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The Drinfel’d Lagrangian Grassmannian compactifies the space of algebraic
maps of fixed degree from the projective line into the Lagrangian Grassmannian.
It has a natural projective embedding arising from the canonical embedding of
the Lagrangian Grassmannian. We show that the defining ideal of any Schubert
subvariety of the Drinfel’d Lagrangian Grassmannian is generated by polynomi-
als which give a straightening law on an ordered set. Consequentially, any such
subvariety is Cohen–Macaulay and Koszul. The Hilbert function is computed
from the straightening law, leading to a new derivation of certain intersection
numbers in the quantum cohomology ring of the Lagrangian Grassmannian.

1. Introduction

The space of algebraic maps of degree d from P1 to a projective variety X has appli-
cations to mathematical physics, linear systems theory, quantum cohomology, geo-
metric representation theory, and the geometric Langlands correspondence [Braver-
man 2006; Sottile 2000; 2001]. This space is (almost) never compact, so various
compactifications have been introduced to help understand its geometry. Among
these (at least when X is a flag variety) are Kontsevich’s space of stable maps [Ful-
ton and Pandharipande 1997; Kontsevich 1995], the quot scheme (or space of
quasiflags) [Chen 2001; Laumon 1990; Strømme 1987], and the Drinfel’d com-
pactification (or space of quasimaps). The latter space is defined concretely as a
projective variety, and much information can be gleaned directly from its defining
equations.

Inspired by the work of Hodge [1943], standard monomial theory was developed
by Lakshmibai [2003], Musili [2003], Seshadri, and others (see also the references
therein), to study the flag varieties G/P , where G is a semisimple algebraic group
and P ⊆ G is a parabolic subgroup. These spaces have a decomposition into

MSC2000: primary 13F50; secondary 13P10, 14N35, 14N15.
Keywords: algebra with straightening law, quasimap, Lagrangian Grassmannian, quantum

cohomology.
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Schubert cells, whose closures (the Schubert varieties) give a basis for cohomology.
As consequences of standard monomial theory, Schubert varieties are normal and
Cohen–Macaulay, and one has an explicit description of their singularities and
defining ideals.

A key part of standard monomial theory is that any flag variety G/P (P a par-
abolic subgroup) has a projective embedding which presents its coordinate ring
as an algebra with straightening law (Definition 3.3), a special case of a Hodge
algebra [De Concini et al. 1982]. This idea originates with the work of Hodge
on the Grassmannian [1943], and was extended to the Lagrangian Grassmannian
by De Concini and Lakshmibai [1981]. This framework was extended to many
other flag varieties by Lakshmibai [2003], Seshadri, and their coauthors [Musili
2003]. Littelmann’s path model for representations of algebraic groups [1998] later
provided the necessary tools to treat all flag varieties in a unified way, as carried out
by Chirivı̀ [2000; 2001]. The general case requires a more expansive notion of an
algebra with straightening law (also due to Chirivı̀), called a Lakshmibai–Seshadri
(LS) algebra.

Sottile and Sturmfels [2001] have extended standard monomial theory to the
Drinfel’d Grassmannian parametrizing algebraic maps from P1 into the Grassman-
nian. They define Schubert subvarieties of this space and prove that the homoge-
neous coordinate ring of any Schubert variety (including the Drinfel’d Grassman-
nian itself) is an algebra with straightening law on a distributive lattice. Using this
fact, the authors show that these Schubert varieties are normal, Cohen–Macaulay
and Koszul, and have rational singularities.

We extend these results to the Drinfel’d Lagrangian Grassmannian, which para-
metrizes algebraic maps from P1 into the Lagrangian Grassmannian. In particular,
we prove:

Theorem 1.1. The coordinate ring of any Schubert subvariety of the Drinfel’d
Lagrangian Grassmannian is an algebra with straightening law on a doset.

See Theorems 5.9 and 5.10 in Section 5 for more details.
A doset, as introduced in [De Concini and Lakshmibai 1981], is a certain kind

of ordered set (Definition 3.1). As consequences of Theorem 1.1, we show that
the coordinate ring is reduced, Cohen–Macaulay, and Koszul, and obtain formulas
for its degree and dimension. These formulas have an interpretation in terms of
quantum cohomology, as described in Section 4.

In Section 2, we review the basic definitions and facts concerning Drinfel’d com-
pactifications and the Lagrangian Grassmannian. Section 3 provides the necessary
background on algebras with straightening law. We discuss an application to the
quantum cohomology of the Lagrangian Grassmannian in Section 4. Our main
result and its consequences are proved in Section 5.
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2. Preliminaries

We first give a precise definition of the Drinfel’d compactification of the space of
algebraic maps from P1 to a homogeneous variety. We then review the basic facts
we will need regarding the Lagrangian Grassmannian.

2A. Spaces of algebraic maps. Let G be a semisimple linear algebraic group. Fix
a Borel subgroup B ⊆ G and a maximal torus T ⊆ B. Let R be the set of roots
(determined by T ), and S := {ρ1, . . . , ρr } the simple roots (determined by B). The
simple roots form an ordered basis for the Lie algebra t of T ; let {ω1, . . . , ωr } be
the dual basis (the fundamental weights). The Weyl group W is the normalizer of
T modulo T itself.

Let P ⊆ G be the maximal parabolic subgroup associated to the fundamental
weight ω, let L(ω) be the irreducible representation of highest weight ω, and let
(•, •) denote the Killing form on t. The flag variety G/P embeds in PL(ω) as the
orbit of a point [v] ∈ PL(ω), where v ∈ L(ω) is a highest weight vector. Define the
degree of a algebraic map f : P1

→ G/P to be its degree as a map into PL(ω). For
ρ ∈ R, set ρ∨

:= 2ρ/(ρ, ρ). For simplicity, assume that (ω, ρ∨) ≤ 2 for all ρ ∈ S
(that is, P is of classical type [Lakshmibai 2003]). This condition implies that
L(ω) has T -fixed lines indexed by certain admissible pairs of elements of W/WP .

Let Md(G/P) be the space of algebraic maps of degree d from P1 into G/P . If
P is of classical type then the set D of admissible pairs indexes homogeneous co-
ordinates on PL(ω) (see Definition 3.16, and [Lakshmibai 2003; Musili 2003] for
a more thorough treatment). Therefore, any map f ∈ Md(G/P) can be expressed
as

f : [s, t] 7→ [pw(s, t) | w ∈ D],

where the pw(s, t) are homogeneous forms of degree d. This leads to an embedding
of Md(G/P) into P

(
(SdC2)∗⊗L(ω)

)
, where (SdC2)∗ is the space of homogeneous

forms of degree d in two variables. The coefficients of the homogeneous forms in
(SdC2)∗ give coordinate functions on (SdC2)∗ ⊗L(ω); they are indexed by the set
{w(a)

| w ∈ D, a = 0, . . . , d}, a disjoint union of d+1 copies of D.
The closure of

Md(G/P) ⊆ P
(
(SdC2)∗ ⊗ L(ω)

)
is called the Drinfel’d compactification and denoted Qd(G/P). This definition
is due to V. Drinfel’d, dating from the mid-1980s. Drinfel’d never published
this definition himself; to the author’s knowledge its first appearance in print was
in [Rosenthal 1994]; see also [Kuznetsov 1997].

Let G = SLn(C) and P be the maximal parabolic subgroup stabilizing a fixed
k-dimensional subspace of Cn , so that G/P = Gr(k, n). In this case we denote the
Drinfel’d Grassmannian Qd(G/P) by Qd(k, n). In [Sottile and Sturmfels 2001]
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it is shown that the homogeneous coordinate ring of Qd(k, n) is an algebra with
straightening law on the distributive lattice(

[n]

k

)
d

:=

{
α(a)

∣∣∣ α ∈

(
[n]

k

)
, 0 ≤ a ≤ d

}
,

with partial order on
(
[n]

k

)
d defined by α(a)

≤β(b) if and only if a ≤b and αi ≤βb−a+i

for i =1, . . . , k−b+a. It follows that the homogeneous coordinate ring of Qd(k, n)

is normal, Cohen–Macaulay, and Koszul, and that the ideal I d
k,n−k ⊆ C[

(
[n]

k

)
d ] has

a quadratic Gröbner basis consisting of the straightening relations.
Taking d = 0 above, this partial order is the classical Bruhat order on

(
[n]

k

)
. In

general, given a semisimple algebraic group G with parabolic subgroup P , the
Bruhat order is an ordering on the set of maximal coset representatives of the
quotient of the Weyl group of G by the Weyl group of P .

Suppose that d = `k+q for nonnegative integers ` and q with q < k, and let
X = (xi j )1≤i, j≤n be a matrix with polynomial entries

xi j = x (ki )
i j tki + · · · + x (1)

i j t + x (0)
i j ,

where ki = `+1 if i ≤ q and ki = ` if i > q . The ideal I d
k,n−k is the kernel of the

map

ϕ : C
[(

[n]

k

)
d

]
→ C[X ]

sending the variable p(a)
α indexed by α(a)

∈
(
[n]

k

)
d to the coefficient of ta in the

maximal minor of X whose columns are indexed by α.
The main results of [Sottile and Sturmfels 2001] follow from the next proposi-

tion. Given any distributive lattice, we denote by ∧ and ∨, respectively, the meet
and join. The symbol ∧ will also be used for exterior products of vectors, but the
meaning should be clear from the context.

Proposition 2.1 [Sottile and Sturmfels 2001, Theorem 10]. Let α, β be a pair of
incomparable variables in the poset

(
[n]

k

)
d . There is a quadratic polynomial S(α, β)

lying in the kernel of ϕ : C[
(
[n]

k

)
d ] → C[X ] whose first two monomials are

pα pβ − pα∧β pα∨β .

Moreover, if λpγ pδ is any noninitial monomial in S(α, β), then α, β lies in the
interval [γ, δ] = {θ ∈

(
[n]

k

)
d | γ ≤ θ ≤ δ}.

The quadratic polynomials S(α, β) in fact form a Gröbner basis for the ideal they
generate. It is shown in [Sottile and Sturmfels 2001] that there exists a toric
(SAGBI) deformation taking S(α, β) to its initial form pα pβ − pα∧β pα∨β , deform-
ing the Drinfel’d Grassmannian into a toric variety.
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Our goal is to extend the main results of standard monomial theory to the La-
grangian Drinfel’d Grassmannian LQd(n) := Qd(LG(n)) of degree-d maps from
P1 into the Lagrangian Grassmannian.

2B. The Lagrangian Grassmannian. De Concini and Lakshmibai [1981] showed
that, in its natural projective embedding, the Lagrangian Grassmannian LG(n) is
defined by quadratic relations which give a straightening law on a doset. These
relations are obtained by expressing LG(n) as a linear section of Gr(n, 2n). While
this is well known, the author knows of no explicit derivation of these relations
which do not require the representation theory of semisimple algebraic groups.
We provide a derivation which does not rely upon representation theory (although
we adopt the notation and terminology). This will be useful when we consider the
Drinfel’d Lagrangian Grassmannian, to which representation theory has yet to be
successfully applied.

Set [n] := {1, 2, . . . , n}, ı̄ := −i , and 〈 n〉 := {n̄, . . . , 1̄, 1, . . . n}. If S is any set,
let

(S
k

)
be the collection of subsets α = {α1, . . . , αk} of cardinality k.

