f can be expressed. For this purpose, the
following lemma, which also holds for other graphs, is useful.

Lemma 18. Let q = xd · · · x1 be a monomial of degree d ≥ 2 and weight β, and let
z ∈ 5 be such that 〈αz, β〉 ≥ −1. Then fz(q) can be expressed in the parameters
fx(m) with monomials m of degree less than d − 1 and x ∈5.

Proof. First, if xd is not a 0-neighbor of z in 0, then

fz(xd · · · x1)= κ(z, xd · · · x1)= −κ(xd z, xd−1 · · · x1)= κ(0, xd−1 · · · x1)= 0,

and we are done. So assume that xd is a 0-neighbor of z. Now

fz(xd · · · x1)= −κ(xd z, xd−1 · · · x1)= κ(zxd , xd−1 · · · x1)

= − f (xd , zxd−1 · · · x1)= fxd (zxd−1 · · · x1).

In both cases we have used that the images of z and xd are nonzero in L( f ) for
f ∈ X ; see Section 4.2. Now 〈αz, β−αxd 〉 ≥ 0, so Lemma 7 says that zxd−1 · · · x1

can be expressed in terms of smaller monomials and values fx(m) for x ∈5 and
monomials m of degree less than d−1. Then by linearity of fxd , the last expression
above can also be expressed in terms of values fx(m) with x ∈5 and m of degree
less than d − 1. �

4.5. Simply laced Dynkin diagrams of finite type. Suppose that 0 is a simply
laced Dynkin diagram of finite type. Let g be the Chevalley algebra with Dynkin
diagram 0 of Section 3.2. We identify Z5 with the character group of T = (K ∗)5

in the natural way: we write µ for the character that sends t to tµ =
∏

x∈5 tµx
x .

Also let 6 be the set of edges of 0, and write αe := αx +αy for e = {x, y} ∈6.

Theorem 19. Let 0 = (5,6) be a simply laced Dynkin diagram of finite type,
obtained from a diagram in Figure 1 by removing vertex 0. Let g be the Chevalley
algebra of type 0 over the field K of characteristic unequal to 2. Set T := (K ∗)5.
Then the variety X is, as a T -variety, isomorphic to the vector space V := K6 on
which T acts diagonally with character −αe on the component corresponding to
e ∈ 6. For f corresponding to any element in the dense T -orbit (K ∗)6 , the Lie
algebra L( f ) is isomorphic to a fixed Lie algebra.

We first need a lemma that will turn out to describe the generic L( f ). We retain
the notation E0

x , H 0
x , F0

x ∈ g and n+ from Section 3.2. We denote by C the variety
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of tuples (Gx)x∈5 with Gx ∈ 〈F0
x , H 0

x , E0
x 〉
∼= sl2 extremal; C is an irreducible

variety.

Lemma 20. For generic G = (Gx)x∈5 ∈ C , the Lie subalgebra g′ of g generated
by the Gx has dimension dim n+, and moreover Gx Gx G y is a nonzero multiple
of Gx for all x ∼ y.

Proof. By definition g′ is generated by extremal elements; hence it has dimension
at most that of L(0), which is isomorphic to n+ by Theorem 12. The condition
that the Gx generate a Lie algebra of dimension less than dim n+ is closed, and the
tuple (E0

x )x∈5 ∈ C does not fulfill it. Hence using the irreducibility of C , we find
that for G in an open dense subset of C , the Lie algebra g′ has dim g′ = dim n+.
This proves the first statement. The second statement follows directly from the
same statement for 0 of type A2, that is, for g = sl3, where it boils down to the
statement that the two copies of sl2 in sl3 corresponding to the simple roots are not
mutually perpendicular relative to the extremal form in sl3. �

Proof of Theorem 19. By Lemma 18 and Theorem 12, any f ∈ X is determined
by its values fx(m) with x ∈ 5 and monomials m of weights β ∈ 8+ such that
either β has height 1 or 〈αx , β〉 ≤ −2. But since β is a positive root, the latter
inequality cannot hold. Hence β has height 1, so that m ∈5, and the only x ∈5
for which fx(m) 6= 0 are the neighbors of m. Moreover, from the symmetry of the
extremal form we conclude that fx(y)= fy(x) for x,m ∈5 neighbors in 0.

We thus find a closed embedding 9 : X → K6 sending f to ( fx(y)){x,y}∈6 .
Now if we let T act on K6 through the homomorphism

T → (K ∗)6, t 7→ (t−1
x t−1

y ){x,y}∈6,

then 9 is T -equivariant by the results of Section 4.1. Note that T acts by the
character −αe on the component corresponding to e ∈6. The fact that 0 is a tree
readily implies that the characters αe for e ∈6 are linearly independent over Z in
the character group of T , so that the homomorphism T→ (K ∗)6 is surjective. But
then T has finitely many orbits on K6 , namely those of the form (K ∗)6

′

×{0}6\6
′

with 6′ ⊆6.
Now as 9(X) is a closed T -stable subset of K6 , we are done if we can show

that (K ∗)6 ∩9(X) is nonempty. But this is precisely what Lemma 20 tells us:
there exist Lie algebras g′ generated by extremal elements that have the largest
possible dimension, and where all coordinates fx(y) with x ∼ y are nonzero. This
concludes the proof. �

Remark 21. The proof above also implies that all Lie algebras described in Lemma
20 are isomorphic. More generally, for any two Lie algebras g′ and g′′ with tuples
of distinguished, extremal generators (G ′x)x∈5 and (G ′′x)x∈5 such that
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(i) G ′x G ′y = 0 and G ′′x G ′′y = 0 for x 6∼ y,

(ii) G ′x G ′x G ′y = 0 if and only if G ′′x G ′′x G ′′y = 0 for x ∼ y, and

(iii) dim g′ = dim g′′ = dim n+,

there exists an isomorphism g′→ g′′ mapping each G ′x to a scalar multiple of G ′′x .

4.6. Simply laced Dynkin diagrams of affine type. Suppose now that 0 is a sim-
ply laced Dynkin diagram of affine type. We retain the notation from Section 3.3.
In particular, let g be the Chevalley algebra of type 00, the graph induced by 0 on
50
= 5 \ {x0}. To state the analogue of Theorem 19, we again identify Z5 with

the character group of T = (K ∗)5 and retain the notation αe for e ∈ 6, the edge
set of 0.

Theorem 22. Let 0= (5,6) be a simply laced Dynkin diagram of affine type from
Figure 1, and let 00 be the finite-type diagram obtained by deleting vertex 0 from 0.
Let g be the Chevalley algebra of type 00 over the field K of characteristic unequal
to 2, and set T := (K ∗)5. Then the variety X is, as a T -variety, isomorphic to the
vector space V := K6

× K on which T acts diagonally with character −αe on the
component corresponding to e ∈6, and with character −δ on the last component.
For all f ∈ X corresponding to points in some open dense subset of K6

× K , the
Lie algebra L( f ) is isomorphic to g.

Remark 23. Unlike for diagrams of finite type, it is not necessarily true that T has
only finitely many orbits on V . Indeed, the following three situations occur:

(i) The characters αe (for e ∈6) and δ are linearly independent. This is the case
for D(1)

even, E (1)7 , and E (1)8 . Then T has finitely many orbits on V .

(ii) The characters αe for e ∈ 6 are linearly independent, but δ is in their Q-
linear span. This is the case for A(1)even, D(1)

odd and E (1)6 . Now the orbits of T
in (K ∗)6 × K ∗ have codimension 1. The character δ, for A(1)even and E (1)6 , has
full support when expressed in the αe; this readily implies that T has finitely
many orbits on the complement of (K ∗)6×K ∗. For D(1)

n with n odd, however,
(n− 3)/2 edge characters get coefficient 0 when δ is expressed in them, and
therefore T still has infinitely many orbits on said complement.

(iii) The characters αe for e ∈ 6 are linearly dependent. This is the case only
for A(1)odd, and in fact δ is then also in the span of the αe. Now the T -orbits
in (K ∗)6 × K ∗ have codimension 2, and in the complement there are still
infinitely many orbits.

This gives some feeling for the parameter space X . It would be interesting to
determine exactly all isomorphism types of Lie algebras L( f ) with f ∈ X — but
here we confine ourselves to those with f in some open dense subset of K6

× K .
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The proof is very similar to that of Theorem 19. Again, we first prove a lemma
that turns out to describe the generic L( f ). Retain the notation E0

x , H 0
x , F0

x ∈ g for
x ∈50. Denote the lowest weight by θ ∈80

−
, let E0

x0
and F0

x0
∈ g be the elements

of the Chevalley basis of weights θ and−θ , respectively, and set H 0
x0
:= [E0

x0
, F0

x0
].

Write C for the irreducible variety of tuples (Gx)x∈5 with Gx ∈〈F0
x , H 0

x , E0
x 〉
∼= sl2

extremal.

Lemma 24. For generic G = (Gx)x∈5 ∈ C , the Gx generate g, and Gx Gx G y is a
nonzero multiple of Gx for all x ∼ y.

Proof. The first statement is true for G= (E0
x )x∈5; this follows from the properties

of the Chevalley basis in Section 3.2. Hence by the irreducibility of C it is true
generically. The second statement follows, as in Lemma 20, from the same state-
ment in sl3. �

In the following proof we will show that the choice of (Gx)x∈5 as in Lemma
24 already gives generic points in X , except for the case where 0 is of type A(1)odd,
for which we give another construction.

Proof of Theorem 22. By Lemma 18 and Theorem 13, any f ∈ X is determined by
its values fx(m) with x ∈5 and monomials m of weights β ∈2 such that either β
has height 1 or 〈αx , β〉≤−2. In contrast with the case of finite-type diagrams, there
do exist pairs (x, β) ∈5×2 with this latter property, namely, precisely those of
the form (x, δ − αx). For all x ∈ 5, let mx be a monomial that spans the weight
space in L(0) of weight δ − αx ; this space is 1-dimensional by Theorem 13. We
claim that the fx(mx) can all be expressed in terms of fx0(mx0) and values fz(r)
with z ∈5 and r of degree less than h−2. Indeed, if x 6= x0, then x0 occurs exactly
once in mx ; and writing mx = xd · · · x1x0 ye · · · y1 with x1, . . . , xd , y1, . . . , ye ∈5

0,
we find

fx(mx)= κ(x, xd · · · x1x0 ye · · · y1)

= (−1)d+1κ(x0x1 · · · xd x, ye · · · y1)

= (−1)dκ(x0, [x1 · · · xd x, ye · · · y1])

= (−1)d fx0([x1 · · · xd x, ye · · · y1]),

and the expression [x1 · · · xd x, ye · · · y1] can be rewritten in terms of mx0 and
shorter monomials, using values fz(r) with r of degree less than d + e = h− 2.

We have now found a closed embedding X → K6
× K which sends f to(

( fx(y)){x,y}∈6, fx0(mx0)
)
; for ease of exposition we will view X as a closed subset

of K6
× K . The theorem follows once we can realize generic parameter values in

K6
×K with extremal elements that generate g. To this end, choose a generic tuple

(Gx)x∈5 in C . By Lemma 24 these generate g, and they clearly satisfy Gx G y = 0
for x 6∼ y. Hence they yield a point in X with fx(y) = κ(Gx ,G y) 6= 0 for x ∼ y.
Furthermore, the parameter fx0(mx0) equals the extremal form evaluated on Gx0
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and the monomial mx0 evaluated in the Gx . Express that monomial in the Gx as
ξE0

x0
+ ηH 0

x0
+ ζ F0

x0
plus a term perpendicular to 〈E0

x0
, H 0

x0
, F0

x0
〉, and write Gx0

as ξ ′E0
x0
+ η′H 0

x0
+ ζ ′F0

x0
. For the degenerate case where Gx = E0

x for all x , we
have ξ, η= 0 and ζ 6= 0 (that monomial is a nonzero scalar multiple of the highest
root vector, F0

x0
), so that fx0(mx0)= κ(E

0
x0
, ζ F0

x0
) 6= 0. Therefore, this parameter is

nonzero generically. Hence we have found a point f ∈ X
⋂
((K ∗)6×K ∗). Along

the lines of Remark 23 we now distinguish three cases:

(i) If the αe (for e ∈6) and δ are linearly independent, then T acts transitively on
(K ∗)6 × K ∗, and we are done.

(ii) If the αe for e∈6 are linearly independent, but δ lies in their span, then we now
show that we can alter the point f above in a direction transversal to its T -orbit.
Let S be the torus in the adjoint group of g whose Lie algebra is h, and consider the
effect on f of conjugation of Gx0 with an element s ∈ S, while keeping the other Gx

fixed. This transforms Gx0 = ξ
′E0

x0
+ η′H 0

x0
+ ζ ′F0

x0
in sθξ ′E0

x0
+η′H 0

x0
+s−θζ ′Fx0 ,

and therefore it transforms fx0(mx0) into

sθξ ′ζκ(E0
x0
, F0

x0
)+ η′ηκ(H 0

x0
, H 0

x0
)+ s−θζ ′ξκ(F0

x0
, E0

x0
),

while it keeps the parameters fx0(y) with x0∼ y unchanged; these only depend on
η′. This shows that we can indeed move f inside X in a direction transverse to its
T -orbit, and we are done.

