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Tate resolutions for Segre embeddings
David A. Cox and Evgeny Materov

We give an explicit description of the terms and differentials of the Tate resolu-
tion of sheaves arising from Segre embeddings of Pa

× Pb. We prove that the
maps in this Tate resolution are either coming from Sylvester-type maps, or from
Bezout-type maps arising from the so-called toric Jacobian.

1. Introduction

Let V and W be dual vector spaces of dimension N+1 over a field K of characteris-
tic 0. It is known that there is a relation between complexes of free graded modules
over the exterior algebra E =

∧
V and coherent sheaves on projective space P(W ).

More precisely, the Bernstein–Gel’fand–Gel’fand (BGG) correspondence [1978]
establishes an equivalence between the derived category of bounded complexes
of coherent sheaves on P(W ) and the stable category of complexes of finitely
generated graded modules over E . The essential part of this correspondence is
given via the Tate resolutions, namely for any coherent sheaf F on P(W ) there
exists a bi-infinite exact sequence

T •(F) : · · · → T−1(F)→ T 0(F)→ T 1(F)→ · · ·

of free graded E-modules. The terms of Tate resolution were described explicitly
by Eisenbud, Fløystad and Schreyer [2003a] in the form

T p(F)=
⊕

i

Ê(i − p)⊗ H i(P(W ),F(p− i)
)
,

where
Ê = ωE = HomK (E, K )=

∧
W

as an E-module.
While the terms of Tate resolutions are described explicitly, the maps are much

more difficult to describe. The knowledge of the maps give us, for example, an
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opportunity to compute generalized resultants (see, for example, [Eisenbud et al.
2003b] or [Khetan 2003; 2005]).

Cox [2007] found an explicit construction of the Tate resolution for the d-fold
Veronese embedding

νd : P
n
→ P(

n+d
d )−1

of Pn when F = νd∗OPn (k). The construction of differentials in Tate resolution
involves the Bezoutian of n + 1 homogeneous polynomials of degree d in n + 1
variables. In this paper, we find a similar description of the Tate resolution arising
from the Segre embedding

ν : Pa
×Pb

→ Pab+a+b

of the sheaf ν∗OPa×Pb(k, l). The shape of the Tate resolution depends only on the
pair (k, l) and there are three types of possible resolutions:

Type 1: − a ≤ k− l ≤ b,

Type 2: k− l > b,

Type 3: k− l <−a.

We prove that Type 1 maps involve the toric Jacobian of a sequence bilinear forms
f0, . . . , fa+b in x0, . . . , xa , y0, . . . , yb given by

f j =
∑
i,k

ai jk xi yk, 0≤ j ≤ a+ b.

This result resembles the Bezout-type formulas for hyperdeterminants of a three-
dimensional matrix A = (ai jk) discussed in [Gel′fand et al. 1994, Chapter 14,
Theorem 3.19]. The resolutions of Type 2 and 3 are similar to each other and both
arise from the Sylvester forms of f0, . . . , fa+b. Notice that similar formulas appear
in the study of Bondal type formulas for hyperdeterminants of A (see [Gel′fand
et al. 1994, Chapter 14, Theorem 3.18]).

The situations considered in this paper and [Cox 2007] are special cases when
F is a push-forward of L= O(m1, . . . ,mr ) in the projective embedding

ν : Pl1 × · · ·×Plr → P(Sd1 K l1+1
⊗ · · ·⊗ Sdr K lr+1)

which is a combination of Segre and Veronese embeddings. This case will be
studied in a different paper [Cox and Materov ≥ 2008]. We conjecture that the
maps in the Tate resolutions are essentially the same as in Weyman–Zelevinsky
complexes [1994] or the same as in the resultant spectral sequences from [Gel′fand
et al. 1994, Chapter 4, Section 3].

Here is the outline of our paper. In Section 2 we give a definition of the Tate
resolution and explain its basic properties. We then enter the main part of the
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paper: in Section 3 we describe the terms of Tate resolution arising from Segre
embeddings of sheaves on products of projective spaces, and in Section 4 we find
explicit forms for corresponding differentials.

2. Basic definitions and properties of Tate resolutions

2.1. Graded exterior algebras. Given V and W as above, the algebras S=Sym W
and E =

∧
V are graded by the following convention: deg(ei ) = 1 for a basis

e0, e1, . . . , eN of W and deg(e∗i ) = −1 for the dual basis e∗0, e∗1, . . . , e∗N of V , so
that E−i =

∧i V . Define E(p) as the graded E-module with E(p)q = E p+q . Then
any free graded E-module is an E-module of the form

M =
⊕

i

E(−i)⊗ Vi ,

where Vi is a finite-dimensional K -vector space with Vi = {0} for almost all i .
Note that Vi gives the degree i generators of M , because

(E(−i)⊗ Vi )i = E(−i)i ⊗ Vi = E0⊗ Vi = Vi .

The dual to E algebra Ê = ωE = HomK (E, K ) is a left E-module with the
graded components

Êi = HomK (E−i , K )= HomK
(∧i V, K

)
.

The perfect pairing ∧i V ×
∧i W → K

implies Êi =
∧i W and Ê =

∧
W . Moreover, Ê is Gorenstein, that is, Ê is isomor-

phic to E with a shift in grading. Namely, the isomorphism∧i V ⊗
∧N+1W →

∧N+1−i W

implies

Ê = E(−N − 1)⊗
∧N+1W,

and therefore Ê ∼= E(−N−1) (noncanonically) via a map
∧N+1W ∼= K . For later

purposes, we note the canonical isomorphism

HomE
(
Ê(p)⊗ A, Ê(q)⊗ B

)
0 ' HomK

(∧p−q W ⊗ A, B
)
, (2-1)

where the subscript 0 denotes graded homomorphisms of degree zero.
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2.2. Tate resolutions. By [Eisenbud et al. 2003a] or [Fløystad 2000] a coherent
sheaf F on P(W ) determines a Tate resolution T •(F), which is an (unbounded)
acyclic complex

T •(F) : · · · → T−1(F)→ T 0(F)→ T 1(F)→ · · ·

of free graded E-modules with the terms

T p(F)=
⊕

i

Ê(i − p)⊗ H i(P(W ),F(p− i)
)
.

For example, in degree k we have

T p(F)k =
⊕

i

∧i−p+k W ⊗ H i(P(W ),F(p− i)
)

since Ê(i − p)k = Êi−p+k =
∧i−p+k W . The Tate resolution is defined by each

differential d p
: T p(F)→ T p+1(F) since T≥p(F) is a minimal injective resolution

of ker(d p) and T<p(F) is a minimal projective resolution of ker(d p) [Eisenbud
2005].

When the context is clear, we will write H i (F( j)) instead of H i
(
P(W ),F( j)

)
.

Lemma 2.1. For fixed k, T p(F)k = 0 if either p> k+m or p< k− N −1, where
m = dim(supp(F)).

