
Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

Algebra &
Number

Theory

mathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishers

1

Algebra & Number Theory
Volume 2 No. 7 2008

A
lgebra

&
N

um
ber

Theory
2008

Vol.2,
N

o.7

Volume 2

2008
No. 7



Algebra & Number Theory
www.jant.org

EDITORS

MANAGING EDITOR

Bjorn Poonen
University of California

Berkeley, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France
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ALGEBRA AND NUMBER THEORY 2:7(2008)

The Frobenius structure of
local cohomology

Florian Enescu and Melvin Hochster

Given a local ring of positive prime characteristic there is a natural Frobenius
action on its local cohomology modules with support at its maximal ideal. In
this paper we study the local rings for which the local cohomology modules
have only finitely many submodules invariant under the Frobenius action. In
particular we prove that F-pure Gorenstein local rings as well as the face ring of
a finite simplicial complex localized or completed at its homogeneous maximal
ideal have this property. We also introduce the notion of an antinilpotent Frobe-
nius action on an Artinian module over a local ring and use it to study those rings
for which the lattice of submodules of the local cohomology that are invariant
under Frobenius satisfies the ascending chain condition.

1. Introduction

All given rings in this paper are commutative, associative with identity, and Noe-
therian. Throughout, p denotes a positive prime integer. For the most part, we
shall be studying local rings, that is, Noetherian rings with a unique maximal ideal.
Likewise our main interest is in rings of positive prime characteristic p. If (R, m)
is local of characteristic p, there is a natural action of the Frobenius endomorphism
of R on each of its local cohomology modules H j

m(R). We call an R-submodule
N of one of these local cohomology modules F-stable if the action of F maps N
into itself.

One of our objectives is to understand when a local ring, (R, m), especially a
reduced Cohen–Macaulay local ring, has the property that only finitely many R-
submodules of its local cohomology modules are F-stable. When this occurs we
say that R is FH-finite. We shall also study the problem of determining conditions
under which the local cohomology modules of R have finite length in the category
of R-modules with Frobenius action. We say that R has finite FH-length in this

MSC2000: primary 13A35; secondary 13D45.
Keywords: local cohomology, Frobenius action, Frobenius functor, F-pure ring, Gorenstein ring,

antinilpotent module, tight closure, face ring, FH-finite ring, finite FH-length.
Enescu was partially supported by NSA Young Investigator grant H98230-07-1-0034. Hochster was
partially supported by NSF grant DMS–0400633.
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722 Florian Enescu and Melvin Hochster

case. Of course, when the ring is Cohen–Macaulay there is only one nonvanishing
local cohomology module, H d

m(R), where d = dim(R). The problem of studying
the F-stable submodules of H d

m(R) arises naturally in tight closure theory, taking a
point of view pioneered by K. Smith [2003; 1994; 1997a; 1997b]. For example, if
R is complete, reduced, and Gorenstein, the largest proper F-stable submodule of
H d

m(R) corresponds to the tight closure of 0 (in the finitistic sense, see [Hochster
and Huneke 1990, §8]), and its annihilator is the test ideal of R. Also see Discus-
sion 2.10 here. We would like to note here that other results related to F-stable
submodules of local cohomology may be found in [Enescu 2001; 2003; Katzman
2006; Sharp 2007].

The main result of Section 3 is one of general interest. Let M be a module
over an excellent local ring R and consider a family of submodules {Nλ}λ∈3 of M
closed under sum, intersection and primary decomposition. Our result states, in
particular, that if the set {AnnR(M/Nλ) : λ ∈ 3} consists of radical ideals then it
is finite.

This theorem has a number of important corollaries. One of them, relevant to
our objectives and also proven by Sharp [2007, Theorem 3.10 and Corollary 3.11],
states that for any local ring R of prime characteristic p > 0, if Frobenius acts
injectively on an Artinian R-module M , then the set of annihilators of F-stable sub-
modules of M is a finite set of radical ideals closed under primary decomposition.
This leads to the fact that if R is F-pure and Gorenstein (or even quasi-Gorenstein)
then H d

m(R) has only finitely F-stable R-submodules. See Section 3. Another one
is the fact that in an excellent local ring a family of radical ideals closed under
sum, intersection and primary decomposition is finite.

In Section 4 we explain the relationship between FH-finite rings and rings that
have finite FH-length. We introduce the notion of an antinilpotent Frobenius action
on an Artinian module over a local ring. Using results of [Lyubeznik 1997] and
[Hochster 2008], we show that the local cohomology of a local ring R of charac-
teristic p is antinilpotent if and only if the local cohomology of R[[x]] has finite
FH-length, in which case the local cohomology of R and every formal power series
ring over R is FH-finite.

In Section 5 we show that if R is the face ring of a finite simplical complex
localized or completed at its homogeneous maximal ideal, then R is FH-finite. See
Theorem 5.1.

2. Notation and terminology

Discussion 2.1 (Some basics about tight closure). Unless otherwise specified, we
shall assume throughout that R is a Noetherian ring of positive prime characteristic
p, although this hypothesis is usually repeated in theorems and definitions. R◦
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denotes the complement of the union of the minimal primes of R, and so, if R is
reduced, R◦ is simply the multiplicative system of all nonzero divisors in R. We
shall write Fe (or Fe

R if we need to specify the base ring) for the Peskine–Szpiro
or Frobenius functor from R-modules to R-modules. Note that Fe preserves both
freeness and finite generation of modules, and is exact precisely when R is regular
(see [Herzog 1974; Kunz 1969]). If N ⊆ M we write N [q] for the image of Fe(N )
in Fe(M), although it depends on the inclusion N → M , not just on N . If u ∈ M we
write u pe

for the image 1⊗u of u in Fe(M). With this notation, (u+v)q = uq
+vq

and (ru)q = rquq for u, v ∈ M and r ∈ R.
From time to time, we assume some familiarity with basic tight closure theory

in prime characteristic p>0. We use the standard notation N ∗

M for the tight closure
of the submodule N in the module M . If M is understood, the subscript is omitted,
which is frequently the case when M = R and N = I is an ideal. We refer the reader
to [Hochster and Huneke 1989; 1990; 1994; 2008; Huneke 1996] for background
in this area.

In particular, we assume cognizance of certain facts about test elements, includ-
ing the notion of a completely stable test element. We refer the reader to [Hochster
and Huneke 1990, §6 and §8; 1989; 1994, §6; Aberbach et al. 1993, §2] for more
information about test elements and to [Aberbach et al. 1993, §3] for a discussion
of several basic issues related to the localization problem for tight closure.

Discussion 2.2 (Local cohomology and the action of the Frobenius endomor-
phism). Our basic reference for local cohomology is [Grothendieck 1967]. Let R
be an arbitrary Noetherian ring, let I be an ideal of R and let M be any R-module.
The i-th local cohomology module H i

I (M) with support in I may be obtained in
several ways. It may be defined as lim

−→t
ExtiR(R/I t , M): here, any sequence of

ideals cofinal with the powers of I may be used instead of the sequence of powers,
{I t

}t . Alternatively, we may define C•( f ; R) to be the complex 0→C0
→C1

→0
where C0

= R, C1
= R f and the map is the canonical map R → R f , and then

if f is a sequence of elements f1, . . . , fn we may define C•( f ; R) to be the
tensor product over R of the n complexes C•( fi ; R). Finally, let C•( f ; M) denote
C•( f ; R)⊗R M , which has the form:

0 → M →

⊕
i

M fi →

⊕
i< j

M fi f j → · · · → M f1··· fn → 0.

The cohomology of this complex turns out to be H•

I (M), where I = ( f1, . . . , fn)R,
and actually depends only on the radical of the ideal I .

By the standard theory of local duality (see [Grothendieck 1967, Theorem 6.3])
when (S,mS, L) is Gorenstein with dim(S) = n and M is a finitely generated
S-module,

H i
m(M)∼= Extn−i

S (S, M)∨
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as functors of M , where N∨
= HomR(N , ES(L)). Here, ES(L) is an injective

hull of L over S. In particular, if (R, m, K ) is local of Krull dimension d and
is a homomorphic image of a Gorenstein local ring S of dimension n, then ωR =

Extn−d(R, S) whose Matlis dual over S, and, hence, over R as well, is H d
m(R).

We refer to a finitely generated R-module ωR as a canonical module for R if ω∨

R =

H d
m(R). It is unique up to isomorphism, since its completion is dual to H d

m(R).
Our discussion shows that a canonical module exists if R is a homomorphic image
of a Gorenstein ring; in particular, ωR exists if R is complete. When R is Cohen–
Macaulay, one has that

H i
m(M)∼= Extd−i

R (M, ωR)

functorially for all finitely generated R-modules M .
When R is a normal local domain, ωR is isomorphic as an R-module with an

ideal of pure height one, that is, with a divisorial ideal.
Finally, suppose that (R, m, K )→ (S, mS, L) is a local homomorphism such

that S a module-finite extension of R. Let ω = ωR be a canonical module for
R. Then HomR(S, ω) is a canonical module for S. Here, the rings need not be
Cohen–Macaulay, nor domains. To see this, note that one can reduce at once to
the complete case. We have

H d
mS
(S)∼= H d

m(S)∼= S ⊗ H d
m(R).

Then ES(L) may be identified with HomR(S, ER(K )); moreover, on S-modules,
the functors HomR( , ER(K )) and HomS( , ES(L)) are isomorphic. Hence

HomS
(
H d

mS
(S), ES(L)

)
∼= HomR

(
S ⊗R H d

m(R), ER(K )
)
.

By the adjointness of tensor and Hom, this becomes

HomR
(
S, HomR

(
H d

m(R), ER(K )
))

∼= HomR(S, ω),

as required.
When M = R we have an action of the Frobenius endomorphism on the complex

C•( f ; R) induced by the Frobenius endomorphisms of the various rings Rg where
g is a product of a subset of f1, . . . , fn , and the action on the cohomology is
independent of the choice of fi .

An alternative point of view is that, quite generally, if M → M ′ is any map of
R-modules then there is an induced map H i

I (M)→ H i
I (M

′). When S is an R-
algebra and I an ideal of R we get a map H i

I (R) → H i
I (S) for all i , and H i

I (S)
may be identified with H i

I S(S). In particular, we may take S = R and let the
map R → S be the Frobenius endomorphism. Since I S = I [p] here, this gives
a map H i

I (R)→ H i
I [p](R). But since Rad (I [p]) = Rad (I ), H i

I [p](R)∼= H i
I (R)

canonically. The map H i
I (R) → H i

I (R) so obtained again gives the action of the
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Frobenius endomorphism on H i
I (R). We shall denote this action by F ; note that

F(ru)= r p F(u).

Definition 2.3. When R has prime characteristic p > 0, we may construct a non-
commutative, associative ring R{F} from R which is an R-free left module on the
symbols 1, F, F2, . . . , Fe, . . . by requiring that Fr = r p F when r ∈ R. We shall
say that an R-module M is an R{F}-module if there is given an action F : M → M
such that for all r ∈ R and for all u ∈ M , F(ru) = r pu. This is equivalent to the
condition that M be an R{F}-module so as to extend the R-module structure on M .
We then call an R-submodule N of M F-stable if F(N )⊆ N , which is equivalent
to requiring that N be an R{F}-submodule of N . If M is any R{F}-module and S
is an R-algebra then there is an S{F}-module structure on S ⊗R M determined by
the condition that F(s ⊗ u)= s p

⊗ F(u).
In particular, since we have an R{F}-module structure on H i

I (R), we may refer
to the F-stable submodules of H i

I (R).
If R is local of Krull dimension d and x1, . . . , xd is a system of parameters,

then H d
m(R) may be identified with

lim
−→

t

R/(x t
1, . . . , x t

d),

where the t-th map in the direct limit system

R/(x t
1, . . . , x t

d)→ R/(x t+1
1 , . . . , x t+1

d )

is induced by multiplication by x1 · · · xd . If R is Cohen–Macaulay the maps in this
direct limit system are injective. When H d

m(R) is thought of as a direct limit in this
way, we write 〈r; x t

1, . . . , x t
d〉 for the image in H d

m(R) of the element represented
by r in R/(x t

1, . . . , x t
d). The action of the Frobenius endomorphism on the highest

local cohomology module in this case may be described as sending

〈r; x t
1, . . . , x t

d〉 7→ 〈r p
; x pt

1 , . . . , x pt
d 〉.

Discussion 2.4 (Another point of view for F-stable submodules). Let (R, m, K )
be local of Krull dimension d , where R has characteristic p > 0. Consider an
F-stable submodule N ⊆ H d

m(R). Suppose that R is reduced. We have an iso-
morphism of (R, m, K ) with (S, n, L) where S = R1/p given by 8 : R → R1/p,
where 8(r)= r1/p. We have a commutative diagram:

R
F

−−−→ R

=

y y8
R −−−→

ι
R1/p ,
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where ι : R ⊆ R1/p is the inclusion map. In general, when 8 : R → S is any ring
isomorphism, for each submodule N of H i

I (R) there is a corresponding submodule
N ′ of H i

8(I )(S). In fact, if 9 = 8−1, and we use 9Q to indicate restriction of
scalars from R-modules to S-modules, then H i

8(I )(S) is canonically isomorphic
with 9(H i

I (R)) and N ′ is the image of 9N in H i
8(I )(S). Note that 9 is an exact

functor.
When S = R1/p and I = m, the modules

H i
8(m)(S), H i

n(S), H i
mS(S), and H i

m(S)

may all be identified: the first three may be identified because 8(m) and mS both
have radical n, and the last two because if f1, . . . , fh generate m their images
g1, . . . , gh in S generate mS and the complexes C•( f ; S) and C•(g; S) are iso-
morphic. The condition that N is F-stable is equivalent to the condition that N
maps into N ′ in H i

m(S)∼= H i
8(m)(S). A very important observation is this:

(∗∗) With notation as just above, if N is F-stable and J ⊆ R kills N (for example,
if J = AnnR N ) then 8(J ) kills the image of N in H i

m(R
1/p).

The hypothesis that N is F-stable means that N maps into the corresponding
submodule N ′, and N ′ is clearly killed by 8(J ).

Definition 2.5. A local ring (R, m) of Krull dimension d is FH-finite if, for all i ,
0 ≤ i ≤ d , only finitely many R-submodules of H i

m(R) are F-stable. We shall say
that R has finite FH-length if for all i , H i

m(R) has finite length in the category of
R{F}-modules.

Our main focus in studying the properties of being FH-finite and of having finite
FH-length is when the local ring R is Cohen–Macaulay. Of course, in this case
there is only one nonzero local cohomology module, H d

m(R). However, we show
that every face ring has finite FH-length in Section 5.

Since every H i
m(R) has DCC even in the category of R-modules, we know that

H i
m(R) has finite length in the category of R{F}-modules if and only if it has ACC

in the category of R{F}-modules. Of course, it is also equivalent to assert that
there is a finite filtration of H i

m(R) whose factors are simple R{F}-modules.

Discussion 2.6 (Purity). Recall that a map of R-modules N → N ′ is pure if for
every R-module M the map N ⊗R M → N ′

⊗R M is injective. Of course, this
implies that N → N ′ is injective, and may be thought of as a weakening of the
condition that 0→ N → N ′ split, that is, that N be a direct summand of N ′. If N ′/N
is finitely presented, N → N ′ is pure if and only if it is split. For a treatment of the
properties of purity, see, for example, [Hochster and Huneke 1995, Lemma 2.1,
p. 49].
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An R algebra S is called pure if R → S is pure as a map of R-modules, that
is, for every R-module M , the map M = R ⊗R M → S ⊗R M is injective. A
Noetherian ring R of characteristic p is called F-pure (respectively, F-split) if the
Frobenius endomorphism F : R → R is pure (respectively, split). Evidently, an
F-split ring is F-pure and an F-pure ring is reduced. If R is an F-finite Noetherian
ring, F-pure and F-split are equivalent (since the cokernel of F : R → R is finitely
presented as a module over the left hand copy of R), and the two notions are also
equivalent when (R, m, K ) is complete local, for in this case, R → S is split if
and only if R ⊗R E → S ⊗R E is injective, where E = ER(K ). An equivalent
condition is that the map obtained by applying HomR( , E) be surjective, and
since R ∼= HomR(E, E), by the adjointness of tensor and Hom that map can be
identified with the maps HomR(S, R)→ HomR(R, R)∼= R.

We say that a local ring R is F-injective if F acts injectively on all of the local
cohomology modules of R with support in m. This holds if R is F-pure.

When R is reduced, the map F : R → R may be identified with the algebra
inclusion R ⊆ R1/p, and so R is F-pure (respectively, F-split) if and only if it is
reduced and the map R ⊆ R1/p is pure (respectively, split).

Lemma 2.7. Let (R,m, K ) be a Noetherian local ring of positive prime charac-
teristic p and Krull dimension d.

(a) R is FH-finite (respectively, has finite FH-length) if and only if its completion
R̂ is FH-finite.

(b) Suppose that (R, m)→ (S, mS) is a local homomorphism of local rings such
that mS is primary to the maximal ideal of S, that is, such that the closed
fiber S/mS has Krull dimension 0. Suppose either that R → S is flat (hence,
faithfully flat), split over R, or that S is pure over R. If S is FH-finite, then
R is FH-finite, and if S has finite FH-length, then R has finite FH-length.
More generally, the poset of F-stable submodules of any local cohomology
module H i

m(R) injects in order-preserving fashion into the poset of F-stable
submodules of H i

mS
(S).

(c) R is F-injective if and only if R̂ is F-injective. R is F-pure if and only if R̂ is
F-pure.

Proof. Completion does not affect either what the local cohomology modules are
nor what the action of Frobenius is. Since each element of a local cohomology
module over R is killed by a power of m, these are already R̂-modules. Thus, (a)
is obvious.

Part (b) follows from the fact that the local cohomology modules of S may be
obtained by applying S ⊗R to those of R, and that the action of F is then the
one discussed in Definition 2.3 for tensor products, that is, F(s ⊗u)= s p

⊗ F(u).
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From this one sees that if N is F-stable in H i
m(R), then S ⊗R N is F-stable in

S ⊗R H i
m(R) ∼= H i

mS
(S). Thus, we only need to see that if N ⊆ N ′ are distinct

F-stable submodules of H i
m(R), then the images of S ⊗ N and S ⊗ N ′ are distinct

in S ⊗ H i
m(R). It suffices to see this when R → S is pure: the hypothesis of

faithful flatness or that R → S is split over R implies purity. But N ′/N injects into
H i

m(R)/N , and S ⊗R N ′/N in turn injects into S ⊗R (H i
m(R)/N ) by purity, so the

image of u ∈ N ′
− N is nonzero in

S ⊗R (H i
m(R)/N )∼= H i

m(S)/Im (S ⊗ N ).

This shows that 1 ⊗ u is in the image of S ⊗ N ′ in H i
m(S) but not in the image of

S ⊗ N .
Part (c), in the case of F-injectivity, follows from the fact that it is equivalent to

the injectivity of the action of F on the H i
m(R), and that neither these modules nor

the action of F changes when we complete. In the case of F-purity, we prove that
if R is F-pure then so is R̂; the other direction is trivial. Consider an ideal I of the
completion, and suppose that there is some element u of the completion such that
u /∈ I but u p

∈ I [p]. Choose N such that u /∈ I +m N R̂. We see that we may assume
that I is primary to the maximal ideal of R̂, which implies that it is the expansion
of its contraction J to R. Then we may choose v ∈ R such that v− u ∈ I = J R̂.
But then v /∈ J but v p

− u p
∈ J [p] R̂, and since u p

∈ J p R̂ we have that

v p
∈ J [p] R̂ ∩ R = J [p]

and so v ∈ J , a contradiction. Thus, ideals of R̂ are contracted with respect to
Frobenius, and, consequently, R̂ is reduced. Then R̂ → R̂1/p is cyclically pure, by
the contractedness of ideals with respect to Frobenius that we just proved, which
shows that it is pure; see [Hochster 1977, Theorem 1.7]. It follows that R̂ is F-
pure. �

Discussion 2.8 (Gamma construction). Let K be a field of positive characteristic
p with a p-base 3. Let 0 be a fixed cofinite subset of 3. For e ∈ N we denote
by K0,e the purely inseparable field extension of K that is the result of adjoining
pe-th roots of all elements in 0 to K , which is unique up to unique isomorphism
over K .

Now suppose that (R, m) is a complete local ring of positive prime characteristic
p and that K ⊆ R is a coefficient field, that is, it maps bijectively onto R/m.
Let x1, . . . , xd be a system of parameters for R, so that R is module-finite over
A = K [[x1, . . . , xd ]] ⊆ R. Let A0 denote⋃

e∈N

K0,e[[x1, . . . , xd ]],
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which is a regular local ring that is faithfully flat and purely inseparable over A.
Moreover, the maximal ideal of A expands to that of A0. We shall let R0 denote
A0 ⊗A R, which is module-finite over the regular ring A0 and which is faithfully
flat and purely inseparable over R. The maximal ideal of R expands to the maximal
ideal of R0. The residue class field of R0 is K0.

We note that R0 depends on the choice of coefficient field K for R, and the
choice of 0, but does not depend on the choice of system of parameters x1, . . . , xd .
We refer the reader to [Hochster and Huneke 1994, §6] for more details. It is of
great importance that R0 is F-finite, that is, finitely generated as a module over
F(R0). This implies that it is excellent; see [Kunz 1976].

It is shown in [Hochster and Huneke 1994] that, if R is reduced, then for any
sufficiently small choice of the cofinite subset 0 of 3, R0 is reduced. It is also
shown in [Hochster and Huneke 1994] that if R is Cohen–Macaulay (respectively,
Gorenstein), then R0 is Cohen–Macaulay (respectively, Gorenstein).

Lemma 2.9. Let R be a complete local ring of positive prime characteristic p. Fix
a coefficient field K and a p-base 3 for K . Let notation be as in Discussion 2.8.

(a) Let W be an Artinian R-module with an R{F}-module structure such that the
action of F is injective. Then for any sufficiently small choice of 0 cofinite in
3, the action of F on R0 ⊗R W is also injective.

(b) Suppose that F acts injectively on a given local cohomology module of R.
Then F acts injectively on the corresponding local cohomology module of R0
for all sufficiently small cofinite 0. In particular, if R is F-injective, then so is
R0.

(c) Suppose that R is F-pure. Then for any choice of 0 cofinite in the p-base
such that R0 is reduced, and, hence, for all sufficiently small cofinite 0, R0 is
F-pure.

Proof. For part (a), let V denote the finite-dimensional K -vector space that is the
socle of W . Let W0 = R0 ⊗R W . Because the maximal ideal m of R expands
to the maximal ideal of R0, and R0 is R-flat, the socle in W0 may be identified
with V0 = K0 ⊗ V . If F has a nonzero kernel on W0 then that kernel has nonzero
intersection with V0, and that intersection will be some K -subspace of V0. Pick
0 such that the dimension of the kernel is minimum. Then the kernel is a nonzero
subspace T of V0 whose intersection with V ⊆ V0 is 0. Choose a basis v1, . . . , vh

for V and choose a basis for T as well. Write each basis vector for T as
∑h

j=1 ai jv j ,
where the ai j are elements of K0. Thus, the rows of the matrix α= (ai j ) represent
a basis for T . Put the matrix α in reduced row echelon form: the leftmost nonzero
entries of the rows are each 1, the columns of these entries are distinct, proceeding
from left to right as the index of the row increases, and each column containing
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the leading 1 of a row has its other entries equal to 0. This matrix is uniquely
determined by the subspace T . It has at least one coefficient a not in K (in fact, at
least one in every row), since T does not meet V .

Now choose 0′
⊆ 0 such that a /∈ K0′ , which is possible by [Hochster and

Huneke 1994, Lemma 6.12]. Then the intersection of T with V0′ must be smaller
than T , or else T will have a K0 basis consisting of linear combinations of the v j

with coefficients in K0′ , and this will give a matrix β over K0′ with the same row
space over K0 as before. When we put β in row echelon form, it must agree with
α, which forces the conclusion that a ∈ K0′ , a contradiction.

Part (b) follows immediately from part (a).
To prove part (c), consider a choice of 0 sufficiently small that R0 is reduced.

Let E be the injective hull of K over R. For each power mt of the maximal ideal
of R, we have that

R0/(mt)∼= K0 ⊗K R/mt .

Thus, the injective hull of K0 over R0 may be identified with K0 ⊗K E . We are
given that the map E → E ⊗R R1/p is injective. We want to show that the map

E0 → E0 ⊗R0 (R0)
1/p

is injective. Since the image of a socle generator in E is a socle generator in E0,
it is equivalent to show the injectivity of the map E → E0 ⊗R0 (R0)

1/p.
The completion of R0 may be thought of as the complete tensor product of

K0 with R over K ⊆ R. However, if one tensors with a module in which every
element is killed by a power of the maximal ideal we may substitute the ordinary
tensor product for the complete tensor product. Moreover, since R0 is reduced, we
may identify (R0)1/p with (R1/p)01/p : the latter notation means that we are using
K 1/p as a coefficient field for R1/p, that we are using the p-th roots 31/p of the
elements of the p-base 3 (chosen for K ) as a p-base for K 1/p, and that we are
using the set 01/p of p-th roots of elements of 0 as the cofinite subset of 31/p in
the construction of R1/p

01/p . But

(K 1/p)01/p ∼= (K0)
1/p.

Keeping in mind that every element of E0 is killed by a power of the maximal
ideal, and that E0 ∼= K0 ⊗K E , we have that

E0 ⊗R0 R1/p
0

∼= (K0 ⊗K E)⊗K0⊗K R (K
1/p
0 ⊗K 1/p R1/p)

and so, writing L for K0, we have that

E0 ⊗R0 R1/p
0

∼= (L ⊗K E)⊗L⊗K R (L1/p
⊗K 1/p R1/p).
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Now, if K is any ring, L and R are any K -algebras, S is any (L ⊗K R)-algebra (in
our case, S = L1/p

⊗K 1/p R1/p), and E is any R-module, there is an isomorphism

(L ⊗K E)⊗L⊗K R S ∼= E ⊗R S,

which maps (c ⊗ u)⊗ s to u ⊗ cs. (The inverse map sends u ⊗ s to (1 ⊗ u)⊗ s.
Note that (c ⊗ u)⊗ s = (1 ⊗ u)⊗ cs in (L ⊗K E)⊗L⊗K R S.)

Applying this fact, we find that E0 ⊗R0 R1/p
0 is isomorphic with

E ⊗R (L1/p
⊗K 1/p R1/p)∼= E ⊗R (R1/p

⊗K 1/p L1/p)∼= (E ⊗R R1/p)⊗K 1/p L1/p

by the commutativity and associativity of tensor product. But E injects into E ⊗R

R1/p by hypothesis and the latter injects into (E ⊗R R1/p)⊗K 1/p L1/p simply be-
cause K 1/p is a field and L1/p is a nonzero free module over it. �

Discussion 2.10 (Finiteness conditions on local cohomology as an F-module and
tight closure). We want to make some connections between F-submodules of local
cohomology and tight closure theory. Let R be a reduced local ring of characteristic
p > 0. Let us call a submodule of H = H d

m(R) strongly proper if it is annihilated
by a nonzero divisor of R. Assume that R has test elements. The finitistic tight
closure of 0 in a module M is the union of the submodules 0∗

N as N runs through
the finitely generated submodules of M . It is not known, in general, whether the
tight closure of 0 in an Artinian module over a complete local ring is the same as
the finitistic tight closure: a priori, it might be larger. See [Lyubeznik and Smith
1999; 2001; Elitzur 2003; Stubbs 2008] for results in this direction.

However, if (R, m, K ) is an excellent reduced equidimensional local ring with
dim(R) = d , the two are the same for H d

m(R): if u is in the tight closure of 0 and
represented by f modulo It = (x t

1, . . . , x t
d) in H d

m(R)= lim
−→t

R/(x t
1, . . . , x t

d)R,
then there exists c ∈ R◦ such that for all q = pe

� 1 the class of cuq maps to 0
under the map R/Iqt → H d

m(R), that is, for some kq , cuq(x1 · · · xd)
kq ∈ Iqt+k+q

for all q � 1. But Iqt+kq :R (x1 · · · xd)
kq ⊆ I ∗

qt (since R is excellent, reduced, and
local, it has a completely stable test element, and this reduces to the complete case,
which follows from [Hochster and Huneke 1990, Theorem 7.15]), and so if d is a
test element for R we have that cduq

∈ Iqt = I [q]

t for all q � 0, and so the class of
u modulo It is in the tight closure of 0 in R/It and hence in the image of R/It in
H d

m(R), as required.
Let us note that the finitistic tight closure of 0 in H is an F-stable strongly proper

submodule of H d
m(R), as shown in [Lyubeznik and Smith 2001, Proposition 4.2].

The reason is that it is immediate from the definition of tight closure that if u ∈ 0∗

N
then uq

∈ 0∗

N [q] , where q = pe and N [q] denotes an image of Fe(N ) in Fe(H) for
some ambient module H ⊇ N . In particular, uq

∈ 0∗

Fe(N ). Moreover, if c is a test
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element for the reduced ring R, then c ∈ R◦ and so c is a nonzero divisor, and c
kills 0∗

N for every finitely generated R-module N .
Conversely, any strongly proper F-stable submodule N ⊆ H is in the tight clo-

sure of 0. If c is a nonzero divisor that kills N and u ∈ N , then cuq
= 0 for all q:

when we identify Fe(H) with H , uq is identified with Fe(u).
What are the strongly proper submodules of H = H d

m(R)? If (R, m, K ) is
complete with E = ER(K ) the injective hull of the residue class field and canonical
module ω := HomR(H d

m(R), E), then submodules of H correspond to the proper
homomorphic images of ω: the inclusion N ⊆ H is dual under HomR( , E) to a
surjection ω� HomR(N , E). If R is a domain, for every proper N ⊆ H we have
that ω� HomR(N , E) is a proper surjection, and therefore is killed by a nonzero
divisor. Therefore, we have the following results of K. E. Smith [1997a]; see
Proposition 2.5 on page 169 and the remark on page 170 immediately following
the proof of Proposition 2.5. See also [Smith 2003, Theorem 3.1.4], where the
restricted generality is not needed.

Proposition 2.11 (K. E. Smith). If R is a reduced equidimensional excellent local
ring of characteristic p, then the tight closure 0∗ of 0 in H d

m(R) (which is the
same in the finitistic and ordinary senses) is the largest strongly proper F-stable
submodule of H d

m(R). If R is a complete local domain, it is the largest proper F-
stable submodule of H d

m(R).

A Noetherian local ring is called F-rational if some (equivalently, every) ideal
generated by parameters is tightly closed. An excellent F-rational local ring is a
Cohen–Macaulay normal domain. The completion of an excellent F-rational local
ring is again F-rational. See [Hochster and Huneke 1994, Proposition 6.27a]. From
this and Discussion 2.10 we have at once:

Proposition 2.12 [Smith 1997a, Theorem 2.6, p. 170]. Let R be an excellent
Cohen–Macaulay local ring of characteristic p and Krull dimension d. Then R
is F-rational if and only if H d

m(R) is a simple R{F}-module.

Example 2.13. The ring obtained by killing the size t minors of a matrix of in-
determinates in the polynomial ring in those indeterminates is an example of an
F-rational ring. In fact this ring is weakly F-regular, that is, every ideal is tightly
closed. The local ring at the origin is therefore FH-finite by the above result: the
unique nonvanishing local cohomology module is R{F}-simple.

Proposition 2.14 [Smith 1997b, 4.17.1]. Let R be a Cohen–Macaulay local do-
main and suppose that there is an m-primary ideal A such that AI ∗

⊆ I for every
ideal I of R generated by part of a system of parameters. Then R has finite FH-
length.
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Proof. Let d be the dimension of R. By the discussion above, every proper F-stable
submodule of H = H d

m(R) is contained in 0∗

H . But the discussion above shows that
0∗

H is a union of submodules of the form I ∗/I where I is a parameter ideal, and
so 0∗

H is killed by A, and has finite length even as an R-module. �

See Theorem 4.22, which gives a stronger conclusion when the residue class
field is perfect and R is F-injective.

Example 2.15. Let R = K [[X, Y, Z ]]/(X3
+ Y 3

+ Z3), where K is a field of
positive characteristic different from 3. Then R is a Gorenstein domain, and the
tight closure of 0 in H 2

m(R) is just the socle, a copy of K : the tight closure of every
parameter ideal is known to contain just one additional element, a representative
of the generator of the socle modulo the parameter ideal. Evidently R is FH-finite.
It is known (see, for example, [Hochster and Roberts 1976, Proposition 5.21c,
p. 157]) that R is F-injective if and only if the characteristic of K is congruent to
1 modulo 3. If the characteristic is congruent to 2 modulo 3, R[[t]] does not have
FH-finite length by Theorem 4.16 of Section 4.

Example 2.16. We construct a complete local F-injective domain of dimension
one (hence, it is Cohen–Macaulay) that is not FH-finite. Note that Theorem 4.22
implies that there are no such examples when the residue class field of the ring is
perfect.

Let K be an infinite field of characteristic p> 0 (it will be necessary that K not
be perfect) and let L be a finite algebraic extension field of K such that

(1) [L : L p
[K ]] > 2 (all one needs is that the dimension of L/L p

[K ] over K is
at least 2) and

(2) L does not contain any element of K 1/p
− K (equivalently, L p

∩ K = K p).

Then the quotient L/K has infinitely many K {F}-submodules but F acts injec-
tively on it. Moreover, if R = K + x L[[x]] ⊆ L[[x]] then R is a complete local
one-dimensional domain that is F-injective but not FH-finite.

The conditions in (1) and (2) above may be satisfied as follows: if k is infinite
perfect of characteristic p> 2, K = k(u, v), where u and v are indeterminates, and

L = K [y]/(y2p
+ uy p

− v),

then (1) and (2) above are satisfied.

Proof. The image of L under F is L p — this need not be a K -vector space, but
L1 = L p

[K ] is a K -vector space containing the image of F . All of the K -vector
subspaces of L strictly between L1 and L are F-stable, and there are infinitely
many. The statement that F acts injectively on L/K is exactly the statement that
L p

∩ K = K p.
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With R as above, the exact sequence

0 → R → L[[x]] → L/K → 0

yields a long exact sequence for local cohomology:

0 → L/K → H 1
m(R)→ H 1

m(L[[x]])→ 0.

Since L/K embeds in H 1
m(R) as an F-stable submodule and m kills it, its R-module

structure is given by its K -vector space structure. Moreover, since F is injective
on H 1

m(L[[x]]), F-injectivity holds for R if and only if it holds for L/K .
This establishes all assertions except that the given example satisfies (1) and (2).

Note that the expression y2p
+ uy p

− v is irreducible over k[y, u, v] (the quotient
is k[y, u]). Suppose that L contains an element w of K 1/p not in K . Then

[K [w] : K ] = p,

and so [L : K [w]] = 2. It follows that y satisfies a monic quadratic equation over
K [w].

But if we enlarge K [w] to all of K 1/p we know the quadratic equation that y
satisfies:

y2
+ u1/p y − v1/p

= 0,

which is clearly irreducible over K 1/p
= k(u1/p, v1/p). This quadratic is unique,

so we must have u1/p, v1/p are both in K [w], a contradiction, since adjoining both
produces an extension of K of degree p2.

It remains to determine [L : L p
[K ]] = [K [y] : K [y p

]]. Since y p satisfies an
irreducible quadratic equation over K , [K [y p

] : K ] = 2, and so [K [y] : K [y p
]] =

2p
2 = p > 2, by assumption. �

3. Annihilators of F-stable submodules and the FH-finite property
for F-pure Gorenstein local rings

In this section we shall prove a theorem of independent interest which can be used
to establish that certain families of radical ideals in excellent local rings are finite.
As an immediate corollary to it, we obtain that if R is local, excellent, then any
family of radical ideals closed under sum, intersection and primary decomposi-
tion is finite. Another consequence is that if R is a local ring of positive prime
characteristic p and M is an Artinian R{F}-module such that F acts injectively
on M , then the set of annihilator ideals in R of F-stable submodules of M is a
finite set of radical ideals closed under primary decomposition (R. Y. Sharp [2007,
Theorem 3.10 and Corollary 3.11] proved this result independently). In fact, it
consists of a finite set of prime ideals and their intersections. From this we deduce
that an F-pure Gorenstein local ring is FH-finite. We say that a family of radical
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ideals of a Noetherian ring is closed under primary decomposition if for every ideal
I in the family and every minimal prime P of I , the ideal P is also in the family.

The following result is the main theorem of this section.

Theorem 3.1. Let M be a Noetherian module over an excellent local ring (R, m).
Then there is no family {Nλ}λ∈3 of submodules of M satisfying all four of the
conditions below:

(1) The family is closed under finite sum.

(2) The family is closed under finite intersection.

(3) All of the ideals AnnR(M/N ) for N in the family are radical.

(4) There exist infinitely many modules in the family such that if N , N ′ are any
two of them, the minimal primes of N are mutually incomparable with the
minimal primes of N ′.

Hence, if a family of submodules {Nλ}λ∈3 of M satisfies conditions (1), (2), and
(3) above and the set

{AnnR(M/Nλ) : λ ∈3}

is closed under primary decomposition, then this set of annihilators is finite.

Proof. Assume that one has a counterexample. We use both induction on the
dimension of R and Noetherian induction on M . Take a counterexample in which
the ring has minimum dimension. One can pass to the completion. Radical ideals
stay radical, and (4) is preserved (although there may be more minimal primes).
The key point is that if P , Q are incomparable primes of R, and R̂ is the completion
of R, then P R̂, Q R̂ are radical with no minimal prime in common. A common
minimal prime would contain (P + Q)R̂, a contradiction, since the minimal primes
of P R̂ lie over P . This, applied together with the fact that the minimal primes of
M̂/N are minimal over P R̂ for some minimal prime P of M/N , enables us to pass
to the completion.

Take infinitely many Ni as in condition (4). Let M0 be maximal among sub-
modules of M contained in infinitely many of the Ni . Then the set of modules
in the family containing M0 gives a new counterexample, and we may pass to all
quotients by M0 (M0 need not be in the family to make this reduction). Thus, by
Noetherian induction on M we may assume that every infinite subset of the Ni has
intersection 0.

Consider the set of all primes of R in the support of an M/Ni . If Q 6= m is in
the support of infinitely many we get a new counterexample over RQ . The (Ni )Q

continue to have the property that no two have a minimal prime in common (in
particular, they are distinct). Since R had minimum dimension for a counterexam-
ple, we can conclude that every Q other than m is in the support of just finitely
many M/Ni .
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Choose h as large as possible such that there are infinitely many primes of height
h occurring among the minimal primes of an M/Ni . Then there are only finitely
many primes of height h + 1 or more occurring as a minimal prime of an M/Ni ,
and, by the preceding paragraph, each one occurs for only finitely many Ni . Delete
sufficiently many Ni from the sequence so that no prime of height bigger than h
occurs among the minimal primes of the M/Ni .

Let D1(i) =
⋂i

s=1 Ns . By Chevalley’s lemma, D1(i1) is contained in m2 M
for i1 sufficiently large; fix such a value of i1. Let W1 = D1(i1). Let D2( j) =⋂ j

s=i1+1 Ns . Then D2( j) is contained in m2 M for sufficiently large j ; fix such a
value i2. Recursively, we can choose a strictly increasing sequence of integers {it }t

with i0 = 0 such that every

Wt =

it⋂
s=it−1+1

Ns

is contained in m2 M . In this way we can construct a sequence W1, W2, W3, . . .

with the same properties as the Ni but such that all of them are in m2 M . Now
W1 + W2 + · · · + Wt stabilizes for t � 0, since M is Noetherian, and the stable
value W is contained in m2 M . There cannot be any prime other than m in the
support of M/W , or it will be in the support of M/W j for all j and this will put it
in the support of infinitely many of the original N j . Hence, the annihilator of M/W
is an m-primary ideal, and, by construction, it is contained in m2 and, therefore,
not radical, a contradiction.

It remains only to prove the final statement. If the set of annihilators were infinite
it would contain infinitely many prime ideals. Since there are only finitely many
possibilities for the height, infinitely many of them would be prime ideals of the
same height. The modules in the family having these primes as annihilator satisfy
condition (4), a contradiction. �

By applying Theorem 3.1 to the family of ideals of R, we immediately have:

Corollary 3.2. A family of radical ideals in an excellent local ring closed under
sum, intersection, and primary decomposition is finite.

Discussion 3.3. For any local ring (R, m, K ) we let E denote an injective hull of
the residue class field, and we write ∨ for HomR( , E). Note that E is also a
choice for E R̂(K ), and that its submodules over R are the same as its submodules
over R̂. E is determined up to nonunique isomorphism: the obvious map R̂ →

HomR(E, E) is an isomorphism, and so every automorphism of E is given by
multiplication by a unit of R̂.