(iii) Finally, in the case of A(1)n−1 with n even, we first show that tuples in C only
give points in a proper closed subset of K6

× K . Here g = sln and 0 is an n-
cycle; label its points 0, . . . , n − 1. Relative to the usual choices of E0

i , H 0
i , F0

i ,
the element Gi is a matrix with 2× 2-block[

ai bi a2
i

−b2
i −ai bi

]
on the diagonal in rows (and columns) i and i + 1 and with zeros elsewhere. We
count the rows and columns modulo n so that row 0 is actually row n. But then we
have κ(Gi ,Gi+1)= 2ai bi ai+1bi+1, and this implies

κ(G1,G2)κ(G3,G4) · · · κ(Gn−1,G0)

= 2n(a1b1)(a2b2)(a3b3)(a4b4) · · · (an−1bn−1)(a0b0)

= 2n(a0b0)(a1b1)(a2b2)(a3b3) · · · (an−2bn−2)(an−1bn−1)

= κ(G0,G1)κ(G2,G3) · · · κ(Gn−2,Gn−1);

(2)

so the tuple of parameter values of the tuple (Gi )
n−1
i=0 ∈ C lies in a proper closed

subset R of K6
× K .
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We therefore allow the tuple (Gi )
n−1
i=0 to vary in a slightly larger variety C ′⊃C as

follows: the conditions on G1, . . . ,Gn−1 remain the same, but G0 is now allowed
to take the shape 

−a0b0 0 . . . 0 − b2
0

c2a0 0 . . . 0 c2b0
...

...
...

...

cn−1a0 0 . . . 0 cn−1b0

a2
0 0 . . . 0 a0b0


(which is extremal since it has rank 1 and trace 0), subject to the equations

bi ci + ai ci+1 = 0 for i = 2, . . . , n− 2, (3)

which ensure that G0 commutes with G2, . . . ,Gn−2. Still, any tuple in an open
neighborhood U ⊆ C ′ of our original tuple (Gi )

n−1
i=0 (with generic ai and bi but all

ci equal to 0) generates sln . We now argue that the differential d at (Gi )
n−1
i=0 of the

map U→ X ⊆ K6
× K sending a tuple to the parameters that it realizes has rank

|6| + 1, as required. Indeed, the T -action already gives a subspace of dimension
|6| − 1, tangent to R. Making c2 (and hence all ci ) nonzero adds −2a2

1c2a0 to
κ(G0,G1) and 2b2

n−1cn−1b0 to κ(G0,Gn−1), and it fixes all other κ(Gi ,G j ). We
show that this infinitesimal direction is not tangent to R: it adds

2nb2
n−1cn−1b0(a1b1)(a2b2) · · · (an−3bn−3)(an−2bn−2)

to the left side of (2), and

−2na2
1c2a0(a2b2)(a3b3) · · · (an−2bn−2)(an−1bn−1)

to the right side. Dividing these expressions by common factors, the first becomes
2nbn−1cn−1b0b1 and the second −2na1c2a0an−1. These expressions are not equal
generically, even modulo the equations (3) relating the ci to the ai and bi ; indeed,
these equations do not involve a0, a1, an−1, b0, b1, bn−1.

Note that varying c2 may also effect the parameter fx0(mx0), but in any case the
above shows that the composition of the differential d with projection onto K6 is
surjective. On the other hand, conjugation with the torus S as in case (ii) yields a
vector in the image of d which is supported only on the factor K corresponding
to δ. This concludes the proof that d has full rank. �

5. Notes

5.1. Recognizing the simple Lie algebras. Going through the proof that X is an
affine variety, one observes that the map f 7→ f |V is not only injective on X , but
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even on

X ′(0) := { f ∈ (F∗)5 | for all x ∈5 : x 6= 0 in L( f )} ⊇ X.

The same is true for the map f 7→
(
( fx(y)){x,y}∈6

)
in the case where 0 is a Dynkin

diagram of finite type, and for the map f 7→
(
( fx(y)){x,y}∈6, fx0(mx0)

)
in the case

where 0 is a Dynkin diagram of affine type. This shows that, for these Dynkin
diagrams, X ′(0) is actually equal to X , whence the following theorem.

Theorem 25. Suppose that 0 is a Dynkin diagram of finite or affine type. Let L

be any Lie algebra, over a field of characteristic unequal to 2, which is generated
by nonzero extremal elements Gx for x ∈ 5 in which the commutation relations
Gx G y = 0 hold for x 6∼ y. Define f ∈ (F∗)5 by the condition that Gx Gx u =
fx(u)Gx holds in L. Then f ∈ X and L is a quotient of L( f ).

This theorem could well prove useful for recognizing the Chevalley algebras
g: if f corresponds to a point in the open dense subset of K6

× K referred to in
Theorem 22, then one concludes that L is a quotient of g. Hence if g is a simple Lie
algebra, then L is isomorphic to g. It is not clear to us whether, for general 0, the
image of X ′(0) in (V ∗)5 is closed; this is why we chose to work with X instead.

5.2. Other graphs. Our methods work very well for Dynkin diagrams, but for
more general graphs new ideas are needed to determine L(0), X, and L( f ) for
f ∈ X . The relation with the Kac–Moody algebra of 0 may be much tighter than
we proved in Section 3.1. General questions of interest are: Is X always an affine
space? Is there always a generic Lie algebra? We expect the answers to both
questions to be negative, but do not have any counterexamples.

The references [in ’t panhuis et al. 2007; Postma 2007; Roozemond 2005] con-
tain other series of graphs which exhibit the same properties as we have proved
here: the variety X is an affine space, and generic points in it correspond to simple
Lie algebras of types An,Cn, Bn, Dn . In fact, the graph that they find for Cn is
just the finite-type Dynkin diagram of type A2n . This also follows easily from our
results: take 2n generic extremal elements (Gx)x in sl2n+1 as in Lemma 20. These
generate a subalgebra of sl2n+1 of dimension

(2n+1
2

)
by that same lemma, and if

we consider them as matrices, their images span a subspace W of dimension 2n
in K 2n+1. It is not hard to write down an explicit, nondegenerate skew symmet-
ric form on W with respect to which the Gx are skew — hence the Lie algebra
generated by them is sp2n .
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Integral traces of singular values
of weak Maass forms

William Duke and Paul Jenkins

We define traces associated to a weakly holomorphic modular form f of ar-
bitrary negative even integral weight and show that these traces appear as co-
efficients of certain weakly holomorphic forms of half-integral weight. If the
coefficients of f are integral, then these traces are integral as well. We obtain a
negative weight analogue of the classical Shintani lift and give an application to
a generalization of the Shimura lift.

1. Introduction

Recently there has been a resurgence of interest in the classical theory of singular
moduli, these being the values of the modular j-function at quadratic irrationalities.
This resurgence is due largely to the influential papers of Borcherds [1995; 1998]
and Zagier [2002]. The present paper arose from a suggestion, made at the end
of Zagier’s paper, to extend some of the results given there on traces of singular
moduli to higher weights. One such generalization has been given recently by
Bringmann and Ono [2007], who provide an identity for the traces associated to
certain Maass forms in terms of the Fourier coefficients of half-integral weight
Poincaré series. However, it does not seem to be known when these traces are
integral or even rational. Here we will identify the traces associated to a weakly
holomorphic form f of negative-integral weight with the coefficients of certain
weakly holomorphic forms of half-integral weight and show that these coefficients
are integral when the coefficients of f are integral. We will use this identification to
obtain a negative weight analogue of the classical Shintani lift. We also give an ap-
plication to Borcherds’s generalization of the Shimura lift to weakly holomorphic
modular forms.

MSC2000: primary 11F30; secondary 11F37.
Keywords: weak Maass forms, weakly holomorphic modular forms, traces of singular moduli.
Duke is supported by NSF grant DMS-0355564, and Jenkins is supported by NSF grant DMS-
0603271.
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Recall that a weakly holomorphic modular form of weight k, where k ∈ 2Z, is
a holomorphic function f on the upper half-plane H that satisfies

( f |kγ )(τ )= (cτ +d)−k f
(aτ+b

cτ+d

)
= f (τ ) for all γ =

( a b
c d

)
∈ 0 = PSL(2,Z)

and that has a q-expansion f (τ ) =
∑

n a(n)qn with a(n) = 0 for all but finitely
many n< 0; here, as usual, q = e(τ )= e2π iτ . Let M !k denote the vector space of all
weakly holomorphic modular forms of weight k. Similarly, for k= s+1/2 with s ∈
Z, let M !k denote the space of holomorphic functions on H that transform like θ2k

under 00(4), have at most poles in the cusps, and have a q-expansion supported
on integers n with (−1)sn ≡ 0, 1 (mod 4). Here, as usual, θ(τ )=

∑
n∈Z qn2

. For
any k, let Mk ⊂ M !k denote the subspace of holomorphic forms and Sk ⊂ Mk the
subspace of cusp forms.

In this paper d is always an integer with d ≡ 0, 1 (mod 4), and D is always a
fundamental discriminant (possibly 1). Suppose d D < 0 and F is a 0-invariant
function on H. Define the twisted trace

Trd,D(F)=
∑

Q
w−1

Q χ(Q)F(τQ),

where the sum is over a complete set of 0-inequivalent positive definite integral
quadratic forms Q(x, y)= ax2

+bxy+cy2 with discriminant d D= b2
−4ac, and

τQ =
−b+
√

d D
2a

∈H (1)

is the associated CM point. Here wQ is equal to 1 unless Q ∼ a(x2
+ y2) or

Q ∼ a(x2
+ xy+ y2), in which case wQ is equal to 2 or 3, respectively. Also

χ(Q)= χ(a, b, c)=


χD(r) if (a, b, c, D)= 1 and

Q represents r , where (r, D)= 1;
0 if (a, b, c, D) > 1,

(2)

where χD is the Kronecker symbol. It is known that χ is well defined on classes,
that χ restricts to a real character (a genus character) on the group of primitive
classes, and that all such characters arise this way.

For the usual j-function j = E3
4/1 ∈ M !0 with Fourier expansion

j (τ )= q−1
+ 744+ 196884q + 21493760q2

+ · · · ,

it is classical that the value j (τQ) is an algebraic integer in an abelian extension
of Q(

√
d D). Let j1 = j − 744. Zagier [2002] showed that for a fundamental
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discriminant D 6= 1 we have

q−|D|+
∑
d>0

d−1/2 Trd,D( j1)q |d| ∈ M !1/2 if D < 0,

q−|D|− D−1/2
∑
d<0

Trd,D( j1)q |d| ∈ M !3/2 if D > 0,

and that both forms have integral Fourier coefficients. For instance, when D=−3
and D = 5 we have the two weakly holomorphic forms

q−3
− 248q + 26752q4

− 85995q5
+ · · · ∈ M !1/2 and

q−5
+ 85995q3

− 565760q4
+ 52756480q7

+ · · · ∈ M !3/2,

and Tr5,−3( j1)= Tr−3,5( j1)= j
( 1+
√
−15

2

)
− j

( 1+
√
−15

4

)
=−85995

√
5.

In this paper we will give such a result when j1 is replaced by a function f of
negative weight. To state it, first define the Maass raising operator ∂k in τ = x+iy:

∂k =D−
k

4πy
, where D = 1

2π i
d

dτ
= q d

dq
. (3)

Now ∂k( f |kγ )= (∂k f )|k+2γ for any γ ∈PSL(2,R). Thus, if f ∈M !2−2s for s ∈Z+,
the function ∂s−1 f is 0-invariant, where

∂s−1
≡ (−1)s−1∂−2 ◦ ∂−4 ◦ · · · ◦ ∂4−2s ◦ ∂2−2s . (4)

After Maass we know that ∂s−1 f is an eigenfunction of the Laplacian

1=−y−2
(
∂2

∂x2 +
∂2

∂y2

)
with eigenvalue s(1− s), so ∂s−1 f is a weak Maass form (see for example [Bru-
inier et al. 2008, page 162] for a precise definition). Using a method that readily
generalizes, Zagier [2002] showed in special cases that ∂s−1 f is a rational function
of j and h = E∗2 E4 E6/1, where

E∗2(τ )= 1− 24
∑
n≥1

σ(n)qn
−

3
πy

is the nonholomorphic weight 2 Eisenstein series and σ(n)=
∑

m |n m. For a CM
point like τQ given in (1), it was shown by Ramanujan [1914, Equation (23), page
33] that h(τQ) is algebraic. More precisely, h(τQ) ∈Q( j (τQ)); see [Masser 1975,
Theorem A1, page 114]. Using this, we can deduce the remarkable fact that for
any f ∈ M !2−2s with s ≥ 1 and with rational Fourier coefficients, the “singular”
value of the weak Maass form ∂s−1 f (τQ) is algebraic. We are thus motivated to
study Trd,D(∂

s−1 f ) for such f .
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For D a fundamental discriminant, let ŝ = s if (−1)s D > 0 and ŝ = 1 − s
otherwise. It is also convenient to set

Tr∗d,D( f )= (−1)b(ŝ−1)/2c
|d|−ŝ/2

|D|(ŝ−1)/2 Trd,D(∂
s−1 f ).

Suppose f ∈ M !2−2s for s ≥ 2 has Fourier coefficients a(n). For D fundamental,
define the D-th Zagier lift of f to be

ZD f (τ )=
∑
m>0

a(−m)ms−ŝ
∑
n |m

χD(n)n ŝ−1q−m2
|D|/n2

+
1
2 L(1− s, χD)a(0)+

∑
d:d D<0

Tr∗d,D( f )q |d|.

The linear map f 7→ ZD( f ) is a negative weight analogue of the Shintani lift on
integral weight cusp forms. This follows from our main result, whose proof will
be completed in Section 5.

