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For any finite graph 0 and any field K of characteristic unequal to 2, we con-
struct an algebraic variety X over K whose K -points parametrize K -Lie algebras
generated by extremal elements, corresponding to the vertices of the graph, with
prescribed commutation relations, corresponding to the nonedges. After that,
we study the case where 0 is a connected, simply laced Dynkin diagram of
finite or affine type. We prove that X is then an affine space, and that all points
in an open dense subset of X parametrize Lie algebras isomorphic to a single
fixed Lie algebra. If 0 is of affine type, then this fixed Lie algebra is the split
finite-dimensional simple Lie algebra corresponding to the associated finite-type
Dynkin diagram. This gives a new construction of these Lie algebras, in which
they come together with interesting degenerations, corresponding to points out-
side the open dense subset. Our results may prove useful for recognizing these
Lie algebras.

1. Introduction and main results

An extremal element of a Lie algebra L over a field K of characteristic unequal to 2
is an element x ∈L for which [x, [x,L]]⊆K x . A sandwich element is an x ∈L sat-
isfying the stronger condition [x, [x,L]] = 0. The definition of extremal elements
in characteristic 2 is more involved, which is one reason for restricting ourselves
to characteristics unequal to 2 here. Extremal elements and sandwich elements
play important roles in both classical and modern Lie algebra theory. In complex
simple Lie algebras, or their split analogues over other fields, extremal elements are
precisely the elements that are long-root vectors relative to some maximal torus.
Sandwich elements are used in the classification of simple Lie algebras in small
characteristics [Premet and Strade 1997]; they occur in the modular Lie algebras
of Cartan type, such as the Witt algebras. Sandwich elements were originally
introduced in relation with the restricted Burnside problem [Kostrikin 1981]. An
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important insight for the resolution of this problem is the fact that a Lie algebra
generated by finitely many sandwich elements is necessarily finite-dimensional.
While this fact was first only proved under extra assumptions, in [Zelmanov and
Kostrikin 1990] it is proved in full generality. We will use this result in what
follows.

The prominence of extremal elements in the work of Kostrikin and Zel’manov
and in modular Lie algebra theory led to the natural problem of describing all Lie
algebras generated by a fixed number of extremal elements [Cohen et al. 2001; in ’t
panhuis et al. 2007; Postma 2007; Roozemond 2005].

Example. Suppose that we want to describe all Lie algebras L generated by two
extremal elements x and y. Since [x, [x, y]] is a scalar multiple ax of x and
[y, [x, y]]=−[y, [y, x]] is a scalar multiple −by of y, L is spanned by x, y, [x, y].
There may be linear dependencies between these elements, but let us assume that
they are linearly independent. Then

a[y, x] = [y, [x, [x, y]]] = [[y, x], [x, y]]+[x, [y, [x, y]]] = 0−b[x, y] = b[y, x],

and since we have assumed that [x, y] 6= 0, we find that a = b. Hence three-
dimensional Lie algebras with a distinguished pair of extremal generators are para-
metrized by the single number a. Moreover, all algebras with a 6= 0 are mutually
isomorphic and isomorphic to the split simple Lie algebra of type A1, while the
algebra with a=0 is nilpotent and isomorphic to the three-dimensional Heisenberg
algebra. This is a prototypical example of our results. The next smallest case of
three generators is treated in [Cohen et al. 2001; Zelmanov and Kostrikin 1990]
and also by our results below. There the generic Lie algebra is split of type A2 and
more interesting degenerations exist.

We now generalize and formalize this example to the case of more generators,
where we also allow for the flexibility of prescribing that certain generators com-
mute. Thus let 0 be a finite simple graph without loops or multiple edges. Let
5 be the vertex set of 0 and denote the neighbor relation by ∼. Fixing a field K
of characteristic unequal to 2, we denote by F the quotient of the free Lie algebra
over K generated by 5 modulo the relations

[x, y] = 0 for all x, y ∈5 with x 6∼ y.

So F depends both on 0 and on K , but we will not make this dependence explicit
in the notation. We write F∗ for the space of all K -linear functions F→ K . For
every f ∈ (F∗)5, also written ( fx)x∈5, we denote by L( f ) the quotient of F by
the ideal I( f ) generated by the (infinitely many) elements

[x, [x, y]] − fx(y)x for x ∈5 and y ∈ F. (1)
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By construction, L( f ) is a Lie algebra generated by extremal elements, corre-
sponding to the vertices of 0, which commute when they are not connected in 0.
The element fx is a parameter needed to express the extremality of x ∈ 5. If 0
is not connected, then both F and L( f ) naturally split into direct sums over all
connected components of 0, so it is no restriction to assume that 0 is connected;
we will do so throughout this paper.

In the Lie algebra L(0), the elements of5 map to sandwich elements; hence by
[Zelmanov and Kostrikin 1990] this Lie algebra is finite-dimensional. For general
f ∈ (F∗)5 it turns out that dim L( f ) ≤ dim L(0); see [Cohen et al. 2001] or the
proof of Theorem 1 below. It is therefore natural to focus on the Lie algebras L( f )
of the maximal possible dimension dim L(0). This leads us to define the set

X := { f ∈ (F∗)5 | dim L( f )= dim L(0)},

the parameter space for all maximal-dimensional Lie algebras of the form L( f ).

Example. In the two-generator case above, 0 is the graph with two vertices joined
by an edge. The sandwich algebra L(0) is the three-dimensional Heisenberg al-
gebra, and the condition that dim L( f ) = 3 corresponds to our assumption above
that x, y, [x, y] be linearly independent. This linear independence forced the pa-
rameters a and b to be equal. Here X is the affine line with coordinate a. All Lie
algebras corresponding to points a 6= 0 are mutually isomorphic.

Our first main result is that X carries a natural structure of an affine algebraic
variety. To specify this structure we note that I(0) is a homogeneous ideal relative
to the natural N-grading that F inherits from the free Lie algebra generated by 5.

Theorem 1. The set X is naturally the set of K -rational points of an affine variety
of finite type defined over K . This variety can be described as follows. Fix any
finite-dimensional homogeneous subspace V of F such that V + I(0) = F. Then
the restriction map

X→ (V ∗)5, f 7→ ( fx |V )x∈5

maps X injectively onto the set of K -rational points of a closed subvariety of
(V ∗)5. This yields a K -variety structure on X which is independent of the choice
of V .

We prove this theorem in Section 2. In Section 3 we first derive some relations
between the sandwich algebra L(0) and the positive part of the complex Kac–
Moody algebra of type 0. Then we determine L(0) explicitly in the case where 0
is a simply laced Dynkin diagram of finite or affine type; by this we mean any of the
diagrams in Figure 1 without or with vertex 0, respectively. See Theorems 12 and
13. In Section 4 we study the variety X . After some observations for general 0,
we again specialize to the diagrams of Figure 1. For these we prove that X is an
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Figure 1. The simply laced Dynkin diagrams of affine type. The
notation comes from [Kac 1990], and the corresponding finite-
type diagrams are obtained by deleting vertex 0.

affine space, and that for f in an open dense subset of X , the Lie algebra L( f )
is isomorphic to a fixed Lie algebra; see Theorems 19 and 22. The latter of these
theorems is our second main result, and we paraphrase it here.