The projective space P(
∧n

C2n) has Plücker coordinates indexed by the dis-
tributive lattice

(
〈n〉

n

)
, and the Grassmannian Gr(n, 2n) is the subvariety, defined by

the Plücker relations, of P(
∧n

C2n).

Proposition 2.2 [Fulton 1997; Hodge 1943]. For α, β ∈
(
〈n〉

n

)
there is a Plücker

relation

pα pβ − pα∧β pα∨β +

∑
γ≤α∧β<α∨β≤δ

cγ,δ

α,β pγ pδ = 0.

The defining ideal of Gr(n, 2n) ⊆ P(
∧n

C2n) is generated by the Plücker relations.

Fix an ordered basis {en̄, . . . , e1̄, e1, . . . , en} of the vector space C2n , and let
� :=

∑n
i=1 eı̄ ∧ ei be a nondegenerate alternating bilinear form. The Lagrangian

Grassmannian LG(n) is the set of maximal isotropic subspaces of C2n (relative
to �).

Let {hi := Ei i − E ı̄ ı̄ | i ∈ [n]} be the usual basis for the Lie algebra t of T [Fulton
and Harris 1991], and let {h∗

i | i ∈[n]}⊆ t∗ be the dual basis. Observe that h∗

ı̄ =−h∗

i .
The weights of any representation of Sp2n(C) are Z-linear combinations of the
fundamental weights ωi = h∗

n−i+1 + · · · + h∗
n .

The weights of the representation
∧n

C2n , and hence those of the subrepresen-
tation L(ωn), are of the form ω =

∑n
i=1 h∗

αi
for some α ∈

(
〈n〉

n

)
. If α j = ᾱ j ′ for

some j, j ′
∈ [n], then h∗

α j
= −h∗

α j ′
, and thus the support of ω does not contain h∗

α j
.

Hence the set of all such weights ω are indexed by elements α ∈
(
〈n〉

k

)
(k = 1, . . . , n)

which do not involve both i and ı̄ for any i = 1, . . . , n.
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Let V be a vector space. For simple alternating tensors v := v1 ∧· · ·∧vl ∈
∧l V

and ϕ := ϕ1 ∧ · · · ∧ϕk ∈
∧k V ∗, there is a contraction defined by setting

ϕ y v :=

{ ∑
I∈([l]

k )
±v1 ∧ · · · ∧ϕ1(vi1) ∧ · · · ∧ϕk(vik ) ∧ · · · ∧ vl, k ≤ l,

0, k > l,

and extending bilinearly to a map
∧k V ∗

⊗
∧l V →

∧l−k V . In particular, for a
fixed element 8 ∈

∧k V ∗, we obtain a linear map 8 y • :
∧l V →

∧l−k V .
The Lagrangian Grassmannian embeds in PL(ωn), where L(ωn) is the irre-

ducible Sp2n(C)-representation of highest weight ωn = h∗

1 + · · · + h∗
n . This repre-

sentation is isomorphic to the kernel of the contraction � y • :
∧n

C2n
→

∧n−2
C2n

by Proposition 2.3. We thus have a commutative diagram of injective maps:

LG(n) −−−→ Gr(n, 2n)y y
PL(ωn) −−−→ P(

∧n
C2n).

The next proposition implies that LG(n) = Gr(n, 2n) ∩ PL(ωn).

Proposition 2.3. The dual of the contraction map

� y • :

∧n
C2n

→

∧n−2
C2n

is the multiplication map

� ∧ • :

∧n−2
C2n∗

→

∧n
C2n∗

.

Furthermore, the irreducible representation L(ωn) is defined by the ideal generated
by the linear forms

Ln := span{� ∧ e∗

α1
∧ · · · ∧ e∗

αn−2
| α ∈

(
〈n〉

n−2

)
}.

These linear forms cut out LG(n) scheme-theoretically in Gr(n, 2n). Dually,

L(ωn) = ker(� y •).

Proof. The proof of first statement is straightforward, and the second can be found
in [Weyman 2003, Chapter 3, Exercise 1; Chapter 6, Exercise 24]. �

Since the linear forms spanning Ln are supported on variables indexed by α ∈(
〈n〉

n

)
such that {ı̄, i} ∈ α for some i ∈ [n], the set of complementary variables

is linearly independent. These are indexed by the set Pn of admissible elements
of

(
〈n〉

n

)
:

Pn :=
{
α ∈

(
〈n〉

n

) ∣∣ i ∈ α ⇔ ı̄ 6∈ α
}
,

and have a simple description in terms of partitions (see Proposition 2.4).
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4

3̄

1̄ 1

2̄

2

3

4̄

(4, 0)

(0, 4)

Figure 1. The partition (3, 3, 1) associated to 4̄2̄23.

Consider the lattice Z2 with coordinates (a, b) corresponding to the point a units
to the right of the origin and b units below the origin. Given an increasing sequence
α ∈

(
〈n〉

n

)
, let [α] be the lattice path beginning at (0, n), ending at (n, 0), and whose

i-th step is vertical if i ∈ α and horizontal if i 6∈ α. We can associate a partition to
α by taking the boxes lying in the region bounded by the coordinate axes and [α].
For instance, the sequence α = 4̄2̄23 ∈

(
〈4〉

4

)
is associated to the partition shown in

Figure 1.

Proposition 2.4. The bijection between increasing sequences and partitions in-
duces a bijection between sequences α which do not contain both i and ı̄ for any
i ∈ [n], and partitions which lie inside the n × n square (nn) and are symmetric
with respect to reflection about the diagonal {(a, a) | a ∈ Z} ⊆ Z2.

Proof. The poset Pn consists of those α ∈
(
〈n〉

n

)
which are fixed upon negating

each element of α and taking the complement in 〈 n〉. On the other hand, the
composition of these two operations (in either order) corresponds to reflecting the
associated diagram about the diagonal. �

Remark 2.5. We will use an element of
(
〈n〉

n

)
and its associated partition inter-

changeably. We denote by αt the transpose partition obtained by reflecting α about
the diagonal in Z2. As a sequence, αt is the complement of {ᾱ1, . . . , ᾱn}⊆ 〈 n〉. We
denote by α+ (respectively, α−) the subsequence of positive (negative) elements
of α.

Definition 2.6. The Lagrangian involution is the map τ : pα 7→ σα pαt , where
σα := sgn(αc

+
, α+) ·sgn(α−, αc

−
) = ±1, and sgn(a1, . . . , as) denotes the sign of the

permutation sorting the sequence (a1, . . . , as).

For example, if α = 4̄1̄23, then α+ = 23, α− = 4̄1̄, and σα = 1.
The Grassmannian Gr(n, 2n) has a natural geometric involution

•
⊥

: Gr(n, 2n) → Gr(n, 2n)
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sending an n-plane U to its orthogonal complement

U⊥
:= {u ∈ C2n

| �(u, u′) = 0, for all u′
∈ U }

with respect to �. The next proposition relates •
⊥ to the Lagrangian involution.

Proposition 2.7. The map •
⊥

: Gr(n, 2n) → Gr(n, 2n) expressed in Plücker coor-
dinates coincides with the Lagrangian involution:[

pα

∣∣∣ α ∈

(
〈n〉

n

)]
7→

[
σα pαt

∣∣∣ α ∈

(
〈n〉

n

)]
.

In particular, the relation pα − σα pαt = 0 holds on LG(n).

Proof. The set of n-planes in C2n which do not meet the span of the first n standard
basis vectors is open and dense in Gr(n, 2n). Any such n-plane is the row space
of an n × 2n matrix

Y := (I | X)

where I is the n × n identity matrix and X is a generic n × n matrix. We work
in the affine coordinates given by the entries in X . For α ∈

(
〈n〉

n

)
, denote the α-th

minor of Y by pα(Y ). For a set of indices α = {α1, . . . , αk} ⊆ [n], let αc
:= [n] \α

be the complement, α′
:= {n−αk+1, . . . , n−α1+1}, and ᾱ := {ᾱ1, . . . , ᾱk}. Via

the correspondence between partitions and sequences (Proposition 2.4), αt
= ᾱc.

We claim that •
⊥ reflects X along the antidiagonal. To see this, we simply

observe how the rows of Y pair under �. For vectors u, v ∈ Cn , let (u, v) ∈ C2n be
the concatenation. Let ri := (ei , vi ) ∈ C2n be the i-th row of Y . For k ∈ 〈 n〉, we
let rik ∈ C be the k-th entry of ri . Then, for i, j ∈ 〈 n〉,

�(ri , r j ) = (ei , vi ) · (−v j , e j )
t
= ri,n− j+1 − r j,n−i+1.

It follows that the effect of •
⊥ on the minor Xρ,γ of X given by row indices ρ and

column indices γ is
(X⊥)ρ,γ = Xγ ′,ρ′ .

Let α = ε̄ ∪ φ ∈
(
〈n〉

n

)
, where ε and φ are subsets of [n] whose cardinalities sum

to n. Combining the above description of •
⊥ with the identity

pα(Y ) = sgn(εc, ε)X(εc)′,φ,

we have

pα(Y ⊥) = sgn(εc, ε)(X⊥)(εc)′,φ = sgn(εc, ε)Xφ′,εc

= sgn(εc, ε)sgn(φ, φc)p(φ̄c,εc)(Y ) = σα pαt (Y ).

It follows that the relation pα − σα pαt = 0 holds on a dense Zariski-open subset
and hence identically on all of LG(n). �
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4̄2̄13 3̄1̄24

Figure 2. The paths associated to 4̄2̄13 and 3̄1̄24 in P4.

By Proposition 2.7, the system of linear forms

L ′

n := span{pα − σα pαt | α ∈
(
〈n〉

n

)
} (2-1)

defines LG(n) ⊆ Gr(n, 2n) set-theoretically. Since LG(n) lies in no hyperplane
of PL(ωn), L ′

n is a linear subspace of the span Ln of the defining equations of
L(ωn) ⊆

∧n
C2n . The generators of L ′

n given in (2-1) suggest that homogeneous
coordinates for the Lagrangian Grassmannian should be indexed by some sort of
quotient (which we will call Dn) of the poset

(
〈n〉

n

)
. The correct notion is that of a

doset (Definition 3.1). An important set of representatives for Dn in
(
〈n〉

n

)
is the set

of Northeast partitions (Proposition 2.10).

Remark 2.8. The set of strict partitions with at most n rows and columns is com-
monly used to index Plücker coordinates for the Lagrangian Grassmannian. Given
a symmetric partition α ∈ Pn , we can obtain a strict partition by first removing
the boxes of α which lie below the diagonal, and then left-justifying the remaining
boxes. This gives a bijection between the two sets of partitions.

By Proposition 2.4, we may identify elements of
(
〈n〉

n

)
with partitions lying in

the n × n square (nn), and Pn with the set of symmetric partitions. Define a map

πn :
(
〈n〉

n

)
→ Pn × Pn, πn(α) := (α ∧ αt , α ∨ αt).