Now suppose that R is complete. Then R∨ ∼= E and E∨ ∼= R, by Matlis duality.
Matlis duality gives an antiequivalence between modules with ACC and modules
with DCC: in both cases, the functor used is a restriction of ∨. In particular, the
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natural map N → N∨∨ is an isomorphism whenever N has DCC or ACC. Note
that there is an order-reversing bijection between ideals I of R and submodules N
of E given by I 7→ AnnE I and N 7→ AnnR N : this is a consequence of the fact
that the inclusion N ↪→ E is dual to a surjection N∨ � R so that N∨ ∼= R/I for a
unique ideal I of R, and since I = AnnR N∨, we have that I = AnnR N . Note that
N ∼= N∨∨ ∼= (R/I )∨ ∼= HomR(R/I, E)∼= AnnE I . When R is regular or even if R
is Gorenstein, E ∼= H d

m(R).
When R is complete local and W is Artinian, Matlis duality provides a bijection

between the submodules of W and the surjections from W ∨
= M , and each such

surjection is determined by its kernel N . This gives an order-reversing bijection
between the submodules of W and the submodules of M . Specifically, V ⊆ W
corresponds to ker(W ∨ � V ∨) = ker(M � V ∨), and N ⊆ M corresponds to
ker(M∨ � (M/N )∨). Here, M∨

= (W ∨)∨ ∼= W canonically. This bijection con-
verts sums to intersections and intersections to sums; the point is that the sum (inter-
section) of a family of submodules is the smallest (respectively, largest) submodule
containing (respectively, contained in) all of them, and the result follows from the
fact that the correspondence is an order antiisomorphism. Since the annihilator of
a module kills the annihilator of its dual, Matlis duality preserves annihilators: it
is obvious that the annihilator of a module kills its dual, and we have that each of
the two modules is the dual of the other. In particular, under the order-reversing
bijection between submodules V of W and submodules N of M , we have that

AnnR V = AnnR(M/N ).

Discussion 3.4. Let (R, m, K ) → (S, n, L) be local, and suppose that mS is
n-primary and that L is finite algebraic over K : both these conditions hold if S
is module-finite over R. Let E = ER(K ) and ES(L) denote choices of injective
hulls for K over R and for L over S, respectively. The functor HomR( , E) from
S-modules to S-modules may be identified with

HomR( ⊗S S, E)∼= HomS( , HomR(S, E)),

which shows that HomR(S, E) is injective as an S-module. Every element is killed
by a power of the maximal ideal of S, since mS is primary to n, and the value of the
functor on L = S/n is HomR(L , E)∼= HomR(L , K ) since the image of L is killed
by m. But this is L as an L-module. Thus, ES(L)∼= HomR(S, E), and the functor
HomR( , E), on S-modules, is isomorphic with the functor HomS( , ES(L)).

The following proposition can be seen as a consequence of the more general
Theorem 3.6 and its corollary in [Sharp 2007]. However, its proof is not very
difficult and we include it here for the convenience of the reader.

Proposition 3.5. Let R be a ring of characteristic p and let W be an R{F}-module.
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(a) If F acts injectively on W , the annihilator in R of every F-stable submodule
is radical.

(b) If I is the annihilator of an F-stable submodule V of W , then I :R f is also
the annihilator of an F-stable submodule, namely, f V . Hence, if I is radical
with minimal primes P1, . . . , Pk then every Pj (and every finite intersection
of a subset of the Pj ) is the annihilator of an F-stable submodule of M.

Proof. If V is F-stable and u ∈ R is such that u p
∈ AnnR V , then

F(uV )= u p F(V )⊆ u pV = 0.

Since F is injective on W , uV = 0. This proves part (a). For part (b), note that f V
is F-stable since F( f V ) = f p F(V ) ⊆ f pV ⊆ f V and u( f V ) = 0 if and only if
(u f )V = 0 if and only if u f ∈ AnnR V = I if and only if u ∈ I :R f . For the final
statement, choose f in all of the Pj except Pi , and note that I :R f = Pi . More
generally, given a subset of the Pj , choose f in all of the minimal primes except
those in the specified subset. �

Now we are in position to state an important consequence of our main result in
this section. This result has also been obtained by Sharp [2007, Theorem 3.10 and,
more precisely, Corollary 3.11]. Our proof is via Theorem 3.1 so we will include
here.

Theorem 3.6 (R. Y. Sharp). Let R be a local ring of positive prime characteristic
p and let W be an Artinian R{F}-module. Suppose that F acts injectively on W .
Then

{AnnR V : V is an F-stable submodule of W }

is a finite set of radical ideals, and consists of all intersections of the finitely many
prime ideals in it.

Proof. By Proposition 3.5, it suffices to prove that family of annihilators is fi-
nite. We may replace R by its completion without changing M or the action of
F on M . The set of F-stable submodules is unaffected. The annihilator of each
such submodule in R is obtained from its annihilator in R̂ by intersection with R.
Therefore, it suffices to prove the result when R is complete, and we henceforth
assume that R is complete.

As in Discussion 3.3 fix an injective hull E of K and let ∨
= HomR( , E).

Matlis duality gives a bijection of submodules of W with submodules of M = W ∨.
The F-stable submodules of W are obviously closed under sum and intersection.
Therefore, the submodules N of M that correspond to them are also closed under
sum and intersection. We refer to these as the costable submodules of M . The
annihilators of the modules M/N , where N runs through the costable submodules



The Frobenius structure of local cohomology 739

of M , are the same as the annihilators of the F-stable submodules of W . We may
now apply the final statement of Theorem 3.1. �

It is now easy to prove the second main result of this section. Recall that a local
ring (R, m, K ) of Krull dimension d is quasi-Gorenstein if H d

m(R) is an injective
hull of K ; equivalently, this means that R is a canonical module for R in the sense
that its Matlis dual is H d

m(R).

Theorem 3.7. Let (R, m, K ) be a local ring of prime characteristic p > 0. If
R is F-pure and quasi-Gorenstein, then H d

m(R) has only finitely many F-stable
submodules. Hence, if R is F-pure and Gorenstein, then R is FH-finite.

Proof. There is no loss of generality in replacing R by its completion. We apply
Theorem 3.6 to the action of F on H d

m(R)= E . The point is that because E∨
= R,

the dual of the F-stable module V has the form R/I , where I is the annihilator of
V , and so V is uniquely determined by its annihilator.

Since there are only finitely many possible annihilators, there are only finitely
many F-stable submodules of H d

m(R). �

In relation to this theorem the following observation is interesting.1 Since we
do not know a reference for it in the case of F-rational rings, we will also sketch a
proof of it. For the definition of tight closure in the case of modules and its variant
of finitistic tight closure, we refer the reader to [Hochster and Huneke 1990]. The
result on F-rational rings is not actually related to rest of the paper, but we include
it for the sake of completness.

Remark 3.8. Let (R, m, K ) be a local ring of prime characteristic p> 0. Assume
that R is quasi-Gorenstein. Then R is F-pure if and only if R is F-injective. If R
is excellent as well, then R is weakly F-regular if and only if R is F-rational.

Proof. If R is F-pure (respectively, weakly F-regular), then it is immediate that R
is F-injective (respectively F-rational).

Assume that R is F-injective. To prove that R is F-pure, one can proceed exactly
as in [Fedder 1983, Lemma 3.3].

Now assume that R is F-rational. We can assume that R is complete. Let
E = ER(K ). To prove that R is weakly F-regular we need to show that the finitistic
tight closure of zero in E equals zero, that is,

0 = 0∗, f g
E .

But E is isomorphic to H = H d
m(R), and 0∗, f g

H = 0∗

H = 0 since R is F-rational.
This finishes the sketch of the proof. �

1We thank Karl Schwede for suggesting that we incorporate this remark in our paper.



740 Florian Enescu and Melvin Hochster

4. F-purity, finite length, and antinilpotent modules

In this section we prove that certain quotients by annihilators are F-split, and we
study the family of F-stable submodules of the highest local cohomology both in
the F-pure Cohen–Macaulay case, and under less restrictive hypotheses. We do
not know an example of an F-injective ring which does not have finite FH-length,
but we have not been able to prove that one has finite FH-length even in the F-split
Cohen–Macaulay case. We also give various characterizations of when a local ring
has finite FH-length.

Theorem 4.1. Let (R, m, K ) be a local ring of prime characteristic p > 0 of
Krull dimension d. Suppose that R is F-split. Let N be an F-stable submodule of
H d

m(R), and let J = AnnR N. Then R/J is F-split. In fact, let 8 : R → R1/p such
that 8(r) = r1/p. If T : R1/p

→ R is any R-linear splitting, then for every such
annihilator ideal J , T (8(J ))⊆ J , and so T induces a splitting

(R/J )1/p ∼= R1/p/8(J )� R/J.

Proof. Let H = H d
m(R). When we apply ⊗R H to ι : R ⊆ R1/p and to T : R1/p

→ R,
we get maps

α : H → R1/p
⊗ H ∼= H d

m(R
1/p)∼= H d

n (R
1/p),

where n is the maximal ideal of R1/p, and also a map T̃ : H d
m(R

1/p)→ H . Therefore
α equals ι⊗R idH and T̃ equals T ⊗R idH .

Let u ∈ H and s ∈ R1/p. We have

T̃ (sα(u))= (T ⊗R idH )(s(1 ⊗ u))= (T ⊗R idH )(s ⊗ u)= T (s)⊗ u,

and since T (s) ∈ R, this is simply T (s)u. To show that T (J 1/p) ⊆ J , we need to
prove that T (J 1/p) kills N in H d

m(R). Take u ∈ N and j ∈ J . Then

T ( j1/p)u = T̃ ( j1/p)(α(u)),

taking s = j1/p. But now, since N is an F-stable submodule of H d
m(R), α maps

N into the corresponding submodule N ′ of H d
m(R

1/p), whose annihilator in R1/p

is 8(J ). We therefore have that j1/p kills α(N ) ⊆ N ′. This is the displayed fact
(∗∗) in Discussion 2.4. Therefore, T ( j1/p)u = 0, and T ( j1/p) ∈ J . �

We now want to discuss the condition of having finite FH-length.

Proposition 4.2. Let R be a characteristic p local ring with nilradical J , and let
M be an Artinian R{F}-module. Then M has finite R{F}-length if and only if J M
has finite length as an R-module and M/J M has finite (R/J ){F}-length.

Proof. J M has a finite filtration by submodules J t M , and F acts trivially on each
factor. �
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Because of Proposition 4.2, we shall mostly limit our discussion of finite FH-
length to the case where R is reduced.

Discussion 4.3. Let (R, m, K ) be a local ring of characteristic p> 0 and let M be
an Artinian R{F}-module. We note that M is also an Artinian R̂{F}-module with
the same action of F, and we henceforth assume that R is complete in this discus-
sion. We shall also assume that R is reduced. (In the excellent case, completing
will not affect whether the ring is reduced.) Fix an injective hull E = ER(K ) for
the residue field and let ∨ denote the functor HomR( , E).

Lemma 4.4. Let (R, m, K ) be a local ring of characteristic p. Then we may
construct S local and faithfully flat over R with maximal ideal mS such that S is
complete and faithfully flat over R, such that S is Cohen–Macaulay if R is Cohen–
Macaulay, such that S is F-injective if R is, and such that S is F-split if R is F-pure.
For every i , the poset of F-stable modules of H i

m(R) injects by a strictly order-
preserving map into the poset of F-stable modules of H i

mS(S)= H i
m(S). Hence, R

is FH-finite (respectively, has finite FH-length) if S is FH-finite (respectively, has
FH-finite length).

Proof. By Lemma 2.7, we may first replace R by its completion R̂. We then
choose a coefficient field K and a p-base 3 for K , and replace R̂ by R̂0 for 0 a
sufficiently small cofinite subset of 3, using Lemma 2.9. Finally, we replace R̂0
by its completion. The map on posets is induced by applying S ⊗R . �

Discussion 4.5 (Reductions in the Cohen–Macaulay F-pure case). Consider the
following three hypotheses on a local ring R of prime characteristic p > 0:

(1) R is F-injective and Cohen–Macaulay, with perfect residue class field.

(2) R is F-pure.

(3) R is F-pure and Cohen–Macaulay.

In all three cases we do not know, for example, whether the top local coho-
mology module has only finitely many F-stable submodules. The point we want
to make is that Lemma 4.4 permits us to reduce each of these questions to the
case where R is complete and F-finite. Moreover, because F-pure then implies
F-split, in cases (2) and (3) the hypothesis that R be F-pure may be replaced by
the hypothesis that R be F-split.

If V ⊆ V ′
⊆ W are F-stable R-submodules of the R{F}-module W , we refer to

V ′/V as a subquotient of W . Also, we let F̃k(V ) denote the R-span of Fk(V ) in
W . We next note:

Proposition 4.6. Let R be a ring of positive prime characteristic p and let W be
an R{F}-module. The following conditions on W are equivalent:

(a) If V is an F-stable submodule of W , then F acts injectively on W/V .
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(b) F acts injectively on every subquotient of W .

(c) The action of F on any subquotient of W is not nilpotent.

(d) The action of F on any nonzero subquotient of W is not zero.

(e) If V ⊆ V ′ are F-stable submodules of W such that Fk(V ′)⊆ V for some k ≥ 1
then V ′

= V .

Proof. (a) and (b) are equivalent because a subquotient V ′/V is an R{F}-submodule
of W/V . If the action of F on a subquotient V ′′/V ⊆ W/V is not injective, the
kernel has the form V ′/V where V ′ is F-stable. Hence (b) and (d) are equivalent. If
F is nilpotent on V ′′/V it has a nonzero kernel of the form V ′/V . This shows that
(c) is also equivalent. (e) follows because Fk kills V ′/V if and only if Fk(V ′)⊆ V .

�

Definition 4.7. With R and W as in Proposition 4.6 we shall say that W is an-
tinilpotent if it satisfies the equivalent conditions (a)–(e).

Theorem 4.8 [Lyubeznik 1997, Theorem 4.7, p. 108]. Let R be a local ring of
prime characteristic p > 0 and let W be an Artinian R-module that has an action
F of Frobenius on it. Then W has a finite filtration

0 = L0 ⊆ N0 ⊆ L1 ⊆ N1 ⊆ · · · ⊆ Ls ⊆ Ns = M

by F-stable submodules such that every N j/L j is nilpotent, that is, killed by a
single power of F , while every L j/N j−1 is simple in the category of R{F}-modules,
with a nonzero action of F on it. The integer s and the isomorphism classes of the
modules L j/N j−1 are invariants of W .

Note that the assumption that the action of F on a simple module L 6= 0 is
nonzero is equivalent to the assertion that the action of F is injective, for if F has
a nontrivial kernel it is an R{F}-submodule and so must be all of L .

Proposition 4.9. Let the hypothesis be as in Theorem 4.8 and let W have a filtra-
tion as in that theorem. Then:

(a) W has finite length as an R{F}-module if and only if each of the factors N j/L j

has finite length in the category of R-modules.

(b) W is antinilpotent if and only if in some (equivalently, every filtration) as in
Theorem 4.8, the nilpotent factors are all zero.

Proof. (a) This comes down to the assertion that if a power of F kills W then
W has finite length in the category of R{F}-modules if and only if it has finite
length in the category of R-modules. But W has a finite filtration with factors
F̃ j (W )/F̃ j+1(W ) on which F acts trivially, and the result is obvious when F acts
trivially.
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(b) If W is antinilpotent, then the nilpotent factors in any finite filtration must
be 0, since they are subquotients of W . Now suppose that W has a finite filtration
by simple R{F}-modules on which F acts injectively. Suppose that we have 0 ⊆

V ⊆ V ′
⊆ W such that F acts trivially on V ′/V . This filtration and the filtration

by simple R{F}-modules on which F acts injectively have a common refinement
in the category of R{F}-modules. This implies that V ′/V has a finite filtration
in which all the factors are simple R{F}-modules on which F acts injectively.
Since F must be zero on the smallest nonzero submodule in the filtration, this is a
contradiction. �

Corollary 4.10. Let R be a local ring of positive prime characteristic p. If M is
an Artinian R-module that is antinilpotent as an R{F}-module, then so is every
submodule, quotient module, and every subquotient of M in the category of R{F}-
modules.

Proof. It suffices to show this for submodules and quotients. But if N is any R{F}-
submodule, the filtration 0 ⊆ N ⊆ M has a common refinement with the filtration
of M with factors that are simple R{F}-modules with nontrivial F-action. �

We also note the following, which is part of [Lyubeznik 1997, Theorem 4.2].

Theorem 4.11 (Lyubeznik). Let T → R be a surjective map from a complete
regular local ring T of prime characteristic p > 0 onto a local ring (R, m, K ).
Then there exists a contravariant additive functor HT,R from the category of R{F}-
modules that are Artinian over R to the category of FT -finite modules in the sense
of Lyubeznik such that:

(a) HT,R is exact.

(b) HT,R(M)= 0 if and only if the action of some power of F on M is zero.

Theorem 4.12. Let R be a local ring of positive prime characteristic p. Let M be
an Artinian R-module that is antinilpotent as an R{F}-module. Then M has only
finitely many R{F}-submodules.

Proof. We may replace R by its completion and write R as T/J where T is a
complete regular local ring of characterisitc p. By Theorem 4.11 above, we have
a contravariant exact functor HT,R on R{F}-modules Artinian over R to FT -finite
modules in the sense of Lyubeznik. This functor is faithfully exact when restricted
to antinilpotent modules, and all subquotients of M are antinilpotent. It follows
that if M1 and M2 are distinct R{F}-submodules of M , then N1 and N2 are distinct,
where

Ni = ker
(
H(M)→ H(Mi )

)
for i =1, 2. By the main result of [Hochster 2008], an FT -finite module in the sense
of Lyubeznik over a regular local ring T has only finitely many FT -submodules,
from which the desired result now follows at once. �
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Discussion 4.13 (Local cohomology after adjunction of a formal indeterminate).
Let R be any ring and M an R-module. Let x be a formal power series indetermi-
nate over R. We shall denote by M〈 x−1

〉 the R[[x]]-module

M ⊗Z (Z[x, x−1
]/Z[x]).

This is evidently an R[x]-module, and since every element is killed by a power of
x , it is also a module over R[[x]]. Note that if R is an A-algebra, this module may
also be described as M ⊗A (A[x, x−1

]/A[x]). In particular,

M〈 x−1
〉 ∼= M ⊗R (R[x, x−1

]/R[x]),

and if R contains a field K , M〈 x−1
〉 ∼= M ⊗K (K [x, x−1

]/K [x]). We have that
M ∼= M ⊗ x−n for all n ≥ 1 via the map u 7→ u ⊗ x−n , and we write Mx−n for
M ⊗ x−n . As an R-module, M〈 x−1

〉 ∼=
⊕

∞

n=1 Mx−n , a countable direct sum of
copies of M . The action of x kills Mx−1 and for n > 1 maps Mx−n to Mx−(n−1)

in the obvious way, sending ux−n to ux−(n−1). Then M → M〈 x−1
〉 is a faithfully

exact functor from R-modules to R[[x]]-modules. If R has prime characteristic
p > 0 and M is an R{F}-module, then we may also extend this to an R[[x]]{F}-
module structure on M〈 x−1

〉 by letting F send ux−n
7→ F(u)x−pn . This gives a

convenient way of describing what happens to local cohomology when we adjoin
a formal power series indeterminate to a local ring R.

Proposition 4.14. Let R be a Noetherian ring, let I be a finitely generated ideal
of R, and let x be a formal power series indeterminate over R. Let J denote the
ideal (I, x)R[[x]] of R[[x]].

(a) For every i ,

H i
J (R[[x]])∼= H i

I (R)〈 x−1
〉.

If R has prime characteristic p>0 then the action of Frobenius on H i
J (R[[x]])

agrees with the action on H i
I (R)〈 x−1

〉 described above.

(b) In particular, if (R, m, K ) is local and J = n, the maximal ideal of R[[x]],
then for every i ,

H i
n(R[[x]])∼= H i

m(R)〈 x−1
〉.

(c) If (R, m, K ) is local and M is Artinian, then M〈 x−1
〉 is Artinian over R[[x]].

(d) If (R, m, K ) is local of prime characteristic p > 0 and M is a simple R{F}-
module on which the action of F is not 0, then M〈 x−1

〉 is a simple R[[x]]{F}-
module.

(e) If (R, m, K ) is local of prime characteristic p > 0 and M is an antinilpotent
R{F}-module, then M〈 x−1

〉 is an antinilpotent R[[x]]{F}-module.
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Proof. (a) Let f1, . . . , fn ∈ R generate I . Then H i
I (R) is the i-th cohomology

of the complex C•( f ; R), and H i
J (R[[x]]) is the i-th cohomology module of the

complex
C•( f , x; R[[x]])∼= C•( f ; R)⊗R C•(x; R[[x]]).

The complex C•(x; R[[x]]) is simply

0 → R[[x]] → R[[x]]x → 0

and has augmentation R〈 x−1
〉. Since R[[x]], R[[x]]x , and R〈 x−1

〉 are all R-flat,
we have that H i

J (R[[x]]) is the i-th cohomology module of the mapping cone of
the injection of complexes

C•( f ; R[[x]]) ↪→ C•( f ; R[[x]]x),

which may be identified with the cohomology of the quotient complex, and so with
the cohomology of C•( f ; R〈 x−1

〉)∼= C•( f ; R)〈 x−1
〉. Since R〈 x−1

〉 is R-flat (in
fact, R-free), applying ⊗R R〈 x−1

〉 commutes with formation of cohomology,
from which the result follows. Part (b) is immediate from part (a).

To prove (c), note that every element of M〈 x−1
〉 is killed by a power of m and

of x , and so by a power of n. It therefore suffices to see that the annihilator of n

is a finite-dimensional vector space over K . But the annihilator of x is Mx−1, and
the annihilator of m in Mx−1 is isomorphic with the annihilator of m in M .

We next prove (d). Since the kernel of the action of F on M is an F-stable
R-submodule of M , the fact that M is a simple R{F}-module implies that F acts
injectively on M . Suppose that N is a nonzero R[[x]]{F}-submodule of M , and
that u1x−1

+ · · · + uk x−k
∈ N . By multiplying by xk−1 we see that uk x−1

∈ N .
Hence, N has nonzero intersection N1x−1 with Mx−1. N1 is an R-submodule of
M . It is also F-stable, since if ux−1

∈ N then

x p−1 F(ux−1)= F(u)x−1
∈ N ∩ Mx−1.

Thus, N contains Mx−1. In every degree h, let Nh x−h
= N ∩Mx−h . Then Nh 6= 0,

for if u ∈ M − {0} and q = pe > h,

xq−h Fe(ux−1)= Fe(u)x−h,

and F(u) 6= 0. Moreover, the R-submodule Nh ⊆ M is F-stable, for if vx−h
∈

Nh x−h , then x ph−h F(vx−h) = F(v)x−h
∈ Nh x−h . Thus, Nh = M for all h ≥ 1,

and so N = M .
For part (e), if M has a finite filtration by simple R{F}-modules M j on which F

has nonzero action, then applying N 7→ N 〈 x−1
〉 gives a finite filtration of M〈 x−1

〉

with factors M j 〈 x−1
〉, each of which is a simple R[[x]]{F}-module by part (d) on

which F has nonzero action. �
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Theorem 4.15. Let (R, m, K ) be a local ring of prime characteristic p > 0. Let
x be a formal power series indeterminate over R. Let M be an R{F}-module that
is Artinian as an R-module. Then the following are equivalent:

(1) M is antinilpotent.

(2) M〈 x−1
〉 has finite length over R[[x]]{F}.

(3) M〈 x−1
〉 has only finitely many F-stable submodules over R[[x]].

When these equivalent conditions hold, M has only finitely many F-stable mod-
ules over R.

Proof. We show that (2) ⇒ (1) ⇒ (3). Assume (2). If M is not antinilpotent, it has
a subquotient N 6= 0 on which the action of F is 0. Then N 〈 x−1

〉 is a subquotient
of M〈 x−1

〉, and so has finite length as an R[[x]]{F}-module. Since F kills it, it
must have finite length as an R[[x]]-module. But this is clearly false, since no power
of x kills N 〈 x−1

〉.
To see that (1) ⇒ (3), note that by Proposition 4.14 (e), the fact that M is

antinilpotent implies that M〈 x−1
〉 is antinilpotent over R[[x]], and the result now

follows from Theorem 4.12. The implication (3) ⇒ (2) is obvious. �

The next result is an immediate corollary.

Theorem 4.16. Let (R, m, K ) be a local ring of prime characteristic p > 0 and
let x = x1 and x2, . . . , xn be formal power series indeterminates over R. Let
Rn = R[[x1, . . . , xn]], where R0 = R, and let mn be its maximal ideal. Then the
following conditions on R are equivalent:

(1) The local cohomology modules H i
m(R) are antinilpotent.

(2) The ring R[[x]] has FH-finite length.

(3) The ring Rn is FH-finite for every n ∈ N.

(4) The local cohomology modules H i
mn
(Rn) are antinilpotent over Rn for all

n ∈ N.

(5) The ring Rn has FH-finite length for all n ∈ N.

When these conditions hold, R is F-injective.

Proof. We have that (1) ⇒ (4) by Proposition 4.14 (a) and (e) and a straightfor-
ward induction on n. This implies that Rn is FH-finite for all n by Theorem 4.12.
Thus, (4) ⇒ (3) ⇒ (5) ⇒ (2), and it suffices to prove that (2) ⇒ (1), which is a
consequence of Theorem 4.15.

The statement that R is then F-injective is obvious, since F acts injectively on
any antinilpotent module. �
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Corollary 4.17. Let (R, m, K ) be an F-pure Gorenstein local ring of prime char-
acteristic p > 0 and Krull dimension d. Then H d

m(R) is antinilpotent, and so F
acts injectively on every subquotient of H d

m(R).

Proof. The hypothesis also holds for R[[x]], and so the result follows from Theorem
3.7 and Theorem 4.16. �

Corollary 4.18. Let (R, m, K ) be an F-pure Gorenstein local ring of prime char-
acteristic p > 0 and of Krull dimension d. Let J be an ideal of R such that
dim(R/J ) = d. Then H d

m(R/J ) is antinilpotent, and so F acts injectively on
H d

m(R/J ) (here, F is induced naturally from the Frobenius action F on R/J ).
Hence, if R/J is Cohen–Macaulay, it is F-injective.

Proof. Since R and R/J have the same dimension, the long exact sequence for local
cohomology gives an R{F}-module surjection H d

m(R)� H d
m(R/J ), which shows

that H d
m(R/J ) is antinilpotent as an R{F}-module, and therefore as an (R/J ){F}

module as well. �

Next we shall need the following result from [Watanabe 1991]: the F-pure case
is attributed there to Srinivas. See [Watanabe 1991, Theorem 2.7] and the comment
that precedes it.

Theorem 4.19 (Watanabe and Srinivas). Let h : (R, m, K )→ (S, n, L) be a local
homomorphism of local normal domains of prime characterisitic p> 0 such that S
is module-finite over R and the map h is étale in codimension one. If R is strongly
F-regular, then so is S. If R is F-pure, then so is S.

The explicit statement in [Watanabe 1991] is for the F-regular case, by which
the author means the weakly F-regular case. However, the proof given uses the
criterion (i) of [Watanabe 1991, Proposition 1.4], that the local ring (R, m, K )
is weakly F-regular if and only if 0 is tightly closed in ER(K ), which is correct
for finitistic tight closure but not for the version of tight closure being used in
[Watanabe 1991]. In fact, condition (i) as used in [Watanabe 1991] characterizes
strong F-regularity in the F-finite case, and we take it as the definition of strong
F-regularity here.

On the other hand, there are no problems whatsoever in proving the final state-
ment about F-purity. The action of Frobenius FS : ES(L)→ FS(ES(L)) is shown to
be the same as the action of Frobenius when ES(L) is viewed as R-module. Since
R is F-pure, the Frobenius action M → FR(M) is injective for any R-module.

Corollary 4.20 (Watanabe). Let (R, m) be a normal local domain of characteris-
tic p > 0. Let I be an ideal of pure height one, and suppose that I has finite order
k > 1 in the divisor class group of R. Choose a generator u of I (k). We let

S = R ⊕ I t ⊕ · · · ⊕ I ( j)
⊕ · · · ⊕ I (k−1)
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with I (k) identified with R using the isomorphism R ∼= I (k) such that 1 7→ u. (If
t is an indeterminate, we can give the following more formal description: form
T =

⊕
∞

j=0 I ( j)t j
⊆ R[t], and let S = T/(utk

−1).) This ring is module-finite over
R, and if k is relatively prime to p, it is étale over R in codimension one.

Hence, if k is relatively prime to p, then S is strongly F-regular if and only if R
is strongly F-regular, and S is F-pure if and only if R is F-pure.

Moreover, if I ∼= ω is a canonical module for R, then S is quasi-Gorenstein.

The final statement is expected because, by the discussion of canonical modules
for module-finite extensions in Discussion 2.2, we have that ωS ∼=HomR(S, ω) and
HomR(ω

(i), ω) ∼= ω−(i−1) ∼= ω(k−(i−1)). See [Watanabe 1991; Tomari and Watan-
abe 1992; Watanabe and Yoshida 2004, §3; Singh 2003] for further details and
background on this technique. The result above will enable us to use this “canon-
ical cover trick” to prove the theorem below by reduction to the quasi-Gorenstein
case. A word of caution is in order: even if R is Cohen–Macaulay, examples in
[Singh 2003] show that the auxiliary ring S described in Corollary 4.20 need not be
Cohen–Macaulay, and so one is forced to consider the quasi-Gorenstein property.
There are examples (see [Singh 2003, Theorem 6.1]) where R is F-rational but S
is not Cohen–Macaulay. On the other hand, if R is strongly F-regular, the result
of [Watanabe 1991] shows that S is as well; in particular, S is Cohen–Macaulay in
this case.

Theorem 4.21. Let R be a Cohen–Macaulay F-pure normal local domain of Krull
dimension d such that R has canonical module ω = ωR of finite order k relatively
prime to p in the divisor class group of R. Then H d

m(R) is antinilpotent, so R is
FH-finite.

Proof. Since the hypotheses are stable under adjunction of a power series indeter-
minate, it follows from Theorem 4.16 that it is sufficient to show that R is F H -
finite. We may identify ω with a pure height one ideal of I of R. We form the
ring S described in Corollary 4.20. Then S is F-pure and quasi-Gorenstein, and
so H d

m(S) has only finitely many F-stable submodules by Theorem 3.7. The same
holds for H d

m(R) by Lemma 2.7 (b), while the lower local cohomology modules
of R with support in m vanish. �

The following improves the conclusion of Proposition 2.14 with some additional
hypotheses.

Theorem 4.22. Let (R, m, K ) be an F-injective Cohen–Macaulay local ring with
of prime characteristic p > 0 such that K is perfect. Suppose that R has an m-
primary ideal A such that AI ∗

⊆ I for every ideal I generated by a system of
parameters. Let d = dim(R). Then H d

m(R) is antinilpotent, so that R and every
formal power series ring over R is FH-finite.
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Proof. Let H = H d
m(R) and let V = 0∗

H , which, as in the proof of Proposition 2.14,
is killed by A and has finite length. Then R/A is a complete local ring with a
perfect residue class field, and contains a unique coefficient field K . This gives V
the structure of a K -module, that is, it is a finite-dimensional K -vector space, and
F : V → V is K -linear if we let the action of K on the second copy of V be such
that c ·v = cpv for c ∈ K . Since K is perfect, the dimension of V does not change
when we restrict F in this way. Since R is F-injective, the action of F on V is then
a vector space isomorphism, and is then also an isomorphism when restricted to
subquotients that are K {F}-modules. It follows that V is antinilpotent over R{F},
and to complete the proof it will suffice to show that F cannot act trivially on the
simple R{F}-module H/V .

Choose a system of parameters x1, . . . , xd for R. Let

It = (x t
1, . . . , x t

d)R.

For any sufficiently large value of t , we may identify V with I ∗/I . If F acts
trivially on H/V , then for all large t , the image of 1 ∈ R/It ⊆ H under F is 0 in
H/V , which means that (x1 · · · xd)

p−1
∈ I ∗

pt , and then A(x1 · · · xd)
p−1

⊆ Ipt . This
implies that

A ⊆ Ipt :R (x1 · · · xd)
p−1

= Ipt−p+1,

for all t � 0, which is clearly false. �

5. Face rings

We give a brief treatment of the decomposition of the local cohomology of face
rings over a field with support in the homogeneous maximal ideal. This is discussed
in [Bruns and Herzog 1993, §5.3], although not in quite sharp enough a form for
our needs here, and there are sharp results in substantially greater generality in
[Brun et al. 2007, Theorem 5.5, p. 218]. However, neither result discusses the
R{F}-structure.

Let K be a fixed field of positive characteristic p and let 1 be an abstract finite
simplicial complex with vertices x1, . . . , xn . Let I1 denote the ideal in the poly-
nomial ring S = K [x1, . . . , xn] generated by all monomials in the x j such that the
set of variables occurring in the monomial is not a face of 1. This ideal is evi-
dently generated by the square-free monomials in the x j corresponding to minimal
subsets of the variables that are not faces of1. Let K [1] = S/I1, the face ring (or
Stanley–Reisner ring) of 1 over K . The minimal primes of K [1] correspond to
the maximal faces σ of 1; the quotient by the minimal prime corresponding to σ
is a polynomial ring in the variables occurring in σ . The Krull dimension of K [1]

is therefore one more than the dimension of the simplicial complex 1.
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If σ is any face of1, the link, denoted link(σ ), of σ in1 is the abstract simplicial
complex consisting of all faces τ of 1 disjoint from σ such that σ ∪ τ ∈ 1. The
link of the empty face is 1 itself. By a theorem of G. Reisner [1976], K [1] is
Cohen–Macaulay if and only if the reduced simplicial cohomology of every link
vanishes except possibly in the top dimension, that is, in the dimension of the link
itself.

Note that the reduced simplicial cohomology H̃ i (1; K ) of a finite simplicial
complex 1 6= ∅ is the same as the simplicial cohomology unless i = 0, in which
case its dimension as a K -vector space is one smaller. If 1 is an i-simplex, the
reduced simplicial cohomology vanishes in all dimensions, unless 1 is empty, in
which case we have H̃−1(∅; K ) ∼= K , H̃ i (∅; K ) = 0 for all i 6= −1. Note also
that ∅ is the only simplicial complex 1 such that H̃ i (1; K ) 6= 0 for a value of
i < 0.

Let m be the homogeneous maximal ideal of K [1]. We shall show that K [1]m

and its completion are FH-finite in all cases, and in fact, the local cohomology
modules are antinilpotent. This follows from the following theorem, which also
recovers Reisner’s result [1976] mentioned above in a finer form; it also gives a
completely explicit description of all the H i

m(K [1]), including their structure as
R{F}-modules. We write |ν| for the cardinality of the set ν. If ν ∈1, we let

K [ν] = K [1]/(xi : xi /∈ ν),

which is a K [1]-algebra and is also the polynomial ring over K in the variables
x j that are vertices of ν. Then H i

m(Sν) vanishes except when i = |ν|. When i = ν

it is the highest nonvanishing local cohomology of a polynomial ring, and, if the
characteristic of K is p>0, it is a simple R{F}-module on which F acts injectively.

Note that if p > 0 is prime, κ = Z/pZ, R and K are rings of characteristic p,
and H is an R{F}-module, K ⊗κ H has the structure of a (K ⊗κ R){F}-module:
the action of F is determined by the rule F(c ⊗ u)= cp

⊗ F(u) for all c ∈ K and
u ∈ H . This is well defined because the action of F restricts to the identity map
on Z/pZ.

Theorem 5.1. With R = K [1] as above, let κ denote the prime field of K . Let m
and µ be the homogeneous maximal ideals of R and κ[1], respectively. Then

H i
m(R)∼=

⊕
ν∈1

H̃ i−1−|ν|(link(ν); K )⊗κ H |ν|
µ (κ[ν]). (1)

If K has characteristic p > 0, this is also an isomorphism of R{F}-modules, with
the action of F described in the paragraph above. Hence, every H i

m(R) is a finite
direct sum of simple R{F}-modules on which F acts injectively.
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If (R1, m1) is either Rm or its completion, then for all i , H i
m(R) may be identi-

fied with H i
m1
(R1), and H i

m1
(R1) is a finite direct sum of simple R1{F}-modules on

which F acts injectively, and so is antinilpotent and FH-finite over R1.

Proof. If σ is a subset of the x j we denote by x(σ ) the product of the x j for j ∈ σ .
Thus, in K [1], the image of x(σ ) is nonzero if and only if σ ∈1. Our convention
is that σ = ∅ is in 1, is the unique face of dimension −1, and that x(∅)= 1. We
write [1]i for the set of faces of 1 of dimension i . Then H i

m(K [1]) is the i-th
cohomology module of the complex C• whose i-th term is displayed below:

0 → K [1] → · · · →

⊕
σ∈1i−1

K [1]x(σ ) → · · · .

The initial nonzero term K [1] may be thought of as K [1]x(∅) and the highest
nonzero terms occur in degree dim(1)+ 1. Let θ = (θ1, . . . , θn) ∈ Zn by an n-
tuple of integers. We want to calculate that θ -graded piece of H i

m(K [1]). This
is the same as the i-th cohomology of the θ -graded piece of the complex: denote
by C•

[θ ] the θ -graded piece of the complex C•. Let neg(θ) (respectively, pos(θ);
respectively, supp(θ) ) denote the set of variables xi such that θi is strictly negative
(respectively, strictly positive; respectively, nonzero). Thus, supp(θ) is the disjoint
union of neg(θ) and pos(θ).

Let ν = neg(θ) and π = pos(θ). Then K [1]x(σ ) has a nonzero component in
degree θ if and only if ν ⊆ σ and σ ∪ π ∈ 1, and then there is a unique copy
of K corresponding to θ in the complex. By deleting the variables occurring in
ν = neg(θ) from each face, we find that C•

[θ ] corresponds, with a shift in degree
by the cardinality |ν| of ν, to the complex used to calculate the reduced simplicial
cohomology of1ν,π , where this is the subcomplex of the link of ν consisting of all
simplices τ such that τ ∪π ∈1. If π is nonempty, 1ν,π is a cone on any vertex in
π . Hence, the graded component of local cohomology in degree θ can be nonzero
only when pos(θ)= ∅ and ν = neg(θ) ∈1. It now follows that

[H i
m(K [1])] θ ∼=

⊕
ν

H̃ i−|ν|−1(link ν)xθ ,

if π = ∅ and ν ∈1 is the set of variables corresponding to strictly negative entries
in θ , and is zero otherwise.

It follows that we may identify

H i
m(K [1])∼=

⊕
ν∈1

( ⊕
supp(w)=neg(w)=ν

H̃ i−|ν|−1(link ν)w
)
,

where w runs through all monomials with nonpositive exponents such that the set
of variables with strictly negative exponents is ν.
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We next want to show that if ν ∈1, then⊕
supp(θ)=neg(θ)=ν

[H i
m(K [1])] θ ∼= H̃ i−|ν|−1(link(ν); K )⊗K H |ν|

m (K [ν]).

The term on the right may also be written as H̃ i−|ν|−1(link(ν); K )⊗κ H |ν|
µ (κ[ν]).

We also need to check that the actions of F agree.
The action of F on C•(x; K [1]) is obtained from the action of F , by applying

K ⊗κ , on C•(x; κ[1]). Thus, we reduce at once to the case where K = κ , which
we assume henceforth.

Let γ ⊗w be an element in the cohomology, where γ ∈ H̃ i−|ν|−1(link(ν); K )
and w is a monomial in the variables of ν with all exponents strictly negative. The
action of xi by multiplication is obvious in most cases. If xi /∈ ν, the product is 0.
If xi occurs with an exponent other than −1 in w, one simply gets γ ⊗ (xiw). The
main nontrivial point is that if xi occurs with exponent −1 in w, xi kills γ ⊗w.
To verify this, let ν ′

= ν − {xi }. Take a cocycle η that represents γ . After we
multiply by xi , we get an element of H i−|ν|(link(ν ′)). Note that each simplex
remaining when we delete the variables in ν ′ involves xi , and so that the cocycle
η′ we get from η may be viewed as a cocycle of the complex used to compute the
reduced simplicial cohomology of the closed star of xi in link(ν ′). Since this closed
star is a cone, that cohomology is 0. This shows that xi kills every homogeneous
component whose degree has −1 in the i-th coordinate.

We have completed the calculation of the structure of the local cohomology as
an R-module. On the other hand, given ν ∈1, because the field is κ , when F acts
on the complex ⊕

supp(θ)=neg(θ)=ν

[C•(x; R)] θ ,

the value of F acting on an element of the form ηw, where η is a cocycle, is simply
ηw p, and so it follows that

F(γ ⊗w)= γ ⊗w p.

This shows that R{F}-module structure is preserved by the isomorphism (1). �
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The half-integral weight eigencurve
Nick Ramsey

Appendix by Brian Conrad

In this paper we define Banach spaces of overconvergent half-integral weight
p-adic modular forms and Banach modules of families of overconvergent half-
integral weight p-adic modular forms over admissible open subsets of weight
space. Both spaces are equipped with a continuous Hecke action for which Up2

is moreover compact. The modules of families of forms are used to construct
an eigencurve parameterizing all finite-slope systems of eigenvalues of Hecke
operators acting on these spaces. We also prove an analog of Coleman’s theorem
stating that overconvergent eigenforms of suitably low slope are classical.
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1. Introduction

In [Ramsey 2006], the author set up a geometric theory of modular forms of weight
k/2 for odd positive integers k, complete with geometrically defined Hecke oper-
ators. This approach naturally led to a theory of overconvergent p-adic modular
forms of such weights equipped with a Hecke action for which Up2 is compact.