Theorem 2. Let 0 be any of the simply laced Dynkin diagrams of affine type in
Figure 1, let 00 be the finite-type diagram obtained by removing vertex 0 from 0,
and let 6 be the edge set of 0. Then X is isomorphic to the affine space of dimen-
sion |6|+1 over K , and for f in an open dense subset of X , the Lie algebra L( f )
is isomorphic to the Chevalley algebra of type 00.

Remark 3. By the Chevalley algebra of type 00 we mean the Lie algebra obtained
by tensoring a certain Z-form of the complex simple Lie algebra of type 00 with
the field K ; see Section 3.2 for details. This Lie algebra is often simple, but not
always; see [Strade 2004, Chapter 4] and [Seligman 1967].

In Section 5 we will conclude with remarks on applications and related work.

2. The variety structure of the parameter space

Recall the notation from Section 1: 0 is a connected finite graph without loops
or multiple edges, K is a field of characteristic unequal to 2, and X is the set of
all f ∈ (F∗)5 such that L( f ) has the maximal possible dimension, namely that
of L(0). To avoid formulas with many Lie brackets, we write xd · · · x1 for the
expression [xd , [ · · · [x2, x1] · · · ]]. Such an element is called a monomial in the
xi of degree d. In the proof of Theorem 1 we use the N-grading F =

⊕
∞

d=1 Fd

of F, where Fd is the span of all monomials of degree d in the elements of 5. We
also use the following terminology: A subspace V of F is called homogeneous if it
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equals
⊕

d(V∩Fd). A single element of F is homogeneous if it lies in some Fd . To
any subspace V of F we associate the homogeneous subspace gr V of F spanned
by all vd as v = v1+· · ·+ vd for vi ∈Fi runs through V . If V is an ideal, then so
is gr V .

Proof of Theorem 1. Let V be a finite-dimensional homogeneous subspace of F

such that F=V⊕I(0); such a subspace exists as L(0) is finite-dimensional [Cohen
et al. 2001; Zelmanov and Kostrikin 1990] and I(0) is homogeneous. Note that
the theorem only requires that F= V +I(0); we will argue later why this suffices.
Observe that V contains the image of 5 in L: the abelian Lie algebra spanned by
5 is clearly a quotient of L(0), so the component of I(0) in degree 1 is trivial.
From the shape of the generators (1), it is clear that the homogeneous ideal gr I( f )
associated to I( f ) contains I(0), so that F=V+I( f ) for all f , and F=V⊕I( f )
if and only if f ∈ X . We will argue that the map

9 : X→ (V ∗)5, f 7→ ( fx |V )x∈5 =: f |V

is injective, and that its image is a closed subvariety of (V ∗)5.
For each f ∈ X , let π f :F→ V be the projection onto V along I( f ). We prove

two slightly technical statements: First, for all u ∈F there exists a polynomial map
Pu : (V ∗)5→ V such that

Pu( f |V )= π f (u) for all f ∈ X;

and second, for x ∈5 and u ∈F there exists a polynomial Qx,u : (V ∗)5→ K such
that

Qx,u( f |V )= fx(u) for all f ∈ X and

Qx,u(h)= hx(u) if u ∈ V and h ∈ (V ∗)5.

We proceed by induction on the degree of u: assume that both statements are true
in all degrees less than d, and write u = u1 + u2 + u3, where u1 has degree less
than d, u2 ∈ V ∩Fd , and u3 ∈I(0)∩Fd . Then u3 can be written as a sum of terms
of the form xk · · · x1x1u′ with xi ∈ 5 and u′ of degree d − (k + 1) < d. Modulo
I( f ) for f ∈ X , this term is equal to

fx1(u
′)π f (xk · · · x1)= Qx1,u′( f |V )Pxk ···x1( f |V ),

where we used the induction hypothesis for u′ and xk · · · x1. Hence a Pu of the
form

Pu := Pu1 + u2+ terms of the form Qx1,u′Pxk ···x1

has the required property. Similarly, for x ∈5 and f ∈ X we have

fx(xk · · · x1x1u′)x = xxxk · · · x1x1u′ = Qx1,u′( f |V )Qx,xk ···x1( f |V )x mod I( f ),
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and since x 6∈ I( f ) we conclude that

fx(xk · · · x1x1u′)= Qx1,u′( f |V )Qx,xk ···x1( f |V ).

Hence we may define Qx,u by

Qx,u(h) := Qx,u1(h)+ hx(u2)+ terms of the form Qx1,u′(h)Qx,xk ···x1(h)

for h∈ (V ∗)5. This shows the existence of Pu and Qx,u . The injectivity of9 is now
immediate: any f ∈ X is determined by its restriction to V by fx(u)= Qx,u( f |V ).

We now show that im(9) is closed. For any tuple h ∈ (V ∗)5, one may try to
define a Lie algebra structure on V by setting

[u, v]h := P[u,v](h) for u, v ∈ V .

By construction, if h = f |V for some f ∈ X , then this turns V into a Lie algebra
isomorphic to L( f ). In this case the Lie bracket has the following two properties:

(i) If v ∈ V is expressed as a linear combination
∑

x1,...,xd∈5
c(xd ,...,x1)xd · · · x1 of

monomials in the elements of5, where the Lie bracket is taken in F, then the
expression

∑
x1,...,xd∈5

c(xd ,...,x1)[xd , [ · · · [x2, x1]h · · · ]h]h also equals v; and

(ii) [x, [x, u]h]h = Qx,u(h)x for all x ∈5 and u ∈ V .

Conversely, suppose that [ · , · ]h indeed defines a Lie algebra on V satisfying (i)
and (ii). Then (V, [ · , · ]h) is a Lie algebra of dimension dim L(0) that by (i) is
generated by the image of 5, and by (ii) this image consists of extremal elements.
Hence there exists an f ∈ X corresponding to this Lie algebra, and its restriction
to V is h — indeed, fx(u) is the coefficient of x in [x[x, u]h]h , which is Qx,u(h)=
hx(u) for u ∈ V . Finally, all stated conditions on h — the fact that [ · , · ]h satisfies
the Jacobi identity and anticommutativity, together with (i) and (ii) — are closed;
here we use the polynomiality of Pu and Qx,u . This proves that im(9) is closed.

Now if U is any homogeneous subspace containing V , then the restriction map
9 ′ : X → (U∗)5 is clearly also injective. Moreover, an h′ ∈ (U∗)5 lies in the
image of this map if and only if h′|V lies in im9 and h′x(u) = Qx,u(h′|V ) for
all u ∈ U . Thus im9 ′ is closed, and the maps im9 ′ → im9, h′ 7→ h′|V and
im9 → im9 ′, h 7→ h′ with h′x(u) = Qx,u(h) for u ∈ U are inverse morphisms
between im9 and im9 ′. Similarly, if V ′ is any other homogeneous vector space
complement of I(0) contained in U , then the restriction map (U∗)5→ ((V ′)∗)5

induces an isomorphism between the images of X in these spaces. This shows
that the variety structure of X does not depend on the choice of V . Finally, all
morphisms indicated here are defined over K . We conclude that we have a K -
variety structure on X that is independent of the choice of V . �

The type of reasoning in this proof will return in Section 4: in the case where 0 is
a Dynkin diagram, we will show that for f ∈ X the restriction f |V actually depends
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polynomially on even fewer values of the fx , thus embedding X into smaller affine
spaces. That these embeddings are closed can be proved exactly as we did above.