Let Dn be the image of πn . It is called the set of admissible pairs, and is a subset
of OPn := {(α, β) ∈ Pn × Pn | α ≤ β}. The image of Pn ⊆

(
〈n〉

n

)
under πn is the

diagonal 1Pn ⊆ Pn × Pn .
To show that Dn indexes coordinates on LG(n), we will work with a convenient

set of representatives of the fibers of πn . The fiber over (α, β)∈Dn can be described
as follows. The lattice paths [α] and [β] must meet at the diagonal. Since α and
β are symmetric, they are determined by the segments of their associated paths to
the right and above the diagonal. Let 5(α, β) be the set of boxes bounded by these
segments. Taking n = 4 for example, 5(4̄2̄13, 3̄1̄24) consists of the two shaded
boxes above the diagonal in Figure 2. The lattice path [4̄2̄13] is above and to the
left of the path [3̄1̄24].
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4̄2̄24 and 3̄1̄13 4̄1̄14 and 3̄2̄23

Figure 3. Elements of π−1
n (4̄2̄13, 3̄1̄24).

For any partition α ⊆ (nn), the set α+ ⊆ α consists of the boxes of α on or above
the main diagonal, and α− ⊆ α consists of the boxes of α on or below the main
diagonal (compare Remark 2.5). Similarly, let 5+(α, β) ⊆ 5(α, β) be the set of
boxes above the diagonal and let 5−(α, β) ⊆ 5(α, β) be the set of boxes below
the diagonal.

A subset S ⊆ (nn) of boxes is disconnected if S = S′
t S′′ and no box of S′

shares an edge with a box of S′′. A subset S is connected if it is not disconnected.
Let

⊔k
i=1 Si be the decomposition of 5+(α, β) into its connected components (so

that
⊔k

i=1 St
i is the decomposition of 5−(α, β)).

Any element γ of the fiber π−1
n (α, β) is obtained by choosing a subset I ⊆ [k]

and setting

γ = α ∪

(⋃
i 6∈I

St
i

)
∪

(⋃
i∈I

Si

)
.

The elements of π−1
n (4̄2̄13, 3̄1̄24) are shown in Figure 3.

Definition 2.9. A partition α is Northeast if αt
−

⊆ α+ and is Southwest if its trans-
pose is Northeast.

For example, 4̄2̄24 ∈ P4 is Northeast while 4̄1̄14 ∈ P4 is neither Northeast nor
Southwest. We summarize these ideas as:

Proposition 2.10. Let
(α, β) ∈ Dn

be an element of the image of πn . Then π−1
n (α, β) is in bijection with the set of

subsets of connected components of 5+(α, β). There exists a unique Northeast
element of π−1

n (α, β), namely, the element corresponding to all the connected
components. Similarly, there is a unique Southwest element corresponding to the
empty set of components.

Example 2.11. The Lagrangian Grassmannian LG(4) ⊆ Gr(4, 8) is defined by the
ideal L4. From the explicit linear generators given in Proposition 2.3, it is evi-
dent that L4 ⊆

∧4
C8∗ is spanned by weight vectors. For example, the generators
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of L4 ∩ (
∧4

C8∗
)0 are the vectors of weight zero:

� ∧ p1̄1 = p4̄1̄14 + p3̄1̄13 + p2̄1̄12,

� ∧ p2̄2 = p4̄2̄24 + p3̄2̄23 + p2̄1̄12,

� ∧ p3̄3 = p4̄3̄34 + p3̄2̄23 + p3̄1̄13,

� ∧ p4̄4 = p4̄3̄34 + p4̄2̄24 + p4̄1̄14.

(2-2)

The following linear forms lie in the span of the right-hand side of (2-2):

p2̄1̄12 + p4̄3̄34, p3̄1̄13 + p4̄2̄24, p3̄2̄23 + p4̄1̄14, and p4̄1̄14 + p4̄2̄24 + p4̄3̄34. (2-3)

Three of the linear forms in (2-3) are supported on a pair {pα, pαt }, and the re-
maining linear form expresses the Plücker coordinate p4̄1̄14 as a linear combination
of coordinates indexed by Northeast partitions (this follows from Lemma 5.5 in
general).

Since each pair {pα, pαt } is incomparable, there is a Plücker relation which,
after reduction by the linear forms (2-2), takes the form

±p2
α − pβ pγ + lower order terms

where β := α ∧ αt and γ := α ∨ αt are respectively the meet and join of α and αt .
Defining p(β,γ ) := pα = σα pαt we can regard such an equation as giving a rule for
rewriting p2

(β,γ ) as a linear combination of monomials supported on a chain. This
general case is treated in Section 5.

3. Algebras with straightening law

3A. Generalities. The following definitions are due to De Concini and Laksh-
mibai [1981]. Let P be a poset, 1P the diagonal in P × P, and

OP := {(α, β) ∈ P × P | α ≤ β}

the subset of P × P defining the order relation on P.

Definition 3.1. [De Concini and Lakshmibai 1981] A doset on P is a set D such
that 1P ⊆ D ⊆ OP, and if α ≤ β ≤ γ , then (α, γ ) ∈ D if and only if (α, β) ∈ D and
(β, γ ) ∈ D. The ordering on D is given by (α, β) ≤ (γ, δ) if and only if β ≤ γ in
P. We call P the underlying poset.

Remark 3.2. The doset ordering just defined does not, in general, satisfy the re-
flexive property. That is, for (α, β) ∈ D, it is not generally true that (α, β) ≤ (α, β).
Indeed, this is the case if and only if (α, β) ∈ 1P

∼= P, that is, if and only if α = β.

The Hasse diagram of a doset D on P is obtained from the Hasse diagram of
P ⊆ D by drawing a double line for each cover α lβ such that (α, β) is in D. The
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defining property of a doset implies that we can recover all the information in the
doset from its Hasse diagram. See Figure 6 in Section 3C for an example.

An algebra with straightening law (Definition 3.3 below) is an algebra gener-
ated by indeterminates {pα | α ∈ D} indexed by a (finite) doset D with a basis
consisting of standard monomials supported on a chain. That is, a monomial
p(α1,β1) · · · p(αk ,βk) is standard if α1 ≤ β1 ≤ α2 ≤ β2 ≤ · · · ≤ αk ≤ βk . Furthermore,
monomials which are not standard are subject to certain straightening relations, as
described in the following definition.

Definition 3.3. [De Concini and Lakshmibai 1981] Let D be a doset. A graded
C-algebra

A =

⊕
q≥0

Aq

is an algebra with straightening law on D if there is an injection D 3 (α, β) 7→

p(α,β) ∈ A1 such that:

(1) The set {p(α,β) | (α, β) ∈ D} generates A.

(2) The set of standard monomials are a C-basis of A.

(3) For any monomial m = p(α1,β1) · · · p(αk ,βk), (αi , βi ) ∈ D and i = 1, . . . , k, if

m =

N∑
j=1

c j p(α j1,β j1) · · · p(α jk ,β jk),

is the unique expression of m as a linear combination of distinct standard
monomials, then the sequence (α j1 ≤ β j1 ≤ · · · ≤ α jk ≤ β jk) is lexicographi-
cally smaller than (α1 ≤ β1 ≤ · · · ≤ αk ≤ βk). That is, if ` ∈ [2k] is minimal
such that α j` 6= α`, then α j` < α`.

(4) If α1 ≤ α2 ≤ α3 ≤ α4 are such that for some permutation σ ∈ S4 we have
(ασ(1), ασ(2)) ∈ D and (ασ(3), ασ(4)) ∈ D, then

p(ασ(1),ασ(2)) p(ασ(3),ασ(4)) = ±p(α1,α2) p(α3,α4) +

N∑
i=1

ri mi

where the mi are quadratic standard monomials distinct from p(α1,α2) p(α3,α4).

The ideal of straightening relations is generated by homogeneous quadratic
forms in the pα (α ∈ D), so we may consider the projective variety X := Proj A
they define. For each α ∈ P, we have the Schubert variety

Xα := {x ∈ X | p(β,γ )(x) = 0 for γ 6≤ α}

and the dual Schubert variety

Xα
:= {x ∈ X | p(β,γ )(x) = 0 for β 6≥ α}.
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Remark 3.4. If α l β and (α, β) ∈ D, then the multiplicity of Xα in Xβ is 2, and
likewise for the multiplicity of Xα in Xβ . This fact will arise in Section 4 when we
consider enumerative questions.

We recall the case when X is the Grassmannian of k-planes in Cn , whose co-
ordinate ring is an algebra with straightening law on the poset (with trivial doset
structure)

(
[n]

k

)
.

For each i ∈ [n], set Fi := 〈e1, . . . , ei 〉 and F ′

i := 〈en, . . . , en−i+1〉, where 〈 · · · 〉

denotes linear span and {e1, . . . , en} is the standard basis of Cn . We call F• :=

{F1 ⊆ · · · ⊆ Fn} the standard coordinate flag, and F ′
•

:= {F ′

1 ⊆ · · · ⊆ F ′
n} the

opposite flag.
We represent any k-plane E ∈ Gr(k, n) as the row space of a k × n matrix.

Furthermore, any such k-plane E is the row space of a unique reduced row echelon
matrix. The Schubert variety Xα consists of precisely the k-planes E such that the
pivot in row i is weakly to the left of column αi . Since the Plücker coordinate
pβ(E) is just the β-th maximal minor of this matrix, we see that E ∈ Xα if and
only if pβ(E) = 0 for all β 6≤ α; hence the general definition of the Schubert
variety Xα (and by a similar argument, the dual Schubert variety Xα) agrees with
the well-known geometric definition in the case of the Grassmannian. Namely, for
α ∈

(
[n]

k

)
, the Schubert variety Xα is

Xα = {E ∈ Gr(k, n) | dim(E ∩ Fαi ) ≥ i, for i = 1, . . . , k},

and the dual Schubert variety Xα is

Xα
= {E ∈ Gr(k, n) | dim(E ∩ F ′

n−αi +1) ≥ k−i+1, for i = 1, . . . , k}.

For a fixed projective variety X ⊆Pn , there are many homogeneous ideals which
cut out X set-theoretically. However, there exists a unique such ideal which is
saturated and radical. Under mild hypotheses, any ideal generated by straight-
ening relations on a doset is saturated and radical. The proofs of Theorems 3.8
and 3.9 illustrate the usefulness of Schubert varieties in the study of an algebra
with straightening law.

Definition 3.5. An ideal I ⊆ C[x0, . . . , xn] is saturated if, given a polynomial
f ∈ C[x0, . . . , xn] and an integer N ∈ N,

x N
i f = 0 mod I

for all i = 0, . . . , n implies that

f = 0 mod I.

Definition 3.6. A ring A is reduced if it has no nilpotent elements; that is, if f ∈ A
satisfies f N

= 0 for some N ∈ N, then f = 0.
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Definition 3.7. An ideal I ⊆ C[x0, . . . , xn] is radical if, given a polynomial f ∈

C[x0, . . . , xn] and an integer N ∈ N,

f N
= 0 mod I

implies that
f = 0 mod I.

That is, I is radical if the quotient C[x0, . . . , xn]/I is reduced.

The next two results concern an algebra with straightening law on a doset D

with underlying poset P. We write A = C[D]/J for this algebra, where J is the
ideal generated by the straightening relations. Proposition 3.9 is a special case
of [Chirivı̀ 2000, Proposition 27].

Theorem 3.8. Let D be a doset whose underlying poset has a unique minimal
element α0. Then any ideal J of straightening relations on D is saturated.