In this paper we define overconvergent half-integral weight p-adic modular
forms of general p-adic weights, as well as rigid-analytic families thereof over

MSC2000: primary 11F33; secondary 14G22, 11F37.
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admissible open subsets of weight space. We use the latter spaces and Buzzard’s
eigenvariety machine [Buzzard 2007] to construct a half-integral weight eigencurve
parameterizing all systems of eigenvalues of Hecke operators occurring on spaces
of half-integral weight overconvergent eigenforms of finite slope. In contrast to the
integral weight situation, this space does not parameterize actual forms because a
half-integral weight form that is an eigenform for all Hecke operators is not always
characterized by its weight and collection of Hecke eigenvalues. We also prove an
analog of Coleman’s result that overconvergent eigenforms of suitably low slope
are classical.

This paper lays the foundation for a forthcoming one in which the author will
construct a map from our half-integral weight eigencurve to its integral weight
counterpart (at least after passage to the underlying reduced spaces) that rigid-
analytically interpolates the classical Shimura lifting introduced in [Shimura 1973].

2. Preliminaries

General notation. Fix a prime number p. The symbol K will always denote a
complete and discretely-valued field extension of Qp. For such K we denote the
ring of integers by OK and the maximal ideal therein by mK . The absolute value
on K will always be normalized by |p| = 1/p.

2.1. Modular curves. For positive integers N and n, X1(N ) and X1(N , n) will
denote the usual moduli stacks of generalized elliptic curves with level structure.
The former classifies generalized elliptic curves with a point P of order N , while
the latter classifies generalized elliptic curves with a pair (P,C) consisting of a
point P of order N and a cyclic subgroup C of order n meeting the subgroup
generated by P trivially (plus a certain ampleness condition for nonsmooth curves).
This level structure will always be taken to be the Drinfeld-style level structure
found in [Katz and Mazur 1985], [Conrad 2007], and the appendix to this paper,
and in all cases the base ring will be a Z(p)-algebra.

Throughout this paper we will make extensive use of certain admissible opens
in rigid spaces associated to some of these modular curves. Traditionally these
opens were defined using the Eisenstein series E p−1, but this requires that we
pose unfavorable restrictions on p and N . Fortunately, more recent papers of
Buzzard [2003] and Goren and Kassaei [2006] define these opens and explore their
properties in greater generality using alternative techniques. These authors define a
“measure of singularity” v(E)∈Q≥0 associated to an elliptic curve over a complete
extension of Qp. In case v(E) ≤ p/(p + 1), one may associate to E a canonical
subgroup Hp(E) of order p in an appropriately functorial manner. Moreover, one
understands v(E/C) for finite cyclic subgroups C ⊆ E as well as the canonical
subgroup of E/C when it exists. Inductively applying this with C = Hp(E), one
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can define (upon further restricting v(E)) canonical subgroups Hpm (E) of higher
p-power order. For details regarding these constructions and facts, see [Buzzard
2003, Section 3] and [Goren and Kassaei 2006, Section 4].

We will denote the Tate elliptic curve over Z((q)) by Tate(q); see [Katz 1973].
Our notations concerning the Tate curve differ from those often found in the litera-
ture as follows. In the presence of, for example, level N structure, previous authors
(for example [Katz 1973]) have preferred to consider the curve Tate(q N ) over the
base Z((q)). Points of order N on this curve are used to characterize the behavior
of a modular form at the cusps, and are all defined over the fixed ring Z((q))[ζN ]

(where ζN is some primitive N -th root of 1). We prefer to fix the curve Tate(q) and
instead consider extensions of the base. Thus, in the presence of level N structure,
we introduce the formal variable qN , and define q = q N

N . Then the curve Tate(q) is
defined over the subring Z((q)) of Z((qN )), and all of its N -torsion is defined over
the ring Z((qN ))[ζN ]. To be precise, the N -torsion is given by

ζ i
N q j

N for 0 ≤ i, j ≤ N − 1.

Cusps will always be referred to by specifying a level structure on the Tate curve.
Suppose that N ≥ 5 so that we have a fine moduli scheme X1(N )Qp , and let

K/Qp be a finite extension (which will generally be fixed in applications). If
r ∈ [0, 1] ∩ Q, then the region in the rigid space X1(N )an

K whose points corre-
spond to pairs (E, P) with v(E) ≤ r is an admissible affinoid open. We denote
by X1(N )an

≥ p−r the connected component of this region that contains the cusp as-
sociated to the datum (Tate(q), ζN ) for some (equivalently, any) choice of prim-
itive N -th root of unity ζN . Similarly, X1(N , n)an

≥ p−r will denote the connected
component of the region defined by v(E) ≤ r in X1(N , n)an

K containing the cusp
associated to (Tate(q), ζN , 〈qn〉) for any such ζN . For smaller N one defines these
spaces by first adding prime-to-p level structure to rigidify the moduli problem and
proceeding as above, and then taking invariants. Similarly, the space X0(N )an

≥ p−r

is defined as the quotient of X1(N )an
≥ p−r by the action of the diamond operators.

See [Buzzard 2007, Section 6] for a more detailed discussion of these quotients.

2.2. Norms. If X is an admissible formal scheme over OK (in the sense of [Bosch
and Lütkebohmert 1993]), we will denote its (Raynaud) generic fiber by Xrig and
its special fiber by X0. In case X = Spf(A) is a formal affine, we have Xrig =

Sp(A ⊗OK K ) and X0 = Spec(A/πA), where π ∈ OK is a uniformizer. We recall
for later use that the natural specialization map sp : Xrig → X0 is surjective on the
level of closed points; see [Bosch and Lütkebohmert 1993, Proposition 3.5].

Assume that X is reduced, and let L be an invertible sheaf on X (that is to say, a
sheaf of modules on this ringed space that is Zariski-locally free of rank one). For
a point x ∈ Xrig(L), let x̂ : Spf(OL)→ X denote the unique extension of x to the



758 Nick Ramsey

formal model. Then the canonical identification

H 0(Sp(L), x∗Lrig)= H 0(Spf(OL), x̂∗L)⊗OL L

furnishes a norm | · |x on this one-dimensional vector space by declaring the formal
sections on the right to be the unit ball. Now for any admissible open U ⊆ Xrig and
any f ∈ H 0(U,Lrig), we define

‖ f ‖U = sup
x∈U

|x∗ f |x .

Note that, in case L = OX, this is simply the usual supremum norm on functions.
There is no reason for ‖ f ‖U to be finite in general, but in case U is affinoid then

this is indeed finite and endows H 0(U,Lrig) with the structure of a Banach space
over K , as we now demonstrate.

Lemma 2.1. Suppose X is a reduced quasicompact admissible formal scheme
over OK , let L be an invertible sheaf on X, and let U be an admissible affinoid
open in Xrig. Then H 0(U,Lrig) is a K -Banach space with respect to ‖ · ‖U .

Proof. By Raynaud’s theorem there is quasicompact admissible formal blowup
π : X′

→ X and an admissible formal open U in X′ with generic fiber U. For x ∈ U,
let x̂ ′ denote the unique extension to an OL -valued point of U, and let x̂ denote its
image in X (which is the same x̂ as above by uniqueness). Then we have

H 0(Spf(OL), x̂ ′∗π∗L)= H 0(Spf(OL), x̂∗L)

as lattices in H 0(Sp(L),Lrig). It follows that | f |x = |π∗ f |x , and we may compute
‖ f ‖U using the models X′ and π∗L. Hence we may as well assume that U is the
generic fiber of an admissible formal open U in X. Furthermore, we may just as
well replace X by U and assume that U is the generic fiber of X itself.

Cover X by a finite collection of admissible formal affine opens Ui trivializing L.
Pick a trivializing section `i of L on Ui . Let Ui = (Ui )rig, so that the Ui form
an admissible cover of U by admissible affinoid opens. Then, for any section
f ∈ H 0(U,Lrig), we may write f |Ui = ai`i for a unique ai ∈ O(Ui ), and one easily
checks that ‖ f ‖U = maxi‖ai‖sup. The desired assertion now follows easily from
the analogous assertion about the supremum norm on a reduced affinoid. �

The following lemma and its corollary establish a sort of maximum modulus
principle for these norms.

Lemma 2.2. Suppose X = Spf(A) is a reduced admissible affine formal scheme
over OK , and let U ⊆ X0 be a Zariski-dense open subset of the special fiber. Sup-
pose that the generic fiber X = Sp(A ⊗OK K ) is equidimensional. Then, for any
a ∈ A⊗OK K , the supremum norm of a over X is achieved on sp−1(U ).
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Proof. Let us first prove the lemma in the case that A is normal. First note that
if ‖a‖sup = 0, then the result is obvious. Otherwise, since the supremum norm is
power-multiplicative we may assume that ‖a‖sup is a norm from K and scale to
reduce to the case ‖a‖sup = 1. By [de Jong 1995, Theorem 7.4.1] it follows that
a ∈ A (this is where normality is used). If the reduction a0 ∈ A0 = A/πA vanishes
at every closed point of U , then it vanishes everywhere by density, so an

0 = 0 in
A0 for some n, which is to say that π |an in A. But this is impossible because
by power-multiplicativity we have ‖an

‖sup = 1 for all n ≥ 1. Thus a0 must be
nonvanishing at some point of U . By the surjectivity of the specialization map we
can find a point x reducing to this point. Clearly then |a(x)| = 1, which establishes
the normal case.

Suppose that X is equidimensional of dimension d . We claim that it follows
that the special fiber X0 must be equidimensional of dimension d as well. Indeed,
inside each irreducible component of this special fiber we can find a nonempty
Zariksi-open subset V that does not meet any of the other irreducible components.
The generic fiber Vrig is an admissible open in X and therefore has dimension d .
It follows that V has dimension d , and the claim follows.

Let f : X̃→X be the normalization map (meaning Spf applied to the normaliza-
tion map on algebras), and note that this map is finite by general excellence consid-
erations. By [Conrad 1999, Theorem 2.1.3] the generic fiber of this map coincides
with the normalization of X . Thus X̃rig is also equidimensional of dimension d ,
and the argument above shows that X̃0 is equidimensional of dimension d as well.
Now since f is finite it follows that f0 carries generic points to generic points. In
particular we see that f −1

0 (U ) is Zariski-dense in X̃0. Thus by the normal case
proved above, there exists an x ∈ X̃rig reducing to f −1

0 (U ) at which a (thought of
as an element of Ã ⊗OK K ) attains its supremum norm. But then f (x) is a point
in X reducing to U with the same property, since the supremum norm of a is the
same thought of on X or on X̃ (since X̃ → X is surjective). �

Remark 2.3. Note that the proof in the normal case did not use the equidimension-
ality hypothesis. This hypothesis may not be required in the general case, but the
above proof breaks down without it since it is not clear how to control the special
fiber under normalization in general, especially if X0 is nonreduced (as is often the
case for us).

Corollary 2.4. Suppose X is a reduced quasicompact admissible formal scheme
over OK , let U ⊆ X0 be a Zariski-dense open, and let L be an invertible sheaf
on X. Assume that Xrig is equidimensional. Then, for any f ∈ H 0(Xrig,Lrig) we
have

‖ f ‖Xrig = sup
x∈sp−1(U )

|x∗ f |x = max
x∈sp−1(U )

|x∗ f |x .
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Proof. Cover X with a finite collection of admissible formal affine opens trivializ-
ing L, and apply Lemma 2.2 on each such affine separately. �

The invertible sheaves whose sections we will be taking norms of in this paper
will all be of the form OX (D) for some divisor D on X = X1(N )K or X1(N , n)K

supported on the cusps. In the end, the main consequence of Corollary 2.4 (namely,
Lemma 2.5) will be that these norms are equal to the supremum norm of the re-
striction of the section in question to the complement of the residue disks around
the cusps (where it is simply an analytic function). We feel it worthwhile to give
more natural definitions using the above norm machinery in the cases that it applies
to (those where we have nice moduli schemes to work with), in the hope that the
techniques used and Corollary 2.4 will be useful in other similar situations. The
reader content with this equivalent “ad hoc” definition (that is, the supremum norm
on the complement of the residue disks around the cusps) can skip to Section 2.3
and ignore the appendix altogether.

In order to endow spaces of sections of a line bundle as in the previous paragraph
with norms using the techniques above, we need formal models of the spaces X
and sheaves O(D). For technical reasons (involving regularity of certain moduli
stacks), we are forced to work over Zp in going about this. The formal models
over OK will then be obtained by extension of scalars. The general procedure for
obtaining formal models over Zp goes as follows. Let X denote one the stacks
X1(N ) or X1(N , n) over Zp, and assume that the generic fiber XQp is a scheme.
Let D be a divisor on XQp that is supported on the cusps. If the closure D of D
in X lies in the maximal open subscheme X sch of X and this subscheme is regular
along D, then this closure is Cartier and we may associate to it the invertible sheaf
O(D) on X sch. Let (X sch)̂ and O(D)̂ denote the formal completions of these objects
along the special fiber.

In case X = X1(N ) or X1(N , n) with p - n, assume that N has a divisor that is
prime to p and at least 5. Then X sch

= X by [Conrad 2007, Theorem 4.2.1], and X
is regular (at least over Z(p)) by [Conrad 2007, Theorem 4.1.1]. That passage
to Zp preserves regularity follows by excellence considerations from the fact that
Z(p) → Zp is geometrically regular. Strictly speaking, the results of [Conrad 2007]
do not apply to X1(N , n) as stated, but since p - n, the proofs of these results are
still valid over Z(p), as is observed in the appendix. Since X is proper over Zp, we
have X̂rig = X an

Qp
(the analytification of the algebraic generic fiber of X ) and hence

we have a formal model (X̂ ,O(D)̂ ) of (X an
Qp
,O(D)).

Suppose that X = X1(Mp, p2) for an integer M ≥ 5 prime to p. Let D be
any divisor supported on the cusps in the connected component X1(Mp, p2)an

≥1 of
the ordinary locus. By Theorem A.11, the closure D of D in X lies in X sch and
is Cartier. Thus we obtain a formal model ((X sch)̂,O(D)̂ ) of ((X sch)̂rig,O(D)).
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Observe that, by Lemma A.9 and the comments that follow it, X sch is simply the
complement of a finite collection of cusps on the characteristic p fiber (namely,
the ones with nontrivial automorphisms). It follows that the open immersion

(X sch)̂rig ↪→ (X sch
Qp
)an ∼= X an

Qp
(1)

identifies the Raynaud generic fiber on the left with the complement of the residue
disks around the cusps in the analytification on the right that reduce to the missing
points in characteristic p. Thus (1) is an isomorphism when restricted to any
connected component of the locus defined by v(E) ≤ r that contains no such
cusps. In particular, by Theorem A.11 it is an isomorphism when restricted to
X1(Mp, p2)an

≥ p−r .
Given a complete discretely valued extension K/Qp, we may extend scalars on

our formal models of O(D) to arrive at norms on the following spaces:

• sections of O(D) over any admissible open U in X = X1(N )an
K (respectively

X1(N , n)an
K with p - n), where D is (the scalar extension of) a divisor on

X1(N )Qp (respectively X1(N , n)Qp ) and N is divisible by an integer that is
prime to p and at least 5; and

• sections of O(D) over any admissible open U in X = X1(Mp, p2)an
≥ p−r ,

where D is (the scalar extension of) a divisor that is supported on the cusps
in X1(Mp, p2)an

Qp
and M is an integer that is prime to p and at least 5.

Lemma 2.5. Let X , D, and U be as in either of the two cases above, and assume
that U contains every component of the ordinary locus that it meets. Let U′ de-
note the complement of the residue disks around the cusps in U. Then, for any
f ∈ H 0(U,O(D)), we have ‖ f ‖U = ‖ f |U′‖sup.

Proof. We will treat the case of X = X1(N )an
K ; the other cases are proved in exactly

the same manner. First note that, since points in U′ reduce to points outside of the
support of D, the claim is equivalent to the claim that ‖ f ‖U = ‖ f |U′‖U′ . That is,
the norm on U′ that we have defined using formal models happens to be equal to
the supremum norm on U′.

Note that the supersingular loci of U and U′ coincide, so the contributions to
the above norms over this locus are equal, and it suffices to check the assertion
upon restriction to the ordinary locus. By assumption, the ordinary locus in U is a
finite union of connected components of the ordinary locus in X1(N )an

K . Each such
component corresponds via reduction to an irreducible component of the special
fiber. Let X denote the admissible formal open in X1(N )̂ given by the union of
the components so obtained with the supersingular points removed. Then Xrig is
precisely the ordinary locus in U, and the result now follows from Corollary 2.4
with U equal to the complement of the cusps in X0. �



762 Nick Ramsey

Remark 2.6. There remain some curves on which we will need to have norms for
sections of O(D) but to which the norm machinery as set up here does not apply.
Namely, for p 6= 2 we have the curves X1(4pm)an

K and X1(4pm, p2)an
K , while for

p = 2 we have X1(2m+1 N )an
K and X1(2m+1 N , 4)an

K , where m ≥ 1 and N ∈ {1, 3}.
The previous lemma suggests an ad hoc workaround to this problem. In case we
are working with sections of O(D) for a cuspidal divisor on one of these curves, we
simply define the norm to be the supremum norm of the restriction of our section
to the complement of the residue disks about the cusps. A more natural definition
would likely result from considerations of “formal stacks”, but this norm would
surely turn out to be equal to ours by an analogue of Lemma 2.5.

2.3. Weight space. Throughout most of this paper, W will denote p-adic weight
space (everywhere except for the beginning of Section 7, where it is allowed to be
a general reduced rigid space for the purpose of reviewing a general construction).
That is, W is a rigid space over Qp whose points with values in an extension K/Qp

are W(K ) = Homcont(Z
×
p , K ×). Define q = p if p 6= 2 and q = 4 if p = 2. Let

τ : Z×
p → (Z/qZ)× → Q×

p denote reduction composed with the Teichmüller lifting,
and let 〈x〉 = x/τ(x) ∈ 1 + qZp. For a weight κ we have

κ(x)= κ(〈x〉)κ(τ (x))= κ(〈x〉)τ (x)i

for a unique integer i with 0 ≤ i < ϕ(q) (where ϕ denotes Euler’s function).
Moreover, this breaks up the space W as the admissible disjoint union of ϕ(q)
admissible opens Wi , each of which is isomorphic to a one-dimensional open ball.

For each positive integer n, let Wn denote the admissible open subspace of W

whose points are those κ with

|κ(1 + q)pn−1
− 1| ≤ |q|.

Then Wi
n := Wi

∩ Wn is an affinoid disk in Wi , and the {Wi
n}n form a nested

admissible cover of Wi .
To each integer λ we may associate the weight x 7→ xλ. This weight, which

by abuse of notation we simply refer to as λ, lies in Wi for the unique i ≡ λ

(mod ϕ(q)). Also, if λ is an integer and ψ : (Z/qpn−1Z)× → C×
p is a character,

then x 7→ xλψ(x) is a point in W (with values in Qp(µpn−1)) that lies in Wn , as
standard estimates for |ζ − 1| for roots of unity ζ demonstrate.

3. Some modular functions

Our definition of the spaces of half-integral weight modular forms will follow the
general approach of [Coleman and Mazur 1998] (in the integral weight p-adic
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situation) and [Ramsey 2006] (in the half-integral weight situation). The motivat-
ing idea behind this approach is to reduce to weight zero by dividing by a well-
understood form of the same weight. For example, if f is a half-integral weight
p-adic modular form of weight k/2, θ is the usual Jacobi theta function of weight
1/2, and Eλ is the weight λ = (k − 1)/2 Eisenstein series introduced below, then
f/(Eλθ) should certainly be a meromorphic modular function of weight zero. As
we have no working notion of “half-integral weight p-adic modular form”, we
simply use the weight zero forms so obtained as the definition of this notion. One
must of course work out issues such as exactly what kind of poles are introduced,
how dividing by θEλ affects the nebentypus character, and how to translate the
classical Hecke action into an action on these new forms. The precise definition
will be given in Section 4.

This was carried out in [Ramsey 2006] by dividing by θ k instead of θEλ. That
approach had the disadvantage of limiting us to classical weights k/2, whereas
the current approach will work for more general p-adic weights (and indeed, for
families of modular forms) since Eλ interpolates nicely in the variable λ.

This technique of division to reduce to weight zero in order to define modular
forms forces us to modify the usual construction of the Hecke operators using the
Hecke correspondences on the curve X1(N ) by multiplying by certain functions on
the source spaces of these correspondences. Our first task is to define these func-
tions and to establish their overconvergence properties. Since we are dividing by
Eλθ to reduce to weight zero, we will require, for each prime number `, a modular
function whose q-expansion (at the appropriate cusp and on the appropriate space,
which depends on whether or not `= p) is

Eλ(q`2)θ(q`2)

Eλ(q)θ(q)
.

Factoring this into its Eisenstein part and theta part, we split the problem into two
problems, the first of which is nearly done in the integral-weight literature (see
[Buzzard 2007; Coleman and Mazur 1998]), and the second of which is done in
[Ramsey 2006]. We briefly review both problems here, but see these references for
details. Note that all analytic spaces in this section are taken over Qp.

Let c denote the cusp on X1(4)Q corresponding to the point ζ4q2 of order 4 on
the Tate curve. Define a Q-divisor 64N on the curve X1(4N )Q by

64 :=
1
4π

∗
[c], where π : X1(4N )Q → X1(4)Q

is the obvious degeneracy map. This divisor is set up to look like the divisor of
zeros of the pullback of the Jacobi theta function θ to X1(4N )Q and will later be
used to control poles introduced in dividing by Eλθ .
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In [Ramsey 2006], we defined a rational function2`2 on X1(4, `2)Q with divisor

div(2`2)= π∗

264 −π∗

164

such that

2`2(Tate(q), ζ4, 〈q`2〉)=

∑
n∈Z

qn2

`2

/ ∑
n∈Z

qn2
= θ(q`2)/θ(q).

Here π1 and π2 are the maps comprising the `2 Hecke correspondence on X1(4)
and are defined in Section 5.1. Strictly speaking, we had assumed ` 6= 2 in the
arguments in [Ramsey 2006], but if one is only interested in the result above, then
one can easily check that the arguments work for `= 2 verbatim.

Let us now turn to the Eisenstein part of the above functions. For further details
and proofs of the claims in this paragraph, see [Buzzard 2007, Sections 6 and 7].
Let

E(q) := 1 +
2

ζp(κ)

∑
n

( ∑
d |n , p -d

κ(d)d−1
)

qn
∈ O(W0)[[q]]

be the q-expansion of the p-deprived Eisenstein family over W0. Note that there
are no problems with zeros of ζp since we are restricting our attention to W0. For
a particular choice of κ ∈ W0, we denote by Eκ(q) the expansion obtained by
evaluating all of the coefficients at κ . In particular, for a positive integer λ no less
than 2 and divisible by ϕ(q), Eλ(q) is the q-expansion of the usual p-deprived
classical Eisenstein series of weight λ and level p.

Let ` be a prime number. If ` 6= p, then there exists a rigid analytic function E`
on X0(p`)an

≥1 ×W0 whose q-expansion at (Tate(q), µp`) is E(q)/E(q`). If `= p,
then the same holds with X0(p`)an

≥1 replaced by X0(p)an
≥1 and µp` replaced by µp.

Buzzard [2007] shows that there exists a sequence of rational numbers

1/(p + 1) > r1 ≥ r2 ≥ · · · ≥ rn ≥ · · ·> 0

with ri < p2−i/q(1+p) such that, when restricted to X0(p`)an
≥1 × W0

n (respectively,
X0(p)an

≥1 × W0
n if ` = p), E` analytically continues to an invertible function on

X0(p`)an
≥ p−rn ×W0

n (respectively, X0(p)an
≥ p−rn ×W0

n if `= p). Fix such a sequence
once and for all. Let us first extend these results to square level.

Lemma 3.1. Let ` 6= p be a prime number. There exists an invertible function
E`2 on X0(p`2)an

≥1 × W0 whose q-expansion at (Tate(q), µp`2) is E(q)/E(q`
2
).

Moreover, the function E`2 , when restricted to W0
n , analytically continues to an

invertible function on X0(p`2)an
≥ p−rn × W0

n .
There exists an invertible function Ep2 on X0(p)an

≥1 × W0 whose q-expansion at
(Tate(q), µp) is E(q)/E(q p2

). Moreover, the function Ep2 , when restricted to W0
n ,

analytically continues to an invertible function on X0(p)an
≥ p−rn/p × W0

n .
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Proof. Let ` be a prime different from p. There are two natural maps

X0(p`2)an
Qp

→ X0(p`)an
Qp
,

namely those given on noncuspidal points by

(E,C) � d`,1 // (E, `C) and (E,C) � d`,2 // (E/p`C,C/p`C).

Both of these restrict to maps

d`,1, d`,2 : X0(p`2)an
≥ p−rn → X0(p`)an

≥ p−rn .

We define E`2 to be the invertible function

E`2 := d∗

`,1E` · d∗

`,2E` ∈ O(X0(p`2)an
≥ p−rn × W0

n)
×. (2)

The q-expansion of E`2 at (Tate(q), µp`2) is

E`(d`,1(Tate(q), µp`2))E`(d`,2(Tate(q), µp`2))

= E`(Tate(q), µp`)E`(Tate(q)/µ`, µp`2/µ`)

= E`(Tate(q), µp`)E`(Tate(q`), µp`)

=
E(q)
E(q`)

E(q`)
E(q`2

)
=

E(q)
E(q`2

)
.

One must take additional care if `= p. Then there is a well-defined map

d : X0(p)an
≥ p−rn/p → X0(p)an

≥ p−rn , (E,C) 7→ (E/C, Hp2/C),

where Hp2 is the canonical subgroup of E of order p2. This follows from the fact
that X0(p)an

≥ p−rn/p consists of pairs (E,C) with C equal to the canonical subgroup
of E of order p, and standard facts about quotienting by such subgroups; see for
example [Buzzard 2003, Theorem 3.3]. We define an invertible function by

Ep2 := Ep · d∗Ep ∈ O(X0(p)an
≥ p−rn/p × W0

n)
×,

where we have implicitly restricted Ep to

X0(p)an
≥ p−rn/p × W0

n ⊆ X0(p)an
≥ p−rn × W0

n.

The q-expansion of Ep2 at (Tate(q), µp) is

Ep(Tate(q), µp)Ep(d(Tate(q), µp))

= Ep(Tate(q), µp)Ep(Tate(q)/µp, µp2/µp)

= Ep(Tate(q), µp)Ep(Tate(q p), µp)

=
E(q)

E(q p)

E(q p)

E(q p2
)

=
E(q)

E(q p2
)
. �
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Let

π : X1(p, `2)an
Qp

→

{
X0(p`2)an

Qp
if ` 6= p,

X0(p)an
Qp

if `= p

denote the map given on noncuspidal points by

(E, P,C) 7−→

{
(E/C, (〈P〉 + E[`2

])/C) if ` 6= p,
(E/C, 〈P〉/C) if `= p.

Note that we have

π(Tate(q), ζp, 〈q`2〉)=

{
(Tate(q`2), µp`2) if ` 6= p,
(Tate(qp2), µp) if `= p.

(3)

This observation suggests that perhaps the components X1(p, `2)an
≥ p−r should be

related (via π ) to the components X0(p`2)an
≥ p−r .

Lemma 3.2. If ` 6= p, then the map π restricts to

π : X1(p, `2)an
≥ p−r → X0(p`2)an

≥ p−r for all r < p/(1 + p).

In case `= p, the map π restricts to

X1(p, p2)an
≥ p−p2r → X0(p)an

≥ p−r for all r < 1/p(1 + p).

Proof. First suppose ` 6= p. Let U denote the entirety of the locus in X0(p`2)an
Qp

defined by v(E) ≤ r . First note that, since quotienting by a subgroup of order
prime to p does not change its measure of singularity, the map π restricts to a map

X1(p, `2)an
≥ p−r → U.

The inverse images of the two connected components of U under this map are
disjoint admissible opens that admissibly cover a connected space, and, by (3),
π−1(X0(p`2)an

≥ p−r) is nonempty, so this must be all of X1(p, `2)an
≥ p−r . The result

follows.
Now suppose that ` = p. Let U denote the entirety of the locus in X0(p)an

Qp

defined by v(E)≤ r . Once we verify that π restricts to

X1(p, p2)an
≥ p−p2r → U,

the argument may proceed exactly as above. We claim, moreover, that if (E, P,C)
is a point in X0(p, p2)an

≥ p−p2r , then v(E/C) = v(E)/p2. This would follow if
we knew that C met the canonical subgroup of E trivially (again by standard
facts about quotienting by canonical and noncanonical subgroups of order p, as
in [Buzzard 2003, Section 3]), so it suffices to prove that 〈P〉 is the canonical
subgroup of E .
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The natural map

X1(p, p2)→ X0(p), (E, P,C) 7→ (E, 〈P〉)

restricts to X1(p, p2)an
≥ p−r → X0(p)an

≥ p−r by the same connectivity argument used
in the ` 6= p case (since this map clearly doesn’t change v(E)). But it is well known
that the locus X0(p)an

≥ p−r consists of pairs (E,C) with C equal to the canonical
subgroup of E . �

We may pull back the Eisenstein family of Lemma 3.1 for ` 6= p through the
map π to arrive at an invertible function on X1(p, `2)an

≥ p−rn ×W0
n . By the previous

lemma, we may also pull back the family for ` = p through π to arrive at an
invertible function on X0(p, p2)an

≥ p−prn × W0
n . For any `, it follows from (3) that

the function π∗E`2 satisfies

π∗E`2(Tate(q), ζp, 〈q`2〉)=
E(q`2)

E((q`2)`
2
)

=
E(q`2)

E(q)
.

To arrive at the functions we need, we simply multiply π∗E`2 and2`2 (which is
constant in the weight). Of course, to do so we must first pull these functions back
so that they lie on a common curve. The natural (“smallest”) curve to use depends
on whether or not p = 2, since 2 already lies in the 01 part of the level of 2`2 . The
next proposition summarizes the properties of the resulting functions.

Proposition 3.3. Let p be and ` be primes. There exists an element H`2 of{
H 0(X1(4p, `2)an

≥1 × W0,O(π∗

164p −π∗

264p)) if p 6= 2,
H 0(X1(4, `2)an

≥1 × W0,O(π∗

164 −π∗

264)) if p = 2

whose q-expansion at{
(Tate(q), µ4p, 〈q`2〉)) if p 6= 2,
(Tate(q), µ4, 〈q`2〉)) if p = 2

is equal to
E(q`2)θ(q`2)

E(q)θ(q)
.

Moreover, there exists a sequence of rational numbers rn such that

1/(1 + p) > r1 ≥ r2 ≥ · · ·> 0

with ri < p2−i/q(1+ p) such that H`2 , when restricted to W0
n , analytically contin-

ues to the region 
X1(4p, `2)an

≥ p−rn × W0
n if p 6= 2, ` 6= p,

X1(4p, p2)an
≥ p−prn × W0

n if p 6= 2, `= p,
X1(4, `2)an

≥2−rn × W0
n if p = 2, ` 6= 2,

X1(4, 4)an
≥2−2rn × W0

n if p = `= 2.
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Finally, we wish to extend H`2 and E(q) to all of W. To do this, we simply pull
back through the natural map

W → W0, κ 7→ κ ◦ 〈 · 〉. (4)

When restricted to Wi , this map is simply the isomorphism κ 7→ κ/τ i .

Remark 3.4. We have chosen in the end to use 01-structure on the curves on
which the H`2 lie both to rigidify the associated moduli problems over Qp, as well
as because these are the curves that will actually turn up in the sequel. We note,
however, that the H`2 are invariant under all diamond automorphisms.

4. The spaces of forms

In this section we define spaces of overconvergent p-adic modular forms as well
as families thereof over admissible open subsets of W. Again, the motivating idea
behind these definitions is that we have reduced to weight 0 via division by the well-
understood forms Eλθ . By “well-understood” we essentially mean two things. The
first is that we understand their zeros once we eliminate part of the supersingular
locus (and thereby remove the zeros of the Eisenstein part). The second is that, by
the previous section, we know that there are modular functions with q-expansions

Eλ(q`2)θ(q`2)

Eλ(q)θ(q)

that interpolate rigid-analytically in λ, a fact that we will need to define Hecke
operators on families in the next section.

Before defining the spaces of forms, we need to make a couple of remarks about
diamond automorphisms. For a positive integer N and an element d ∈ (Z/NZ)×,
let 〈d〉 denote the usual diamond automorphism of X1(N ) given on (noncuspidal)
points by (E, P) 7→ (E, d P). Now suppose we are given a factorization N = N1 N2

into relatively prime factors, so the natural reduction map

(Z/NZ)×
∼ // (Z/N1Z)× × (Z/N2Z)×

is an isomorphism. For a ∈ (Z/N1Z)× and b ∈ (Z/N2Z)× we let (a, b)∈ (Z/NZ)×

denote the inverse image of the pair (a, b) under the this map. For a ∈ (Z/N1Z)×,
we define 〈a〉N1 := 〈(a, 1)〉, and we refer to these automorphisms as the diamond
automorphisms at N1. The diamond automorphisms at N2 are defined similarly,
and we have a factorization 〈d〉 = 〈d〉N1 ◦ 〈d〉N2 . Finally, we observe that the dia-
mond operators on X1(4N )an

K preserve the subspaces X1(4N )an
≥ p−r and the divisor

64N in the sense that 〈d〉
−1(X1(4N )an

≥ p−r) = X1(4N )an
≥ p−r and 〈d〉

∗64N = 64N ,
respectively.
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Convention 4.1. By the symbol O(6) for a Q-divisor 6 we shall always mean
O(b6c), where b6c is the divisor obtained by taking the floor of each coefficient
occurring in 6.

First we define the spaces of forms of fixed weight. Let N be a positive integer
and suppose that either p - 4N or that p = 2 and p - N .

Definition 4.2. Let κ ∈ Wi (K ) and pick n such that κ ∈ Wi
n . Then, for any

rational number r with 0 ≤ r ≤ rn , we define the space of p-adic half-integral
weight modular forms of weight κ , tame level 4N (or rather N if p = 2), and
growth condition p−r over K to be

M̃κ(4N , K , p−r ) :=

{
H 0(X1(4N p)an

≥ p−r ,O(64N p))
τ i

× {κ} if p 6= 2,
H 0(X1(4N )an

≥2−r ,O(64N ))
(−1/ · )i τ i

× {κ} if p = 2,

where ( · )τ
i
denotes the τ i eigenspace for the action of the diamond automorphisms

at p, and similarly for (−1/ · )iτ i if p = 2.

Remarks 4.3. • For p 6=2, we have chosen to remove p from the level and only
indicate the tame level in the notation because, as we will see, these spaces
contain forms of all p-power level. However, for p = 2, we have left the 4 in
as a reminder that the forms have at least a 4 in the level, as well as for some
uniformity in notation.

• Note that this space has been “tagged” with the weight κ because the actual
space has only a rather trivial dependence on κ (κ serves only to restrict the
admissible K and r and to determine i). The point is that, as we will see, the
Hecke action on this space is very sensitive to κ . The tag will generally be
ignored in what follows as the weight will be clear from the context.

• This space is endowed with a norm which is defined as in Section 2.2 and is
a Banach space over K with respect to this norm.

• We call the forms belonging to spaces with r > 0 overconvergent. The space
of all overconvergent forms (of this weight and level) is the inductive limit

M̃†
κ (4N , K )= lim

r→0
M̃κ(4N , K , p−r ).

• In case κ is the character associated to an integer λ ≥ 0, the space of forms
defined above would classically be thought of as having weight λ+ 1/2. Our
choice of p-adic weight character bookkeeping seems to be the most natural
one (the Shimura lifting has the effect of squaring the weight character, for
example).

• In case κ is the weight associated to an integer λ≥ 0, then the definition here
is somewhat less general than the definition of the space of forms of weight
λ+ 1/2 contained in [Ramsey 2006], due to the need to eliminate enough of
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the supersingular locus to get rid of the Eisenstein zeros. The two definitions
are (Hecke-equivariantly) isomorphic whenever they are both defined, as we
will see in Proposition 6.2.

• The tilde is an homage to the metaplectic literature and will be used hence-
forth on all half-integral weight objects in order to distinguish them from their
integral weight counterparts.

We now turn to the spaces of families of modular forms.

Definition 4.4. Let X be a connected affinoid subdomain of W. Then X ⊆ Wi for
some i since X is connected, and X ⊆ Wi

n for some n since X is affinoid. For any
rational number r with 0 ≤ r ≤ rn , we define the space of families of half-integral
weight modular forms of tame level 4N and growth condition p−r on X to be

M̃X (4N , K , p−r ) :=


H 0(X1(4N p)an

≥ p−r ,O(64N p))
τ i

⊗̂K O(X)
if p 6= 2,

H 0(X1(4N )an
≥2−r ,O(64N ))

(−1/ · )i τ i
⊗̂K O(X)

if p = 2.

Remarks 4.5.

• We endow M̃X (4N , K , p−r )with the completed tensor product norm obtained
from the norms defined in Section 2.2 and from the supremum norm on O(X).
The space M̃X (4N , K , p−r ) with this norm is a Banach module over the Ba-
nach algebra O(X).

• As in the case of fixed weight, the definition depends rather trivially on X ,
but the Hecke action will be very sensitive to X .

• In general, if X is an affinoid subdomain of W, we define M̃X to be the direct
sum of the spaces corresponding to the connected components of X . Also, just
as for particular weights, we can talk about the space of all overconvergent
families of forms on X , namely M̃†

X (4N , K )= limr→0 M̃X (4N , K , p−r ).

• Using a simple projector argument, one sees easily that we have a canonical
identification

H 0(X1(4N p)an
≥ p−r ,O(64N p))

τ i
⊗̂K O(X)

∼= (H 0(X1(4N p)an
≥ p−r ,O(64N p))⊗̂K O(X))τ

i
,

and similarly at level 4N if p = 2. This will prove useful in the next section.

For each X as above and each L-valued point κ ∈ X , evaluation at x induces a
specialization map M̃X (4N , K , p−r )→ M̃κ(4N , L , p−r ). In the next section we
will define a Hecke action on both of these spaces for which such specialization
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maps are equivariant and which recover the usual Hecke operators on the right side
above (in the sense that they are given by the usual formulas on q-expansions).

Each of the spaces of forms that we have defined has a cuspidal subspace consist-
ing of forms that “vanish at the cusps.” This notion is a little subtle in half-integral
weight because there are often cusps at which all forms are forced to vanish. To
explain this comment and motivate the subsequent definition of the space of cusp
forms, let us go back to the motivation behind our definitions of the spaces of
forms. If F is a form of half-integral weight in our setting, then FθE (where E
is an appropriate Eisenstein series) is what we would “classically” like to think
of as a half-integral weight form. Indeed, if F is classical (this notion is defined
in Section 6), then FθE can literally be identified with a classical holomorphic
modular form of half-integral weight over C. The condition div(F)≥ −64N p (we
are assuming p 6= 2 for the sake of this motivation) in our definition is exactly the
condition that FθE be holomorphic at all cusps. Likewise, the condition that this
inequality be strict at all cusps is the condition that FθE be cuspidal. But since
div(F) has integral coefficients, the nonstrict inequality implies the strict inequality
at all cusps where 64N p has nonintegral coefficients.

With this in mind, we are led to the following definition of cusp forms. For an
integer M , let C4M be the divisor on X1(4M)an

Qp
given by the sum of the cusps at

which 64M has integral coefficients. To define the cuspidal subspace of any of the
above spaces of forms, we replace the divisor 64N p (respectively 64N if p = 2) by
the divisor 64N p − C4N p (respectively 64N − C4N if p = 2). We will denote the
cuspidal subspaces by the letter S instead of M . Thus, for example, if κ ∈ Wi

n(K )
and 0 ≤ r ≤ rn , we define

S̃κ(4N , K , p−r )=


H 0(X1(4N p)an

≥ p−r ,O(64N p − C4N p))
τ i

× {κ}

if p 6= 2,
H 0(X1(4N )an

≥2−r ,O(64N − C4N ))
(−1/ · )i τ i

× {κ}

if p = 2.

Remarks 4.3 and 4.5 apply equally well to the corresponding spaces of cusp forms.

5. Hecke operators

Before we construct Hecke operators, we need to make some remarks on diamond
operators and nebentypus. Since the p-part of the nebentypus character is encoded
as part of the p-adic weight character, we need to separate out the tame part of the
diamond action. Fix a weight κ ∈ Wi (K ). To define the tame diamond operators
compatibly with the classical definitions and those in [Ramsey 2006], we must
twist (at least in the case p 6=2) those obtained via pullback from the automorphism
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〈 · 〉4N by (−1/ · )i . That is, for F ∈ M̃κ(4N , K , p−r ), we define

〈d〉4N ,κF =

(
−1
d

)i
〈d〉

∗

4N F if p 6= 2,

〈d〉N ,κF = 〈d〉
∗

N F if p = 2.

Without this twist in the p 6=2 case, the definition would not agree with the classical
one because of the particular nature of the automorphy factor of the form θ used
in the identification of our forms with classical forms. The same formulas define
operators 〈 · 〉4N , X and 〈 · 〉N , X on the space of families of modular forms over
X ⊆ Wi . For a more general X ⊆W, we break into the components in Wi for each
i and define 〈 · 〉4N , X and 〈 · 〉N , X component by component. For a character χ
modulo 4N (respectively modulo N if p = 2), we define the space of forms of
tame nebentypus χ to be the χ -eigenspace of M̃κ(4N , K , p−r ) for the operators
〈 · 〉4N , κ (respectively 〈 · 〉N , κ if p = 2). The same definition applies to families
of forms. These subspaces are denoted by appending a χ to the list of arguments
(for example, M̃κ(4N , K , p−r , χ)).

