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ALGEBRA AND NUMBER THEORY 2:8(2008)

Integral points on hyperelliptic curves
Yann Bugeaud, Maurice Mignotte, Samir Siksek,

Michael Stoll and Szabolcs Tengely

Let C : Y 2
= an Xn

+ · · · + a0 be a hyperelliptic curve with the ai rational inte-
gers, n ≥ 5, and the polynomial on the right-hand side irreducible. Let J be its
Jacobian. We give a completely explicit upper bound for the integral points on
the model C , provided we know at least one rational point on C and a Mordell–
Weil basis for J (Q). We also explain a powerful refinement of the Mordell–Weil
sieve which, combined with the upper bound, is capable of determining all the
integral points. Our method is illustrated by determining the integral points on
the genus 2 hyperelliptic models Y 2

− Y = X5
− X and

(Y
2

)
=
(X

5

)
.

1. Introduction

Consider the hyperelliptic curve with affine model

C : Y 2
= an Xn

+ an−1 Xn−1
+ · · ·+ a0, (1-1)

with a0, . . . , an rational integers, an 6= 0, n ≥ 5, and the polynomial on the right-
hand side irreducible. Let H = max{|a0|, . . . , |an|}. In one of the earliest appli-
cations of his theory of lower bounds for linear forms in logarithms, Baker [1969]
showed that any integral point (X, Y ) on this affine model satisfies

max(|X |, |Y |)≤ exp exp exp
(
(n10n H)n

2)
.

Such bounds have been improved considerably by many authors, including Sprin-
džuk [1977], Brindza [1984], Schmidt [1992], Poulakis [1991], Bilu [1995], Bu-
geaud [1997] and Voutier [1995]. Despite the improvements, the bounds remain
astronomical and often involve inexplicit constants.

In this paper we explain a new method for explicitly computing the integral
points on affine models of hyperelliptic curves (1-1). The method falls into two
distinct steps:

MSC2000: primary 11G30; secondary 11J86.
Keywords: curve, integral point, Jacobian, height, Mordell–Weil group, Baker’s bound,

Mordell–Weil sieve.
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(i) We give a completely explicit upper bound for the size of integral solutions
of (1-1). This upper bound combines many refinements found in the papers
of Voutier, Bugeaud, and others, together with Matveev’s bounds [2000] for
linear forms in logarithms, and a method for bounding the regulators based
on a theorem of Landau [1918].

(ii) The bounds obtained in (i), whilst substantially better than bounds given by
earlier authors, are still astronomical. We explain a powerful variant of the
Mordell–Weil sieve which, combined with the bound obtained in (i), is capa-
ble of showing that the known solutions to (1-1) are the only ones.

Step (i) requires two assumptions:

(a) We assume that we know at least one rational point P0 on C .

(b) Let J be the Jacobian of C . We assume that a Mordell–Weil basis for J (Q)
is known.

For step (ii) we need assumptions (a), (b) and also:

(c) We assume that the canonical height ĥ : J (Q)→ R is explicitly computable
and that we have explicit bounds for the difference

µ1 ≤ h(D)− ĥ(D)≤ µ′1 (1-2)

where h is an appropriately normalized logarithmic height on J that allows
us to enumerate points P in J (Q) with h(P)≤ B for a given bound B.

Assumptions (a)–(c) deserve a comment or two. For many families of curves of
higher genus, practical descent strategies are available for estimating the rank of
the Mordell–Weil group; see for example [Cassels and Flynn 1996; Poonen and
Schaefer 1997; Schaefer 1995; Stoll 2001]. To provably determine the Mordell–
Weil group one however needs bounds for the difference between the logarithmic
and canonical heights. For Jacobians of curves of genus 2 such bounds have been
determined by Stoll [1999; 2002], building on previous work of Flynn and Smart
[1997]. At present, no such bounds have been determined for Jacobians of curves of
genus≥3, though work on this is in progress. The assumption about the knowledge
of a rational point is a common sense assumption that brings some simplifications
to our method, though the method can be modified to cope with the situation where
no rational point is known. However, if a search on a curve of genus ≥ 2 reveals
no rational points, it is probable that there are none, and the methods of Bruin and
Stoll [2008a; 2008b; ≥ 2008] are likely to succeed in proving this.

We illustrate the practicality of our approach by proving:

Theorem 1.1. The only integral solutions to the equation

Y 2
− Y = X5

− X (1-3)
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are

(X, Y )= (−1, 0), (−1, 1), (0, 0), (0, 1), (1, 0), (1, 1), (2,−5),

(2, 6), (3,−15), (3, 16), (30,−4929), (30, 4930).

Theorem 1.2. The only integral solutions to the equation(
Y
2

)
=

(
X
5

)
(1-4)

are

(X, Y )= (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0),

(3, 1), (4, 0), (4, 1), (5,−1), (5, 2), (6,−3), (6, 4),

(7,−6), (7, 7), (15,−77), (15, 78), (19,−152), (19, 153).

Equations (1-3) and (1-4) are of historical interest and Section 2 gives a brief outline
of their history. For now we merely mention that these two equations are the first
two problems on a list of 22 unsolved Diophantine problems, compiled by Evertse
and Tijdeman [2007] following a recent workshop on Diophantine equations at
Leiden.

To appreciate why the innocent-looking (1-3) and (1-4) have resisted previous
attempts, let us briefly survey the available methods which apply to hyperelliptic
curves and then briefly explain why they fail in these cases. To determine the inte-
gral points on the affine model C given by (1-1) there are four available methods:

(I) The first is Chabauty’s elegant method which in fact determines all rational
points on C in many cases, provided the rank of the Mordell–Weil group of
its Jacobian is strictly less than the genus g; see for example [Flynn 1997;
Wetherell 1997]. Chabauty’s method fails if the rank of the Mordell–Weil
group exceeds the genus.

(II) The second method is to use coverings, often combined with a version of
Chabauty called Elliptic Curve Chabauty. See [Bruin 1999; 2003; Flynn
and Wetherell 1999; 2001]. This approach often requires computations of
Mordell–Weil groups over number fields (and does fail if the rank of the
Mordell–Weil groups is too large).

(III) The third method is to combine Baker’s approach through S-units with the
LLL algorithm to obtain all the solutions provided that certain relevant unit
groups and class groups can be computed; for a modern treatment, see [Bilu
and Hanrot 1998] or [Smart 1998, Section XIV.4]. This strategy often fails in
practice as the number fields involved have very high degree.
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(IV) The fourth approach is to apply Skolem’s method to the S-unit equations (see
[Smart 1998, Section III.2]). This needs the same expensive information as
method (III).

The Jacobians of the curves given by (1-3) and (1-4) respectively have ranks 3
and 6 and so Chabauty’s method fails. To employ Elliptic Curve Chabauty would
require the computation of Mordell–Weil groups of elliptic curves without rational
2-torsion over number fields of degree 5 (which does not seem practical at present).
To apply the S-unit approach (with either LLL or Skolem) requires the computa-
tions of the unit groups and class groups of several number fields of degree 40 —
a computation that seems completely impractical at present.

Our paper is arranged as follows. Section 2 gives a brief history of (1-3) and
(1-4). In Section 3 we show, after appropriate scaling, that an integral point (x, y)
satisfies x − α = κξ 2 where α is some fixed algebraic integer, ξ ∈ Q(α), and κ
is an algebraic integer belonging to a finite computable set. In Section 9 we give
bounds for the size of solutions x ∈ Z to an equation of the form x − α = κξ 2

where α and κ are fixed algebraic integers. Thus, in effect, we obtain bounds
for the size of solutions of the integral points on our affine model (1-1). Sections
4–8 are preparation for Section 9: in particular Section 4 is concerned with heights;
Section 5 explains how a theorem of Landau can be used to bound the regulators of
number fields; Section 6 collects and refines various results on appropriate choices
of systems of fundamental units; Section 7 is devoted to Matveev’s bounds for
linear forms in logarithms; in Section 8 we use Matveev’s bounds and the results
of previous sections to prove a bound on the size of solutions of unit equations;
in Section 9 we deduce the bounds for x alluded to above from the bounds for
solutions of unit equations. Despite our best efforts, the bounds obtained for x
are still so large that no naive search up to those bounds is conceivable. Over
Sections 10, 11 and 12 we explain how to sieve effectively up to these bounds
using the Mordell–Weil group of the Jacobian. In particular, Section 11 gives a
powerful refinement of the Mordell–Weil sieve (see [Bruin and Stoll 2008a; Bruin
and Stoll ≥ 2008]) which we expect to have applications elsewhere. Finally, in
Section 13 we apply the method of this paper to prove Theorems 1.1 and 1.2.

2. History of (1-3) and (1-4)

Equation (1-3) is a special case of the family of Diophantine equations

Y p
− Y = Xq

− X, 2≤ p < q. (2-1)

This family has previously been studied by Fielder and Alford [1998] and by
Mignotte and Pethő [1999]. The (genus 1) case p = 2, q = 3 was solved by
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Mordell [1963] who showed that the only solutions in this case are

(X, Y )= (0, 0), (0, 1), (±1, 0), (±1, 1), (2, 3), (2,−2), (6, 15), (6,−14).

Fielder and Alford presented the following list of solutions with X , Y > 1:

(p, q, X, Y )= (2, 3, 2, 3), (2, 3, 6, 15), (2, 5, 2, 6), (2, 5, 3, 16),

(2, 5, 30, 4930), (2, 7, 5, 280), (2, 13, 2, 91), (3, 7, 3, 13).

Mignotte and Pethő proved that for given p and q with 2≤ p< q , the Diophantine
equation (2-1) has only a finite number of integral solutions. Assuming the abc-
conjecture, they showed that (2-1) has only finitely many solutions with X , Y > 1.

If p = 2, q > 2 and y is a prime power, then Mignotte and Pethő found all
solutions of the equation and these are all in Fielder and Alford’s list.

Equation (1-4) is a special case of the Diophantine equation(
n
k

)
=

(
m
l

)
, (2-2)

in unknowns k, l, m, n. This is usually considered with the restrictions 2≤ k ≤ n
2 ,

and 2≤ l ≤ m
2 . The only known solutions (with these restrictions) are(

16
2

)
=

(
10
3

)
,

(
56
2

)
=

(
22
3

)
,

(
120
2

)
=

(
36
3

)
,

(
21
2

)
=

(
10
4

)
,(

153
2

)
=

(
19
5

)
,

(
78
2

)
=

(
15
5

)
=

(
14
6

)
,

(
221
2

)
=

(
17
8

)
,(

F2i+2 F2i+3

F2i F2i+3

)
=

(
F2i+2 F2i+3− 1
F2i F2i+3+ 1

)
for i = 1, 2, . . . ,

where Fn is the n-th Fibonacci number. It is known that there are no other nontrivial
solutions with

(n
k

)
≤ 1030 or n ≤ 1000; see [de Weger 1997]. The infinite family of

solutions was found by Lind [1968] and Singmaster [1975].
Equation (2-2) has been completely solved for pairs

(k, l)= (2, 3), (2, 4), (2, 6), (2, 8), (3, 4), (3, 6), (4, 6).

These are the cases when one can easily reduce the equation to the determina-
tion of solutions of a number of Thue equations or elliptic Diophantine equations.
Avanesov [1966/1967] found all solutions of (2-2) with (k, l) = (2, 3). De Weger
[1996] and independently Pintér [1995] solved the equation with (k, l) = (2, 4).
The case (k, l)= (3, 4) reduces to the equation

Y (Y + 1)= X (X + 1)(X + 2)
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which was solved by Mordell [1963]. The remaining pairs

(2, 6), (2, 8), (3, 6), (4, 6)

were treated by Stroeker and de Weger [1999], using linear forms in elliptic loga-
rithms.

There are also some general finiteness results related to (2-2). Kiss [1988]
proved that if k = 2 and l is a given odd prime, then the equation has only finitely
many positive integral solutions. Using Baker’s method, Brindza [1991] showed
that (2-2) with k = 2 and l ≥ 3 has only finitely many positive integral solutions.

3. Descent

Consider the integral points on the affine model of the hyperelliptic curve (1-1). If
the polynomial on the right-hand side is reducible then the obvious factorisation
argument reduces the problem of determining the integral points for (1-1) to deter-
mining those on simpler hyperelliptic curves, or on genus 1 curves. The integral
points on a genus 1 curve can be determined by highly successful algorithms (see
for example [Smart 1998; Stroeker and Tzanakis 2003]) based on LLL and David’s
bound for linear forms in elliptic logarithms.

We therefore suppose henceforth that the polynomial on the right-hand side of
(1-1) is irreducible; this is certainly the most difficult case. By appropriate scaling,
one transforms the problem of integral points on (1-1) to integral points on a model
of the form

ay2
= xn
+ bn−1xn−1

+ · · ·+ b0, (3-1)

where a and bi are integers, with a 6= 0. We shall work henceforth with this model
of the hyperelliptic curve. Denote the polynomial on the right-hand side by f and
let α be a root of f . Then a standard argument shows that

x −α = κξ 2

where κ, ξ ∈ K = Q(α) and κ is an algebraic integer that comes from a finite
computable set. In this section we suppose that the Mordell–Weil group J (Q) of
the curve C is known, and we show how to compute such a set of κ using our
knowledge of the Mordell–Weil group J (Q). The method for doing this depends
on whether the degree n is odd or even.

3A. The odd degree case. Each coset of J (Q)/2J (Q) has a coset representative
of the form

∑m
i=1(Pi −∞) where the set {P1, . . . , Pm} is stable under the action

of Galois, and where all y(Pi ) are nonzero. Now write x(Pi )= γi/d2
i where γi is

an algebraic integer and di ∈ Z≥1; moreover if Pi , Pj are conjugate then we may
suppose that di = d j and so γi , γ j are conjugate. To such a coset representative of
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J (Q)/2J (Q) we associate

κ = a(m mod 2)
m∏

i=1

(γi −αd2
i ).

Lemma 3.1. Let K be a set of κ associated as above to a complete set of coset
representatives of J (Q)/2J (Q). Then K is a finite subset of OK and if (x, y) is an
integral point on the model (3-1) then x −α = κξ 2 for some κ ∈ K and ξ ∈ K .

Proof. This follows trivially from the standard homomorphism

θ : J (Q)/2J (Q)→ K ∗/K ∗2

that is given by

θ

( m∑
i=1

(Pi −∞)

)
= am

m∏
i=1

(x(Pi )−α) (mod K ∗2)

for coset representatives
∑
(Pi −∞) with y(Pi ) 6= 0; see [Stoll 2001, Section 4].

�

3B. The even degree case. As mentioned in the introduction, we shall assume the
existence of at least one rational point P0. If P0 is one of the two points at infinity,
let ε0 = 1. Otherwise, as f is irreducible, y(P0) 6= 0; write x(P0) = γ0/d2

0 with
γ0 ∈ Z and d0 ∈ Z≥1 and let ε0 = γ0−αd2

0 .
Each coset of J (Q)/2J (Q) has a coset representative of the form

∑m
i=1(Pi−P0)

where the set {P1, . . . , Pm} is stable under the action of Galois, and where all y(Pi )

are nonzero for i = 1, . . . ,m. Write x(Pi )= γi/d2
i where γi is an algebraic integer

and di ∈ Z≥1; moreover if Pi , Pj are conjugate then we may suppose that di = d j

and so γi , γ j are conjugate. To such a coset representative of J (Q)/2J (Q) we
associate

ε = ε
(m mod 2)
0

m∏
i=1

(γi −αd2
i ).

Lemma 3.2. Let E be a set of ε associated as above to a complete set of coset
representatives of J (Q)/2J (Q). Let 1 be the discriminant of the polynomial f .
For each ε ∈ E, let Bε be the set of square-free rational integers supported only by
primes dividing a1NormK/Q(ε). Let K= {εb : ε ∈ E, b ∈Bε}. Then K is a finite
subset of OK and if (x, y) is an integral point on the model (3-1) then x −α = κξ 2

for some κ ∈ K and ξ ∈ K .