Proof. Let f 6∈ J . Modulo J , we may write f =
∑k

i=1 ai mi where the mi are
(distinct) standard monomials, and ai ∈ C. For each N ∈ N,

pN
α0

f =

k∑
i=1

ai pN
α0

mi

is a linear combination of standard monomials, since supp mi ∪{α0} is a chain for
each i ∈ [k]. It is nontrivial since pN

α0
mi = pN

α0
m j implies i = j . Thus pN

α0
f 6∈ J

for any N ∈ N. �

Proposition 3.9. An algebra with straightening law on a doset is reduced.

Proof. Let A be an algebra with straightening law. For f ∈ A and α ∈ P, denote
by fα the restriction of f to the dual Schubert variety Xα.

We will show by induction on the poset P that f n
α = 0 implies fα = 0. Note

that by induction on n it suffices to do this for n = 2. Indeed, assume that we have
shown that f 2

= 0 implies f = 0 for any f in some ring A, and suppose f n
= 0.

Then ( f d
n
2 e)2

=0, so that f d
n
2 e

=0 by our assumption, and thus f =0 by induction.
Let f ∈ A be such that f 2

α =0. In particular, f 2
β =0 for all β ≥α (since Xβ

⊆ Xα),
so that fβ = 0 by induction. It follows that fα is supported on monomials on Xα

which vanish on Xβ for all β ≥ α. That is,

fα =

m∑
i=1

ci pei
α p(α,β1,i ) · · · p(α,β`i ,i )

. (3-1)

For the right hand side of (3-1) to be standard, we must have `i = 1 for all i =

1, . . . m. Also, homogeneity implies that e := e1 = · · · = em for i = 1, . . . m. Thus,



Quasimaps for the Lagrangian Grassmannian 833

if we set βi := β1,i , then fα has the form

fα = pe
α

m∑
i=1

ci p(α,βi ). (3-2)

Choose a linear extension of D as follows. Begin with a linear extension of P ⊆ D.
For incomparable elements (α, β), (γ, δ) of D, set (α, β) ≤ (γ, δ) if β < δ or β = δ

and α ≤ γ . With respect to the resulting linear ordering of the variables, take the
lexicographic term order on monomials in A.

For an element g ∈ A, denote by lt(g) (respectively, lm(g)) the lead term (re-
spectively, lead monomial) of g. Reordering the terms in (3-2) if necessary, we
may assume that

lt( fα) = c1 pe
α p(α,β1).

Writing f 2
α as a linear combination of standard monomials (by first expand-

ing the square of the right hand side of (3-2) and then applying the straightening
relations), we see that

lt( f 2
α ) = ±c2

1 p2e+1
α pβ1 .

This follows from our choice of term order and the condition in Definition 3.3 (4).
We claim that lt( f 2

α ) cannot be cancelled in the expression for f 2
α as a sum of

standard monomials. Indeed, suppose there are i, j ∈ [m] such that

lm
(
(pe

α p(α,βi )) · (pe
α p(α,β j ))

)
= p2e+1

α pβ1 .

Then by the straightening relations, β1 ≤ βi , β j . But β1 6< βi since

lm( fα) = pe
α p(α,β1).

For the same reasons, β1 6< β j . Therefore βi = β j = β1, so c1 pe
α p(α,β1) is the only

term contributing to the monomial p2e+1
α pβ1 in f 2

α . �

Remark 3.10. Proposition 3.9 was first proved for an algebra with straightening
law on a poset in [Eisenbud 1980], but the methods used (deformation to the ini-
tial ideal) are not well-suited for a doset. The proof given here is essentially an
extension of the proof of Bruns and Vetter [1988, Theorem 5.7] to the doset case.

3B. Hilbert series of an algebra with straightening law. We compute the Hilbert
series of an algebra with straightening law A on a doset, and thus obtain formulas
for the dimension and degree of Proj A. Let P be a poset and D a doset on P. As-
sume that P and D are ranked; that is, any two maximal chains in D (respectively,
P) have the same length. Define rank D (respectively, rank P) to be the length of
any maximal chain in D (respectively, P).

First, we compute the Hilbert series of A with respect to a suitably chosen fine
grading of A by the elements of a semigroup, as follows.
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∅ {α} {β} {(α, β)}

{α, (α, β)} {(α, β), β} {α, β} {α, (α, β), β}

Figure 4. The set Ch(D) of chains in D.

Monomials in C[D] are determined by their exponent vectors. We can therefore
identify the set of such monomials with the semigroup ND. Define the weight map
w : ND

→ QP by setting w(α, β) :=
εα+εβ

2 , where εα ∈ QP (α ∈ P) is the vector with
α-coordinate equal to 1 and all other coordinates equal to 0. This gives a grading
of A by the semigroup im(w). Let Ch(D) be the set of all chains in D. Since the
standard monomials (those supported on a chain) form a C-basis for A, the Hilbert
series with respect to this fine grading is

HA(r) =

∑
c∈Ch(D)

∑
a∈im(w)

supp(a)=c

ra,

where r := (rα | α ∈ P), a = (aα | α ∈ P), and ra
=

∏
α∈P raα

α . Note that elements
of im(w) correspond to certain monomials with rational exponents (supported on
P). For example, (α, β) ∈ D corresponds to √rαrβ . Setting all rα = r , we obtain
the usual (coarse) Hilbert series, defined with respect to the usual Z-grading on A
by degree.

Example 3.11. Consider the doset D := {α, (α, β), β} on the two element poset
{α < β}. The elements of Ch(D) are shown in Figure 4.

Ch(D) =
{
∅, {α}, {β}, {(α, β)}, {α, (α, β)}, {(α, β), β}, {α, β}, {α, (α, β), β}

}
.

We have

HA(r) = 1 +
rα

1 − rα

+
rβ

1 − rβ

+
√

rαrβ +

√
r3
αrβ

1 − rα

+

√
rαr3

β

(1 − rβ)
+

rαrβ

(1 − rα)(1 − rβ)
+

√
r3
αr3

β

(1 − rα)(1 − rβ)
.
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Setting r = rα = rβ , we obtain the Hilbert series with respect to the usual Z-grading
of C[D]:

h A(r) = 1 +
2r

1 − r
+ r +

2r2

1 − r
+

r3
+ r2

(1 − r)2 =
r + 1

(1 − r)2 = 1 +

∞∑
i=1

(2i+1)r i .

We see that the Hilbert polynomial is p(i) = 2i+1, so dim(Proj A) = 1, and
deg(Proj A) = 2.

Remark 3.12. The coordinate ring of the Lagrangian Grassmannian LG(2) is an
algebra with straightening law on the five-element doset obtained by adding two
elements 0̂ < α and 1̂ > β to the doset of Example 3.11. The addition of these
elements does not affect the degree, which is also 2. Theorem 5.9 allows us to carry
out such degree computations for the Drinfel’d Lagrangian Grassmannian, giving
a new derivation of the intersection numbers computed in quantum cohomology.

Fix a poset P, and a doset D on P. For the remainder of this section, set P :=

rank P and D := rank D. Given a chain

{α1, . . . , αu, (β11, β12), . . . , (βv1, βv2)} ⊆ D

(not necessarily written in order), let ri be the formal variable corresponding to αi

(i = 1, · · · , u), and let s jk correspond to β jk ( j = 1, . . . , v, k = 1, 2). The variables
r and s are not necessarily disjoint; in the example above, the chain {α, (α, β)} has
r1 = s11. We have

∑
a∈im(w)

supp(a)=c

ra
=

u∏
i=1

ri

1 − ri
·

v∏
j=1

√
s j1s j2.

Recall that we may identify P with the diagonal 1P ⊆D⊆P×P. Letting cv
u denote

the number of chains consisting of u elements of P and v elements of D \ P, we
have

HSA(r) =

P+1∑
u=0

D−P∑
v=0

cv
u

ru+v

(1 − r)u =

P+1∑
u=0

D−P∑
v=0

cv
uru+v

( ∞∑
k=0

r k
)u

=

D−P∑
v=0

cv
0rv

+

∞∑
`=0

P+1∑
u=1

D−P∑
v=0

cv
u

(
u+`−1

u−1

)
ru+v+`.

When w > D−P , the coefficient of rw agrees with the Hilbert polynomial:

HPA(w) =

P+1∑
u=1

D−P∑
v=0

cv
u

(
w−v−1

u−1

)
. (3-3)



836 James Ruffo

γβ

α

δ

Figure 5. A doset on a four-element poset.

In particular, the dimension of Proj A is P , since this is the largest value of

u − 1 = degw

(
w−v−1

u−1

)
.

The leading monomial of H PA(w) is

D−P∑
v=0

cv
P+1

(
w−v−1

P−1

)
.

By our assumption that the maximal chains in P (respectively, D) have the same
length, we have cv

P+1 =
(D−P

v

)
c0

P+1, so that the leading coefficient of H PA(w) is

c0
P+1

(P − 1)!

D−P∑
v=0

(
D − P

v

)
=

2D−Pc0
P+1

(P − 1)!
,

from which we deduce the degree and dimension of Proj A.

Theorem 3.13. The degree of Proj A is 2D−Pc0
P+1. The dimension of Proj A is P.

Example 3.14. Let A be an algebra with straightening law on the doset D shown
in Figure 5.

We have rank P = 2, rank D = 3, and

Ch(D) =
{
∅, {α}, {β}, {γ }, {δ}, {(α, γ )}, {(β, δ)},

{α, γ }, {α, β}, {α, δ}, {β, δ}, {γ, δ}, {α, (α, γ )},

{α, (β, δ)}, {(α, γ ), γ }, {(α, γ ), δ}, {β, (β, δ)},

{(β, δ), δ}, {α, β, δ}, {α, γ, δ}, {α, (α, γ ), γ },

{α, (α, γ ), δ}, {α, β, (β, δ)}, {α, (β, δ), δ},

{β, (β, δ), δ}, {α, (α, γ ), γ, δ}, {α, β, (β, δ), δ}
}
,

and the values of cv
u are given by the matrix(

1 4 5 2
2 6 5 2

)
,
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whose entry in row i and column j is ci−1
j−1.

In view of (3-3), the Hilbert polynomial is therefore

HPA(w)

= 4
(
w−1

0

)
+ 5

(
w−1

1

)
+ 2

(
w−1

2

)
+ 6

(
w−2

0

)
+ 5

(
w−2

1

)
+ 2

(
w−2

2

)
= 2w2

+ 2w + 3 = 4
w2

2!
+ 2w + 3.

In particular, dim(Proj A) = 2 and deg(Proj A) = 4.

Theorems 5.9 and 3.13 will allow us to compute intersection numbers in quan-
tum cohomology in the same manner as Example 3.14. The essential step is to
show that the Drinfel’d Lagrangian Grassmannian is a algebra with straightening
law on the doset of admissible pairs Dd,n .

3C. The doset of admissible pairs. We define the doset of admissible pairs on the
poset Pd,n . Let us first consider an example.

Example 3.15. Consider the poset

P2,4 := {α(a)
∈

(
〈4〉

4

)
2 | i ∈ α ⇐⇒ ı̄ 6∈ α}

of admissible elements of
(
〈4〉

4

)
2. Let D2,4 be the set of elements (α, β)(a)

∈ OP2,4

such that α and β have the same number of negative elements. It is a doset on P2,4.
The Hasse diagram (drawn so that going up in the doset corresponds to moving to
the right) for D2,4 is shown in Figure 6.