Proof. Since H i (F(p− i))= 0 if i < 0 or i >m, we may assume 0≤ i ≤m. Then
the inequalities k+m < p, i ≤ m easily imply

i − p+ k ≤ m− p+ k <−p+ p = 0,

so that
∧i−p+k W = 0. Analogously, if k− N − 1> p, i ≥ 0, then

i − p+ k ≥−p+ k >−p+ p+ N + 1= N + 1,

so that we have again
∧i−p+k W = 0. �

Lemma 2.2. If i < j , then the map

d p
i, j : Ê(i − p)⊗ H i (F(p− i))→ Ê( j − p− 1)⊗ H j (F(p+ 1− j))

from the i-th summand of T p(F) to the j-th summand of T p+1(F) is zero.

Proof. Let

A = H i (F(p− i)) and B = H j (F(p+ 1− j)).

By (2-1), d p
i, j lies in

HomE
(
Ê(i − p)⊗ A, Ê( j − p− 1)⊗ B

)
0 ' HomK

(∧i− j+1W ⊗ A, B
)
.
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It follows that d p
i, j = 0 when i+1< j and that d p

i,i+1 is constant. Then minimality
implies that d p

i,i+1 = 0. �

Finding an explicit expression for differentials d p
: T p(F)→ T p+1(F) seems

to be a difficult problem. By Lemma 2.2, the general maps from the i-th summand
of T p(F) in the Tate resolution T •(F) have the form

Ê(i − p)⊗ H i (F(p− i))→
⊕
j≥0

Ê(i − j − p− 1)⊗ H i− j (F(p+ 1− i + j)).

The “horizontal” cmponent of this map is explicitly known:

Ê(i − p)⊗ H i (F(p− i))→ Ê(i − p− 1)⊗ H i (F(p+ 1− i)),

f ⊗m 7→
∑

i

f e∗i ⊗ ei m.

By (2-1), this corresponds to the multiplication map

W ⊗ H i (F(p− i))→ H i (F(p+ 1− i)).

One of the main results of this paper is an explicit description the entire differential
d p
: T p(F)→ T p+1(F) in some special situations.

3. Tate resolutions for Segre embeddings of Pa × Pb

Let X =Pa
×Pb, with coordinate ring S = K [x, y] for variables x= (x0, . . . , xa),

y = (y0, . . . , yb). The ring S has a natural bigrading where the x variables have
degree (1, 0) and the y variables have degree (0, 1). The graded piece of S in
degree s, t will be denoted Ss,t . Set

W = H 0(X,OX (1, 1))= S1,1

and let
ν : X = Pa

×Pb
→ P(W )' Pab+a+b

be the Segre embedding. The sheaf

F= ν∗OX (k, l) (3-1)

has Tate resolution T •(F) with

T p(F)=
⊕

i

Ê(i − p)⊗ H i (F(p− i))

=

⊕
i

Ê(i − p)⊗ H i(X,OX (k+ p− i, l + p− i)
)
.
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In general, we say that the summand Ê(i − p) ⊗ H i (F(p − i)) of T p(F) has
cohomological level i . Since

H i(X,OX (k+ p− i, l + p− i)
)
= 0

for i /∈ {0, a, b, a+b}, we see that T p(F) has at most four nonzero cohomological
levels.

In Section 2.2, we observed that the “horizontal” components of the differentials
d p
: T p(F)→ T p+1(F) are explicitly known. The main result of this paper is a

description of the “diagonal” components of these maps.

3.1. Regularity. We recall that a coherent sheaf F is called m-regular if

H i (F(m− i))= 0, for all i > 0.

If F is m-regular, then it is known that it is also (m + 1)-regular. The regularity
of F, denoted reg(F), is the unique integer m such that F is m-regular, but not
(m− 1)-regular. It follows from the definition of regularity if m = reg(F), then

T p(F)= Ê(−p)⊗ H 0(F(p)), for p ≥ m,

and the Tate resolution has the form

· · · → T m−2(F)→ T m−1(F)→ Ê(−m)⊗ H 0(F(m))→ · · · .

We now compute the regularity of the sheaf F defined in (3-1).

Lemma 3.1. reg(F)=max
{
−min{k, l},min{b− k, a− l}

}
.

Proof. Let m0 denote the right-hand side of the above equation and let m ≥ m0.
Then Serre duality implies

Ha+b(F(m− (a+ b))
)
= Ha+b(X,OX

(
k+m− (a+ b), l +m− (a+ b)

))
' H 0(X,OX

(
b− k− (m+ 1), a− l − (m+ 1)

))∗
.

Since m≥m0 implies m≥b−k or m≥a−l, we see that Ha+b
(
F(m−(a+b))

)
=0.

Next we use the Künneth formula to write

Ha(F(m− a))= Ha(X,OX (k+m− a, l +m− a)
)

= H 0(Pa,O(k+m− a))⊗ Ha(Pb,O(l +m− a)) ⊕

Ha(Pa,O(k+m− a))⊗ H 0(Pb,O(l +m− a)).

Since m ≥ m0 implies m ≥ −k and m ≥ −l, we see that k +m − a ≥ −a, which
implies Ha(Pa,O(k+m−a))= 0. Furthermore, Ha(Pb,O(l+m−a))= 0 when
a 6= b, and when a = b, we have l+m−a = l+m−b≥−b, which again implies
Ha(Pb,O(l +m− a))= 0. Hence Ha(F(m− a))= 0, and H b(F(m− b))= 0 is
proved similarly.
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It follows that m0≥ reg(F). To prove equality, we will let m=m0−1 and show
that H i (F(m− i)) 6= 0 for some i > 0. We consider two cases.

Case 1: m0 = min{b − k, a − l} ≥ −min{k, l}. This implies the inequalities
b− k− (m+ 1)≥ 0 and a− l − (m+ 1)≥ 0. Hence

Ha+b(F(m− (a+ b))
)
' H 0(X,OX

(
b− k− (m+ 1), a− l − (m+ 1)

))∗
6= 0.

Case 2: m0 = −min{k, l} > min{b− k, a− l}. If m0 = −k, then k +m − a =
−a−1, so that Ha(Pa,O(k+m−a)) 6= 0. We also have m0>min{b−k, a−l}, so
that m0 > b− k or m0 > a− l. The former is impossible since m0 =−k, and then
the latter implies l +m− a ≥ 0, so that H 0(Pb,O(l +m− a)) 6= 0. By Künneth,

0 6= Ha(Pa,O(k+m− a))⊗ H 0(Pb,O(l +m− a))⊆ Ha(F(m− a)).

The proof when m0 =−l is similar. �

To see what this says about the Tate resolution of F, we define

p+ =max
{
−min{k, l},min{b− k, a− l}

}
,

p− =min
{
−min{k, l},min{b− k, a− l}

}
− 1.

(3-2)

Then we have the following result.

Lemma 3.2.

T p(F)=

Ê(−p)⊗ Sk+p,l+p p ≥ p+

Ê(a+ b− p)⊗ S∗b−k−1−p,a−l−1−p p ≤ p−.