Proof. In our even degree case, the homomorphism θ takes values in K ∗/Q∗K ∗2.
Thus if (x, y) is an integral point on the model (3-1), we have that (x−α)= εbξ 2
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for some ε ∈ E and b a square-free rational integer. A standard argument shows
that 2 | ord℘(x−α) for all prime ideals ℘ - a1. Hence, 2 | ord℘(b) for all ℘ - a1ε.
Let ℘ | p where p is a rational prime not dividing a1NormK/Q(ε). Then p is
unramified in K/Q and so ordp(b) = ord℘(b) ≡ 0 (mod 2). This shows that
b ∈Bε and proves the lemma. �

3C. Remarks. The following remarks are applicable to both odd and even degree
cases.

(i) We point out that we can still obtain a suitable (though larger) set of κ that
satisfies the conclusions of Lemmas 3.1 and 3.2, even if we do not know coset
representatives for J (Q)/2J (Q), provided we are able to compute the class
group and unit group of the number field K ; for this see for example [Bruin
1999, Section 2.2].

(ii) We can use local information at small and bad primes to restrict the set K

further, compare [Bruin and Stoll 2008a; 2008b], where this is applied to
rational points. In our case, we can restrict the local computations to x ∈ Zp

instead of Qp.

4. Heights

We fix once and for all the following notation.

K a number field,
OK the ring of integers of K ,
MK the set of all places of K ,
M0

K the set of non-Archimedean places of K ,
M∞K the set of Archimedean places of K ,
υ a place of K ,
Kυ the completion of K at υ,
dυ the local degree [Kυ :Qυ].

For υ ∈ MK , we let | · |υ be the usual normalized valuation corresponding to
υ; in particular if υ is non-Archimedean and p is the rational prime below υ then
|p|υ = p−1. Thus if L/K is a field extension, and ω a place of L above υ then
|α|ω = |α|υ , for all α ∈ K .

Define
‖α‖υ = |α|

dυ
υ .

Hence for α ∈ K ∗, the product formula states that∏
υ∈MK

‖α‖υ = 1.
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In particular, if υ is Archimedean, corresponding to a real or complex embedding
σ of K , then

|α|υ = |σ(α)| and ‖α‖υ =

{
|σ(α)| if σ is real,

|σ(α)|2 if σ is complex.

For α ∈ K , the (absolute) logarithmic height h(α) is given by

h(α)=
1

[K :Q]

∑
υ∈MK

dυ log max{1, |α|υ} =
1

[K :Q]

∑
υ∈MK

log max{1, ‖α‖υ}.

(4-1)
The absolute logarithmic height of α is independent of the field K containing α.

We shall need the following elementary properties of heights.

Lemma 4.1. For any nonzero algebraic number α, we have h(α−1) = h(α). For
algebraic numbers α1, . . . , αn , we have

h(α1α2 · · ·αn)≤ h(α1)+ · · ·+ h(αn),

h(α1+ · · ·+αn)≤ log n+ h(α1)+ · · ·+ h(αn).

Proof. The lemma is [Silverman 1986, Exercise 8.8]. We do not know of a ref-
erence for the proof and so we will indicate briefly the proof of the second (more
difficult) inequality. For υ ∈ MK , choose iυ in {1, . . . , n} to satisfy

max{|α1|υ, . . . , |αn|υ} = |αiυ |υ .

Note that
|α1+ · · ·+αn|υ ≤ ευ |αiυ |υ,

where ευ = n if υ is Archimedean or ευ = 1 otherwise. Thus

log max{1, |α1+ · · ·+αn|υ} ≤ log ευ + log max{1, |αiυ |υ}

≤ log ευ +
n∑

i=1

log max{1, |αi |υ}.

Observe that

1
[K :Q]

∑
υ∈MK

dυ log ευ =
log n
[K :Q]

∑
υ∈M∞K

dυ = log n.

The desired inequality follows from the definition of logarithmic height (4-1). �

4A. Height lower bound. We need the following result of Voutier [1996] concern-
ing Lehmer’s problem.
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Lemma 4.2. Let K be a number field of degree d. Let

∂K =


log 2

d if d = 1, 2,
1
4

(
log log d

log d

)3
if d ≥ 3.

Then, for every nonzero algebraic number α in K , which is not a root of unity,

deg(α) h(α)≥ ∂K .

Throughout, by the logarithm of a complex number, we mean the principal de-
termination of the logarithm. In other words, if x ∈C∗ we express x = reiθ where
r > 0 and −π < θ ≤ π ; we then let log x = log r + iθ .

Lemma 4.3. Let K be a number field and let

∂ ′K =

(
1+

π2

∂2
K

)1/2

.

For any nonzero α ∈ K and any place υ ∈ MK ,

log |α|υ ≤ deg(α) h(α), log ‖α‖υ ≤ [K :Q] h(α).

Moreover, if α is not a root of unity and σ is a real or complex embedding of K
then

| log σ(α)| ≤ ∂ ′K deg(α) h(α).

Proof. The first two inequalities are an immediate consequence of the definition of
absolute logarithmic height. For the last, write σ(α) = ea+ib, with a = log |σ(α)|
and |b| ≤ π , and let d = deg(α). Then we have

| log σ(α)| = (a2
+ b2)1/2 ≤ (log2

|σ(α)| +π2)1/2 ≤
(
(d h(α))2+π2)1/2

.

By Lemma 4.2 we have d h(α)≥ ∂K , so

| log σ(α)| ≤ d h(α)
(

1+
π2

∂2
K

)1/2

,

as required. �

5. Bounds for regulators

Later on we need to give upper bounds for the regulators of complicated number
fields of high degree. The following lemma, based on bounds of Landau [1918],
is an easy way to obtain reasonable bounds.

Lemma 5.1. Let K be a number field with degree d = u + 2v where u and v are
respectively the numbers of real and complex embeddings. Denote the absolute
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discriminant by DK and the regulator by RK , and the number of roots of unity in
K by w. Suppose, moreover, that L is a real number such that DK ≤ L. Let

a = 2−vπ−d/2
√

L.

Define the function fK (L , s) by

fK (L , s)= 2−uwas(0( s
2
))u
(0(s))vsd+1(s− 1)1−d ,

and let BK (L)=min{ fK (L , 2− t/1000) : t = 0, 1, . . . , 999}. Then RK < BK (L).

Proof. Landau [1918, proof of Hilfssatz 1] established the inequality

RK < fK (DK , s)

for all s > 1. It is thus clear that RK < BK (L). �

Remark 5.2. For a complicated number field of high degree it is difficult to calcu-
late the discriminant DK exactly, though it is easy to give an upper bound L for its
size. It is also difficult to minimise the function fK (L , s) analytically, but we have
found that the above gives an accurate enough result, which is easy to calculate on
a computer.

6. Fundamental units

For the number fields we are concerned with, we shall need to work with a certain
system of fundamental units.

Lemma 6.1 [Bugeaud and Győry 1996, Lemma 1]. Let K be a number field of
degree d and let r = rK be its unit rank and RK its regulator. Define the constants

c1 = c1(K )=
(r !)2

2r−1dr , c2 = c2(K )= c1

( d
∂K

)r−1
, c3 = c3(K )= c1

dr

∂K
.

Then K admits a system {ε1, . . . , εr } of fundamental units such that:

(i)
∏r

i=1 h(εi )≤ c1 RK .

(ii) h(εi )≤ c2 RK , 1≤ i ≤ r .

(iii) Write M for the r ×r-matrix (log ‖εi‖υ), where υ runs over r of the Archime-
dean places of K and 1 ≤ i ≤ r . Then the absolute values of the entries of
M−1 are bounded above by c3.

Lemma 6.2. Let K be a number field of degree d, and let {ε1, . . . , εr } be a system
of fundamental units as in Lemma 6.1. Define the constant c4 = c4(K ) = rdc3.
Suppose ε = ζεb1

1 . . . εbr
r , where ζ is a root of unity in K . Then

max{|b1|, . . . , |br |} ≤ c4 h(ε).
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Proof. Note that for any Archimedean place v of K ,

log ‖ε‖v =
∑

bi log ‖εi‖v.

The lemma now follows from part (iii) of Lemma 6.1, plus the fact that log ‖ε‖v ≤
d h(ε) for all v given by Lemma 4.3. �

The following result is a special case of [Bugeaud and Győry 1996, Lemma 2].

Lemma 6.3. Let K be a number field of unit rank r and regulator K . Let α be a
nonzero algebraic integer belonging to K . Then there exists a unit ε of K such that

h(αε)≤ c5 RK +
log |NormK/Q(α)|

[K :Q]

where

c5 = c5(K )=
r r+1

2∂r−1
K

.

Lemma 6.4. Let K be a number field, β, ε ∈ K ∗ with ε being a unit. Let σ be the
real or complex embedding that makes |σ(βε)| minimal. Then

h(βε)≤ h(β)− log |σ(βε)|.

Proof. As usual, write d = [K :Q] and dυ = [Kυ :Qυ]. Then

h(βε)= h
( 1
βε

)
=

1
d

∑
υ∈M∞K

dυ max{0, log(|βε|−1
υ )}+

1
d

∑
υ∈M0

K

dυ max{0, log(|βε|−1
υ )}

≤ log(|σ(βε)|−1)+
1
d

∑
υ∈M0

K

dυ max{0, log(|β|−1
υ )}

≤ − log |σ(βε)| + 1
d

∑
υ∈MK

dυ max{0, log(|β|−1
υ )}

≤ − log |σ(βε)| + h(β). �

7. Matveev’s lower bound for linear forms in logarithms

Let L be a number field and let σ be a real or complex embedding. For α ∈ L∗ we
define the modified logarithmic height of α with respect to σ to be

hL ,σ (α) :=max{[L :Q] h(α), | log σ(α)|, 0.16}.

The modified height is clearly dependent on the number field; we shall need the
following Lemma which gives a relation between the modified and absolute height.
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Lemma 7.1. Let K ⊆ L be number fields and write

∂L/K =max
{
[L :Q], [K :Q]∂ ′K ,

0.16[K :Q]
∂K

}
.

Then for any α ∈ K which is neither zero nor a root of unity, and any real or
complex embedding σ of L ,

hL ,σ (α)≤ ∂L/K h(α).

Proof. By Lemma 4.3 we have

[K :Q]∂ ′K h(α)≥ ∂ ′K deg(α) h(α)≥ | log σ(α)|.

Moreover, by Lemma 4.2,

0.16[K :Q] h(α)
∂K

≥
0.16 deg(α) h(α)

∂K
≥ 0.16.

The lemma follows. �

We shall apply lower bounds on linear forms, more precisely a version of Mat-
veev’s estimates [2000]. We recall that log denotes the principal determination of
the logarithm.

Lemma 7.2. Let L be a number field of degree d, with α1, . . . , αn ∈ L∗. Define a
constant

C(L , n) := 3 · 30n+4
· (n+ 1)5.5 d2 (1+ log d).

Consider the “linear form”

3 := αb1
1 · · ·α

bn
n − 1,

where b1, . . . , bn are rational integers and let B :=max{|b1|, . . . , |bn|}. If 3 6= 0,
and σ is any real or complex embedding of L then

log |σ(3)|>−C(L , n)(1+ log(nB))
n∏

j=1

hL ,σ (α j ).

Proof. This straightforward corollary of Matveev’s estimates is [Bugeaud et al.
2006, Theorem 9.4]. �

8. Bounds for unit equations

Now we are ready to prove an explicit version of [Bugeaud 1997, Lemma 4]. The
proposition below allows us to replace in the final estimate the regulator of the
larger field by the product of the regulators of two of its subfields. This often
results in a significant improvement of the upper bound for the height. This idea
is due to Voutier [1995].
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Proposition 8.1. Let L be a number field of degree d, which contains K1 and K2

as subfields. Let RKi (respectively ri ) be the regulator (respectively the unit rank)
of Ki . Suppose further that ν1, ν2 and ν3 are nonzero elements of L with height
≤ H (with H ≥ 1) and consider the unit equation

ν1ε1+ ν2ε2+ ν3ε3 = 0 (8-1)

where ε1 is a unit of K1, ε2 a unit of K2 and ε3 a unit of L. Then, for i = 1 and 2,

h
( νiεi

ν3ε3

)
≤ A2+ A1 log(H +max{h(ν1ε1), h(ν2ε2)}),

where

A1 = 2H ·C(L , r1+ r2+ 1) · c1(K1)c1(K2)∂L/L · (∂L/K1)
r1 · (∂L/K2)

r2 · RK1 RK2,

A2 = 2H + A1+ A1 log
(
(r1+ r2+ 1) ·max{c4(K1), c4(K2), 1}

)
.

Proof. Let {µ1, . . . , µr1} and {ρ1, . . . , ρr2} be respectively systems of fundamental
units for K1 and K2 as in Lemma 6.1; in particular we know that

r1∏
j=1

h(µ j )≤ c1(K1)RK1,

r2∏
j=1

h(ρ j )≤ c1(K2)RK2 . (8-2)

We can write

ε1 = ζ1µ
b1
1 · · ·µ

br1
r1 , ε2 = ζ2ρ

f1
1 · · · ρ

fr2
r2 ,

where ζ1 and ζ2 are roots of unity and b1, . . . , br1 , and f1, . . . , fr2 are rational
integers. Set

B1 =max{|b1|, . . . , |br1 |}, B2 =max{| f1|, . . . , | fr2 |}, B =max{B1, B2, 1}.

Set α0 =−
ζ2ν2
ζ1ν1

and b0 = 1. By (8-1),

ν3ε3

ν1ε1
= αb0

0 µ
−b1
1 · · ·µ

−br1
r1 ρ

f1
1 · · · ρ

fr2
r2 − 1.

Now choose the real or complex embedding σ of L such that |σ( ν3ε3
ν1ε1

)| is minimal.
We apply Matveev’s estimate (Lemma 7.2) to this “linear form”, obtaining

log
∣∣∣σ(ν3ε3

ν1ε1

)∣∣∣>−C(L , n)(1+ log(nB)) hL ,σ (α0)

r1∏
j=1

hL ,σ (µ j )

r2∏
j=1

hL ,σ (ρ j ),

where n = r1+ r2+ 1. Using Lemma 7.1 and (8-2) we obtain
r1∏

j=1

hL ,σ (µ j )≤ (∂L/K1)
r1

r1∏
j=1

h(µ j )≤ c1(K1)(∂L/K1)
r1 RK1,
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and a similar estimate for
∏r2

j=1 hL ,σ (ρ j ). Moreover, again by Lemma 7.1 and
Lemma 4.1, hL ,σ (α0)≤ 2H∂L/L . Thus

log
∣∣∣σ(ν3ε3

ν1ε1

)∣∣∣>−A1(1+ log(nB)).

Now applying Lemma 6.4, we obtain that

h
(ν3ε3

ν1ε1

)
≤ h

(ν3

ν1

)
+ A1(1+ log(nB))≤ 2H + A1(1+ log(nB)).

The proof is complete on observing, from Lemma 6.2, that

B ≤max{c4(K1), c4(K2), 1} ·max{h(ε1), h(ε2), 1},

and from Lemma 4.1,

h(νiεi )≤ h(εi )+ h(νi )≤ h(ε)+ H. �

9. Upper bounds for the size of integral points on hyperelliptic curves

We shall need the following standard sort of lemma.

Lemma 9.1. Let a, b, c, y be positive numbers and suppose that

y ≤ a+ b log(c+ y).

Then

y ≤ 2b log b+ 2a+ c.

Proof. Let z = c+ y, so that

z ≤ (a+ c)+ b log z.