To each (α, β)(a)
∈ P2,4, we have the Plücker coordinate

p(a)
(α,β) := uavd−a

⊗ p(α,β) ∈ SdC2
⊗ L(ωn)

∗,

where {u, v} ⊆ C2 is a basis dual to {s, t} ⊆ (C2)∗.

Let
(
〈n〉

n

)
d

∼=
(
[2n]

n

)
d be the poset associated to the (ordinary) Drinfel’d Grass-

mannian Qd(n, 2n), and recall that Pd,n ⊆
(
〈n〉

n

)
d is the subposet consisting of the

elements α(a) such that αt
= α. There are three types of covers in Pd,n .

(1) α(a) l β(a), where α and β have the same number of negative elements. For
example, 4̄2̄13(a) l 4̄1̄23(a)

∈ Pd,4 for any nonnegative integers a ≤ d .

(2) α(a) l β(a), where the number of negative elements in β is one less than the
number of negative elements of α. For example, 4̄1̄23(a) l 4̄123(a)

∈ Pd,4 for
any nonnegative integers a ≤ d .

(3) α(a)lβ(a+1), where the number of negative elements of β is one more than the
number of negative elements of α, n̄ ∈ β, and n ∈ α. For example, 3̄2̄14(a) l
4̄3̄2̄1(a+1) for any nonnegative integers a ≤ d .
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Figure 8. The subset of S2,4 associated to 4̄2̄13(1)
∈ P2,4.

The first two types are those appearing in the classical Bruhat order on P0,n . It
follows that Pd,n is a union of levels P(a)

d,n , each isomorphic to the Bruhat order,
with order relations between levels imposed by covers of the type (3) above. We
define the doset Dd,n of admissible pairs in Pd,n .

Definition 3.16. A pair (α(a) < β(a)) is admissible if there exists a saturated chain
α = α0 l α1 l · · · l αs = β, where each αi l αi+1 is a cover of type (1).

We denote the set of admissible pairs by Dd,n . Observe that the pair (α(a) <β(b))

is never admissible if a < b.

Proposition 3.17. The set Dd,n ⊆ Pd,n × Pd,n is a doset on Pd,n . The poset Pd,n

is a distributive lattice.

Proof. In view of our description of the covers in Dd,n , it is clear that, for all
d ≥ 0, Dd,n is a doset if and only if Dn = D0,n is a doset. The latter is proved
in [De Concini and Lakshmibai 1981]. To prove that Pd,n is a distributive lattice,
we give an isomorphism with a certain lattice of subsets of the union of d+1 shifted
n × n squares in Z2 which generalize the usual notion of a partition.

Let

Sd,n :=

d⋃
a=0

{(i+a, j+a) | 0 ≤ i, j ≤ n}.

To α(a)
∈ Pd,n , we associate the subset of Sd,n obtained by shifting the (open)

squares in α by (a, a), and adding the boxes obtained by translating a box of α by
a vector (v1, v2) with v1, v2 ≤ 0 and the points (i, i) for i = 0, . . . , a. See Figure 8
for an example. It is straightforward to check that the (symmetric) subsets obtained
in this way form a distributive lattice (ordered by inclusion) isomorphic to Pd,n . �

4. Schubert varieties and Gromov–Witten invariants

Gromov–Witten invariants are solutions to enumerative questions involving alge-
braic maps from P1 to a projective variety X . When X is the Lagrangian Grassman-
nian (or the ordinary Grassmannian [Sottile and Sturmfels 2001]), these questions
can be studied geometrically via the Drinfel’d compactification, as advocated by A.
Braverman [2006]. We do this in Section 4A, and relate our findings to the quantum
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cohomology of the Lagrangian Grassmannian in Section 4B. See [Braverman 2006;
Sottile 2000; 2001] for further reading on applications of Drinfel’d compactifica-
tions to quantum cohomology. The study of Gromov–Witten invariants (in various
special cases) has also been approached via the quot scheme [Bertram 1997; Chen
2003; Ciocan-Fontanine 1999; Fulton and Pandharipande 1997] and the space of
stable maps [Bertram et al. 2005; Givental 1996; Oprea 2006].

4A. Intersection problems on the Drinfel’d compactification. Given an isotropic
flag F• and a symmetric partition α ∈ Pn , we have the Schubert variety

Xα(F•) := {E ∈ LG(n) | dim(E ∩ Fn−αi +i ) ≥ i}.

The enumerative problems we consider involve conditions that the image of a map
M ∈ LMd(X) pass through Schubert varieties at prescribed points of P1.

Question 4.1. Let F1
•
, . . . , F N

•
be general Lagrangian flags, α1, . . . , αN ∈ Pn , and

let s1, . . . , sN ∈ P1 be distinct points. Assume

N∑
i=1

|αi | = dim LG(n)+d(n+1).

How many degree-d algebraic maps M : P1
→ LG(n) satisfy

M(si ) ∈ Xαi (F i
•
)

for all i = 1, . . . , N?

Our answer to Question 4.1 is given in Theorem 4.3. In order to prove this
result, we must first establish some results on the geometry of certain subvarieties
of LQd(n) defined in terms of the universal evaluation map

ev : P1
× LMd(n) → LG(n), ev(s, M) := M(s)

for s ∈ P1 and M ∈ LMd(n).
Fix a point s ∈ P1 and define

evs := ev(s, •) : LMd(n) → LG(n).

Given a Schubert variety Xα(F•) ⊆ LG(n), the set of maps M ∈ LMd(n) such
that M(s) lies in Xα(F•) is the preimage ev−1

s (Xα(F•)). This is a general trans-
late of the locally closed subset Xα(0)

∩ LMd(n) under the action of the group
SL2C × Sp2nC. By a Schubert variety, we will mean the closure of ev−1

s (Xα(F•))

in LQd(n), and denote it by Xα(0)

(s; F•). In order to understand these subvarieties,
we extend the evaluation map to a globally defined map P1

× LQd(n) → LG(n).
To do this, we must first study the boundary LQd(n) \ LMd(n).
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The embedding

LMd(n) ↪→ P
(
(SdC2)∗ ⊗ L(ωn)

)
is defined by regarding a map M ∈ LMd(n) as a

(2n
n

)
-tuple of degree-d homo-

geneous forms. We identify the space LMd(n) of maps with its image, which is
a locally closed subset of P

(
(SdC2)∗ ⊗ L(ωn)

)
. The Drinfel’d compactification

LQd(n) is by definition the closure of the image.
On the other hand, LMd(n) ⊆ LQd(n) is the set of points corresponding to a(2n

n

)
-tuple of homogeneous forms satisfying the Zariski open condition that they

have no common factor. Therefore, the boundary LQd(n) \ LMd(n) consists of(2n
n

)
-tuples of homogeneous forms which do have a common factor. Such a list of

forms gives a regular map of degree a < d together with an effective Weil divisor
of degree d − a on P1 defined by the base points of the map. We thus have a
stratification

LQd(n) =

d⊔
a=0

P(SaC2∗
) × LMd−a(n)

where P(SaC2∗
) is the space of degree-a forms in two variables, or alternatively,

the space of effective Weil divisors on P1 of degree a. In particular, the boundary
of LQd(n) is simply

⊔d
a=1 P(SaC2∗

) × LMd−a(n). We may regard any point of
LQd(n) as a pair (D, M), where M ∈ LMd−a(n) and D is a divisor on P1.

Fixing a point s ∈ P1, the evaluation map evs := ev(s, •) is undefined at each
point (D, M) ∈ P(SaC2∗

) × LMd−a(n) such that s ∈ D. Thus, restricting to the
stratum P(SaC2∗

)× LMd−a(n), the map evs is defined on U a
s × LMd−a(n), where

U a
s ⊆ P(SaC2) is the set of forms which do not vanish at s ∈ P1.
For each a = 0, . . . , d , define a map

εa
s : P(SaC2∗

) × LMd−a(n) → LG(n)

by the formula εa
s (D, M) := M(s), and let

εs : LQd(n) =

d⊔
a=0

P(SaC2∗
) × LMd−a(n) → LG(n)

be the (globally-defined) map which restricts to εa
s on P(SaC2∗

)× LMd−a(n). The
evaluation map evs agrees with εs wherever it is defined. Hence εs extends evs to a
globally defined map, which is a morphism on each stratum P(SaC2∗

)×LMd−a(n).
The Schubert variety Xα(0)

(s; F•) is the preimage of Xα(F•) under this globally
defined map; hence we have the following fact.
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Lemma 4.2. Given a point s ∈ P1 and a isotropic flag F•, the Schubert variety
Xα(0)

(s, F•) is the disjoint union of the strata

P(SaC2∗
) ×

(
Xα(a)

(s; F•) ∩ LMd−a(n)
)
.

Proof. For each a ∈ {0, . . . d}, we have(
P(SaC2∗

) × LMd−a(n)
)

∩ ε−1
s (Xα(F•)) = P(SaC2∗

) × Xα(a)

(s; F•). �

We now state and prove the main theorem of this section.

Theorem 4.3. Given partitions α1, . . . αN ∈ Pn such that

N∑
i=1

|αi | =

(n+1
2

)
+d(n+1),

general isotropic flags F1
•
, . . . , F N

•
, and distinct points s1, . . . , sN ∈ P1, the inter-

section
Xα

(0)
1 (s1; F1

•
) ∩ · · · ∩ Xα

(0)
N (sN ; F N

•
) (4-1)

is transverse, and hence consists only of reduced points. Each point of the inter-
section (4-1) lies in LMd(n), that is, corresponds to a degree-d map whose image
M(si ) lies in Xαi (F i

•
) for i = 1, . . . , N.

Proof. For each a = 0, . . . , d , the Schubert variety Xα(a)

(s, F•) is the preimage of
the Schubert variety Xα(F•)⊆LG(n) under the evaluation map εs , which is regular
on the stratum P(SaC2∗

) × LMd−a(n). By Lemma 4.2, it suffices to consider the
intersection (4-1) on each of these strata. Fix a ∈ {0, . . . , d}, and consider the
product of evaluation maps

N∏
i=1

εsi :
(
P(SaC2∗

) × LMd−a(n)
)N

→ LG(n)N

and the injection

Xα1(F1
•
) × · · · × Xαn (F N

•
) ↪→ LG(n)N .

The intersection
(
Xα

(0)
1 ∩· · ·∩ Xα

(0)
N

)
∩P(SaC2∗

)× LMd−a(n) is isomorphic to the
fiber product(

P(SaC2∗
) × LMd−a(n)

)N
×LG(n)N

(
Xα1(F1

•
) × · · · × XαN (F N

•
)
)
.

For each a = 0, . . . , d , Kleiman’s theorem [1974, Corollary 2] implies that this
intersection is proper and transverse. Considering the dimensions of these subva-
rieties, we see that this intersection is therefore zero-dimensional when a = 0 and
empty when a > 0. �
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4B. Gromov–Witten invariants and quantum cohomology. A common approach
to Question 4.1 is through the quantum cohomology ring of the Lagrangian Grass-
mannian Q H∗(LG(n)), defined as follows. The cohomology ring H∗(LG(n); Z)

has a Z-basis consisting of the classes of Schubert varieties (the Schubert classes)
σα := [Xα

], where α ∈ Pn . We will denote by α∗ the dual partition, defined so
that σα · σα∗ = [pt] ∈ H∗(LG(n); Z) [Hiller and Boe 1986]. The correspondence
α ↔ α∗ is bijective and order reversing.