Proof. The assertion for p ≥ p+ follows immediately from Lemma 3.1 and the
discussion preceding the lemma. For p ≤ p−, note that

Ha+b(F(p− (a+ b))
)
' H 0(X,OX (b− k− (p+ 1), a− l − (p+ 1))

)∗
= S∗b−k−1−p,a−k−1−p

and that

Ha+b−i(F(p− (a+ b− i))
)
' H i(X,OX (b− k− 1− p− i, a− l − 1− p− i)

)∗
= H i (G(−p− i)),

where G = ν∗OX (b − k − 1, a − l − 1). Applying Lemma 3.1 to G, we see that
H i (G(−p− i))= 0 whenever i > 0 and

−p ≥max
{
−min{b− k− 1, a− l − 1},min{b− (b− k− 1), a− (a− l − 1)}

}
,

which is equivalent to p ≤ p−. �

Lemma 3.2 tells us that for p− and below, the Tate resolution lives at cohomo-
logical level a+ b, and for p+ and above, it lives at cohomological level 0.
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3.2. The shape of the resolution. For k, l ∈ Z, the Tate resolution of

F= ν∗OX (k, l)

on X = Pa
×Pb has one of the following three types:

Type 1: − a ≤ k− l ≤ b,

Type 2: k− l > b,

Type 3: k− l <−a.

We will prove three lemmas, one for each type.

Lemma 3.3 (Type 1). Assume that F has Type 1. Then p− =−min{k, l} − 1 and
p+ =min{b− k, a− l}. Furthermore, if p− < p < p+, then

T p(F) =

Ê(a+ b− p)⊗ S∗b−k−1−p,a−l−1−p⊕
Ê(−p)⊗ Sk+p,l+p.

Proof. Since a and b are positive, the inequality −a ≤ k − l ≤ b implies that
−min{k, l} ≤ min{b− k, a− l}. Using (3-2), we get the desired formulas for p−

and p+.
Now assume that p− < p < p+. Recall that Ha(F(p− a)) is isomorphic to

H 0(Pa,O(k+ p− a))⊗ Ha(Pb,O(l + p− a))

⊕Ha(Pa,O(k+ p− a))⊗ H 0(Pb,O(l + p− a)).

If the second summand is nonzero, then k+ p−a <−a and l+ p−a ≥ 0, which
implies k − l < −a, a contradiction. If the first summand is nonzero, then a = b,
k+ p−a≥ 0 and l+ p−a<−a. These imply k−l > a= b, again a contradiction.
Hence Ha(F(p− a))= 0. A similar argument shows that H b(F(p− b))= 0. �

Thus, when F has Type 1, the differential d p
: T p(F)→ T p+1(F) looks like

Ê(a+ b− p)⊗S∗b−k−1−p,a−l−1−p
//

d p
a+b,0

**

Ê(a+ b− p− 1)⊗S∗b−k−p−2,a−l−p−2⊕ ⊕
Ê(−p)⊗Sk+p,l+p // Ê(−p− 1)⊗Sk+p+1,l+p+1.

Hence a Type 1 Tate resolution has cohomological levels a+ b (the top row) and
0 (the bottom row). Section 4.1 will discuss d p

a+b,0.
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Lemma 3.4 (Type 2). Assume that F has Type 2. Then p−=b−k−1 and p+=−l.
Furthermore, if p− < p < p+, then

T p(F)= Ê(b− p)⊗ Sk+p−b,0⊗ S∗0,−l−p−1.

Proof. Since a and b are positive, the inequality k − l > b implies min{k, l} = l,
min{b− k, a− l} = b− k. Using k− l > b again, (3-2) gives the desired formulas
for p− and p+.

Now assume that p− < p < p+. Then

Ha+b(F(p− (a+ b))
)
' H 0(X,OX (b− k− 1− p, a− l − 1− p)

)∗
= 0

since p > p− = b− k − 1. Furthermore, p < p+ = −l implies l + p− b < 0, so
that

H b(Pa,O(k+ p− b))⊗ H 0(Pb,O(l + p− b))= 0.

Hence, by Künneth and Serre duality on Pb,

H b(F(p− b))' H b(X,OX (k+ p− b, l + p− b)
)

' H 0(Pa,O(k+ p− b))⊗ H b(Pb,O(l + p− b))

' Sk+p−b,0⊗ S∗0,−l−p−1.

Finally, if a 6= b, we also have

Ha(Pb,O(l + p− a))= 0,

and H 0(Pb,O(l+p−a))=0 also holds since l+p−a<0. Hence Ha(F(p−a))=0
when a 6= b. A similar argument shows that H 0(F(p))= 0. �

Lemma 3.4 tells us that for Type 2 Tate resolutions, the only nonzero diagonal
maps appear in T p−(F)→ T p−+1(F):

Ê(a+ 1+ k)⊗ S∗0,a+k−l−b
d p−

a+b,b

++
Ê(k)⊗ S0,0⊗ S∗0,k−l−b−1

(at cohomological levels a+ b and b) and in T p+−1(F)→ T p+(F):

Ê(b+ 1+ l)⊗ Sk−l−b−1,0⊗ S∗0,0
d p+−1

b,0
**
Ê(l)⊗ Sk−l,0

(at cohomological levels b and 0). The diagonal maps d p−
a+b,b and d p+−1

b,0 will be
discussed in Section 4.2.



532 David A. Cox and Evgeny Materov

Lemma 3.5 (Type 3). Assume that F has Type 3. Then p−=a−l−1 and p+=−k.
Furthermore, if p− < p < p+, then

T p(F)= Ê(a− p)⊗ S∗
−k−p−1,0⊗ S0,l+p−a.

Proof. The proof is similar to the proof of Lemma 3.4 and hence is omitted. �

Lemma 3.5 tells us that for Type 3 Tate resolutions, the only nonzero diagonal
maps appear in T p−(F)→ T p−+1(F):

Ê(b+ 1+ l)⊗ S∗b−k+l−a,0
d p−

a+b,a

++
Ê(l)⊗ S∗l−k−a−1,0⊗ S0,0

(at cohomological levels a+ b and a) and in T p+−1(F)→ T p+(F):

Ê(a+ 1+ k)⊗ S∗0,0⊗ S0,l−k−a−1
d p+−1

a,0
++
Ê(k)⊗ S0,l−k

(at cohomological levels a and 0). The diagonal maps d p−
a+b,a and d p+−1

a,0 will be
discussed in Section 4.2.