Now we apply the case h= 1 of [Pethö and de Weger 1986, Lemma 2.2]; this gives

z ≤ 2(b log b+ a+ c). �

Theorem 9.2. Let α be an algebraic integer of degree at least 3, and let κ be an
integer belonging to K . Let α1, α2, α3 be distinct conjugates of α and κ1, κ2, κ3 be
the corresponding conjugates of κ . Let

K1 =Q(α1, α2,
√
κ1κ2), K2 =Q(α1, α3,

√
κ1κ3), K3 =Q(α2, α3,

√
κ2κ3),

and

L =Q(α1, α2, α3,
√
κ1κ2,

√
κ1κ3).
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Let R be an upper bound for the regulators of K1, K2 and K3. Let r be the maxi-
mum of the unit ranks of K1, K2, K3. Let

c∗j = max
1≤i≤3

c j (Ki ),

N = max
1≤i, j≤3

∣∣NormQ(αi ,α j )/Q(κi (αi −α j ))
∣∣2,

H∗ = c∗5 R+
log N

min1≤i≤3[Ki :Q]
+ h(κ),

A∗1 = 2H∗ ·C(L , 2r + 1) · (c∗1)
2∂L/L ·

(
max

1≤i≤3
∂L/Ki

)2r
· R2,

A∗2 = 2H∗+ A∗1+ A∗1 log((2r + 1) ·max{c∗4, 1}).

If x ∈ Z\{0} satisfies x −α = κξ 2 for some ξ ∈ K then

log |x | ≤ 8A∗1 log(4A∗1)+ 8A∗2+ H∗+ 20 log 2+ 13 h(κ)+ 19 h(α).

Proof. Conjugating the relation x − α = κξ 2 appropriately and taking differences
we obtain

α1−α2 = κ2ξ
2
2 − κ1ξ

2
1 , α3−α1 = κ1ξ

2
1 − κ3ξ

2
3 , α2−α3 = κ3ξ

2
3 − κ2ξ

2
2 .

Let
τ1 = κ1ξ1, τ2 =

√
κ1κ2ξ2, τ3 =

√
κ1κ3ξ3.

Observe that

κ1(α1−α2)= τ
2
2 − τ

2
1 , κ1(α3−α1)= τ

2
1 − τ

2
3 , κ1(α2−α3)= τ

2
3 − τ

2
2 ,

and

τ2± τ1 ∈ K1, τ1± τ3 ∈ K2, τ3± τ2 ∈

√
κ1

κ2
K3.

We claim that each τi±τ j can be written in the form νε where ε is a unit in one of
the Ki and ν ∈ L is an integer satisfying h(ν) ≤ H∗. Let us show this for τ2− τ3;
the other cases are either similar or easier. Note that τ2− τ3 =

√
κ1
κ2
ν ′′ where ν ′′ is

an integer belonging to K3. Moreover, ν ′′ divides√
κ2

κ1
(τ3− τ2) ·

√
κ2

κ1
(τ3+ τ2)= κ2(α2−α3).

Hence |NormK3/Q(ν
′′)| ≤ N . By Lemma 6.3, we can write ν ′′ = ν ′ε where ε ∈ K3

and

h(ν ′)≤ c5(K3)R+
log N
[K3 :Q]

.

Now let ν =
√
κ1
κ2
ν ′. Thus τ2− τ3 = νε where h(ν) ≤ h(ν ′)+ h(κ) ≤ H∗ proving

our claim.
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We apply Proposition 8.1 to the unit equation

(τ1− τ2)+ (τ3− τ1)+ (τ2− τ3)= 0,

which is indeed of the form ν1ε1+ ν2ε2+ ν3ε3 = 0 where the νi and εi satisfy the
conditions of that proposition with H replaced by H∗. We obtain

h
(τ1− τ2

τ1− τ3

)
≤ A∗2+ A∗1 log(H∗+max{h(τ2− τ3), h(τ1− τ2)}).

Observe that

h(τi ± τ j )≤ log 2+ h(τi )+ h(τ j )≤ log 2+ 2 h(κ)+ 2 h(ξ)

≤ log 2+ 3 h(κ)+ h(x −α)≤ 2 log 2+ 3 h(κ)+ h(α)+ log |x |,

where we have made repeated use of Lemma 4.1. Thus

h
(τ1− τ2

τ1− τ3

)
≤ A∗2+ A∗1 log(A∗3+ log |x |),

where A∗3 = H∗+ 2 log 2+ 3 h(κ)+ h(α).
We also apply Proposition 8.1 to the unit equation

(τ1+ τ2)+ (τ3− τ1)− (τ2+ τ3)= 0,

to obtain precisely the same bound for h( τ1+τ2
τ1−τ3

). Using the identity(τ1− τ2

τ1− τ3

)
·

(τ1+ τ2

τ1− τ3

)
=
κ1(α2−α1)

(τ1− τ3)2
,

we obtain that

h(τ1− τ3)≤
log 2+ h(κ)

2
+ h(α)+ A∗2+ A∗1 log(A∗3+ log |x |).

Now

log |x | ≤ log 2+ h(α)+ h(x −α1)

≤ log 2+ h(α)+ h(κ)+ 2 h(τ1) (using x −α1 =
τ 2

1
κ1
)

≤ 5 log 2+ h(α)+ h(κ)+ 2 h(τ1+ τ3)+ 2 h(τ1− τ3)

≤ 5 log 2+ h(α)+ h(κ)+ 2 h
(κ1(α3−α1)

τ1− τ3

)
+ 2 h(τ1− τ3)

≤ 7 log 2+ 5 h(α)+ 3 h(κ)+ 4 h(τ1− τ3)

≤ 9 log 2+ 9 h(α)+ 5 h(κ)+ 4A∗2+ 4A∗1 log(A∗3+ log |x |).

The theorem follows from Lemma 9.1. �
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10. The Mordell–Weil sieve I

The Mordell–Weil sieve is a technique that can be used to show the nonexistence of
rational points on a curve (for example [Bruin and Stoll 2008a; ≥2008]), or to help
determine the set of rational points in conjunction with the method of Chabauty
(for example [Bruin and Elkies 2002]); for connections to the Brauer–Manin ob-
struction see, for example, [Flynn 2004; Poonen 2006; Stoll 2007]. In this section
and the next we explain how the Mordell–Weil sieve can be used to show that any
rational point on a curve of genus ≥ 2 is either a known rational point or a very
large rational point.

In this section we let C/Q be a smooth projective curve (not necessarily hyperel-
liptic) of genus g≥ 2 and we let J be its Jacobian. As indicated in the introduction,
we assume the knowledge of some rational points on C ; henceforth let D be a fixed
rational point on C (or even a fixed rational divisor of degree 1) and let  be the
corresponding Abel–Jacobi map:

 : C→ J, P 7→ [P − D].

Let W be the image in J of the known rational points on C . The Mordell–Weil
sieve is a strategy for obtaining a very large and “smooth” positive integer B such
that

 (C(Q))⊆W + B J (Q).

Recall that a positive integer B is called A-smooth if all its prime factors are ≤ A.
By saying that B is smooth, we loosely mean that it is A-smooth with A much
smaller than B.

Let S be a finite set of primes, which for now we assume to be primes of good
reduction for the curve C . The basic idea is to consider the following commutative
diagram:

C(Q)
 //

��

J (Q)/B J (Q)

α

��∏
p∈S

C(Fp)
 //

∏
p∈S

J (Fp)/B J (Fp).

The image of C(Q) in J (Q)/B J (Q) must then be contained in the subset of
J (Q)/B J (Q) of elements that map under α into the image of the lower horizontal
map. If we find that this subset equals the image of W in J (Q)/B J (Q), then we
have shown that

 (C(Q))⊆W + B J (Q)

as desired. Note that, at least in principle, the required computation is finite: each
set C(Fp) is finite and can be enumerated, hence  (C(Fp)) can be determined, and
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we assume that we know explicit generators of J (Q), which allows us to construct
the finite set J (Q)/B J (Q). In practice, and in particular for the application we
have in mind here, we will need a very large value of B, so this naive approach
is much too inefficient. In [Bruin and Stoll 2008a; ≥ 2008], the authors describe
how one can perform this computation in a more efficient way.

One obvious improvement is to replace the lower horizontal map in the diagram
above by a product of maps

C(Qp)

→ G p/BG p

with suitable finite quotients G p of J (Qp). We have used this to incorporate infor-
mation modulo higher powers of p for small primes p. This kind of information
is often called “deep” information, as opposed to the “flat” information obtained
from reduction modulo good primes.

We can always force B to be divisible by any given (not too big) number. In our
application we will want B to kill the rational torsion subgroup of J .

11. The Mordell–Weil sieve II

We continue with the notation of Section 10. Let W be the image in J (Q) of
all the known rational points on C . We assume that the strategy of Section 10 is
successful in yielding a large “smooth” integer B such that any point P ∈ C(Q)
satisfies  (P)−w ∈ B J (Q) for some w ∈ W , and moreover, that B kills all the
torsion of J (Q).

Let D1, . . . , Dr be a basis of the free part of J (Q) and let

φ : Zr
→ J (Q), φ(a1, . . . , ar )=

∑
ai Di ,

so that the image of φ is simply the free part of J (Q). Our assumption now is that

 (C(Q))⊂W +φ(BZr ).

Set L0 = BZr . We explain a method of obtaining a (very long) decreasing
sequence of lattices in Zr :

BZr
= L0 ) L1 ) L2 ) · · ·) Lk (11-1)

such that
 (C(Q))⊂W +φ(L j )

for j = 1, . . . , k.
If q is a prime of good reduction for J we denote by

φq : Z
r
→ J (Fq), φq(a1, . . . , ar )=

∑
ai D̃i ,

and so φq(l)= φ̃(l).
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Lemma 11.1. Let W be a finite subset of J (Q), and let L be a subgroup of Zr .
Suppose that  (C(Q))⊂W +φ(L). Let q be a prime of good reduction for C and
J . Let L ′ be the kernel of the restriction φq |L . Let l1, . . . , lm be representatives of
the nonzero cosets of L/L ′ and suppose that w̃+ φq(li ) /∈ C(Fq) for all w ∈ W
and i = 1, . . . ,m. Then  (C(Q))⊂W +φ(L ′).

Proof. Suppose P ∈ C(Q). Since  (C(Q)) ⊂ W + φ(L), we may write  (P) =
w+ φ(l) for some l ∈ L . Now let l0 = 0, so that l0, . . . , lm represent all cosets of
L/L ′. Then l = li + l′ for some l′ ∈ L ′ and i = 0, . . . ,m. However, φq(l′) = 0, or
in other words, φ̃(l′)= 0. Hence

 (P̃)= ̃ (P)= w̃+φq(l)= w̃+φq(li )+φq(l′)= w̃+φq(li ).

By hypothesis, w̃+φq(li ) /∈ C(Fq) for i = 1, . . . ,m, so i = 0 and so li = 0. Hence
 (P)= w+ l′ ∈W + L ′ as required. �

We obtain a very long strictly decreasing sequence of lattices as in (11-1) by
repeated application of Lemma 11.1. However, the conditions of Lemma 11.1 are
unlikely to be satisfied for a prime q chosen at random. Here we give criteria that
we have employed in practice to choose the primes q:

(I) gcd(B, #J (Fq)) > (#J (Fq))
0.6.

(II) L ′ 6= L .

(III) #W · (#L/L ′− 1) < 2q .

(IV) w̃+φq(li ) /∈ C(Fq) for all w ∈W and i = 1, . . . ,m.

The criteria (I)–(IV) are listed in the order in which we check them in practice.
Criterion (IV) is just the criterion of the lemma. Criterion (II) ensures that L ′ is
strictly smaller than L , otherwise we gain no new information. Although we would
like L ′ to be strictly smaller than L , we do not want the index L/L ′ to be too large
and this is reflected in Criteria (I) and (III). Note that the number of checks required
by Criterion (IV) (or the lemma) is #W · (#L/L ′− 1). If this number is large then
Criterion (IV) is likely to fail. Let us look at this in probabilistic terms. Assume
that the genus of C is 2. Then the probability that a random element of J (Fq) lies
in the image of C(Fq) is about 1

q . If N = #W · (#L/L ′ − 1) then the probability
that Criterion (IV) is satisfied is about (1−q−1)N . Since (1−q−1)q ∼ e−1, we do
not want N to be too large in comparison to q, and this explains the choice of 2q
in Criterion (III).

We still have not justified Criterion (I). The computation involved in obtaining
L ′ is a little expensive. Since we need to do this with many primes, we would like a
way of picking only primes where this computation is not wasted, and in particular
#L/L ′ is not too large. Now at every stage of our computations, L will be some
element of our decreasing sequence (11-1) and so contained in BZr . Criterion (I)
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ensures that a “large chunk” of L will be in the kernel of φq : Z
r
→ J (Fq) and so

that #L/L ′ is not too large. The exponent 0.6 in Criterion (I) is chosen on the basis
of computational experience.

12. Lower bounds for the size of rational points

In this section, we suppose that the strategy of Sections 10 and 11 succeeded in
showing that  (C(Q))⊂W +φ(L) for some lattice L of huge index in Zr , where
W is the image in J of the set of known rational points in C . In this section we
provide a lower bound for the size of rational points not belonging to the set of
known rational points.

Lemma 12.1. Let W be a finite subset of J (Q), and let L be a sublattice of Zr .
Suppose that  (C(Q))⊂W +φ(L). Let µ1 be a lower bound for h− ĥ as in (1-2).
Let

µ2 =max
{√

ĥ(w) : w ∈W
}
.

Let M be the height-pairing matrix for the Mordell–Weil basis D1, . . . , Dr and let
λ1, . . . , λr be its eigenvalues. Let

µ3 =min{
√
λ j : j = 1, . . . , r}.

Let m(L) be the Euclidean norm of the shortest nonzero vector of L , and suppose
that µ3m(L)≥ µ2. Then, for any P ∈ C(Q), either  (P) ∈W or

h( (P))≥ (µ3m(L)−µ2)
2
+µ1.

Note that m(L) is called the minimum of L and can be computed using an algorithm
of Fincke and Pohst [1985].

Proof. Suppose that  (P) /∈W . Then  (P)=w+φ(l) for some nonzero element
l ∈ L . In particular, if ‖ · ‖ denotes Euclidean norm then ‖l‖ ≥ m(L).

We can write M = N3N t where N is orthogonal and 3 is the diagonal matrix
with diagonal entries λi . Let x= lN and write x= (x1, . . . , xr ). Then

ĥ(φ(l))= lM lt = x3xt
≥ µ2

3‖x‖
2
= µ2

3‖l‖
2
≥ µ2

3m(L)2.

Now recall that D 7→
√

ĥ(D) defines a norm on J (Q)⊗R and so by the triangle
inequality √

ĥ( (P))≥
√

ĥ(φ(l))−
√

ĥ(w)≥ µ3m(L)−µ2.

The lemma now follows from (1-2). �

Remark 12.2. We can replace µ3m(L) with the minimum of L with respect to
the height pairing matrix. This is should lead to a very slight improvement. Since
in practice our lattice L has very large index, computing the minimum of L with
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Table 1

coset of unit rank bound R for bound for
J (Q)/2J (Q) κ of Ki regulator of Ki log x

0 1 12 1.8× 1026 1.0× 10263

D1 −2α 21 6.2× 1053 7.6× 10492

D2 4− 2α 25 1.3× 1054 2.3× 10560

D3 −4− 2α 21 3.7× 1055 1.6× 10498

D1+ D2 −2α+α2 21 1.0× 1052 3.2× 10487

D1+ D3 2α+α2 25 7.9× 1055 5.1× 10565

D2+ D3 −4+α2 21 3.7× 1055 1.6× 10498

D1+ D2+ D3 8α− 2α3 25 7.9× 1055 5.1× 10565

respect to the height pairing matrix may require the computation of the height
pairing matrix to very great accuracy, and such a computation is inconvenient. We
therefore prefer to work with the Euclidean norm on Zr .

13. Proofs of Theorems 1.1 and 1.2

The equation Y 2
− Y = X5

− X is transformed into

C : 2y2
= x5
− 16x + 8, (13-1)

via the change of variables y= 4Y−2 and x = 2X which preserves integrality. We
shall work with the model (13-1). Let C be the smooth projective genus 2 curve
with affine model given by (13-1), and let J be its Jacobian. Using MAGMA [Bosma
et al. 1997] we know that J (Q) is free of rank 3 with Mordell–Weil basis given by

D1 = (0, 2)−∞, D2 = (2, 2)−∞, D3 = (−2, 2)−∞.

The MAGMA programs used for this step are based on Stoll’s papers [1999; 2001;
2002].