The (small) quantum cohomology ring is the Z[q]-algebra isomorphic to

H∗(LG(n); Z) ⊗ Z[q]

as a Z[q]-module, and with multiplication defined by the formula

σα · σβ =

∑
〈 α, β, γ ∗

〉d σγ qd ,

where the sum is over all d ≥ 0 and γ such that |γ | = |α|+|β|−d
(n+1

2

)
. For

partitions α, β, and γ in Pn , the coefficients 〈α, β, γ ∗
〉d are the Gromov–Witten

invariants, defined as the number of algebraic maps M : P1
→ LG(n) of degree d

such that

M(0) ∈ Xα(F•), M(1) ∈ Xβ(G•), and M(∞) ∈ Xγ ∗

(H•),

where F•, G•, and H• are general isotropic flags (that is, general translates of the
standard flag under the action of the group Sp2nC).

A special case of Pieri’s rule gives a formula for the product of a Schubert class
σα ∈ H∗(LG(n); Z) with the simple Schubert class σ [Hiller and Boe 1986]:

σα · σ =

∑
αlβ

2N (α,β)σβ,

the sum over all partitions β obtained from α by adding a box above the diagonal,
along with its image under reflection about the diagonal. The exponent N (α, β)=1
if (α, β) ∈ Dn and N (α, β) = 0 otherwise (compare Proposition 2.10). Kresch and
Tamvakis [2003] give a quantum analogue of Pieri’s rule. We state the relevant
special case of this rule:

Proposition 4.4 [Kresch and Tamvakis 2003]. For any α ∈ Pn , we have

σα · σ =

∑
αlβ

2N (α,β)σβ + σγ q

in Q H∗(LG(n)), where the first sum is from the classical Pieri rule, and σγ = 0
unless α contains the hook-shaped partition (n, 1n−1), in which case γ is the par-
tition obtained from α by removing this hook.
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For α(a)lβ(b) in Dd,n , let N ′(α(a), β(b))= N (α, β) if b=a, and let N ′(α(a), β(b))=

0 if b = a + 1. Let α(0)
∈ Pd,n , and let π ∈ N be its corank in Pd,n; that is, π is

the length of any saturated chain of elements α(d)
= x0 l · · ·l xπ = (nn)(d), where

xi ∈ Pd,n for all i = 0, . . . , π and (nn)(d) is the maximal element of Pd,n . By
Theorem 3.13, π is the dimension of Xα(0)

. The quantum Pieri rule of Proposition
4.4 has a simple formulation in terms of the distributive lattice Pd,n:

Theorem 4.5. The quantum Pieri rule in Proposition 4.4 has the formulation in
terms of the poset Pd,n:

(σαqa) · σ =

∑
α(a)lβ(b)

2N ′(α(a),β(b))σβqb.

As a consequence, we have

σα · (σ )π = deg(Xα(0)

) · σ(nn)qd (mod d + 1). (4-2)

Proof. The element γ (a+1)
∈ Pd,n , where γ is as the partition obtained by removing

a maximal hook from α in Proposition 4.4, is the unique cover of α(a)
∈ Pd,n

with superscript a+1. The remaining covers (with superscript a) index the sum in
Proposition 4.4.

The second formula follows by induction from the first. �

The appearance of the number deg(Xα(0)

) in (4-2) is for purely combinatorial
reasons: it is the number of saturated chains α(0) l · · · l (nn)(d) in Dd,n , counted
with multiplicity. Since X

(0)

is a hyperplane section of LQd(n), this is also the
number of points in the intersection

Xα(0)

(s; F•) ∩

( π⋂
i=1

X
(0)

(si ; F i
•
)

)
, (4-3)

the intersection of Xα(0)

(s; F•) with π = codim(Xα(0)

(s; F•)) general translates of
the hyperplane section X

(0)

. On the other hand, multiplication in Q H∗(LG(n))

represents the conjunction of conditions that a map takes values in Schubert va-
rieties at generic points of P1. In this way, the quantum cohomology identity of
Theorem 4.5 has an interpretation as the number of points in the intersection (4-3)
of Schubert varieties in LQd(n).

5. The straightening law

5A. A basis for SdC2⊗L(ωn)
∗. The Drinfel’d Lagrangian Grassmannian embeds

in the projective space P
(
(SdC2)∗ ⊗ L(ωn)

)
. We begin by describing convenient

bases for the representation L(ωn) and its dual L(ωn)
∗.
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For α ∈
(
〈n〉

n

)
and positive integers, set

v(a)
α := satd−a

⊗ eα1 ∧ · · · ∧ eαn ∈ (SdC2)∗ ⊗

∧n
C2n,

and let

p(a)
α := uavd−a

⊗ e∗

α1
∧ · · · ∧ e∗

αn
∈ SdC2

⊗

∧n
C2n∗

be the Plücker coordinate indexed by α(a)
∈ Dd,n , where {u, v} ∈ C2 and {s, t} ∈

(C2)∗ are dual bases.
The representation L(ωn)

∗ is the quotient of
∧n

C2n∗ by the linear subspace

Ln = � ∧

∧n−2
C2n∗

described in Proposition 2.3. Thus SdC2
⊗ L(ωn)

∗ is the quotient of SdC2
⊗∧n

C2n∗ by the linear subspace

Ld,n := SdC2
⊗ Ln.

Note that Ld,n is spanned by the linear forms

`(a)
α := uavd−a

⊗

∑
i |{ı̄,i}∩α=∅

e∗

ı̄ ∧ e∗

i ∧ e∗

α1
∧ · · · ∧ e∗

αn−2
(5-1)

for α ∈
(

〈n〉

n−2

)
and a = 0, . . . , d. The linear form (5-1) is simply uavd−a tensored

with a linear form generating Ln . Each term in the linear form (5-1) is a Plücker
coordinate indexed by a sequence involving both i and ı̄ , for some i ∈ [n].

Let S ⊆ SL2(C) and T ⊆ Sp2n(C) be maximal tori. The torus S is one-dimen-
sional, so that its Lie algebra s has basis consisting of a single element H ∈ s. For
i ∈ 〈 n〉, let hi := Ei i − E ı̄ ı̄ . The set {hi | i ∈ [n]} is a basis for the Lie algebra t of
T ⊆ Sp2n(C). The weights of the maximal torus S × T ⊆ SL2(C) × Sp2n(C) are
elements of s∗

⊕ t∗. The Plücker coordinate p(a)
α ∈ SdC2

⊗ (
∧n

C2n)∗ is a weight
vector of weight

(d−2a)H∗
+

∑
i |ᾱi 6∈α

h∗

αi
. (5-2)

Each linear form (5-1) lies in a unique weight space. Thus, to find a basis for
SdC2

⊗ L(ωn)
∗, it suffices to find a basis for each weight space. We therefore fix

the weight (5-2) and its corresponding weight space in the following discussion.
We reduce to the case that the weight (5-2) is in fact 0, as follows.

For each α ∈
(

〈n〉

n−2

)
, we have an element `α = � ∧ pα ∈ Ln . This is a weight

vector of weight

ωα := h∗

α1
+ · · · +h∗

αk
∈ t∗.
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Set α̃ := {i ∈ α | ı̄ 6∈ α} and observe that ωα̃ = ωα. The elements α ∈
(

〈n〉

n−2

)
such

that `α ∈ (Ln)ω are those satisfying ωα = ω. That is,

(Ln)ω = 〈� ∧ pα | ωα = ω〉.

The shape of the linear form `α is determined by the number of pairs {ı̄, i} ⊆ α;
it is the same, up to multiplication of some variables by −1, as the linear form
`α\α̃ = � ∧ pα\α̃ ∈ Ln−|̃α|, of weight ωα\α̃ = 0. It follows that the generators of
(Ln)ωα

have the same form as those of (Ln−|̃α|)ωα\α̃
, up to some signs arising from

sorting the indices. Since these signs do not affect linear independence, it suffices
to find a basis for (Ln)0, from which it is then straightforward to deduce a basis for
(Ln)ωα

. We thus assume that the weight space in question is (Ln)0. This implies
that n is even; set m :=

n
2 .

Example 5.1. We consider linear forms which span (L6)h∗

1+h∗

3
. Let m = 3 (so

n = 6) and ω = h∗

1 + h∗

3. If α = 6̄136, then α̃ = 13 and ωα = ω. We have

`α = p6̄5̄1356 + p6̄4̄1346 − p6̄2̄1236.

The equations for the weight space (Ln)ω are

`6̄136 = p6̄5̄1356 + p6̄4̄1346 − p6̄2̄1236,

`5̄135 = p6̄5̄1356 + p5̄4̄1345 − p5̄2̄1235,

`4̄134 = p6̄4̄1346 + p5̄4̄1345 − p4̄2̄1234,

`2̄123 = p6̄2̄1236 + p5̄2̄1235 + p4̄2̄1234.

We can obtain the linear forms which span (L4)0 (see Example 2.11) by first re-
moving every occurrence of 1 and 3 in the subscripts above and then flattening
the remaining indices. That is, we apply the following replacement (and similarly
for the negative indices): 6 7→ 4, 5 7→ 3, 4 7→ 2, and 2 7→ 1. We then replace
a variable by its negative if 2 appears in its index; this is to keep track of the
sign of the permutation sorting the sequence (ı̄, i, α1, . . . , αn−2) in each term of `α

(see (5-1)).

By Proposition 2.3, the map( 2m∧
C4m

)
0
→

(2m−2∧
C4m

)
0

given by contraction with the form

� ∈

∧2
(C4m)∗
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is surjective, with kernel (L(ω2m))0. Since the set
{
(ᾱ, α)

∣∣ α ∈
(
[2m]

k

)}
is a basis

of (
∧2k

C4m)0 (for any k ≤ m), we have

dim(L(ω2m))0 = dim
( 2m∧

C4m
)

0
− dim

(2m−2∧
C4m

)
0

=

(2m
m

)
−

( 2m
m−2

)
=

1
m+1

(2m
m

)
.

This (Catalan) number is equal to the number of admissible pairs of weight 0.

Lemma 5.2. dim(L(ωn))0 is equal to the number of admissible pairs (α, β) ∈ Dn

of weight ωα+ωβ

2 = 0.

Proof. Recall that each trivial admissible pair (α, α), where

α = (ā1, . . . , ās, b1, . . . , bn−s) ∈ Dn,

indexes a weight vector of weight
∑n−s

i=1 h∗

bi
−

∑s
i=1 h∗

ai
. Also, the nontrivial ad-

missible pairs are those (α, β) for which α < β have the same number of nega-
tive elements. Therefore, the admissible pairs of weight zero are the (α, β) ∈ Dn

such that β = (ām, . . . , ā1, b1, . . . , bm), α = (b̄m, . . . , b̄1, a1, . . . , am), and the sets
{a1, . . . , am} and {b1, . . . , bm} are disjoint. This last condition is equivalent to
ai > bi for all i ∈ [m]. The number of such pairs is equal to the number of standard
tableaux of shape (m2) (that is, a rectangular box with 2 rows and m columns)
with entries in [2m]. By the hook length formula [Fulton 1997] this number is

1
m+1

(2m
m

)
. �

The weight vectors pα ∈ (
∧n

C4m∗
)0 are indexed by sequences of the form

α = (ᾱm, . . . , ᾱ1, α1, . . . , αm)

which can be abbreviated by the positive subsequence α+ := (α1, . . . , αm) ∈
(
[2m]

m

)
without ambiguity. We take these as an indexing set for the variables appearing in
the linear forms (5-1).