Remark 3.6. We finish this section by noting that some of the Tate resolutions
considered here can be found in [Fløystad 2004]. Specifically, let W1 and W2 be
finite-dimensional K -vector spaces, and consider the Tate resolution associated to
F= ν∗L, where

L= OP(W1)×P(W2)(−2, a)⊗
∧a+1W1,

dim W1 = a+ 1, and

ν : P(W1)×P(W2)→ P(W1⊗W2)

is the Segre embedding. The results of our paper apply to this Tate resolution.
Now consider a surjective map W ∗1 ⊗W ∗2 →W ∗. This gives a projection

π : P(W1⊗W2) 99K P(W )

whose center is disjoint from the image of the Segre map. By [Fløystad 2004,
Section 1.2], the Tate resolution for F gives a Tate resolution for G=π∗F. Fløystad
shows that this projected Tate resolution has the form

· · ·→ T−1(G)→ T 0(G)= Ê(a)⊗W ∗1 → T 1(G)= Ê(a−1)⊗W ∗2 → T 2(G)→· · ·

with the map d0
: T 0(G)→ T 1(G) coming from the surjection W ∗1 ⊗W ∗2 → W ∗

[Fløystad 2004, Theorem 2.1].
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4. The maps in the Tate resolution for Segre embeddings of Pa × Pb

4.1. Type 1 diagonal maps. We will use the toric Jacobian from [Cox 1996, §4].
The fan for Pa

×Pb has a+ b+ 2 1-dimensional cone generators

e0, . . . , ea, e′0, . . . , e′b,

corresponding to x0, . . . , xa, y0, . . . , yb. The generators e1, . . . , ea, e′0, . . . , e′b−1
are linearly independent. Given f0, . . . , fa+b ∈ S1,1, the toric Jacobian is

J ( f0, . . . , fa+b)=
1

x0 yb
det



f0 · · · fa+b

∂ f0/∂x1 · · · ∂ fa+b/∂x1
...

...

∂ f0/∂xa · · · ∂ fa+b/∂xa

∂ f0/∂y0 · · · ∂ fa+b/∂y0
...

...

∂ f0/∂yb−1 · · · ∂ fa+b/∂yb−1


. (4-1)

Since fi ∈ S1,1=W , we see that J ( f0, . . . , fa+b)∈ Sb,a , where (b, a) is the “critical
degree,” often denoted ρ in the literature on toric residues.

This toric Jacobian is closely related to the (a+1)×(a+b+1)×(b+1) hyper-
determinant discussed in [Gel′fand et al. 1994, 14.3.D]. The connection becomes
especially clear when we use the graph interpretation from [Gel′fand et al. 1994,
pp. 473–474]. The idea is as follows.

Fix distinct monomials f0, . . . , fa+b ∈ S1,1. These give a bipartite graph G with
a+b+2 vertices x0, . . . , xa, y0, . . . , yb and a+b+1 edges given by the monomials,
where f` = xi y j is regarded as the edge connecting xi to y j . The incidence matrix
of G is the (a+b+2)× (a+b+1) matrix whose rows correspond to vertices and
columns correspond to edges, and where an entry is 1 if the vertex lies on the edge
and is 0 otherwise.

Let M denote the square matrix obtained from the incidence matrix by removing
the bottom row. Then we have the following result.

Lemma 4.1. Let f0, . . . , fa+b∈ S1,1 be distinct monomials and let M be the matrix
described above.

(1) The toric Jacobian of f0, . . . , fa+b is given by

J ( f0, . . . , fa+b)= det M
∏
` f`∏

i xi
∏

j y j
.

(2) det M ∈ {0,±1}, and det M =±1 if and only if G is a tree.
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Proof. Each f` is homogeneous of degree 1 in x0, . . . , xa , so f`=
∑

i xi
∂ f`
∂xi

. Hence
the toric Jacobian J ( f0, . . . , fa+b) can be written as

1
x0 yb

det



x0 ∂ f0/∂x0 · · · x0 ∂ fa+b/∂x0

∂ f0/∂x1 · · · ∂ fa+b/∂x1
...

...

∂ f0/∂xa · · · ∂ fa+b/∂xa

∂ f0/∂y0 · · · ∂ fa+b/∂y0
...

...

∂ f0/∂yb−1 · · · ∂ fa+b/∂yb−1



=
1∏

i xi
∏

j y j
det



x0 ∂ f0/∂x0 · · · x0 ∂ fa+b/∂x0

x1 ∂ f0/∂x1 · · · x1 ∂ fa+b/∂x1
...

...

xa ∂ f0/∂xa · · · xa ∂ fa+b/∂xa

y0 ∂ f0/∂y0 · · · y0 ∂ fa+b/∂y0
...

...

yb−1 ∂ f0/∂yb−1 · · · yb−1 ∂ fa+b/∂yb−1


.

For a fixed `, we have f` = xi y j , which implies

f` = xi
∂ f`
∂xi
= y j

∂ f`
∂y j

,

and all other partials vanish. Hence the `-th column is a multiple of f`, and once
we factor out f`, we are left with the `-th column of the truncated incidence matrix
M . Thus

J ( f0, . . . , fa+b)=
f0 · · · fa+b∏

i xi
∏

j y j
det(M).

The second part of the lemma is a standard consequence of the Matrix Tree The-
orem [Bondy and Murty 1981, Chapter 12] which counts the number of spanning
trees of a graph. �

Now that we have the toric Jacobian, the next step is to introduce duplicate sets
of variables

X= (X0, . . . , Xa), Y= (Y0, . . . , Yb), x= (x0, . . . , xa), y= (y0, . . . , yb).

These give the polynomial ring

S⊗ S = k[X,Y, x, y]
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and the ring homomorphism

S = k[x, y] → S⊗ S

defined by xi 7→ X i + xi , yi 7→ Yi + yi . The image of F ∈ S in S⊗ S is denoted
F̃ , so that

F̃(X,Y, x, y)= F(X+ x,Y+ y) ∈ S⊗ S.

From a canonical point of view, the map F 7→ F̃ is comultiplication in the natural
Hopf algebra structure on S.

The toric Jacobian J gives a linear map

J :
∧a+b+1W → Sb,a ⊂ S

and hence a map
J̃ :
∧a+b+1W → S⊗ S.

Looking at homogeneous pieces, we have a decomposition

J̃ =
⊕
α,β

Jα,β,

where
Jα,β :

∧a+b+1W → Sb−α,a−β ⊗ Sα,β
lies in

HomK
(∧a+b+1W, Sb−α,a−β ⊗ Sα,β

)
' HomK

(∧a+b+1W ⊗ S∗b−α,a−β, Sα,β
)
.

Using (2-1), Jα,β gives an element of

HomE
(
Ê(a+ b− p)⊗ S∗b−α,a−β, Ê(−p− 1)⊗ Sα,β

)
,

which by abuse of notation we write as

Jα,β : Ê(a+ b− p)⊗ S∗b−α,a−β→ Ê(−p− 1)⊗ Sα,β . (4-2)

In Section 4.3 we will show that the map d p
a+b,0 from a Type 1 Tate resolution (see

the discussion of following Lemma 3.3) can be chosen to be Jk+p+1,l+p+1.

4.2. Type 2 and 3 diagonal maps. The diagonal maps appearing the Type 2 and
3 Tate resolutions discussed in Section 3.2 are easy to describe. We begin with the
map

δ :
∧a+1W → S0,a+1

defined as follows: given f0, . . . , fa ∈W , we get the Sylvester form

δ( f0, . . . , fa)= det(`i j ),

where fi =
∑a

j=0 `i j x j for `i j ∈ S0,1.
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Now fix α ≥ 0. The multiplication map S0,a+1⊗ S0,α→ S0,a+1+α induces

S0,a+1→ S∗0,α ⊗ S0,a+1+α

and gives the composition∧a+1W
δ
−→ S0,a+1→ S∗0,α ⊗ S0,a+1+α.