Theorem 1. Suppose f ∈ M !2−2s for an integer s ≥ 2. If D is a fundamental
discriminant with (−1)s D > 0, we have that ZD f ∈ M !3/2−s , while if (−1)s D < 0,
then ZD f ∈ M !s+1/2. If f has integral Fourier coefficients, then so does ZD f .

Here we will not treat the case s = 1, which requires special considerations
and which can be dealt with by the methods of [Zagier 2002]. Furthermore, when
s = 2, 3, 4, 5, 7, Theorem 1 can also be deduced from results of [Zagier 2002].
The first new example occurs when s = 6 and D = 1, where we have the pair

f (τ )= E14(τ )/1(τ)
2
= q−2

+ 24q−1
− 196560− 47709536 q + · · · ∈ M !

−10,

Z1 f (τ )= q−4
+56 q−1

+390+15360 q3
+42264 q4

+615240 q7
+· · · ∈ M !

−9/2.

Here −1
2ζ(−5) · 196560= 390 and the first few values of Tr∗d,1( f ) are

3−4∂5 f
( 1+
√
−3

2

)
= 15360, 2−7∂5 f (i)= 42264, 7−3∂5 f

( 1+
√
−7

2

)
= 615240.

Similarly, when D =−3 we have

Z−3 f (τ )= 211q−12
− 8q−3

− 15360q − 53319598080q4
+ · · · ∈ M !13/2.

The main new difficulty in proving Theorem 1 comes from the existence of
cusp forms in M !2s . The method of Poincaré series adapts nicely to handle it. A
key dividend of the method is the last statement of Theorem 1, showing that the
integrality of coefficients is preserved under the lift.

Remarks. First, it follows from Theorem 1 that if (−1)s D > 0, then the image
ZD( f )∈ M !3/2−s is determined by its principal part and hence by the principal part
of f . Furthermore, a(0) is divisible by the denominator of each of the L-values
1
2 L(1−s, χD), provided that the Fourier coefficients of f are integral. Using well-
known properties of the generalized Bernoulli numbers, one can reproduce the
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divisibility properties that follow from work of Siegel [1969, pages 254–256]. On
the other hand, if (−1)s D < 0 then 1

2 L(1− s, χD)= 0.
Next, it can be shown that the Zagier lift is compatible with the Hecke operators.

For details, see the end of Section 5.
Finally, using a theta lift, Bruinier and Funke [2006] have generalized Zagier’s

result in various other ways, for instance to higher levels, where the existence of
cusp forms in the dual weight is also a complication; see also [Funke 2007].

As another application of these methods, we will give a simple proof of a basic
property of the Shimura lift for weakly holomorphic modular forms. For

g(τ )=
∑

n b(n)qn
∈ M !s+1/2

with s ∈ Z+ and D fundamental with (−1)s D > 0, define the D-th Shimura lift
of g by

SD g(τ )= 1
2 L(1− s, χD)b(0)+

∑
m>0

(∑
n |m

χD(n)ns−1b(m2
|D|/n2)

)
qm . (5)

When g is holomorphic, this is the usual definition. We will repeatedly use the
basic fact that SD g ∈ M2s if g ∈ Ms+1/2; see [Kohnen and Zagier 1981]. Recall
that a CM point is a point in H of the form (−b +

√
b2− 4ac)/2a for integral

a, b, c. The proof of the following result will be completed in Section 6. In the
case D = 1, it is due to Borcherds [1998] and follows from a special case of
[Theorem 14.3] there; see [Example 14.4].

Theorem 2. For g ∈ M !s+1/2 with s ≥ 2 and D a fundamental discriminant with
(−1)s D>0, the lift SD g is a meromorphic modular form of weight 2s for 0 whose
possible poles are of order at most s and occur at CM points.

2. Weakly holomorphic forms

In this section we will define a canonical basis for the space M !k for any k= s+1/2
with s ∈ Z in which all basis elements have integral Fourier coefficients. Then we
will construct forms in M !k when s ≥ 2 using Poincaré series.

We begin by recalling the canonical basis for M !2s defined in [Duke and Jenkins
2008] for any s ∈ Z. Write 2s = 12`+ k ′ with uniquely determined ` ∈ Z and
k ′ ∈ {0, 4, 6, 8, 10, 14}, so that if ` ≥ 0, then ` is the dimension of the space S2s

of cusp forms of weight 2s. For every integer m ≥ −`, there exists a unique
f2s,m ∈ M !2s with a q-expansion of the form f2s,m(τ )= q−m

+
∑

n>` a2s(m, n)qn ,
and together they form a basis for M !2s . The basis element f2s,m can be given
explicitly in the form f2s,m = f2s P( j), where f2s = f2s,−` = 1

`Ek′ and P is a
polynomial of degree m + `. As shown in [Duke and Jenkins 2008], the basis
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elements have the generating function∑
m≥−`

f2s,m(z)q
m
=

f2s(z) f2−2s(τ )

j (τ )− j (z)
= −

∑
m≥`+1

f2−2s,m(τ )r
m, (6)

where r = e(z). It follows from this that the coefficients a2s(m, n) are integral and
satisfy the duality relation

a2s(m, n)=−a2−2s(n,m). (7)

In order to formulate a similar result for M !k when k = s+ 1/2 with s ∈ Z, let `
be defined by 2s = 12`+ k ′ as above. By the Shimura correspondence given in
[Kohnen 1980], one finds that the maximal order of a nonzero f ∈ M !k at i∞ is

A =
{

2`− (−1)s if ` is odd,
2` otherwise.

If B < A is the next admissible exponent we can construct functions in M !k of the
form

fk(τ )= q A
+ O(q B+4) and f ∗k (τ )= q B

+ O(q B+4).

If we write s = 12a+b, where b ∈ {6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19}, then
fk and f ∗k can be given explicitly in the form

fk(τ )=1(4τ)
a fb+1/2(τ ) and f ∗k (τ )=1(4τ)

a f ∗b+1/2(τ ),

where the forms fb+1/2, f ∗b+1/2 ∈ Mb+1/2 are given in the appendix and have inte-
gral Fourier coefficients. Using them, it is easy to construct a unique basis for M !k
consisting of functions of the form

fk,m(τ )= q−m
+
∑

n>A ak(m, n)qn, (8)

where m ≥−A has (−1)s−1m ≡ 0, 1 (mod 4). Here fk,−A = fk and fk,−B = f ∗k .
This can be done recursively: fk,m(τ ) is obtained by multiplying fk,m−4(τ ) by
j (4τ) and then subtracting a suitable linear combination of the forms fk,m′(τ ) with
m′ <m. We also have the following generating function, whose proof is similar to
Zagier’s proof [2002] of the k = 1/2 case:∑

m

fk,m(z)q
m
=

fk(z) f ∗2−k(τ )+ f ∗k (z) f2−k(τ )

j (4τ)− j (4z)
=−

∑
m

f2−k,m(τ )r
m .

This and the fact that fk and f ∗k have integral Fourier coefficients gives the follow-
ing result.

Proposition 1. The Fourier coefficients ak(m, n) defined in (8) are integral and
satisfy the duality relation

ak(m, n)=−a2−k(n,m) for all m, n ∈ Z. (9)
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Another way to construct weakly holomorphic forms is by Poincaré series. Here
we will only need them for k = s + 1/2, where s ≥ 2. Set j (γ, τ ) = θ(γτ)/θ(τ )
for γ ∈ 00(4). For m ∈ Z, define the Poincaré series

Pk,m(τ )=
∑

γ∈0∞\00(4)

e(mγτ) j (γ, τ )−2k,

where 0∞ is the subgroup of translations in 00(4). For k ≥ 5/2, this series is
absolutely convergent and represents a weakly holomorphic form of weight k for
00(4), but it is not in M !k since its Fourier coefficients are not supported on n with
(−1)sn ≡ 0, 1 (mod 4). When m = 0, the Poincaré series is an Eisenstein series
that Cohen [1975] projected to a form in Mk and whose Fourier coefficients are
expressed in terms of the values of Dirichlet L-functions at 1− s. When m > 0,
Kohnen [1985] showed how to obtain in this way cusp forms in Sk . Bruinier et al.
[2006] observed that a similar procedure works for m < 0. Petersson [1950] had
explicitly computed the Fourier expansions of Pk,m in terms of Bessel functions and
Kloosterman sums, and the projections gk,m of Pk,m to M !k have Fourier expansions
that are simple modifications of these. To give them, for m, n ∈ Z and c ∈ Z+ with
c ≡ 0 (mod 4), let

Kk(m, n; c)=
∑

a (mod c)

(c
a

)
ε2k

a e
(ma+na

c

)
(10)

be the Kloosterman sum, where
(c

a

)
is the extended Legendre symbol and

εa =

{
1 if a ≡ 1 (mod 4),
i if a ≡ 3 (mod 4).

Also, let δodd(n)= 1 if n is odd and δodd(n)= 0 otherwise.

Proposition 2. Suppose k = s+1/2, where s ≥ 2. Then, for any nonzero integer m
with (−1)sm≡ 0, 1 (mod 4), there exists a form gk,m ∈M !k with Fourier expansion

gk,m(τ )= qm
+

∑
n ≥ 1

(−1)sn ≡ 0,1 (mod 4)

bk(m, n)qn

where for (−1)s ≡ 0, 1 (mod 4) the coefficient bk(m, n) is given explicitly by the
absolutely convergent sum

bk(m, n)= 2π i−k
∣∣∣ n
m

∣∣∣k−1/2 ∑
c>0

c ≡ 0 (mod 4)

(1+ δodd(c/4))c−1Kk(m, n; c)

×

{
Ik−1(4π

√
|mn|/c) if m < 0,

Jk−1(4π
√
|mn|/c) if m > 0.
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When m = 0, a similar formula holds, and it can be further evaluated to give
Cohen’s formulas. A modified version holds when s = 1; see [Bruinier et al.
2006].

Of course, gk,−m can be expressed in terms of the basis elements fk,m . If there
are no nonzero cusp forms in M2s , then gk,−m= fk,m for all m. In general, however,

gk,−m − fk,m ∈ Sk (11)

is a nonzero cusp form. It seems likely that the Fourier coefficients bk(m, n) of
gk,m are irrational, even transcendental, in general.

3. Weak Maass forms

Next we will show that for f ∈ M !2−2s with s ∈ Z+, the function ∂s−1 f is a weak
Maass form, and we will compute its Fourier expansion. Recall that ∂s−1 was
defined in (4). Then we express ∂s−1 f2−2s,m in terms of certain Poincaré series.
We need the following result which, in essence, is due to Maass; see also [Lewis
and Zagier 2001, page 250].

Proposition 3. Suppose f (τ ) =
∑

n a(n)qn
∈ M !2−2s for integral s ≥ 1. Then

∂s−1 f is a weak Maass form for 0 with eigenvalue s(1− s). Explicitly, we have

∂s−1 f (τ )= 2πy1/2
∑

n>0
a(−n)ns−1/2 Is−1/2(2πny)e(−nx)

+ (−1)s−1
(
π1/2−s0(s− 1/2)y1−sa(0)

+ 2y1/2
∑

n 6=0
a(n)|n|s−1/2Ks−1/2(2π |n|y)e(nx)

)
,

where I and K are the usual Bessel functions.

Proof. By induction it is readily shown that for n > 0

∂s−1e(−nτ)= ns−1
s−1∑
m=0

(s−1+m)!
m!(s−1−m)!

(−4πny)me(−nτ).

Standard formulas for Bessel functions with half-integral parameter [Gradshteyn
and Ryzhik 1994] yield

∂s−1e(−nτ)= 2 ns−1/2 y1/2(π Is−1/2(2πny)+ (−1)s−1Ks−1/2(2πny)
)
e(nx),

∂s−1e(nτ)= 2(−1)s−1 ns−1/2 y1/2Ks−1/2(2πny)e(nx),

∂s−1(1)= (−1)s−1π1/2−s0(s− 1/2)y1−s .

These formulas easily give the stated formula, thus finishing the proof. �
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We next express the weak Maass form ∂s−1 f2−2s,m associated to the basis ele-
ment f2−2s,m in terms of certain Poincaré series, when s ≥ 2 and 2s = 12`+ k ′ as
before. For m ∈ Z with m 6= 0, consider the Poincaré series (see [Niebur 1973])

Fm(τ, s)= 2π |m|s−1/2
∑

γ∈0∞\0

e(m Re γτ)(Im γτ)1/2 Is−1/2(2π |m| Im γτ), (12)

which converges absolutely for Re s > 1. Here 0∞ is the subgroup of translations
in 0. Clearly Fm(γτ, s)= Fm(τ, s) for γ ∈ 0 and 1Fm(τ, s)= s(1− s)Fm(τ, s).

Proposition 4. For integral s ≥ 2, we have for m ≥ `+ 1

∂s−1 f2−2s,m(τ )= F−m(τ, s)+
∑

0<n<`+1

a2−2s(m,−n)F−n(τ, s). (13)

Proof. We need the Fourier expansion of Fm . This can be found, for instance, in
[Fay 1977]. Let ξ(s)= π−s/20(s/2)ζ(s). Then we have

Fm(τ, s)= 2π |m|s−1/2 y1/2 Is−1/2(2π |m|y)e(mx)+ 4πσ2s−1(|m|)
(2s−1)ξ(2s)

y1−s

+ 4π |m|s−1/2
∑
n 6=0

c(m, n; s)y1/2Ks−1/2(2π |n|y)e(nx), (14)

where

c(m, n; s)=
∑
c>0

c−1K0(m, n; c) ·
{

I2s−1(4π
√
|mn| c−1) if mn < 0,

J2s−1(4π
√
|mn| c−1) if mn > 0

and
K0(m, n; c)=

∑
a (mod c)∗

e
(ma+na

c

)
is the usual Kloosterman sum, the * restricting the sum to (a, c)= 1. Consider the
Maass form

φ(τ)= ∂s−1 f2−2s,m(τ )−
(
F−m(τ, s)+

∑
0<n<`+1

a2−2s(m,−n)F−n(τ, s)
)
.