With this notation, the positive parts of Northeast sequences are characterized
in Proposition 5.4. The proof requires the following definition.

Definition 5.3. A tableau is a partition whose boxes are filled with integers from
the set [n], for some n ∈ N. A tableau is standard if the entries strictly increase
from left to right and top to bottom.

Proposition 5.4. Let α ∈
(
〈2m〉

2m

)
be a Northeast sequence. Then the positive part of

α satisfies α+ ≥ 24 · · · (2m)∈
(
[2m]

m

)
. In particular, no Northeast sequence contains

1 ∈ [2m] and every Northeast sequence contains 2m ∈ [2m].
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Proof. α+ ≥ 24 · · · (2m) if and only if the tableau of shape (m2) whose first row is
filled with the sequence (αt)+ = [n] \ α+ and whose second row is filled with the
α+ is standard. This is equivalent to α being Northeast. �

It follows from Proposition 2.10 that the set NE of Northeast sequences indexing
vectors of weight zero has cardinality equal to the dimension of the zero-weight
space of the representation L(ω2m)∗. This weight space is the cokernel of the map

� ∧ • :

(2m−2∧
C4m

)∗

0
→

( 2m∧
C4m

)∗

0
.

Similarly, the weight space L(ω2m)0 is the kernel of the dual map

� y • :

( 2m∧
C4m

)
0
→

(2m−2∧
C4m

)
0
.

We fix the positive integer m, and consider only the positive subsequence α+ of
the sequence α ∈

(
〈2m〉

2m

)
. When the weight of pα is 0, α+ is an element of

(
[2m]

m

)
.

For α ∈
(
[2m]

m

)
, we call a bijection M : α → αc a matching of α. Fixing a matching

M : α → αc, we have an element of the kernel L(ω2m), as follows. Let Hα be the
set of all sequences in

(
[2m]

m

)
obtained by interchanging M(αi ) and αi , for i ∈ I ,

I ⊆ [m].
Elements of the set Hα are the vertices of an m-dimensional hypercube, whose

edges connect pairs of sequences which are related by the interchange of a single
element. Equivalently, a pair of sequences are connected by an edge if they share a
subsequence of size m − 1. For any such subsequence β ⊆ α there exists a unique
edge of Hα connecting the two vertices which share the subsequence β. Let I · α

denote the element of Hα obtained from α by the interchange of M(αi ) and αi for
i ∈ I . The element

Kα :=

∑
I⊆[m]

(−1)|I |vI ·α

lies in the kernel L(ω2m). Indeed, for each I ⊆ [m], we have

� y vI ·α =

m∑
i=1

v(I ·α)\{(I ·α)i }.

For each term v(I ·α)\{(I ·α)i } on the right hand side, let j ∈ [m] be such that either
(I · α)i = α j or (I · α)i = αc

j . Set

J =

{
I ∪ { j}, if (I · α)i = α j ,

I \ { j}, if (I · α)i = αc
j .

The set J is the unique subset of [m] such that (I · α) \ {(I · α)i } is in the support
of � y vJ ·α, with coefficient (−1)|J |

= (−1)|I |+1. Hence these terms cancel in Kα,
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and we see that the coefficient of each vβ for β ∈
(
[2m]

m−1

)
in the support of � y Kα

is zero. Therefore � y Kα = 0. See Example 5.8 for the case m = 2.
If α ∈ NE then there exists a descending matching, that is, M(αi ) < αi for all

i ∈[m]. For example, the condition that the matching M(αi ) :=αc
i be descending is

equivalent to the condition that α be Northeast. If we choose a descending matching
for each α∈NE, the element Kα ∈L(ω2m) is supported on sequences which precede
α in the poset

(
[2m]

m

)
. It follows that the set B := {Kα ∈ L(ω2m) | α ∈ NE} is a basis

for L(ω2m).

Lemma 5.5. The Plücker coordinates pα with α ∈ NE are a basis for L(ω2m)∗.

Proof. Fix a basis B of L(ω2m) obtained from descending matchings of each North-
east sequence. We use this basis to show that the set of Plücker coordinates pα such
that α is Northeast is a basis for the dual L(ω2m)∗.

Suppose not. Then there exists a linear form

` =

∑
α∈NE

cα pα

vanishing on each element of the basis B. We show by induction on the poset NE

that all of the coefficients cα appearing in this form vanish.
Fix a Northeast sequence α ∈NE, and assume that cβ =0 for all Northeast β <α.

Since Kα involves only the basis vectors vβ with β ≤α, we have `(Kα)= cα, hence
cα = 0. This completes the inductive step of the proof.

The initial step of the induction is simply the inductive step applied to the unique
minimal Northeast sequence α = 24 · · · (2m). �

It follows that every Plücker coordinate pα indexed by a non-Northeast sequence
α can be written uniquely as a linear combination of Plücker coordinates indexed
by Northeast sequences. We can be more precise about the form of these linear
combinations. Recall that each fiber of the map π2m contains a unique Northeast
sequence. For a sequence α0, let α be the Northeast sequence in the same fiber
as α0.

Lemma 5.6. For each non-Northeast sequence α0, let `′
α0

be the linear relation
among the Plücker coordinates expressing pα0 as a linear combination of the pβ

with β Northeast. Then pα appears in `′
α0

with coefficient (−1)|I |, where α = I ·α0,
and every other Northeast β with pβ in the support of `′

α0
satisfies β > α.

Proof. Let M be the descending matching of α with αc defined by M(αi ) := αc
i .

Let Kα be the kernel element obtained by the process described above. Any linear
form

` = pα0 + (−1)|I |+1 pα +

∑
α<β∈NE

cβ pβ

vanishes on Kα.
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We extend this relation to one which vanishes on all of L(ωn)0, proceeding
inductively on the poset of Northeast sequences greater than or equal to α. Suppose
that β > α is Northeast. By induction, suppose that for each Northeast sequence
γ in the interval [α, β] the coefficient cγ of ` has been determined in such a way
that `(Kγ ) = 0.

Let S be the set of Northeast sequences γ in the open interval (α, β) such that
vγ appears in Kβ . Then

`(Kβ) =

(∑
γ∈S

cγ

)
+ cβ,

so setting cβ := −
∑

γ∈S cγ implies that `(Kβ) = 0.
This completes the inductive part of the proof. We now have a linear form

` vanishing on L(ωn)0 which expresses pα0 as a linear combination of Plücker
coordinates indexed by Northeast sequences. Since such a linear form is unique,
` = `′

α0
. �

By Lemmas 5.5 and 5.6 and the argument preceding them, we deduce:

Theorem 5.7. The system of linear relations

{`(a)
α = uavd−a

⊗ � ∧ pα | a = 0, . . . , d, α ∈
(

〈n〉

n−2

)
}

has a reduced normal form consisting of linear forms expressing each Plücker co-
ordinate p(b)

β with β 6∈ NE ⊆
(
〈n〉

n

)
as a linear combination of Plücker coordinates

indexed by Northeast elements of
(
〈n〉

n

)
.

Proof. We have seen that the linear relations preserve weight spaces, and Lem-
mas 5.5 and 5.6 provide the required normal form on each of these. The union of
the relations constitute a normal form for the linear relations generating the entire
linear subspace Ld,n . �

Example 5.8. Consider the zero weight space (
∧4

C8)0 (so that m = 2). This is
spanned by the vectors

vα := eα1 ∧ eα2 ∧ eα3 ∧ eα4

(with dual basis the Plücker coordinates pα = v∗
α), where

α ∈ {4̄3̄34, 4̄2̄24, 4̄1̄14, 3̄2̄23, 3̄1̄13, 2̄1̄12}.

The Northeast sequences are 4̄3̄34 and 4̄2̄24. The kernel of

� y • :

(∧4
C8

)
0
→

(∧2
C8

)
0
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is spanned by the vectors

K 4̄2̄24 = v4̄2̄24 − v4̄1̄14 − v3̄2̄23 + v3̄1̄13, and

K 4̄3̄34 = v4̄3̄34 − v4̄1̄14 − v3̄2̄23 + v2̄1̄12.

To see this concretely, we compute:

� y K 4̄2̄24 = v4̄4 + v2̄2 − v4̄4 − v1̄1 − v3̄3 − v2̄2 + v3̄3 + v1̄1 = 0,

and similarly � y K 4̄3̄34 = 0. The fibers of the map π4 :
(
〈4〉

4

)
→ D4 are

π−1
4 (4̄3̄12, 2̄1̄34) = {4̄3̄34, 2̄1̄12}, and

π−1
4 (4̄2̄13, 3̄1̄24) = {4̄2̄24, 4̄1̄14, 3̄2̄23, 3̄1̄13}.

The expression for p4̄1̄14 as a linear combination of Plücker coordinates indexed
by Northeast sequences is

`4̄1̄14 = p4̄1̄14 + c4̄2̄24 p4̄2̄24 + c4̄3̄34 p4̄3̄34,

for some c4̄2̄24, c4̄3̄34 ∈ C, which we can compute as follows. Since

0 = `4̄1̄14(K 4̄2̄24) = c4̄2̄24 − 1,

we have c4̄2̄24 = 1. Similarly,

0 = `4̄1̄14(K 4̄3̄34) = c4̄3̄34 − 1,

so c4̄3̄34 = 1. Hence `4̄1̄14 = p4̄1̄14 + p4̄2̄24 + p4̄3̄34, which agrees with (2-3).

5B. Proof of the straightening law. We find generators of (Id,n+Ld,n)∩C[Dd,n]

which express the quotient as an algebra with straightening law on Dd,n . Such a
generating set is automatically a Gröbner basis with respect to the degree reverse
lexicographic term order where variables are ordered by a refinement of the doset
order. We begin with a Gröbner basis G Id,n+Ld,n for Id,n+Ld,n with respect to a
similar term order. For α(a)

∈
(
〈n〉

n

)
d , write

α̌(a)
:= α(a)

∨ (αt)(a) and α̂(a)
:= α(a)

∧ (αt)(a),

so that
πn(α

(a)) = (α̂(a), α̌(a)).

We call an element α(a)
∈

(
〈n〉

n

)
d Northeast if α ∈

(
〈n〉

n

)
is Northeast.

Let < be a linear refinement of the partial order on Pd,n satisfying the following
conditions. First, the Northeast sequence is minimal among those in a given fiber
of πn . This is possible since every weight space is an antichain (that is, no two
elements are comparable). Second, α(a) < β(b) if (α̂(a), α̌(a)) is lexicographically
smaller than (β̂(b), β̌(b)).
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With respect to any such refinement, consider the degree reverse lexicographic
term order. A reduced Gröbner basis Gd,n for Id,n+Ld,n with respect to this term
order will have standard monomials indexed by chains (in Pd,n) of Northeast par-
titions. While every monomial supported on a chain of Northeast partitions is
standard modulo Id,n , this is not always the case modulo Id,n+Ld,n . In other
words, upon identifying each Northeast partition appearing in a given monomial
with an element of Dd,n , we do not necessarily obtain a monomial supported on a
chain in Dd,n . It is thus necessary to identify precisely which Northeast chains in(
〈n〉

n

)
correspond to chains in Dd,n via the map πn .