3. The sandwich algebra

For now, 0 is an arbitrary finite graph (not necessarily a Dynkin diagram). The
Lie algebra L(0) is the so-called sandwich algebra corresponding to 0. It is a
finite-dimensional nilpotent Lie algebra, and carries an N5-grading defined as fol-
lows. The weight of a word (xd , . . . , x1) over 5 is the element µ ∈ N5 whose
x-coordinate equals ∣∣{i ∈ {1, . . . , d} | xi = x}

∣∣
for all x ∈ 5. For such a word the corresponding monomial xd · · · x1 lives in the
free Lie algebra on 5, but we use the same notation for its images in F and L( f )
when this does not lead to any confusion. We will sometimes say that a monomial
xd · · · x1 ∈ L(0) has weight µ, by which we mean that the word (xd , . . . , x1) has
weight µ— the monomial xd · · · x1 itself might be 0. Now the free Lie algebra is
graded by weight, and this grading refines the grading by degree. Like the grading
by degree, the grading by weight is inherited by L(0) as all relations defining L(0)
are monomials. We write L(0)µ for the space of weightµ∈N5 and call dim L(0)µ
the multiplicity of µ.

For x ∈ 5, let αx be the element with a 1 on position x and zeros elsewhere;
that is, αx is the weight of the word (x). We define a symmetric Z-bilinear form
〈 · , · 〉 on Z5 by its values on the standard basis: for x, y ∈5 we set

〈αx , αy〉 :=


2 if x = y,
−1 if x ∼ y, and

0 otherwise.

The matrix A := (〈αx , αy〉)x,y∈5 is called the Cartan matrix of 0. The height of an
element of Z5 is by definition the sum of the coefficients of the αx in it for x ∈5.

In what follows we often need to show that certain monomials xd · · · x1 are zero
in L(0). Lemmas 6–10 show how the bilinear form comes into play. But first we
recall an elementary property of sandwich elements, to which they owe their name.

Lemma 4. Let x be a sandwich element in a Lie algebra L, and let y, z ∈ L be
arbitrary. Then xyxz = 0.

Proof. We have

xyxz = [x, y]xz+ yxxz = [x, y]xz =−[x, xy]z+ x[x, y]z

= zxxy+ x[x, y]z = x[x, y]z = xxyz− xyxz =−xyxz. �
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Remark 5. Note that we have used here that the characteristic is not 2. In the
case of characteristic 2, this lemma should be taken as part of the definition of a
sandwich element [Cohen and Ivanyos 2006].

Lemma 6. Let w = (xd , xd−1, . . . , x1) be a word over 5, and let x ∈ 5. Let xi

and x j be consecutive occurrences of x in w (that is, i > j , xi = x j = x , and
xk 6= x for all k strictly between i and j). Suppose that the letters in w strictly
between xi and x j contain at most 1 occurrence of a 0-neighbor of x , that is, the
set {k ∈ { j + 1, . . . , i − 1} | xk ∼ x} has cardinality at most 1. Then xd xd−1 · · · x1

is 0 in L(0).

Proof. Set z := xd xd−1 · · · x1. First, using the fact that on F the linear map ad(x)
commutes with ad(y) for any y ∈5 with x 6∼ y, we can move xi in z to the right
until it is directly to the left of either x j or the unique xk ∼ x between xi and x j ,
so we may assume that this was already the case to begin with.

If i = j+1 then either j = 1 and z is zero by anticommutativity, or j > 1 and the
monomial xi x j x j−1 · · · x1 = xxx j−1 · · · x1 is zero by the sandwich property of x .

Suppose, on the other hand, that xi ∼ xi−1. Then if j = 1 and i − 1 > 2, the
monomial z is zero since x2x1 is — indeed, x2 6∼ x1. On the other hand, if i−1= 2
or j > 1, then we can move x j in z to the left until it is directly to the right of xi−1.
So again, we may assume that it was there from the beginning. But now

xi xi−1x j x j−1 · · · x1 = xxi−1xx j−1 · · · x1.

If j > 1, then this monomial equals zero by Lemma 4; and if j = 1, then it is zero
by the sandwich property of x . �

Lemma 7. Let (xd , xd−1, . . . , x1) be a word with d ≥ 2 over 5, and suppose that
the weight µ of (xd−1, xd−2, . . . , x1) satisfies 〈αxd , µ〉 ≥ 0. Then xd xd−1 · · · x1= 0
in L(0).

Proof. Set w := (xd , xd−1, . . . , x1) and z := xd xd−1 · · · x1. The condition on the
bilinear form can be written as

2
∣∣{ j ∈ {1, . . . , d − 1} | x j = xd}

∣∣≥ ∣∣{ j ∈ {1, . . . , d − 1} | x j ∼ xd}
∣∣.

First we note that if the right side is 0, then z is trivially zero: then all xi with i < d
commute with xd , and there at least d − 1 ≥ 1 such factors. So we may assume
that the right side is positive, and hence so is the left side.

Let the set in the left side of this inequality consist of the indices im > im−1 >

· · · > i1. By the above, m is positive. In the word w there are m pairs (i, j)
satisfying the conditions of Lemma 6 with x = xd , namely, (d, im), (im, im−1), . . . ,
(i2, i1). Now if for some such (i, j) there are less than two 0-neighbors of xd in
the interval between xi and x j , then z = 0 by Lemma 6. So we may assume that
each of these m intervals contains at least two 0-neighbors of xd . But then, by the
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inequality above, these exhaust all 0-neighbors of xd in w, so in particular there
are exactly 2 0-neighbors of xd between xi2 and xi1 , and none to the right of xi1 .
Now if i1 > 1, then z is zero because xi1 commutes with everything to the right of
it. Hence assume that i1 = 1, and note that i2 ≥ 4. If x2 6∼ x1 = xi1 , then again z is
trivially 0, so assume that x2 is a 0-neighbor of xd = x1. Then we have

xi2 · · · x3x2x1 =−xi2 · · · x3x1x2;

but in the monomial on the right there is only one 0-neighbor of xd between xi2

and x1 — hence it is zero by Lemma 6. �

Lemma 8. Let x ∈ 5 and λ ∈ N5 satisfy 〈αx , λ〉 = −1. Then L(0)αx+λ =

[x,L(0)λ].

Proof. Let w = (xd , . . . , x1) be a word over 5 of weight αx + λ. We show that
in L(0) the monomial z := xd · · · x1 is a scalar multiple of some monomial of the
form xz′, where z′ is a monomial of weight λ. Obviously, x occurs in w; let k be
maximal with xk = x . If k = 1, then we may interchange xk = x1 and xk+1 = x2

in z at the cost of a minus sign (note that d ≥ 2), so we may assume that k ≥ 2.
Suppose first that there occur 0-neighbors of x = xk to the left of xk in w. We

claim that then z = 0. Indeed, let µ and ν be the weights of (xk−1, . . . , x1) and
(xd , . . . , xk+1), respectively. Then we have

〈αx , µ〉 = 〈αx , λ〉− 〈αx , ν〉 = −1−〈αx , ν〉 ≥ 0,

where in the last inequality we use that there are occurrences of neighbors of xk ,
but none of xk itself, in the word (xd , . . . , xk+1). Now we find xk · · · x1 = 0 by
Lemma 7 (note that k ≥ 2); hence z = 0 as claimed.