Let X and Y be rigid spaces equipped with a pair of maps π1, π2 : X → Y, and
let D be a Q-divisor on Y such that π∗

1 D − π∗

2 D has integral coefficients. Let
Z ⊆ X be an admissible affinoid open, and let H ∈ H 0(Z,O(π∗

1 D − π∗

2 D)). Let
U,V ⊆ Y be admissible affinoid opens such that π−1

1 (V)∩ Z ⊆ π−1
2 (U)∩ Z, and

suppose that π1 : π−1
1 (V)∩ Z → V is finite and flat. Then there is a well-defined

map H 0(U,O(D))→ H 0(V,O(D)) given by the composition

H 0(U,O(D))
π∗

2 // H 0(π−1
2 (U)∩ Z,O(π∗

2 D))
res // H 0(π−1

1 (V)∩ Z,O(π∗

2 D))

·H
��

H 0(V,O(D)) H 0(π−1
1 (V)∩ Z,O(π∗

1 D))
π1∗oo

in which π1∗ is the trace map corresponding to the finite and flat map π1.

5.1. Hecke operators for a fixed weight. Let N be as above, let ` be any prime
number, and let

π1, π2 :

{
X1(4N p, `2)an

K → X1(4N p)an
K if p 6= 2,

X1(4N , `2)an
K → X1(4N )an

K if p = 2

be the maps defined on noncuspidal points of the underlying moduli problem by

π1 : (E, P,C) 7→ (E, P) and π2 : (E, P,C) 7→ (E/C, P/C).

Suppose that ` 6= p. Then{
π−1

1 (X1(4N p)an
≥ p−r)= π−1

2 (X1(4N p)an
≥ p−r) if p 6= 2,

π−1
1 (X1(4N )an

≥2−r)= π−1
2 (X1(4N )an

≥2−r) if p = 2
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for any r < p/(1 + p), since quotienting an elliptic curve by a subgroup of order
prime to p does not change its measure of singularity. Fix a weight κ ∈ Wi (K ),
and let H`2(κ) denote the specialization of H`2 to κ ∈ W (which, recall, is defined
to be the specialization of H`2 to κ/τ i

∈W0). Pick n such that κ ∈Wi
n , and suppose

0 ≤ r ≤ rn . Apply the general construction above with the following table:

p 6= 2 p = 2

X X1(4N p, `2)an
K X1(4N , `2)an

K
Y X1(4N p)an

K X1(4N )an
K

Z X1(4N p, `2)an
≥ p−r X1(4N , `2)an

≥2−r

D 64N p 64N

H H`2(κ) H`2(κ)

U = V X1(4N p)an
≥ p−r X1(4N )an

≥2−r

Then we arrive at an endomorphism of the K -vector space{
H 0(X1(4N p)an

≥ p−r ,O(64N p)) if p 6= 2,
H 0(X1(4N )an

≥2−r ,O(64N )) if p = 2.

We may easily check that, since the diamond operators act trivially on H`2 (see
Remark 3.4), this endomorphism commutes with the action of the diamond oper-
ators, and therefore induces an endomorphism of M̃κ(4N , K , p−r ). We define T`2

(or U`2 if ` | 4N ) to be the quotient of this endomorphism by `2.
Now suppose that `= p. Note that{

π−1
1 (X1(4N p)an

≥ p−p2r)⊆ π−1
2 (X1(4N p)an

≥ p−r) if p 6= 2,
π−1

1 (X1(4N )an
≥2−22r)⊆ π−1

2 (X1(4N )an
≥2−r) if p = 2

for any r < 1/p(1+ p). This follows from repeated application of the observation
(made, for example, in [Buzzard 2003, Theorem 3.3(v)]) that if v(E) < p/(1+ p)
and C is a subgroup of order p other than the canonical subgroup, then v(E/C)=
v(E)/p and the canonical subgroup of E/C is E[p]/C .

If κ ∈Wi
n and r is chosen so that 0 ≤ r ≤ rn , then we may apply the construction

above with the table

p 6= 2 p = 2

X X1(4N p, p2)an
K X1(4N , 4)an

K
Y X1(4N p)an

K X1(4N )an
K

Z X1(4N p, p2)an
≥ p−pr X1(4N , 4)an

≥2−2r

D 64N p 64N

H Hp2(κ) H4(κ)

U X1(4N p)an
≥ p−r X1(4N )an

≥2−r

V X1(4N p)an
≥ p−pr X1(4N )an

≥2−2r
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to arrive at a linear map{
H 0(X1(4N p)an

≥ p−r ,O(64N p))→ H 0(X1(4N p)an
≥ p−pr ,O(64N p)) if p 6= 2,

H 0(X1(4N )an
≥2−r ,O(64N ))→ H 0(X1(4N )an

≥2−2r ,O(64N )) if p = 2.

This map commutes with the diamond operators and restricts to a map

M̃κ(4N , K , p−r )→ M̃κ(4N , K , p−pr ).

When composed with the natural restriction map

M̃κ(4N , K , p−pr )→ M̃κ(4N , K , p−r ) (5)

and divided by p2, we arrive at an endomorphism of M̃κ(4N , K , p−r ), which we
denote by Up2 .

Proposition 5.1. The Hecke operators defined above are continuous.

Proof. Each of the spaces arising in the construction is a Banach space over K , so
it suffices to show that each of the constituent maps of which our Hecke operators
are the composition has finite norm. By Lemma 2.5 we may ignore the residue
disks around the cusps when computing norms, thereby reducing ourselves to the
supremum norm on functions. It follows easily that the pullback, restriction, and
trace maps have norm not exceeding 1 and that multiplication by H has norm not
exceeding the supremum norm of H on the complement of the residue disks around
the cusps. The latter is finite since this complement is affinoid. �

Remarks 5.2. • In the overconvergent case, that is, when we have r > 0, the
restriction map (5) is compact; see [Coleman 1997, Proposition A5.2]. It
follows that Up2 is compact since it is the composition of a continuous map
with a compact map.

• The Hecke operators T`2 and U`2 preserve the space of cusp forms, as can be
seen by simply constructing them directly on this space in the same manner as
above. The operator Up2 is compact on a space of overconvergent cusp forms.

5.2. Hecke operators in families. Let X ⊆ W be a connected admissible affinoid
open. We wish to define endomorphisms of M̃X (4N , K , p−r ) that interpolate the
endomorphisms T`2 and U`2 constructed above for fixed weights κ ∈ X .

Suppose that ` 6= p, and adopt the table

p 6= 2 p = 2

U = V X1(4N p)an
≥ p−r X1(4N )an

≥2−r

Z X1(4N p, `2)an
≥ p−r X1(4N , `2)an

≥2−r

6 64N p 64N
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For more compact notation, let us for the rest of this section define

M = H 0(U,O(6)), P = H 0(π−1
1 (V)∩ Z,O(π∗

16−π∗

26)),

N = H 0(π−1
2 (U)∩ Z,O(π∗

26)), Q = H 0(π−1
1 (V)∩ Z,O(π∗

16)).

L = H 0(π−1
1 (V)∩ Z,O(π∗

26)),

The Hecke operator T`2 (or U`2 if ` | 4N ) at a fixed weight was constructed in the
previous section by first taking the composition of the following continuous maps:
a pullback M → N , a restriction N → L , multiplication by an element of H ∈ P
to arrive at an element of Q, and a trace Q → M . The construction was completed
by restricting to an eigenspace of the diamond operators at p and dividing by `2.

The module of families of forms on X is an eigenspace of M⊗̂K O(X) (by the
final remark in Remarks 4.5). To define T`2 (or U`2) we begin as in the fixed
weight case by defining an endomorphism of M⊗̂K O(X) and then observing that
it commutes with the diamond automorphisms and therefore restricts to an operator
on families of modular forms. To define this endomorphism, we modify the above
sequence of maps by first applying ⊗̂K O(X) to all of the spaces and taking the
unique continuous O(X)-linear extension of each map, with the exception of the
multiplication step, where we opt instead to multiply by H`2 |X ∈ P⊗̂K O(X). In so
doing, we arrive at an O(X)-linear endomorphism of M⊗̂K O(X) that is easily seen
to commute with the diamond automorphisms, thereby inducing an endomorphism
of the module M̃X (4N , K , p−r ).

Lemma 5.3. The Hecke operators defined above for families are continuous.

Proof. By definition, each map arising in the construction is continuous except
perhaps for the multiplication map. The proof of the continuity of this map requires
several simple facts about completed tensor products, all of which can be found in
[Bosch et al. 1984, Section 2.1.7].

It follows trivially from Lemma 2.5 that the multiplication map L × P → Q
is a bounded K -bilinear map and therefore extends uniquely to a bounded K -
linear map L⊗̂K P → Q. Extending scalars to O(X) and completing, we arrive
at a bounded O(X)-linear map (L⊗̂K P)⊗̂K O(X)→ Q⊗̂K O(X). There is an iso-
metric isomorphism (L⊗̂K P)⊗̂K O(X) ∼= (L⊗̂K O(X))⊗̂O(X)(P⊗̂K O(X)), so we
conclude that the O(X)-bilinear multiplication map

(L⊗̂K O(X))⊗̂O(X)(P⊗̂K O(X))→ Q⊗̂K O(X)

is bounded. In particular, multiplication by H ∈ P⊗̂K O(X) is a bounded (and
hence continuous) map · H : L⊗̂K O(X)→ Q⊗̂K O(X), as desired. �

Remarks 5.4. • The construction of a continuous endomorphism Up2 is entirely
analogous, and once again we find that Up2 is compact in the overconvergent
case, that is, whenever r > 0.
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• The endomorphisms T`2 and U`2 can be extended to M̃X (4N , K , p−r ) for
general admissible affinoid opens X in the usual manner, working component
by component.

• All of the Hecke operators defined on families preserve the cuspidal sub-
spaces, as a direct construction on these spaces demonstrates. Again, the
operator Up2 is compact on a module of overconvergent cusp forms.

Effect on q-expansions. In this section we will work out the effect of the Hecke
operators that we have defined on q-expansions. As in [Ramsey 2006], we must
adjust the naive q-expansions obtained by literally evaluating our forms on Tate
curves with level structure to get at the classical q-expansions. In particular, by the
q-expansion of a form F ∈ M̃κ(4N , K , p−r ) at the cusp associated to (Tate(q), ζ ),
where ζ is a primitive 4N p-th root of unity if p 6= 2 and a primitive 4N -th root
of unity if p = 2, we mean F(Tate(q), ζ )θ(q)Eκ(q). Similarly, for a family
F ∈ MX (4N , K , p−r ) the corresponding q-expansion is F(Tate(q), ζ )θ(q)E(q)|X

and has coefficients in the ring of analytic functions on X .

Proposition 5.5. Let F be an element of M̃κ(4N , K , p−r ) or M̃X (4N , K , p−r ),
and let

∑
anqn be the q-expansion of F at (Tate(q), ζ ). Then the corresponding

q-expansion of Up2 F is
∑

ap2nqn .

Proof. We prove the theorem for Up2 acting on M̃κ(4N , K , p−r ). To obtain the
result for families, one could either proceed in the same manner or deduce the result
for families over X from the result for fixed weight by specializing to weights in X .
Let F ∈ M̃κ(4N , K , p−r ), and suppose that F(Tate(q), ζ )θ(q)Eκ(q) =

∑
anqn .

The expansion we seek is (1/p2)π1∗(π
∗

2 F · Hp2(κ))(Tate(q), ζ ) · θ(q)Eκ(q). The
cyclic subgroups of order p2 that intersect the subgroup generated by ζ trivially
are exactly those of the form 〈ζ i

p2qp2〉 for 0 ≤ i ≤ p2
− 1. Thus we have

π1∗(π
∗

2 F · Hp2(κ))(Tate(q), ζ )

=

p2
−1∑

i=0

(π∗

2 F · Hp2(κ))(Tate(q), ζ, 〈ζ i
p2qp2〉)

=

p2
−1∑

i=0

F(Tate(q)/〈ζ i
p2qp2〉, ζ/〈ζ i

p2qp2〉)Hp2(κ)(Tate(q), ζ, 〈ζ i
p2qp2〉)

=

p2
−1∑

i=0

F(Tate(ζ i
p2qp2), ζ )Hp2(κ)(Tate(q), ζ, 〈ζ i

p2qp2〉)

=

p2
−1∑

i=0

∑
an(ζ

i
p2qp2)n

θ(ζ i
p2qp2)Eκ(ζ i

p2qp2)

θ(ζ i
p2qp2)Eκ(ζ i

p2qp2)

θ(q)Eκ(q)
= p2

∑
ap2nqn

θ(q)Eκ(q)
. �
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The same analysis also proves the following.

Proposition 5.6. Suppose `|4N. Let F be an element of M̃κ(4N , K , p−r ) or
M̃X (4N , K , p−r ), and let

∑
anqn be the q-expansion of F at (Tate(q), ζ ). Then

the corresponding q-expansion of U`2 F is then
∑

a`2nqn .

To work out the effect of T`2 for ` - 4N p on q-expansions, we will need several
more q-expansions of 2`2 and E`2 . For the former, see [Ramsey 2006]. The latter
will follow from the following lemma. For x ∈ Z×

p , we denote by [x] the analytic
function on W defined by [x](κ)= κ(x).

Lemma 5.7. For ` 6= p, we have

E`(Tate(q), µp + 〈q`〉)= [〈`〉]
E(q)
E(q`)

and E`(Tate(q), µp`)=
E(q)
E(q`)

.

Proof. The second equality is how we chose to characterize E` in the first place.
We will use it to give an alternative characterization, which we will in turn use to
prove the first equality.

By definition, E` and the coefficients of E(q) are pulled back from their re-
strictions to W0 through the map (4). Clearly [〈`〉] is the pullback of [`] through
this map, so it suffices to prove that E`(Tate(q), µp + 〈q`〉) = [`](E(q)/E(q`)),
where the coefficients are now thought of as functions only on W0. Moreover,
it suffices to prove the equality after specialization to integers λ ≥ 2 divisible
by ϕ(q), as such integers are Zariski-dense in W0. Let Eλ(τ ) denote the classical
analytic p-deprived Eisenstein series of weight λ and level p (normalized to have
q-expansion Eλ(q)). Then

Ean
` (λ) := Eλ(τ )/Eλ(`τ )

is a meromorphic function on X0(p`)an
C

with rational q-expansion coefficients, and
by GAGA and the q-expansion principle, it yields a rational function on the alge-
braic curve X0(p`)Qp . By comparing q-expansions it is evident that the restriction
of this function to the region X0(p`)an

≥1 is equal to the specialization, E`(λ), of E`
to λ ∈ W0.

It follows that E`(λ)(Tate(q), µp+〈q`〉)=Ean
` (λ)(Tate(q), µp+〈q`〉). The right

side can be computed using the usual yoga where one pretends to specialize q to
e2π iτ and then computes with analytic transformation formulas (see [Ramsey 2006,
Section 5] for a rigorous explanation of this yoga). So specializing, we get

Ean
` (λ)(Tate(q), µp + 〈q`〉)(τ )= Ean

` (λ)(C/〈1, τ 〉, 〈1/p〉 + 〈τ/`〉).

Choosing a matrix

γ =

(
a b
c d

)
∈ SL2(Z) such that p |c and `|d ,
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we arrive at an isomorphism

(C/〈1, τ 〉, 〈1/p〉 + 〈τ/`〉)
∼
→ (C/〈1, γτ 〉, 〈1/p`〉), z 7→

z
cτ+d

.

Thus

Ean
` (λ)(C/〈1, τ 〉, 〈1/p〉 + 〈τ/`〉)= Ean

` (λ)(C/〈1, γτ 〉, 〈1/p`〉)=
Eλ(γτ)
Eλ(`γτ)

.

Now `γτ = ((a`)(τ/`)+ b)/(c(τ/`)+ d/`), so we have

Eλ(γτ)
Eλ(`γτ)

=
(cτ+d)λEλ(τ )

((cτ+d)/`)λEλ(τ/`)
= `λ

Eλ(τ )
Eλ(τ/`)

.

The result follows. �

Proposition 5.8. Let F ∈ M̃κ(4N , K , p−r , χ) with κ ∈ Wi , and let
∑

anqn be the
q-expansion of F at (Tate(q), ζ ). Then the corresponding q-expansion of T`2 F is∑

bnqn , where

bn = a`2n + κ(`)χ(`)`−1
(
(−1)i n
`

)
an + κ(`)2χ(`)2`−1an/`2 .

Let F ∈ M̃X (4N , K , p−r , χ) with X a connected affinoid in Wi , and let the
q-expansion of F be

∑
anqn as above. Then the corresponding q-expansion of

T`2 F is
∑

bnqn , where

bn = a`2n + [`]χ(`)`−1
(
(−1)i n
`

)
an + [`]2χ(`)2`−1an/`2 .

Proof. We prove the first assertion. The second may either be proved directly in
the same manner or simply deduced from the first via specialization to individual
weights in X . Let κ ∈ W(K ), let F ∈ M̃κ(4N , K , p−r , χ), and let

F(Tate(q), ζ )θ(q)Eκ(q)=
∑

anqn

be the q-expansion of F at (Tate(q), ζ ). The corresponding q-expansion of T`2 F
is

1
`2 π1∗(π

∗

2 F · H`2(κ)) · θ(q)Eκ(q). (6)

The cyclic subgroups of Tate(q) of order `2 are the subgroups

µ`2, 〈ζ i
`2q`2〉0≤i≤`2−1, and 〈ζ

j
`2q`〉1≤ j≤`−1.

We examine separately the contribution of each of these types of subgroups to
π1∗(π

∗

2 F · H`2(κ)).
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First, we have

F(Tate(q)/µ`2, ζ/µ`2)H`2(κ)(Tate(q), ζ, µ`2)

= F(Tate(q`
2
), ζ `

2
)2`2(Tate(q), ζ4, µ`2)π∗E`2(κ)(Tate(q), ζp, µ`2)

= F(Tate(q`
2
), ζ `

2
)2`2(Tate(q), ζ4, µ`2)

× E`2(κ)(Tate(q)/µ`2, (µp + Tate(q)[`2
])/µ`2)

= F(Tate(q`
2
), ζ `

2
)2`2(Tate(q), ζ4, µ`2)E`2(κ)(Tate(q`

2
), µp + 〈q〉).

From the definition (2) and Lemma 5.7, we have

E`2(Tate(q`
2
), µp + 〈q〉)

= E`(Tate(q`
2
), µp + 〈q`〉)E`(Tate(q`

2
)/〈q`〉, (µp + 〈q〉)/〈q`〉)

= E`(Tate(q`
2
), µp + 〈q`〉)E`(Tate(q`), µp + 〈q〉)

= [〈`〉]
E(q`

2
)

E(q`)
· [〈`〉]

E(q`)
(q)

= [〈`〉]2 E(q`
2
)

E(q)
.

When specialized to κ , this becomes κ(〈`〉)2 Eκ(q`
2
)/Eκ(q). Referring to [Ramsey

2006], we find

2`2(Tate(q), ζ4, µ`2)= `θ(q`
2
)/θ(q).

Thus the contribution of this first subgroup is

χ(`2)τ (`2)i
∑

anq`
2n

θ(q`2
)Eκ(q`

2
)

`
θ(q`

2
)

θ(q)
κ(〈`〉)2

Eκ(q`
2
)

Eκ(q)
= (κ(〈`〉)χ(`)τ (`)i )2

`
∑

anq`
2n

θ(q)Eκ(q)
.

The subgroups 〈ζ a
`2q`2〉 contribute

`2
−1∑

a=0

F(Tate(q)/〈ζ a
`2q`2〉, ζ/〈ζ a

`2q`2〉)H`2(κ)(Tate(q), ζ, 〈ζ a
`2q`2〉)

=

`2
−1∑

a=0

F(Tate(ζ a
`2q`2), ζ )2`2(Tate(q), ζ4, 〈ζ

a
`2q`2〉)

×π∗E`2(κ)(Tate(q), ζp, 〈ζ
a
`2q`2〉)

=

`2
−1∑

a=0

F(Tate(ζ a
`2q`2), ζ )2`2(Tate(q), ζ4, 〈ζ

a
`2q`2〉)

× E`2(κ)(Tate(q)/〈ζ a
`2q`2〉, (µp + Tate(q)[`2

])/〈ζ a
`2q`2〉)

=

`2
−1∑

a=0

F(Tate(ζ a
`2q`2), ζ )2`2(Tate(q), ζ4, 〈ζ

a
`2q`2〉)

× E`2(κ)(Tate(ζ a
`2q`2), µp`2).
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By (2) we have

E`2(Tate(ζ a
`2q`2), µp`2)= E`(Tate(ζ a

`2q`2), µp`)E`(Tate(ζ a
`2q`2)/µ`, µp`2/µ`)

= E`(Tate(ζ a
`2q`2), µp`)E`(Tate(ζ a

` q`), µp`)

=
E(ζ a

`2q`2)

E(ζ a
` q`)

E(ζ a
` q`)

E(q)
=

E(ζ a
`2q`2)

E(q)
.

Referring to [Ramsey 2006], we find 2`2(Tate(q), ζ4, 〈ζ
a
`2q`2〉) = θ(ζ a

`2q`2)/θ(q).
Thus the total contribution of this collection of subgroups is

`2
−1∑

a=0

∑
an(ζ

a
`2q`2)n

θ(ζ a
`2q`2)Eκ(ζ a

`2q`2)

θ(ζ a
`2q`2)

θ(q)

Eκ(ζ a
`2q`2)

Eκ(q)
= `2

∑
a`2nqn

θ(q)Eκ(q)
.

The subgroups 〈ζ b
`2q`〉 contribute

`−1∑
b=1

F(Tate(q)/〈ζ b
`2q`〉, ζ/〈ζ b

`2q`〉)H`2(κ)(Tate(q), ζ, 〈ζ b
`2q`〉)

=

`−1∑
b=1

F(Tate(ζ b
` q), ζ `)2`2(Tate(q), ζ4, 〈ζ

b
`2q`〉)

×π∗E`2(κ)(Tate(q), ζp, 〈ζ
b
`2q`〉)

=

`−1∑
b=1

F(Tate(ζ b
` q), ζ `)2`2(Tate(q), ζ4, 〈ζ

b
`2q`〉)

× E`2(κ)(Tate(q)/〈ζ b
`2q`〉, (µp + Tate(q)[`2

])/〈ζ b
`2q`〉)

=

`−1∑
b=1

F(Tate(ζ b
` q), ζ `)2`2(Tate(q), ζ4, 〈ζ

b
`2q`〉)

× E`2(κ)(Tate(ζ b
` q), µp + 〈q`〉).

By (2) and Lemma 5.7 we have

E`2(Tate(ζ b
` q), µp + 〈q`〉)

= E`(Tate(ζ b
` q), µp + 〈q〉)E`(Tate(ζ b

` q)/µ`, (µp + 〈q`〉)/µ`)

= E`(Tate(ζ b
` q), µp`)E`(Tate(q`), µp + 〈q〉)

=
E(ζ b

` q)
E(q`)

· [〈`〉]
E(q`)
E(q)

= [〈`〉]
E(ζ b

` q)
E(q)

.

When specialized to κ , this becomes κ(〈`〉)Eκ(ζ b
` q)/Eκ(q). Referring to [Ramsey

2006] we find

2`2(Tate(q), ζ4, 〈ζ
b
` q〉)=

(
−1
`

)
g`(ζ

b
` )
θ(ζ b

` q)
θ(q)

, where g`(ζ )=

`−1∑
m=1

(m
`

)
ζm
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is the Gauss sum associated to the `-th root of unity ζ . Thus the total contribution
of this third collection of subgroups is

`−1∑
b=1

χ(`)(−1/`)iτ(`)i
∑

an(ζ
b
` q)n

θ(ζ b
` q)Eκ(ζ b

` q)

(
−1
`

)
g`(ζ

b
` )
θ(ζ b

` q)
θ(q)

κ(〈`〉)
Eκ(ζ b

` q)
Eκ(q)

=κ(〈`〉)χ(`)
(
−1
`

)i+1
τ(`)i

g`(ζ`)

θ(q)Eκ(q)

∑
n

an

(`−1∑
b=1

ζ bn
`

(b
`

))
qn

=κ(〈`〉)χ(`)
(
−1
`

)i+1
τ(`)i

g`(ζ`)

θ(q)Eκ(q)

∑
n

an

(n
`

)
g`(ζ`)qn

=κ(〈`〉)χ(`)
(
−1
`

)i
τ(`)i

`
∑ (n

`

)
anqn

θ(q)Eκ(q)
.

Adding all this up and plugging into (6), we see that the q-expansion of T`2 F is∑
bnqn , where

bn = a`2n + κ(〈`〉)`−1χ(`)
(
−1
`

)i
τ(`)i

(n
`

)
an + κ(〈`〉)2`−1χ(`)2τ(`)2i an/`2

= a`2n + κ(`)`−1χ(`)
(
(−1)i n
`

)
an + κ(`)2`−1χ(`)2an/`2 . �

6. Classical weights and classical forms

In this section we define classical subspaces of our spaces of modular forms and
prove the following analog of Coleman’s theorem on overconvergent forms of low
slope. Throughout this section k will denote an odd positive integer and we set
λ= (k − 1)/2.

Theorem 6.1. Let m be a positive integer, let ψ : (Z/qpm−1Z)× → K × be a
character, and define κ(x) = xλψ(x). If F ∈ M̃†

κ (4N , K ) satisfies Up2 F = αF
with v(α) < 2λ− 1, then F is classical.

Our proof follows the approach of Kassaei [2006], which is modular in nature and
builds the classical form by analytic continuation and gluing. The term “analytic
continuation” has little meaning here since we have only defined our modular forms
over restricted regions on the modular curve, owing to the need to avoid Eisenstein
zeros. To get around this difficulty, we must invoke the formalism of [Ramsey
2006] for p-adic modular forms of classical half-integral weight.

Let N be a positive integer. In [Ramsey 2006] we defined the space of modular
forms of weight k/2 and level 4N over a Z[1/4N ]-algebra R to be the R-module

M̃ ′

k/2(4N , R) := H 0(X1(4N )R,O(k64N )).
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Note that this space was denoted Mk/2(4N , R) and k64N was denoted 64N ,k .
Roughly speaking, in this space of forms we have divided by θ k to reduce to weight
zero instead of Eλθ . Let r ∈ [0, 1] ∩ Q, and define

M̃ ′

k/2(4N pm, K , p−r )= H 0(X1(4N pm)an
≥ p−r ,O(k64N pm )).

It is an easy matter to check that the construction of the Hecke operators T`2 and Up2

in Section 5 (using H = 2k
`2) adapts to this space of forms and furnishes us with

Hecke operators having the expected effect on q-expansions. We will briefly review
the construction of Up2 in this context later in this section.

The next proposition relates these spaces of p-adic modular forms to the ones
defined in this paper, and will ensure that the latter spaces (and consequently the
eigencurve defined later in this paper) see the classical half-integral weight modular
forms of arbitrary p-power level. Note that this identification requires knowledge
of the action of the diamond operators at p because this data is part of the p-adic
weight character.

Proposition 6.2. Let m be a positive integer, let ψ : (Z/qpm−1Z)× → K × be a
character, and define κ(x)= xλψ(x). Then, for 0 ≤ r ≤ rm , the space

M̃ ′(4N pm+1/q, K , p−r )〈 · 〉
∗

qpm−1=ψ
=

{
M̃ ′

k/2(4N pm, K , p−r )〈 · 〉
∗

pm =ψ if p 6= 2
M̃ ′

k/2(2
m+1 N , K , p−r )〈 · 〉

∗

2m+1=ψ if p = 2

is isomorphic to M̃κ(4N , K , p−r ) in a manner compatible with the action of the
Hecke operators and tame diamond operators.

Proof. Let i be such that κ ∈ Wi . The complex-analytic modular forms θ k−1 and
Eκτ−i are each of weight λ. If p 6= 2, then θ k−1 is invariant under the 〈d〉

∗

qpm−1

while if p = 2 it has eigencharacter (−1/ · )i . In both cases, Eκτ−i has eigenchar-
acter ψτ−i for this action. Standard arguments using GAGA and the q-expansion
principle show that the ratio θ k−1/Eκτ−i furnishes an algebraic rational function
on X1(4N pm+1/q)K . Passing to the p-adic analytification and then restricting to
X1(4N pm+1/q)an

≥ p−r shows this function has divisor (k−1)64N pm+1/q, since Eκτ−i

is invertible in this region for r as in the statement of the proposition (because
κ ∈ Wm).

Suppose F ′
∈ M̃ ′

k/2(4N pm+1/q, K , p−r ) is a form with eigencharacter ψ for
〈 · 〉

∗

qpm−1 , and let

F = F ′
·
θ k−1

Eκτ−i
.
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Then, for d ∈ (Z/qpm−1Z)× we have 〈d〉
∗

qpm−1 F = τ(d)i (−1/ · )i F . In particular,
F is fixed by 〈d〉

∗
pm with d ≡ 1 (mod q). Consider now the map

X1(4N pm+1/q)an
≥ p−r/{〈d〉qpm−1 | d ≡ 1(modq)}

−→

{
X1(4N p)an

≥ p−r if p 6= 2,
X1(4N )an

≥2−r if p = 2
(7)

induced by (E, P) 7→ (E, a P), where the integer a is chosen so that

a ≡ pm−1(mod pm) and a ≡ 1(mod4N ) if p 6= 2,

a ≡ 2m−1(mod2m+1) and a ≡ 1(mod N ) if p = 2.

The construction of the canonical subgroup of order qpm−1 (defined because r ≤

rm < p2−m/q(1+ p)) ensures that this map is an isomorphism. For p 6= 2, this map
pulls the divisor 64N p back to 64N pm , so we conclude that F descends to a section
of O(64N p) on X1(4N p)an

≥ p−r and that this section satisfies 〈d〉
∗
p F = τ(d)i F for

all d ∈ (Z/qZ)×. For p = 2, this map pulls the divisor 64N back to 62m+1 N ,
so F descends to a section of O(64N ) on X1(4N )an

≥2−r , and this section satisfies
〈d〉

∗

4 F = τ(d)i (−1/d)i F for all d ∈ (Z/qZ)×. Thus we may regard F as an element
of M̃κ(4N , K , p−r ). Conversely, for F ∈ M̃κ(4N , K , p−r ), it is easy to see that

F ·
Eκτ−i

θ k−1 ∈ M̃ ′

k/2(4N pm+1/q, K , p−r )〈 · 〉qpm−1=ψ

(where F is implicitly pulled back via the above map (7)) and that this furnishes
an inverse to the above map F ′

7→ F . That these maps are equivariant with respect
to the Hecke action is a formal manipulation with the setup in Section 5 used to
define the action on both sides. That it is equivariant with respect to tame diamond
operators is trivial, but relies essentially on the “twisted” convention for this action
on M̃κ(4N , K , p−r ) (for p 6= 2). �

In general, if U is a connected admissible open in X1(4N pm+1/q)an
K contain-

ing X1(4N pm+1/q)an
≥ p−r and if F ∈ M̃κ(4N , K , p−r ) (with κ as in the previous

proposition), we will say that F analytically continues to U if the corresponding
form F ′

∈ M̃ ′

k/2(4N pm+1/q, K , p−r ) analytically continues to an element of

H 0(U,O(k64N pm+1/q)). (8)

Note that, in case U is preserved by the diamond operators at p, this analytic
continuation automatically lies in the ψ-eigenspace of (8) since G − 〈d〉

∗

qpm−1 G
vanishes on the nonempty admissible open X1(4N pm+1/q)an

≥ p−r for all d , and
hence must vanish on all of U. In particular, in case U = X1(4N pm+1/q)an

K we
make the following definition.
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Definition 6.3. Let κ(x) = xλψ(x) be as in Proposition 6.2. We say an element
F ∈ M̃κ(4N , K )† is classical if it analytically continues in the sense described
above to all of X1(4N pm+1/q)an

K , that is, if it is in the image of the (injective) map

H 0(X1(4N pm+1/q)an
K ,O(k64N p))

〈 · 〉pm=ψ

→ M̃ ′

k/2(4N pm+1/q, K , p−rm )〈 · 〉pm=ψ ∼= M̃κ(4N , K , p−rm )

↪→ M̃κ(4N , K )†.

The analytic continuation used to prove Theorem 6.1 will proceed in three steps.
All of them involve the construction of the operator Up2 on

M̃ ′

k/2(4N pm+1/q, K , p−r ),

which goes as follows. Let

π1, π2 : X1(4N pm+1/q, p2)an
K → X1(4N pm+1/q)an

K

be the usual pair of maps, and let 2p2 denote the rational function on X1(4, p2)Q

from Section 3. For any pair of admissible open U and V in X1(4N pm+1/q)an
K with

π−1
1 V ⊆ π−1

2 U, we have the map

H 0(U,O(k64N pm+1/q))→ H 0(V,O(k64N pm+1/q))

F 7→
1
p2π1∗(π

∗

2 F ·2k
p2).

Note that there is no need to introduce the space Z as in Section 5 since our
“twisting” section2k

p2 is defined on all of X1(4N pm+1/q, p2)an
K . Also, recall from

Section 5 that if 0 ≤ r < 1/p(1 + p), we have

π−1
1 (X1(4N pm+1/q)an

≥ p−p2r)⊆ π−1
2 (X1(4N pm+1/q)an

≥ p−r).

Thus if F ∈ M̃ ′

k/2(4N pm+1/q, K , p−r ) with r < 1/p(1+ p) then Up2 F analytically
continues to X1(4N pm+1/q)an

≥ p−p2r . From this simple observation we get the first
and easiest analytic continuation result.

Proposition 6.4. Let r > 0, and let F ∈ M̃ ′

k/2(4N pm+1/q, K , p−r ). Suppose that
there exists a polynomial P(T ) ∈ K [T ] with P(0) 6= 0 such that P(Up2)F ana-
lytically continues to X1(4N pm+1/q)an

≥ p−1/(1+p). Then F analytically continues to
this region as well.

Proof. Write P(T )= P0(T )+ a with P0(0)= 0 and a 6= 0. Then

F =
1
a
(P(Up2)F − P0(Up2)F).

If we have 0 < r < 1/p(1 + p), then the right side analytically continues to
X1(4N pm+1/q)an

≥ p−p2r and hence so does F . Since r > 0, we may repeat this
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process until we have analytically continued F to X1(4N pm+1/q)an
≥ p−s for some

s ≥ 1/p(1 + p). Now restrict F to X1(4N pm+1/q)an
≥ p−1/p2(1+p) and apply the

process once more to get the desired result. �

The second analytic continuation step requires that we introduce some admis-
sible opens in X1(4N pm+1/q)an

Qp
defined in [Buzzard 2003]. Use of the letter W

in this part of the argument is intended to keep the notation parallel to that of
[Buzzard 2003] and should not be confused with weight space. If p 6= 2, we let
W0 ⊆ X1(4N , p)an

Qp
denote the admissible open subspace whose points reduce to

the irreducible component on the special fiber of X1(4N , p) in characteristic p that
contains the cusp associated to the datum (Tate(q), P, µp) for some (equivalently,
any) point of order 4N on Tate(q). Alternatively, W0 can be characterized as the
complement of the connected component of the ordinary locus in X1(4N , p)an

Qp

containing the cusp associated to (Tate(q), P, 〈qp〉) for some (equivalently, any)
choice of P . If p = 2, we let W0 ⊆ X1(N , 2)an

Qp
denote the admissible open

subspace whose points reduce to the irreducible component on the special fiber
of X1(N , 2) in characteristic 2 that contains the cusp associated to the datum
(Tate(q), P, µ2) for some (equivalently, any) point of order N on Tate(q). Al-
ternatively, W0 can be characterized as the complement of the connected com-
ponent of the ordinary locus in X1(N , 2)an

Qp
containing the cusp associated to

(Tate(q), P, 〈q2〉) for some (equivalently, any) choice of P . In particular, W0 al-
ways contains the entire supersingular locus. The reader concerned about problems
with small N in these descriptions should focus on the “alternative” versions and
the remarks in Section 2.1 about adding level structure and taking invariants.

Buzzard [2003] introduces a map v′
: W0 → Q defined as follows. If x ∈ W0 is

a cusp, then set v′(x)= 0. Otherwise, x ∈ W0 corresponds to a triple (E/L , P,C)
with E/L an elliptic curve, P a point of order 4N (N if p = 2) on E , and C ⊂ E a
cyclic subgroup of order p. If E has bad or ordinary reduction, then set v′(x)= 0.
Otherwise, if 0<v(E)< p/(1+ p), then E has a canonical subgroup H of order p,
and we define

v′(x)=

{
v(E) if H = C,
1 − v(E/C) if H 6= C.

Finally, if v(E) ≥ p/(1 + p) we define v′(x) = p/(1 + p). Note that v′ does not
depend on the point P . For a nonnegative integer n, we let Vn denote the region
in W0 defined by the inequality v′

≤ 1−1/pn−1(1+ p). Buzzard proves that Vn is
an admissible affinoid open in W0 for each n, and that W0 is admissibly covered
by the Vn .

Let

f : X1(4N pm+1/q)an
Qp

→

{
X1(4N , p)an

Qp
if p 6= 2,

X1(N , 2)an
Qp

if p = 2
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denote the map characterized by

(E, P) 7→

{
(E/〈4N pP〉, pm P/〈4N pP〉, 〈4N P/〈4N pP〉〉 if p 6= 2,
(E/〈2N P〉, 2m+1 P/〈2N P〉, 〈N P/〈2N P〉〉) if p = 2

on noncuspidal points. Define W1 = f −1(W0) and Zn = f −1(Vn) for n ≥ 0. It
follows from the above that W1 is an admissible open in X1(4N pm+1/q)an

K and
that W1 is admissibly covered by the admissible opens Zn . The latter are affinoid
since f is finite.

Lemma 6.5. The inclusion π−1
1 (Zn+2)⊆ π−1

2 (Zn) holds for all n ≥ 0.

Proof. Since the maps π1 and π2 are finite, the stated inclusion is between affinoids
and can be checked on noncuspidal points. Then the assertion follows immediately
from two applications of [Buzzard 2003, Lemma 4.2(2)]. �

We can now state and prove the second analytic continuation result.

Proposition 6.6. Let r > 0, and let F ∈ M̃ ′

k/2(4N pm+1/q, K , p−r ). Suppose that
there exists a polynomial P(T ) ∈ K [T ] with P(0) 6= 0 such that P(Up2)F extends
to W1. Then F extends to this region as well.

Proof. Note that
X1(4N pm+1/q)an

≥ p−1/(1+p) = Z0 ⊆ W1

so that by Proposition 6.4, F extends to Z0. Now we proceed inductively to ex-
tend F to each Zn . Let P(T )= P0(T )+ a with P0(0)= 0 and a 6= 0. Then

F =
1
a
(P(Up2)F − P0(Up2)F).

Suppose F extends to Zn for some n ≥ 0. By hypothesis, P(Up2)F extends to all
of W1, and by the construction of Up2 and Lemma 6.5, P0(Up2)F extends to Zn+2,
and hence so does F . Thus by induction F extends to Zn for all n, and since W1

is admissibly covered by the Zn , F extends to W1. �

If p 6= 2 and m = 1 (that is, if there is only one p in the level), then this is
the end of the second analytic continuation step. In all other cases, techniques in
[Buzzard 2003] allow us to analytically continue to more connected components
of the ordinary locus. Define

m = ordp(qpm−1)=

{
m if p 6= 2,
m + 1 if p = 2.

We now follow Buzzard: For 0 ≤ r ≤ m let Ur denote the admissible open in
X1(4N pm+1/q)an

K whose noncuspidal points parameterize pairs (E, P) that are
either supersingular or satisfy

Hpm−r (E)=

{
Hpm−r (E)= 〈4N pr P〉 if p 6= 2,
H2m+1−r (E)= 〈N2r P〉 if p = 2.
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We have
W1 = U0 ⊆ U1 ⊆ · · · ⊆ Um = X1(4N pm+1/q)an

K .

The last goal of the second step is to analytically continue eigenforms to Um−1.

Lemma 6.7. For 0 ≤ r ≤ m − 2, we have π−1
1 (Ur+1)⊆ π−1

2 (Ur ).

Proof. As usual, it suffices to check this on noncuspidal points. Moreover, it
suffices to check it on ordinary points, since the entire supersingular locus is
contained in each Ur . For brevity we will assume p 6= 2. The case p = 2
is proved in exactly the same manner. Let (E, P,C) ∈ π−1

1 (Ur+1) be such a
point. Then Hpm−r−1(E) = 〈4N pr+1 P〉, and since r + 1 < m, we conclude that
Hpm−r−1(E)∩C = 0. Now [Buzzard 2003, Proposition 3.5] implies that Hpr (E/C)
is indeed generated by the image of 4N pr P in E/C , so (E, P,C) ∈ π−1

2 (Ur ). �

Proposition 6.8. Let r > 0, and let F ∈ M̃ ′

k/2(4N pm+1/q, K , p−r ). Suppose that
there exists a polynomial P(T ) ∈ K [T ] with P(0) 6= 0 such that P(Up2)F extends
to Um−1. Then F extends to this region as well.

Proof. Since U0 =W1, Proposition 6.6 ensures that F analytically continues to U0.
Now we proceed inductively to extend F to each Ur for 0 ≤ r ≤ m − 1. Let
P(T )= P0(T )+ a with P0(0)= 0 and a 6= 0. Then

F =
1
a
(P(Up2)F − P0(Up2)F).