A monomial p(a)
α p(b)

β such that α(a) < β(b), (β t)(b), and α(a), β(b)
∈ NE cannot

be reduced modulo G Id,n or GLd,n . On the other hand, if α(a) < β(b) (say), but α(a)

and (β t)(b) are incomparable (written α(a)
6∼ (β t)(b)) then there is a relation in G Id,n

with leading term p(a)
α p(b)

β t . It follows that the degree-two standard monomials are
indexed by Northeast partitions p(a)

α p(b)
β with α(a) < β(b), (β t)(b).

Conversely, any monomial p(a)
α p(b)

β with α(a) <β(b), (β t)(b), and α(a), β(b)
∈NE

cannot be the leading term of any element of G Id,n+Ld,n . To see this, observe that
G Id,n+Ld,n is obtained by Buchberger’s algorithm [1965] applied to G Id,n ∪ GLd,n ,
and we may consider only the S-polynomials S( f, g) with f ∈ G Id,n and g ∈ GLd,n .
In this case we may assume in<g divides in< f .

Let α0 be the partition such that in<g = p(a)
α0 (that is, g is the unique expression

of p(a)
α0 as a linear combination of Plücker coordinates indexed by Northeast parti-

tions), and let α be the unique Northeast partition such that πn(α0)=πn(α). By the
reduced normal form given in Theorem 5.7, S( f, g) is the obtained by replacing
p(a)

α0 with ±p(a)
α + `, where ` is a linear combination of Plücker coordinates p(a)

γ

with γ Northeast and α+ < γ+. This latter condition implies that α̂ < γ̂ (also,
α̌ > γ̌ ), and therefore (α̂, α̌) is lexicographically smaller than (γ̂ , γ̌ ).

Hence, with respect to the reduced Gröbner basis G Id,n+Ld,n , the standard mono-
mials are precisely the monomials p(a)

α p(b)
β with α(a)

≤β(b), (β t)(b), and α(a), β(b)
∈

NE.
Recall that elements of the doset Dd,n are pairs (α, β) of admissible elements

(Definition 2.6) of
(
〈n〉

n

)
d such that (regarded as sequences):

• α ≤ β;

• α and β have the same number of negative (or positive) elements.

Equivalently, regarding α and β as partitions, the elements of Dd,n are pairs (α, β)

of symmetric partitions such that:

• α ⊆ β;

• α and β have the same Durfee square, where the Durfee square of a partition
α is the largest square subpartition (p p) ⊆ α (for some p ≤ n).
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Theorem 5.9. C[
(
〈n〉

n

)
d ]/〈Id,n+Ld,n〉 is an algebra with straightening law on Dd,n .

Proof. Since standard monomials with respect to a Gröbner basis are linearly
independent, the arguments above establish the conditions in Definition 3.3 (1)
and (2).

To establish the condition (3), note that it suffices to consider the expression
for a degree-2 monomial as a sum of standard monomials. For simplicity, we
absorb the superscripts into our notation and write α ∈

(
〈n〉

n

)
d and similarly for the

corresponding Plücker coordinate. Let

p(α̂,α̌) p(β̂,β̌) =

k∑
j=1

c j p(α̂ j ,α̌ j ) p(β̂ j ,β̌ j )
(5-3)

be a reduced expression in G Id,n+Ld,n for p(α̂,α̌) p(β̂,β̌) as a sum of standard mono-
mials. That is, p(α̂,α̌) p(β̂,β̌) is nonstandard and p(α̂ j ,α̌ j ) p(β̂ j ,β̌ j )

is standard for
j = 1, . . . , k. We assume that α (respectively, β) be the unique Northeast partition
such that πn(α) = (α̂, α̌) (respectively, πn(β) = (β̂, β̌)), and similarly for each α j

and β j appearing in (5-3).
Fix j = 1, . . . , k. The standard monomial p(α̂ j ,α̌ j ) p(β̂ j ,β̌ j )

is obtained by the
reduction modulo GLd,n of a standard monomial pγ pδ appearing in the straight-
ening relation for pα pβ , which is an element of the Gröbner basis G Id,n . If γ and
δ are both Northeast, then nothing happens, that is, γ = α j and δ = β j . If γ is
not Northeast, then we rewrite pγ as a linear combination of Plücker coordinates
indexed by Northeast sequences. Lemma 5.6 ensures that the leading term of the
new expression is p(γ̂ ,γ̌ ), and the lower order terms p(ε̂,ε̌) satisfy ε̂ < γ̂ .

It follows that the lexicographic comparison in the condition of Definition 3.3 (3)
terminates with the first Plücker coordinate. That is, if (α̂ j ≤ α̌ j ≤ β̂ j ≤ β̌ j ) is
lexicographically smaller than (α̂ ≤ α̌ ≤ β̂ ≤ β̌), then either α̂ j < α̂ or α̂ j = α̂ and
α̂ j < α̂. Therefore the reduction process applied to pδ does not affect the result,
and the condition (3) is proven.

It remains to prove the condition (4). Suppose that (α̂, α̌) and (β̂, β̌) are incom-
parable elements of Dd,n (α and β Northeast). This means that α is incomparable
to either β or β t (possibly both). Without loss of generality, we will deal only with
the more complicated case that α and β t are incomparable. The hypothesis of the
condition (4) is that the set {α̂, α̌, β̂, β̌} forms a chain in

(
〈n〉

n

)
d . Up to interchanging

the roles of α and β, there are two possible cases (see Figure 9):

α̂ < β̂ < α̌ < β̌, or α̂ < β̂ < β̌ < α̌.

First, suppose α̂ < β̂ < α̌ < β̌. Recall that for any γ0 ∈
(
〈n〉

n

)
d , with Northeast

sequence γ in the same fiber of πn , the expression for the Plücker coordinate pγ0

as a linear combination of Plücker coordinates indexed by Northeast sequences is
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α̌

β̂

α̂

α β βt

β̂

β̌

α̌
β̌

β βt

α̂

αt

αt

α

α̂ < β̂ < α̌ < β̌ α̌ < β̂ < β̌ < α̌

Figure 9. The two cases in the proof of the condition of Definition 3.3 (4).

supported on Plücker coordinates pδ such that δ+ ≥ γ+ with equality if and only
if δ = γ , and the Plücker coordinate pγ appears with coefficient ±1 (Lemma 5.6).

Upon replacing each Northeast (or Southwest) partition with its associated doset
element using the map πn from Section 2B, the first two terms of straightening
relation for pα pβ t are

pα pβ t − pα∧β t pα∨β t

= pα pβ t − σ p((α∧β t )∧,(α∧β t )∨) p((α∨β t )∧,(α∨β t )∨) + lower order terms

= σβ p(α̂,α̌) p(β̂,β̌) − σ p(α̂,β̂) p(α̌,β̌) + lower order terms,

where σ = ±1. The second equation is justified as follows. For any element
α ∈

(
〈n〉

n

)
d , recall that α+ (respectively, α−) denotes the subsequence of positive

(negative) elements of α. This was previous defined for elements of
(
〈n〉

n

)
, but

extends to elements of
(
〈n〉

n

)
d in the obvious way, that is, by ignoring the superscript.

The condition

α̂ < β̂ < α̌ < β̌

is equivalent to

ᾱc
−

< β̄c
−

< α+ < β+.

Note that this implies that

α ∧ β t
= α− ∪ β̄c

−
, and α ∨ β t

= ᾱc
+

∪ β+.

We compute in the distributive lattice
(
〈n〉

n

)
d .

(α ∧ β t) ∧ (αt
∧ β) = (α− ∪ β̄c

−
) ∧ (β− ∪ ᾱc

−
) = α̂

(α ∧ β t) ∨ (αt
∧ β) = (α− ∪ β̄c

−
) ∨ (β− ∪ ᾱc

−
) = β̂
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Similarly,

(α ∨ β t) ∧ (αt
∨ β) = α̌, and (α ∨ β t) ∨ (αt

∨ β) = β̌.

In the remaining case, we have α̌ < β̂ < β̌ < α̌, and it follows that α 6∼ β and
α 6∼ β t both hold. We use the relation for the incomparable pair α 6∼ β t :

pα pβ t − pα∧β t pα∨β t

= pα pβ t − σ p((α∧β t )∧,(α∧β t )∨) p((α∨β t )∧,(α∨β t )∨) + lower order terms

= σβ p(α̂,α̌) p(β̂,β̌) − σ p(α̂,β̂) p(β̌,α̌) + lower order terms,

where the second equality holds by a similar computation in
(
〈n〉

n

)
d . �

The next result shows that the algebra with straightening law just constructed is
indeed the coordinate ring of LQd(n).

Theorem 5.10. C[
(
〈n〉

n

)
d ]/〈Id,n+Ld,n〉 ∼= C[LQd(n)] .

Proof. Let I ′
:= I (LQd(n)). By definition, we have Id,n+Ld,n ⊆ I ′. Since the

degree and codimension of these ideals are equal, I ′ is nilpotent modulo Id,n+Ld,n .
On the other hand Id,n+Ld,n is radical, so Id,n+Ld,n = I ′. �

The arguments of De Concini and Lakshmibai [1981, Theorem 4.5] extend to
the case of Schubert subvarieties of LQd(n).

Corollary 5.11. The coordinate ring of any Schubert subvariety of LQd(n) is an
algebra with straightening law on a doset, hence Cohen–Macaulay and Koszul.

Proof. For α(a)
∈ Dd,n , the Schubert variety Xα(a) is defined by the vanishing

of the Plücker coordinates p(b)
(β,γ ) for γ (b)

6≤ α(a). The conditions in Definition
3.3 (4) are stable upon setting these variables to zero, so we obtain an algebra with
straightening law on the doset

{(β, γ )(b)
∈ Dd,n | γ (b)

≤ α(a)
}.

Let D⊆P×P be a doset on the poset P, A any algebra with straightening law on
D, and C{P} the unique discrete algebra with straightening law on P. That is, C{P}

has algebra generators corresponding to the elements of P, and the straightening
relations are αβ = 0 if α and β are incomparable elements of P. Then A is Cohen–
Macaulay if and only if C{P} is Cohen–Macaulay [De Concini and Lakshmibai
1981].

On the other hand, C{P} is the face ring of the order complex of P. The order
complex of a locally upper semimodular poset is shellable. The face ring of a
shellable simplicial complex is Cohen–Macaulay [Bruns and Herzog 1993]. By
Proposition 3.17, any interval in the poset Pd,n is a distributive lattice, hence lo-
cally upper semimodular. This proves that C[LQd(n)] is Cohen–Macaulay. The
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Koszul property is a consequence of the quadratic Gröbner basis consisting of the
straightening relations. �

The main results of this paper suggest that the space of quasimaps is an adequate
setting for the study of the enumerative geometry of curves into a general flag
variety. They also give a new and interesting example of a family of varieties
whose coordinate rings are Hodge algebras.

After the ordinary Grassmannian, the Lagrangian Grassmannian was the first
space to be well understood in terms of (classical) standard monomial theory. Our
results thus lend credence to the expectation that further study of the space of
quasimaps into a flag variety of general type, possibly incorporating the ideas of
Chirivı̀ [2000; 2001], will yield new results in parallel (to some extent) with the
classical theory.
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