Let f = x5
− 16x + 8. Let α be a root of f . We shall choose for coset rep-

resentatives of J (Q)/2J (Q) the linear combinations
∑3

i=1 ni Di with ni ∈ {0, 1}.
Then

x −α = κξ 2,

where κ ∈K and K is constructed as in Lemma 3.1. We tabulate the κ correspond-
ing to the

∑3
i=1 ni Di in Table 1.

Next we compute the bounds for log x given by Theorem 9.2 for each value of
κ . We implemented our bounds in MAGMA. Here the Galois group of f is S5 which
implies that the fields K1, K2, K3 corresponding to a particular κ are isomorphic.
The unit ranks of Ki , the bounds for their regulators as given by Lemma 5.1, and
the corresponding bounds for log x are tabulated also in Table 1.
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A quick search reveals 17 rational points on C :

∞, (−2,±2), (0,±2), (2,±2), (4,±22), (6,±62),

(1/2,±1/8), (−15/8,±697/256), (60,±9859).

Let W denote the image of this set in J (Q). Applying the implementation of the
Mordell–Weil sieve due to Bruin and Stoll which is explained in Section 10 we
obtain that  (C(Q))⊆W + B J (Q) where

B = 4449329780614748206472972686179940

652515754483274306796568214048000

= 28
· 34
· 53
· 73
· 112
· 132
· 172
· 19 · 23 · 29 · 312

·

∏
37≤p≤149

p 6=107

p.

For this computation, we used “deep” information modulo 29, 36, 54, 73, 113, 132,
172, 192, and “flat” information from all primes p < 50000 such that #J (Fp) is
500-smooth (but keeping only information coming from the maximal 150-smooth
quotient group of J (Fp)). Recall that an integer is called A-smooth if all its prime
divisors are ≤ A. This computation took about 7 hours on a 2 GHz Intel Core 2
CPU.

We now apply the new extension of the Mordell–Weil sieve which is explained
in Section 11. We start with L0 = BZ3 where B is as above. We successively
apply Lemma 11.1 using all primes q < 106 which are primes of good reduction
and satisfy criteria (I)–(IV) of Section 11. There are 78,498 primes less than 106.
Of these, we discard 2, 139, 449 as they are primes of bad reduction for C . This
leaves us with 78,495 primes. Of these, Criterion (I) fails for 77,073 of them,
Criterion (II) fails for 220 of the remaining, Criterion (III) fails for 43 primes that
survive Criteria (I) and (II), and Criterion (IV) fails for 237 primes that survive
Criteria (I)–(III). Altogether, only 922 primes q < 106 satisfy Criteria (I)–(IV) and
increase the index of L .

The index of the final L in Z3 is approximately 3.32× 103240. This part of the
computation lasted about 37 hours on a 2.8 GHZ Dual-Core AMD Opteron.

Let µ1, µ2, µ3 be as in the notation of Lemma 12.1. Using MAGMA we find
µ1 = 2.677, µ2 = 2.612 and µ3 = 0.378 (to 3 decimal places). The shortest vector
of the final lattice L is of Euclidean length approximately 1.156×101080 (it should
be no surprise that this is roughly the cube root of the index of L in Z3). By Lemma
12.1 if P ∈ C(Q) is not one of the 17 known rational points then

h( (P))≥ 1.9× 102159.
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If P is an integral point, then h( (P))= log 2+ 2 log x(P). Thus

log x(P)≥ 0.95× 102159.

This contradicts the bounds for log x in Table 1 and shows that the integral point P
must be one of the 17 known rational points. This completes the proof of Theorem
1.1. The proof of Theorem 1.2 is similar and we omit the details.

The reader can find the MAGMA programs for verifying the above computations
at: http://www.warwick.ac.uk/staff/S.Siksek/progs/intpoint/.
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− x =

yq
− y”, Publ. Mat. 43:1 (1999), 207–216. MR 2000d:11044 Zbl 0949.11022

[Mordell 1963] L. J. Mordell, “On the integer solutions of y(y + 1) = x(x + 1)(x + 2)”, Pacific J.
Math. 13 (1963), 1347–1351. MR 27 #3590 Zbl 0124.27402

[Pethö and de Weger 1986] A. Pethö and B. M. M. de Weger, “Products of prime powers in binary
recurrence sequences. I. The hyperbolic case, with an application to the generalized Ramanujan–
Nagell equation”, Math. Comp. 47:176 (1986), 713–727. MR 87m:11027a Zbl 0623.10011



884 Y. Bugeaud, M. Mignotte, S. Siksek, M. Stoll and Sz. Tengely

[Pintér 1995] Á. Pintér, “A note on the Diophantine equation
(x

4
)
=
(y

2
)
”, Publ. Math. Debrecen

47:3-4 (1995), 411–415. MR 96i:11027 Zbl 0856.11019

[Poonen 2006] B. Poonen, “Heuristics for the Brauer–Manin obstruction for curves”, Experiment.
Math. 15:4 (2006), 415–420. MR 2008d:11062 Zbl 05196200

[Poonen and Schaefer 1997] B. Poonen and E. F. Schaefer, “Explicit descent for Jacobians of
cyclic covers of the projective line”, J. Reine Angew. Math. 488 (1997), 141–188. MR 98k:11087
Zbl 0888.11023

[Poulakis 1991] D. Poulakis, “Solutions entières de l’équation Y m
= f (X)”, Sém. Théor. Nombres

Bordeaux (2) 3:1 (1991), 187–199. MR 93a:11025 Zbl 0733.11009

[Schaefer 1995] E. F. Schaefer, “2-descent on the Jacobians of hyperelliptic curves”, J. Number
Theory 51:2 (1995), 219–232. MR 96c:11066 Zbl 0832.14016

[Schmidt 1992] W. M. Schmidt, “Integer points on curves of genus 1”, Compositio Math. 81:1
(1992), 33–59. MR 93e:11076 Zbl 0747.11026

[Silverman 1986] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics
106, Springer, New York, 1986. MR 95m:11054 Zbl 0585.14026

[Singmaster 1975] D. Singmaster, “Repeated binomial coefficients and Fibonacci numbers”, Fi-
bonacci Quart. 13:4 (1975), 295–298. MR 54 #224 Zbl 0324.05007

[Smart 1998] N. P. Smart, The algorithmic resolution of Diophantine equations, London Mathemat-
ical Society Student Texts 41, Cambridge University Press, Cambridge, 1998. MR 2000c:11208
Zbl 0907.11001

[Sprindžuk 1977] V. G. Sprindžuk, “The arithmetic structure of integer polynomials and class num-
bers”, Trudy Mat. Inst. Steklov. 143 (1977), 152–174, 210. MR 58 #589

[Stoll 1999] M. Stoll, “On the height constant for curves of genus two”, Acta Arith. 90:2 (1999),
183–201. MR 2000h:11069 Zbl 0932.11043

[Stoll 2001] M. Stoll, “Implementing 2-descent for Jacobians of hyperelliptic curves”, Acta Arith.
98:3 (2001), 245–277. MR 2002b:11089 Zbl 0972.11058

[Stoll 2002] M. Stoll, “On the height constant for curves of genus two. II”, Acta Arith. 104:2 (2002),
165–182. MR 2003f:11093 Zbl 1139.11318

[Stoll 2007] M. Stoll, “Finite descent obstructions and rational points on curves”, Algebra Number
Theory 1:4 (2007), 349–391. MR 2008i:11086

[Stroeker and de Weger 1999] R. J. Stroeker and B. M. M. de Weger, “Elliptic binomial Diophantine
equations”, Math. Comp. 68:227 (1999), 1257–1281. MR 99i:11122 Zbl 0920.11014

[Stroeker and Tzanakis 2003] R. J. Stroeker and N. Tzanakis, “Computing all integer solutions of a
genus 1 equation”, Math. Comp. 72:244 (2003), 1917–1933. MR 2004b:11037 Zbl 1089.11019

[Voutier 1995] P. M. Voutier, “An upper bound for the size of integral solutions to Y m
= f (X)”, J.

Number Theory 53:2 (1995), 247–271. MR 96f:11049 Zbl 0842.11008

[Voutier 1996] P. Voutier, “An effective lower bound for the height of algebraic numbers”, Acta
Arith. 74:1 (1996), 81–95. MR 96j:11098 Zbl 0838.11065

[de Weger 1996] B. M. M. de Weger, “A binomial Diophantine equation”, Quart. J. Math. Oxford
Ser. (2) 47:186 (1996), 221–231. MR 97c:11041 Zbl 0863.11022

[de Weger 1997] B. M. M. de Weger, “Equal binomial coefficients: some elementary considera-
tions”, J. Number Theory 63:2 (1997), 373–386. MR 98b:11027 Zbl 0873.11023

[Wetherell 1997] J. L. Wetherell, Bounding the Number of Rational Points on Certain Curves of
High Rank, PhD Thesis, University of California, Berkeley, 1997.



Integral points on hyperelliptic curves 885

Communicated by Bjorn Poonen
Received 2008-01-28 Revised 2008-09-02 Accepted 2008-09-12

bugeaud@math.u-strasbg.fr Université Louis Pasteur, U. F. R. de mathématiques,
7, rue René Descartes, 67084 Strasbourg Cedex, France
http://www-irma.u-strasbg.fr/~bugeaud/

mignotte@math.u-strasbg.fr Université Louis Pasteur, U. F. R. de mathématiques,
7, rue René Descartes, 67084 Strasbourg Cedex, France

s.siksek@warwick.ac.uk Institute of Mathematics, University of Warwick,
Coventry CV4 7AL, United Kingdom
http://www.warwick.ac.uk/~maseap/

Michael.Stoll@uni-bayreuth.de Mathematisches Institut, Universität Bayreuth,
95440 Bayreuth, Germany
http://www.mathe2.uni-bayreuth.de/stoll/

tengely@math.klte.hu Institute of Mathematics, University of Debrecen, Number
Theory Research Group, Hungarian Academy of Sciences,
P.O.Box 12, 4010 Debrecen, Hungary
http://www.math.klte.hu/~tengely/





ALGEBRA AND NUMBER THEORY 2:8(2008)

Smooth curves having
a large automorphism p-group

in characteristic p> 0
Michel Matignon and Magali Rocher

Let k be an algebraically closed field of characteristic p > 0 and C a connected
nonsingular projective curve over k with genus g ≥ 2. This paper continues
our study of big actions, that is, pairs (C,G) where G is a p-subgroup of the
k-automorphism group of C such that |G|/g > 2 p/(p−1). If G2 denotes the
second ramification group of G at the unique ramification point of the cover
C→C/G, we display necessary conditions on G2 for (C,G) to be a big action,
which allows us to pursue the classification of big actions.

Our main source of examples comes from the construction of curves with
many rational points using ray class field theory for global function fields, as
initiated by J.-P. Serre and continued by Lauter and by Auer. In particular, we
obtain explicit examples of big actions with G2 abelian of large exponent.

1. Introduction

This is the first of a set of three papers (together with [Rocher 2008a; 2008b]) whose
main object is to study G-actions on connected nonsingular projective curves of
genus g≥ 2 defined over an algebraically closed field of characteristic p> 0, when
G is a p-group such that |G| > 2 g p/(p−1). One of our aims is to display some
universal families and discuss the corresponding deformation space.

For more than a century, the study of finite groups G acting faithfully on smooth
complete curves defined over an algebraically closed field k of characteristic p≥ 0
has produced a vast literature. Already back in the nineteenth century progress
was made in the case of characteristic zero, with the works of Schwartz, Klein,
Hurwitz, Wiman and others. The full automorphism group of a compact Riemann
surface of genus g ≥ 2 was proved by Hurwitz [1892] to be finite and of order at
most 84 (g−1).

MSC2000: primary 14H37; secondary 11R37, 11G20, 14H10.
Keywords: automorphisms, curves, p-groups, ray class fields, Artin–Schreier–Witt theory.
Work supported in part by the European Community’s Sixth Framework Programme under Contract
MRTN-CT-2006-035495.
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An open question concerns the classification of full automorphism groups of
compact Riemann surfaces C of fixed genus g ≥ 2. This classification has been
partially achieved for large automorphism groups G, “large” meaning that the order
of G is greater than 4 (g − 1) [Kulkarni 1997]. This lower bound imposes strict
restrictions on the genus g0 of the quotient curve C/G, namely g0 = 0, on the
number r of points of C/G ramified in C , namely r ∈ {3, 4}, and on the cor-
responding ramification indices; see [Kulkarni 1997; Breuer 2000, Lemma 3.18].
Following this work, Magaard et al. [2002] exhibited the list of large groups Aut(C)
of compact Riemann surfaces of genus g up to g = 10, determining in each case
the dimension and number of components of the corresponding loci in the moduli
space of genus g curves.

General results on Hurwitz spaces and other moduli spaces parametrizing de-
formations have been obtained in the case of characteristic zero and extended to
positive characteristic p > 0 when p does not divide the order of the automor-
phism group; see [Bertin and Romagny 2008], for instance. For instance, if C is a
compact Riemann surface with genus g ≥ 2 and G an automorphism group of C ,
the deformations of the cover ϕ : C → C/G are parametrized by a moduli space
of dimension 3g0− 3+ |B| + dim Aut(C/G −B), where g0 is the genus of C/G
and B the branch locus of ϕ. By the Hurwitz genus formula, g0 only depends on
|G|, g, |B| and the orders of the inertia groups. All these results are no longer true
in positive characteristic p > 0 when ϕ is wildly ramified. Likewise, in positive
characteristic p> 0, the Hurwitz bound is no longer true for automorphism groups
G whose order is not prime to p. The finiteness result still holds [Schmid 1938] but
the Hurwitz linear bound is replaced with biquadratic bounds [Stichtenoth 1973a;
1973b]. These biquadratic bounds are optimal: so, in positive characteristic, the
automorphism groups may be very large compared with the case of characteristic
zero, as a result of wild ramification.

Wild ramification points also contribute to the dimension of the tangent space
to the global infinitesimal deformation functor of a curve C together with an au-
tomorphism group G, and it is precisely this that makes computations difficult.
Following [Bertin and Mézard 2000], in the case where G is cyclic of order p,
Pries [2005] and Kontogeorgis [2007] have obtained lower and upper bounds for
the dimension of the tangent space, with explicit computations in some special
cases, in particular when G is an abelian p-group. (See also [Cornelissen and
Kato 2003]).

To rigidify the situation in characteristic p> 0 as has been done in characteristic
zero, one idea is to consider large automorphism p-groups. From [Nakajima 1987]
we deduce that if G is a p-subgroup of Autk(C) such that |G|> 2 p g/(p−1), the
Hasse–Witt invariant of C is zero. The Deuring–Shafarevich formula (see [Bouw
2000], for instance) then implies that the genus of the quotient curve C/G is zero
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and that the branch locus of the cover C→C/G is reduced to one point. From now
on, we define a big action as a pair (C,G) where G is a p-subgroup of Autk(C)
such that |G|/g > 2 p/(p−1).

Outline of the paper. Let (C,G) be a big action with g ≥ 2. As shown in [Lehr
and Matignon 2005], there is a point of C , say∞, such that G is equal to the wild
inertia subgroup G1 of G at ∞. Let G2 be the second ramification group of G
at∞ in lower notation. The quotient curve C/G2 is isomorphic to the projective
line P1

k and the quotient group G/G2 acts as a group of translations of P1
k fixing

∞, through X → X + y, where y runs over a subgroup V of k. In this way, the
group G appears as an extension of G2 by the p-elementary abelian group V via
the exact sequence

0−→ G2 −→ G = G1 −→ V ' (Z/ pZ)v −→ 0.

The purpose of this paper is twofold: to give necessary conditions on G2 for (C,G)
to be a big action, and to display realizations of big actions with G2 abelian of large
exponent. We gather here the main results of the first part (Sections 2–5):

Theorem. Let (C,G) be a big action with g ≥ 2.

1. Let H be a subgroup of G. Then C/H has genus 0 if and only if H ⊃ G2

(Lemma 2.4.1).