Suppose F extends to Ur for some 0 ≤ r ≤ m−2. By hypothesis, P(Up2)F extends
to all of Um−1, and by the construction of Up2 and Lemma 6.7, P0(Up2)F extends to
Ur+1, and hence so does F . Proceeding inductively, we see that F can be extended
all the way to Um−1. �

The third and most difficult analytic continuation step is to continue to the rest
of the curve X1(4N pm+1/q)an

K . If p 6= 2, we let V0 denote the admissible open
in X1(4N , p)an

K whose points reduce to the irreducible component on the special
fiber in characteristic p that contains the cusp associated to (Tate(q), P, 〈qp〉) for
some (equivalently, any) choice of P . On the other hand, if p = 2, we let V0

denote the admissible open in X1(N , 2)an
K whose points reduce to the irreducible

component on the special fiber in characteristic 2 that contains the cusp associated
to (Tate(q), P, 〈q2〉) for some (equivalently, any) choice of P . Let V denote the
preimage of V0 under the finite map

g : X1(4N pm+1/q)an
Qp

→

{
X1(4N , p)an

Qp
if p 6= 2,

X1(N , 2)an
Qp

if p = 2,

(E, P) 7→

{
(E, pm P, 〈4N pm−1 P〉) if p 6= 2,
(E, 2m+1 P, 〈2m N P〉) if p = 2.



788 Nick Ramsey

Note that the preimage under g of the locus that reduces to the other component
of X1(4N , p)Fp (or X1(N , 2)F2 if p = 2) is Um−1, so in particular {Um−1,V} is an
admissible cover of X1(4N pm+1/q)an

Qp
and Um−1 ∩ V is the supersingular locus.

For any subinterval I ⊆ (p−p/(1+p), 1], let VI (respectively Um−1 I ) denote the
admissible open in V (respectively Um−1) defined by the condition p−v(E)

∈ I .
Note that the complement of Um−1 in X1(4N pm+1/q)an

K is V[1, 1]. Given a Up2-
eigenform of suitably low slope, we will define a function on V[1, 1] and use the
gluing techniques of [Kassaei 2006] to glue it to the analytic continuation of our
eigenform to Um−1 guaranteed by Proposition 6.6. These techniques rely heavily
on the norms introduced in Section 2.2. The use of Lemma 2.5 to reduce these
norms to the supremum norm on the complement of the residue disks around the
cusps will be implicit in many of the estimates that follow.

Over V(p−1/p(1+p), 1] we have a section h to π1 given on noncuspidal points
by

h : V(p−1/p(1+p), 1] → X1(4N pm+1/q, p2)an
K

(E, P) 7→ (E, P, Hp2).

By standard results on quotienting by the canonical subgroup [Buzzard 2003, The-
orem 3.3], the composition π2 ◦ h restricts to a map

Q : V(p−r , 1] → V(p−p2r , 1] (9)

for any 0 ≤ r ≤ 1/p(1 + p). Note that since Q preserves the property of having
ordinary or supersingular reduction, Q restricts to a map V(p−r , 1)→V(p−p2r , 1).
Define a meromorphic function ϑ on V(p−1/p(1+p), 1] by ϑ= h∗2p2 , and note that

div(ϑ)= h∗(π∗

264N pm+1/q −π∗

164N pm+1/q)

= Q∗64N pm+1/q −64N pm+1/q.
(10)

Let F ∈ H 0(Um−1,O(k64N pm+1/q)) and suppose that

Up2 F = αF + H

on Um−1 for some classical form H and some α 6=0. Note that this condition makes
sense because π−1

1 (Um−1)⊆π
−1
2 (Um−1) by Lemma 6.7. For a pair (E, P)∈Um−1

corresponding to a noncuspidal point, we have

F(E, P)=
1
αp2

∑
C

F(E/C, P/C)2k
p2(E, P,C)− 1

α
H(E, P), (11)

where the sum is over the cyclic subgroups of order p2 having trivial intersec-
tion with the group generated by P . Suppose that (E, P) corresponds to a point
in V(p−1/p(1+p), 1). Then the subgroup generated by P has trivial intersection
with the canonical subgroup Hp2 , and thus the canonical subgroup is among the
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subgroups occurring in the sum above. One can check using [Buzzard 2003, The-
orem 3.3] that (E/Hp2, P/Hp2) corresponds to a point of V(p−p/(1+p), 1), while
if C 6= Hp2 is a cyclic subgroup of order p2 with trivial intersection with 〈P〉,
then (E/C, P/C) corresponds to a point of Um−1(p−1/p(1+p), 1]. Define F1 on
V(p−1/p(1+p), 1) by

F1 = F −
1
αp2ϑ

k Q∗(F |V(p−p/(1+p),1)).

Lemma 6.9. The function F1 on V(p−1/p(1+p), 1) extends to an element of

H 0(V(p−1/p(1+p), 1],O(k64N pm+1/q)).

Proof. Equation (11) and the comments that follow it show how to define the
extension F̃1 of F1, at least on noncuspidal points. For a pair (E, P) corresponding
to a noncuspidal point of V(p−1/p(1+p), 1], we would like

F̃1(E, P)=
1
αp2

∑
C

F(E/C, P/C)2k
p2(E, P,C)− 1

α
H(E, P),

where the sum is over the cyclic subgroups of order p2 of E not meeting 〈P〉 and
not equal to Hp2(E). We can formalize this as follows.

The canonical subgroup of order p2 furnishes a section to the finite map

π−1
1 (V(p−1/p(1+p), 1])

π1
−→ V(p−1/p(1+p), 1],

and section is an isomorphism onto a connected component of

π−1
1 (V(p−1/p(1+p), 1]).

Let Z denote the complement of this connected component. Then π1 restricts to a
finite and flat map Z → V(p−1/p(1+p), 1]. Note that

Z = π−1
1 (V(p−1/p(1+p), 1])∩ Z ⊆ π−1

2 (Um−1(p−1/p(1+p), 1])∩ Z,

as can be checked on noncuspidal points (see the comments following Equation
(11)). Now we may apply the general construction of Section 5 with this Z and
define

F̃1 =
1
αp2π1∗(π

∗

2 F ·2k
p2)−

1
α

H.

Then F̃1 ∈ H 0(V(p−1/p(1+p), 1],O(k64N pm+1/q)), and Equation (11) shows that
F̃1 extends F1. �

For n ≥ 1, we define inductively an element Fn of

H 0(V(p−1/p2n−1(1+p), 1],O(k64N pm+1/q)),
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where F1 is as above and for n ≥ 1, we set

Fn+1 = F1 +
1
αp2ϑ

k Q∗(Fn|V(p−1/p2n+1(1+p),1]
).

Note that (9) and (10) show that the Fn do indeed lie in the spaces indicated. Our
goal is to show that the sequence {Fn}, when restricted to V[1, 1], converges to an
element of G of H 0(V[1, 1],O(k64N pm+1/q)) that glues to F in the sense that there
exists a global section of O(k64N pm+1/q) that restricts to F and G on Um−1 and
V[1, 1], respectively. To do this we will use Kassaei’s gluing lemma [2006]. The
following lemmas furnish some necessary norm estimates.

Lemma 6.10. The function 2p2 on Y1(4, p2)Qp is integral. That is, it extends to a
regular function on the fine moduli scheme Y1(4, p2)Zp .

Proof. Each 01(4) ∩ 00(p2) structure on the elliptic curve Tate(q)/Qp((q)) lifts
trivially to one over the Tate curve thought of as over Zp((q)). Since the Tate curve
is ordinary, such a structure specializes to a unique component of the special fiber
Y1(4, p2)Fp . Since Y1(4, p2)Zp is Cohen–Macaulay, the usual argument used to
prove the q-expansion principal (as in the proof of [Katz 1973, Corollary 1.6.2])
shows that 2p2 is integral as long as it has integral q-expansion associated to a
level structure specializing to each component of the special fiber. In fact, all
q-expansions of 2p2 are computed explicitly in [Ramsey 2006, Section 5], and all
are integral. �

Lemma 6.11. Let R be an Fp-algebra, let E be an elliptic curve over R, and
let E (p) denote the base change of E via the absolute Frobenius morphism on
Spec(R). Let Fr : E → E (p) denote the relative Frobenius morphism. Then for any
point P of order 4 on E , we have 2p2(E, P, ker(Fr2))= 0.

Proof. In characteristic p, the forgetful map Y1(4, p2)Fp → Y1(4)Fp has a section
given on noncuspidal points by s : (E, P) 7→ (E, P, ker(Fr2)). By Lemma 6.10,
we may pull back (the reduction of) 2p2 through this section to arrive at a regular
function on the smooth curve Y1(4)Fp .

The q-expansion of s∗2p2 at the cusp associated to (Tate(q), ζ4) is

s∗2p2(Tate(q), ζ4)=2p2(Tate(q), ζ4, (ker(Fr2))).

Recall that the map Tate(q)→Tate(q p) given by quotienting byµp is a lifting of Fr
to characteristic zero (more specifically, to the ring Z((q))). Thus the q-expansion
we seek is the reduction of

2p2(Tate(q), ζ4, µp2)= p
∑

n∈Z q p2n2∑
n∈Z qn2
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modulo p, which is clearly zero. See [Ramsey 2006, Section 5] for the computation
of the above q-expansion in characteristic zero. It follows from the q-expansion
principle that s∗2p2 = 0, which implies our claim. �

Lemma 6.12. Let 0 ≤ r < 1/p(1 + p). Then the section ϑ of

O(64N pm+1/q − Q∗64N pm+1/q)

satisfies ‖ϑ‖V[p−r ,1] ≤ p pr−1.

Proof. By Lemma 2.5, we may, in computing the norm, ignore points reducing to
cusps. Let x ∈V[p−r , 1] be outside of this collection of points, so x corresponds to
a pair (E, P) with good reduction. Let Hpi denote the canonical subgroup of E of
order pi (for whichever i this is defined). Let E be a smooth model of E over OL ,
and let P and Hp2 be the extensions of P and Hp2 to E, respectively (these E and
H should not be confused with the functions by the same name from Section 3).

By [Goren and Kassaei 2006, Theorem 3.10], Hp reduces modulo p/pv(E) to
ker(Fr). Applying this to E/Hp, we see that Hp2/Hp reduces modulo p/pv(E/Hp)

to ker(Fr) on the corresponding reduction of E/Hp. Then from [Buzzard 2003,
Theorem 3.3], we know that v(E/Hp) = pv(E), so p1−v(E/Hp) | p1−v(E) and we
may combine these statements to conclude that Hp2 reduces modulo p1−pv(E) to
ker(Fr2) on the reduction of E .

Combining this with the integrality of 2p2 (from Lemma 6.10), we have

h(x)=2p2(E, P, Hp2)≡2p2(E, P, ker(Fr2)) (mod p1−pv(E)).

This is zero by Lemma 6.11, so |h(x)| ≤ |p1−pv(E)
| = p pv(E)−1

≤ p pr−1. �

Proposition 6.13. Let F ∈ H 0(Um−1,O(k64N pm+1/q)). Suppose Up2 F − αF is
classical for some α ∈ K with v(α) < 2λ− 1. Then F is classical as well.

Proof. Define Fn as above. We first show that the sequence Fn|V[1,1] converges.
Note that over V[1, 1] we have

Fn+2 − Fn+1 =

(
F1 +

1
αp2ϑ

k Q∗Fn+1

)
−

(
F1 +

1
αp2ϑ

k Q∗Fn

)
=

1
αp2ϑ

k Q∗(Fn+1 − Fn).

By Lemma 6.12 (with r = 0), we have

‖Fn+2 − Fn+1‖V[1,1] ≤
p2−k

|α|
‖Fn+1 − Fn‖V[1,1].

The hypothesis on α ensures that (p2−k/|α|)n → 0 as n → ∞ and hence that
the sequence has successive differences that tend to zero. Since, by Lemma 2.1,
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H 0(V[1, 1],O(k64N pm+1/q)) is a Banach algebra with respect to ‖ · ‖V[1,1], it fol-
lows that the sequence converges. Set

G = lim
n→∞

Fn|V[1,1].

Next we apply Kassaei’s gluing lemma [Kassaei 2006, Lemma 2.3] to glue G
to F as sections of the line bundle O(bk64N pm+1/qc). So that we are gluing over
an affinoid as required in the hypotheses of the gluing lemma, we first restrict F
to V[p−1/p(1+p), 1) and glue G to this restriction to get a section over the smooth
affinoid V[p−1/p(1+p), 1]. Since the pair {V[p−1/p(1+p), 1],Um−1} is an admissible
cover of X1(4N pm+1/q)an

K , this section glues to F to give a global section.
The “auxiliary” approximating sections that are required in the hypotheses of

this lemma (denoted Fn in [Kassaei 2006]) are the Fn introduced above. So that
the Fn live on affinoids (as in the hypotheses of the gluing lemma), we simply
restrict Fn to V[p−1/p2n(1+p), 1]. The two conditions to be verified are

‖Fn − F‖
V[p−1/p2n (1+p),1) → 0 and ‖Fn − G‖V[1,1] → 0.

The second of these is simply the definition of G. As for the first, it is not even
clear that the indicated norms are finite (since the norms are over non-affinoids). To
see that these norms are finite and that the ensuing estimates make sense, we must
show that F has finite norm over V[p−1/p2(1+p), 1). It suffices to show that the
norms of F over the affinoids Vn = V[p−1/p2n(1+p), p−1/p2n+2(1+p)

] are uniformly
bounded for n ≥ 1. The key is that the map Q restricts to a map Q : Vn → Vn+1

for each n ≥ 1. Since F1 extends to the affinoid V[p−1/p2(1+p), 1], its norms over
the Vn are certainly uniformly bounded, say, by M . We have

‖F‖Vn ≤ max
(
‖F1‖Vn ,

∥∥∥ 1
αp2ϑ

k Q∗F
∥∥∥

Vn

)
≤ max

(
M, p2

|α|
‖ϑk

‖Vn‖Q∗F‖Vn

)
≤ max

(
M,

p2

|α|

(
p1/(p2n−1(1+p))−1)k

‖Q∗F‖Vn

)
≤ max

(
M, p2−k

|α|
pk/(p2n−1(1+p))

‖F‖Vn−1

)
.

Iterating this, we see that ‖F‖Vn does not exceed the maximum of

max
0≤m≤n−2

(
M

( p2−k

|α|

)m
p

k
1+p (1/p2n−1

+···+1/p2(n−m)+1)
)

and ( p2−k

|α|

)n−1
p

k
1+p (1/p2n−1

+···+1/p3)
‖F‖V1 .
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The sums in the exponents of are geometric and do not exceed 1/(p3
− p). More-

over, the hypothesis on α ensures that p2−k/|α|< 1. Thus we have

‖F‖Vn ≤ max
(

Mp
k

1+p
1

p3−p , p
k

1+p
1

p3−p ‖F‖V1

)
,

which is independent of n, as desired. This ensures that all of the norms encoun-
tered below are indeed finite.

From the definition of the Fn , we have

Fn+1 − F = F1 +
1
αp2ϑ

k Q∗Fn − F

= F −
1
αp2ϑ

k Q∗F +
1
αp2ϑ

k Q∗Fn − F =
1
αp2ϑ

k Q∗(Fn − F).

Taking supremum norms over the appropriate admissible opens, we see

‖Fn+1 − F‖
V[p−1/(p2n+2(1+p)),1)

≤
p2

|α|
‖ϑ‖

k
V[p−1/(p2n+2(1+p)),1)

‖Q∗(Fn − F)‖
V[p−1/(p2n+2(1+p)),1)

≤
p2

|α|

(
p1/(p2n+1(1+p))−1)k

‖Fn − F‖
V[p−1/(p2n (1+p),1))

=
p2−k

|α|
pk/(p2n+1(1+p))

‖Fn − F‖
V[p−1/(p2n (1+p)),1).

Iterating this we find that

‖Fn − F‖
V[p−1/(p2n (1+p)),1)

≤

( p2−k

|α|

)n−1
p

k
1+p (1/p3

+1/p5
+···+1/p2n−1)

‖F1 − F‖
V[p−1/p2(1+p),1).

Again the sum in the exponent is less than 1/(p3
− p) for all n, so the hypothesis

on α ensures that the above norm tends to zero as n → ∞, as desired �

We are now ready to prove the main result of this section, which is a mild
generalization of Theorem 6.1.

Theorem 6.14. Let m be a positive integer, let ψ : (Z/qpm−1Z)× → K × be a
character, and define κ(x)= xλψ(x). Let P(T )∈ K [T ] be a monic polynomial all
roots of which have valuation less than 2λ− 1. If F ∈ M̃†

κ (4N , K ) and P(Up2)F
is classical, then F is classical as well.

Proof. Pick r in 0 < r < rm such that F ∈ M̃κ(4N , K , p−r ), and let F ′
∈

M̃k/2(4N pm+1/q, K , p−r ) be the form corresponding to F under the isomorphism
of Proposition 6.2. We must show that F ′ is classical in the sense that it ana-
lytically continues to all of X1(4N pm+1/q)an

K . Note that P(0) 6= 0 for such a
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polynomial, so by Proposition 6.8, F ′ analytically continues to an element of
H 0(Um−1,O(k64N pm+1/q)). Now we proceed by induction on the degree d of
P . The case d = 1 is Proposition 6.13. Suppose the result holds for some degree
d ≥ 1, and let P(T ) be a polynomial of degree d + 1 as above. We may pass to
a finite extension and write P(T ) = (T − α1) · · · (T − αd+1). The condition that
P(Up2)F ′ is classical implies by the inductive hypothesis that (Up2 − αd+1)F ′ is
classical. This implies that F ′ is classical by the case d = 1. �

Remark 6.15. The results of this section likely also follow from the very general
classicality machinery developed in [Kassaei 2005], though we have not checked
the details.

7. The half-integral weight eigencurve

To construct our eigencurve, we will use the axiomatic version of Coleman and
Mazur’s Hecke algebra construction, as set up in [Buzzard 2007]. We briefly recall
some relevant details.

Let us for the moment allow W to be any reduced rigid space over K . Let T
be a set with a distinguished element φ. Suppose that, for each admissible affinoid
open X ⊆ W, we are given a Banach module MX over O(X) satisfying a certain
technical hypothesis (called (Pr) in [Buzzard 2007]), and we are also given a map

T → EndO(X)(MX ), t 7→ tX

whose image consists of commuting endomorphisms and such that φX is compact
for each X . Assume that, for admissible affinoids X1 ⊆ X2 ⊆ W, we are given a
continuous injective O(X1)-linear map

α12 : MX1 → MX2⊗̂O(X2)O(X1)

that is a “link” in the sense of [Buzzard 2007] and such that (tX2⊗̂1)◦α12 =α12◦tX1 .
Assume moreover that, if X1 ⊆ X2 ⊆ X3 ⊆ W are admissible affinoids, then α13 =

α23 ◦ α12 with the obvious notation. Note that the link condition ensures that the
characteristic power series PX (T ) of φX acting on MX is independent of X in the
sense that the image of PX2(T ) under the natural map O(X2)[[T ]] → O(X1)[[T ]] is
PX1(T ); see [Buzzard 2007].

Out of this data, Buzzard constructs rigid analytic spaces D and Z , called the
eigenvariety and spectral variety, respectively, equipped with canonical maps

D → Z → W. (12)

The points of D parameterize systems of eigenvalues of T acting on the {MX }

for which the eigenvalue of φ is nonzero, in a sense that will be made precise in
Lemma 7.3, while the image of such a point in Z simply records the inverse of the
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φ eigenvalue and a point of W. If W is equidimensional of dimension d , then the
same is true of both of the spaces D and Z .

As the details of this construction will be required in the next section, we recall
them here. The following is the deepest part of the construction.

Theorem 7.1 [Buzzard 2007, Theorem 4.6]. Let R be a reduced affinoid algebra
over K , let P(T ) be a Fredholm series over R, and let Z ⊂ Sp(R)×A1 denote the
hypersurface cut out by P(T ) equipped with the projection π : Z → Sp(R). Define
C(Z) to be the collection of admissible affinoid opens Y in Z such that

• Y ′
= π(Y ) is an admissible affinoid open in Sp(R),

• π : Y → Y ′ is finite, and

• there exists e ∈ O(π−1(Y ′)) such that e2
= e and Y is the zero locus of e.

Then C(Z) is an admissible cover of Z.

We will generally take Y ′ to be connected in what follows. This is not a serious
restriction, since Y is the disjoint union of the parts lying over the various connected
components of Y ′. We also remark that the third of the above conditions follows
from the first two (this is observed in [Buzzard 2007], where references to the proof
are supplied).

To construct D, first fix an admissible affinoid open X ⊆ W. Let Z X denote
the zero locus of PX (T ) = det(1 − φX T | MX ) in X × A1, and let π : Z X → X
denote the projection onto the first factor. Let Y ∈ C(Z X ), let Y ′

= π(Y ) as above,
and assume that Y ′ is connected. We wish to associate to Y a polynomial factor of
PY ′(T )= det(1 − (φX ⊗̂1)T | MX ⊗̂O(X)O(Y ′)). Since the algebra O(Y ) is a finite
and locally free module over O(Y ′), we may consider the characteristic polynomial
Q′ of T ∈ O(Y ). Since T is a root of its characteristic polynomial, we have a map

O(Y ′)[T ]/(Q′(T ))→ O(Y ). (13)

It is shown in [Buzzard 2007, Section 5] that this map is surjective and therefore
an isomorphism since both sides are locally free of the same rank.

Now since the natural map O(Y ′)[T ]/(Q′(T )) → O(Y ′){{T }}/(Q′(T )) is an
isomorphism, it follows that Q′(T ) divides PY ′(T ) in O(Y ′){{T }}. If a0 is the
constant term of Q′(T ), then this divisibility implies that a0 is a unit. We set
Q(T )= a−1

0 Q′(T ). The spectral theory of compact operators on Banach modules
(see [Buzzard 2007, Theorem 3.3]) furnishes a unique decomposition

MX ⊗̂O(X)O(Y ′)∼= N ⊕ F

into closed φ-invariant O(Y ′)-submodules such that Q∗(φ) is zero on N and in-
vertible on F . Moreover, N is projective of rank equal to the degree of Q, and the
characteristic power series of φ on N is Q(T ). The projector MX ⊗̂O(X)O(Y ′)→ N
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is in the closure of O(Y ′)[φ], so N is stable under all of the endomorphisms as-
sociated to elements of T. Let T(Y ) denote the O(Y ′)-subalgebra of EndO(Y ′)(N )
generated by these endomorphisms. Then T(Y ) is finite over O(Y ′) and hence
affinoid, so we may set DY = Sp(T(Y )). Because the leading coefficient of Q
(that is, the constant term of Q∗) is a unit, there is an isomorphism

O(Y ′)[T ]/(Q(T ))→ O(Y ′)[S]/(Q∗(S)), T 7→ S−1.

Thus we obtain a canonical map DY → Y , namely, the one corresponding to the
map

O(Y )∼= O(Y ′)[T ]/(Q(T ))∼= O(Y ′)[S]/(Q∗(S))
S 7→φ // T(Y )

of affinoid algebras.
For general Y ∈ C(Z X ), we define DY to be the disjoint union of the affinoids

defined above from the various connected components of Y ′. We then glue the
affinoids DY for Y ∈ C(Z X ) to obtain a rigid space DX equipped with maps

DX → Z X → X.

Finally, we vary X and glue the desired spaces and maps above to obtain the spaces
and maps in (12). This final step is where the links αi j above come into play. See
[Buzzard 2007] for details.

Definition 7.2. Let L be a complete extension of K . An L-valued system of eigen-
values of T acting on {MX }X is a pair (κ, γ) consisting of a map of sets γ : T → L
and a point κ ∈ W(L) such that there exists an affinoid X ⊆ W containing κ and a
nonzero element m ∈ MX ⊗̂O(X),κL such that (tX ⊗̂1)m = γ(t)m for all t ∈ T. Such
a system of eigenvalues is called φ-finite if γ(φ) 6= 0.

Let x be an L-valued point of D. Then x lies over a point in κx ∈ W(L) that lies
in X for some affinoid X , and x moreover lies in DY (L) for some Y ∈C(Z X ). Thus
to x and the choice of X and Y corresponds a map T(Y )→ L , and in particular a
map of sets λx : T → L . Buzzard [2007] proves the following characterization of
the points of D.

Lemma 7.3. The correspondence x 7→ (κx , λx) is a well-defined bijective corre-
spondence between L-valued points of D and φ-finite L-valued systems of eigen-
values of T acting on the {MX }.

In our case, we let W be weight space over Qp as in Section 2.3, and let T be
the set of symbols{

{T`2}`-4N p ∪ {U`2}`|4N p ∪ {〈d〉4N }d∈(Z/4NZ)× if p 6= 2,
{T`2}`-4N ∪ {U`2}`|4N ∪ {〈d〉N }d∈(Z/NZ)× if p = 2.
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For an admissible affinoid open X ⊆W, we let MX = M̃X (4N ,Qp, p−rn ), where n
is the smallest positive integer such that X ⊆Wn . This module is a direct summand
of the Qp-Banach space{

H 0(X1(4N p)an
≥ p−rn ,O(64N p))⊗̂QpO(X) if p 6= 2,

H 0(X1(4N )an
≥2−rn ,O(64N ))⊗̂QpO(X) if p = 2

and therefore satisfies property (Pr) since this latter space is potentially orthonor-
malizable in the terminology of [Buzzard 2007] by the discussion in [Serre 1962,
Section 1]. We take the map T → EndO(X)(MX ) to be the one sending each symbol
to the endomorphism by that name defined in Section 5.

Let X1 ⊆ X2 ⊆ W be admissible affinoids, and let ni be the smallest positive
integer with X i ⊆ Wni . Then n1 ≤ n2 so that rn2 ≤ rn1 , and we have an inclusion

M̃X1(4N ,Qp, p−rn1 )→ M̃X1(4N ,Qp, p−rn2 )

given by restriction. We define the required continuous injection α12 via the dia-
gram

M̃X1(4N ,Qp, p−rn1 ) //

α12 **VVVVVVVVVVVVVVVVVV
M̃X1(4N ,Qp, p−rn2 )

M̃X2(4N ,Qp, p−rn2 )⊗̂O(X2)O(X1)

∼

OO

and note that the required compatibility condition is satisfied. To see that these
maps are links, choose numbers rn1 = s0 ≥ s1 > s2 > · · ·> sk−1 ≥ sk = rn2 with the
property that p2si+1 > si for all i . Then the map α12 factors as the composition of
the maps

M̃X1(4N ,Qp, p−si )→ M̃X1(4N ,Qp, p−si+1)

for 0 ≤ i ≤ k − 2 and the map

M̃X1(4N ,Qp, p−sk−1)→ M̃X2(4N ,Qp, p−sk )⊗̂O(X2)O(X1).

The construction of Up2 shows easily that each of these maps is a primitive link.
The result is that we obtain rigid analytic spaces D̃ and Z̃ , which we call the half-

integral weight eigencurve and the half-integral weight spectral curve, respectively.
We also obtain canonical maps D̃ → Z̃ → W. As usual, the tilde distinguishes
these spaces from their integral weight counterparts first constructed in level 1 by
Coleman and Mazur and later constructed for general level by Buzzard [2007].

If instead of using the full spaces of forms we use only the cuspidal subspaces
everywhere, then we obtain cuspidal versions of all of the above spaces, which we
will delineate with a superscript 0. Thus we have D̃0 and Z̃0 with the usual maps,
and the points of these spaces parameterize systems of eigenvalues of the Hecke
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operators acting on the spaces of cusp forms by Lemma 7.3. We remark that there
is a commutative diagram

D̃0 //

��

D̃

��
Z̃0

##GGG
GGG

G
// Z̃

{{xxx
xx

xx

W

where the horizontal maps are injections that identify the cuspidal spaces on the
left with unions of irreducible components of the spaces on the right. Proving
this is an exercise in the linear algebra that goes into the construction of these
eigenvarieties and basic facts about irreducible components of rigid spaces found
in [Conrad 1999], and is left to the reader.

For κ ∈W(K ), let D̃κ and D̃0
κ denote the fibers D̃ and D̃0 over κ . The following

theorem summarizes the basic properties of these eigencurves.

Theorem 7.4. Let κ ∈ W(K ). For a complete extension L/K , the correspondence
x 7→ λx is a bijection between the L-valued points of the fiber D̃κ(L) and the set
of finite-slope systems of eigenvalues of the Hecke operators and tame diamond
operators occurring on the space M̃†

κ (4N , L) of overconvergent forms of weight κ
defined over L. The same statement holds with D̃ replaced by D̃0 and M̃†

κ (4N , L)
replaced by S̃†

κ(4N , L).

Proof. We prove the statement for the full space of forms. The proof for cuspidal
forms is identical. Fix κ ∈ W(K ). Once we establish that the L-valued systems of
eigenvalues of the form (κ, γ) occurring on the {MX }X as defined above are exactly
the systems of eigenvalues of the Hecke and tame diamond operators that occur on
M̃†
κ (4N , L), the result is simply Lemma 7.3 “collated by weight.” To see this one

simply notes that, for any f ∈ M̃†
κ (4N , L), we have both f ∈ M̃κ(4N , L , p−rn )

and κ ∈ Wn for n sufficiently large. In particular, if f is a nonzero eigenform for
the Hecke and tame diamond operators, then the system of eigenvalues associated
to f occurs in the module MWn for n sufficiently large. �

We remark that the classicality result of Section 6 has the expected consequence
that the collection of points of D̃ corresponding to systems of eigenvalues occurring
on classical forms is Zariski-dense in D̃. This result is contained in [Ramsey 2007].

Appendix: Properties of the stack X1(M p, p2) over Z( p)

by Brian Conrad

In this appendix, we establish some geometric properties concerning the cuspidal
locus in compactified moduli spaces for level structures on elliptic curves. We are
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especially interested in the case of nonétale p-level structures in characteristic p,
so it is not sufficient to cite the work in [Deligne and Rapoport 1973] (which
requires étale level structures in the treatment of moduli problems for generalized
elliptic curves) or [Katz and Mazur 1985] (which works with Drinfeld structures
over arbitrary base schemes but avoids nonsmooth generalized elliptic curves).
The viewpoints of these works were synthesized in the study of moduli stacks for
Drinfeld structures on generalized elliptic curves in [Conrad 2007], and we will
use that reference — abbreviated as [C] — as our foundation in what follows.

Motivated by needs in the main text, for a prime p and an integer M ≥ 4 not
divisible by p, we consider the moduli stack X1(Mpr , pe) over Z(p) that classifies
triples (E, P,C), where E is a generalized elliptic curve over a Z(p)-scheme S,
P ∈ E sm(S) is a Drinfeld Z/Mpr Z-structure on E sm, and C ⊆ E sm is a cyclic
subgroup with order pe such that some reasonable ampleness and compatibility
properties for P and C are satisfied. (See Definition A.1 for a precise formulation
of these additional properties.) The relevant case for applications to p-adic modular
forms with half-integer weight is e = 2, but unfortunately such moduli stacks were
only considered in [C] when either r ≥e or r =0. (This is sufficient for applications
to Hecke operators, and avoids some complications.) We now need to allow 1 ≤

r < e, and the purpose of this appendix is to explain how to include such r and to
record some consequences concerning the cusps in these cases. The consequence
relevant in the main text is Theorem A.11. To carry out the proofs in this appendix
we simply have to adapt some proofs in [C] rather than develop any essentially new
ideas. For the convenience of the reader we will usually use [C] as a reference,
though it must be stressed that many of the key notions were first introduced in
the earlier works [Deligne and Rapoport 1973] and [Katz and Mazur 1985]. In
the context of subgroups of the smooth locus on a generalized elliptic curve, we
will refer to a Drinfeld Z/NZ-structure (respectively a Drinfeld Z/NZ-basis) as a
Z/NZ-structure (respectively Z/NZ-basis) unless some confusion is possible.

A.1. Definitions. See [C, Section 2.1] for the definitions of a generalized elliptic
curve f : E → S over a scheme S and of the closed subscheme S∞

⊆ S that is the
“locus of degenerate fibers” for such an object. (It would be more accurate to write
S∞, f , but the abuse of notation should not cause confusion.) Roughly speaking,
E → S is a proper flat family of geometrically connected and semistable curves
of arithmetic genus 1 that are either smooth or are so-called Néron polygons, and
the relative smooth locus E sm is endowed with a commutative S-group structure
that extends (necessarily uniquely) to an action on E such that whenever Es is a
polygon, the action of E sm

s on Es is via rotations of the polygon. Also, S∞ is a
scheme structure on the set of s ∈ S such that Es is not smooth. The definition
of the degeneracy locus S∞ (given in [C, 2.1.8]) makes sense for any proper flat
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and finitely presented map C → S with fibers of pure dimension 1. If S′ is any
S-scheme, then there is an inclusion S′

×S S∞
⊆ S′∞ as closed subschemes of S′

(with S′∞ corresponding to the S′-curve C ×S S′), but this inclusion can fail to be
an equality even when each geometric fiber Cs is smooth of genus 1 or a Néron
polygon [C, Example 2.1.11]. Fortunately, if C admits a structure of generalized
elliptic curve over S, then this inclusion is always an equality [C, 2.1.12], so the
degeneracy locus makes sense on moduli stacks for generalized elliptic curves
(where it defines the cusps).

We wish to study moduli spaces for generalized elliptic curves E/S equipped
with certain ample level structures defined by subgroups of E sm. Of particular
interest are those subgroup schemes G ⊆ E sm that are not only finite locally free
over the base with some constant order n but are even cyclic in the sense that
fppf-locally on the base we can write G = 〈P〉 :=

∑
j∈Z/nZ[ j P] in E sm as Cartier

divisors for some n-torsion point P of E sm. By [C, 2.3.5], if P and P ′ are two
such points for the same G, then for any d |n the points (n/d)P and (n/d)P ′ are
Z/(n/d)Z-generators of the same S-subgroup of G, so by descent this naturally
defines a cyclic S-subgroup Gd ⊆ G of order d even if P does not exist over the
given base scheme S. We call Gd the standard cyclic subgroup of G with order d .
For example, if d = d ′d ′′ with d ′, d ′′

≥ 1 and gcd(d ′, d ′′)= 1, then Gd ′ ×Gd ′′ ' Gd

via the group law on G.

Definition A.1. Let N , n ≥ 1 be integers.
A 01(N )-structure on a generalized elliptic curve E/S is an S-ample Z/NZ-

structure on E sm, which is to say an N -torsion point P ∈ E sm(S) such that the
relative effective Cartier divisor D =

∑
j∈Z/NZ[ j P] on E sm is an S-subgroup and

Ds is ample on Es for all s ∈ S.
A 01(N , n)-structure on E/S is a pair (P,C), where P is a Z/NZ-structure

on E sm and C ⊆ E sm is a cyclic S-subgroup with order n such that the relative
effective Cartier divisor D =

∑
j∈Z/NZ( j P + C) on E is S-ample and there is an

equality of closed subschemes∑
j∈Z/pep Z

( j (N/pep)P + C pep )= E sm
[pep ] (1)

for all primes p | gcd(N , n), with ep = ordp(gcd(N , n))≥ 1.

Example A.2. Obviously a 01(N , 1)-structure is the same as a 01(N )-structure. If
N = 1, then we refer to 01(1)-structures as 0(1)-structures, and such a structure on
a generalized elliptic curve E/S must be the identity section. Thus, by the ample-
ness requirement, the geometric fibers Es must be irreducible. Hence, the moduli
stack M0(1) of 0(1)-structures on generalized elliptic curves classifies generalized
elliptic curves with geometrically irreducible fibers.
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In [C, 2.4.3], the notion of 01(N , n)-structure is defined as above, but with
the additional requirement that ordp(n) ≤ ordp(N ) for all primes p such that
p | gcd(N , n). This requirement always holds when n = 1, and whenever it holds,
the standard subgroup C pep in (1) is the p-part of C , but it turns out to be unneces-
sary for the proofs of the basic properties of 01(N , n)-structures and their moduli,
as we shall explain in Section A.2. For example, the proof of [C, 2.4.4] carries over
to show that we can replace (1) with the requirement that

∑
j∈Z/dZ( j (N/d)P +

Cd) = E sm
[d] in E for d = gcd(N , n). Another basic property that carries over

to the general case is that if (P,C) is a 01(N , n)-structure on E , then the relative
effective Cartier divisor

∑
j∈Z/NZ( j P + C) on E sm is an S-subgroup; the proof

is given in [C, 2.4.5] under the assumption ordp(n) ≤ ordp(N ) for every prime
p | gcd(N , n), but the argument works in general once it is observed that after
making an fppf base change to acquire a Z/nZ-generator Q of C we can use sym-
metry in P and Q in the rest of the argument so as to reduce to the case considered
in [Conrad 2007].

A.2. Moduli stacks. As in [C, 2.4.6], for N , n ≥ 1 we define the moduli stack
M01(N ,n) in order to classify 01(N , n)-structures on generalized elliptic curves over
arbitrary schemes, and we let M01(N ,n)

∞ ↪→ M01(N ,n) denote the closed substack
given by the degeneracy locus for the universal generalized elliptic curve. The ar-
guments in [C, Sections 3.1 and 3.2] carry over verbatim (that is, without using the
condition ordp(n) ≤ ordp(N ) for all primes p | gcd(N , n)) to prove the following
result.

Theorem A.3. The stack M01(N ,n) is an Artin stack that is proper over Z. It
is smooth over Z[1/Nn], and it is Deligne–Mumford away from the open and
closed substack in M01(N ,n)

∞ classifying degenerate triples (E, P,C) in positive
characteristics p such that the p-part of each geometric fiber of C is nonétale and
disconnected.

The proof of [C, 3.3.4] does not use the condition ordp(n) ≤ ordp(N ) for all
primes p | gcd(N , n) (although this condition is mentioned in the proof), so that
argument gives this:

Lemma A.4. The open substack M0
01(N ,n)=M01(N ,n)−M01(N ,n)

∞ classifying elliptic
curves endowed with a 01(N , n)-structure is regular and Z-flat with pure relative
dimension 1.

We are interested in the structure of M01(N ,n) around its cuspidal substack, and
especially in determining whether it is regular or a scheme near such points. Our
analysis of M01(N ,n)

∞ rests on the following theorem.

Theorem A.5. The map M01(N ,n) → Spec(Z) is flat and Cohen–Macaulay with
pure relative dimension 1.
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Proof. By Lemma A.4, we just have to work along the cusps. Also, it suffices to
check the result after localization at each prime p, and if either p - gcd(N , n) or
1 ≤ ordp(n) ≤ ordp(N ) then [C, 3.3.1] gives the result over Z(p). It thus remains
to study the cusps in positive characteristic p when 1 ≤ ordp(N ) < ordp(n). As
in the cases treated in [Conrad 2007], the key is to study the deformation theory
of a related level structure on generalized elliptic curves, the so-called 0̃1(N , n)-
structure: this is a pair (P, Q), where P is a Z/NZ-structure on the smooth locus
and Q is a Z/nZ-structure on the smooth locus such that (P, 〈Q〉) is a 01(N , n)-
structure. The same definition is given in [C, 3.3.2] with the unnecessary restriction
ordp(n)≤ordp(N ) for all primes p | gcd(N , n), and the argument that immediately
follows that definition works without such a restriction to show that the moduli
stack M0̃1(N ,n) of 0̃1(N , n)-structures is a Deligne–Mumford stack over Z that is
a finite flat cover of the proper Artin stack M01(N ,n).

By the Deligne–Mumford property, any 0̃1(N , n)-structure x0 = (E0, P0, Q0)

over an algebraically closed field k admits a universal deformation ring. Since
M0̃1(N ,n) is a finite flat cover of M01(N ,n), as in the proof of [C, 3.3.1], it suffices
to assume char(k) = p > 0 and to exhibit the deformation ring at x0 as a finite
flat extension of W (k)[[x]] when E0 is a standard polygon, n = pe, and N = Mpr

with p - M and e, r ≥ 1. The case e ≤ r is settled in [Conrad 2007], and we will
adapt that argument to handle the case 1 ≤ r < e. By the ampleness condition, at
least one of M P0 or Q0 generates the p-part of the component group of E sm

0 , and
moreover {M P0, pe−r Q0} is a Drinfeld Z/pr Z-basis of E sm

0 [pr
]. We shall break

up the problem into three cases, and it is only in Case 3 that we will meet a situation
essentially different from that encountered in Conrad’s proof for 1 ≤ e ≤ r .