So we can assume that there are no 0-neighbors of xk to the left of xk in w.
Then we may move xk in z all the way to the left; hence z is indeed equal to xz′

for some monomial z′ of weight λ. �

3.1. Relation with the root system of the Kac–Moody algebra. Recall the defi-
nition of the Kac–Moody algebra gKM over C corresponding to 0: it is the Lie
algebra generated by 3 · |5| generators, denoted Ex , Hx , Fx for x ∈5, modulo the
relations

Hx Hy = 0, Ex Fx = Hx ,

Hx Ey = 〈αx , αy〉Ey, Hx Fy = −〈αx , αy〉Fy;

and, for x 6= y, Ex Fy = 0, ad(Ex)
1−〈αx ,αy〉Ey = 0,

ad(Fx)
1−〈αx ,αy〉Fy = 0.

Endow gKM with the Z5-grading in which Ex , Hx , Fx have weights αx , 0,−αx ,
respectively. Let 8 := {β ∈ Z5 \ {0} | (gKM)β 6= 0} be the root system of gKM; it is
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equal to the disjoint union of its subsets8± :=8
⋂
(±N)5 and contains the simple

roots αx for x ∈5; we refer to [Kac 1990] for the theory of Kac–Moody algebras.
In what follows we will compare the multiplicities of weights in the K -algebra
L(0) and the C-algebra gKM.

Lemma 9. For λ ∈ N5
\8+, we have L(0)λ = 0.

Proof. We proceed by induction on the height of λ. The proposition is trivially true
for λ of height 1. Suppose now that it is true for height d − 1 ≥ 1, and consider a
word w = (xd , xd−1, . . . , x1) of weight λ 6∈8+.

Set µ := λ− αxd . If µ 6∈ 8+, then xd−1 · · · x1 = 0 by the induction hypothe-
sis, so we may assume that µ ∈ 8+. This together with µ+ αxd 6∈ 8+ implies
(by elementary sl2-theory in gKM) that 〈αxd , µ〉 ≥ 0. Now Lemma 7 shows that
xd · · · x1 = 0. �

For another relation between weight multiplicities in L(0) and gKM, recall that
a root in 8 is called real if it is in the orbit of some simple root under the Weyl
group W of gKM. In that case it has multiplicity 1 in gKM. We now call a root
β ∈8+ very real — this is nonstandard terminology — if it can be written as β =
αxd + · · ·+αx1 , for some x1, . . . , xd ∈5, such that for all i = 2, . . . , d we have

〈αxi , αxi−1 + · · ·+αx1〉 = −1.

(This implies that β = sxd · · · sx2αx1 , where the sx are the fundamental reflections
corresponding to the x ∈5.)

Lemma 10. Any very real β ∈8+ has multiplicity at most 1 in L(0).

Proof. This follows by induction on the height of β, using Lemma 8 for the induc-
tion step. �

3.2. Simply laced Dynkin diagram of finite type. In this section we assume that
0 is a Dynkin diagram of finite type, that is, one of the diagrams in Figure 1 with
vertex 0 removed. Then gKM is a finite-dimensional simple Lie algebra over C.
Now gKM has a Chevalley basis [Carter 1972, Section 4.2]. This basis consists of
the images of the Hx and one vector Eα ∈ (gKM)α for every root α ∈8, where Eαx

and E−αx may be taken as Ex and Fx , respectively. An important property that we
will need is that [Eα, Eβ] =±Eα+β for all roots α and β such that α+β is a root;
here we use that the p in [Carter 1972, Theorem 4.2.1] is 0 in the simply laced
case. The Chevalley basis spans a Z-subalgebra of gKM. Let g be the K -algebra
obtained by tensoring this Z-form with K , and let E0

x , H 0
x , F0

x be the images in g

of Ex , Hx , Fx . The Lie algebra g has a triangular decomposition

g= n−⊕ h⊕ n+,

where n± :=
⊕

β∈8±
gβ . We will refer to g as the Chevalley algebra of type 0.
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Remark 11. One can also define g as the Lie algebra of the split simply connected
algebraic group over K of type 0.

Theorem 12. Let 0 be a simply laced Dynkin diagram of finite type, obtained from
a diagram in Figure 1 by removing vertex 0. Let g be the corresponding Chevalley
algebra over the field K of characteristic unequal to 2, and let n+ be the subalgebra
generated by the E0

x . Then the map sending x ∈ 5 to E0
x induces a (necessarily

unique) isomorphism L(0)→ n+.

In the proof of this theorem we use the following well-known facts about sim-
ply laced Kac–Moody algebras of finite type: first, 〈 · , · 〉 only takes the values
−1, 0, 1, 2 on 8+×8+, and second, all roots in 8+ are very real.

Proof of Theorem 12. To prove the existence of a homomorphism π sending x to
E0

x , we verify that the relations defining L(0) hold in n+. That is, we have to prove
that

[E0
x , E0

y] = 0 for all x, y ∈5 with x 6∼ y,

ad(E0
x )

2z = 0 for all x ∈5 and all z ∈ n+.

The first statement is immediate from the relations defining gKM. For the second
relation, if z∈n+ is a root vector with root β ∈8+, then 〈β, αx 〉≥−1 by the above,
so that 〈β + 2αx , αx 〉 ≥ 3, and therefore β + 2αx 6∈8+, so that ad(Ex)

2z = 0. As
root vectors span n+, we have proved the existence of π ; uniqueness is obvious.

Now we have to show that π is an isomorphism. It is surjective since n+ is
generated by the E0

x ; this follows from the properties of the Chevalley basis in
Section 3.2. Hence it suffices to prove that dim L(0)≤ dim n+. But by Lemmas 9
and 10 and the fact that all roots are very real, we have L(0)µ = 0 for all µ 6∈8+
and dim L(0)β ≤ dim gβ for all β ∈8+. This concludes the proof. �

3.3. Simply laced Dynkin diagrams of affine type. Suppose now that 0 is a sim-
ply laced Dynkin diagram of affine type from Figure 1. Recall that the Cartan ma-
trix A has a one-dimensional kernel spanned by a unique primitive vector δ ∈N5.
Here primitive means that the greatest common divisor of the coefficients of δ on
the standard basis is 1; indeed, there always exists a vertex x0 ∈ 5 (labeled 0 in
Figure 1) with coefficient 1 in δ, and all such vertices form an Aut(0)-orbit. For
later use, we let h be the Coxeter number, which is the height of δ.

Let 50
:= 5 \ {x0}. Write 00 for the induced subgraph on 50 (which is a

Dynkin diagram of finite type) and 80 for the root system of the Chevalley alge-
bra g of type 00 defined in Section 3.2. This root system lives in the space Z5

0
,

which we identify with the elements of Z5 that are zero on x0. Retain the notation
n± ⊆ g from Section 3.2. Consider the semidirect product u := n+n g/n+, where
the second summand is endowed with the trivial Lie bracket and the natural n+-
module structure. This u is clearly a nilpotent Lie algebra; we will prove that it
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is isomorphic to L(0). In our proof we use the following Z5-grading of u: the
root spaces in n+ have their usual weight in 80

+
⊆ Z5

0
, while the image of gβ in

g/n+ ⊆ u for β ∈ {0}∪80
−

has weight δ+β. Thus the set of all weights occurring
in u is

2 :=80
+

⋃
{δ+β | β ∈80

−
}
⋃
{δ}.