By Proposition 3 and (14), we have

φ(τ)= c(0)y1−s
+
∑

n 6=0 c(n)y1/2Ks−1/2(2π |n|y)e(nx),

where each c(n) can be computed explicitly in terms of the cs(m, n) and the
a2−2s(m, n). Since φ ∈ L2(0\H)with eigenvalue s(1−s), it must be equal to 0. �

In the case s = 1, the Poincaré series Fm(τ, 1) is defined through analytic con-
tinuation (see for example [Niebur 1973]), and Proposition 4 continues to hold in
the modified form

f0,m(τ )= jm(τ )= F−m(τ, 1)− 24σ(m) for m ≥ 1.
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4. Preliminary formulas for the trace

For the proof of Theorem 1, we will need to compute the trace of ∂s−1 f2−2s,m in
terms of the coefficients of the basis elements fs+1/2,m . In view of Proposition 4,
we are reduced to computing Trd,D(Fm( · , s)), where Fm(τ, s) is the Poincaré
series defined in (12). When D = s = 1, it was shown in [Duke 2006] that this
trace may be expressed in a simple way in terms of a certain exponential sum. In
general we need the exponential sum introduced in [Kohnen 1985]:

Sm(d, D; c)=
∑

b (mod c)
b2
≡Dd (mod c)

χ
(c

4
, b, b2

−Dd
c

)
e
(2mb

c

)
,

where χ is defined in (2) and c≡0 (mod 4). Clearly S−m(d, D; c)= Sm(d, D; c)=
Sm(d, D; c). We have the following identity.

Proposition 5. Let s ≥ 2 and m 6= 0. Suppose D is fundamental and that d D < 0.
Then

Trd,D(Fm( · , s))=
√

2π |m|s−1/2
|d|1/4|D|1/4

×

∑
c≡0 (mod 4)

c−1/2Sm(d, D; c)Is−1/2

(4π
√

m2|d D|
c

)
.

Proof. We have the absolutely convergent expression that

Trd,D(Fm( · , s))= 2π |m|s−1/2
∑

Q

χ(Q)
ωQ

∑
γ∈0∞\0

e(m Re γτQ)(Im γτQ)
1/2

× Is−1/2(2π |m| Im γτQ)

=
√

2π |m|s−
1
2 |d|1/4|D|1/4

∞∑
a=1

a−1/2 Is−1/2

(
π
√

m2|d D|
a

)
×

[∑
Q

χ(Q)
ωQ

∑
γ

e(m Re(γτQ))
]
,

where the sum over γ is over all γ ∈ 0∞\0 with Im γτQ =
√
|Dd|/(2a). Con-

sider the sum in brackets in the expression above. For fixed a > 0, the values of
2a Re(γτQ) run over the (mod 2a)-incongruent solutions to the quadratic congru-
ence b2

≡ d D (mod 4a) with multiplicity wQ as γ and Q run over their respective
representatives. Thus the term in brackets is equal to 1

2 Sm(d, D; 4a). Replacing
4a with c finishes the proof. �

We need to express the traces in terms of the Fourier coefficients of modular
forms. This is done by applying an identity, originally due to Salié in a special
case, to transform the sum of exponential sums in Proposition 5 into a sum of
Kloosterman sums. This sum may then be interpreted in terms of the Fourier
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coefficients of half-integral weight Poincaré series. This technique goes back to
Zagier [1975], who applied it in the context of base-change. Kohnen [1985] applied
it to the Shimura lift of cusp forms. More recently, this method has proved to
be fruitful in the context of weakly holomorphic forms. Duke [2006] applied it
to give a new proof of Zagier’s original identity for traces of singular moduli.
The technique has since been extended in various ways in [Jenkins 2006] and
[Bringmann and Ono 2007]; in particular, the latter gave the following formula for
the trace of Fm(τ, s) in terms of the coefficients bk(m, n) of half-integral weight
Poincaré series when m =−1 and (−1)s D < 0.

Proposition 6. Suppose m 6= 0, s ≥ 2 and d D < 0 with D fundamental. Then

Trd,D(Fm( · , s))= ε|d|s/2|D|(1−s/2)
∑
n |m

χD(n)ns−1bs+1/2

(
−|d|, m2

|D|
n2

)
if (−1)s D > 0;

Trd,D(Fm( · , s))= ε|d|(1−s)/2
|D|s/2|m|2s−1

∑
n |m

χD(n)n−sbs+1/2

(
−m2
|D|

n2 , |d|
)
,

if (−1)s D < 0.

Here the sums n |m are over the positive divisors of m, ε = (−1)b(s+1)/2c, and
bs+1/2 was defined in Proposition 2.

Proof. Recall the Kloosterman sum associated to modular forms of half-integral
weight defined in (10). It is clear that replacing k with k+ 2 does not change this
sum; each Ks+1/2(m, n, c) is equal to K1/2(m, n; c) or K3/2(m, n; c), depending
on whether s is even or odd, respectively. In fact, we have the relations

K1/2(m, n; c)= i · K3/2(−m,−n; c)= K1/2(n,m; c). (15)

We have the following identity for the Kloosterman sums, which can be proved by
a slight modification of the proof of Kohnen [1985, Proposition 5, page 258]; see
also [Duke 2006; Jenkins 2006; Tóth 2005].

Lemma 1. For integers m 6= 0 and c > 0 with 4|c, an integer d with d ≡ 0, 1
(mod 4) and D a fundamental discriminant, we have the identity

Sm(d, D; c)= (1− i)
∑

n |(m,c/4)

(1+δodd(c/(4n)))χD(n)
√

n
c

K1/2(d,m2 D/n2
; c/n).

By Proposition 5 and Lemma 1, we quickly derive that

Trd,D(Fm( · , s))=
√

2π(1− i)|m|s−1/2
|d|1/4|D|1/4

∑
n |m

χD(n)n−1/2

×

∑
c≡0 (mod 4)

c−1(1+ δodd(c/4))K1/2(d,m2 D/n2
; c)Is−1/2

(4π
c

√
m2|Dd|/n2

)
.
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Comparison with Proposition 2 and the use of (15) finishes the proof. �

5. The Zagier lift

In this section we give the proof of Theorem 1. The following proposition gives an
explicit formula for the Zagier lift of f ∈M !2−2s when (−1)s D> 0. In its proof we
make repeated use of the classical Shimura lift, integral and half-integral weight
duality from (7) and (9), and the fact that the constant term of a form in M !2 must
vanish. Write 2s = 12`+ k ′ with k ′ ∈ {0, 4, 6, 8, 10, 14} as above.

Proposition 7. Suppose s ≥ 2 is an integer and f (τ ) =
∑

n a(n)qn
∈ M !2−2s .

Suppose D is a fundamental discriminant with (−1)s D > 0. Then the D-th Zagier
lift of f is given by

ZD f =
∑
m>0

a(−m)
∑
n |m

χD(n)ns−1 f3/2−s,m2|D|/n2 . (16)

Proof. Recall that when (−1)s D > 0, the Zagier lift was defined by

ZD f (τ )=
∑
m>0

a(−m)
∑
n |m

χD(n)ns−1q−m2
|D|/n2

+
1
2 L(1− s, χD)a(0)+

∑
d:d D<0

Tr∗d,D( f )q |d|,

where
Tr∗d,D( f )= (−1)b(s−1)/2c

|d|−s/2
|D|(s−1)/2 Trd,D(∂

s−1 f ).

We prove Proposition 7 by comparing the Fourier coefficients of ZD f with those
of the function on the right side of (16), which we will denote simply by F . We
do this separately for the positive coefficients, the principal parts, and the constant
terms.

Consider first the positive coefficients. By Propositions 4 and 6, we have for
m > ` that

−Tr∗d,D( f2−2s,m)=
∑
n |m

χD(n)ns−1bs+1/2(−|d|;m
2
|D|/n2)

+

∑̀
j=1

a2−2s(m,− j)
∑
h | j

χD(h)hs−1bs+1/2(−|d|; j2
|D|/h2). (17)

From (11), we have the cusp form

C(τ )= gs+1/2,−|d|(τ )− fs+1/2,|d|(τ )=
∑
n≥1

c(n)qn.

Thus

bs+1/2(−|d|, j2
|D|/h2)= as+1/2(|d|, j2

|D|/h2)+ c( j2
|D|/h2).
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However, SD C , the D-th Shimura lift of C , is a cusp form of weight 2s with j-th
coefficient

∑
h | j χD(h)hs−1c( j2

|D|/h2). The contribution to −Tr∗d,D( f2−2s,m) in
(17) from coefficients of C , which is

∑
n |m

χD(n)ns−1c(m2
|D|/n2)+

∑̀
j=1

a2−2s(m,− j)
∑
h | j

χD(h)hs−1c( j2
|D|/h2),

can be interpreted as the constant term of (SD C) f2−2s,m ∈ M !2, which must be
zero. Thus we have

−Tr∗d,D( f2−2s,m)=
∑
n |m

χD(n)ns−1as+1/2(|d|,m2
|D|/n2)

+

∑̀
j=1

a2−2s(m,− j)
∑
h | j

χD(h)hs−1as+1/2(|d|, j2
|D|/h2). (18)

By duality, Tr∗d,D( f2−2s,m) is the coefficient of q |d| in the Fourier expansion of

∑
n |m

χD(n)ns−1 f3/2−s,m2|D|/n2 −

∑̀
j=1

a2s(− j,m)
∑
h | j

χD(h)hs−1 f3/2−s, j2|D|/h2 .

For an arbitrary form f =
∑

a(m)qm
∈M !2−2s , we have f =

∑
m>` a(−m) f2−2s,m ,

and so

Tr∗d,D( f )=
∑
m>`

a(−m)Tr∗d,D( f2−2s,m)

is the coefficient of q |d| in∑
m>`

a(−m)
(∑

n |m

χD(n)ns−1 f3/2−s,m2|D|/n2

−

∑̀
j=1

a2s(− j,m)
∑
h | j

χD(h)hs−1 f3/2−s, j2|D|/h2

)
.

For 1≤ j ≤ ` we have, once again using that the constant of a form in M !2 vanishes,
that a(− j)=−

∑
m>` a(−m)a2s(− j,m). Thus the form in the previous equation

simplifies to F .
Next consider the principal parts. The properties of the basis elements given in

Section 2 show that f3/2−s,m2|D|/n2 = 0 if m2
|D|/n2 < C for some C that depends

only on the weight 3/2− s. We use this and the Fourier expansion

f3/2−s,m2|D|/n2(τ )= q−m2
|D|/n2

+

∑
h

a3/2−s(m2
|D|/n2, h)qh
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to write the negative powers of q appearing in the Fourier expansion of F as∑
m>0

a(−m)
∑
n |m

χD(n)ns−1q−m2
|D|/n2

−

∑
m>0

a(−m)
∑
n |m

m2
|D|/n2<C

χD(h)ns−1q−m2
|D|/n2

+

∑
m,h>0

a(−m)
∑
n |m

χD(n)ns−1a3/2−s(m
2
|D|/n2,−h)q−h .

The first sum is the principal part of ZD f , so we must prove that the remaining
part, call it S, vanishes. By duality,

S =−
∑
m>0

a(−m)
( ∑

n |m
m2
|D|/n2<C

χD(n)ns−1q−m2
|D|/n2

+

∑
h>0

∑
n |m

χD(n)ns−1as+1/2(−h,m2
|D|/n2)q−h

)
.

Now for any h > 0, the coefficient of qm in the Shimura lift SD fs+1/2,−h of the
cusp form fs+1/2,−h is given by∑

n |m

χD(n)ns−1
·

(
as+1/2(−h,m2

|D|/n2)+

{
1 if m2

|D|/n2
= h,

0 otherwise.

)
.

(The last term here arises from the initial qh in the Fourier expansion of fs+1/2,−h ,
since as+1/2(−h, h) is zero by definition.) From this, it is clear that the coef-
ficient of q−h in S for each h > 0 can be interpreted as the constant term of
(SD fs+1/2,−h) f ∈ M !2, so S = 0.

Finally we evaluate the constant term of F , again using duality, as∑
m>0

a(−m)
∑
n |m

χD(n)ns−1a3/2−s(m
2
|D|/n2, 0)

=−

∑
m>0

a(−m)
∑
n |m

χD(n)ns−1as+1/2(0,m2
|D|/n2).

Since s ≥ 2, we have by [Kohnen and Zagier 1981]

SD fs+1/2,0(τ )=
1
2 L(1− s, χD)+

∑
m>0

(∑
n |m

χD(n)hs−1as+1/2(0, n2
|D|/h2)

)
qm,

and the constant term of (SD fs+1/2,0) f ∈ M !2 is

1
2 L(1− s, χD)a(0)+

∑
m>0

a(−m)
(∑

n |m

χD(n)ns−1as+1/2(0,m2
|D|/n2)

)
= 0. �
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We also need the corresponding statement if (−1)s D < 0.