This gives maps

δα :
∧a+1W ⊗ S0,α→ S0,a+1+α,

δ∗α :
∧a+1W ⊗ S∗0,a+1+α→ S∗0,α

and hence (by abuse of notation) maps

δα : Ê(a+ 1+ k)⊗ S0,α→ Ê(k)⊗ S0,a+1+α,

δ∗α : Ê(a+ 1+ k)⊗ S∗0,a+1+α→ Ê(k)⊗ S∗0,α.
(4-3)

In Section 4.3 we will show that the diagonal map d p−
a+b,b from a Type 2 Tate

resolution (see the discussion following Lemma 3.4) and the map d p+−1
a,0 from a

Type 3 Tate resolution (see the discussion following Lemma 3.5) can be chosen to
be δ∗k−l−b−1 and δl−k−a−1 respectively.

We next consider the map

δ′ :
∧b+1W → Sb+1,0

defined as follows: given f0, . . . , fb ∈W ,

δ′( f0, . . . , fa)= det(`′i j ),

where fi =
∑b

j=0 `
′

i j y j for `′i j ∈ S1,0.
As above, β ≥ 0 gives the multiplication map Sb+1,0⊗ Sβ,0→ Sb+1+β,0 and the

composition ∧b+1W
δ′
−→ Sb+1,0→ S∗β,0⊗ Sb+1+β,0.

This gives maps

δ′β : Ê(b+ 1+ l)⊗ Sβ,0→ Ê(l)⊗ Sb+1+β,0,

δ′∗β : Ê(b+ 1+ l)⊗ S∗b+1+β,0→ Ê(l)⊗ S∗β,0.
(4-4)

In Section 4.3 we will show that the map d p+−1
b,0 from a Type 2 Tate resolution

(see the discussion following Lemma 3.4) and the map d p−
a+b,a from a Type 3 Tate

resolution (see the discussion following Lemma 3.5) can be chosen to be δ′k−l−b−1
and δ′∗l−k−a−1 respectively.
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4.3. The main theorem. Here is the main result of this section.

Theorem 4.2. For the Tate resolution T •(F) of the sheaf F = ν∗OX (k, l), the di-
agonal maps in T p(F)→ T p+1(F) can be chosen as follows:

(1) (Type 1, −a ≤ k− l ≤ b): d p
a+b,0 = (−1)p Jk+p+1,l+p+1.

(2) (Type 2, k− l > b): d p−
a+b,b = δ

∗

k−l−b−1 and d p+−1
b,0 = δ′k−l−b−1.

(3) (Type 3, k− l <−a): d p−
a+b,a = δ

′∗

l−k−a−1 and d p+−1
a,0 = δl−k−a−1.

This uses the maps Jα,β , δα, δ∗α, δ′β , δ′∗β defined in (4-2), (4-3) and (4-4).

Proof. We begin with Type 2. Let β = k−l−b−1 and assume l = 0 for simplicity,
so that p+ = 0. We will show that

T−2(F)→ T−1(F)→ T 0(F)→ T 1(F)

can be constructed as follows using δ′β :

Ê(b+ 2)⊗ Sβ−1,0⊗ S∗0,1
d−2

// Ê(b+ 1)⊗ Sβ,0⊗ S∗0,0
δ′β

&&Ê(0)⊗ Sβ+b+1,0
d0

// Ê(−1)⊗ Sβ+b+2,1.

The differentials d−2 and d0 are the known horizontal maps. To show that this
sequence is exact, the first step is to prove that

d0
◦ δ′β = δ

′

β ◦ d−2
= 0.

Consider the following identity that holds for all f0, . . . , fb+1 ∈W :

b+1∑
i=0

(−1)i fi δ
′
(

f0 ∧ · · · f̂i · · · ∧ fb+1
)
= 0. (4-5)

If we write fi =
∑b

j=0 `
′

i j y j , then (4-5) follows from the obvious identity

det


f0 . . . fb+1

`′0,0 . . . `′b+1,0
...

...

`′0,b . . . `′b+1,b

= 0

by expanding by minors along the first row and using the definition of δ′.
By (2-1), the composition

Ê(b+ 1)⊗ Sβ,0⊗ S∗0,0
δ′β
−→ Ê(0)⊗ Sβ+b+1,0

d0

−→ Ê(−1)⊗ Sβ+b+2,1
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corresponds to a map ∧b+2W ⊗ Sβ,0⊗ S∗0,0→ Sβ+b+2,1.

We ignore S∗0,0 ' k. Using the definition of δ′β , this map is given by

f0 ∧ · · · ∧ fb+1⊗ h 7→
b+1∑
i=0

(−1)i fi h δ′
(

f0 ∧ · · · f̂i · · · ∧ fb+1
)
.

This reduces to zero (factor out h ∈ Sβ,0 and use (4-5)), so d0
◦ δ′β = 0.

If β > 0, we need to consider δ′β ◦ d−2. Arguing as above, we determine this
map by ∧b+2W ⊗ Sβ−1,0⊗ S∗0,1→ Sβ+b+1,0,

which in turn is determined by the map∧b+2W ⊗ Sβ−1,0→ Sβ+b+1,0⊗ S0,1 = Sβ+b+1,1

given by

f0 ∧ · · · ∧ fb+1⊗ h 7→
b+1∑
i=0

(−1)i fi h δ′
(

f0 ∧ · · · f̂i · · · ∧ fb+1
)

for h ∈ Sβ−1,0. As above, this reduces to zero, so that δ′β ◦ d−2
= 0.

When β = 0, we have to show that the composition

Ê(a+ b+ 2)⊗ S∗0,a+1 δ∗0
++

Ê(a+ 1)⊗ S0,0⊗ S∗0,0
δ′0

**
Ê(0)⊗ Sb+1,0

is zero. By (2-1), the composed map corresponds to a map∧a+b+2W ⊗ S∗0,a+1→ Sb+1,0,

which in turn is determined by the a map∧a+b+2W → Sb+1,0⊗ S0,a+1 = Sb+1,a+1.

Given f0, . . . , fa+b+1 ∈W , this map is given by

f0 ∧ · · · ∧ fa+b+1 7→
∑
|S|=a+1

ε(S) δ(fS) δ
′(fSc), (4-6)
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where the sum is over all subsets S ⊂ {0, . . . , a+ b+ 1} of cardinality a+ 1 and
Sc
= {0, . . . , a+ b+ 1} \ S. Furthermore,

δ(fS)= δ
(∧

i∈S fi
)
,

δ′(fSc)= δ′
(∧

i∈Sc fi
)
,

and ε(S)=±1 is the sign that appears in the Laplace expansion described below.
To show that the sum in (4-6) is zero, write

fi =

a∑
j=0

`i j x j =

b∑
j=0

`′i j y j

and consider the matrix

M=



`0,0 · · · `a+b+1,0
...

...

`0,a · · · `a+b+1,a

`′0,0 · · · `
′

a+b+1,0
...