CASE 1: We first assume that M P0 generates the p-part of the component group,
so by the Drinfeld Z/pr Z-basis hypothesis, this point is a basis of E sm

0 (k)[p∞
] over

Z/pr Z (as we are in characteristic p and E0 is a polygon). Hence, Q0 = j M P0

for a unique j ∈ Z/pr Z (so pe−r Q0 = pe−r j M P0). Since n is a p-power, it also
follows that 〈P0〉 is ample. In particular, (E0, P0) is a 01(N )-structure. Thus,
the formation of an infinitesimal deformation (E, P, Q) of (E0, P0, Q0) can be
given in three steps: first give an infinitesimal deformation (E, P) of (E0, P0) as a
01(N )-structure, then give a Drinfeld Z/pr Z-basis (M P, Q′) of E sm

[pr
] with Q′

deforming pe−r Q0, and finally specify a pe−r -th root Q of Q′ lifting Q0 = j M P0.
The one aspect of this description that merits some explanation is to justify that
such a pe−r -th root Q of Q′ must be a Z/peZ-structure on E sm. The point Q is
clearly killed by pe, so the Cartier divisor D =

∑
j∈Z/peZ[ j Q] in E sm makes sense,

and we have to check that it is automatically a subgroup scheme.
For any t ≥ 0, the identification (E sm

0 )0[pt
] = µpt uniquely lifts to an isomor-

phism (E sm)0[pt
] 'µpt . In particular, if pν is the order of the p-part of the cyclic
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component group of E sm
0 (with ν ≥ r ), then E sm

[pe
] is an extension of Z/p j Z

by µpe , where j = min(ν, e). The image of 〈Q0〉 in the component group can be
uniquely identified with Z/pi Z (for some i ≤ j) such that Q0 7→ 1, and this Z/pi Z

has preimage G in E sm
[pe

] that is a pe-torsion commutative extension of Z/pi Z

by µpe with 0 ≤ i ≤ e. Since Q is a point of G over the (artinian local) base, it
follows from [C, 2.3.3] that Q is a Z/peZ-structure on E sm if and only if the point
pi Q in µpe−i is a Z/pe−i Z-generator of µpe−i . The case i = e is therefore settled,
so we can assume i < e (that is, 〈Q0〉 is not étale, or equivalently pe−1 Q0 = 0).
By hypothesis, pe−r Q = Q′ is a Z/pr Z-structure on E sm with 1 ≤ r < e, so
pe−1 Q = pr−1 Q′ is a Z/pZ-structure on E sm. This Z/pZ-structure must generate
the subgroup µp ⊆ E sm

[pe
] since pe−1 Q lies in (E sm)0 (as pe−1 Q0 = 0). Hence,

Q′′
= pi Q is a point of µpe−i such that pe−i−1 Q′′ is a Z/pZ-generator of µp.

Since Z/mZ-generators of µm are simply roots of the cyclotomic polynomial 8m

[C, 1.12.9], our problem is reduced to the assertion that if s is a positive integer
(such as e − i), then an element ζ in a ring is a root of the cyclotomic polynomial
8ps if ζ ps−1

is a root of 8p. This assertion is obvious since 8ps (T )=8p(T ps−1
),

and so our description of the infinitesimal deformation theory of (E0, P0, Q0) is
justified.

The torsion subgroup E sm
[pr

] is uniquely an extension of Z/pr Z by µpr de-
forming the canonical such description for E sm

0 [pr
], so the condition on Q′ is

that it has the form ζ + pe−r j M P for a point ζ of the scheme of generators µ×

pr

of µpr = (E sm)0[pr
]. Thus, to give Q is to specify a pe−r -th root of ζ in E sm

deforming the identity, which is to say a point of µ×

pe . It is shown in the proof
of [C, 3.3.1] that the universal deformation ring A for (E0, P0) is finite flat over
W (k)[[x]], and the specification of ζ amounts to giving a root of the cyclotomic
polynomial 8pe , so the case when M P0 generates the p-part of the component
group of E sm

0 is settled (with deformation ring A[T ]/(8pe(T ))).

CASE 2: Next assume that Q0 generates the p-part of the component group and
that 〈Q0〉 is étale (that is, Q0 ∈ E sm

0 (k) has order pe). The point Q0 must generate
E sm

0 (k)[p∞
] over Z/peZ, and the étale hypothesis ensures that Q0 is a Z/peZ-

basis of E sm
0 (k)[p∞

]. Thus, M P0 = pe−r j Q0 for some (unique) j ∈ Z/pr Z. By
replacing P with P − M−1 pe−r j Q for any infinitesimal deformation (E, P, Q) of
(E0, P0, Q0), we can assume that the p-part of P0 vanishes. The p-part of P must
therefore be a point of µ×

pr . The Z/MZ-part of P together with Q constitutes a
01(Mpe)-structure on E (in particular, the ampleness condition holds), and this is
an étale level structure since the cyclic subgroup 〈Q0〉 in E sm

0 is étale. Hence, the
infinitesimal deformation functor of (E0, P0, Q0) is pro-represented by µ×

pr over
the deformation ring of an étale 01(Mpe)-structure. For any R ≥ 1, deformation
rings for étale 01(R)-structures on polygons over k have the form W (k)[[x]] (as
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is explained near the end of the proof of [C, 3.3.1], using [C, II, 1.17]), so not
only are we done but in this case the deformation ring for (E0, P0, Q0) is the ring
W (k)[[x]][T ]/(8pr (T )) that is visibly regular.

CASE 3: Finally, assume Q0 generates the p-part of the component group but
that 〈Q0〉 is not étale (that is, Q0 ∈ E sm

0 (k) has order strictly less than pe), and
so pe−r Q0 ∈ E sm

0 (k) has order strictly dividing pr . Since {M P0, pe−r Q0} is
a Drinfeld Z/pr Z-basis of E sm

0 [pr
], the point M P0 must be a Z/pr Z-basis for

E sm
0 (k)[pr

]. Hence, if we write P0 = P ′

0 + P ′′

0 corresponding to the decomposition
Z/NZ = (Z/MZ)× (Z/pr Z), then P ′′

0 has order exactly pr in E sm
0 (k). We use

P ′′

0 to identify E sm
0 (k)[pr

] with Z/pr Z. It follows that if we make the analogous
canonical decomposition P = P ′

+ P ′′ for an infinitesimal deformation (E, P, Q)
of (E0, P0, Q0), then the p-part P ′′ deforms P ′′

0 and generates an étale subgroup
of E sm with order pr . Thus, P ′ and Q together constitute a (nonétale) 01(Mpe)-
structure on E (in particular, the ampleness condition holds), and the data of P ′′

amounts to a section over 1 ∈ Z/pr Z with respect to the unique quotient map
E sm

[pr
] � Z/pr Z lifting the quotient map E sm

0 [pr
] � Z/pr Z defined by P ′′

0 .
Since the specification of a Z/NZ-structure on E sm is the “same” as the specifi-
cation of a pair consisting of Z/MZ-structure and a Z/pr Z-structure [C, 1.7.3],
we conclude that the universal deformation ring of (E0, P0, Q0) classifies the fiber
over 1 ∈ Z/pr Z in the connected-étale sequence for the pr -torsion in infinitesimal
deformations of the underlying 01(Mpe)-structure (E0, P ′

0, Q0). Universal defor-
mation rings for 01(Mpe)-structures over k are finite flat over W (k)[[x]] (by the
proof of [C, 3.3.1]), so we are therefore done. �

Corollary A.6. The closed substack M01(N ,n)
∞ ↪→ M01(N ,n) is a relative effective

Cartier divisor over Z, and it has a reduced generic fiber over Q.

Proof. The reducedness over Q is shown in [C, 4.3.2], and the proof works without
restriction on gcd(N , n). Likewise, the proof that M01(N ,n)

∞ is a Z-flat Cartier divi-
sor is part of [C, 4.1.1(1)] in case ordp(n)≤ ordp(N ) for all primes p | gcd(N , n),
but by using the above proof of Theorem A.5, we see that the method of proof
works in general. �

Using Lemma A.4, Theorem A.5, and Corollary A.6, Serre’s normality criterion
can be used to prove normality for M01(N ,n) in general. (This is proved in [C,
4.1.4] subject to the restrictions on gcd(N , n) in the definition therein of 01(N , n)-
structures, but the argument works in general by using the results that are stated
above without any such restriction on gcd(N , n).) However, the proof of regularity
encounters complications at points of a certain locus of cusps in bad characteristics.
This problematic locus is defined as follows.
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Definition A.7. Let Z01(N ,n) ↪→ M∞

01(N ,n) be the 0-dimensional closed substack
with reduced structure that consists of geometric points (E0, P0,C0) in charac-
teristics p | gcd(N , n) such that 1 ≤ ordp(N ) < ordp(n), C0 is not étale, and
(N/pordp(N ))P0 does not generate the p-part of the component group of E sm

0 .

Note that if ordp(n) ≤ ordp(N ) for all primes p | gcd(N , n) (the situation con-
sidered in [Conrad 2007]), then Z01(N ,n) is empty; this includes the case of 01(N )-
structures for any N (take n = 1). In all other cases, it is nonempty. The geometric
points of Z01(N ,n) correspond to precisely the points in Case 3 in the proof of
Theorem A.5. The method in [Conrad 2007] for analyzing regularity along the
cusps assumes Z01(N ,n) is empty, and by combining it with the modified arguments
in the proof of Theorem A.5 (especially the regularity observation in Case 2) we
obtain the following consequence.

Theorem A.8. Outside the closed substack Z01(N ,n)⊆M01(N ,n)
∞ , the stack M01(N ,n)

is regular.

A.3. Applications. Before we apply our results, we record a useful lemma.

Lemma A.9. Let S be a scheme, and let X be an Artin stack over S. Assume X is
S-separated. The locus of geometric points of X with trivial automorphism group
scheme is an open substack U ⊆ X that is an algebraic space. This algebraic space
is a scheme if X is quasifinite over a separated S-scheme.

Proof. The first part is [C, 2.2.5(2)], and the second part follows from the general
fact that an algebraic space that is quasifinite and separated over a scheme is a
scheme [C, Theorem A.2]. �

In the setting of Lemma A.9, if X is quasifinite over a separated S-scheme,
then we call U the maximal open subscheme of X. The case of interest to us is
X = M01(N ,n)/S over any scheme S. This is quasifinite over the S-proper stack
M0(1)/S via fibral contraction away from the identity component, and M0(1)/S is
quasifinite over P1

S via the j-invariant, so X is quasifinite over the separated S-
scheme P1

S .
We wish to prove results concerning when certain components of M∞

01(N ,n) lie
in the maximal open subscheme of M01(N ,n). So we first record a general lemma.

Lemma A.10. Let Y be an irreducible Artin stack over Fp, and let C be a finite
locally free commutative Y-group that is cyclic with order pe. If C has a multi-
plicative geometric fiber over Y, then all of its geometric fibers are connected.

The abstract notion of cyclicity (with no ambient smooth curve group) is devel-
oped in [C, 1.5, 1.9, 1.10] over arbitrary base schemes, and the theory carries over
when the base is an Artin stack. We will only need the lemma for situations that
arise within torsion on generalized elliptic curves (over Artin stacks).
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Proof. We can assume e ≥ 1, and we may replace C with its standard subgroup
Cp of order p because it is obvious by group theory that a cyclic group scheme C
of p-power order over an algebraically closed field of characteristic p is étale if
and only if its standard subgroup of order p is étale. Hence, we can assume that C

has order p. Our problem is therefore to rule out the existence of étale fibers. By
openness of the locus of étale fibers and irreducibility of Y, if there is an étale fiber,
then there is a Zariski-dense open U ⊆ Y over which C has étale fibers. In partic-
ular, there is some geometric point u of U that specializes to the geometric point
y ∈ Y where we assume the fiber is multiplicative, so after pullback to a suitable
valuation ring, we get an étale group of order p in characteristic p specializing to a
multiplicative one. Passing to Cartier duals gives a multiplicative group of order p
having an étale specialization, and this is impossible since multiplicative groups of
order p in characteristic p are not étale. �

Theorem A.11. Let p be a prime, and choose a positive integer M not divisible
by p such that M > 2. Also fix integers e, r ≥ 0. If e = 0 or r = 0, then assume
M 6= 4. Let x0 = (E0, P0,C0) be a geometric point on the special fiber of the
cuspidal substack in the proper Artin stack X = M01(Mpr ,pe)/Z(p) over Z(p), and
assume that C0 is étale.

Let Y be the irreducible component of x0 in XFp . For every geometric cusp
x1 = (E1, P1,C1) on Y, the group C1 is étale and x1 lies in the maximal open
subscheme of X. Moreover, if x ∈ XQ is a cusp specializing into Y, then the Zariski
closure D of x in X lies in the maximal open subscheme and D is Cartier in X.

The case e =2 is required in the main text. It is necessary to avoid the cases M ≤

2 and (M, r)= (4, 0) because in these cases there are cusps x0 in characteristic p
as in the theorem such that x0 admits nontrivial automorphisms (and so x0 cannot
lie in the maximal open subscheme of X).

Proof. We first check that the étale assumption at x0 is inherited by all geometric
cusps x1 ∈ Y. Let (E,P,C) be the pullback to Y of the universal family over X.
The group C is cyclic of order pe with e ≥0, so applying Lemma A.10 to its Cartier
dual gives the result (since at a cusp a connected subgroup of p-power order must
be multiplicative).

Now we can rename x1 as x0 without loss of generality, so we have to check
that x0 lies in the maximal open subscheme of X and that if x ∈ XQ is a geometric
cusp specializing to x0, then the Zariski closure of x in X is Cartier. But the étale
hypothesis on C0 ensures that x0 is not in the closed substack Z01(Mpr ,pe)/Z(p) , so
by Theorem A.8 the stack X is regular at x0. Hence, since X is Z(p)-flat with pure
relative dimension 1 (by Theorem A.5), the desired properties of D at the end of the
theorem hold once we know that x0 is in the maximal open subscheme of X, which
is to say that its automorphism group scheme G is trivial. To verify this triviality we
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will make essential use of the property that C0 is étale. Let k be the algebraically
closed field over which x0 lives. Since E0 is d-gon over k for some d ≥ 1, G is
a closed subgroup of the automorphism group µd o 〈inv〉 of the d-gon. Since C0

is étale with order pe in characteristic p, it follows that C0 maps isomorphically
into the p-part of the component group of E sm

0 = Gm × (Z/dZ). (In particular,
pe

|d .) If R is an artinian local k-algebra with residue field k, any choice of gen-
erator Q0 of C0 must be carried to another generator of C0 by any g ∈ G(R) since
C0(R)→ C0(k) is a bijection. But µd(R) acts on (E0)R in a manner that preserves
the components of the smooth locus, and C0 meets each component of E sm

0 in at
most one point. Hence, G∩µd acts as automorphisms of the 01(Mpe)-structure on
E0 defined by pr P0 and Q0. Since Mpe > 2 and Mpe

6= 4 (due to the cases we are
avoiding), such an ample level structure on a d-gon has trivial automorphism group
scheme. This shows that G∩µd is trivial, so G injects into the group Z/2Z of auto-
morphisms of the identity component Gm of E sm

0 . Hence, the contraction operation
on E0 away from 〈P0〉 is faithful on G since contraction does not affect the identity
component. It follows that G is a subgroup of the automorphism group of the
01(Mpr )-structure obtained by contraction away from 〈P0〉. But Mpr

6∈ {1, 2, 4}

since we assume M > 2 and (M, r) 6= (4, 0), so 01(Mpr )-structures on polygons
have trivial automorphism functor. Thus, G = {1} as desired. �

Over the base Z(p), the results of [C, Sections 3 and 4] concerning the properties
of the stack X1(N , n) carry over if p - n. In effect, the hypothesis on ordp(n)
imposed in [Conrad 2007] only intervenes in the proofs when n is not invertible
on the base.
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The moduli space of curves is rigid
Paul Hacking

We prove that the moduli stack Mg,n of stable curves of genus g with n marked
points is rigid, that is, has no infinitesimal deformations. This confirms the first
case of a principle proposed by Kapranov. It can also be viewed as a version of
Mostow rigidity for the mapping class group.

1. Introduction

Kapranov [1997] has proposed the following informal statement: Given a smooth
variety X = X (0), consider the moduli space X (1) of varieties obtained as de-
formations of X (0), the moduli space X (2) of deformations of X (1), and so on.
Then this process should stop after n = dim X steps, that is, X (n) should be rigid
(no infinitesimal deformations). Roughly speaking, one thinks of X (1) as H 1 of a
sheaf of nonabelian groups on X (0). Indeed, at least the tangent space to X (1) at
[X ] is identified with H 1(TX ), where TX is the tangent sheaf, the sheaf of first order
infinitesimal automorphisms of X . Then one regards X (m) as a kind of nonabelian
H m , and the analogy with the usual definition of abelian H m suggests the statement
above.

In particular, the moduli space of curves should be rigid. In this paper, we verify
this in the following precise form: the moduli stack of stable curves of genus g
with n marked points is rigid for each g and n.

On the other hand, moduli spaces of surfaces should have nontrivial defor-
mations in general. A simple example (for surfaces with boundary) is given in
Section 6. It seems plausible that there should be a nontrivial deformation of a
moduli space of surfaces whose fibres parametrise “generalised surfaces” in some
sense, for example noncommutative surfaces. From this point of view the result of
this paper says that the concept of a curve cannot be deformed.

Let us also note that our result can be thought of as a version of Mostow rigidity
for the mapping class group. Recall that the moduli space Mg of smooth complex
curves of genus g is the quotient of the Teichmüller space Tg by the mapping class
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group0g. The space Tg is a bounded domain in C3g−3, which is homeomorphic to a
ball, and 0g acts discontinuously on Tg with finite stabilisers. We thus obtain Mg as
a complex orbifold with orbifold fundamental group 0g. The space Tg admits a nat-
ural metric, the Weil–Petersson metric, which has negative holomorphic sectional
curvatures. So, roughly speaking, Mg looks like a quotient of a complex ball by a
discrete group 0 of isometries, with finite volume. Mostow rigidity predicts that
such a quotient is uniquely determined by the group 0 up to complex conjugation.
(This is certainly true if 0 acts freely with compact quotient; see [Siu 1980].) In
particular, it should have no infinitesimal deformations. Unfortunately I do not
know a proof along these lines.

2. Statements

We work over an algebraically closed field k of characteristic zero. Let g and n be
nonnegative integers such that 2g−2+n> 0. Let Mg,n denote the moduli stack of
stable curves of genus g with n marked points. The stack Mg,n is a smooth proper
Deligne–Mumford stack of dimension 3g − 3 + n.

Theorem 2.1. The stack Mg,n is rigid, that is, has no infinitesimal deformations.

Let ∂Mg,n ⊂ Mg,n denote the boundary of the moduli stack, that is, the comple-
ment of the locus of smooth curves (with its reduced structure). The locus ∂Mg,n

is a normal crossing divisor in Mg,n .

Theorem 2.2. The pair (Mg,n , ∂Mg,n ) has no locally trivial deformations.

Let Mg,n denote the coarse moduli space of the stack Mg,n . The space Mg,n is
a projective variety with quotient singularities.

Theorem 2.3. The variety Mg,n has no locally trivial deformations if

(g, n) 6= (1, 2), (2, 0), (2, 1), (3, 0).

Remark 2.4. In the exceptional cases, the projection Mg,n → Mg,n is ramified in
codimension one over the interior of Mg,n , and an additional calculation is needed
to relate the deformations of the stack and the deformations of the coarse moduli
space (see Proposition 5.2). Presumably the result still holds.

3. Proof of Theorem 2.2

Write B for the boundary of Mg,n . Let �Mg,n
(log B) denote the sheaf of 1-forms

on Mg,n with logarithmic poles along the boundary, and TMg,n
(− log B) the dual

of �Mg,n
(log B). The sheaf TMg,n

(− log B) is the subsheaf of the tangent sheaf
TMg,n

consisting of vector fields on Mg,n which are tangent to the boundary. In
other words, it is the sheaf of first order infinitesimal automorphisms of the pair
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(Mg,n ,B). Hence the first order locally trivial deformations of the pair (Mg,n ,B)

are identified with the space H 1
(
TMg,n

(− log B)
)
. To prove Theorem 2.2, we show

H 1(TMg,n
(− log B)

)
= 0.

Let π : Ug,n → Mg,n denote the universal family over Mg,n . That is, Ug,n is the
stack of n-pointed stable curves of genus g together with an extra section (with no
smoothness condition). Let 6 denote the union of the n tautological sections of π .
We define the boundary BU of Ug,n as the union of π∗B and 6.

Let ν : Bν
→ B be the normalisation of the boundary B of Mg,n , and N the

normal bundle of the map Bν
→ Mg,n . Then we have an exact sequence

0 → TMg,n
(− log B)→ TMg,n

→ ν∗N → 0.

Let ωπ denote the relative dualising sheaf of the morphism π .

Lemma 3.1. There is a natural isomorphism

δ : TMg,n
(− log B)

∼
−→ R1π∗(ωπ (6)

∨).

Proof. For a pointed stable curve (C, 6C = x1 + · · · + xn), the space of first order
deformations is equal to Ext1(�C(6C),OC). See [Deligne and Mumford 1969,
p. 79–82]. The surjection

Ext1(�C(6C),OC)→ H 0(Ext1(�C(6C),OC)
)
=

⊕
q∈Sing C

Ext1(�C(6C),OC)q

sends a global deformation of (C, 6C) to the induced deformations of the nodes.
Étale locally at the point [(C, 6C)] ∈ Mg,n , the boundary B is a normal crossing
divisor with components Bq indexed by the nodes q of C (the divisor Bq is the
locus where the node q is not smoothed). The Kodaira–Spencer map identifies the
fibre of the normal bundle of Bq at [(C, 6C)] with the stalk of Ext1(�C(6C),OC)

at q .
We now work globally over Mg,n . We omit the subscripts g, n for clarity. Con-

sider the exact sequence

0 → π∗�M →�U(log6)→�U/M(6)→ 0. (3-1)

For a sheaf F on U, let Ext i
π (F, ·) denote the i-th right derived functor of

π∗ ◦ Hom(F, ·).

Applying π∗ ◦ Hom(·,OU) to the exact sequence (3-1), we obtain a long exact
sequence with connecting homomorphism

ρ : TM → Ext1
π (�U/M(6),OU).
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The map ρ is the Kodaira–Spencer map for the universal family over M and thus is
an isomorphism. (Note that, for a point p = [(C, 6C)] ∈ M, the base change map

Ext1
π (�U/M(6),OU)⊗ k(p)→ Ext1(�C(6C),OC)

is an isomorphism. Indeed, by relative duality [Kleiman 1980, Theorem 21], it suf-
fices to show that π∗(�U/M(6)⊗ωπ ) commutes with base change. This follows
from cohomology and base change.)

Consider the exact sequences

0 → TM(− log B)→ TM → ν∗N → 0
and

0 → R1π∗(�U/M(6)
∨)→ Ext1

π (�U/M(6),OU)→ π∗ Ext1(�U/M(6),OU)→ 0.

The Kodaira–Spencer map ρ identifies the middle terms, and induces an identifi-
cation of the right end terms determined by the deformations of the singularities
of the fibres of π . We thus obtain a natural isomorphism δ of the left end terms.
Finally, note that �U/M(6)

∨
= ωπ (6)

∨ because ωπ (6) is invertible and agrees
with �U/M(6) in codimension 1. This completes the proof. �

The line bundle ωπ (6) is ample on fibres of π . Hence π∗(ωπ (6)
∨) = 0. Also

Riπ∗(ωπ (6)
∨)= 0 for i > 1 by dimensions. So

H i+1(ωπ (6)
∨)= H i(R1π∗(ωπ (6)

∨)
)

for all i by the Leray spectral sequence. Hence the isomorphism δ induces an
isomorphism

H i(TMg,n
(− log B)

) ∼
−→ H i+1(ωπ (6)

∨) (3-2)

for each i .
Let Ug,n denote the coarse moduli space of the stack Ug,n and p : Ug,n → Ug,n

the projection. The line bundle ωπ (6) on the stack Ug,n defines a Q-line bundle
pQ

∗
ωπ (6) on the coarse moduli space Ug,n (see the Appendix). We use the follow-

ing important result, which is essentially due to Arakelov [1971, Proposition 3.2,
p. 1297]. We refer to [Keel 1999, Section 4] for the proof.

Theorem 3.2. The Q-line bundle pQ
∗
ωπ (6) is big and nef on Ug,n .

It follows by Kodaira vanishing (see Theorem A.1) that H i (ωπ (6)
∨) = 0 for

i < dim Ug,n . Combining with (3-2), we deduce

Proposition 3.3. H i
(
TMg,n

(− log B)
)
= 0 for i < dim Mg,n .

In particular,
H 1(TMg,n

(− log B)
)
= 0
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if dim Mg,n > 1. The remaining cases are easy to check. This completes the proof
of Theorem 2.2.

4. Proof of Theorem 2.1

We now prove that Mg,n is rigid. Since Mg,n is a smooth Deligne–Mumford stack,
its first order infinitesimal deformations are identified with the space H 1(TMg,n

),
and we must show that H 1(TMg,n

)= 0. Consider the exact sequence

0 → TMg,n
(− log B)→ TMg,n

→ ν∗N → 0

and the associated long exact sequence of cohomology

· · · → H i(TMg,n
(− log B)

)
→ H i (TMg,n

)→ H i (N)→ · · · .

We prove below that H i (N)= 0 for i < dim B. Now

H i(TMg,n
(− log B)

)
= 0

for i < dim Mg,n by Proposition 3.3, so we deduce

Proposition 4.1. H i (TMg,n
)= 0 for i < dim Mg,n − 1.

In particular, H 1(TMg,n
)= 0 if dim Mg,n > 2. In the remaining cases it is easy to

check that H 1(N)= 0, so again H 1(TMg,n
)= 0.

The irreducible components of the normalisation Bν of the boundary B of Mg,n

are finite images of the following stacks [Knudsen 1983a, Definition 3.8, Corol-
lary 3.9]:

(1) Mg1,S1∪{n+1} × Mg2,S2 ∪{n+2}, where g1 + g2 = g and S1, S2 is a partition of
{1, . . . , n}, and

(2) Mg−1,n+2.

Here Mh,S denotes the moduli stack of stable curves of genus h with marked points
labelled by a finite set S. In each case the map to Bν is given by identifying the
points labelled by n+1 and n+2. The map is an isomorphism onto the component
of Bν except in case (1) for g1 = g2 and n = 0 and case (2), when it is étale of
degree 2.

For Mh,S a moduli stack of pointed stable curves as above, let π : Uh,S → Mh,S

denote the universal family, and xi : Mh,S →Uh,S for i ∈ S, the tautological sections
of π . Define ψi = x∗

i ωπ , the pullback of the relative dualising sheaf of π along
the section xi . The following result is well known; see, for example, [Harris and
Morrison 1998, Proposition 3.32].
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Lemma 4.2. The pullback of N∨ to Mg1,S1∪{n+1} × Mg2,S2∪{n+2} is identified with
pr∗1 ψn+1 ⊗ pr∗2 ψn+2. Similarly, the pullback of N∨ to Mg−1,n+2 is identified with
ψn+1 ⊗ψn+2.

There is an isomorphism of stacks c : Mg,n+1 → Ug,n which identifies the mor-
phism pn+1 : Mg,n+1 → Mg,n given by forgetting the last point with the projection
π : Ug,n → Mg,n ; see [Knudsen 1983a, Section 1–2].

Lemma 4.3 [Knudsen 1983b, Theorem 4.1(d), p. 202]. The line bundle ψn+1 on
Mg,n+1 is identified with the pullback of the line bundle ωπ (6) under the isomor-
phism c : Mg,n+1 → Ug,n .

Corollary 4.4. The Q-line bundle on the coarse moduli space of Bν defined by N∨

is big and nef on each component

Proof. This follows immediately from Lemmas 4.2, 4.3, and Theorem 3.2. �

We deduce that H i (N) = 0 for i < dim B by Theorem A.1. This completes the
proof of Theorem 2.1.

5. Proof of Theorem 2.3

We first prove a basic result which relates the deformations of a smooth Deligne–
Mumford stack and its coarse moduli space.

Let X be a smooth proper Deligne–Mumford stack, X the coarse moduli space
of X, and p : X → X the projection. Let TX denote the tangent sheaf of X. Let
D ⊂ X be the union of the codimension one components of the branch locus of
p : X → X (with its reduced structure). Let TX (− log D) denote the subsheaf of
the tangent sheaf TX consisting of derivations which preserve the ideal sheaf of D.
It is the sheaf of first order infinitesimal automorphisms of the pair (X, D).

Lemma 5.1. p∗TX = TX (− log D)

Proof. The sheaves p∗TX and TX (− log D) satisfy Serre’s S2 condition, and are
identified over the locus where p is étale. So it suffices to work in codimension 1.
We reduce to the case X=[A1

x/µe], whereµe 3 ζ : x 7→ ζ x . Then X =A1
x/µe =A1

y ,
where y = xe, and D = (y = 0) ⊂ X . Let π : A1

x → A1
x/µe be the quotient map.

We compute

p∗TX =

(
π∗OA1

x
·
∂

∂x

)µe
= OA1

y
· x
∂

∂x
= OA1

y
· y
∂

∂y
= TX (− log D),

as required. �

Proposition 5.2. The first order deformations of the stack X are identified with the
first order locally trivial deformations of the pair (X, D).

Proof. By the Lemma, H 1(TX)= H 1(p∗TX)= H 1(TX (− log D)). �
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We now apply this result to relate deformations of the stack Mg,n and its coarse
moduli space Mg,n .

A stable n-pointed curve of genus 0 has no nontrivial automorphisms. Hence
the stack M0,n is equal to its coarse moduli space M0,n , and M0,n is rigid by
Theorem 2.1. Also, recall that M1,1 is isomorphic to P1 and therefore rigid. So,
in the following, we assume that g 6= 0 and (g, n) 6= (1, 1).

Let D ⊂ Mg,n be the component of the boundary whose general point is a curve
with two components of genus 1 and g − 1 meeting in a node, with each of the n
marked points on the component of genus g − 1. Note that each point of D has
a nontrivial automorphism given by the involution of the component of genus 1
fixing the node. Let p : Mg,n → Mg,n be the projection, and D ⊂ Mg,n the coarse
moduli space of D.

Lemma 5.3 [Harris and Mumford 1982, § 2]. If g + n ≥ 4 then the automorphism
group of a general point of Mg,n is trivial, and the divisor D ⊂ Mg,n is the unique
codimension 1 component of the branch locus of p.

Assume g + n ≥ 4. Let ν : Dν
→ D denote the normalisation of D, so Dν

=

M1,1 × Mg−1,n+1. Let ND denote the normal bundle of the map Dν
→ Mg,n .

Lemma 5.4. There is an exact sequence

0 → TMg,n
(− log D)→ TMg,n

→ p∗ν∗N⊗2
D → 0.

Proof. This is a straightforward calculation similar to [Harris and Mumford 1982,
Lemma, p. 52]. �

We have
H 1(TMg,n

(− log D)
)
= H 1(TMg,n

)= 0

by Proposition 5.2 and Theorem 2.1. Also H 1(N⊗2
D )= 0 by Theorem A.1 because

the Q-line bundle defined by N∨

D on the coarse moduli space of Dν is big and nef
by Corollary 4.4. So H 1(TMg,n

) = 0 by Lemma 5.4, that is, Mg,n has no locally
trivial deformations. This concludes the proof of Theorem 2.3.

6. Nonrigidity of moduli of surfaces

We exhibit a moduli space of surfaces with boundary that is not rigid.
Let P1, . . . , P4 be 4 points in linear general position in P2. Let li j be the line

through Pi and Pj . Let l be a line through the point Q = l12 ∩ l34 such that l does
not pass through l13 ∩ l24 or l14 ∩ l23 and is not equal to l12 or l34. Let S → P2

be the blowup of the points P1, . . . , P4, Q, and B the sum of the strict transforms
of l and the li j and the exceptional curves. Then (S, B) is a smooth surface with
normal crossing boundary such that KS + B is very ample. We fix an ordering
B1, . . . , B12 of the components of B. The moduli stack M of deformations of
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(S, B) is isomorphic to P1
\ {q1, . . . , q4} where the qi are distinct points. Indeed,

it suffices to observe that all deformations of (S, B) are obtained by the construc-
tion above. The moduli space M has a modular compactification (M, ∂M), the
Kollár–Shepherd-Barron–Alexeev moduli stack of stable surfaces with boundary,
which is isomorphic to (P1,

∑
qi ). In particular, the pair (M, ∂M) has nontrivial

deformations.

Remark 6.1. The compact moduli space M is an instance of the compactifications
of moduli spaces of hyperplane arrangements described in [Lafforgue 2003] (see
also [Hacking et al. 2006]).

Appendix: Kodaira vanishing for stacks

Let X be a smooth proper Deligne–Mumford stack, X the coarse moduli space
of X, and p : X → X the projection. Étale locally on X , p : X → X is of the
form p : [U/G] → U/G, where U is a smooth affine variety and G is a finite
group acting on U [Abramovich and Vistoli 2002, Lemma 2.2.3, p. 32]. A sheaf F

on [U/G] corresponds to a G-equivariant sheaf FU on U , and p∗F = (π∗FU )
G ,

where π : U → U/G is the quotient map.
Let L be a line bundle on X. Let n ∈ N be sufficiently divisible so that for each

open patch [U/G] of X as above and point q ∈U the stabilizer Gq of q acts trivially
on the fibre of L⊗n

U over q. Then the pushforward p∗(L
⊗n) is a line bundle on X .

We define pQ
∗

L =
1
n p∗(L

⊗n) ∈ Pic(X)⊗Q, and call pQ
∗

L the Q-line bundle on X
defined by L.

Theorem A.1. Assume that the coarse moduli space X is an algebraic variety. If
the Q-line bundle pQ

∗
L on X is big and nef then H i (L∨)= 0 for i < dim X.

Remark A.2. If the coarse moduli space X is smooth then Theorem A.1 follows
from [Matsuki and Olsson 2005, Theorem 2.1].

Theorem A.1 is proved by reducing to the following generalisation of the Ko-
daira vanishing theorem.

Theorem A.3 [Kollár and Mori 1998, Theorem 2.70, p. 73]. Let X be a proper
normal variety and1 a Q-divisor on X such that the pair (X,1) is Kawamata log
terminal (klt). Let N be a Q-Cartier Weil divisor on X such that N ≡ M+1, where
M is a big and nef Q-Cartier Q-divisor. Then H i (X,OX (−N ))= 0 for i < dim X.

Proof of Theorem A.1. Observe first that X is a normal variety with quotient singu-
larities. Consider the sheaf p∗(L

∨) on X . If the automorphism group of a general
point of X acts nontrivially on L, then p∗L∨

= 0, and so H i (L∨)= H i (p∗L∨)= 0
for each i . Suppose now that the automorphism group of a general point acts triv-
ially on L. Then p∗L∨ is a rank 1 reflexive sheaf on X . Write p∗L∨

= OX (−N ),
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where N is a Weil divisor on X . Let n ∈ N be sufficiently divisible so that

pQ
∗
(L)=

1
n

p∗(L
⊗n)

as above. Let M be a Q-divisor corresponding to the Q-line bundle pQ
∗

L. There
is a natural map (p∗L∨)⊗n

→ p∗(L
∨⊗n), that is, a map OX (−nN )→ OX (−nM),

which is an isomorphism over the locus where p is étale. So N ≡ M +1, where
1 is an effective Q-divisor supported on the branch locus of p. Let D1, . . . , Dr

be the codimension 1 components of the branch locus. Let ei be the ramification
index at Di , and ai the age of the line bundle L∨ along Di . That is, after removing
the automorphism group of a general point of X, a transverse slice of X at a general
point of Di is of the form [A1

x/µei ], where µei 3 ζ : x 7→ ζ · x , and µei acts on the
fibre of L∨ by the character ζ 7→ ζ−ai , where 0 ≤ ai ≤ ei − 1. We compute that
1=

∑ ai
ei

Di .
We claim that (X,1) is klt. Let 1′

=
∑ ei −1

ei
Di , then KX = p∗(K X +1′),

and X is smooth, so (X,1′) is klt by [Kollár and Mori 1998, Proposition 5.20(4),
p. 160]. Now 1 ≤1′ and X is Q-factorial, so (X,1) is also klt. We deduce that
H i (L∨)= H i (p∗L∨)= H i (OX (−N ))= 0 for i < dim X by Theorem A.3. �
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Quasimaps, straightening laws, and
quantum cohomology for

the Lagrangian Grassmannian
James Ruffo

The Drinfel’d Lagrangian Grassmannian compactifies the space of algebraic
maps of fixed degree from the projective line into the Lagrangian Grassmannian.
It has a natural projective embedding arising from the canonical embedding of
the Lagrangian Grassmannian. We show that the defining ideal of any Schubert
subvariety of the Drinfel’d Lagrangian Grassmannian is generated by polynomi-
als which give a straightening law on an ordered set. Consequentially, any such
subvariety is Cohen–Macaulay and Koszul. The Hilbert function is computed
from the straightening law, leading to a new derivation of certain intersection
numbers in the quantum cohomology ring of the Lagrangian Grassmannian.

1. Introduction

The space of algebraic maps of degree d from P1 to a projective variety X has appli-
cations to mathematical physics, linear systems theory, quantum cohomology, geo-
metric representation theory, and the geometric Langlands correspondence [Braver-
man 2006; Sottile 2000; 2001]. This space is (almost) never compact, so various
compactifications have been introduced to help understand its geometry. Among
these (at least when X is a flag variety) are Kontsevich’s space of stable maps [Ful-
ton and Pandharipande 1997; Kontsevich 1995], the quot scheme (or space of
quasiflags) [Chen 2001; Laumon 1990; Strømme 1987], and the Drinfel’d com-
pactification (or space of quasimaps). The latter space is defined concretely as a
projective variety, and much information can be gleaned directly from its defining
equations.

Inspired by the work of Hodge [1943], standard monomial theory was developed
by Lakshmibai [2003], Musili [2003], Seshadri, and others (see also the references
therein), to study the flag varieties G/P , where G is a semisimple algebraic group
and P ⊆ G is a parabolic subgroup. These spaces have a decomposition into

MSC2000: primary 13F50; secondary 13P10, 14N35, 14N15.
Keywords: algebra with straightening law, quasimap, Lagrangian Grassmannian, quantum

cohomology.

819



820 James Ruffo

Schubert cells, whose closures (the Schubert varieties) give a basis for cohomology.
As consequences of standard monomial theory, Schubert varieties are normal and
Cohen–Macaulay, and one has an explicit description of their singularities and
defining ideals.

A key part of standard monomial theory is that any flag variety G/P (P a par-
abolic subgroup) has a projective embedding which presents its coordinate ring
as an algebra with straightening law (Definition 3.3), a special case of a Hodge
algebra [De Concini et al. 1982]. This idea originates with the work of Hodge
on the Grassmannian [1943], and was extended to the Lagrangian Grassmannian
by De Concini and Lakshmibai [1981]. This framework was extended to many
other flag varieties by Lakshmibai [2003], Seshadri, and their coauthors [Musili
2003]. Littelmann’s path model for representations of algebraic groups [1998] later
provided the necessary tools to treat all flag varieties in a unified way, as carried out
by Chirivı̀ [2000; 2001]. The general case requires a more expansive notion of an
algebra with straightening law (also due to Chirivı̀), called a Lakshmibai–Seshadri
(LS) algebra.

Sottile and Sturmfels [2001] have extended standard monomial theory to the
Drinfel’d Grassmannian parametrizing algebraic maps from P1 into the Grassman-
nian. They define Schubert subvarieties of this space and prove that the homoge-
neous coordinate ring of any Schubert variety (including the Drinfel’d Grassman-
nian itself) is an algebra with straightening law on a distributive lattice. Using this
fact, the authors show that these Schubert varieties are normal, Cohen–Macaulay
and Koszul, and have rational singularities.

We extend these results to the Drinfel’d Lagrangian Grassmannian, which para-
metrizes algebraic maps from P1 into the Lagrangian Grassmannian. In particular,
we prove:

Theorem 1.1. The coordinate ring of any Schubert subvariety of the Drinfel’d
Lagrangian Grassmannian is an algebra with straightening law on a doset.

See Theorems 5.9 and 5.10 in Section 5 for more details.
A doset, as introduced in [De Concini and Lakshmibai 1981], is a certain kind

of ordered set (Definition 3.1). As consequences of Theorem 1.1, we show that
the coordinate ring is reduced, Cohen–Macaulay, and Koszul, and obtain formulas
for its degree and dimension. These formulas have an interpretation in terms of
quantum cohomology, as described in Section 4.

In Section 2, we review the basic definitions and facts concerning Drinfel’d com-
pactifications and the Lagrangian Grassmannian. Section 3 provides the necessary
background on algebras with straightening law. We discuss an application to the
quantum cohomology of the Lagrangian Grassmannian in Section 4. Our main
result and its consequences are proved in Section 5.
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2. Preliminaries

We first give a precise definition of the Drinfel’d compactification of the space of
algebraic maps from P1 to a homogeneous variety. We then review the basic facts
we will need regarding the Lagrangian Grassmannian.

2A. Spaces of algebraic maps. Let G be a semisimple linear algebraic group. Fix
a Borel subgroup B ⊆ G and a maximal torus T ⊆ B. Let R be the set of roots
(determined by T ), and S := {ρ1, . . . , ρr } the simple roots (determined by B). The
simple roots form an ordered basis for the Lie algebra t of T ; let {ω1, . . . , ωr } be
the dual basis (the fundamental weights). The Weyl group W is the normalizer of
T modulo T itself.

Let P ⊆ G be the maximal parabolic subgroup associated to the fundamental
weight ω, let L(ω) be the irreducible representation of highest weight ω, and let
(•, •) denote the Killing form on t. The flag variety G/P embeds in PL(ω) as the
orbit of a point [v] ∈ PL(ω), where v ∈ L(ω) is a highest weight vector. Define the
degree of a algebraic map f : P1

→ G/P to be its degree as a map into PL(ω). For
ρ ∈ R, set ρ∨

:= 2ρ/(ρ, ρ). For simplicity, assume that (ω, ρ∨) ≤ 2 for all ρ ∈ S
(that is, P is of classical type [Lakshmibai 2003]). This condition implies that
L(ω) has T -fixed lines indexed by certain admissible pairs of elements of W/WP .