2. Let H be a normal subgroup of G such that H ( G2. Then (C/H,G/H) is a
big action with second ramification group (G/H)2 = G2/H (Lemma 2.4.2).

3. The group G2 is equal to D(G), the commutator subgroup of G (Theorem 2.7).
In particular, G cannot be abelian.

4. The group G2 cannot be cyclic unless G2 has order p (Theorem 5.1).

5. If |G|/g2
≥ 4/(p2

− 1)2, then G2 is an elementary abelian p-group with order
dividing p3 (Proposition 4.1).

These results highlight the major role played by G2 in the study of big actions.
They are also crucial in pursuing the classification of big actions initiated in [Lehr
and Matignon 2005]. The companion paper [Rocher 2008a] is devoted to big ac-
tions with a p-elementary abelian G2, and its results led to the classification of the
big actions satisfying |G|/g2

≥ 4/(p2
− 1)2, in [Rocher 2008b].

After exploring restrictions on G2, the second part of the paper is devoted to ex-
amples of big actions with G2 abelian, knowing that we do not know yet examples
of big actions with a nonabelian G2.

In Section 6, following [Lauter 1999] and [Auer 1999], we consider the maximal
abelian extension K m

S of K := Fq(X) (where q = pe) that is unramified outside
X = ∞, completely split over the set S of the finite rational places and whose
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conductor is smaller than m∞, with m ∈ N. Class field theory gives a precise
description of the Galois group GS(m) of this extension. Moreover, it follows from
the uniqueness and the maximality of K m

S that the group of translations X 7→ X+ y
(y ∈ Fq ) extends to a p-group of Fq -automorphisms of K m

S , say G(m), with the
exact sequence

0−→ GS(m)−→ G(m)−→ Fq −→ 0.

This provides examples of big actions whose G2 = GS(m) is abelian of exponent
as large as we want, but it also relates the problem of big actions to the search of
algebraic curves with many rational points compared with their genera.

In Section 7 we use the Katz–Gabber theorem to highlight the link between
big actions on curves and an analogous ramification condition for finite p-groups
acting on k((z)).

Notation and preliminary remarks. Let k be an algebraically closed field of char-
acteristic p > 0. We denote by F the Frobenius endomorphism for a k-algebra.
Then ℘ means the Frobenius operator minus identity. We denote by k{F} the k-
subspace of k[X ] generated by the polynomials F i (X), with i ∈ N. It is a ring
under the composition. Furthermore, for all α in k, F α = α p F . The elements of
k{F} are the additive polynomials, i.e. the polynomials P(X) of k[X ] such that
for all α and β in k, P(α+β)= P(α)+ P(β). A separable polynomial is additive
if and only if the set of its roots is a subgroup of k [Goss 1996, Chapter 1].

Let f (X) be a polynomial of k[X ]. There is a unique polynomial red( f )(X)
in k[X ], called the reduced representative of f , which is p-power free, (meaning
that red( f )(X) ∈

⊕
(i,p)=1 k X i ) and such that red( f )(X) = f (X) mod ℘(k[X ]).

We say that the polynomial f is reduced mod ℘(k[X ]) if and only if it coincides
with its reduced representative red( f ). The equation W p

− W = f (X) defines
a p-cyclic étale cover of the affine line that we denote by C f . Conversely, any
p-cyclic étale cover of the affine line Spec k[X ] corresponds to a curve C f where
f is a polynomial of k[X ]; see [Milne 1980, III.4.12, p. 127]. By Artin–Schreier
theory, the covers C f and Cred( f ) define the same p-cyclic covers of the affine line.
The curve C f is irreducible if and only if red( f ) 6= 0.

Throughout the text, C always denotes a nonsingular smooth projective curve
with genus g and Autk(C) means its k-automorphism group. Our main references
for ramification theory are [Serre 1968] and [Auer 1999].

2. First results on big actions

To pinpoint the background of our work, we begin by collecting and completing
the first results on big actions already obtained in [Lehr and Matignon 2005]. A
big action is a curve endowed with a big automorphism p-group. The first task is
to recall what we mean by big.
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Definition 2.1. Let G be a subgroup of Autk(C). We say that the pair (C,G) is a
big action if G is a finite p-group, if g 6= 0 and if

|G|
g
>

2 p
p−1

. (2–1)

Proposition 2.2 [Lehr and Matignon 2005]. Assume that (C,G) is a big action
with g ≥ 2. Then there is a point of C (say ∞) such that G is the wild inertia
subgroup G1 of G at ∞. Moreover, the quotient C/G is isomorphic to the pro-
jective line P1

k and the ramification locus (respectively branch locus) of the cover
π : C→ C/G is the point∞ (respectively π(∞)). For all i ≥ 0, we denote by Gi

the i-th lower ramification group of G at∞.

1. G2 is nontrivial and it is strictly included in G1.

2. The Hurwitz genus formula applied to C→ C/G reads

2 g =
∑
i≥2

(|Gi | − 1). (2–2)

Thus, (2–1) can be written as |G|> 2 g/(p−1) p, with 2 g/(p−1) ∈ N∗.

3. The quotient curve C/G2 is isomorphic to the projective line P1
k .Moreover, the

quotient group G/G2 acts as a group of translations of the affine line C/G2−

{∞} = Spec k[X ], through X 7→ X + y, where y runs over a subgroup V of k.
Then V is an Fp-vector subspace of k. We denote by v its dimension. Thus, we
obtain the exact sequence

0−→ G2 −→ G = G1
π
−→ V ' (Z/ p Z)v −→ 0,

where π : G→ V is defined by g 7→ g(X)− X.

4. Let H be a normal subgroup of G such that gC/H > 0. Then (C/H,G/H) is
also a big action. Moreover, the group G/H fixes the image of∞ in the cover
C → C/H. In particular, if gC/H = 1, then p = 2, C/H is birational to the
curve W 2

+W = X3 and G/H is isomorphic to Q8, the quaternion group of
order 8 (see [Silverman 1986, Appendix A, Proposition 1.2]).

Remark 2.3. 1. For g = 1, one can find big actions (C,G) such that G is not
included in a decomposition group of Autk(C) as in Proposition 2.2.

2. Let (C,G) be a big action. Call L the function field of C and k(X)= LG2 . As
seen above, the Galois extension L/k(X) is only ramified at X =∞. Therefore,
the support of the conductor of L/k(X), as defined in [Serre 1968, chapitre 15,
corollaire 2] reduces to the place ∞. So, in what follows, we systematically
confuse the conductor m∞ with its degree m. In this case, one can also see m
as the smallest integer n > 0 such that the n-th upper ramification group Gn of
G at∞ is trivial; see [Auer 2000, I.3].
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The following lemma generalizes and completes the last part of Proposition 2.2.

Lemma 2.4. Let G a finite p-subgroup of Autk(C). We assume that the quotient
curve C/G is isomorphic to P1

k and that there is a point of C (say∞) such that G
is the wild inertia subgroup G1 of G at∞. We also assume that the ramification
locus of the cover π : C → C/G is the point ∞, and the branch locus is π(∞).
Let G2 be the second ramification group of G at∞ and H a subgroup of G. Then:

1. C/H is isomorphic to P1
k if and only if H ⊃ G2.

2. In particular, if (C,G) is a big action with g≥ 2 and if H is a normal subgroup
of G such that H ( G2, then gC/H > 0 and (C/H,G/H) is also a big action.
Moreover, its second ramification group is (G/H)2 = G2/H.

Proof. Applied to the cover C→ C/G ' P1
k , the Hurwitz genus formula (see for

instance [Stichtenoth 1993]) yields 2(g−1)= 2|G| (gC/G−1)+
∑

i≥0 (|Gi |−1).
When applied to the cover C → C/H , it yields 2(g − 1) = 2|H | (gC/H − 1)+∑

i≥0 (|H ∩Gi | − 1). Since H ⊂ G = G0 = G1, it follows that

2|H |gC/H =− 2(|G| − |H |)+
∑
i≥0

(|Gi | − |H ∩Gi |)=
∑
i≥2

(|Gi | − |H ∩Gi |).

Therefore, gC/H = 0 if and only if for all i ≥ 2, Gi = H ∩Gi , i.e., Gi ⊂ H , which
is equivalent to G2 ⊂ H , proving 1.

Together with part 1, Proposition 2.2.4 shows that (C/H,G/H) is a big ac-
tion. Then G = G1 ) G2 and G/H = (G/H)1 ) (G/H)2. Since the first jump
always coincides in lower and upper ramification, it follows that G2 = G2 and
(G/H)2 = (G/H)2. By [Serre 1968, chapitre IV, proposition 14], we obtain
(G/H)2 = (G/H)2 = G2 H/H = G2 H/H = G2/H . �

The very first step in studying big actions is to give a precise description of them
when G2 ' Z/pZ. The following proposition collects and reformulates the results
already obtained for this case.

Proposition 2.5 [Lehr and Matignon 2005, Propositions 5.5, 8.1, 8.3]. Let (C,G)
be a big action, with g ≥ 2, such that G2 ' Z/pZ.

1. Then C is birational to the curve C f : W p
−W = f (X)= X S(X)+c X ∈ k[X ],

where S in k{F} is an additive polynomial with degree s ≥ 1 in F. If we denote
by m the degree of f , then m = 1+ ps

= i0, where i0 ≥ 2 is the integer such that

G = G0 = G1 ) G2 = G3 = · · · = Gi0 ) Gi0+1 = · · ·
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2. Write S(F) =
∑s

j=0 a j F j , with as 6= 0. Define (following [Elkies 1999b, Sec-
tion 4]) the palindromic polynomial of f as the additive polynomial

Ad f := a−ps

s F s
( s∑

j=0

a j F j
+ F− j a j

)
.

The set of roots of Ad f , denoted by Z(Ad f ), is an Fp-vector subspace of k,
isomorphic to (Z/pZ)2s . Moreover,

Z(Ad f )=
{

y ∈ k, f (X + y)− f (X)= 0 mod ℘(k[X ])
}
.

3. Let A∞,1 be the wild inertia subgroup of Autk(C) at∞. Then A∞,1 is a central
extension of Z/pZ by the elementary abelian p-group Z(Ad f ) which can be
identified with a subgroup of translations {X→ X+ y, y ∈ k} of the affine line.
Furthermore, if we denote by Z(A∞,1) the center of A∞,1 and by D(A∞,1)
its commutator subgroup, Z(A∞,1) = D(A∞,1) = 〈σ 〉, where σ(X) = X and
σ(W )=W + 1. Thus, we get the exact sequence

0−→ Z(A∞,1)= D(A∞,1)'Z/pZ−→ A∞,1
π
−→ Z(Ad f )' (Z/pZ)2s

−→ 0,

where π : A∞,1→ Z(Ad f )' (Z/pZ)2s is defined by g 7→ g(X)−X. For p> 2,
A∞,1 is the unique extraspecial group with exponent p and order p2s+1. (The
case p = 2 is more complicated; see [Lehr and Matignon 2005, 4.1]).

4. There exists an Fp-vector space V ⊂ Z(Ad f ) ' (Z/pZ)2s such that G =
π−1(V )⊂ A∞,1 and such that we get the exact sequence

0−→ G2 ' Z/pZ−→ G
π
−→ V −→ 0.

Remark 2.6. Proposition 2.5 still holds for big actions (C,G) with g= 1 when G
is included in a decomposition group of Autk(C); see [Lehr and Matignon 2005,
Proposition 8.3]. In particular, this is true for the pair (C/H,G/H) when (C,G)
is a big action with g ≥ 2 and H a normal subgroup of G such that gC/H = 1 (see
Proposition 2.2.4).

Therefore, the key idea in studying big actions is to use Proposition 2.2.4 and
Lemma 2.4.2 to go back to the well-known situation described above. This moti-
vates the following result:

Theorem 2.7. Let (C,G) be a big action with g ≥ 2. Let G be a normal subgroup
in G such that G is strictly included in G2. There exists a group H , normal in G,
such that G ⊂ H ( G2 and [G2 : H ] = p. In this case, (C/H,G/H) enjoys the
following properties.

1. The pair (C/H,G/H) is a big action and the exact sequence

0−→ G2 −→ G
π
−→ V −→ 0
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of Proposition 2.2 induces the following one:

0−→ G2/H = (G/H)2 ' Z/pZ−→ G/H
π
−→ V −→ 0.

2. The curve C/H is birational to C f : W p
− W = f (X) = X S(X) + c X ∈

k[X ], where S is an additive polynomial of degree s ≥ 1 in F. Let Ad f be the
palindromic polynomial related to f (Proposition 2.5). Then V ⊂ Z(Ad f ) '

(Z/pZ)2s .

3. Let E be the wild inertia subgroup of Autk(C/H) at∞. We denote by D(E) its
commutator subgroup of E and by Z(E) its center. Then E is an extraspecial
group of order p2s+1 and

0−→ D(E)= Z(E)' Z/pZ−→ E
π
−→ Z(Ad f )' (Z/pZ)2s

−→ 0.

4. G/H is a normal subgroup in E. It follows that G2 is equal to D(G), the
commutator subgroup of G, which is also equal to the Frattini subgroup of G.

Proof. The existence of the group H comes from [Suzuki 1982, Chapter 2, The-
orem 1.12]. The first assertion now follows from Lemma 2.4.2. The second and
third derive directly from Proposition 2.5.

We now prove part 4. By Proposition 2.5, Z(E)= (G/H)2=G2/H⊂G/H . So,
G/H is a subgroup of E containing Z(E). Moreover, since (Z/pZ)2s is abelian,
π(G/H) is normal in E/Z(E). It follows that G/H is normal in E . We eventually
show that G2 = D(G). Since G/G2 is abelian, D(G) is included in G2. Now
assume that D(G) is strictly included in G2. Then the first point applied to G =

D(G) ensures the existence of a group H , normal in G, with D(G) ⊂ H ⊂ G2,
[G2 : H ] = p and such that (C/H,G/H) is a big action. Since D(G)⊂ H , G/H
is an abelian subgroup of E . As G/H is also a normal group in E , [Huppert 1967,
Satz 13.7] implies |G/H | ≤ ps+1. Furthermore, by Proposition 2.5.1 (and Remark
2.6), C/H is birational to a curve W p

−W = X S(X)+ c X ∈ k[X ], where S is an
additive polynomial of k[X ] with degree ps . It follows that gC/H =

1
2(p− 1) ps .

Combined with the bound on |G/H |, this gives |G/H |/gC/H ≤ 2 p/(p−1), which
contradicts condition (2–1) for the big action (C/H,G/H). Hence D(G)= G2.

It remains to prove the statement about the Frattini subgroup of G. As G is a
p-group, its Frattini subgroup, Fratt(G), is equal to D(G)G p, where G p means
the subgroup generated by the p powers of elements of G [Leedham-Green and
McKay 2002, Proposition 1.2.4]. As G/G2 is an elementary abelian p-group, then
G p
= G p

1 ⊂ G2 = D(G). As a consequence, G2 = D(G)G p
= Fratt(G). �

Remark 2.8. When applying Theorem 2.7 to G = Gi0+1, where i0 is defined as
in Proposition 2.5, one obtains [Lehr and Matignon 2005, Theorem 8.6(i)]. In
particular, for all big actions (C,G) with g≥ 2, there exists a subgroup H of index
p in G2, with H normal in G, such that (C/H,G/H) is a big action with C/H
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birational to W p
− W = f (X) = X S(X)+ c X ∈ k[X ], where S is an additive

polynomial of degree s ≥ 1 in F . Note that, in this case, i0 = 1+ ps .

Since G2 cannot be trivial for a big action, we gather from the last part of
Theorem 2.7 the following result.

Corollary 2.9. Let (C,G) be a big action with g ≥ 2. Then G cannot be abelian.

It is natural to wonder whether G2 can be nonabelian. Although we do not
know yet the answer to this question, we can mention a special case in which G2

is always abelian, namely:

Corollary 2.10. Let (C,G) be a big action with g ≥ 2. If the order of G2 divides
p3, then G2 is abelian.