...

`′0,b · · · `
′

a+b+1,b


.

If we multiply first a+1 rows by suitable x variables and multiply the last b+1 rows
by y variables, we get the same result, namely the row ( f0, . . . , fa+b+1). If follows
that det M = 0. If we take the Laplace expansion that involves (a + 1)× (a + 1)
minors of the first a+1 rows multiplied by (b+1)×(b+1) complementary minors
of the last b+1 rows, we get the sum in (4-6). Hence this sum is zero, which proves
that δ′0 ◦ δ

∗

0 = 0.
To complete the proof that δ′β gives the diagonal map in T−1(F)→ T 0(F), we

follow the strategy used in [Cox 2007, Theorem 1.3]. Let N ′ = (a+ 1)(b+ 1) =
dim(W ). Since Ê ' E(−N ′) and T−1(F)→ T 0(F)→ T 1(F) is

Ê(b+ 1)⊗ Sβ,0⊗ S∗0,0→ Ê(0)⊗ Sβ+b+1,0
d0

−→ Ê(−1)⊗ Sβ+b+2,1,

the kernel of d0 has dim(Sβ,0 ⊗ S∗0,0) minimal generators of degree N ′ − b − 1.
Since we have proved that δ′β maps into this kernel, it suffices to prove that this
map is injective in degree N ′− b− 1, namely that

δ′β :
∧N ′W ⊗ Sβ,0→

∧N ′−b−1W ⊗ Sβ+b+1,0

is injective (as above, we ignore S∗0,0). A basis of
∧N ′W is given by

x0 y0 ∧ · · · ∧ x0 yb ∧ω,
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where ω is the wedge product of the remaining N ′ − b − 1 monomials of W in
some order. Since

δ′(x0 y0 ∧ · · · ∧ x0 yb)= xb+1
0 ,

we see that for h ∈ Sβ,0,

δ′β(x0 y0 ∧ · · · ∧ x0 yb ∧ω⊗ h)= ω⊗ xb+1
0 h+ · · · ∈

∧N ′−b−1W ⊗ Sβ+b+1,0,

where the omitted terms involve basis elements of
∧N ′−b−1W different from ω.

The desired injectivity is now obvious.
This completes the proof for d p+−1

b,0 in a Type 2 Tate resolution when l = 0 and
k = β + b + 1. The proof for arbitrary l is similar, and the same proof easily
adapts to d p+−1

a,0 in a Type 3 Tate resolution. As for d p− , we note that applying
HomE(−, K )⊗K Ê to T p(F) gives T a+b−p(G), where G= ν∗OX (−a−1−k,−b−
1− l). This duality interchanges Type 2 and Type 3 resolutions. Then our results
for

d p+−1
b,0 and d p+−1

a,0

and dualize to give the desired results for

d p−
a+b,a and d p−

a+b,b.

It remains to consider Type 1 Tate resolutions. This case will be more compli-
cated since there are two sets of variables to keep track of: the original variables
x, y and the duplicates X,Y introduced in Section 4.1.

Let α = k + p + 1 and β = k + p + 1. We will show that the crucial part of
T p(F)→ T p+1(F)→ T p+2(F) can be chosen to be

Ê(a+b−p)⊗ S∗b−α,a−β
d p

a+b,a+b//

(−1)p Jα,β

((

Ê(a+b−p−1)⊗S∗b−α−1,a−β−1

(−1)p+1 Jα+1,β+1

((

⊕
Ê(−p−1)⊗Sα,β

d p+1
0,0 // Ê(−p−2)⊗ Sα+1,β+1.

This first step is to show that this is a complex, that is, the composition

T p(F)→ T p+1(F)→ T p+2(F)

is zero. Since the horizontal maps behave properly, it suffices to show that

d p+1
0,0 ◦ Jα,β = Jα+1,β+1 ◦ d p

a+b,a+b. (4-7)
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Using (2-1), this is equivalent to showing that the diagram

∧a+b+2W ⊗ S∗b−α,a−β
d p

a+b,a+b//

Jα,β
��

∧a+b+1W ⊗ S∗b−α−1,a−β−1

Jα+1,β+1

��
W ⊗ Sα,β

d p+1
0,0 // Sα+1,β+1

commutes. A key point is that on the top, d p
a+b,a+b uses X,Y, while on the bottom,

d p+1
0,0 uses x, y. We can recast the commutativity of this diagram as saying that

d p+1
0,0 ◦ Jα,β = Jα+1,β+1 ◦ d p

a+b,a+b

as maps ∧a+b+2W → Sb−α,a−β︸ ︷︷ ︸
X,Y

⊗ Sα+1,β+1︸ ︷︷ ︸
x,y

.

Given a+b+2 elements of W , we write them as f0, . . . , fa+b+1 when using x, y
and as F0, . . . , Fa+b+1 when using X,Y. Then (4-7) is equivalent to the identity

a+b+1∑
i=0

(−1)i fi Jα,β
(

f0 ∧ · · · f̂i · · · ∧ fa+b+1
)

=

a+b+1∑
i=0

(−1)i Fi Jα+1,β+1
(

f0 ∧ · · · f̂i · · · ∧ fa+b+1
)

in Sb−α,a−β ⊗ Sα+1,β+1. Summing this over all α and β gives the second identity

a+b+1∑
i=0

(−1)i fi J̃
(

f0 ∧ · · · f̂i · · · ∧ fa+b+1
)

=

a+b+1∑
i=0

(−1)i Fi J̃
(

f0 ∧ · · · f̂i · · · ∧ fa+b+1
)
,

and the first identity follows from the second by taking the appropriate graded
piece. However,

• The change of variables (x, y)↔ (X,Y) interchanges fi and Fi ;

• J̃
(

f0 ∧ · · · f̂i · · · ∧ fa+b+1
)

is invariant under (x, y)↔ (X,Y).

It follows that the second identity is equivalent to the following

Assertion 4.3.
a+b+1∑

i=0

(−1)i fi J̃
(

f0 ∧ · · · f̂i · · · ∧ fa+b+1
)

(4-8)
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is invariant under (x, y)↔ (X,Y).

In particular, (4-7) is an immediate consequence of Assertion 4.3.
We will prove Assertion 4.3 by representing (4-8) as a determinant. We begin

with the formula

J ( f0 ∧ · · · ∧ fa+b)=
1
yb

det



∂ f0/∂x0 · · · ∂ fa+b/∂x0
...

...

∂ f0/∂xa · · · ∂ fa+b/∂xa

∂ f0/∂y0 · · · ∂ fa+b/∂y0
...

...

∂ f0/∂yb−1 · · · ∂ fa+b/∂yb−1


,

which follows from the proof of Lemma 4.1. This implies

J̃ ( f0 ∧ · · · ∧ fa+b)=
1

Yb+ yb
det



˜∂ f0/∂x0 · · · ˜∂ fa+b/∂x0
...

...

˜∂ f0/∂xa · · · ˜∂ fa+b/∂xa

˜∂ f0/∂y0 · · · ˜∂ fa+b/∂y0
...