Theorem 13. Let 0 be a simply laced Dynkin diagram of affine type from Figure 1,
let 00 be the subdiagram of finite type obtained by removing vertex 0, and let g be
the Chevalley algebra of type 00 over a field of characteristic unequal to 2. For
x ∈ 50, let E0

x ∈ n+ be the element of the Chevalley basis of g with simple root
αx , and for the lowest root θ ∈ 80

−
, let E0

θ ∈ g/n+ be the image of the element in
the Chevalley basis of weight θ . Then the map sending x ∈50 to E0

x and x0 to E0
θ

induces a Z5-graded isomorphism L(0)→ n+n g/n+ of Lie algebras.

Remark 14. Over C one can argue directly in the Kac–Moody algebra gKM. Then
L(0) is also the quotient of the positive nilpotent subalgebra of gKM by the root
spaces with roots of height larger than the Coxeter number h. In the proof one
uses the root multiplicities of [Kac 1990, Proposition 6.3]. One might also pursue
this approach in positive characteristic using the results of [Billig 1990], but we
have chosen to avoid defining the Kac–Moody algebra in arbitrary characteristic
and use the Chevalley basis instead.

Proof of Theorem 13. The proof is close to that of Theorem 12. We start by
verifying that the relations defining L(0) hold in u = n+ n g/n+. First, E0

x and
E0

y with x, y ∈50 commute when they are not connected in 0; this follows from
the defining equations of gKM. Second, E0

x and E0
θ commute if x ∈ 50 is not

connected to x0, as θ+αx is then not in 80. Third, each E0
x is a sandwich element

in u: for its action on n+, this follows as in the proof of Theorem 12, and for its
action on g/n+, it follows from the fact that ad(E0

x )
2g⊆ K E0

x ⊆ n+. Fourth, E0
θ is

a sandwich element as ad(E0
θ ) maps u into g/n+, which has trivial multiplication.

This shows the existence of a homomorphism π :L(0)→u. Moreover π is graded;
in particular, the weight of E0

θ is δ+ θ = αx0 .
The E0

x generate n+, and E0
θ generates the n+-module g/n+. These statements

follow from properties of the Chevalley basis in Section 3.2, and imply that π is
surjective. So we need only show that dim L(0) ≤ dim u; we prove this for each
weight in 2.

First, the roots in 80 are very real, so their multiplicities in L(0) are at most 1
by Lemma 10. Second, we claim that all roots of the form δ+β with β ∈80

−
are

also very real. This follows by induction on the height of β: For β = θ it is clear
since δ + θ = αx0 . For β 6= θ it is well known that there exists an x ∈ 50 such
that 〈αx , β〉 = 1. Then we have δ+β = (δ+β−αx)+αx , where δ+β−αx ∈2

and 〈α, δ+ β − αx 〉 = 0+ 1− 2 = −1; here we use that δ is in the radical of the
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form 〈 · , · 〉. By induction, δ+ β − αx is very real; hence so is δ+ β. This shows
that also the roots of the form δ + β with β ∈ 80

−
have multiplicity at most 1 in

L(0), again by Lemma 10.
Next we show that δ has multiplicity at most |50

| = dim h in L(0). Indeed, we
claim that L(0)δ is contained in

∑
x∈50[x,L(0)δ−αx ]. Then, by the above, each

of the summands has dimension at most 1, and we are done. The claim is true
almost by definition: any monomial of weight δ must start with some x ∈ 5, so
we need only show that monomials starting with x0 are already contained in the
sum above. Consider any monomial z := xd · · · x1 of weight δ, where xd = x0. As
the coefficient of x0 in δ is 1, none of the xi with i < d is equal to x0. But then an
elementary application of the Jacobi identity and induction shows that z is a linear
combination of monomials that do not start with x0.

Finally, we have to show that L(0)µ is 0 for µ ∈ 8+ \ 2 (we already have
L(0)µ = 0 for µ 6∈ 8+ by Lemma 9). But Lemma 7 and the fact that 〈αx , δ〉 = 0
for all x ∈ 5 together imply that [x,L(0)δ] = 0 for all x ∈ 5. So it suffices
to show that if µ ∈ 8+ is not in 2, then “µ can only be reached through δ.”
More precisely, if (xd , . . . , x1) is any word over 5 such that

∑d
j=1 αx j = µ and

µi :=
∑i

j=1 αx j ∈8+ for all i = 1, . . . , d , then there exists an i such that µi = δ.
But this follows immediately from the fact that δ is the only root of height h [Kac
1990, Proposition 6.3]. We find that every monomial corresponding to such a word
is zero, and this concludes the proof of the theorem. �

4. The parameter space and generic Lie algebras

So far we have only considered the Lie algebras L(0). Now we will be concerned
with the variety X of all parameters f ∈ (F∗)5 for which dim L( f )=dim L(0). We
collect some tools for determining X in the case of simply laced Dynkin diagrams.

4.1. Scaling. First let 0 be arbitrary again, not necessarily a Dynkin diagram.
Scaling of the generators xi has an effect on X : Given t = (tx)x∈5 in the torus
T := (K ∗)5, there is a unique automorphism of F that sends x ∈ 5 to tx x . This
gives an action of T on F, and we endow F∗ with the contragredient action. Finally,
we obtain an action of T on X by

(t f )x(y) := t−1
x fx(t−1 y) for all t ∈ T, f ∈ X, x ∈5, and y ∈ F.

Indeed, note that with this definition the automorphism of F induced by t sends
xxy− fx(y)x ∈ F to

(t x)(t x)(t y)− fx(y)t x = t2
x (xx(t y)− t−1

x fx(y)x)

= t2
x (xx(t y)− t−1

x fx(t−1(t y))x)

= t2
x (xx(t y)− (t f )x(t y)x),
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and hence the ideal I( f ) defining L( f ) to I(t f ). Therefore, this automorphism
of F induces an isomorphism L( f )→ L(t f, 0).

This scaling action of T on X will make things very easy in the case of simply
laced Dynkin diagrams, where X will turn out to be isomorphic to an affine space
with linear action of T , in which the maximal-dimensional orbits have codimension
0, 1 or 2.

Remark 15. Observe that the one-parameter subgroup t 7→ λ(t) := (t, . . . , t) ∈ T
satisfies limt→∞ λ(t) f = 0 for all f ∈ X . This shows that all irreducible compo-
nents of X contain 0; in particular, X is connected.

4.2. The extremal form. Cohen et al. [2001] proved that on any Lie algebra over
a field of characteristic unequal to 2 that is generated by finitely many extremal ele-
ments, there is a unique bilinear form κ such that xxy=κ(x, y)x for all extremal x .
Moreover, it is shown there that κ is symmetric and associative: κ(x, y)= κ(y, x)
and κ(xy, z) = κ(x, yz) for all x, y, z. We call κ the extremal form. For the
Chevalley algebra g of Section 3.2, the extremal form is nonzero on gα×gβ if and
only if α=−β. The form may have a radical contained in the Cartan subalgebra h.