Proposition 8. Suppose s ≥ 2 is an integer and f ∈M !2−2s has Fourier coefficients
a(n). Suppose D is a fundamental discriminant with (−1)s D < 0. Then the D-th
Zagier lift of f is given by

ZD f =
∑
m>0

a(−m)m2s−1
∑
n |m

χD(n)n−s fs+1/2,m2|D|/n2 + g, (19)

where g ∈ Ss+1/2 is the unique cusp form whose Fourier coefficients b(n) match
those of ZD f for the first ` positive values of n with (−1)sn ≡ 0, 1 (mod 4).

Proof. Using Propositions 4 and 6 as before, we find that

Tr∗d,D( f2−2s,m)=
∑̀
j=1

a2−2s(m,− j) j2s−1
∑
h | j

χD(h)h−sbs+1/2(− j2
|D|/h2

; |d|)

+m2s−1
∑
n |m

χD(n)n−sbs+1/2(−m2
|D|/n2

; |d|).

Thus an arbitrary form f =
∑

a(m)qm
=
∑

m>` a(−m) f2−2s,m has trace Tr∗d,D( f )
given by∑
m>`

a(−m)
(

m2s−1
∑
n |m

χD(n)n−sbs+1/2(−m2
|D|/n2

; |d|)

+

∑̀
j=1

a2−2s(m,− j) j2s−1
∑
h | j

χD(h)h−sbs+1/2(− j2
|D|/h2

; |d|)
)

=

∑
m>0

a(−m)m2s−1
∑
n |m

χD(n)n−sbs+1/2(−m2
|D|/n2

; |d|), (20)

where we have simplified as before. This is just the coefficient of q |d| in the mod-
ular form F ∈ M !s+1/2 given by

F =
∑
m>0

a(−m)m2s−1
∑
n |m

χD(n)n−s gs+1/2,−m2|D|/n2 .

Now since gs+1/2,−m2|D|/n2 − fs+1/2,m2|D|/n2 ∈ Ss+1/2 from (11), we find that

F =
∑
m>0

a(−m)m2s−1
∑
n |m

χD(n)n−s fs+1/2,m2|D|/n2 + g

for a certain cusp form g, and, arguing as in Proposition 7, the principal part of F
matches the principal part of ZD f . Since the constant term and positive coefficients
of F match those of ZD f , Proposition 8 now follows. �
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The first statement of Theorem 1 follows from Propositions 7 and 8. The state-
ment on integrality follows from Proposition 1 in the case (−1)s D> 0. Otherwise
we can reduce to this case using the following identity, which holds if (−1)s D< 0
and D′ is fundamental with (−1)s D′ > 0:

Tr∗m2 D′,D( f )=−m2s−1
∑
a |m

µ(a)χD′(a)
∑

b |ma−1

χD(b)(ab)−s Tr∗(m/ab)2 D,D′( f ).

This identity is a consequence of the following lemma.

Lemma 2. For D and D′ fundamental discriminants with DD′ < 0 and m ∈ Z+,

Trm2 D′,D =
∑
a |m

µ(a)χD′(a)
∑

b |ma−1

χD(b)Tr (m/ab)2 D,D′ .

Lemma 2 is obtained by writing the trace as a sum of sums over primitive qua-
dratic forms, noting that χD = χD′ for such primitive forms, and applying Möbius
inversion.

We now briefly indicate how one shows that the Zagier lift is compatible with
the Hecke operators. If k ∈ 2Z> 0 and p is a prime, the weight k Hecke operator
|k T (p) acts on a modular form f (τ )=

∑
n a(n)qn

∈ M !k by

f |k T (p)=
∑

n

(a(pn)+ pk−1a(n/p))qn.

If k ∈ 2Z≤ 0, we multiply this by p1−k so that |k T (p) preserves the integrality of
Fourier coefficients.

When 0< s ∈ Z, the half-integral weight Hecke operator |s+1/2T (p2) acts on a
form g(τ )=

∑
n b(n)qn

∈ M !s+1/2 by

g|s+1/2T (p2)=
∑

n

(
b(p2n)+ ((−1)sn/p)ps−1b(n)+ p2s−1b(n/p2)

)
qn.

Again, for s ≤ 0, we normalize this by multiplying by p1−2s .
It is straightforward to see that (ZD f )|3/2−ŝ T (p2) = ZD( f |2−2s T (p)) for any

prime p. In the case that (−1)s D > 0, we need only use the explicit Fourier
expansion of the Zagier lift to compare principal parts. If (−1)s D< 0, though, we
must also show that

Tr∗(−1)sn,D( f |2−2s T (p))=Tr∗(−1)snp2,D( f )+((−1)sn/p)ps−1 Tr∗(−1)sn,D( f )

+ p2s−1 Tr∗(−1)sn/p2,D( f ) (21)

for the first ` positive values of n with (−1)sn ≡ 0, 1 (mod 4). To see that this
holds, we argue as in the proof of [Zagier 2002, Theorem 5(ii)] to show that
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Tr (−1)sn,D((∂
s−1 f )|0T (p)) equals

Tr (−1)snp2,D(∂
s−1 f )+ ((−1)sn/p)Tr (−1)sn,D(∂

s−1 f )+ p Tr (−1)sn/p2,D(∂
s−1 f ),

and we use the fact that if k < 0, then ∂k( f |k T (p))= p · (∂k f )|k+2T (p) to obtain
Equation (21).

6. The Shimura lift

In this final section we prove Theorem 2. For this we need two propositions:

Proposition 9. Suppose s ∈ Z+ and τ ∈H. As a function of z ∈H,

∂s−1
( f2s(z) f2−2s(τ )

j (τ )− j (z)

)
is a meromorphic modular form of weight 2s with poles of order at most s that only
occur at points equivalent to τ under 0.

Proof. Observe first that if f has weight k and g has weight 0 then Equation (3)
gives ∂k( f g) = g∂k( f ) + f D(g). Apply this repeatedly with g(τ ) = ( j (τ ) −
j (z))−n for 1≤ n < s. We derive that

∂s−1
( f2−2s(τ )

j (τ )− j (z)

)
=

s∑
n=1

gn(τ )
( j (z)− j (τ ))n

for gn ∈ M !0,

from which the result follows easily. �

Theorem 2 is a consequence of Proposition 9 together with the following explicit
formula for the D-th Shimura lift of fs+1/2,|d|. Write 2s = 12`+ k ′ as above.

Proposition 10. Suppose s ≥ 2, (−1)s D > 0 and d D < 0. Then

SD fs+1/2,|d|(z)= Tr∗d,D

( f2s(z) f2−2s(τ )

j (τ )− j (z)

)
+ f (z),

where f ∈ M2s is the unique holomorphic form whose Fourier coefficients a(n)
match those of SD fs+1/2,|d| for n = 0, . . . , `.

Proof. By (5) we have, writing r = e(z),

SD fs+1/2,|d|(z)= 1
2 L(1− s, χD)as+1/2(|d|, 0)

+

∑
m>0

(∑
n |m

χD(n)ns−1as+1/2(|d|,m2
|D|/n2)

)
rm .
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By this and (18) we have

−

∑
m>`

Tr∗d,D( f2−2s,m)r
m
= SD fs+1/2,|d|(z)−

1
2 L(1− s, χD)as+1/2(|d|, 0)

−

∑
0<m≤`

(∑
n |m

χD(n)ns−1as+1/2(|d|,m2
|D|/n2)

)
rm

+

[∑̀
j=1

∑
m>`

a2−2s(m,− j)rm
∑
h | j

χD(h)hs−1as+1/2(|d|, j2
|D|/h2)

]
.

Using integral weight duality (7), the bracketed term equals

−

∑̀
j=1

( f2s,− j (z)− r j )
∑
h | j

χD(h)hs−1as+1/2(|d|, j2
|D|/h2),

so the previous equation, after some cancellation, becomes

−

∑
m>`

Tr∗d,D( f2−2s,m)r
m
= SD fs+1/2,|d|(z)− f (z).

Then this and (6) imply the claimed identity, at least when Im z > maxQ Im τQ .
The full result now follows by analytic continuation. �
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Appendix

The table below gives explicit formulas for the first two basis elements fb+1/2
and f ∗b+1/2 of weight b+1/2 for various b as polynomials in the weight 1/2 theta
function θ =

∑
n∈Z qn2

and the weight 2 Eisenstein series on00(4) given by F(z)=∑
∞

n=0 σ(2n+ 1)q2n+1. Both θ and F have integral Fourier coefficients.
The space of holomorphic modular forms on00(4) of weight s+1/2 is generated

by the forms Fnθ2s+1−4n , where 0 ≤ n ≤ b(2s + 1/4)c; see [Cohen 1975]. Thus,
in order to construct these basis elements we examine the Fourier expansion of the
form f =

∑b(2s+1)/4c
n=0 A(n)Fnθ2s+1−4n and choose the coefficients A(n) so that

f is in the plus space M !s+1/2 and has the appropriate leading terms in its Fourier
expansion. The table shows that all of the A(n) are integral for the first two basis
elements of each half-integral weight, so it follows that all of the fb+1/2 and f ∗b+1/2
have integral Fourier coefficients.



Integral traces of singular values of weak Maass forms 591

b fb+1/2
f ∗b+1/2

6 Fθ9
− 18F2θ5

+ 32F3θ = q + O(q4)

θ13
− 26Fθ9

+ 156F2θ5
= 1+ O(q4)

8 Fθ13
− 26F2θ9

+ 152F3θ5
+ 128F4θ = q + O(q4)

θ17
− 34Fθ13

+ 340F2θ9
− 816F3θ5

= 1+ O(q4)

9 F3θ7
− 16F4θ3

= q3
+ O(q4)

θ19
− 38Fθ15

+ 456F2θ11
− 1672F3θ7

= 1+ O(q4)

10 Fθ17
− 34F2θ13

+ 336F3θ9
− 800F4θ5

+ 512F5θ = q + O(q4)

θ21
− 42Fθ17

+ 588F2θ13
− 2912F3θ9

+ 2496F4θ5
= 1+ O(q4)

11 F3θ11
− 12F4θ7

− 64F5θ3
= q3
+ O(q4)

θ23
− 46Fθ19

+ 736F2θ15
− 4600F3θ11

+ 8096F4θ7
= 1+ O(q4)

12 F4θ9
− 16F5θ5

= q4
+ O(q5)

Fθ21
− 42F2θ17

+ 584F3θ13
− 2808F4θ9

+ 1792F5θ5
+ 2048F6θ = q + O(q5)

13 F3θ15
− 32F4θ11

+ 272F5θ7
− 256F6θ3

= q3
+ O(q4)

θ27
− 54Fθ23

+ 1080F2θ19
− 9576F3θ15

+ 34048F4θ11
− 26752F5θ7

= 1+ O(q4)

14 F4θ13
− 36F5θ9

+ 320F6θ5
= q4
+ O(q5)

Fθ25
− 50F2θ21

+ 896F3θ17
− 6664F4θ13

+ 16672F5θ9
− 3072F6θ5

+ 8192F7θ = q + O(q5)

15 F4θ15
− 30F5θ11

+ 224F6θ7
= q4
+ O(q7)

F3θ19
− 38F4θ15

+ 444F5θ11
− 1408F6θ7

− 1024F7θ3
= q3
+ O(q7)

16 F4θ17
− 32F5θ13

+ 272F6θ9
− 256F7θ5

= q4
+ O(q5)

Fθ29
− 58F2θ25

+ 1272F3θ21
− 12824F4θ17

+ 56064F5θ13
− 71552F6θ9

− 4096F7θ5
+ 32768F8θ = q + O(q5)

17 F4θ19
− 38F5θ15

+ 440F6θ11
− 1408F7θ7

= q4
+ O(q7)

F3θ23
− 46F4θ19

+ 724F5θ15
− 4240F6θ11

+ 5632F7θ7
− 4096F8θ3

= q3
+ O(q7)

19 F4θ23
− 46F5θ19

+ 720F6θ15
− 4064F7θ11

+ 3584F8θ7
= q4
+ O(q7)

F3θ27
− 54F4θ23

+ 1068F5θ19
− 9120F6θ15

+ 28608F7θ11
− 6144F8θ7

− 16384F9θ3
= q3
+ O(q7)
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Le défaut d’approximation forte pour les
groupes algébriques commutatifs

David Harari

On établit une suite exacte décrivant l’adhérence des points rationnels d’un 1-
motif dans ses points adéliques. On en déduit ensuite que le défaut d’approxima-
tion forte pour un groupe algébrique commutatif G est essentiellement mesuré
par son groupe de Brauer algébrique via l’obstruction de Brauer-Manin entière.

We give an exact sequence describing the closure of the set of rational points
of a 1-motive in its adelic points. From this we deduce that for a commutative
algebraic group, the defect of strong approximation is essentially controlled by
its algebraic Brauer group, by means of the integral Brauer-Manin obstruction.

1. Introduction

1.1. Rappels et notations. Soit M =[Y→G] un 1-motif sur un corps de nombres
k, dont on note M∗ le 1-motif dual. Rappelons (cf. [Harari et Szamuely 2005],
section 1) qu’ici Y est un k-schéma en groupes (placé en degré −1) localement
isomorphe pour la topologie étale à Zr (avec r ≥ 0) et G est une k-variété semi-
abélienne (extension d’une k-variété abélienne A par un k-tore T ) que l’on place
en degré zéro. Le cas particulier le plus significatif pour cet article est celui où
M = T ' [0→ T ] : alors M∗= T̂ [1] = [T̂→ 0], où T̂ est le module des caractères
du tore T . Pour simplifier les notations, on note simplement H i (k,M) les groupes
d’hypercohomologie Hi (k,M) du 1-motif M ; si par exemple M = T , on a donc
H i (k,M)= H i (k, T ) et H i (k,M∗)= H i (k, T̂ [1])= H i+1(k, T̂ ).