...

˜∂ f0/∂yb−1 · · · ˜∂ fa+b/∂yb−1


.

It follows easily that

a+b+1∑
i=0

(−1)i fi J̃
(

f0 ∧ · · · f̂i · · · ∧ fa+b+1
)
=

1
Yb+ yb

det M,

where M is the (a+ b+ 2)× (a+ b+ 2) matrix

M=



f0 · · · fa+b+1

˜∂ f0/∂x0 · · · ˜∂ fa+b+1/∂x0
...

...

˜∂ f0/∂xa · · · ˜∂ fa+b+1/∂xa

˜∂ f0/∂y0 · · · ˜∂ fa+b+1/∂y0
...

...

˜∂ f0/∂yb−1 · · · ˜∂ fa+b+1/∂yb−1


.

To prove Assertion 4.3, it suffices to show that the determinant of the matrix M is
unchanged when we replace its top row with (F0, . . . , Fa+b+1). For this purpose,
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consider the (a+ b+ 3)× (a+ b+ 3) matrix

M=


0

M
...

0
∂̃ f0
∂yb
· · ·

∂̃ fa+b+1
∂yb

1


and observe that det M= det M. Write M as

M=


f0 · · · fa+b+1 0

0

Q̃
...

1

 .
Since f` ∈W = S1,1, we have the easily proved identity

F`− f` =−
a∑

i=0

xi
∂̃ f`
∂xi
+

b∑
j=0

Y j
∂̃ f`
∂y j

.

Multiplying the last a+ b+ 2 rows of M by −xi or Y j as appropriate and adding
to the first row gives the matrix

M′ =


F0 · · · Fa+b+1 Yb

0

Q̃
...

1

 .
Note that det M′ = det M. This is almost what we need, except for the Yb in the
first row of M′.

We claim that det Q̃ = 0. Assuming this for the moment, it follows that we
can replace Yb with 0 in M′ without changing its determinant. This easily implies
det M is unchanged when we replace its top row with (F0, . . . , Fa+b+1) and will
complete the proof of (4-7).

It remains to study det Q̃. The matrix Q̃ is obtained from

Q =



∂ f0/∂x0 · · · ∂ fa+b/∂x0
...

...

∂ f0/∂xa · · · ∂ fa+b/∂xa

∂ f0/∂y0 · · · ∂ fa+b/∂y0
...

...

∂ f0/∂yb · · · ∂ fa+b/∂yb
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by the F 7→ F̃ operation described in Section 4.1. But det Q = 0 since f` =∑a
i=0 xi ∂ f`/∂xi =

∑b
j=0 y j ∂ f`/∂y j , and then

det Q̃ = d̃et Q = 0.

Hence we have proved that the maps

T p(F)→ T p+1(F)

defined using (−1)p Jα,β give a complex. To show that the complex is exact, we
again use the strategy of [Cox 2007, Theorem 1.3]. Lemma 3.3 tells us that p+ =
min{b−k, a− l}. For simplicity, we assume b−k ≤ a− l, so that p+ = b−k. Let
β = b− k + l and p = p+− 1. Type 1 and b− k ≤ a− l imply 0 ≤ β ≤ a. Then
T p(F)→ T p+1(F) becomes

Ê(a+ k+ 1)⊗ S∗0,a−β
(−1)p Jb,β

((

⊕
Ê(k− b+ 1)⊗ Sb−1,β−1

d p
0,0 // Ê(k− b)⊗ Sb,β .

(4-9)

Let N ′ = (a + 1)(b + 1) = dim(W ). Then the shape of the Tate resolution tells
us that there are dim(Sb−1,β−1) minimal generators of degree N ′ − (k − b + 1)
and dim(S∗0,a−β) minimal generators of degree N ′ − (a + k + 1). The former are
taken care of by the known map d p

0,0, and for the latter, we see that in degree
N ′− (a+ k+ 1), the above diagram becomes

∧N ′W ⊗ S∗0,a−β
(−1)p Jb,β

((

⊕
∧N ′−a−bW ⊗ Sb−1,β−1

d p
0,0 // ∧N ′−a−b−1W ⊗ Sb,β .

(4-10)

As in [Cox 2007, Lemma 2.2], we need to show that (−1)p Jb,β is injective and
that its image has trivial intersection with the image of d p

0,0.

For the former, let θ ∈
∧N ′W be the wedge product of the monomials in W

in some order, and let ϕ ∈ S∗0,a−β satisfy Jb,β(θ ⊗ ϕ) = 0. Suppose that Yu is a
monomial in the Y variables of degree |u|= a−β. We prove ϕ(Yu)= 0 as follows.

Pick Yv such that Yu
|Yv and |v| = a, and write

Yv
= Y j1 · · · Y ja .
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Then consider the following collection f0, . . . , fa+b of monomials in W = S1,1:

x0 y j , j = 0, . . . , b and xi y ji , i = 1, . . . , a.

The graph of these monomials (in the sense of Section 4.1) is easily seen to be a
tree. Then Lemma 4.1 implies that

J ( f0 ∧ · · · ∧ fa+b)=±

∏b
j=0 x0 y j

∏a
i=1 xi y ji∏a

i=0 xi
∏b

j=0 y j
=±xb

0

a∏
i=1

y ji =±xb
0 yv.

Thus J̃ ( f0 ∧ · · · ∧ fa+b) = ±(X0 + x0)
b(Y+ y)v. Taking those terms of degree

(b, β) in (x, y), we obtain

Jb,β( f0 ∧ · · · ∧ fa+b)=±
∑
w

(
v

w

)
xb

0 Yv−w yw,

where
(v
w

)
=
∏b

j=0
(v j
w j

)
and

∑
w denotes the sum over all exponent vectors w

satisfying |w| = β and 0≤w j ≤ v j for all j . Writing θ = f0∧ · · ·∧ fa+b ∧ω, we
obtain

0= Jb,β( f0 ∧ · · · ∧ fa+b ∧ω⊗ϕ)

= ω⊗ϕ
(
Jb,β( f0 ∧ · · · ∧ fa+b)

)
+ · · ·

= ω⊗

(
±

∑
w

(
v

w

)
ϕ(Yv−w) xb

0 yw
)
+ · · · ,

where the omitted terms involve basis elements of
∧N ′−a−b−1W different from

ω. Since we are in characteristic 0, it follows that ϕ(Yv−w) = 0 for all w under
consideration. Our choice of v guarantees that our original monomial Yu is one of
these Yv−w’s. Hence ϕ(Yu) = 0, which implies ϕ = 0 since Yu was an arbitrary
monomial of degree a−β. This completes the proof (−1)p Jb,β is injective.

It remains to show that the image of this map has trivial intersection with the
image of d p

0,0. Following a suggestion of Jenia Tevelev, we use representation
theory to finish the proof.