Proof. There is actually only one case to study, namely |G2| = p3. We denote
by Z(G2) the center of G2. The case |Z(G2)| = 1 is impossible since G2 is a
p-group. If |Z(G2)| = p, then Z(G2) is cyclic. G2 is a p-group, normal in G and
included in D(G) (see Theorem 2.7); hence, by [Suzuki 1986, Proposition 4.21,
p. 75], G2 is also cyclic, which contradicts the strict inclusion of Z(G2) in G2. If
|Z(G2)| = p2, then G2/Z(G2) is cyclic and G2 is abelian, which leads to the same
contradiction as above. This leaves only one possibility: |Z(G2)| = p3, which
means that G2 = Z(G2). �

Corollary 2.11. Let (C,G) be a big action with g≥2. Let A∞,1 be the wild inertia
subgroup of Autk(C) at ∞. Then (C, A∞,1) is a big action whose second lower
ramification group is equal to D(A∞,1)= D(G). In particular, G is equal to A∞,1
if and only if |G/D(G)| = |A∞,1/D(A∞,1)|.

Proof: As G is included in A∞,1, then D(G) ⊂ D(A∞,1). If the inclusion is
strict, one can find a subgroup G such that G ( G ⊂ A∞,1, with [G : G] = p; see
[Suzuki 1982, Chapter 2, Theorem 19]. Note that D(G) ⊂ D(G). We now prove
that D(G) ⊃ D(G). As |G| ≤ |G|, the pair (C,G) is also a big action. So, by
Theorem 2.7.4, G2 = D(G). Since (C,G) is a big action, g(C/D(G)) vanishes by
Proposition 2.2.3. It follows from Lemma 2.4.1 that D(G) ⊃ G2 = D(G), hence
D(G)= D(G). The claim follows by reiterating the process. �

Remark 2.12. Let (C, A∞,1) be a big action as in Corollary 2.11. Then A∞,1
is a p-Sylow subgroup of Autk(C). Moreover, we deduce from [Giulietti and
Korchmáros 2007, Theorem 1.3] that A∞,1 is the unique p-Sylow subgroup of
Autk(C) except in four special cases: the hyperelliptic curves W pn

− W = X2

with p> 2, the Hermitian curves and the Deligne–Lusztig curves arising from the
Suzuki groups and the Ree groups; see the equations in [Giulietti and Korchmáros
2007, Theorem 1.1].
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3. Base change and big actions

Starting from a given big action (C,G), we now display a way to produce a new
one, (C̃, G̃), with G̃2 ' G2 and gC̃ = ps gC . The chief tool is a base change
associated with an additive polynomial map P1

k
S
−→ C/G2 ' P1

k .

Proposition 3.1. Let (C,G) be a big action with g ≥ 2. We denote by L := k(C)
the function field of the curve C , by k(X) := LG2 the subfield of L fixed by G2

and by k(T ) := LG1 , with T =
∏
v∈V (X − v). Write X = S(Z), where S(Z) is a

separable additive polynomial of k[Z ] with degree ps , s ∈ N. Then:

1. L and k(Z) are linearly disjoint over k(X).

2. Let C̃ be the smooth projective curve over k with function field k(C̃) := L[Z ].
Then k(C̃)/k(T ) is a Galois extension with group G̃ ' G× (Z/pZ)s . Further-
more, gC̃ = ps gC . It follows that |G̃|/gC̃ = |G|/g. So, (C̃, G̃) is still a big
action with second ramification group G̃2'G2×{0} ⊂G×(Z/pZ)s . This can
be illustrated by the diagram

C ←− C̃
↓ ↓

C/G2 ' P1
k

S
←− P1

k

The proof requires two preliminary lemmas.

Lemma 3.2. Let K := k((z)) be a formal power series field over k. Let K1/K be
a Galois extension whose group G is a p-group. Let K0/K be a cyclic extension of
degree p. Assume that K0 and K1 are linearly disjoint over K . Put L := K0K1:

K1

G

L = K0K1

K K0

Suppose that the conductor of K0/K (see Remark 2.3.2) is 2. Then L/K1 also has
conductor 2.

Proof. Consider a principal series of G, that is, a sequence

G= G0 ) G1 . . .) Gn = {0},

with Gi normal in G and [Gi−1 : Gi ] = p. One shows, by induction on i , that the
conductor of each extension K0K Gi

1 /K Gi
1 is 2. Therefore, it is sufficient to prove

the result for G' Z/pZ. By induction on i , it can be extended to the general case.
So, assume G ' Z/pZ. Then L/k((z)) is a Galois extension with group G '

(Z/pZ)2. Write the ramification filtration of G in lower notation:

G = G0 = · · · = Gi0 ) Gi0+1 = · · · = Gi1 ) Gi1+1 = · · ·
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First assume that Gi0+1={0}. An exercise shows that, for any subgroup H of index
p in G, the extensions L/L H (case (α)) and L H/K (case (β)) are cyclic extensions
of degree p, with conductor i0 + 1. When applied to H = Gal(L/K0), case (β)
gives i0 = 1. Therefore, one concludes by applying case (α) to H = Gal(L/K1).

Now assume instead that Gi0+1 6= {0}. As above, let H be a subgroup of index p
in G. An exercise using the classical properties of ramification theory (see [Serre
1968, chapitre IV], for instance) shows that

(a) If H = Gi0+1, then L/L H (resp. L H/K ) is a cyclic extension of degree p,
with conductor i0+ i1+ 1 (resp. i0+ 1).

(b) If H 6= Gi0+1, then L/L H (resp. L H/K ) is a cyclic extension of degree p,
with conductor i0+ 1 (resp. i0+ (i1/p)+ 1).

Apply this result to H :=Gal(L/K0). Since K0/K has conductor 2, it follows that
i0+1= 2, so i0 = 1 and Gal(L/K0)= Gi0+1. Therefore, Gal(L/K1) 6= Gi0+1 and
we infer from case (b) that L/K1 has conductor i0+ 1= 2. �

Lemma 3.3. Let W be a finite Fp-vector subspace of k. Let W1 and W2 be two
Fp-subvectors spaces of W such that W =W1

⊕
W2. Define T :=

∏
w∈W (Z −w)

and Ti :=
∏
w∈Wi

(Z −w), for i in {1, 2}. Then k(T )⊂ k(Ti )⊂ k(Z). Moreover:

1. The extensions k(T1)/k(T ) and k(T2)/k(T ) are linearly disjoint over k(T ).

2. For all i in {1, 2}, k(Z)/k(T ) (resp. k(Z)/k(Ti )) is a Galois extension with
group isomorphic to W (resp. Wi ).

3. For all i in {1, 2}, k(Ti )/k(T ) is a Galois extension with group isomorphic to
W/Wi .

This induces the diagram

k(T1)
W1

W/W1

k(Z)

W2

k(T )
W/W2

k(T2)

Proof. Use for example [Goss 1996, (1.8)]. �

Proof of Proposition 3.1. Statement 1 derives from Lemma 2.4.1. For 2, we put
W := S−1(V ), with V defined as in Proposition 2.2.3, and W1 := S−1({0}); then
W1' (Z/pZ)s , since S is an additive separable polynomial of k[Z ] with degree ps

(see [Goss 1996, Chapter 1], for instance). Let W2 be any Fp-vector subspace of
W such that W =W1

⊕
W2. Then Lemma 3.3 applied to the extension k(Z)/k(T )
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induces the diagram

L = k(C)

G2

k(C̃)

LG2 = k(X)= k(Z)W1

W/W1

W1 k(Z)

W2

LG1 = k(T )= k(Z)W
W/W2

k(Z)W2

In particular, Lemma 3.3 implies that k(Z)W1∩k(Z)W2=k(T ). Since k(C)∩k(Z)=
k(X) (see statement 1 of the proposition), we deduce that k(C) and k(Z)W2 are
linearly disjoint over k(T ). As k(Z)W2/k(T ) is a Galois extension with group
W/W2 ' W1 ' (Z/pZ)s , it follows that k(C̃)/k(T ) is a Galois extension with
group G̃ ' Gal(k(C)/k(T ))×Gal(k(Z)W2/k(T ))' G× (Z/pZ)s .

Now, consider a flag of Fp-vector subspaces of W1:

W1 =W (1)
1 ) W (2)

1 ) . . .) W (s+1)
1 = {0}

such that [W (i−1)
1 :W (i)

1 ] = p. It induces the inclusions

k(Z)= k(Z)W
(s+1)
1 ) k(Z)W

(s)
1 ) . . .) k(Z)W

(1)
1 = k(X).

We now prove the claim by induction on the integer s ≥ 1, ps being the degree of
the additive polynomial S. Considering the flag above, it is sufficient to solve the
case s = 1. Let K1/K be the completion at∞ of the extension k(C)/k(X), whose
group G2 is a p-group and let K0/K be the completion at∞ of the cyclic extension
of degree p and conductor 2: k(Z)/k(X). To apply Lemma 3.2, we need to show
that the two completions are linearly disjoint. Otherwise, K1 ∩ K0 = K0, which
gives the inclusion K ⊂ K0 ⊂ K1. Consider a subgroup H of index p in G2 such
that K0= K H

1 . Let k(X)⊂ k(C)H
⊂ k(C) be the corresponding extension of k(X).

Then k(C)H/k(X) is an étale p-cyclic cover of the affine line with conductor 2.
It follows from the Hurwitz genus formula that the genus gC/H of the quotient
curve C/H is 0, which contradicts Lemma 2.4.1. As a consequence, K0 and K1

are linearly disjoint over K and, by Lemma 3.2, the extension k(C̃)/k(C) has
conductor 2. We deduce from the Hurwitz genus formula that gC̃ = p gC . Finally,
the last statement on G̃2 is a consequence of Theorem 2.7.4. �

Remark 3.4. Under the conditions of Proposition 3.1, it can happen that G is a
p-Sylow subgroup of Autk(C) without G̃ being a p-Sylow subgroup of Autk(C̃).

Indeed, take C : W p
−W = X1+p and S(Z)= Z p

−Z . Then C̃ is parametrized by
W̃ p
−W̃ = (Z p

−Z) (Z p2
−Z p)=−Z2

+2 Z1+p
−Z1+p2

mod℘(k[Z ]). We denote
by A∞,1(C) (resp. A∞,1(C̃)) the wild inertia subgroup of Autk(C) (resp. Autk(C̃))
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at X = ∞ (resp. Z = ∞). Note that A∞,1(C) (resp. A∞,1(C̃)) is a p-Sylow
subgroup of Autk(C) (resp. Autk(C̃)). Take G := A∞,1(C). From Proposition 2.5,
we deduce that |G̃| = p |G| = p |A∞,1(C)| = p4, whereas |A∞,1(C̃)| = p5.

4. A new step towards a classification of big actions

If big actions are defined through the value taken by the quotient |G|/g, it turns
out that the key criterion to classify them is the value of another quotient, |G|/g2.
Indeed, the quotient |G|/g2 has, to some extent, a sieve effect among big actions.
If (C,G) is a big action, we first deduce from [Nakajima 1987, Theorem 1] that
|G|/g2

≤4 p/(p− 1)2. In what follows, we pursue the work of Lehr and Matignon
who describe big actions for the two highest possible values of this quotient,
namely |G|/g2

= 4 p/(p− 1)2 and |G|/g2
= 4/(p− 1)2; see [Lehr and Matignon

2005, Theorem 8.6]. More precisely, we investigate the big actions (C,G) that
satisfy

M :=
4

(p2− 1)2
≤
|G|
g2 . (4–1)

The choice of the lower bound M can be explained as follows: as shown in the
proof of [Lehr and Matignon 2005, Theorem 8.6], a lower bound M on the quotient
|G|/g2 produces an upper bound on the order of the second ramification group,
namely

|G2| ≤
4
M

|G2/Gi0+1|
2

(|G2/Gi0+1| − 1)2
, (4–2)

where i0 is defined as in Proposition 2.5. Therefore, we have to choose M small
enough to obtain a wide range of possibilities for the quotient, but meanwhile large
enough to get serious restrictions on the order of G2. The optimal bound seems to
be M := 4/(p2

− 1)2, insofar as, for such a choice of M, the upper bound on G2

implies that its order divides p3, and then that G2 is abelian (Corollary 2.10).

Proposition 4.1. Let (C,G) be a big action with g ≥ 2 satisfying condition (4–1).
Then the order of G2 divides p3. It follows that G2 is abelian.

Proof. Put pm
:= |G2/Gi0+1|, with m ≥ 1, and

Qm :=
4
M

|G2/Gi0+1|

(|G2/Gi0+1| − 1)2
=

4
M

pm

(pm − 1)2
.

Then inequality (4–2) becomes 1 < |G2| = pm
|Gi0+1| ≤ pm Qm , which gives 1 ≤

|Gi0+1| ≤ Qm . Since (Qm)m≥1 is a decreasing sequence with Q4< 1, we conclude
that m ∈ {1, 2, 3}.

If m = 3, then 1≤ |Gi0+1| ≤ Q3 < p. So |Gi0+1| = 1 and |G2| = p3. If m = 2,
then 1≤ |Gi0+1| ≤ Q2 = p2. So |G2| = p2

|Gi0+1|, with |Gi0+1| ∈ {1, p, p2
}. This

leaves only one case to exclude, namely |Gi0+1| = p2. In this case, |G2| = p4 and
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formula (2–2) yields a lower bound on the genus, namely 2 g ≥ (i0− 1)(p4
− 1).

Let s be the integer defined in Remark 2.8. Then i0= 1+ ps . Besides, by Theorem
2.7, V ⊂ (Z/pZ)2s . Consequently, |G| = |G2| |V | ≤ p4+2s and

|G|
g2 ≤

4 p4+2s

p2s(p4− 1)2
=

4
(p2− 1)2

p4

(p2+ 1)2
<

4
(p2− 1)2

,

which contradicts inequality (4–1).
If m = 1, then 1≤ |Gi0+1| ≤ Q1, with

Q1 := p (p+ 1)2 <
{

p4 if p ≥ 3,

p5 if p = 2.

Because Gi0+1 is a p-group, we get 1≤ |Gi0+1| ≤ p3 if p≥ 3, or 1≤ |Gi0+1| ≤ p4

if p = 2. Since |G2| = p |Gi0+1|, there are two cases to exclude: |Gi0+1| = p3+ε ,
with ε= 0 if p≥ 3 and ε ∈ {0, 1} if p= 2. Then |G2|= p4+ε . If ε= 0, we are in the
same situation as in the previous case. If ε= 1, (2–2) yields 2 g≥ (i0−1)(p5

−1).
Since this case only occurs for p = 2, we eventually get the inequality

|G|
g2 ≤

4 p5+2s

p2s (p5− 1)2
=

128
961

<
4
9
=

4
(p2− 1)2

,

which contradicts condition (4–1). Therefore, the order of G2 divides p3. Then
we conclude from Corollary 2.10 that G2 is abelian. �

But we can even prove better:

Proposition 4.2. Let (C,G) be a big action with g ≥ 2 satisfying condition (4–1).
Then G2 is abelian with exponent p.

Proof. By Proposition 4.1, G2 is abelian, with order dividing p3. As a consequence,
if G2 has exponent greater than p, either G2 is cyclic with order p2 or p3, or G2

is isomorphic to Z/p2Z× Z/pZ. We begin with a lemma excluding the second
case. Note that one can find big actions (C,G) with G2 abelian of exponent p2.
Nevertheless, it requires the p-rank of G2 to be large enough (see Section 6).

Lemma 4.3. Let (C,G) be a big action with g≥2 satisfying condition (4–1). Then
G2 cannot be isomorphic to Z/p2Z×Z/pZ.

Proof. Assume G2 ' Z/p2Z× Z/pZ. The lower ramification filtration of G has
one of the following forms:

1. G = G1 ) G2 ' Z/p2Z×Z/pZ⊃ Gi0+1 ' Z/pZ⊃ Gi0+i1+1 = {0}.

2. G = G1 ) G2 ' Z/p2Z×Z/pZ⊃ Gi0+1 ' (Z/pZ)2 ⊃ Gi0+i1+1 = {0}.

3. G = G1 ) G2 ' Z/p2Z×Z/pZ⊃ Gi0+1 ' (Z/pZ)2 ⊃ Gi0+i1+1 ' Z/pZ⊃

Gi0+i1+i2+1 = {0}.
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4. G = G1 ) G2 ' Z/p2Z× Z/pZ ⊃ Gi0+1 ' Z/p2Z ⊃ Gi0+i1+1 ' Z/pZ ⊃

Gi0+i1+i2+1 = {0}.