Soit � l’ensemble de toutes les places de k. On note O l’anneau des entiers de
k et si v est une place non archimédienne de k, on note Ov l’anneau des entiers
du complété kv de k en v. Si S est un ensemble fini de places de k (contenant les
places archimédiennes), on note OS le sous-anneau de k constitué des entiers en

MSC2000: primary 14L15; secondary 12G05, 11G09.
Mots-clefs: approximation forte, groupe de Brauer, 1-motif, strong approximation, Brauer group,

1-motive.
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dehors de S. On note aussi Ak le groupe des adèles de k et

AO :=

∏
v∈�

Ov

le groupe des adèles entiers de k puis

AS =
∏
v∈S

kv ×
∏
v 6∈S

Ov

le groupe des adèles entiers en dehors de S, avec la convention que Ov = kv si v
est une place archimédienne.

On choisit un ouvert non vide U = Spec (OS) de Spec O tel que M s’étende en
un 1-motif M=[Y→G] au-dessus de U . On note A et T (resp. A et T) la k-variété
abélienne et le k-tore correspondant à G (resp. le U -schéma abélien et le U -tore
correspondant à G).

On note P0(M) (resp. P0
S(M)) le produit restreint des H 0(kv,M) (resp. des

H 0(kv,M) pour v non dans S), relativement aux H 0(Ov,M), avec la convention
que pour v archimédienne, H 0(Ov,M) = H 0(kv,M) désigne le groupe modi-
fié Ĥ 0(kv,M) de Tate défini dans [Harari et Szamuely 2005], p. 103, et aussi
que pour v ∈ S finie, H 0(Ov,M) signifie H 0(kv,M). On pose aussi P0

S(M) :=∏
v∈S H 0(kv,M)×

∏
v 6∈S H 0(Ov,M). Ainsi P0

S(M) est un sous-groupe de P0(M),
dont la projection sur le produit restreint ”tronqué” P0

S(M) n’est autre que∏
v 6∈S

H 0(Ov,M).

On appelle X1(M) le noyau de l’application diagonale

H 1(k,M)→
∏
v∈�

H 1(kv,M).

En particulier X(A) :=X1(A) est le groupe de Tate-Shafarevitch de la variété
abélienne A. Il est fortement conjecturé que ce groupe est toujours fini. On note
aussi X1

ω(M) le sous-groupe de H 1(k,M) constitué des éléments dont la restric-
tion à H 1(kv,M) est nulle pour presque toute place v.

Pour tout groupe topologique B, on note B∧ le complété de B pour la topologie
induite par les sous-groupes ouverts d’indice fini. En particulier si B est discret,
alors B∧ est simplement la complétion profinie de B (et c’est également le cas
pour B = H 0(kv,M) avec v ∈ � via [Harari et Szamuely 2005], remarque 2.4).
On note également B D

:= Homcont(B,Q/Z) le dual de B. Si B est compact et
complètement discontinu (i.e. profini), on a B∧ = B.

Si X est une k-variété algébrique gémétriquement intègre, on note Br X son
groupe de Brauer cohomologique, et on pose Br 1 X = ker[Br X→ Br X ], où X =
X ×k k̄ (k̄ désignant une clôture algébrique de k).
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1.2. Enoncé des résultats principaux. Notre premier objectif est d’établir une
suite exacte dans l’esprit du théorème 1.2 de [Harari et Szamuely 2008] (lequel,
dans le cas des tores, remonte à [Sansuc 1981]), mais qui fait intervenir une obstruc-
tion à l’approximation forte au lieu de l’approximation faible. Plus précisément,
on a (voir théorème 2) :

Theorème. Soit M un 1-motif sur k, de variété abélienne associée A. On suppose
que X(A) est fini et on note H 0(k,M) l’adhérence de H 0(k,M) dans le produit
restreint P0(M). Alors on a une suite exacte

0→ H 0(k,M)→ P0(M)→ H 1(k,M∗)D
→X1(M)→ 0

La flèche P0(M)→ H 1(k,M∗)D vient de la dualité locale ([Harari et Szamuely
2005], section 2) et la flèche H 1(k,M∗)D

→X1(M) de la dualité entre les groupes
finis X1(M) et X1(M∗) ([Harari et Szamuely 2005], corollaire 4.9). Ainsi l’obs-
truction à la propriété d’approximation forte pour le 1-motif M est mesurée par le
groupe ker[H 1(k,M∗)D

→X1(M)] (qui est d’indice fini dans H 1(k,M∗)D). Le
cas M = Gm est très proche d’un énoncé classique de théorie du corps de classes
(voir [Neukirch et al. 2008], corollaire 8.3.21 page 464) mais dans le cas d’un
tore quelconque, l’énoncé semble déjà nouveau. Nous en établirons également une
variante permettant d’obtenir un énoncé d’approximation pour les tores (théorème
3) un peu similaire aux résultats de la section 4 de [Naumann 2008].

Dans la dernière section de ce texte, nous démontrerons le résultat suivant (voir
théorème 4), qui fait le lien entre l’obstruction de Manin entière (introduite dans
[Colliot-Thélène et Fei 2007], voir la section 4 pour plus de détails) et l’approxi-
mation forte pour une variété semi-abélienne.

Theorème. Soit X un O-schéma plat dont la fibre générique X est un espace prin-
cipal homogène sous une variété semi-abélienne G. On suppose que le groupe de
Tate-Shafarevitch X(A) du quotient abélien A de G est fini.

Soit S un ensemble fini de places de k, contenant les places archimédiennes. On
suppose qu’il existe un point adélique (Pv) ∈ X(AS) qui est orthogonal à Br 1 X
pour l’accouplement de Brauer-Manin. Alors il existe un point de X(OS) qui est
arbitrairement proche de Pv pour v ∈ S non archimédienne, et dans la même com-
posante connexe de X (kv) que Pv pour v réelle. En particulier, si on suppose de
plus (Pv) ∈ X(AO), alors X(O) 6=∅.

Notons que l’énoncé analogue pour l’approximation faible est démontré dans
[Harari 2006] (voir aussi [Harari et Szamuely 2008], théorème 6.1.).

2. Une suite exacte de type Cassels-Tate associée à un 1-motif

Dans toute cette section, les notations sont celles du début de 1.1.
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Lemme 1. Soit v 6∈ S. On a H 1(Ov,G) = 0. Pour i = 0 ou i = 1, les applica-
tions H i (Ov,Y)→ H i (kv, Y ) (induites par l’inclusion Ov→ kv) sont des isomor-
phismes.

Démonstration. Soit Fv le corps résiduel de Ov et G̃ la réduction de G modulo
v. On a H 1(Ov,G) = H 1(Fv, G̃) ; voir [Milne 1980], remarque 3.11a. D’autre
part, comme G̃ est connexe, on a H 1(Fv, G̃) = 0 par le théorème de Lang, d’où
la première assertion. La seconde assertion pour i = 0 résulte de ce que Y est
localement constant pour la topologie étale. Pour i = 1, elle vient de [Harari et
Szamuely 2005], p. 105. �

Soit v 6∈ S. Alors H 0(Ov,G) = G(Ov) s’injecte dans G(kv) et d’autre part le
lemme précédent dit que H i (Ov,Y) est isomorphe à H i (kv, Y ) pour i = 0, 1 ; on
voit donc par dévissage que l’application naturelle H 0(Ov,M)→ H 0(kv,M) est
injective, ce qui permet de noter encore H 0(Ov,M) l’image de H 0(Ov,M) dans
H 0(kv,M). Notons que le groupe H 0(Ov,M) est quasi-compact (il possède un
sous-groupe ouvert d’indice fini qui est un quotient de G(Ov)), mais pas séparé en
général.

On pose 1 H 0
r (kv,M) = H 0(kv,M)/H 0(Ov,M) (avec une notation similaire si

M est remplacé par T ) et on équipe ce groupe de la topologie quotient (pour la
définition de la topologie sur H 0(kv,M), voir [Harari et Szamuely 2005], section 2).

Lemme 2. Soit v 6∈ S. Alors le groupe H 0
r (kv,M) est isomorphe à H 0

r (kv, T ).
C’est un groupe discret (autrement dit : H 0(Ov,M) est un sous-groupe ouvert de
H 0(kv,M)).

Notons qu’en particulier le groupe H 0
r (kv,M) est nul si M = Y [1] ou M = A.

Rappelons aussi qu’un sous-groupe d’un groupe topologique est ouvert si et seule-
ment si le quotient topologique correspondant est un groupe discret.

Démonstration. D’après le lemme 1, on a H 1(Ov,G)= 0. On a alors un diagramme
commutatif dont les lignes sont exactes :

H 0(Ov,Y) −−−→ H 0(Ov,G) −−−→ H 0(Ov,M) −−−→ H 1(Ov,Y) −−−→ 0y y y y
H 0(kv, Y ) −−−→ H 0(kv,G) −−−→ H 0(kv,M) −−−→ H 1(kv, Y )

La première et la quatrième flèche verticale sont des isomorphismes via le lemme
1. Par chasse au diagramme on est ramené au cas M = G. Comme H 1(Ov,T)= 0

1. L’indice r signifie ici "ramifié" ; je remercie le rapporteur pour cette suggestion de notation.
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(lemme 1), on a un autre diagramme commutatif exact :

0 −−−→ H 0(Ov,T) −−−→ H 0(Ov,G) −−−→ H 0(Ov,A) −−−→ 0y y y
0 −−−→ H 0(kv, T ) −−−→ H 0(kv,G) −−−→ H 0(kv, A)

La flèche verticale de droite est un isomorphisme par propreté de A. Une nouvelle
chasse au diagramme nous donne alors l’isomorphisme voulu.

Enfin, H 0(Ov,T) est un sous-groupe ouvert de H 0(kv, T ) parce que Ov est un
sous-groupe ouvert de kv (prendre par exemple des équations affines de T ; voir
aussi [Platonov et Rapinchuk 1994], p. 134), ce qui achève la démonstration du
lemme. �

Lemme 3. L’image de H 0(k,M) dans P0
S(M)/

∏
v 6∈S H 0(Ov,M) est d’indice fini.

Le groupe P0
S(M)/

∏
v 6∈S H 0(Ov,M) est isomorphe au groupe

⊕
v 6∈S H 0

r (kv,M),
qui est discret d’après le lemme 2. D’autre part, pour M =Gm , le lemme 3 résulte
juste de la finitude du groupe des classes d’idéaux de O.

Démonstration. On a H 1(Ov,G) = 0 via le lemme 1, ce qui donne un diagramme
commutatif exact :∏

v 6∈S H 0(Ov,G) −−−→
∏
v 6∈S H 0(Ov,M) −−−→

∏
v 6∈S H 1(Ov,Y) −−−→ 0y y y

P0
S(G) −−−→ P0

S(M) −−−→
∏
v 6∈S H 1(kv, Y )

Comme on l’a déjà vu, la flèche verticale de droite est un isomorphisme ; de ce fait
P0

S(G)/
∏
v 6∈S H 0(Ov,G) se surjecte sur P0

S(M)/
∏
v 6∈S H 0(Ov,M), ce qui permet

de se ramener au cas M = G.

On écrit alors (en utilisant H 1(Ov,T)= 0) le diagramme commutatif exact∏
v 6∈S H 0(Ov,T) −−−→

∏
v 6∈S H 0(Ov,G) −−−→

∏
v 6∈S H 0(Ov,A) −−−→ 0y y y

P0
S(T ) −−−→ P0

S(G) −−−→
∏
v 6∈S H 0(kv, A)

et la flèche verticale de droite est encore un isomorphisme. On est ainsi ramené
au cas M = T , auquel cas le résultat vient de la finitude du groupe des classes
d’idéaux d’un tore ; voir [Platonov et Rapinchuk 1994], Theorem 5.1. �

Proposition 1. On suppose que les cardinaux des groupes finis ker[H 1(U,T)→

H 1(k, T )] et H 1(k, Y ) sont premiers entre eux (par exemple si Y = 0). Alors
la suite de groupes discrets 0→ H 0(U,M)→ H 0(k,M)→

⊕
v 6∈S

H 0
r (kv,M) est

exacte.
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Notons que pour U assez petit l’application H 1(U,T)→ H 1(k, T ) est injective
(voir [Harari et Szamuely 2005], Corrigenda) et l’hypothèse sur les cardinaux est
alors vérifiée.

Démonstration. L’injectivité de H 0(U,M)→ H 0(k,M) est démontrée dans [Ha-
rari et Szamuely 2005], Proposition 4.1(3). Le fait qu’on ait un complexe est clair
car pour v 6∈ S, la flèche H 0(U,M)→ H 0(k,M) se factorise par H 0(Ov,M). Il
reste donc à démontrer l’exactitude au milieu.

Montrons d’abord que le cardinal de H 1(U,Y) est premier avec celui de

ker[H 1(U,G)→ H 1(k,G)].

Comme H 1(U,A) s’injecte dans H 1(k, A) (d’après [Milne 2006], lemme II.5.5)
et H 0(U,A)' H 0(k, A), le noyau de H 1(U,T)→ H 1(k, T ) se surjecte sur celui
de H 1(U,G)→ H 1(k,G). Mais la flèche H 1(U,Y)→ H 1(k, Y ) est un isomor-
phisme (via [Harari et Szamuely 2005], diagramme p. 112) donc l’hypothèse faite
sur le cardinal de H 1(k, Y ) donne le résultat voulu. Il en résulte que l’image de
H 1(U,Y)→ H 1(U,G) s’injecte dans H 1(k,G).