On the other hand, for any f ∈ (F∗)5 (not necessarily in X ) the Lie algebra L( f )
is generated by the images of the elements of 5, which are extremal elements. In
particular, for x ∈5 we have in L( f )

fx(y)x = xxy = κ(x, y)x,

where κ is the extremal form on L( f ). So if the image of x in L( f ) is nonzero,
then fx(y)= κ(x, y).

4.3. The Premet relations. Our arguments showing that certain monomials m :=
xd · · · x1 are zero in the sandwich algebra L(0) always depended on the sandwich
properties: xxy=0 and xyxz=0 whenever x is a sandwich element and y and z are
arbitrary elements of the Lie algebra. The Premet relations of the following lemma
translate such a statement into the following statement: in L( f ) the monomial m
can be expressed in terms of monomials of degree less than d−1 and values of fxd

on monomials of degree less than d − 1.

Lemma 16 [Chernousov 1989]. Let x be a nonzero extremal element of a Lie al-
gebra L, and let fx : L→ K be the linear function with xxy = fx(y)x. Then we
have

2xyxz = fx(yz)x − fx(z)xy− fx(y)xz.

Remark 17. In characteristic 2 the definition of an extremal element x involves
the existence of a function gx such that xyxz= gx(yz)x−gx(z)xy−gx(y)xz, that
is, gx plays the role of fx/2. See [Cohen and Ivanyos 2006, Definition 14].
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4.4. The parameters. Recall from Section 2 that the restriction map X→ (V ∗)5

is injective and has a closed image; a key step in the proof was showing that for
f ∈ X the values fx(u) for x ∈ 5 and u ∈ F depend polynomially on f |V . In
what follows, this will be phrased informally as f can be expressed in f |V or f |V
determines f . In this phrase we implicitly assume that f ∈ X , that is, that L( f ) has
the maximal possible dimension. In the case of Dynkin diagrams, we will exhibit
a small number of values of f in which f can be expressed. For this purpose, the
following lemma, which also holds for other graphs, is useful.

Lemma 18. Let q = xd · · · x1 be a monomial of degree d ≥ 2 and weight β, and let
z ∈ 5 be such that 〈αz, β〉 ≥ −1. Then fz(q) can be expressed in the parameters
fx(m) with monomials m of degree less than d − 1 and x ∈5.

Proof. First, if xd is not a 0-neighbor of z in 0, then

fz(xd · · · x1)= κ(z, xd · · · x1)= −κ(xd z, xd−1 · · · x1)= κ(0, xd−1 · · · x1)= 0,

and we are done. So assume that xd is a 0-neighbor of z. Now

fz(xd · · · x1)= −κ(xd z, xd−1 · · · x1)= κ(zxd , xd−1 · · · x1)

= − f (xd , zxd−1 · · · x1)= fxd (zxd−1 · · · x1).

In both cases we have used that the images of z and xd are nonzero in L( f ) for
f ∈ X ; see Section 4.2. Now 〈αz, β−αxd 〉 ≥ 0, so Lemma 7 says that zxd−1 · · · x1

can be expressed in terms of smaller monomials and values fx(m) for x ∈5 and
monomials m of degree less than d−1. Then by linearity of fxd , the last expression
above can also be expressed in terms of values fx(m) with x ∈5 and m of degree
less than d − 1. �

4.5. Simply laced Dynkin diagrams of finite type. Suppose that 0 is a simply
laced Dynkin diagram of finite type. Let g be the Chevalley algebra with Dynkin
diagram 0 of Section 3.2. We identify Z5 with the character group of T = (K ∗)5

in the natural way: we write µ for the character that sends t to tµ =
∏

x∈5 tµx
x .

Also let 6 be the set of edges of 0, and write αe := αx +αy for e = {x, y} ∈6.

Theorem 19. Let 0 = (5,6) be a simply laced Dynkin diagram of finite type,
obtained from a diagram in Figure 1 by removing vertex 0. Let g be the Chevalley
algebra of type 0 over the field K of characteristic unequal to 2. Set T := (K ∗)5.
Then the variety X is, as a T -variety, isomorphic to the vector space V := K6 on
which T acts diagonally with character −αe on the component corresponding to
e ∈ 6. For f corresponding to any element in the dense T -orbit (K ∗)6 , the Lie
algebra L( f ) is isomorphic to a fixed Lie algebra.

We first need a lemma that will turn out to describe the generic L( f ). We retain
the notation E0

x , H 0
x , F0

x ∈ g and n+ from Section 3.2. We denote by C the variety
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of tuples (Gx)x∈5 with Gx ∈ 〈F0
x , H 0

x , E0
x 〉
∼= sl2 extremal; C is an irreducible

variety.

Lemma 20. For generic G = (Gx)x∈5 ∈ C , the Lie subalgebra g′ of g generated
by the Gx has dimension dim n+, and moreover Gx Gx G y is a nonzero multiple
of Gx for all x ∼ y.

Proof. By definition g′ is generated by extremal elements; hence it has dimension
at most that of L(0), which is isomorphic to n+ by Theorem 12. The condition
that the Gx generate a Lie algebra of dimension less than dim n+ is closed, and the
tuple (E0

x )x∈5 ∈ C does not fulfill it. Hence using the irreducibility of C , we find
that for G in an open dense subset of C , the Lie algebra g′ has dim g′ = dim n+.
This proves the first statement. The second statement follows directly from the
same statement for 0 of type A2, that is, for g = sl3, where it boils down to the
statement that the two copies of sl2 in sl3 corresponding to the simple roots are not
mutually perpendicular relative to the extremal form in sl3. �

Proof of Theorem 19. By Lemma 18 and Theorem 12, any f ∈ X is determined
by its values fx(m) with x ∈ 5 and monomials m of weights β ∈ 8+ such that
either β has height 1 or 〈αx , β〉 ≤ −2. But since β is a positive root, the latter
inequality cannot hold. Hence β has height 1, so that m ∈5, and the only x ∈5
for which fx(m) 6= 0 are the neighbors of m. Moreover, from the symmetry of the
extremal form we conclude that fx(y)= fy(x) for x,m ∈5 neighbors in 0.

We thus find a closed embedding 9 : X → K6 sending f to ( fx(y)){x,y}∈6 .
Now if we let T act on K6 through the homomorphism

T → (K ∗)6, t 7→ (t−1
x t−1

y ){x,y}∈6,

then 9 is T -equivariant by the results of Section 4.1. Note that T acts by the
character −αe on the component corresponding to e ∈6. The fact that 0 is a tree
readily implies that the characters αe for e ∈6 are linearly independent over Z in
the character group of T , so that the homomorphism T→ (K ∗)6 is surjective. But
then T has finitely many orbits on K6 , namely those of the form (K ∗)6

′

×{0}6\6
′

with 6′ ⊆6.
Now as 9(X) is a closed T -stable subset of K6 , we are done if we can show

that (K ∗)6 ∩9(X) is nonempty. But this is precisely what Lemma 20 tells us:
there exist Lie algebras g′ generated by extremal elements that have the largest
possible dimension, and where all coordinates fx(y) with x ∼ y are nonzero. This
concludes the proof. �

Remark 21. The proof above also implies that all Lie algebras described in Lemma
20 are isomorphic. More generally, for any two Lie algebras g′ and g′′ with tuples
of distinguished, extremal generators (G ′x)x∈5 and (G ′′x)x∈5 such that
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(i) G ′x G ′y = 0 and G ′′x G ′′y = 0 for x 6∼ y,

(ii) G ′x G ′x G ′y = 0 if and only if G ′′x G ′′x G ′′y = 0 for x ∼ y, and

(iii) dim g′ = dim g′′ = dim n+,

there exists an isomorphism g′→ g′′ mapping each G ′x to a scalar multiple of G ′′x .