We now focus on the ramification filtration of G2, temporary denoted by H for
convenience. For all i ≥ 0, the lower ramification groups of H are Hi = H ∩Gi .

In case (i), the lower ramification of H =: H0 reads

H0=· · ·= Hi0 'Z/p2Z×Z/pZ⊃ Hi0+1=· · ·= Hi0+i1 'Z/pZ⊃ Hi0+i1+1={0}.

Consider the upper ramification groups H ν0 = Hϕ(i0)= Hi0 and H ν1 = Hϕ(i0+i1)=

Hi0+i1 , where ϕ denotes the Herbrand function [Serre 1968, IV.3]. Then the rami-
fication filtration in upper notation reads

H 0
= · · · = H ν0 ' Z/p2Z×Z/pZ⊃ H ν0+1

= · · · = H ν1 ' Z/pZ⊃ H ν1+1
= {0}.

Since H is abelian, it follows from the Hasse–Arf theorem (loc. cit.) that ν0 and
ν1 are integers. Consequently, the equality

ϕ(m)+ 1=
1
|H0|

m∑
i=0

|Hi | for all m ∈ N

gives ν0 = i0 and ν1 = i0 + i1/p2. By [Marshall 1971, Theorem 6] we have
H ν0 ) H p ν0 ⊃ (H ν0)p with (H ν0)p

= H p
= G p

2 ' Z/pZ. Thus, H pν0 ⊃ H ν1 ,
which implies pν0 ≤ ν1 and i1 ≥ p2(p − 1)i0. Then the Hurwitz genus formula
applied to C→ C/H ' P1

k yields a lower bound for the genus:

2 g = (i0− 1)(|H | − 1)+ i1(|Hi0+1| − 1)≥ (p− 1)(i0+ 1)(p3
+ p+ 1).

Let s be the integer defined in Remark 2.8. Then i0 = 1 + ps . Moreover, by
Theorem 2.7, |G| = |G2| |V | ≤ p3+2s . It follows that

|G|
g2 ≤

4
(p2− 1)2

p3(p+ 1)2

(p3+ p+ 1)2
.

Since p3(p+ 1)2/(p3
+ p+ 1)2 < 1 for p ≥ 2, this contradicts condition (4–1).

In case (ii), the lower ramification filtration of H = H0 reads

H0=· · ·= Hi0'Z/p2Z×Z/pZ⊃ Hi0+1=· · · Hi0+i1' (Z/pZ)2⊃ Hi0+i1+1={0}.

Keeping the notation of case (i), the upper ramification filtration is

H 0
=· · ·= H ν0 'Z/p2Z×Z/pZ⊃ H ν0+1

=· · ·= H ν1 ' (Z/pZ)2⊃ H ν1+1
={0},

with ν0= ϕ(i0)= i0 and ν1= ϕ(i0+ i1)= i0+ i1/p. Once again, H pν0 ⊃ (H ν0)p
'

Z/pZ implies H p ν0 ⊃ H ν1 , which involves p ν0 ≤ ν1 and i1 ≥ i0 p (p− 1). Then
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the Hurwitz genus formula yields

2 g = (i0− 1)(|H | − 1)+ i1(|Hi0+1| − 1)

≥ (p− 1) ps (p3
+ p2
+ 1)≥ (p− 1)ps(p3

+ p+ 1).

Thus we get the same lower bound on the genus as in the preceding case, hence
the same contradiction.

In case (iii), the lower ramification filtration of H becomes

Hi0 ' Z/p2Z×Z/pZ⊃ Hi0+1 = · · ·

= Hi0+i1 ' (Z/pZ)2 ⊃ Hi0+i1+1 = · · · = Hi0+i1+i2 ' Z/pZ⊃ {0}.

Keeping the same notation as above and introducing H ν2=Hϕ(i0+i1+i2)=Hi0+i1+i2 ,
the upper ramification filtration is

H ν0 ' Z/p2Z×Z/pZ⊃ H ν0+1
= · · ·

= H ν1 ' (Z/pZ)2 ⊃ H ν1+1
= · · · = H ν2 ' Z/pZ⊃ H ν2+1

= {0},

with ν0 = ϕ(i0) = i0, ν1 = ϕ(i0 + i1) = i0 + i1/p and ν2 = ϕ(i0 + i1 + i2) =

i0+ i1/p+ i2/p2. Since H pν0 ⊃ (H ν0)p
' Z/pZ, we obtain H p ν0 ⊃ H ν2 . Then

p ν0 ≤ ν2, which involves p2 (p − 1) i0 ≤ i1 p + i2. With such inequalities, the
Hurwitz genus formula gives a new lower bound for the genus, namely

2 g = (i0− 1)(|H | − 1)+ i1(|Hi0+1| − 1)+ i2(|Hi0+i1+1| − 1)

≥ (p− 1) (ps (p2
+ p+ 1)+ (ps

+ 1) (p− 1) p2).

From the inequalities 2 g≥ (p−1) (p3+s
+p1+s

+ps
+p3
−p2)≥ (p−1) ps(p3

+p),
we infer that

|G|
g2 ≤

4
(p2− 1)2

p2s+3(p+ 1)2

p2s (p3+ p)2
=

4
(p2− 1)2

p (p+ 1)2

(p2+ 1)2
.

Since p (p+ 1)2/(p2
+ 1)2 < 1 for p ≥ 2, this contradicts condition (4–1).

In case (iv), the lower ramification filtration of H , namely

Hi0 ' Z/p2Z×Z/pZ⊃ Hi0+1 = · · ·

= Hi0+i1 ' (Z/p2Z)⊃ Hi0+i1+1 = · · · = Hi0+i1+i2 ' Z/pZ⊃ {0}

induces the upper ramification filtration

H ν0 ' Z/p2Z×Z/pZ⊃ H ν0+1
= · · ·

= H ν1 ' (Z/p2Z)⊃ H ν1+1
= · · · = H ν2 ' Z/pZ⊃ H ν2+1

= {0}.
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This is almost the same situation as in case (iii), except that Hi0+1 is isomorphic to
Z/p2Z instead of (Z/pZ)2. But, since the only thing that plays a part in the proof
is the order of Hi0+1 , which is the same in both cases, namely p2, we conclude
with the same arguments as in case (iii). �

Remark 4.4. The preceding method, based on the analysis of the ramification
filtration of G2, fails to exclude the case G2 ' Z/p2Z for a big action satisfying
(4–1). Indeed, if H := G2 ' Z/p2Z, the lower ramification filtration of H ,

H0 = · · · = Hi0 ' Z/p2Z⊃ Hi0+1 = · · · Hi0+i1 ' Z/pZ⊃ Hi0+i1+1 = {0}

induces the upper ramification filtration

H 0
= · · · = H ν0 ' Z/p2Z⊃ H ν0+1

= · · · = H ν1 ' Z/pZ⊃ H ν1+1
= {0}.

with ν0=ϕ(i0)= i0 and ν1=ϕ(i0+i1)= i0+i1/p. Since H pν0 ⊃ (H ν0)p
'Z/pZ,

we obtain p ν0≤ ν1, hence i1≥ (p−1) p i0. Let s be the integer defined in Remark
2.8. The Hurwitz genus formula yields

2 g = (i0− 1)(|H | − 1)+ i1(|Hi0+1| − 1)

≥ (p− 1) (ps (p2
+ 1)+ p2

− p)≥ (p− 1) ps (p2
+ 1).

If we denote by v the dimension of the Fp-vector space V , we ultimately get

|G|
g2 ≤

4
(p2− 1)2

p2+v(p+ 1)2

p2s (p2+ 1)2
.

In this case, condition (4–1) requires p1+(v/2)−s(p+ 1) > p2. Since v/2 ≤ s, this
implies p+1> p1+s−v/2

≥ p, hence v/2= s. This means that V = Z(Ad f ), where
f is the function defined in Remark 2.8 and Ad f its palindromic polynomial as
defined in Proposition 2.5. Therefore, one does not obtain yet any contradiction.

Accordingly, to exclude the cyclic cases G2'Z/p2Z and G2'Z/p3Z and thus
complete the proof of Proposition 4.2, we need to shift from a ramification point
of view on G2 to the embedding problem G2 ( G1. This enables us to prove the
more general result on big actions formulated later.

5. Big actions with a cyclic second ramification group G2

The aim of this section is to prove that there does not exist any big action whose
second ramification group G2 is cyclic, except for the trivial case G2 ' Z/pZ.
For Witt vectors and Artin–Schreier–Witt theory, our main reference is [Bourbaki
1983, chapitre IX].

Theorem 5.1. Let (C,G) be a big action. If G2 ' (Z/pnZ), then n = 1.

Proof. Let (C,G) be a big action with G2 ' Z/pnZ. We proceed in steps.
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1. We first prove that we can assume n = 2. Indeed, for n > 2, H := G pn−2

2 is a
normal subgroup in G, strictly included in G2. So Lemma 2.4.2 asserts that the
pair (C/H,G/H) is a big action. Besides, the second lower ramification group of
G/H is isomorphic to Z/p2Z.

Notation and preparatory remarks. We denote by L := k(C) the function field of C
and by k(X) := LG2 the subfield of L fixed by G2. Following Artin–Schreier–Witt
theory [Bourbaki 1983, chapitre IX, exercice 19], we define the W2(Fp)-module

Ã :=
℘(W2(L))∩W2(k(X))

℘ (W2(k(X)))
,

where W2(L) denotes the ring of Witt vectors of length 2 with coordinates in L .
The inclusion k[X ] ⊂ k(X) induces an injection

A :=
℘(W2(L))∩W2(k[X ])

℘ (W2(k[X ]))
↪→ Ã.

Since L/LG2 is étale outside X =∞, it follows from [Milne 1980, III, 4.12] that
we can identify A with Ã. Consider the Artin–Schreier–Witt pairing

G2× A −→W2(Fp),

(g, ℘ x) 7−→ [g, ℘ x〉 := gx − x,

where g ∈ G2 ⊂ Autk(L), x ∈ L such that ℘x ∈ k[X ] and ℘x denotes the class of
℘x mod ℘(k[X ]). This pairing is nondegenerate, which proves that, as a group,
A is dual to G2.

As a Z-module, A is generated by ( f0(X), g0(X)) in W2(k[X ]), and then, L =
k(X,W0, V0) with ℘(W0, V0) = ( f0(X), g0(X)). An exercise left to the reader
shows that one can choose f0(X) and g0(X) reduced mod ℘(k[X ]) (see the def-
inition of a reduced polynomial on page 890). We denote by m0 the degree of
f0 and by n0 that of g0. Note that they are prime to p. The p-cyclic cover
LG p

2 /LG2 is parametrized by W p
0 − W0 = f0(X). We deduce from Proposition

2.5 that f0(X) = X S(X)+ c X , where S is an additive polynomial with degree
s ≥ 1 in F . After an homothety on X , we can assume S to be monic. Further-
more, note that s ≥ 2. Indeed, if s = 1, the inequalities |G| ≤ p2+2s

≤ p4 and
2 g ≥ (p− 1) (ps (p2

+ 1)+ p2
− p)= (p− 1) (p3

+ p2) of Remark 4.4 imply

|G|
g
≤

2 p
p−1

p3

p3+ p2 <
2 p
p−1

,

which contradicts (2–1).

2. The embedding problem. Let V be the Fp-vector space defined in Proposition
2.2.3. For any y ∈ V , the class of ( f0(X + y), g0(X + y)) in A induces a new
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generating system of A, which means that

Z( f0(X), g0(X))= Z( f0(X + y), g0(X + y)) mod ℘(W2(k[X ])). (5–1)

Since A is isomorphic to Z/p2Z, (5–1) ensures the existence of an integer n(y)
such that

( f0(X + y), g0(X + y))= n(y) ( f0(X), g0(X)) mod ℘(W2(k[X ])), (5–2)

where n(y) := a0(y)+b0(y) p for integers a0(y) and b0(y) such that 0< a0(y) < p
and 0 ≤ b0(y) < p. We calculate n(y) ( f0(X), g0(X)) = a0(y) ( f0(X), g0(X))+
b0(y)p ( f0(X), g0(X)). On the one hand, we have

a0(y) ( f0(X), g0(X))=
(
a0(y) f0(X), a0(y)g0(X)+ c(a0(y)) f0(X)

)
,

where c(a0(y)) is given by the recursion

c(1)= 1, c(i + 1)= c(i)+ 1
p
(1+ i p

− (1+ i)p) mod p for all i ∈ N.

On the other hand,

b0(y) p ( f0(X),g0(X))=b0(y)(0, f0(X)p)= (0,b0(y) f0(X)) mod℘(W2(k[X ])).

Consequently, (5–2) becomes

( f0(X + y), g0(X + y))= (a0(y) f0(X), a0(y)g0(X)+ `0(y) f0(X))

mod ℘(W2(k[X ])), (5–3)

where `0(y) := c(a0(y))+ b0(y). We notice that a0(y) = 1 mod p for all y in
V . Indeed, the equality of the first coordinate of Witt vectors in (5–3) implies
that f0(X + y)= a0(y) f0(X) mod ℘(k[X ]). Thus, by induction, f0(X + py)=
a0(y)p f0(X) mod ℘(k[X ]). Since V is an elementary abelian p-group we get
f0(X + py) = f0(X), which entails a0(y)p

= 1 mod p and a0(y) = 1 mod p. So
(5–3) becomes

( f0(X + y), g0(X + y))

= ( f0(X), g0(X)+ `0(y) f0(X))+ (P p(X), Q p(X))− (P(X), Q(X)), (5–4)

with P(X) and Q(X) polynomials of k[X ]. In order to circumvent the problem
related to the special formula giving the opposite of Witt vectors for p = 2, we
would rather write (5–4) as

( f0(X + y), g0(X + y))+ (P(X), Q(X))

= ( f0(X), g0(X)+ `0(y) f0(X))+ (P(X)p, Q(X)p). (5–5)

The first coordinate of (5–5) reads

f0(X + y)+ P(X)= f0(X)+ P(X)p. (5–6)
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On the second coordinate of (5–5), the addition law in the ring of Witt vectors
gives in k[X ] the equality

g0(X + y)+ Q(X)+ψ( f0(X + y), P(X))

= g0(X)+ `0(y) f0(X)+ Q(X)p
+ψ( f0(X), P(X)p), (5–7)

where ψ is defined by

ψ(a, b) := 1
p
(a p
+ bp
− (a+ b)p)=−

1
p

p−1∑
i=1

(
p
i

)
ai bp−i

=

p−1∑
i=1

(−1)i

i
ai bp−i mod p.

As a consequence, (5–7) gives

1y(g0) := g0(X + y)− g0(X)= `0(y) f0(X)+ δ mod ℘(k[X ]), (5–8)

with
δ := ψ( f0(X), P(X)p)−ψ( f0(X + y), P(X))

=

p−1∑
i=1

(−1)i

i
{ f0(X)i P(X)p(p−i)

− f0(X + y)i P(X)p−i
}.

Lemma 5.2. With the notation defined above, δ is equal to

δ =

p−1∑
i=1

(−1)i

i
y p−i X i+ps+1

+ lower-degree terms in X. (5–9)

Proof. We search for the monomials in δ that have degree at least ps+1
+ 1 in X .