Recall that there is a natural isomorphism

W = S1,1 ∼=W1⊗W2,

where W1 = S1,0 = Ca+1 and W2 = S0,1 = Cb+1. First, we show that an action of
the group G=SL(W1)×SL(W2) on the diagram (4-10) is G-invariant on the maps
d p

0,0 and (−1)p Jb,β . Indeed, since the map d p
0,0 is induced by the multiplication

map

W ⊗ Sb−1,β−1→ Sb,β,
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we conclude that d p
0,0 is G-invariant. Now observe that the toric Jacobian can be

written as a linear combination of monomials

J ( f0, . . . , fa+b)=
∑
µ,ν

cµ,νxµyν,

where cµ,ν are the entries of the square matrix whose determinant is a hyperdeter-
minant [Gel′fand et al. 1994, p. 473]. By [Gel′fand et al. 1992, Proposition 1.4],
the hyperdeterminant is G-invariant, so the toric Jacobian (4-1) (and respectively
the map (−1)p Jb,β) is G-invariant.

It follows from Schur’s Lemma that the images of d p
0,0 and Jb,β have trivial

intersection if the representation of G corresponding to∧N ′−a−bW⊗Sb−1,β−1=
∧ab+1

(W1⊗W2)⊗Symb−1(W1)⊗Symβ−1(W2) (4-11)

does not contain the representation corresponding to∧N ′W ⊗ S∗0,a−β =
∧ab+a+b+1

(W1⊗W2)⊗Syma−β(W ∗2 ).

To prove this, we use some basic facts from the representation theory of the special
linear group (see, for example, [Fulton and Harris 1991, §6.1 and §15.3]). Given
a partition λ = (λ1, . . . , λs) with λ1 ≥ · · · ≥ λs ≥ 0, we get a Young diagram
Dλ, which consists of s rows of boxes, all starting at the same column, of lengths
λ1 ≥ · · · ≥ λs .

For a vector space V over K , Sλ(V ) denotes the irreducible SL(V )-representa-
tion corresponding to the partition λ. We use notation

λ= (da1
1 , . . . , da`

` )

to denote the partition having ai copies of the integer di for 1 ≤ i ≤ `. The corre-
sponding Young diagram Dλ has ai rows of boxes of length di . Thus λ= (d) gives
the symmetric product Sλ(V )= Symd(V ) and λ= (1d) gives the exterior product
Sλ(V )=

∧d V .
Recall that Sλ(V ) = 0 when the Young diagram of λ has more than dim V

nonzero rows, and that two Young diagrams give the same SL(V )-representation
if and only if one can be obtained from the other by adding or deleting columns of
height dim V at the beginning of the Young diagram.

By the Cauchy formula [Fulton and Harris 1991, §6.1], we have the following
decomposition for the exterior powers of W =W1⊗W2:∧ab+1W =

∧ab+1
(W1⊗W2)=

⊕
|λ|=ab+1

Sλ(W1)⊗Sλ′(W2),

where the direct sum runs over all partitions λ of ab+1 with at most dim W1=a+1
rows, at most dim W2 = b+1 columns, and λ′ is the conjugate partition to λ. Note
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that the representation corresponding to the highest power of determinant
∧N ′W

is one-dimensional, that is, a trivial representation.
When we combine this with (4-11), we see that it is enough to show that it cannot

happen simultaneously that Sλ(W1)⊗ Symb−1(W1) contains the trivial represen-
tation and Sλ′(W2)⊗ Symβ−1(W2) contains Syma−β(W ∗2 ). Since dim W1 = a+ 1
and dim W2 = b+1, we can assume that the Young diagram of λ has at most a+1
rows (otherwise Sλ(W1)= 0) and at most b+1 columns (otherwise Sλ′(W2)= 0).

By the Pieri formula [Fulton and Harris 1991, (6.8)], for any partition λ, we
have

Sλ(W1)⊗Symb−1(W1)∼=
⊕
ν

Sν(W1),

where the sum is over all ν whose Young diagram is obtained by adding b−1 boxes
to the Young diagram of λ, with no two boxes in the same column. Note also that
each ν is a partition of (ab+ 1)+ (b− 1) = (a+ 1)b. Since Dλ has |λ| = ab+ 1
boxes and fits inside a (a+ 1)× (b+ 1) rectangle, the only way for ν to give the
trivial representation is for Dλ to be the Young diagram.

λ =

b -�

a

?

6

You can see how adding b− 1 boxes to the bottom row (the dashed boxes in the
drawing) gives the trivial representation, since Dν is trivial if and only if it consists
entirely of columns of height a+ 1.

This shows that the only case when

Sλ(W1)⊗Symb−1(W1)

contains the trivial representation is when λ= (ba, 1). Hence, λ′ must be

(a+ 1, ab−1).

On the other hand, Syma−β(W ∗2 ) corresponds to the partition (ba−β) [Fulton and
Harris 1991, §15.5, Exercise 15.50], so from the Pieri formula we see that it is
impossible to get (ba−β) from the tensor product Sλ′(W2)⊗Symβ−1(W2) by adding
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β−1 boxes to (a+1, ab−1), no two in the same column, and then deleting columns
of height b+ 1.

The final step is to prove exactness when T p
→ T p+1 is given by

Ê(a+ k+ 1)⊗ S∗b−α,a−β
(−1)p Jα,β

))

d p
a+b,a+b // Ê(a+ k)⊗ S∗b−α−1,a−β−1⊕ ⊕

Ê(k− b+ 1)⊗ Sα−1,β−1
d p

0,0 // Ê(k− b)⊗ Sα,β .

Here, we use the same conventions as in (4-9), except that we now assume that
b − α and a − β are positive. As before, the shape of the Tate resolution tells
us that there are dim(Sα−1,β−1) minimal generators of degree N ′ − (k − b + 1)
and dim(S∗b−α,a−β) minimal generators of degree N ′ − (a + k + 1). The former
are taken care of by the known map d p

0,0, and for the latter, we see that in degree
N ′− (a+ k+ 1), the above diagram becomes

∧N ′W ⊗ S∗b−α,a−β
(−1)p Jα,β

((

d p
a+b,a+b //

∧N ′−1W ⊗ S∗b−α−1,a−β−1⊕ ⊕
∧N ′−a−bW ⊗ Sα−1,β−1

d p
0,0 // ∧N ′−a−b−1W ⊗ Sα,β .

(4-12)

The map d p
a+b,a+b is injective since it is dual to the surjective multiplication map

W ⊗ Sb−α−1,a−β−1→ Sb−α,a−β . As in the proof of [Cox 2007, Theorem 1.3], it
follows immediately that the map (4-12) is injective on

∧N ′W ⊗ S∗b−α,a−β and that
the images of

∧N ′W ⊗ S∗b−α,a−β and
∧N ′−a−bW ⊗ Sα−1,β−1

have trivial intersection. This completes the proof of the theorem. �

Remark 4.4. In the proof of Section 4.3, we used the relation between the toric Ja-
cobian of f0, . . . , fa+b ∈ S1,1 and the hyperdeterminants studied in [Gel′fand et al.
1994; 1992] to prove the equivariance we needed. The theorem implies that certain
hyperdeterminants are explicitly encoded into the Tate resolutions considered here.
This is another example of the amazing amount of information contained in these
resolutions.
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