Let Md(G/P) be the space of algebraic maps of degree d from P1 into G/P . If
P is of classical type then the set D of admissible pairs indexes homogeneous co-
ordinates on PL(ω) (see Definition 3.16, and [Lakshmibai 2003; Musili 2003] for
a more thorough treatment). Therefore, any map f ∈ Md(G/P) can be expressed
as

f : [s, t] 7→ [pw(s, t) | w ∈ D],

where the pw(s, t) are homogeneous forms of degree d . This leads to an embedding
of Md(G/P) into P

(
(SdC2)∗⊗L(ω)

)
, where (SdC2)∗ is the space of homogeneous

forms of degree d in two variables. The coefficients of the homogeneous forms in
(SdC2)∗ give coordinate functions on (SdC2)∗ ⊗L(ω); they are indexed by the set
{w(a) | w ∈ D, a = 0, . . . , d}, a disjoint union of d+1 copies of D.

The closure of
Md(G/P)⊆ P

(
(SdC2)∗ ⊗ L(ω)

)
is called the Drinfel’d compactification and denoted Qd(G/P). This definition
is due to V. Drinfel’d, dating from the mid-1980s. Drinfel’d never published
this definition himself; to the author’s knowledge its first appearance in print was
in [Rosenthal 1994]; see also [Kuznetsov 1997].

Let G = SLn(C) and P be the maximal parabolic subgroup stabilizing a fixed
k-dimensional subspace of Cn , so that G/P = Gr(k, n). In this case we denote the
Drinfel’d Grassmannian Qd(G/P) by Qd(k, n). In [Sottile and Sturmfels 2001]
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it is shown that the homogeneous coordinate ring of Qd(k, n) is an algebra with
straightening law on the distributive lattice(

[n]

k

)
d

:=

{
α(a)

∣∣∣ α ∈

(
[n]

k

)
, 0 ≤ a ≤ d

}
,

with partial order on
(
[n]

k

)
d defined by α(a)≤β(b) if and only if a ≤b and αi ≤βb−a+i

for i =1, . . . , k−b+a. It follows that the homogeneous coordinate ring of Qd(k, n)
is normal, Cohen–Macaulay, and Koszul, and that the ideal I d

k,n−k ⊆ C[
(
[n]

k

)
d ] has

a quadratic Gröbner basis consisting of the straightening relations.
Taking d = 0 above, this partial order is the classical Bruhat order on

(
[n]

k

)
. In

general, given a semisimple algebraic group G with parabolic subgroup P , the
Bruhat order is an ordering on the set of maximal coset representatives of the
quotient of the Weyl group of G by the Weyl group of P .

Suppose that d = `k+q for nonnegative integers ` and q with q < k, and let
X = (xi j )1≤i, j≤n be a matrix with polynomial entries

xi j = x (ki )
i j tki + · · · + x (1)i j t + x (0)i j ,

where ki = `+1 if i ≤ q and ki = ` if i > q . The ideal I d
k,n−k is the kernel of the

map

ϕ : C
[(

[n]

k

)
d

]
→ C[X ]

sending the variable p(a)α indexed by α(a) ∈
(
[n]

k

)
d to the coefficient of ta in the

maximal minor of X whose columns are indexed by α.
The main results of [Sottile and Sturmfels 2001] follow from the next proposi-

tion. Given any distributive lattice, we denote by ∧ and ∨, respectively, the meet
and join. The symbol ∧ will also be used for exterior products of vectors, but the
meaning should be clear from the context.

Proposition 2.1 [Sottile and Sturmfels 2001, Theorem 10]. Let α, β be a pair of
incomparable variables in the poset

(
[n]

k

)
d . There is a quadratic polynomial S(α, β)

lying in the kernel of ϕ : C[
(
[n]

k

)
d ] → C[X ] whose first two monomials are

pα pβ − pα∧β pα∨β .

Moreover, if λpγ pδ is any noninitial monomial in S(α, β), then α, β lies in the
interval [γ, δ] = {θ ∈

(
[n]

k

)
d | γ ≤ θ ≤ δ}.

The quadratic polynomials S(α, β) in fact form a Gröbner basis for the ideal they
generate. It is shown in [Sottile and Sturmfels 2001] that there exists a toric
(SAGBI) deformation taking S(α, β) to its initial form pα pβ − pα∧β pα∨β , deform-
ing the Drinfel’d Grassmannian into a toric variety.
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Our goal is to extend the main results of standard monomial theory to the La-
grangian Drinfel’d Grassmannian LQd(n) := Qd(LG(n)) of degree-d maps from
P1 into the Lagrangian Grassmannian.

2B. The Lagrangian Grassmannian. De Concini and Lakshmibai [1981] showed
that, in its natural projective embedding, the Lagrangian Grassmannian LG(n) is
defined by quadratic relations which give a straightening law on a doset. These
relations are obtained by expressing LG(n) as a linear section of Gr(n, 2n). While
this is well known, the author knows of no explicit derivation of these relations
which do not require the representation theory of semisimple algebraic groups.
We provide a derivation which does not rely upon representation theory (although
we adopt the notation and terminology). This will be useful when we consider the
Drinfel’d Lagrangian Grassmannian, to which representation theory has yet to be
successfully applied.

Set [n] := {1, 2, . . . , n}, ı̄ := −i , and 〈 n〉 := {n̄, . . . , 1̄, 1, . . . n}. If S is any set,
let

(S
k

)
be the collection of subsets α = {α1, . . . , αk} of cardinality k.

The projective space P(
∧n

C2n) has Plücker coordinates indexed by the dis-
tributive lattice

(
〈n〉

n

)
, and the Grassmannian Gr(n, 2n) is the subvariety, defined by

the Plücker relations, of P(
∧n

C2n).

Proposition 2.2 [Fulton 1997; Hodge 1943]. For α, β ∈
(
〈n〉

n

)
there is a Plücker

relation

pα pβ − pα∧β pα∨β +

∑
γ≤α∧β<α∨β≤δ

cγ,δα,β pγ pδ = 0.

The defining ideal of Gr(n, 2n)⊆ P(
∧n

C2n) is generated by the Plücker relations.

Fix an ordered basis {en̄, . . . , e1̄, e1, . . . , en} of the vector space C2n , and let
� :=

∑n
i=1 eı̄ ∧ ei be a nondegenerate alternating bilinear form. The Lagrangian

Grassmannian LG(n) is the set of maximal isotropic subspaces of C2n (relative
to �).

Let {hi := Ei i − E ı̄ ı̄ | i ∈ [n]} be the usual basis for the Lie algebra t of T [Fulton
and Harris 1991], and let {h∗

i | i ∈[n]}⊆ t∗ be the dual basis. Observe that h∗

ı̄ =−h∗

i .
The weights of any representation of Sp2n(C) are Z-linear combinations of the
fundamental weights ωi = h∗

n−i+1 + · · · + h∗
n .

The weights of the representation
∧n

C2n , and hence those of the subrepresen-
tation L(ωn), are of the form ω =

∑n
i=1 h∗

αi
for some α ∈

(
〈n〉

n

)
. If α j = ᾱ j ′ for

some j, j ′
∈ [n], then h∗

α j
= −h∗

α j ′
, and thus the support of ω does not contain h∗

α j
.

Hence the set of all such weights ω are indexed by elements α∈
(
〈n〉

k

)
(k = 1, . . . , n)

which do not involve both i and ı̄ for any i = 1, . . . , n.
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Let V be a vector space. For simple alternating tensors v := v1 ∧· · ·∧vl ∈
∧l V

and ϕ := ϕ1 ∧ · · · ∧ϕk ∈
∧k V ∗, there is a contraction defined by setting

ϕ y v :=

{ ∑
I∈([l]k )

±v1 ∧ · · · ∧ϕ1(vi1)∧ · · · ∧ϕk(vik )∧ · · · ∧ vl, k ≤ l,

0, k > l,

and extending bilinearly to a map
∧k V ∗

⊗
∧l V →

∧l−k V . In particular, for a
fixed element 8 ∈

∧k V ∗, we obtain a linear map 8 y • :
∧l V →

∧l−k V .
The Lagrangian Grassmannian embeds in PL(ωn), where L(ωn) is the irre-

ducible Sp2n(C)-representation of highest weight ωn = h∗

1 + · · · + h∗
n . This repre-

sentation is isomorphic to the kernel of the contraction� y • :
∧n

C2n
→

∧n−2
C2n

by Proposition 2.3. We thus have a commutative diagram of injective maps:

LG(n) −−−→ Gr(n, 2n)y y
PL(ωn) −−−→ P(

∧n
C2n).

The next proposition implies that LG(n)= Gr(n, 2n)∩ PL(ωn).

Proposition 2.3. The dual of the contraction map

� y • :

∧n
C2n

→

∧n−2
C2n

is the multiplication map

�∧ • :

∧n−2
C2n∗

→

∧n
C2n∗

.

Furthermore, the irreducible representation L(ωn) is defined by the ideal generated
by the linear forms

Ln := span{�∧ e∗

α1
∧ · · · ∧ e∗

αn−2
| α ∈

(
〈n〉

n−2

)
}.

These linear forms cut out LG(n) scheme-theoretically in Gr(n, 2n). Dually,

L(ωn)= ker(� y •).

Proof. The proof of first statement is straightforward, and the second can be found
in [Weyman 2003, Chapter 3, Exercise 1; Chapter 6, Exercise 24]. �

Since the linear forms spanning Ln are supported on variables indexed by α ∈(
〈n〉

n

)
such that {ı̄, i} ∈ α for some i ∈ [n], the set of complementary variables

is linearly independent. These are indexed by the set Pn of admissible elements
of

(
〈n〉

n

)
:

Pn :=
{
α ∈

(
〈n〉

n

) ∣∣ i ∈ α ⇔ ı̄ 6∈ α
}
,

and have a simple description in terms of partitions (see Proposition 2.4).
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4

3̄

1̄ 1

2̄

2

3

4̄

(4, 0)

(0, 4)

Figure 1. The partition (3, 3, 1) associated to 4̄2̄23.

Consider the lattice Z2 with coordinates (a, b) corresponding to the point a units
to the right of the origin and b units below the origin. Given an increasing sequence
α ∈

(
〈n〉

n

)
, let [α] be the lattice path beginning at (0, n), ending at (n, 0), and whose

i-th step is vertical if i ∈ α and horizontal if i 6∈ α. We can associate a partition to
α by taking the boxes lying in the region bounded by the coordinate axes and [α].
For instance, the sequence α = 4̄2̄23 ∈

(
〈4〉

4

)
is associated to the partition shown in

Figure 1.

Proposition 2.4. The bijection between increasing sequences and partitions in-
duces a bijection between sequences α which do not contain both i and ı̄ for any
i ∈ [n], and partitions which lie inside the n × n square (nn) and are symmetric
with respect to reflection about the diagonal {(a, a) | a ∈ Z} ⊆ Z2.

Proof. The poset Pn consists of those α ∈
(
〈n〉

n

)
which are fixed upon negating

each element of α and taking the complement in 〈 n〉. On the other hand, the
composition of these two operations (in either order) corresponds to reflecting the
associated diagram about the diagonal. �

Remark 2.5. We will use an element of
(
〈n〉

n

)
and its associated partition inter-

changeably. We denote by αt the transpose partition obtained by reflecting α about
the diagonal in Z2. As a sequence, αt is the complement of {ᾱ1, . . . , ᾱn}⊆ 〈 n〉. We
denote by α+ (respectively, α−) the subsequence of positive (negative) elements
of α.

Definition 2.6. The Lagrangian involution is the map τ : pα 7→ σα pαt , where
σα := sgn(αc

+
, α+) ·sgn(α−, α

c
−
)= ±1, and sgn(a1, . . . , as) denotes the sign of the

permutation sorting the sequence (a1, . . . , as).

For example, if α = 4̄1̄23, then α+ = 23, α− = 4̄1̄, and σα = 1.
The Grassmannian Gr(n, 2n) has a natural geometric involution

•
⊥

: Gr(n, 2n)→ Gr(n, 2n)
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sending an n-plane U to its orthogonal complement

U⊥
:= {u ∈ C2n

|�(u, u′)= 0, for all u′
∈ U }

with respect to �. The next proposition relates •
⊥ to the Lagrangian involution.

Proposition 2.7. The map •
⊥

: Gr(n, 2n)→ Gr(n, 2n) expressed in Plücker coor-
dinates coincides with the Lagrangian involution:[

pα
∣∣∣ α ∈

(
〈n〉

n

)]
7→

[
σα pαt

∣∣∣ α ∈

(
〈n〉

n

)]
.

In particular, the relation pα − σα pαt = 0 holds on LG(n).

Proof. The set of n-planes in C2n which do not meet the span of the first n standard
basis vectors is open and dense in Gr(n, 2n). Any such n-plane is the row space
of an n × 2n matrix

Y := (I | X)

where I is the n × n identity matrix and X is a generic n × n matrix. We work
in the affine coordinates given by the entries in X . For α ∈

(
〈n〉

n

)
, denote the α-th

minor of Y by pα(Y ). For a set of indices α = {α1, . . . , αk} ⊆ [n], let αc
:= [n] \α

be the complement, α′
:= {n−αk+1, . . . , n−α1+1}, and ᾱ := {ᾱ1, . . . , ᾱk}. Via

the correspondence between partitions and sequences (Proposition 2.4), αt
= ᾱc.

We claim that •
⊥ reflects X along the antidiagonal. To see this, we simply

observe how the rows of Y pair under �. For vectors u, v ∈ Cn , let (u, v) ∈ C2n be
the concatenation. Let ri := (ei , vi ) ∈ C2n be the i-th row of Y . For k ∈ 〈 n〉, we
let rik ∈ C be the k-th entry of ri . Then, for i, j ∈ 〈 n〉,

�(ri , r j )= (ei , vi ) · (−v j , e j )
t
= ri,n− j+1 − r j,n−i+1.

It follows that the effect of •
⊥ on the minor Xρ,γ of X given by row indices ρ and

column indices γ is
(X⊥)ρ,γ = Xγ ′,ρ′ .

Let α = ε̄ ∪ φ ∈
(
〈n〉

n

)
, where ε and φ are subsets of [n] whose cardinalities sum

to n. Combining the above description of •
⊥ with the identity

pα(Y )= sgn(εc, ε)X(εc)′,φ,

we have

pα(Y ⊥)= sgn(εc, ε)(X⊥)(εc)′,φ = sgn(εc, ε)Xφ′,εc

= sgn(εc, ε)sgn(φ, φc)p(φ̄c,εc)(Y )= σα pαt (Y ).

It follows that the relation pα − σα pαt = 0 holds on a dense Zariski-open subset
and hence identically on all of LG(n). �
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4̄2̄13 3̄1̄24

Figure 2. The paths associated to 4̄2̄13 and 3̄1̄24 in P4.

By Proposition 2.7, the system of linear forms

L ′

n := span{pα − σα pαt | α ∈
(
〈n〉

n

)
} (2-1)

defines LG(n) ⊆ Gr(n, 2n) set-theoretically. Since LG(n) lies in no hyperplane
of PL(ωn), L ′

n is a linear subspace of the span Ln of the defining equations of
L(ωn) ⊆

∧n
C2n . The generators of L ′

n given in (2-1) suggest that homogeneous
coordinates for the Lagrangian Grassmannian should be indexed by some sort of
quotient (which we will call Dn) of the poset

(
〈n〉

n

)
. The correct notion is that of a

doset (Definition 3.1). An important set of representatives for Dn in
(
〈n〉

n

)
is the set

of Northeast partitions (Proposition 2.10).

Remark 2.8. The set of strict partitions with at most n rows and columns is com-
monly used to index Plücker coordinates for the Lagrangian Grassmannian. Given
a symmetric partition α ∈ Pn , we can obtain a strict partition by first removing
the boxes of α which lie below the diagonal, and then left-justifying the remaining
boxes. This gives a bijection between the two sets of partitions.

By Proposition 2.4, we may identify elements of
(
〈n〉

n

)
with partitions lying in

the n × n square (nn), and Pn with the set of symmetric partitions. Define a map

πn :
(
〈n〉

n

)
→ Pn × Pn, πn(α) := (α∧αt , α∨αt).

Let Dn be the image of πn . It is called the set of admissible pairs, and is a subset
of OPn := {(α, β) ∈ Pn × Pn | α ≤ β}. The image of Pn ⊆

(
〈n〉

n

)
under πn is the

diagonal 1Pn ⊆ Pn × Pn .
To show that Dn indexes coordinates on LG(n), we will work with a convenient

set of representatives of the fibers of πn . The fiber over (α, β)∈Dn can be described
as follows. The lattice paths [α] and [β] must meet at the diagonal. Since α and
β are symmetric, they are determined by the segments of their associated paths to
the right and above the diagonal. Let5(α, β) be the set of boxes bounded by these
segments. Taking n = 4 for example, 5(4̄2̄13, 3̄1̄24) consists of the two shaded
boxes above the diagonal in Figure 2. The lattice path [4̄2̄13] is above and to the
left of the path [3̄1̄24].
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4̄2̄24 and 3̄1̄13 4̄1̄14 and 3̄2̄23

Figure 3. Elements of π−1
n (4̄2̄13, 3̄1̄24).

For any partition α⊆ (nn), the set α+ ⊆α consists of the boxes of α on or above
the main diagonal, and α− ⊆ α consists of the boxes of α on or below the main
diagonal (compare Remark 2.5). Similarly, let 5+(α, β) ⊆ 5(α, β) be the set of
boxes above the diagonal and let 5−(α, β) ⊆ 5(α, β) be the set of boxes below
the diagonal.

A subset S ⊆ (nn) of boxes is disconnected if S = S′
t S′′ and no box of S′

shares an edge with a box of S′′. A subset S is connected if it is not disconnected.
Let

⊔k
i=1 Si be the decomposition of 5+(α, β) into its connected components (so

that
⊔k

i=1 St
i is the decomposition of 5−(α, β)).

Any element γ of the fiber π−1
n (α, β) is obtained by choosing a subset I ⊆ [k]

and setting

γ = α ∪

(⋃
i 6∈I

St
i

)
∪

(⋃
i∈I

Si

)
.

The elements of π−1
n (4̄2̄13, 3̄1̄24) are shown in Figure 3.

Definition 2.9. A partition α is Northeast if αt
−

⊆ α+ and is Southwest if its trans-
pose is Northeast.

For example, 4̄2̄24 ∈ P4 is Northeast while 4̄1̄14 ∈ P4 is neither Northeast nor
Southwest. We summarize these ideas as:

Proposition 2.10. Let
(α, β) ∈ Dn

be an element of the image of πn . Then π−1
n (α, β) is in bijection with the set of

subsets of connected components of 5+(α, β). There exists a unique Northeast
element of π−1

n (α, β), namely, the element corresponding to all the connected
components. Similarly, there is a unique Southwest element corresponding to the
empty set of components.

Example 2.11. The Lagrangian Grassmannian LG(4)⊆ Gr(4, 8) is defined by the
ideal L4. From the explicit linear generators given in Proposition 2.3, it is evi-
dent that L4 ⊆

∧4
C8∗ is spanned by weight vectors. For example, the generators



Quasimaps for the Lagrangian Grassmannian 829

of L4 ∩ (
∧4

C8∗
)0 are the vectors of weight zero:

�∧ p1̄1 = p4̄1̄14 + p3̄1̄13 + p2̄1̄12,

�∧ p2̄2 = p4̄2̄24 + p3̄2̄23 + p2̄1̄12,

�∧ p3̄3 = p4̄3̄34 + p3̄2̄23 + p3̄1̄13,

�∧ p4̄4 = p4̄3̄34 + p4̄2̄24 + p4̄1̄14.

(2-2)

The following linear forms lie in the span of the right-hand side of (2-2):

p2̄1̄12 + p4̄3̄34, p3̄1̄13 + p4̄2̄24, p3̄2̄23 + p4̄1̄14, and p4̄1̄14 + p4̄2̄24 + p4̄3̄34. (2-3)

Three of the linear forms in (2-3) are supported on a pair {pα, pαt }, and the re-
maining linear form expresses the Plücker coordinate p4̄1̄14 as a linear combination
of coordinates indexed by Northeast partitions (this follows from Lemma 5.5 in
general).

Since each pair {pα, pαt } is incomparable, there is a Plücker relation which,
after reduction by the linear forms (2-2), takes the form

±p2
α − pβ pγ + lower order terms

where β := α∧αt and γ := α∨αt are respectively the meet and join of α and αt .
Defining p(β,γ ) := pα = σα pαt we can regard such an equation as giving a rule for
rewriting p2

(β,γ ) as a linear combination of monomials supported on a chain. This
general case is treated in Section 5.

3. Algebras with straightening law

3A. Generalities. The following definitions are due to De Concini and Laksh-
mibai [1981]. Let P be a poset, 1P the diagonal in P × P, and

OP := {(α, β) ∈ P × P | α ≤ β}

the subset of P × P defining the order relation on P.

Definition 3.1. [De Concini and Lakshmibai 1981] A doset on P is a set D such
that 1P ⊆ D ⊆ OP, and if α ≤ β ≤ γ , then (α, γ ) ∈ D if and only if (α, β) ∈ D and
(β, γ ) ∈ D. The ordering on D is given by (α, β) ≤ (γ, δ) if and only if β ≤ γ in
P. We call P the underlying poset.

Remark 3.2. The doset ordering just defined does not, in general, satisfy the re-
flexive property. That is, for (α, β)∈ D, it is not generally true that (α, β)≤ (α, β).
Indeed, this is the case if and only if (α, β) ∈1P

∼= P, that is, if and only if α = β.

The Hasse diagram of a doset D on P is obtained from the Hasse diagram of
P ⊆ D by drawing a double line for each cover αlβ such that (α, β) is in D. The
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defining property of a doset implies that we can recover all the information in the
doset from its Hasse diagram. See Figure 6 in Section 3C for an example.

An algebra with straightening law (Definition 3.3 below) is an algebra gener-
ated by indeterminates {pα | α ∈ D} indexed by a (finite) doset D with a basis
consisting of standard monomials supported on a chain. That is, a monomial
p(α1,β1) · · · p(αk ,βk) is standard if α1 ≤ β1 ≤ α2 ≤ β2 ≤ · · · ≤ αk ≤ βk . Furthermore,
monomials which are not standard are subject to certain straightening relations, as
described in the following definition.

Definition 3.3. [De Concini and Lakshmibai 1981] Let D be a doset. A graded
C-algebra

A =

⊕
q≥0

Aq

is an algebra with straightening law on D if there is an injection D 3 (α, β) 7→

p(α,β) ∈ A1 such that:

(1) The set {p(α,β) | (α, β) ∈ D} generates A.

(2) The set of standard monomials are a C-basis of A.

(3) For any monomial m = p(α1,β1) · · · p(αk ,βk), (αi , βi ) ∈ D and i = 1, . . . , k, if

m =

N∑
j=1

c j p(α j1,β j1) · · · p(α jk ,β jk),

is the unique expression of m as a linear combination of distinct standard
monomials, then the sequence (α j1 ≤ β j1 ≤ · · · ≤ α jk ≤ β jk) is lexicographi-
cally smaller than (α1 ≤ β1 ≤ · · · ≤ αk ≤ βk). That is, if ` ∈ [2k] is minimal
such that α j` 6= α`, then α j` < α`.

(4) If α1 ≤ α2 ≤ α3 ≤ α4 are such that for some permutation σ ∈ S4 we have
(ασ(1), ασ(2)) ∈ D and (ασ(3), ασ(4)) ∈ D, then

p(ασ(1),ασ(2)) p(ασ(3),ασ(4)) = ±p(α1,α2) p(α3,α4) +

N∑
i=1

ri mi

where the mi are quadratic standard monomials distinct from p(α1,α2) p(α3,α4).

The ideal of straightening relations is generated by homogeneous quadratic
forms in the pα (α ∈ D), so we may consider the projective variety X := Proj A
they define. For each α ∈ P, we have the Schubert variety

Xα := {x ∈ X | p(β,γ )(x)= 0 for γ 6≤ α}

and the dual Schubert variety

Xα
:= {x ∈ X | p(β,γ )(x)= 0 for β 6≥ α}.
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Remark 3.4. If αl β and (α, β) ∈ D, then the multiplicity of Xα in Xβ is 2, and
likewise for the multiplicity of Xα in Xβ . This fact will arise in Section 4 when we
consider enumerative questions.

We recall the case when X is the Grassmannian of k-planes in Cn , whose co-
ordinate ring is an algebra with straightening law on the poset (with trivial doset
structure)

(
[n]

k

)
.

For each i ∈ [n], set Fi := 〈e1, . . . , ei 〉 and F ′

i := 〈en, . . . , en−i+1〉, where 〈 · · · 〉

denotes linear span and {e1, . . . , en} is the standard basis of Cn . We call F• :=

{F1 ⊆ · · · ⊆ Fn} the standard coordinate flag, and F ′
•

:= {F ′

1 ⊆ · · · ⊆ F ′
n} the

opposite flag.
We represent any k-plane E ∈ Gr(k, n) as the row space of a k × n matrix.

Furthermore, any such k-plane E is the row space of a unique reduced row echelon
matrix. The Schubert variety Xα consists of precisely the k-planes E such that the
pivot in row i is weakly to the left of column αi . Since the Plücker coordinate
pβ(E) is just the β-th maximal minor of this matrix, we see that E ∈ Xα if and
only if pβ(E) = 0 for all β 6≤ α; hence the general definition of the Schubert
variety Xα (and by a similar argument, the dual Schubert variety Xα) agrees with
the well-known geometric definition in the case of the Grassmannian. Namely, for
α ∈

(
[n]

k

)
, the Schubert variety Xα is

Xα = {E ∈ Gr(k, n) | dim(E ∩ Fαi )≥ i, for i = 1, . . . , k},

and the dual Schubert variety Xα is

Xα
= {E ∈ Gr(k, n) | dim(E ∩ F ′

n−αi +1)≥ k−i+1, for i = 1, . . . , k}.

For a fixed projective variety X ⊆Pn , there are many homogeneous ideals which
cut out X set-theoretically. However, there exists a unique such ideal which is
saturated and radical. Under mild hypotheses, any ideal generated by straight-
ening relations on a doset is saturated and radical. The proofs of Theorems 3.8
and 3.9 illustrate the usefulness of Schubert varieties in the study of an algebra
with straightening law.

Definition 3.5. An ideal I ⊆ C[x0, . . . , xn] is saturated if, given a polynomial
f ∈ C[x0, . . . , xn] and an integer N ∈ N,

x N
i f = 0 mod I

for all i = 0, . . . , n implies that

f = 0 mod I.

Definition 3.6. A ring A is reduced if it has no nilpotent elements; that is, if f ∈ A
satisfies f N

= 0 for some N ∈ N, then f = 0.
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Definition 3.7. An ideal I ⊆ C[x0, . . . , xn] is radical if, given a polynomial f ∈

C[x0, . . . , xn] and an integer N ∈ N,

f N
= 0 mod I

implies that
f = 0 mod I.

That is, I is radical if the quotient C[x0, . . . , xn]/I is reduced.

The next two results concern an algebra with straightening law on a doset D

with underlying poset P. We write A = C[D]/J for this algebra, where J is the
ideal generated by the straightening relations. Proposition 3.9 is a special case
of [Chirivı̀ 2000, Proposition 27].

Theorem 3.8. Let D be a doset whose underlying poset has a unique minimal
element α0. Then any ideal J of straightening relations on D is saturated.

Proof. Let f 6∈ J . Modulo J , we may write f =
∑k

i=1 ai mi where the mi are
(distinct) standard monomials, and ai ∈ C. For each N ∈ N,

pN
α0

f =

k∑
i=1

ai pN
α0

mi

is a linear combination of standard monomials, since supp mi ∪{α0} is a chain for
each i ∈ [k]. It is nontrivial since pN

α0
mi = pN

α0
m j implies i = j . Thus pN

α0
f 6∈ J

for any N ∈ N. �

Proposition 3.9. An algebra with straightening law on a doset is reduced.

Proof. Let A be an algebra with straightening law. For f ∈ A and α ∈ P, denote
by fα the restriction of f to the dual Schubert variety Xα.

We will show by induction on the poset P that f n
α = 0 implies fα = 0. Note

that by induction on n it suffices to do this for n = 2. Indeed, assume that we have
shown that f 2

= 0 implies f = 0 for any f in some ring A, and suppose f n
= 0.

Then ( f d
n
2 e)2 =0, so that f d

n
2 e

=0 by our assumption, and thus f =0 by induction.
Let f ∈ A be such that f 2

α =0. In particular, f 2
β =0 for all β≥α (since Xβ

⊆ Xα),
so that fβ = 0 by induction. It follows that fα is supported on monomials on Xα

which vanish on Xβ for all β ≥ α. That is,

fα =

m∑
i=1

ci pei
α p(α,β1,i ) · · · p(α,β`i ,i ). (3-1)

For the right hand side of (3-1) to be standard, we must have `i = 1 for all i =

1, . . .m. Also, homogeneity implies that e := e1 = · · · = em for i = 1, . . .m. Thus,
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if we set βi := β1,i , then fα has the form

fα = pe
α

m∑
i=1

ci p(α,βi ). (3-2)

Choose a linear extension of D as follows. Begin with a linear extension of P ⊆ D.
For incomparable elements (α, β), (γ, δ) of D, set (α, β)≤ (γ, δ) if β < δ or β = δ

and α ≤ γ . With respect to the resulting linear ordering of the variables, take the
lexicographic term order on monomials in A.

For an element g ∈ A, denote by lt(g) (respectively, lm(g)) the lead term (re-
spectively, lead monomial) of g. Reordering the terms in (3-2) if necessary, we
may assume that

lt( fα)= c1 pe
α p(α,β1).

Writing f 2
α as a linear combination of standard monomials (by first expand-

ing the square of the right hand side of (3-2) and then applying the straightening
relations), we see that

lt( f 2
α )= ±c2

1 p2e+1
α pβ1 .

This follows from our choice of term order and the condition in Definition 3.3 (4).
We claim that lt( f 2

α ) cannot be cancelled in the expression for f 2
α as a sum of

standard monomials. Indeed, suppose there are i, j ∈ [m] such that

lm
(
(pe
α p(α,βi )) · (p

e
α p(α,β j ))

)
= p2e+1

α pβ1 .

Then by the straightening relations, β1 ≤ βi , β j . But β1 6< βi since

lm( fα)= pe
α p(α,β1).

For the same reasons, β1 6< β j . Therefore βi = β j = β1, so c1 pe
α p(α,β1) is the only

term contributing to the monomial p2e+1
α pβ1 in f 2

α . �

Remark 3.10. Proposition 3.9 was first proved for an algebra with straightening
law on a poset in [Eisenbud 1980], but the methods used (deformation to the ini-
tial ideal) are not well-suited for a doset. The proof given here is essentially an
extension of the proof of Bruns and Vetter [1988, Theorem 5.7] to the doset case.

3B. Hilbert series of an algebra with straightening law. We compute the Hilbert
series of an algebra with straightening law A on a doset, and thus obtain formulas
for the dimension and degree of Proj A. Let P be a poset and D a doset on P. As-
sume that P and D are ranked; that is, any two maximal chains in D (respectively,
P) have the same length. Define rank D (respectively, rank P) to be the length of
any maximal chain in D (respectively, P).

First, we compute the Hilbert series of A with respect to a suitably chosen fine
grading of A by the elements of a semigroup, as follows.
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∅ {α} {β} {(α, β)}

{α, (α, β)} {(α, β), β} {α, β} {α, (α, β), β}

Figure 4. The set Ch(D) of chains in D.

Monomials in C[D] are determined by their exponent vectors. We can therefore
identify the set of such monomials with the semigroup ND. Define the weight map
w : ND

→ QP by setting w(α, β) := εα+εβ
2 , where εα ∈ QP (α∈ P) is the vector with

α-coordinate equal to 1 and all other coordinates equal to 0. This gives a grading
of A by the semigroup im(w). Let Ch(D) be the set of all chains in D. Since the
standard monomials (those supported on a chain) form a C-basis for A, the Hilbert
series with respect to this fine grading is

HA(r)=

∑
c∈Ch(D)

∑
a∈im(w)

supp(a)=c

ra,

where r := (rα | α ∈ P), a = (aα | α ∈ P), and ra
=

∏
α∈P raα

α . Note that elements
of im(w) correspond to certain monomials with rational exponents (supported on
P). For example, (α, β) ∈ D corresponds to √rαrβ . Setting all rα = r , we obtain
the usual (coarse) Hilbert series, defined with respect to the usual Z-grading on A
by degree.

Example 3.11. Consider the doset D := {α, (α, β), β} on the two element poset
{α < β}. The elements of Ch(D) are shown in Figure 4.

Ch(D)=
{
∅, {α}, {β}, {(α, β)}, {α, (α, β)}, {(α, β), β}, {α, β}, {α, (α, β), β}

}
.

We have

HA(r)= 1 +
rα

1 − rα
+

rβ
1 − rβ

+
√

rαrβ +

√
r3
αrβ

1 − rα

+

√
rαr3

β

(1 − rβ)
+

rαrβ
(1 − rα)(1 − rβ)

+

√
r3
αr3
β

(1 − rα)(1 − rβ)
.
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Setting r = rα = rβ , we obtain the Hilbert series with respect to the usual Z-grading
of C[D]:

h A(r)= 1 +
2r

1 − r
+ r +

2r2

1 − r
+

r3
+ r2

(1 − r)2
=

r + 1
(1 − r)2

= 1 +

∞∑
i=1

(2i+1)r i .

We see that the Hilbert polynomial is p(i) = 2i+1, so dim(Proj A) = 1, and
deg(Proj A)= 2.

Remark 3.12. The coordinate ring of the Lagrangian Grassmannian LG(2) is an
algebra with straightening law on the five-element doset obtained by adding two
elements 0̂ < α and 1̂ > β to the doset of Example 3.11. The addition of these
elements does not affect the degree, which is also 2. Theorem 5.9 allows us to carry
out such degree computations for the Drinfel’d Lagrangian Grassmannian, giving
a new derivation of the intersection numbers computed in quantum cohomology.

Fix a poset P, and a doset D on P. For the remainder of this section, set P :=

rank P and D := rank D. Given a chain

{α1, . . . , αu, (β11, β12), . . . , (βv1, βv2)} ⊆ D

(not necessarily written in order), let ri be the formal variable corresponding to αi

(i = 1, · · · , u), and let s jk correspond to β jk ( j = 1, . . . , v, k = 1, 2). The variables
r and s are not necessarily disjoint; in the example above, the chain {α, (α, β)} has
r1 = s11. We have

∑
a∈im(w)

supp(a)=c

ra
=

u∏
i=1

ri

1 − ri
·

v∏
j=1

√
s j1s j2.

Recall that we may identify P with the diagonal1P ⊆D⊆P×P. Letting cvu denote
the number of chains consisting of u elements of P and v elements of D \ P, we
have

HSA(r)=

P+1∑
u=0

D−P∑
v=0

cvu
ru+v

(1 − r)u
=

P+1∑
u=0

D−P∑
v=0

cvuru+v

( ∞∑
k=0

r k
)u

=

D−P∑
v=0

cv0rv +

∞∑
`=0

P+1∑
u=1

D−P∑
v=0

cvu

(
u+`−1

u−1

)
ru+v+`.

When w > D−P , the coefficient of rw agrees with the Hilbert polynomial:

HPA(w)=

P+1∑
u=1

D−P∑
v=0

cvu

(
w−v−1

u−1

)
. (3-3)
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γβ

α

δ

Figure 5. A doset on a four-element poset.

In particular, the dimension of Proj A is P , since this is the largest value of

u − 1 = degw

(
w−v−1

u−1

)
.

The leading monomial of H PA(w) is

D−P∑
v=0

cvP+1

(
w−v−1

P−1

)
.

By our assumption that the maximal chains in P (respectively, D) have the same
length, we have cvP+1 =

(D−P
v

)
c0

P+1, so that the leading coefficient of H PA(w) is

c0
P+1

(P − 1)!

D−P∑
v=0

(
D − P
v

)
=

2D−Pc0
P+1

(P − 1)!
,

from which we deduce the degree and dimension of Proj A.

Theorem 3.13. The degree of Proj A is 2D−Pc0
P+1. The dimension of Proj A is P.

Example 3.14. Let A be an algebra with straightening law on the doset D shown
in Figure 5.

We have rank P = 2, rank D = 3, and

Ch(D)=
{
∅, {α}, {β}, {γ }, {δ}, {(α, γ )}, {(β, δ)},

{α, γ }, {α, β}, {α, δ}, {β, δ}, {γ, δ}, {α, (α, γ )},

{α, (β, δ)}, {(α, γ ), γ }, {(α, γ ), δ}, {β, (β, δ)},

{(β, δ), δ}, {α, β, δ}, {α, γ, δ}, {α, (α, γ ), γ },

{α, (α, γ ), δ}, {α, β, (β, δ)}, {α, (β, δ), δ},

{β, (β, δ), δ}, {α, (α, γ ), γ, δ}, {α, β, (β, δ), δ}
}
,

and the values of cvu are given by the matrix(
1 4 5 2
2 6 5 2

)
,
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whose entry in row i and column j is ci−1
j−1.

In view of (3-3), the Hilbert polynomial is therefore

HPA(w)

= 4
(
w−1

0

)
+ 5

(
w−1

1

)
+ 2

(
w−1

2

)
+ 6

(
w−2

0

)
+ 5

(
w−2

1

)
+ 2

(
w−2

2

)
= 2w2

+ 2w+ 3 = 4
w2

2!
+ 2w+ 3.

In particular, dim(Proj A)= 2 and deg(Proj A)= 4.

Theorems 5.9 and 3.13 will allow us to compute intersection numbers in quan-
tum cohomology in the same manner as Example 3.14. The essential step is to
show that the Drinfel’d Lagrangian Grassmannian is a algebra with straightening
law on the doset of admissible pairs Dd,n .

3C. The doset of admissible pairs. We define the doset of admissible pairs on the
poset Pd,n . Let us first consider an example.

Example 3.15. Consider the poset

P2,4 := {α(a) ∈
(
〈4〉

4

)
2 | i ∈ α ⇐⇒ ı̄ 6∈ α}

of admissible elements of
(
〈4〉

4

)
2. Let D2,4 be the set of elements (α, β)(a) ∈ OP2,4

such that α and β have the same number of negative elements. It is a doset on P2,4.
The Hasse diagram (drawn so that going up in the doset corresponds to moving to
the right) for D2,4 is shown in Figure 6.

To each (α, β)(a) ∈ P2,4, we have the Plücker coordinate

p(a)(α,β) := uavd−a
⊗ p(α,β) ∈ SdC2

⊗ L(ωn)
∗,

where {u, v} ⊆ C2 is a basis dual to {s, t} ⊆ (C2)∗.

Let
(
〈n〉

n

)
d

∼=
(
[2n]

n

)
d be the poset associated to the (ordinary) Drinfel’d Grass-

mannian Qd(n, 2n), and recall that Pd,n ⊆
(
〈n〉

n

)
d is the subposet consisting of the

elements α(a) such that αt
= α. There are three types of covers in Pd,n .

(1) α(a) l β(a), where α and β have the same number of negative elements. For
example, 4̄2̄13(a) l 4̄1̄23(a) ∈ Pd,4 for any nonnegative integers a ≤ d .

(2) α(a) l β(a), where the number of negative elements in β is one less than the
number of negative elements of α. For example, 4̄1̄23(a)l 4̄123(a) ∈ Pd,4 for
any nonnegative integers a ≤ d.

(3) α(a)lβ(a+1), where the number of negative elements of β is one more than the
number of negative elements of α, n̄ ∈ β, and n ∈ α. For example, 3̄2̄14(a) l
4̄3̄2̄1(a+1) for any nonnegative integers a ≤ d.
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Figure 8. The subset of S2,4 associated to 4̄2̄13(1) ∈ P2,4.

The first two types are those appearing in the classical Bruhat order on P0,n . It
follows that Pd,n is a union of levels P(a)

d,n , each isomorphic to the Bruhat order,
with order relations between levels imposed by covers of the type (3) above. We
define the doset Dd,n of admissible pairs in Pd,n .

Definition 3.16. A pair (α(a) < β(a)) is admissible if there exists a saturated chain
α = α0 lα1 l · · · lαs = β, where each αi lαi+1 is a cover of type (1).

We denote the set of admissible pairs by Dd,n . Observe that the pair (α(a)<β(b))
is never admissible if a < b.

Proposition 3.17. The set Dd,n ⊆ Pd,n × Pd,n is a doset on Pd,n . The poset Pd,n

is a distributive lattice.

Proof. In view of our description of the covers in Dd,n , it is clear that, for all
d ≥ 0, Dd,n is a doset if and only if Dn = D0,n is a doset. The latter is proved
in [De Concini and Lakshmibai 1981]. To prove that Pd,n is a distributive lattice,
we give an isomorphism with a certain lattice of subsets of the union of d+1 shifted
n × n squares in Z2 which generalize the usual notion of a partition.

Let

Sd,n :=

d⋃
a=0

{(i+a, j+a) | 0 ≤ i, j ≤ n}.