Maintenant, en utilisant le lemme 2, on obtient un diagramme commutatif, dont
les lignes sont exactes :

H 0(U,G) −−−→ H 0(U,M) −−−→ H 1(U,Y) −−−→ H 1(U,G)y y y y
H 0(k,G) −−−→ H 0(k,M) −−−→ H 1(k, Y ) −−−→ H 1(k,G)y y⊕

v 6∈S
H 0

r (kv,G)
∼
−−−→

⊕
v 6∈S

H 0
r (kv,M)

Une chasse au diagramme permet alors de se ramener au cas M = G. Or, dans
ce cas le résultat est clair car un k-point de G qui s’annule dans

⊕
v 6∈S H 0

r (kv,G)
correspond à un morphisme Spec k→ G qui s’étend en tout point de codimension
1 du schéma de Dedekind U , donc sur U . �

Corollaire 1. On suppose que les cardinaux de H 1(k, Y ) et ker[H 1(U,T) →

H 1(k, T )] sont premiers entre eux. Alors la suite

H 0(U,M)∧→ H 0(k,M)∧→
[⊕
v 6∈S

H 0
r (kv,M)

]∧
est exacte.
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Démonstration. D’après le lemme 3, l’image I de H 0(k,M) dans le groupe discret⊕
v 6∈S H 0

r (kv,M) est d’indice fini, ce qui implique que l’application induite I∧→[⊕
v 6∈S H 0

r (kv,M)
]∧ est injective. D’autre part la suite

H 0(U,M)∧→ H 0(k,M)∧→ I∧→ 0

est exacte d’après la proposition 1 et [Harari et Szamuely 2005], appendice, (2).
Le corollaire en résulte. �

Rappelons que d’après le théorème 2.3 de [Harari et Szamuely 2005] on a un
accouplement

( · , · )v : H 0(kv,M)× H 1(kv,M∗)→Q/Z,

lequel met en dualité parfaite le groupe discret H 1(kv,M∗) et le groupe profini
H 0(kv,M)∧. Pour v 6∈ S, on sait aussi ([Harari et Szamuely 2005], début de
la preuve du théorème 2.10) que cet accouplement s’annule sur H 0(Ov,M) ×

H 1(Ov,M∗). Ceci nous permet de définir une flèche θ de P0(M) dans le dual
H 1(k,M∗)D de H 1(k,M∗) par la formule

θ(x).a =
∑
v∈�

(xv, av)v, x ∈ P0(M), a ∈ H 1(k,M∗)

où xv est la composante de x en v et av la restriction de a à H 1(kv,M∗) (qui est
dans H 1(Ov,M∗) pour presque toute place v). On a de même une flèche (notée θ∧)
de P0(M)∧ dans H 1(k,M∗)D .

Proposition 2. Supposons que les cardinaux de H 1(k, Y ) et ker[H 1(U,T) →

H 1(k, T )] soient premiers entre eux et que le groupe de Tate-Shafarevitch X(A)
de A soit fini. Alors on a une suite exacte de groupes profinis

H 0(U,M)∧→ P0
S(M)

∧ θ
→ H 1(k,M∗)D

Démonstration. On écrit un diagramme commutatif :

H 0(U,M)∧ −−−→ P0
S(M)

∧ θ∧
−−−→ H 1(k,M∗)Dy yi

y||
H 0(k,M)∧ −−−→ P0(M)∧

θ∧
−−−→ H 1(k,M∗)Dy y[ ⊕

v 6∈S
H 0

r (kv,M)
]∧ =
−−−→

[ ⊕
v 6∈S

H 0
r (kv,M)

]∧
La première colonne est exacte d’après le corollaire 1, la deuxième ligne est exacte
d’après le théorème 5.6 de [Harari et Szamuely 2005] (ce qui implique déjà que la
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première ligne est un complexe), et la colonne du milieu est un complexe car c’est
la complétion d’une suite exacte. Par chasse au diagramme, il suffit, pour montrer
l’exactitude au milieu de la première ligne, de montrer que la flèche i :P0

S(M)
∧
→

P0(M)∧ est injective.

La preuve du lemme 5.3. de [Harari et Szamuely 2005] donne que pour tout
n > 0, la flèche

P0
S(M)/n→

∏
v∈�

H 0(kv,M)/n

est injective. A fortiori la flèche

P0
S(M)/n→ P0(M)/n

est injective. Or P0
S(M)

∧ est la limite projective des P0
S(M)/n car d’une part la

complétion commute avec le produit, d’autre part on a

H 0(kv,M)∧ = lim
←−

n
H 0(kv,M)/n

pour v ∈ S et
H 0(Ov,M)∧ = lim

←−
n

H 0(Ov,M)/n

pour v 6∈ S comme on le voit par dévissage en utilisant le fait que H 0(kv, T )/n
et H 0(Ov,T)/n sont finis, H 0(kv, A) = H 0(Ov,A) est profini, et H 1(kv, Y ) =
H 1(Ov,Y) est fini ([Milne 2006], corollaire I.2.3). En passant à la limite projec-
tive, on obtient alors que P0

S(M)
∧ s’injecte dans la limite projective P0(M)∧ des

P0(M)/n. On conclut avec l’injectivité de la flèche P0(M)∧ → P0(M)∧ ; voir
[Harari et Szamuely 2005], proposition 5.4 et diagramme (13). �

Soit H 0(U,M) l’adhérence (pour la topologie produit) de H 0(U,M)=H 0(OS,M)

dans P0
S(M)=

∏
v∈S H 0(kv,M)×

∏
v 6∈S H 0(Ov,M).

Théorème 1. Sous les hypothèses de la proposition 2, on a une suite exacte

0→ H 0(U,M)→
∏
v∈S

H 0(kv,M)×
∏
v 6∈S

H 0(Ov,M)
θ
→ H 1(k,M∗)D

Démonstration. La méthode est très similaire à celle de [Harari et Szamuely 2008],
proposition 5.3. Le fait que la suite soit un complexe est clair par fonctorialité
via le théorème 5.6 de [Harari et Szamuely 2005]. Soit C le quotient topologique
de P0

S(M) par H 0(U,M). Le groupe C est séparé car H 0(U,M) est fermé dans
P0

S(M). Montrons que C s’injecte dans sa complétion profinie C∧. D’après [Harari
et Szamuely 2005], appendice, il suffit de vérifier que C est engendré par une
partie compacte. Or pour v dans S, le groupe H 0(kv,M) a un sous-groupe d’indice
fini qui est un quotient topologique de G(kv), lui-même engendré par une partie
compacte via [Harari et Szamuely 2005], lemme 2.2 ; d’autre part pour v 6∈ S, le
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groupe H 0(Ov,M) est déjà quasi-compact. Ainsi C est bien engendré par une partie
compacte.

On écrit alors un diagramme commutatif :

0 −−−→ H 0(U,M) −−−→ P0
S(M) −−−→ Cy y y

(H 0(U,M)) ∧ −−−→ P0
S(M)

∧
−−−→ C∧

La première ligne est exacte par définition de C et la deuxième ligne est un com-
plexe par fonctorialité. Soit x un élément de P0

S(M) dont l’image dans H 1(k,M∗)D

est nulle. D’après la proposition 2, l’image y de x dans P0
S(M)

∧ provient de
H 0(U,M)∧, donc a fortiori de (H 0(U,M)) ∧ vu que la flèche H 0(U,M)∧ →

P0
S(M)

∧ se factorise par une flèche H 0(U,M)∧→ (H 0(U,M)) ∧. Ainsi, l’image
de y dans C∧ est nulle et on conclut avec l’injectivité de C→ C∧ et l’exactitude
de la première ligne. �

Remarque. Il est facile de voir directement à partir de la proposition 1 que le co-
rollaire 1 reste valable en remplaçant la complétion ∧ par la ”complétion partielle”
∧= lim
←−n

./n. On obtient alors l’analogue (d’ailleurs plus simple à démontrer) de la
proposition 2 avec cette complétion partielle grâce à la suite exacte (17) de [Harari
et Szamuely 2005]. Cela suffit pour prouver le théorème 1 par la même méthode,
tout en évitant les complications topologiques.

Lemme 4. Les groupes P0(M) et P0(M)∧ ont même image dans H 1(k,M∗)D par
les applications respectives θ , θ∧.

Démonstration. On procède par dévissage. Notons P1(G) le produit restreint (pour
v ∈ �) des H 1(kv,G) relativement aux H 1(Ov,G) (on emploiera de même les
notations P1(Y ) et P1(T )). On a un diagramme commutatif exact

P0(G) −−−→ P0(M) −−−→ P1(Y ) −−−→ P1(G)y y y|| y||
P0(G)∧ −−−→ P0(M)∧ −−−→ P1(Y ) −−−→ P1(G)

En effet, P1(Y ) =
∏
v∈� H 1(kv, Y ) est déjà compact et la complétion de la

première ligne reste donc exacte en vertu de [Harari et Szamuely 2005], appendice.
Ainsi P0(M) se surjecte sur le conoyau de P0(G)∧→ P0(M)∧ et on est ramené à
M =G. On se ramène ensuite par le même argument au cas M = T et M∗= Y ∗[1]
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en utilisant le diagramme commutatif exact

P0(T ) −−−→ P0(G) −−−→ P0(A) −−−→ P1(T )y y y|| y||
P0(T )∧ −−−→ P0(G)∧ −−−→ P0(A) −−−→ P1(T )

vu que P0(A)=
∏
v∈� H 0(kv, A) est compact. Maintenant on observe que

P0(T )/H 0(k, T )

est compact en vertu de la finitude du groupe des classes d’idéaux d’un tore (no-
ter ici l’importance d’avoir considéré les H 0 modifiés à la Tate aux places ar-
chimédiennes). De ce fait l’image de P0(T ) dans le groupe profini H 1(k,M∗)D

=

H 2(k, Y ∗)D est fermée ; elle coı̈ncide donc (par densité) avec l’image de P0(T )∧.
�

Théorème 2. Soit M un 1-motif sur k. On suppose que X(A) est fini et on note
H 0(k,M) l’adhérence de H 0(k,M) dans le produit restreint P0(M). Alors on a
une suite exacte

0→ H 0(k,M)→ P0(M)→ H 1(k,M∗)D
→X1(M)→ 0

Ici la flèche H 1(k,M∗)D
→X1(M) est induite par la dualité parfaite entre les

groupes finis X1(M) et X1(M∗), par le corollaire 4.9 de [Harari et Szamuely
2005].

Démonstration. On commence par fixer un ensemble fini S de places tel que les
hypothèses du théorème 1 soient satisfaites pour tout ouvert U de Spec (OS) (cf.
commentaire après la proposition 1). Les trois premiers termes de la suite exacte
s’obtiennent alors en appliquant le théorème 1 aux ensembles finis de places T ⊃
S, et en faisant la limite inductive sur T . D’après le théorème 5.6 de [Harari et
Szamuely 2005], la suite

P0(M)∧→ H 1(k,M∗)D
→X1(M)→ 0

est exacte. Comme P0(M) et P0(M)∧ ont même image dans H 1(k,M∗)D d’après
le lemme précédent, le résultat est démontré. �

Remarques. – On comparera avec le théorème 1.2 de [Harari et Szamuely 2008] :
ici on considère l’adhérence de H 0(k,M) pour une topologie de produit restreint
(et non plus de produit direct), c’est-à-dire que le groupe H 1(k,M∗)D mesure
le défaut d’approximation forte (tandis que le défaut d’approximation faible était
mesuré par le groupe plus petit X1

ω(M
∗)D). Bien entendu, si M= A est une variété

abélienne, il n’y a pas lieu de distinguer entre les deux résultats et on retrouve la
classique suite exacte duale de Cassels-Tate ([Milne 2006], théorème I.6.26).
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– Le fait d’avoir considéré les Ĥ 0 aux places archimédiennes entraı̂ne que même
si M est un tore, l’image de H 0(k,M) dans P0(M) n’est pas toujours fermée. Par
exemple si M=Gm et k=Q(

√
2), alors le sous-groupe H de P0(Gm) engendré par

l’image de (1+
√

2) et celle de {±1} est isomorphe à Z×Z/2 ; d’après le théorème
de Baire, le groupe H ne peut pas être compact car il est infini et dénombrable.
Pourtant H est l’intersection de l’image de H 0(k,Gm) = k∗ avec le compact de
P0(Gm) constitué des éléments dont toutes les composantes aux places v non ar-
chimédiennes sont dans O∗v. Ainsi l’image de k∗ dans P0(Gm) ne peut pas être
fermée.

– Dans le cas M = Gm , le théorème 2 est essentiellement équivalent au cas où
S contient toutes les places du corollaire 8.3.21 p. 464 de [Neukirch et al. 2008].
Le théorème 1 est malgré les apparences d’une nature un peu différente (et semble
être nouveau même pour G =Gm).

3. Une variante

Le but de cette section est de démontrer une variante du théorème 1 qui fait in-
tervenir deux ensembles finis de places, et d’en déduire un énoncé d’approximation
pour les tores. On considère toujours M = [Y → G] un 1-motif sur k, qui s’étend
en un 1-motif M = [Y→ G] au-dessus de U = Spec (OS). Si v est une place non
dans S, on note H 1

nr(kv,M) l’image de H 1(Ov,M) dans H 1(kv,M) (voir [Harari
et Szamuely 2005], section 2). Rappelons qu’on a supposé que S contenait toutes
les places archimédiennes de k.