4.6. Simply laced Dynkin diagrams of affine type. Suppose now that 0 is a sim-
ply laced Dynkin diagram of affine type. We retain the notation from Section 3.3.
In particular, let g be the Chevalley algebra of type 00, the graph induced by 0 on
50
= 5 \ {x0}. To state the analogue of Theorem 19, we again identify Z5 with

the character group of T = (K ∗)5 and retain the notation αe for e ∈ 6, the edge
set of 0.

Theorem 22. Let 0= (5,6) be a simply laced Dynkin diagram of affine type from
Figure 1, and let 00 be the finite-type diagram obtained by deleting vertex 0 from 0.
Let g be the Chevalley algebra of type 00 over the field K of characteristic unequal
to 2, and set T := (K ∗)5. Then the variety X is, as a T -variety, isomorphic to the
vector space V := K6

× K on which T acts diagonally with character −αe on the
component corresponding to e ∈6, and with character −δ on the last component.
For all f ∈ X corresponding to points in some open dense subset of K6

× K , the
Lie algebra L( f ) is isomorphic to g.

Remark 23. Unlike for diagrams of finite type, it is not necessarily true that T has
only finitely many orbits on V . Indeed, the following three situations occur:

(i) The characters αe (for e ∈6) and δ are linearly independent. This is the case
for D(1)

even, E (1)7 , and E (1)8 . Then T has finitely many orbits on V .

(ii) The characters αe for e ∈ 6 are linearly independent, but δ is in their Q-
linear span. This is the case for A(1)even, D(1)

odd and E (1)6 . Now the orbits of T
in (K ∗)6 × K ∗ have codimension 1. The character δ, for A(1)even and E (1)6 , has
full support when expressed in the αe; this readily implies that T has finitely
many orbits on the complement of (K ∗)6×K ∗. For D(1)

n with n odd, however,
(n− 3)/2 edge characters get coefficient 0 when δ is expressed in them, and
therefore T still has infinitely many orbits on said complement.

(iii) The characters αe for e ∈ 6 are linearly dependent. This is the case only
for A(1)odd, and in fact δ is then also in the span of the αe. Now the T -orbits
in (K ∗)6 × K ∗ have codimension 2, and in the complement there are still
infinitely many orbits.

This gives some feeling for the parameter space X . It would be interesting to
determine exactly all isomorphism types of Lie algebras L( f ) with f ∈ X — but
here we confine ourselves to those with f in some open dense subset of K6

× K .
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The proof is very similar to that of Theorem 19. Again, we first prove a lemma
that turns out to describe the generic L( f ). Retain the notation E0

x , H 0
x , F0

x ∈ g for
x ∈50. Denote the lowest weight by θ ∈80

−
, let E0

x0
and F0

x0
∈ g be the elements

of the Chevalley basis of weights θ and−θ , respectively, and set H 0
x0
:= [E0

x0
, F0

x0
].

Write C for the irreducible variety of tuples (Gx)x∈5 with Gx ∈〈F0
x , H 0

x , E0
x 〉
∼= sl2

extremal.

Lemma 24. For generic G = (Gx)x∈5 ∈ C , the Gx generate g, and Gx Gx G y is a
nonzero multiple of Gx for all x ∼ y.

Proof. The first statement is true for G= (E0
x )x∈5; this follows from the properties

of the Chevalley basis in Section 3.2. Hence by the irreducibility of C it is true
generically. The second statement follows, as in Lemma 20, from the same state-
ment in sl3. �

In the following proof we will show that the choice of (Gx)x∈5 as in Lemma
24 already gives generic points in X , except for the case where 0 is of type A(1)odd,
for which we give another construction.

Proof of Theorem 22. By Lemma 18 and Theorem 13, any f ∈ X is determined by
its values fx(m) with x ∈5 and monomials m of weights β ∈2 such that either β
has height 1 or 〈αx , β〉≤−2. In contrast with the case of finite-type diagrams, there
do exist pairs (x, β) ∈5×2 with this latter property, namely, precisely those of
the form (x, δ − αx). For all x ∈ 5, let mx be a monomial that spans the weight
space in L(0) of weight δ − αx ; this space is 1-dimensional by Theorem 13. We
claim that the fx(mx) can all be expressed in terms of fx0(mx0) and values fz(r)
with z ∈5 and r of degree less than h−2. Indeed, if x 6= x0, then x0 occurs exactly
once in mx ; and writing mx = xd · · · x1x0 ye · · · y1 with x1, . . . , xd , y1, . . . , ye ∈5

0,
we find

fx(mx)= κ(x, xd · · · x1x0 ye · · · y1)

= (−1)d+1κ(x0x1 · · · xd x, ye · · · y1)

= (−1)dκ(x0, [x1 · · · xd x, ye · · · y1])

= (−1)d fx0([x1 · · · xd x, ye · · · y1]),

and the expression [x1 · · · xd x, ye · · · y1] can be rewritten in terms of mx0 and
shorter monomials, using values fz(r) with r of degree less than d + e = h− 2.

We have now found a closed embedding X → K6
× K which sends f to(

( fx(y)){x,y}∈6, fx0(mx0)
)
; for ease of exposition we will view X as a closed subset

of K6
× K . The theorem follows once we can realize generic parameter values in

K6
×K with extremal elements that generate g. To this end, choose a generic tuple

(Gx)x∈5 in C . By Lemma 24 these generate g, and they clearly satisfy Gx G y = 0
for x 6∼ y. Hence they yield a point in X with fx(y) = κ(Gx ,G y) 6= 0 for x ∼ y.
Furthermore, the parameter fx0(mx0) equals the extremal form evaluated on Gx0
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and the monomial mx0 evaluated in the Gx . Express that monomial in the Gx as
ξE0

x0
+ ηH 0

x0
+ ζ F0

x0
plus a term perpendicular to 〈E0

x0
, H 0

x0
, F0

x0
〉, and write Gx0

as ξ ′E0
x0
+ η′H 0

x0
+ ζ ′F0

x0
. For the degenerate case where Gx = E0

x for all x , we
have ξ, η= 0 and ζ 6= 0 (that monomial is a nonzero scalar multiple of the highest
root vector, F0

x0
), so that fx0(mx0)= κ(E

0
x0
, ζ F0

x0
) 6= 0. Therefore, this parameter is

nonzero generically. Hence we have found a point f ∈ X
⋂
((K ∗)6×K ∗). Along

the lines of Remark 23 we now distinguish three cases:

(i) If the αe (for e ∈6) and δ are linearly independent, then T acts transitively on
(K ∗)6 × K ∗, and we are done.