To α(a) ∈ Pd,n , we associate the subset of Sd,n obtained by shifting the (open)
squares in α by (a, a), and adding the boxes obtained by translating a box of α by
a vector (v1, v2) with v1, v2 ≤ 0 and the points (i, i) for i = 0, . . . , a. See Figure 8
for an example. It is straightforward to check that the (symmetric) subsets obtained
in this way form a distributive lattice (ordered by inclusion) isomorphic to Pd,n . �

4. Schubert varieties and Gromov–Witten invariants

Gromov–Witten invariants are solutions to enumerative questions involving alge-
braic maps from P1 to a projective variety X . When X is the Lagrangian Grassman-
nian (or the ordinary Grassmannian [Sottile and Sturmfels 2001]), these questions
can be studied geometrically via the Drinfel’d compactification, as advocated by A.
Braverman [2006]. We do this in Section 4A, and relate our findings to the quantum
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cohomology of the Lagrangian Grassmannian in Section 4B. See [Braverman 2006;
Sottile 2000; 2001] for further reading on applications of Drinfel’d compactifica-
tions to quantum cohomology. The study of Gromov–Witten invariants (in various
special cases) has also been approached via the quot scheme [Bertram 1997; Chen
2003; Ciocan-Fontanine 1999; Fulton and Pandharipande 1997] and the space of
stable maps [Bertram et al. 2005; Givental 1996; Oprea 2006].

4A. Intersection problems on the Drinfel’d compactification. Given an isotropic
flag F• and a symmetric partition α ∈ Pn , we have the Schubert variety

Xα(F•) := {E ∈ LG(n) | dim(E ∩ Fn−αi +i )≥ i}.

The enumerative problems we consider involve conditions that the image of a map
M ∈ LMd(X) pass through Schubert varieties at prescribed points of P1.

Question 4.1. Let F1
•
, . . . , F N

•
be general Lagrangian flags, α1, . . . , αN ∈ Pn , and

let s1, . . . , sN ∈ P1 be distinct points. Assume

N∑
i=1

|αi | = dim LG(n)+d(n+1).

How many degree-d algebraic maps M : P1
→ LG(n) satisfy

M(si ) ∈ Xαi (F i
•
)

for all i = 1, . . . , N?

Our answer to Question 4.1 is given in Theorem 4.3. In order to prove this
result, we must first establish some results on the geometry of certain subvarieties
of LQd(n) defined in terms of the universal evaluation map

ev : P1
× LMd(n)→ LG(n), ev(s,M) := M(s)

for s ∈ P1 and M ∈ LMd(n).
Fix a point s ∈ P1 and define

evs := ev(s, •) : LMd(n)→ LG(n).

Given a Schubert variety Xα(F•) ⊆ LG(n), the set of maps M ∈ LMd(n) such
that M(s) lies in Xα(F•) is the preimage ev−1

s (Xα(F•)). This is a general trans-
late of the locally closed subset Xα(0)

∩ LMd(n) under the action of the group
SL2C × Sp2nC. By a Schubert variety, we will mean the closure of ev−1

s (Xα(F•))

in LQd(n), and denote it by Xα(0)(s; F•). In order to understand these subvarieties,
we extend the evaluation map to a globally defined map P1

× LQd(n)→ LG(n).
To do this, we must first study the boundary LQd(n) \ LMd(n).
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The embedding

LMd(n) ↪→ P
(
(SdC2)∗ ⊗ L(ωn)

)
is defined by regarding a map M ∈ LMd(n) as a

(2n
n

)
-tuple of degree-d homo-

geneous forms. We identify the space LMd(n) of maps with its image, which is
a locally closed subset of P

(
(SdC2)∗ ⊗ L(ωn)

)
. The Drinfel’d compactification

LQd(n) is by definition the closure of the image.
On the other hand, LMd(n) ⊆ LQd(n) is the set of points corresponding to a(2n

n

)
-tuple of homogeneous forms satisfying the Zariski open condition that they

have no common factor. Therefore, the boundary LQd(n) \ LMd(n) consists of(2n
n

)
-tuples of homogeneous forms which do have a common factor. Such a list of

forms gives a regular map of degree a < d together with an effective Weil divisor
of degree d − a on P1 defined by the base points of the map. We thus have a
stratification

LQd(n)=

d⊔
a=0

P(SaC2∗
)× LMd−a(n)

where P(SaC2∗
) is the space of degree-a forms in two variables, or alternatively,

the space of effective Weil divisors on P1 of degree a. In particular, the boundary
of LQd(n) is simply

⊔d
a=1 P(SaC2∗

)× LMd−a(n). We may regard any point of
LQd(n) as a pair (D,M), where M ∈ LMd−a(n) and D is a divisor on P1.

Fixing a point s ∈ P1, the evaluation map evs := ev(s, •) is undefined at each
point (D,M) ∈ P(SaC2∗

)× LMd−a(n) such that s ∈ D. Thus, restricting to the
stratum P(SaC2∗

)× LMd−a(n), the map evs is defined on U a
s × LMd−a(n), where

U a
s ⊆ P(SaC2) is the set of forms which do not vanish at s ∈ P1.
For each a = 0, . . . , d , define a map

εa
s : P(SaC2∗

)× LMd−a(n)→ LG(n)

by the formula εa
s (D,M) := M(s), and let

εs : LQd(n)=

d⊔
a=0

P(SaC2∗
)× LMd−a(n)→ LG(n)

be the (globally-defined) map which restricts to εa
s on P(SaC2∗

)× LMd−a(n). The
evaluation map evs agrees with εs wherever it is defined. Hence εs extends evs to a
globally defined map, which is a morphism on each stratum P(SaC2∗

)×LMd−a(n).
The Schubert variety Xα(0)(s; F•) is the preimage of Xα(F•) under this globally
defined map; hence we have the following fact.
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Lemma 4.2. Given a point s ∈ P1 and a isotropic flag F•, the Schubert variety
Xα(0)(s, F•) is the disjoint union of the strata

P(SaC2∗
)×

(
Xα(a)(s; F•)∩ LMd−a(n)

)
.

Proof. For each a ∈ {0, . . . d}, we have(
P(SaC2∗

)× LMd−a(n)
)

∩ ε−1
s (Xα(F•))= P(SaC2∗

)× Xα(a)(s; F•). �

We now state and prove the main theorem of this section.

Theorem 4.3. Given partitions α1, . . . αN ∈ Pn such that

N∑
i=1

|αi | =

(n+1
2

)
+d(n+1),

general isotropic flags F1
•
, . . . , F N

•
, and distinct points s1, . . . , sN ∈ P1, the inter-

section
Xα

(0)
1 (s1; F1

•
)∩ · · · ∩ Xα

(0)
N (sN ; F N

•
) (4-1)

is transverse, and hence consists only of reduced points. Each point of the inter-
section (4-1) lies in LMd(n), that is, corresponds to a degree-d map whose image
M(si ) lies in Xαi (F i

•
) for i = 1, . . . , N.

Proof. For each a = 0, . . . , d, the Schubert variety Xα(a)(s, F•) is the preimage of
the Schubert variety Xα(F•)⊆LG(n) under the evaluation map εs , which is regular
on the stratum P(SaC2∗

)× LMd−a(n). By Lemma 4.2, it suffices to consider the
intersection (4-1) on each of these strata. Fix a ∈ {0, . . . , d}, and consider the
product of evaluation maps

N∏
i=1

εsi :
(
P(SaC2∗

)× LMd−a(n)
)N

→ LG(n)N

and the injection

Xα1(F1
•
)× · · · × Xαn (F N

•
) ↪→ LG(n)N .

The intersection
(
Xα

(0)
1 ∩· · ·∩ Xα

(0)
N

)
∩P(SaC2∗

)× LMd−a(n) is isomorphic to the
fiber product(

P(SaC2∗
)× LMd−a(n)

)N
×LG(n)N

(
Xα1(F1

•
)× · · · × XαN (F N

•
)
)
.

For each a = 0, . . . , d , Kleiman’s theorem [1974, Corollary 2] implies that this
intersection is proper and transverse. Considering the dimensions of these subva-
rieties, we see that this intersection is therefore zero-dimensional when a = 0 and
empty when a > 0. �
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4B. Gromov–Witten invariants and quantum cohomology. A common approach
to Question 4.1 is through the quantum cohomology ring of the Lagrangian Grass-
mannian Q H∗(LG(n)), defined as follows. The cohomology ring H∗(LG(n); Z)

has a Z-basis consisting of the classes of Schubert varieties (the Schubert classes)
σα := [Xα

], where α ∈ Pn . We will denote by α∗ the dual partition, defined so
that σα · σα∗ = [pt] ∈ H∗(LG(n); Z) [Hiller and Boe 1986]. The correspondence
α ↔ α∗ is bijective and order reversing.

The (small) quantum cohomology ring is the Z[q]-algebra isomorphic to

H∗(LG(n); Z)⊗ Z[q]

as a Z[q]-module, and with multiplication defined by the formula

σα · σβ =

∑
〈α, β, γ ∗

〉d σγ qd ,

where the sum is over all d ≥ 0 and γ such that |γ | = |α|+|β|−d
(n+1

2

)
. For

partitions α, β, and γ in Pn , the coefficients 〈α, β, γ ∗
〉d are the Gromov–Witten

invariants, defined as the number of algebraic maps M : P1
→ LG(n) of degree d

such that

M(0) ∈ Xα(F•), M(1) ∈ Xβ(G•), and M(∞) ∈ Xγ ∗

(H•),

where F•, G•, and H• are general isotropic flags (that is, general translates of the
standard flag under the action of the group Sp2nC).

A special case of Pieri’s rule gives a formula for the product of a Schubert class
σα ∈ H∗(LG(n); Z) with the simple Schubert class σ [Hiller and Boe 1986]:

σα · σ =

∑
αlβ

2N (α,β)σβ,

the sum over all partitions β obtained from α by adding a box above the diagonal,
along with its image under reflection about the diagonal. The exponent N (α, β)=1
if (α, β) ∈ Dn and N (α, β)= 0 otherwise (compare Proposition 2.10). Kresch and
Tamvakis [2003] give a quantum analogue of Pieri’s rule. We state the relevant
special case of this rule:

Proposition 4.4 [Kresch and Tamvakis 2003]. For any α ∈ Pn , we have

σα · σ =

∑
αlβ

2N (α,β)σβ + σγ q

in Q H∗(LG(n)), where the first sum is from the classical Pieri rule, and σγ = 0
unless α contains the hook-shaped partition (n, 1n−1), in which case γ is the par-
tition obtained from α by removing this hook.
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For α(a)lβ(b) in Dd,n , let N ′(α(a), β(b))= N (α, β) if b=a, and let N ′(α(a), β(b))=

0 if b = a + 1. Let α(0) ∈ Pd,n , and let π ∈ N be its corank in Pd,n; that is, π is
the length of any saturated chain of elements α(d) = x0 l · · ·l xπ = (nn)(d), where
xi ∈ Pd,n for all i = 0, . . . , π and (nn)(d) is the maximal element of Pd,n . By
Theorem 3.13, π is the dimension of Xα(0) . The quantum Pieri rule of Proposition
4.4 has a simple formulation in terms of the distributive lattice Pd,n:

Theorem 4.5. The quantum Pieri rule in Proposition 4.4 has the formulation in
terms of the poset Pd,n:

(σαqa) · σ =

∑
α(a)lβ(b)

2N ′(α(a),β(b))σβqb.

As a consequence, we have

σα · (σ )π = deg(Xα(0)) · σ(nn)qd (mod d + 1). (4-2)

Proof. The element γ (a+1)
∈ Pd,n , where γ is as the partition obtained by removing

a maximal hook from α in Proposition 4.4, is the unique cover of α(a) ∈ Pd,n

with superscript a+1. The remaining covers (with superscript a) index the sum in
Proposition 4.4.

The second formula follows by induction from the first. �

The appearance of the number deg(Xα(0)) in (4-2) is for purely combinatorial
reasons: it is the number of saturated chains α(0) l · · · l (nn)(d) in Dd,n , counted
with multiplicity. Since X

(0)
is a hyperplane section of LQd(n), this is also the

number of points in the intersection

Xα(0)(s; F•)∩

( π⋂
i=1

X
(0)
(si ; F i

•
)

)
, (4-3)

the intersection of Xα(0)(s; F•) with π = codim(Xα(0)(s; F•)) general translates of
the hyperplane section X

(0)
. On the other hand, multiplication in Q H∗(LG(n))

represents the conjunction of conditions that a map takes values in Schubert va-
rieties at generic points of P1. In this way, the quantum cohomology identity of
Theorem 4.5 has an interpretation as the number of points in the intersection (4-3)
of Schubert varieties in LQd(n).

5. The straightening law

5A. A basis for SdC2⊗L(ωn)
∗. The Drinfel’d Lagrangian Grassmannian embeds

in the projective space P
(
(SdC2)∗ ⊗ L(ωn)

)
. We begin by describing convenient

bases for the representation L(ωn) and its dual L(ωn)
∗.
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For α ∈
(
〈n〉

n

)
and positive integers, set

v(a)α := satd−a
⊗ eα1 ∧ · · · ∧ eαn ∈ (SdC2)∗ ⊗

∧n
C2n,

and let

p(a)α := uavd−a
⊗ e∗

α1
∧ · · · ∧ e∗

αn
∈ SdC2

⊗

∧n
C2n∗

be the Plücker coordinate indexed by α(a) ∈ Dd,n , where {u, v} ∈ C2 and {s, t} ∈

(C2)∗ are dual bases.
The representation L(ωn)

∗ is the quotient of
∧n

C2n∗ by the linear subspace

Ln =�∧

∧n−2
C2n∗

described in Proposition 2.3. Thus SdC2
⊗ L(ωn)

∗ is the quotient of SdC2
⊗∧n

C2n∗ by the linear subspace

Ld,n := SdC2
⊗ Ln.

Note that Ld,n is spanned by the linear forms

`(a)α := uavd−a
⊗

∑
i |{ı̄,i}∩α=∅

e∗

ı̄ ∧ e∗

i ∧ e∗

α1
∧ · · · ∧ e∗

αn−2
(5-1)

for α ∈
(

〈n〉

n−2

)
and a = 0, . . . , d . The linear form (5-1) is simply uavd−a tensored

with a linear form generating Ln . Each term in the linear form (5-1) is a Plücker
coordinate indexed by a sequence involving both i and ı̄ , for some i ∈ [n].

Let S ⊆ SL2(C) and T ⊆ Sp2n(C) be maximal tori. The torus S is one-dimen-
sional, so that its Lie algebra s has basis consisting of a single element H ∈ s. For
i ∈ 〈 n〉, let hi := Ei i − E ı̄ ı̄ . The set {hi | i ∈ [n]} is a basis for the Lie algebra t of
T ⊆ Sp2n(C). The weights of the maximal torus S × T ⊆ SL2(C)× Sp2n(C) are
elements of s∗

⊕ t∗. The Plücker coordinate p(a)α ∈ SdC2
⊗ (

∧n
C2n)∗ is a weight

vector of weight

(d−2a)H∗
+

∑
i |ᾱi 6∈α

h∗

αi
. (5-2)

Each linear form (5-1) lies in a unique weight space. Thus, to find a basis for
SdC2

⊗ L(ωn)
∗, it suffices to find a basis for each weight space. We therefore fix

the weight (5-2) and its corresponding weight space in the following discussion.
We reduce to the case that the weight (5-2) is in fact 0, as follows.

For each α ∈
(

〈n〉

n−2

)
, we have an element `α = �∧ pα ∈ Ln . This is a weight

vector of weight

ωα := h∗

α1
+ · · · +h∗

αk
∈ t∗.
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Set α̃ := {i ∈ α | ı̄ 6∈ α} and observe that ωα̃ = ωα. The elements α ∈
(

〈n〉

n−2

)
such

that `α ∈ (Ln)ω are those satisfying ωα = ω. That is,

(Ln)ω = 〈�∧ pα | ωα = ω〉.

The shape of the linear form `α is determined by the number of pairs {ı̄, i} ⊆ α;
it is the same, up to multiplication of some variables by −1, as the linear form
`α\α̃ = �∧ pα\α̃ ∈ Ln−|̃α|, of weight ωα\α̃ = 0. It follows that the generators of
(Ln)ωα have the same form as those of (Ln−|̃α|)ωα\α̃

, up to some signs arising from
sorting the indices. Since these signs do not affect linear independence, it suffices
to find a basis for (Ln)0, from which it is then straightforward to deduce a basis for
(Ln)ωα . We thus assume that the weight space in question is (Ln)0. This implies
that n is even; set m :=

n
2 .

Example 5.1. We consider linear forms which span (L6)h∗

1+h∗

3
. Let m = 3 (so

n = 6) and ω = h∗

1 + h∗

3. If α = 6̄136, then α̃ = 13 and ωα = ω. We have

`α = p6̄5̄1356 + p6̄4̄1346 − p6̄2̄1236.

The equations for the weight space (Ln)ω are

`6̄136 = p6̄5̄1356 + p6̄4̄1346 − p6̄2̄1236,

`5̄135 = p6̄5̄1356 + p5̄4̄1345 − p5̄2̄1235,

`4̄134 = p6̄4̄1346 + p5̄4̄1345 − p4̄2̄1234,

`2̄123 = p6̄2̄1236 + p5̄2̄1235 + p4̄2̄1234.

We can obtain the linear forms which span (L4)0 (see Example 2.11) by first re-
moving every occurrence of 1 and 3 in the subscripts above and then flattening
the remaining indices. That is, we apply the following replacement (and similarly
for the negative indices): 6 7→ 4, 5 7→ 3, 4 7→ 2, and 2 7→ 1. We then replace
a variable by its negative if 2 appears in its index; this is to keep track of the
sign of the permutation sorting the sequence (ı̄, i, α1, . . . , αn−2) in each term of `α
(see (5-1)).

By Proposition 2.3, the map( 2m∧
C4m

)
0
→

(2m−2∧
C4m

)
0

given by contraction with the form

� ∈

∧2
(C4m)∗
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is surjective, with kernel (L(ω2m))0. Since the set
{
(ᾱ, α)

∣∣ α ∈
(
[2m]

k

)}
is a basis

of (
∧2k

C4m)0 (for any k ≤ m), we have

dim(L(ω2m))0 = dim
( 2m∧

C4m
)

0
− dim

(2m−2∧
C4m

)
0

=

(2m
m

)
−

( 2m
m−2

)
=

1
m+1

(2m
m

)
.

This (Catalan) number is equal to the number of admissible pairs of weight 0.

Lemma 5.2. dim(L(ωn))0 is equal to the number of admissible pairs (α, β) ∈ Dn

of weight ωα+ωβ2 = 0.

Proof. Recall that each trivial admissible pair (α, α), where

α = (ā1, . . . , ās, b1, . . . , bn−s) ∈ Dn,

indexes a weight vector of weight
∑n−s

i=1 h∗

bi
−

∑s
i=1 h∗

ai
. Also, the nontrivial ad-

missible pairs are those (α, β) for which α < β have the same number of nega-
tive elements. Therefore, the admissible pairs of weight zero are the (α, β) ∈ Dn

such that β = (ām, . . . , ā1, b1, . . . , bm), α = (b̄m, . . . , b̄1, a1, . . . , am), and the sets
{a1, . . . , am} and {b1, . . . , bm} are disjoint. This last condition is equivalent to
ai > bi for all i ∈ [m]. The number of such pairs is equal to the number of standard
tableaux of shape (m2) (that is, a rectangular box with 2 rows and m columns)
with entries in [2m]. By the hook length formula [Fulton 1997] this number is

1
m+1

(2m
m

)
. �

The weight vectors pα ∈ (
∧n

C4m∗
)0 are indexed by sequences of the form

α = (ᾱm, . . . , ᾱ1, α1, . . . , αm)

which can be abbreviated by the positive subsequence α+ := (α1, . . . , αm)∈
(
[2m]

m

)
without ambiguity. We take these as an indexing set for the variables appearing in
the linear forms (5-1).

With this notation, the positive parts of Northeast sequences are characterized
in Proposition 5.4. The proof requires the following definition.

Definition 5.3. A tableau is a partition whose boxes are filled with integers from
the set [n], for some n ∈ N. A tableau is standard if the entries strictly increase
from left to right and top to bottom.

Proposition 5.4. Let α ∈
(
〈2m〉

2m

)
be a Northeast sequence. Then the positive part of

α satisfies α+ ≥ 24 · · · (2m)∈
(
[2m]

m

)
. In particular, no Northeast sequence contains

1 ∈ [2m] and every Northeast sequence contains 2m ∈ [2m].
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Proof. α+ ≥ 24 · · · (2m) if and only if the tableau of shape (m2) whose first row is
filled with the sequence (αt)+ = [n] \ α+ and whose second row is filled with the
α+ is standard. This is equivalent to α being Northeast. �

It follows from Proposition 2.10 that the set NE of Northeast sequences indexing
vectors of weight zero has cardinality equal to the dimension of the zero-weight
space of the representation L(ω2m)

∗. This weight space is the cokernel of the map

�∧ • :

(2m−2∧
C4m

)∗

0
→

( 2m∧
C4m

)∗

0
.

Similarly, the weight space L(ω2m)0 is the kernel of the dual map

� y • :

( 2m∧
C4m

)
0
→

(2m−2∧
C4m

)
0
.

We fix the positive integer m, and consider only the positive subsequence α+ of
the sequence α ∈

(
〈2m〉

2m

)
. When the weight of pα is 0, α+ is an element of

(
[2m]

m

)
.

For α ∈
(
[2m]

m

)
, we call a bijection M : α→ αc a matching of α. Fixing a matching

M : α → αc, we have an element of the kernel L(ω2m), as follows. Let Hα be the
set of all sequences in

(
[2m]

m

)
obtained by interchanging M(αi ) and αi , for i ∈ I ,

I ⊆ [m].
Elements of the set Hα are the vertices of an m-dimensional hypercube, whose

edges connect pairs of sequences which are related by the interchange of a single
element. Equivalently, a pair of sequences are connected by an edge if they share a
subsequence of size m − 1. For any such subsequence β ⊆ α there exists a unique
edge of Hα connecting the two vertices which share the subsequence β. Let I · α

denote the element of Hα obtained from α by the interchange of M(αi ) and αi for
i ∈ I . The element

Kα :=

∑
I⊆[m]

(−1)|I |vI ·α

lies in the kernel L(ω2m). Indeed, for each I ⊆ [m], we have

� y vI ·α =

m∑
i=1

v(I ·α)\{(I ·α)i }.

For each term v(I ·α)\{(I ·α)i } on the right hand side, let j ∈ [m] be such that either
(I ·α)i = α j or (I ·α)i = αc

j . Set

J =

{
I ∪ { j}, if (I ·α)i = α j ,

I \ { j}, if (I ·α)i = αc
j .

The set J is the unique subset of [m] such that (I · α) \ {(I · α)i } is in the support
of � y vJ ·α, with coefficient (−1)|J |

= (−1)|I |+1. Hence these terms cancel in Kα,
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and we see that the coefficient of each vβ for β ∈
(
[2m]

m−1

)
in the support of � y Kα

is zero. Therefore � y Kα = 0. See Example 5.8 for the case m = 2.
If α ∈ NE then there exists a descending matching, that is, M(αi ) < αi for all

i ∈[m]. For example, the condition that the matching M(αi ) :=α
c
i be descending is

equivalent to the condition that α be Northeast. If we choose a descending matching
for each α∈NE, the element Kα ∈L(ω2m) is supported on sequences which precede
α in the poset

(
[2m]

m

)
. It follows that the set B := {Kα ∈ L(ω2m) | α ∈ NE} is a basis

for L(ω2m).

Lemma 5.5. The Plücker coordinates pα with α ∈ NE are a basis for L(ω2m)
∗.

Proof. Fix a basis B of L(ω2m) obtained from descending matchings of each North-
east sequence. We use this basis to show that the set of Plücker coordinates pα such
that α is Northeast is a basis for the dual L(ω2m)

∗.
Suppose not. Then there exists a linear form

`=

∑
α∈NE

cα pα

vanishing on each element of the basis B. We show by induction on the poset NE

that all of the coefficients cα appearing in this form vanish.
Fix a Northeast sequence α∈NE, and assume that cβ =0 for all Northeast β<α.

Since Kα involves only the basis vectors vβ with β≤α, we have `(Kα)= cα, hence
cα = 0. This completes the inductive step of the proof.

The initial step of the induction is simply the inductive step applied to the unique
minimal Northeast sequence α = 24 · · · (2m). �

It follows that every Plücker coordinate pα indexed by a non-Northeast sequence
α can be written uniquely as a linear combination of Plücker coordinates indexed
by Northeast sequences. We can be more precise about the form of these linear
combinations. Recall that each fiber of the map π2m contains a unique Northeast
sequence. For a sequence α0, let α be the Northeast sequence in the same fiber
as α0.

Lemma 5.6. For each non-Northeast sequence α0, let `′α0
be the linear relation

among the Plücker coordinates expressing pα0 as a linear combination of the pβ
with β Northeast. Then pα appears in `′α0

with coefficient (−1)|I |, where α= I ·α0,
and every other Northeast β with pβ in the support of `′α0

satisfies β > α.

Proof. Let M be the descending matching of α with αc defined by M(αi ) := αc
i .

Let Kα be the kernel element obtained by the process described above. Any linear
form

`= pα0 + (−1)|I |+1 pα +

∑
α<β∈NE

cβ pβ

vanishes on Kα.
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We extend this relation to one which vanishes on all of L(ωn)0, proceeding
inductively on the poset of Northeast sequences greater than or equal to α. Suppose
that β > α is Northeast. By induction, suppose that for each Northeast sequence
γ in the interval [α, β] the coefficient cγ of ` has been determined in such a way
that `(Kγ )= 0.

Let S be the set of Northeast sequences γ in the open interval (α, β) such that
vγ appears in Kβ . Then

`(Kβ)=

(∑
γ∈S

cγ

)
+ cβ,

so setting cβ := −
∑

γ∈S cγ implies that `(Kβ)= 0.
This completes the inductive part of the proof. We now have a linear form

` vanishing on L(ωn)0 which expresses pα0 as a linear combination of Plücker
coordinates indexed by Northeast sequences. Since such a linear form is unique,
`= `′α0

. �

By Lemmas 5.5 and 5.6 and the argument preceding them, we deduce:

Theorem 5.7. The system of linear relations

{`(a)α = uavd−a
⊗�∧ pα | a = 0, . . . , d, α ∈

(
〈n〉

n−2

)
}

has a reduced normal form consisting of linear forms expressing each Plücker co-
ordinate p(b)β with β 6∈ NE ⊆

(
〈n〉

n

)
as a linear combination of Plücker coordinates

indexed by Northeast elements of
(
〈n〉

n

)
.

Proof. We have seen that the linear relations preserve weight spaces, and Lem-
mas 5.5 and 5.6 provide the required normal form on each of these. The union of
the relations constitute a normal form for the linear relations generating the entire
linear subspace Ld,n . �

Example 5.8. Consider the zero weight space (
∧4

C8)0 (so that m = 2). This is
spanned by the vectors

vα := eα1 ∧ eα2 ∧ eα3 ∧ eα4

(with dual basis the Plücker coordinates pα = v∗
α), where

α ∈ {4̄3̄34, 4̄2̄24, 4̄1̄14, 3̄2̄23, 3̄1̄13, 2̄1̄12}.

The Northeast sequences are 4̄3̄34 and 4̄2̄24. The kernel of

� y • :

(∧4
C8

)
0
→

(∧2
C8

)
0
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is spanned by the vectors

K 4̄2̄24 = v4̄2̄24 − v4̄1̄14 − v3̄2̄23 + v3̄1̄13, and

K 4̄3̄34 = v4̄3̄34 − v4̄1̄14 − v3̄2̄23 + v2̄1̄12.

To see this concretely, we compute:

� y K 4̄2̄24 = v4̄4 + v2̄2 − v4̄4 − v1̄1 − v3̄3 − v2̄2 + v3̄3 + v1̄1 = 0,

and similarly � y K 4̄3̄34 = 0. The fibers of the map π4 :
(
〈4〉

4

)
→ D4 are

π−1
4 (4̄3̄12, 2̄1̄34)= {4̄3̄34, 2̄1̄12}, and

π−1
4 (4̄2̄13, 3̄1̄24)= {4̄2̄24, 4̄1̄14, 3̄2̄23, 3̄1̄13}.

The expression for p4̄1̄14 as a linear combination of Plücker coordinates indexed
by Northeast sequences is

`4̄1̄14 = p4̄1̄14 + c4̄2̄24 p4̄2̄24 + c4̄3̄34 p4̄3̄34,

for some c4̄2̄24, c4̄3̄34 ∈ C, which we can compute as follows. Since

0 = `4̄1̄14(K 4̄2̄24)= c4̄2̄24 − 1,

we have c4̄2̄24 = 1. Similarly,

0 = `4̄1̄14(K 4̄3̄34)= c4̄3̄34 − 1,

so c4̄3̄34 = 1. Hence `4̄1̄14 = p4̄1̄14 + p4̄2̄24 + p4̄3̄34, which agrees with (2-3).

5B. Proof of the straightening law. We find generators of (Id,n+Ld,n)∩C[Dd,n]

which express the quotient as an algebra with straightening law on Dd,n . Such a
generating set is automatically a Gröbner basis with respect to the degree reverse
lexicographic term order where variables are ordered by a refinement of the doset
order. We begin with a Gröbner basis G Id,n+Ld,n for Id,n+Ld,n with respect to a
similar term order. For α(a) ∈

(
〈n〉

n

)
d , write

α̌(a) := α(a) ∨ (αt)(a) and α̂(a) := α(a) ∧ (αt)(a),

so that
πn(α

(a))= (α̂(a), α̌(a)).

We call an element α(a) ∈
(
〈n〉

n

)
d Northeast if α ∈

(
〈n〉

n

)
is Northeast.

Let< be a linear refinement of the partial order on Pd,n satisfying the following
conditions. First, the Northeast sequence is minimal among those in a given fiber
of πn . This is possible since every weight space is an antichain (that is, no two
elements are comparable). Second, α(a) < β(b) if (α̂(a), α̌(a)) is lexicographically
smaller than (β̂(b), β̌(b)).
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With respect to any such refinement, consider the degree reverse lexicographic
term order. A reduced Gröbner basis Gd,n for Id,n+Ld,n with respect to this term
order will have standard monomials indexed by chains (in Pd,n) of Northeast par-
titions. While every monomial supported on a chain of Northeast partitions is
standard modulo Id,n , this is not always the case modulo Id,n+Ld,n . In other
words, upon identifying each Northeast partition appearing in a given monomial
with an element of Dd,n , we do not necessarily obtain a monomial supported on a
chain in Dd,n . It is thus necessary to identify precisely which Northeast chains in(
〈n〉

n

)
correspond to chains in Dd,n via the map πn .

A monomial p(a)α p(b)β such that α(a) < β(b), (β t)(b), and α(a), β(b) ∈ NE cannot
be reduced modulo G Id,n or GLd,n . On the other hand, if α(a) <β(b) (say), but α(a)

and (β t)(b) are incomparable (written α(a) 6∼ (β t)(b)) then there is a relation in G Id,n

with leading term p(a)α p(b)
β t . It follows that the degree-two standard monomials are

indexed by Northeast partitions p(a)α p(b)β with α(a) < β(b), (β t)(b).
Conversely, any monomial p(a)α p(b)β with α(a)<β(b), (β t)(b), and α(a), β(b)∈NE

cannot be the leading term of any element of G Id,n+Ld,n . To see this, observe that
G Id,n+Ld,n is obtained by Buchberger’s algorithm [1965] applied to G Id,n ∪ GLd,n ,
and we may consider only the S-polynomials S( f, g) with f ∈ G Id,n and g ∈ GLd,n .
In this case we may assume in<g divides in< f .

Let α0 be the partition such that in<g = p(a)α0 (that is, g is the unique expression
of p(a)α0 as a linear combination of Plücker coordinates indexed by Northeast parti-
tions), and let α be the unique Northeast partition such that πn(α0)=πn(α). By the
reduced normal form given in Theorem 5.7, S( f, g) is the obtained by replacing
p(a)α0 with ±p(a)α + `, where ` is a linear combination of Plücker coordinates p(a)γ
with γ Northeast and α+ < γ+. This latter condition implies that α̂ < γ̂ (also,
α̌ > γ̌ ), and therefore (α̂, α̌) is lexicographically smaller than (γ̂ , γ̌ ).

Hence, with respect to the reduced Gröbner basis G Id,n+Ld,n , the standard mono-
mials are precisely the monomials p(a)α p(b)β with α(a)≤β(b), (β t)(b), and α(a), β(b)∈
NE.

Recall that elements of the doset Dd,n are pairs (α, β) of admissible elements
(Definition 2.6) of

(
〈n〉

n

)
d such that (regarded as sequences):

• α ≤ β;

• α and β have the same number of negative (or positive) elements.

Equivalently, regarding α and β as partitions, the elements of Dd,n are pairs (α, β)
of symmetric partitions such that:

• α ⊆ β;

• α and β have the same Durfee square, where the Durfee square of a partition
α is the largest square subpartition (p p)⊆ α (for some p ≤ n).
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Theorem 5.9. C[
(
〈n〉

n

)
d ]/〈Id,n+Ld,n〉 is an algebra with straightening law on Dd,n .

Proof. Since standard monomials with respect to a Gröbner basis are linearly
independent, the arguments above establish the conditions in Definition 3.3 (1)
and (2).

To establish the condition (3), note that it suffices to consider the expression
for a degree-2 monomial as a sum of standard monomials. For simplicity, we
absorb the superscripts into our notation and write α ∈

(
〈n〉

n

)
d and similarly for the

corresponding Plücker coordinate. Let

p(α̂,α̌) p(β̂,β̌) =
k∑

j=1

c j p(α̂ j ,α̌ j ) p(β̂ j ,β̌ j )
(5-3)

be a reduced expression in G Id,n+Ld,n for p(α̂,α̌) p(β̂,β̌) as a sum of standard mono-
mials. That is, p(α̂,α̌) p(β̂,β̌) is nonstandard and p(α̂ j ,α̌ j ) p(β̂ j ,β̌ j )

is standard for
j = 1, . . . , k. We assume that α (respectively, β) be the unique Northeast partition
such that πn(α)= (α̂, α̌) (respectively, πn(β)= (β̂, β̌)), and similarly for each α j

and β j appearing in (5-3).
Fix j = 1, . . . , k. The standard monomial p(α̂ j ,α̌ j ) p(β̂ j ,β̌ j )

is obtained by the
reduction modulo GLd,n of a standard monomial pγ pδ appearing in the straight-
ening relation for pα pβ , which is an element of the Gröbner basis G Id,n . If γ and
δ are both Northeast, then nothing happens, that is, γ = α j and δ = β j . If γ is
not Northeast, then we rewrite pγ as a linear combination of Plücker coordinates
indexed by Northeast sequences. Lemma 5.6 ensures that the leading term of the
new expression is p(γ̂ ,γ̌ ), and the lower order terms p(ε̂,ε̌) satisfy ε̂ < γ̂ .

It follows that the lexicographic comparison in the condition of Definition 3.3 (3)
terminates with the first Plücker coordinate. That is, if (α̂ j ≤ α̌ j ≤ β̂ j ≤ β̌ j ) is
lexicographically smaller than (α̂ ≤ α̌ ≤ β̂ ≤ β̌), then either α̂ j < α̂ or α̂ j = α̂ and
α̂ j < α̂. Therefore the reduction process applied to pδ does not affect the result,
and the condition (3) is proven.

It remains to prove the condition (4). Suppose that (α̂, α̌) and (β̂, β̌) are incom-
parable elements of Dd,n (α and β Northeast). This means that α is incomparable
to either β or β t (possibly both). Without loss of generality, we will deal only with
the more complicated case that α and β t are incomparable. The hypothesis of the
condition (4) is that the set {α̂, α̌, β̂, β̌} forms a chain in

(
〈n〉

n

)
d . Up to interchanging

the roles of α and β, there are two possible cases (see Figure 9):

α̂ < β̂ < α̌ < β̌, or α̂ < β̂ < β̌ < α̌.

First, suppose α̂ < β̂ < α̌ < β̌. Recall that for any γ0 ∈
(
〈n〉

n

)
d , with Northeast

sequence γ in the same fiber of πn , the expression for the Plücker coordinate pγ0

as a linear combination of Plücker coordinates indexed by Northeast sequences is
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α̌

β̂

α̂

α β βt

β̂

β̌

α̌
β̌

β βt

α̂

αt

αt

α

α̂ < β̂ < α̌ < β̌ α̌ < β̂ < β̌ < α̌

Figure 9. The two cases in the proof of the condition of Definition 3.3 (4).

supported on Plücker coordinates pδ such that δ+ ≥ γ+ with equality if and only
if δ = γ , and the Plücker coordinate pγ appears with coefficient ±1 (Lemma 5.6).

Upon replacing each Northeast (or Southwest) partition with its associated doset
element using the map πn from Section 2B, the first two terms of straightening
relation for pα pβ t are

pα pβ t − pα∧β t pα∨β t

= pα pβ t − σ p((α∧β t )∧,(α∧β t )∨) p((α∨β t )∧,(α∨β t )∨) + lower order terms

= σβ p(α̂,α̌) p(β̂,β̌) − σ p(α̂,β̂) p(α̌,β̌) + lower order terms,

where σ = ±1. The second equation is justified as follows. For any element
α ∈

(
〈n〉

n

)
d , recall that α+ (respectively, α−) denotes the subsequence of positive

(negative) elements of α. This was previous defined for elements of
(
〈n〉

n

)
, but

extends to elements of
(
〈n〉

n

)
d in the obvious way, that is, by ignoring the superscript.

The condition

α̂ < β̂ < α̌ < β̌

is equivalent to

ᾱc
−
< β̄c

−
< α+ < β+.

Note that this implies that

α∧β t
= α− ∪ β̄c

−
, and α∨β t

= ᾱc
+

∪β+.

We compute in the distributive lattice
(
〈n〉

n

)
d .

(α∧β t)∧ (αt
∧β)= (α− ∪ β̄c

−
)∧ (β− ∪ ᾱc

−
)= α̂

(α∧β t)∨ (αt
∧β)= (α− ∪ β̄c

−
)∨ (β− ∪ ᾱc

−
)= β̂
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Similarly,

(α∨β t)∧ (αt
∨β)= α̌, and (α∨β t)∨ (αt

∨β)= β̌.

In the remaining case, we have α̌ < β̂ < β̌ < α̌, and it follows that α 6∼ β and
α 6∼ β t both hold. We use the relation for the incomparable pair α 6∼ β t :

pα pβ t − pα∧β t pα∨β t

= pα pβ t − σ p((α∧β t )∧,(α∧β t )∨) p((α∨β t )∧,(α∨β t )∨) + lower order terms

= σβ p(α̂,α̌) p(β̂,β̌) − σ p(α̂,β̂) p(β̌,α̌) + lower order terms,

where the second equality holds by a similar computation in
(
〈n〉

n

)
d . �

The next result shows that the algebra with straightening law just constructed is
indeed the coordinate ring of LQd(n).

Theorem 5.10. C[
(
〈n〉

n

)
d ]/〈Id,n+Ld,n〉 ∼= C[LQd(n)] .

Proof. Let I ′
:= I (LQd(n)). By definition, we have Id,n+Ld,n ⊆ I ′. Since the

degree and codimension of these ideals are equal, I ′ is nilpotent modulo Id,n+Ld,n .
On the other hand Id,n+Ld,n is radical, so Id,n+Ld,n = I ′. �

The arguments of De Concini and Lakshmibai [1981, Theorem 4.5] extend to
the case of Schubert subvarieties of LQd(n).

Corollary 5.11. The coordinate ring of any Schubert subvariety of LQd(n) is an
algebra with straightening law on a doset, hence Cohen–Macaulay and Koszul.

Proof. For α(a) ∈ Dd,n , the Schubert variety Xα(a) is defined by the vanishing
of the Plücker coordinates p(b)(β,γ ) for γ (b) 6≤ α(a). The conditions in Definition
3.3 (4) are stable upon setting these variables to zero, so we obtain an algebra with
straightening law on the doset

{(β, γ )(b) ∈ Dd,n | γ (b) ≤ α(a)}.

Let D⊆P×P be a doset on the poset P, A any algebra with straightening law on
D, and C{P} the unique discrete algebra with straightening law on P. That is, C{P}

has algebra generators corresponding to the elements of P, and the straightening
relations are αβ = 0 if α and β are incomparable elements of P. Then A is Cohen–
Macaulay if and only if C{P} is Cohen–Macaulay [De Concini and Lakshmibai
1981].

On the other hand, C{P} is the face ring of the order complex of P. The order
complex of a locally upper semimodular poset is shellable. The face ring of a
shellable simplicial complex is Cohen–Macaulay [Bruns and Herzog 1993]. By
Proposition 3.17, any interval in the poset Pd,n is a distributive lattice, hence lo-
cally upper semimodular. This proves that C[LQd(n)] is Cohen–Macaulay. The
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Koszul property is a consequence of the quadratic Gröbner basis consisting of the
straightening relations. �

The main results of this paper suggest that the space of quasimaps is an adequate
setting for the study of the enumerative geometry of curves into a general flag
variety. They also give a new and interesting example of a family of varieties
whose coordinate rings are Hodge algebras.

After the ordinary Grassmannian, the Lagrangian Grassmannian was the first
space to be well understood in terms of (classical) standard monomial theory. Our
results thus lend credence to the expectation that further study of the space of
quasimaps into a flag variety of general type, possibly incorporating the ideas of
Chirivı̀ [2000; 2001], will yield new results in parallel (to some extent) with the
classical theory.
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There is no point in your trying to optimize line and page breaks in the original manuscript.
The manuscript will be reformatted to use the journal’s preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the designated corresponding
author) at a Web site in PDF format. Failure to acknowledge the receipt of proofs or to
return corrections within the requested deadline may cause publication to be postponed.
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