Soit S′ un ensemble fini de places de k avec S ∩ S′ = ∅. On note H 0(OS,M)
S′

l’adhérence de H 0(OS,M) = H 0(U,M) dans
∏
v∈S′ H 0(Ov,M). On note aussi

H 1
S,S′(k,M∗) l’ensemble des α de H 1(k,M∗) vérifiant αv = 0 pour v ∈ S et

αv ∈ H 1
nr(kv,M∗) pour v 6∈ (S ∪ S′). Enfin H 1

S,�(k,M∗) désigne l’ensemble des α
de H 1(k,M∗) vérifiant αv = 0 pour v ∈ S et αv ∈ H 1

nr(kv,M∗) pour v 6∈ S.

Lemme 5. On garde les hypothèses de la proposition 2. Posons

I =
∏
v∈S

H 0(kv,M)∧×
∏
v∈S′

H 0(Ov,M)×
∏

v 6∈(S∪S′)

H 0(Ov,M)∧

et notons abusivement H 0(U,M) l’adhérence de l’image de H 0(U,M) dans I .
Alors on a une suite exacte

0→ H 0(U,M)→ I
θ
→ H 1(k,M∗)D

Notons que comme on va s’intéresser ensuite à une propriété d’approximation
aux places de S′, on n’a besoin ici d’enlever les completions pour I que dans le
facteur du milieu.
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Démonstration. La preuve est tout à fait analogue (en plus simple) à celle du
théorème 1, en remplaçant P0

S(M) par I (qui est quasi-compact, ce qui fait que
le quotient de I par H 0(U,M) est déjà profini). �

Proposition 3. On garde les hypothèses et notations de la proposition 2. Soit S′

un ensemble fini de places de k avec S ∩ S′ =∅. Alors on a une suite exacte

0→H 0(OS,M)
S′
→

∏
v∈S′

H 0(Ov,M)
ϕ
→H 1

S,S′(k,M∗)D
→H 1

S,�(k,M∗)D
→0 (∗)

où l’application ϕ est définie par

ϕ((xv)).a =
∑
v∈S′

(xv, av)v , (xv) ∈
∏
v∈S′

H 0(Ov,M) , a ∈ H 1
S,S′(k,M∗)D

Démonstration. On note d’abord que le quotient topologique∏
v∈S′

H 0(Ov,M)/H 0(OS,M)
S′

est séparé et quasi-compact, donc compact. De ce fait∏
v∈S′

H 0(Ov,M) et
∏
v∈S′

H 0(Ov,M)∧

ont même image dans H 1
S,S′(k,M∗)D . On obtient l’exactitude des trois derniers

termes de (∗) avec le théorème 2.10 de [Harari et Szamuely 2005], en dualisant la
suite (qui est exacte par définition) :

0→ H 1
S,�(k,M∗)→ H 1

S,S′(k,M∗)→
∏
v∈S′

H 1(kv,M∗)/H 1
nr(kv,M∗)

D’autre part les trois premiers termes de (∗) forment un complexe vu que l’accou-
plement local entre H 0(Ov,M) et H 1

nr(kv,M∗) est trivial.
Soit donc (xv)v∈S′ dans

∏
v∈S′ H 0(Ov,M), d’image nulle par ϕ. D’après le lemme

5, il suffit de montrer qu’il existe une famille

(xv) ∈
∏

v 6∈(S∪S′)

H 0(Ov,M)∧

et une famille

(xv) ∈
∏
v∈S

H 0(kv,M)∧

vérifiant : l’image de la famille (xv)v∈� dans H 1(k,M∗)D (par la flèche θ du lemme
5) est nulle.
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Soit N le dual du groupe⊕
v∈S

H 1(kv,M∗)⊕
⊕

v 6∈(S∪S′)

(H 1(kv,M∗)/H 1
nr(kv,M∗))

et posons
N ′ :=

∏
v∈S

H 0(kv,M)∧×
∏

v 6∈(S∪S′)

H 0(Ov,M)∧

On a alors un diagramme commutatif dont les colonnes sont exactes :

N ′
ψ
−−−→ Ny y∏

v∈S′ H 0(Ov,M)× N ′
θ

−−−→ H 1(k,M∗)Dy y∏
v∈S′ H 0(Ov,M)

ϕ
−−−→ H 1

S,S′(k,M∗)D

Comme ψ est un isomorphisme par dualité locale, on conclut par chasse au dia-
gramme, en considérant l’élément de

I =
∏
v∈S′

H 0(Ov,M)× N ′

obtenu en complétant (xv)v∈S′ avec des zéros. �

Soient maintenant T un k-tore de module des caractères Y , et S0 un ensemble
fini de places de k (contenant les places archimédiennes) tel que les 1-motifs M =
[0→ T ] et M∗=[Y→ 0] s’étendent en des 1-motifs M et M∗=[Y→ 0] au-dessus
de Spec (OS0). On note X2

ω(Y ) l’ensemble des éléments α de H 2(k, Y ) tels que la
localisation αv ∈ H 2(kv, Y ) soit nulle pour presque toute place v de k.

Théorème 3. Avec les notations ci-dessus, on suppose que X2
ω(Y )= 0. Soit S′ un

ensemble fini de places de k ne rencontrant pas S0. Alors il existe un ensemble fini
de places S avec S⊃ S0 et S∩S′=∅, vérifiant : T (OS) est dense dans

∏
v∈S′ T (Ov).

Démonstration. La structure des groupes de Lie p-adiques compacts donne qu’il
existe un ensemble fini 6 de nombres premiers tels que pour ` 6∈ 6, le groupe∏
v∈S′ T (Ov) soit `-divisible. D’après la proposition 3, il suffit alors de trouver S

tel que la `-torsion H 2
S,S′(k, Y )[`] du groupe H 2

S,S′(k, Y ) soit nulle pour tout ` de
6. En utilisant la suite exacte de OS′∪S0-schémas en groupes lisses

0→ Y
.l
→ Y→ Y/`→ 0

on voit que H 1(OS′∪S0,Y/`) (dont l’image dans H 1(k, Y/`) est finie via [Serre
1994], II.6.2., théorème 7) se surjecte sur H 2(OS′∪S0,Y)[`]. De ce fait il n’y a
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qu’un nombre fini d’éléments non nuls de H 2(k, Y )[`] qui sont non ramifiés en
dehors de (S0 ∪ S′) ; pour chacun de ces éléments α, on peut choisir une place v
non dans (S0∪ S′) avec αv 6= 0 (grâce à l’hypothèse X2

ω(Y )= 0). Il suffit alors de
prendre pour S la réunion de S0 et de toutes ces places v. �

Remarques. – Il n’est pas étonnant de voir apparaı̂tre ici l’hypothèse X2
ω(Y )= 0,

qui permet ([Sansuc 1981], théorème 8.12) d’avoir l’approximation faible pour T
(dont le théorème 3 est un raffinement).

– Il n’est pas raisonnable d’attendre un analogue du théorème 3 pour une variété
semi-abélienne G. En effet si G s’écrit comme extension d’une variété abélienne
non nulle A par un tore T (dont on note encore Y le module des caractères), alors
H 1(k, A∗) est infini donc aussi son image dans H 1(k,M∗) (en effet H 1(k, Y ) est
fini). Or cette image est incluse dans X1

ω(M
∗) : en effet toute classe de H 1(k, A∗)

est non ramifiée en dehors d’un nombre fini de places (donc nulle en dehors de
ces places par connexité de A, voir lemme 1). Il en résulte que X1

ω(M
∗) est infini,

donc que (modulo finitude de X(A)) le défaut d’approximation faible pour G l’est
également via [Harari et Szamuely 2008], théorème 1.2.

– On comparera le théorème 3 avec les résultats de [Naumann 2008], section 4.

4. Application à l’obstruction de Manin pour les points entiers
sur les torseurs

Rappelons ([Skorobogatov 2001], chapitre 5) que si X est une k-variété algé-
brique, on a un accouplement de Brauer-Manin

X (Ak)×Br X→Q/Z

entre les points adéliques de X et son groupe de Brauer. Le noyau à gauche de
cet accouplement contient l’ensemble X (k) des points rationnels de X . Soit X un
modèle entier de X . On peut se demander si pour certaines classes de variétés,
l’existence d’un point de X(AO) dans le noyau ci-dessus implique l’existence d’un
point entier sur X . Nous allons montrer qu’il en est ainsi si X est un espace prin-
cipal homogène d’une variété semi-abélienne. Notons que cette problématique de
l’obstruction de Manin entière a été formalisée pour la première fois dans [Colliot-
Thélène et Fei 2007].

Théorème 4. Soit X un O-schéma plat dont la fibre générique X est un espace
principal homogène sous une variété semi-abélienne G. On suppose que le groupe
de Tate-Shafarevitch X(A) du quotient abélien A de G est fini.

Soit S un ensemble fini de places de k, contenant les places archimédiennes. On
suppose qu’il existe un point adélique (Pv) ∈ X(AS) qui est orthogonal à Br 1 X
pour l’accouplement de Brauer-Manin. Alors il existe un point de X(OS) qui est
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arbitrairement proche de Pv pour v ∈ S non archimédienne, et dans la même com-
posante connexe de X (kv) que Pv pour v réelle. En particulier, si on suppose de
plus (Pv) ∈ X(AO), alors X(O) 6=∅.

Démonstration. La fibre générique X possède un point adélique orthogonal à Br 1 X
pour l’accouplement de Brauer-Manin. D’après [Harari 2006], théorème 1 (voir
aussi [Harari et Szamuely 2008], théorème 1.1), X possède un point rationnel ;
ceci implique qu’il existe un k-isomorphisme ϕ : X ' G. Quitte à agrandir S on
peut supposer que G s’étend en un schéma en groupes lisses G au-dessus de OS , et
que ϕ s’étend en un OS-isomorphisme ϕS :XS→ GS , où l’on a posé XS =X×O OS

(notation similaire pour G).

Considérons alors le point (Qv)∈G(AS) défini par Qv=ϕ(Pv) pour toute place
v de k. Notons (Q̃v) ∈ P0

S(G) =
∏
v∈S H 0(kv,G)×

∏
v 6∈S H 0(Ov,G) l’image de

(Qv). Par fonctorialité de l’accouplement de Brauer-Manin, on obtient que (Qv)

est orthogonal à Br 1G. Posons M = [0→ G] et notons M∗ le 1-motif dual. On a
construit dans [Harari et Szamuely 2008] (section 4) une flèche

ι : H 1(k,M∗)→ Br 1G/Br k

qui est compatible (voir [Harari et Szamuely 2008], p. 22) avec l’accouplement
de Brauer-Manin et les accouplements locaux, c’est-à-dire qu’on a, pour tout α ∈
H 1(k,M∗) : ∑

v∈�

(αv, Q̃v)v = (ι(α), Qv)B M

où (., .)B M est l’accouplement de Brauer-Manin et (., .)v est l’accouplement local
H 1(kv,M∗)× H 0(kv,M)→Q/Z.

Il en résulte que Q̃v est dans le noyau de la flèche

P0
S(G)→ H 1(k,M∗)D

du théorème 1. Ce théorème dit alors que (Q̃v) est dans H 0(OS,G). Cela implique
qu’il existe un point Q ∈ G(OS) qui est arbitrairement proche de Qv pour v ∈ S
non archimédienne, et dans la même composante connexe de G(kv) que Qv pour
v réelle. Il suffit alors de poser Pv = ϕ−1(Qv). �

Remarques. – Dans le cas où G = A est une variété abélienne, le théorème 4 (dû
dans ce cas à Y. Manin et L. Wang) est essentiellement une reformulation de la suite
exacte duale de Cassels-Tate. Quand G = T est un tore, on obtient en particulier
que l’obstruction de Manin à l’existence d’un point entier est la seule pour un O-
schéma dont la fibre générique est un torseur sous un k-tore. On comparera avec
les théorèmes 3.7. et 4.5. de [Colliot-Thélène et Fei 2007]. Notons aussi que le
théorème 4 a surtout un intérêt théorique dans la mesure où déjà pour un tore T , le
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groupe Br 1T/Br k est infini, donc l’obstruction a peu de chances d’être calculable
en pratique.

– Ceci dit, si X(O) est vide, seul un nombre fini d’éléments de Br X est nécessaire
pour obtenir une obstruction de Brauer-Manin entière. En effet le produit P des
X(Ov) est compact (en convenant que X(Ov) est l’ensemble des composantes con-
nexes de X (kv) si v est archimédienne). Si on note Eα (pour α dans Br X ) le fermé
de P où α s’annule, alors la condition X(O)=∅ implique (d’après le théorème 4)
que l’intersection de tous les Eα est vide, donc par compacité qu’une intersection
finie de tels Eα est vide (remarque due à Colliot-Thélène).

En appliquant le théorème 4 au cas où G est un tore normique de dimension 1,
on obtient :

Exemple 1. Soit X une conique affine d’équation

ax2
+ by2

= c a, b, c ∈ O abc 6= 0

On note X la conique affine sur k associée. S’il existe pour toute place v de k une
solution (xv, yv) dans Ov × Ov, telle que le point adélique (Pv) = (xv, yv)v∈� soit
orthogonal à Br 1 X/Br k, alors il existe une solution (x, y) ∈ O×O.

Ceci répond à une question posée par Colliot-Thélène. Notons que même le cas
où −b/a est un carré dans k∗ (qui correspond au cas G =Gm dans le théorème 4)
n’est pas trivial.
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