(ii) If the αe for e∈6 are linearly independent, but δ lies in their span, then we now
show that we can alter the point f above in a direction transversal to its T -orbit.
Let S be the torus in the adjoint group of g whose Lie algebra is h, and consider the
effect on f of conjugation of Gx0 with an element s ∈ S, while keeping the other Gx

fixed. This transforms Gx0 = ξ
′E0

x0
+ η′H 0

x0
+ ζ ′F0

x0
in sθξ ′E0

x0
+η′H 0

x0
+s−θζ ′Fx0 ,

and therefore it transforms fx0(mx0) into

sθξ ′ζκ(E0
x0
, F0

x0
)+ η′ηκ(H 0

x0
, H 0

x0
)+ s−θζ ′ξκ(F0

x0
, E0

x0
),

while it keeps the parameters fx0(y) with x0∼ y unchanged; these only depend on
η′. This shows that we can indeed move f inside X in a direction transverse to its
T -orbit, and we are done.

(iii) Finally, in the case of A(1)n−1 with n even, we first show that tuples in C only
give points in a proper closed subset of K6

× K . Here g = sln and 0 is an n-
cycle; label its points 0, . . . , n − 1. Relative to the usual choices of E0

i , H 0
i , F0

i ,
the element Gi is a matrix with 2× 2-block[

ai bi a2
i

−b2
i −ai bi

]
on the diagonal in rows (and columns) i and i + 1 and with zeros elsewhere. We
count the rows and columns modulo n so that row 0 is actually row n. But then we
have κ(Gi ,Gi+1)= 2ai bi ai+1bi+1, and this implies

κ(G1,G2)κ(G3,G4) · · · κ(Gn−1,G0)

= 2n(a1b1)(a2b2)(a3b3)(a4b4) · · · (an−1bn−1)(a0b0)

= 2n(a0b0)(a1b1)(a2b2)(a3b3) · · · (an−2bn−2)(an−1bn−1)

= κ(G0,G1)κ(G2,G3) · · · κ(Gn−2,Gn−1);

(2)

so the tuple of parameter values of the tuple (Gi )
n−1
i=0 ∈ C lies in a proper closed

subset R of K6
× K .
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We therefore allow the tuple (Gi )
n−1
i=0 to vary in a slightly larger variety C ′⊃C as

follows: the conditions on G1, . . . ,Gn−1 remain the same, but G0 is now allowed
to take the shape 

−a0b0 0 . . . 0 − b2
0

c2a0 0 . . . 0 c2b0
...

...
...

...

cn−1a0 0 . . . 0 cn−1b0

a2
0 0 . . . 0 a0b0


(which is extremal since it has rank 1 and trace 0), subject to the equations

bi ci + ai ci+1 = 0 for i = 2, . . . , n− 2, (3)

which ensure that G0 commutes with G2, . . . ,Gn−2. Still, any tuple in an open
neighborhood U ⊆ C ′ of our original tuple (Gi )

n−1
i=0 (with generic ai and bi but all

ci equal to 0) generates sln . We now argue that the differential d at (Gi )
n−1
i=0 of the

map U→ X ⊆ K6
× K sending a tuple to the parameters that it realizes has rank

|6| + 1, as required. Indeed, the T -action already gives a subspace of dimension
|6| − 1, tangent to R. Making c2 (and hence all ci ) nonzero adds −2a2

1c2a0 to
κ(G0,G1) and 2b2

n−1cn−1b0 to κ(G0,Gn−1), and it fixes all other κ(Gi ,G j ). We
show that this infinitesimal direction is not tangent to R: it adds

2nb2
n−1cn−1b0(a1b1)(a2b2) · · · (an−3bn−3)(an−2bn−2)

to the left side of (2), and

−2na2
1c2a0(a2b2)(a3b3) · · · (an−2bn−2)(an−1bn−1)

to the right side. Dividing these expressions by common factors, the first becomes
2nbn−1cn−1b0b1 and the second −2na1c2a0an−1. These expressions are not equal
generically, even modulo the equations (3) relating the ci to the ai and bi ; indeed,
these equations do not involve a0, a1, an−1, b0, b1, bn−1.

Note that varying c2 may also effect the parameter fx0(mx0), but in any case the
above shows that the composition of the differential d with projection onto K6 is
surjective. On the other hand, conjugation with the torus S as in case (ii) yields a
vector in the image of d which is supported only on the factor K corresponding
to δ. This concludes the proof that d has full rank. �

5. Notes

5.1. Recognizing the simple Lie algebras. Going through the proof that X is an
affine variety, one observes that the map f 7→ f |V is not only injective on X , but
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even on

X ′(0) := { f ∈ (F∗)5 | for all x ∈5 : x 6= 0 in L( f )} ⊇ X.

The same is true for the map f 7→
(
( fx(y)){x,y}∈6

)
in the case where 0 is a Dynkin

diagram of finite type, and for the map f 7→
(
( fx(y)){x,y}∈6, fx0(mx0)

)
in the case

where 0 is a Dynkin diagram of affine type. This shows that, for these Dynkin
diagrams, X ′(0) is actually equal to X , whence the following theorem.

Theorem 25. Suppose that 0 is a Dynkin diagram of finite or affine type. Let L

be any Lie algebra, over a field of characteristic unequal to 2, which is generated
by nonzero extremal elements Gx for x ∈ 5 in which the commutation relations
Gx G y = 0 hold for x 6∼ y. Define f ∈ (F∗)5 by the condition that Gx Gx u =
fx(u)Gx holds in L. Then f ∈ X and L is a quotient of L( f ).

This theorem could well prove useful for recognizing the Chevalley algebras
g: if f corresponds to a point in the open dense subset of K6

× K referred to in
Theorem 22, then one concludes that L is a quotient of g. Hence if g is a simple Lie
algebra, then L is isomorphic to g. It is not clear to us whether, for general 0, the
image of X ′(0) in (V ∗)5 is closed; this is why we chose to work with X instead.

5.2. Other graphs. Our methods work very well for Dynkin diagrams, but for
more general graphs new ideas are needed to determine L(0), X, and L( f ) for
f ∈ X . The relation with the Kac–Moody algebra of 0 may be much tighter than
we proved in Section 3.1. General questions of interest are: Is X always an affine
space? Is there always a generic Lie algebra? We expect the answers to both
questions to be negative, but do not have any counterexamples.

The references [in ’t panhuis et al. 2007; Postma 2007; Roozemond 2005] con-
tain other series of graphs which exhibit the same properties as we have proved
here: the variety X is an affine space, and generic points in it correspond to simple
Lie algebras of types An,Cn, Bn, Dn . In fact, the graph that they find for Cn is
just the finite-type Dynkin diagram of type A2n . This also follows easily from our
results: take 2n generic extremal elements (Gx)x in sl2n+1 as in Lemma 20. These
generate a subalgebra of sl2n+1 of dimension

(2n+1
2

)
by that same lemma, and if

we consider them as matrices, their images span a subspace W of dimension 2n
in K 2n+1. It is not hard to write down an explicit, nondegenerate skew symmet-
ric form on W with respect to which the Gx are skew — hence the Lie algebra
generated by them is sp2n .
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