We first focus on f0(X)i P(X)p(p−i). We can infer from equality (5–6) that P(X)
has degree ps−1 and that its leading coefficient is y1/p. By [Lehr and Matignon
2005, proof of Proposition 8-1], P(X)− P(0) is an additive polynomial. So we
can write P(X) = y1/p X ps−1

+ P1(X), where P1(X) is a polynomial of k[X ] of
degree at most ps−2. Then, for all i in {1, . . . , p − 1}, f0(X)i P(X)p (p−i)

=

f0(X)i (y X ps
+P1(X)p)p−i

= f0(X)i (
∑p−i

j=0

(p−i
j

)
y j X j ps

P1(X)p(p−i− j)). Since
f0(X) has degree 1+ ps , this gives in δ a monomial of degree at most i (1+ ps)+

j ps
+p(p−i− j) ps−2

= ps
+(i+ j)(p−1) ps−1

+i. If j≤ p−i−1, this degree is at
most ps

+(p−1)2 ps−1
+i= (p−1) ps

+ps−1
+i , which is strictly less than ps+1

+1,
for s≥2 and 1≤ i≤ p−1. As a consequence, monomials of degree at least ps+1

+1
can only occur when the index j is equal to p− i , namely in f0(X)i y p−i X ps(p−i).
As f0(X)= X S(X)+c X , where S is a monic additive polynomial of degree s in F ,
f0 reads f0(X)= X1+ps

+P2(X) where P2(X) is a polynomial in k[X ] with degree
at most 1+ ps−1. Then, for all i in {1, . . . , p−1}, we have f0(X)i y p−i X ps(p−i)

=

y p−i X ps(p−i)
(∑i

k=0
(i

k

)
X (1+ps) j P2(X)i−k

)
. Accordingly, we get a monomial of

degree at most to ps (p−i)+k (1+ ps)+(i−k)(1+ ps−1), a number we can rewrite
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as ps (p−i)+i (1+ ps−1)+k (ps
− ps−1). When 0≤ k≤ i−1, the maximal degree

obtained in this way is i+ ps−1
− ps
+ ps+1 which is strictly lower than ps+1

+1.
Therefore, for all i in {1, . . . , p− 1}, the only contribution to take into account is
k = i , which produces in δ the sum

p−1∑
i=1

(−1)i

i
y p−i X i+ps+1

.

We now search for monomials with degree greater or equal to ps+1
+ 1 in the

second part of δ, namely f0(X+ y)i P(X)p−i . This has degree at most i (1+ ps)+

(p− i) ps−1
= i ps

+(p− i) ps−1
+ i , which is strictly less than ps+1

+1, for s ≥ 2
and 1≤ i ≤ p−1. Therefore, f0(X+ y)i P(X)p−i does not give any monomial in
δ with degree greater or equal to ps+1

+ 1. Thus, we get the expected formula. �

3. We next show that g0(X) cannot be of the form X 6(X)+γ X, with6∈k{F} and
γ ∈ k. Otherwise, the left-hand side of (5–8) reads1y(g0) := g0(X+ y)−g0(X)=
X 6(y)+ y6(X)+ y6(y)+γ y, which only gives a linear contribution in X after
reduction mod ℘(k[X ]). By Lemma 5.2, deg f0 = 1+ ps < deg δ = ps+1

+ p−1,
which involves that the degree of the right-hand side of (5–8) is p−1+ ps+1 > 1,
hence a contradiction.

Therefore, we can define an integer a≤n0=deg g0 such that Xa is the monomial
of g0(X) with highest degree which is not of the form 1+ pn , with n ∈N. Note that
since g0 is reduced mod ℘(k[X ]), a 6≡ 0 mod p. We also notice that the monomials
in g0(X) with degree greater than a are of the form X1+pn

; hence, as explained
above, they only give linear monomials in 1y(g0) mod ℘(k[X ]). Therefore, after
reduction mod ℘(k[X ]), the degree of the left-hand side of (5–8) is at most a−1.
Since the degree of the right-hand side is ps+1

+ p− 1, it follows that

a− 1≥ ps+1
+ p− 1. (5–10)

4. We show that p divides a − 1. Assume that p does not divide a − 1. In this
case, the monomial Xa−1 is reduced mod ℘(k[X ]). Since the monomials of g0(X)
with degree greater than a only give a linear contribution in1y(g0)mod ℘ (k[X ]),
(5–8) reads as follows, for all y in V :

ca(g0) a y Xa−1
+ lower-degree terms

=−y X ps+1
+p−1
+ lower-degree terms mod ℘ (k[X ]),

where ca(g0) 6= 0 denotes the coefficient of Xa in g0. If a−1> ps+1
+ p−1, the

coefficient ca(g0) a y= 0, for all y in V. Since a 6= 0 mod p, it leads to V = {0}, so
G1 = G2, which is impossible for a big action (see Proposition 2.2.1). We gather
from (5–10) that a− 1= ps+1

+ p− 1, which contradicts a 6= 0 mod p.
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Thus p divides a−1. So, we can write a= 1+λ pt , with t > 0, λ prime to p and
λ≥ 2 because of the definition of a. We also define j0 := a− pt

= 1+ (λ−1) pt .
Note that pj0 > a. Indeed,

pj0≤a⇔ p(1+(λ−1)pt)≤1+λ pt
⇔λ≤

1− p+ pt+1

pt(p− 1)
=
−1
pt +

p
p−1

<
p

p−1
≤2,

which is impossible since λ≥ 2.

5. We determine the coefficient of X j0 in the left hand-side of (5–8). Since p does
not divide j0, the monomial X j0 is reduced mod ℘(k[X ]). On the left-hand side of
(5–8), namely1y(g0)mod ℘(k[X ]), the monomial X j0 comes from monomials of
g0(X) of the form Xb, with b in { j0+1, . . . , a}. As a matter of fact, the monomials
of g0(X) with degree greater than a only give a linear contribution mod ℘(k[X ]),
whereas j0 = 1+ (λ− 1) pt > 1. For all b ∈ { j0+ 1, . . . , a}, the monomial Xb of
g0(X) generates

( b
j0

)
yb− j0 X j0 in 1y(g0). Since p j0 > a ≥ b (see above), these

monomials Xb do not produce any X j0 pn
, with n ≥ 1, which would also give X j0

after reduction mod ℘(k[X ]). It follows that the coefficient of X j0 in the left-
hand side of (5–8) is T (y) with T (Y ) :=

∑a
b= j0+1 cb(g0)

( b
j0

)
Y b− j0 , where cb(g0)

denotes the coefficient of Xb in g0(X). As the coefficient of Y a− j0 in T (Y ) is
ca(g0)

( a
j0

)
= ca(g0)

( 1+λpt

1+(λ−1)pt

)
≡ ca(g0) λ 6≡ 0 mod p, the polynomial T (Y ) has

degree a− j0 = pt .

6. We identify with the coefficient of X j0 in the right-hand side of (5–8) and obtain
a contradiction. We first assume that the monomial X j0 does not occur in the right-
hand side of (5–8). Then T (y)= 0 for all y in V , which means that V is included
in the set of roots of T . Thus, |V | ≤ pt . To compute the genus g, put M0 := m0

and M1 := max{p m0, n0}. Then, by [Garuti 2002], the Hurwitz genus formula
applied to C→ C/G2 ' P1

k yields

2 (g− 1)= 2 |G2| (gC/G2 − 1)+ d =−2 p2
+ d,

with d := (p−1) (M0+1)+ p (p−1) (M1+1). From p m0= p (ps
+1)= ps+1

+ p
and ps+1

+ p− 1 < n0, we infer M1 = n0. Moreover, since n0 ≥ a = 1+ λ pt
≥

1+ 2 pt > 2 pt , we obtain the lower bound 2 g = (p − 1) p (n0 − 1+ ps−1) ≥

2 pt+1 (p− 1) for the genus. Since |G| = |G2| |V | ≤ p2+t , this entails

|G|
g
≤

2 p
p−1

p1+t

2 p1+t =
1
2

2 p
p−1

,

which contradicts (2–1).
As a consequence, the monomial X j0 appears in the right-hand side of (5–8),

which implies that j0 ≤ ps+1
+ p−1. Using (5–10), we get j0 = 1+ (λ−1) pt

≤
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ps+1
+ p− 1< a = 1+ λ pt . This yields

λ− 1≤ ps+1−t
+

p− 2
pt < λ. (5–11)

If s + 1 − t ≤ −1, since t ≥ 1, (5–11) gives λ − 1 ≤ 1/p + (p − 2)/p < 1,
which contradicts λ ≥ 2. It follows that s + 1− t ≥ 0. Then (5–11), combined
with the inequalities 0 ≤ (p− 2)/pt < 1, leads to λ− 1= ps+1−t . We gather that
j0=1+(λ−1) pt

=1+ ps+1>deg f0=1+ ps . Therefore, in the right-hand side of
(5–8), the monomial X j0= X1+ps+1

only occurs in δ. By Lemma 5.2, the coefficient
of X j0 = X1+ps+1

in δ is −y p−1. By equating the coefficient of X j0 in each side
of (5–8), we get T (y)=−y p−1, for all y in V . Put T̃ (Y ) := T (Y )+ Y p−1. Since
deg T = pt > p−1, the polynomial T̃ has still degree pt and satisfies T̃ (y)= 0 for
all y in V . Once again, it leads to |V | ≤ pt , which contradicts (2–1) as above. �

Therefore, when (C,G) is a big action, G2 ' (Z/pnZ) implies n = 1. More
generally, if G2 is abelian of exponent pn , with n≥ 2, there exists a subgroup H of
index p in G p

2 , with H normal in G, such that the pair (C/H,G/H) is a big action
with (G/H)2 = G2/H ' Z/p2Z× (Z/pZ)t , with t ∈N∗. A natural question is to
search for a lower bound on the p-rank t depending on the genus g of the curve.
As seen in the proof of Theorem 5.1, the difficulty lies in the embedding problem,
i.e. in finding an extension which is stable under the translations by V . In the
next section, we exhibit big actions with G2 abelian of exponent at least p2. In
particular, we construct big actions (C,G) with G2 ' Z/p2Z× (Z/pZ)t where
t = O(logp g).

6. Examples of big actions with G2 abelian of exponent greater than p

In characteristic 0, an analogue of big actions is given by the actions of a finite
group G on a compact Riemann surface C with genus gC ≥ 2 such that |G| =
84(gC−1). Such a curve C is called a Hurwitz curve and such a group G a Hurwitz
group [Conder 1990]. In particular, the lowest genus Hurwitz curves are the Klein’s
quartic with G ' PSL2(F7) (cf. [Elkies 1999a]) and the Fricke–Macbeath curve
with genus 7 and G ' PSL2(F8) [Macbeath 1965].

Let C be a Hurwitz curve with genus gc. Let n ≥ 2 be an integer and let Cn

be the maximal unramified Galois cover whose group is abelian, with exponent n.
The Galois group of the cover Cn/C is isomorphic to (Z/nZ)2gC . We infer from
the uniqueness of Cn that the C-automorphisms of C have n2gc prolongations to
Cn . Therefore, gCn − 1= n2g(gC − 1). Consequently, Cn is still a Hurwitz curve;
see [Macbeath 1961].

Now let (C,G) be a big action. Then C→ C/G is an étale cover of the affine
line whose group is a p-group. From the Deuring–Shafarevich formula (see [Bouw
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2000], for example), it follows that the Hasse–Witt invariant of C is zero. This
means that there are no nontrivial connected étale Galois covers of C with group a
p-group. Therefore, if we want to generalize the method mentioned above to pro-
duce Galois covers of C corresponding to big actions, it is necessary to introduce
ramification. A means to do so is to consider ray class fields of function fields, as
studied by K. Lauter [1999] and R. Auer [1999]. Since the cover C → C/G2 is
an étale cover of the affine line Spec k[X ] totally ramified at∞, we focus on the
special case of ray class fields of the rational function field Fq(X), where q = pe

[Auer 1999, III.8]. Such ray class fields allow us to produce families of big actions
(C,G) (where C is defined over k = F

alg
p ) with specific conditions imposed on

ramification and endowed with an abelian G2 of exponent as large as we want.

Definition 6.1 [Auer 1999, Part II]. Let K := Fq(X) be the rational function field,
with q = pe and e ∈ N∗. Let S be the set of all finite rational places, namely
{(X − y), y ∈ Fq}. Let m ≥ 0 be an integer. Fix K alg an algebraic closure of K in
which all extensions of K are assumed to lie. We define K m

S ⊂ K alg as the largest
abelian extension L/K with conductor ≤ m∞, such that every place in S splits
completely in L .

Remarks 6.2. 1. We define the splitting set of any finite Galois extension L/K ,
denoted by S(L), as the set consisting of the places of K that split completely
in L . If K m

S /K is the extension defined in Definition 6.1, then S ⊂ S(K m
S ).

2. In what follows, we only consider finite Galois extensions L/K that are unram-
ified outside X =∞ and (totally) ramified at X =∞. Therefore, the support of
the conductor of L/K is reduced to the place∞. So, we systematically confuse
the conductor m∞ with its degree m.

3. We could more generally define K m
S for S a nonempty subset of the finite ra-

tional places, i.e. S := {(X − y), y ∈ V ⊂ Fq}. However, to get big actions, it
is necessary to consider the case where V is a subgroup of Fq . In what follows,
we focus on the case V = Fq , as announced in Definition 6.1.

Remarks 6.3. We keep the notation of Definition 6.1.

1. The existence of the extension K m
S /K is based on global class field theory; see

[Auer 1999, Part II].

2. K m
S /K is a finite abelian extension whose full constant field is Fq .

3. The reason why Lauter and Auer are interested in such ray class fields is that
they provide for examples of global function fields with many rational places,
or what amounts to the same, of algebraic curves with many rational points.
Indeed, let C(m)/Fq be the nonsingular projective curve with function field
K m

S . If we denote by Nm := |C(m)(Fq)| the number of Fq -rational points on the
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curve C(m), then Nm = 1+ q [K m
S : K ]. The main difficulty lies in computing

[K m
S : K ]. We first wonder when K m

S coincide with K . Here are partial answers.

4. Let q = pe, with e ∈ N. If e is even, put r :=
√

q and if e is odd, put r :=
√

qp. Then, for all i in {0, . . . , r + 1}, K i
S = K = Fq(X); see [Auer 1999, III,

Lemma 8.7 and formula (13)]. Note that the previous estimate Nm =1+q [K m
S :

K ], combined with the Hasse–Weil bound (see [Stichtenoth 1993, V.2.3], for
instance), furnishes another proof of K i

S = K when i < 1+ r .

5. More generally, Lauter displays a method to compute the degree of the extension
K m

S /K via a formula giving the order of its Galois group GS(m) [Lauter 1999,
Theorem 1]. Lauter’s proof starts from the following presentation of GS(m):

GS(m)'
1+ Z Fq [[Z ]]

〈1+ Zm Fq [[Z ]], 1− y Z , y ∈ Fq〉
,

where Z = X−1, which indicates that GS(m) is an abelian finite p-group. Then
she transforms the multiplicative structure of the group into an additive group
of generalized Witt vectors. In particular, she deduces from this theorem the
smallest conductor m such that GS(m) has exponent stricly greater than p (see
next proposition).

Proposition 6.4 [Lauter 1999, Proposition 4]. We keep the notation defined above.
If q = pe, the smallest conductor m for which the group GS(m) is not of exponent
p is m2 := pde/2e+1

+ p+ 1, where d · e is the ceiling function.

We now emphasize the link with big actions. Let F be a function field with full
constant field Fq . Let C/Fq be the smooth projective curve whose function field is
F and Calg

:= C ×Fq k with k = F
alg
p . If G is a finite p-subgroup of AutFq C , then

G can be identified with a subgroup of AutkCalg. In this case, (Calg,G) is a big
action if and only if gCalg = gC > 0 and |G|/gC > 2 p/(p−1). For convenience, in
the sequel, we shall say that (C,G) is a big action if (Calg,G) is a big action.

In what follows, we consider the curve C(m)/Fq whose function field is K m
S and,

starting from this, we construct a p-group G(m) acting on C(m) by extending the
translations X → X + y, with y ∈ Fq . In particular, we obtain an upper bound
for the genus of C(m), which allows us to circumvent the problem related to the
computation of the degree [K m

S : K ] when checking whether (C(m),G(m)) is a
big action.

Proposition 6.5. We keep the notation defined above.

1. Let C(m)/Fq be the nonsingular projective curve with function field K m
S . Then

the group of translations X → X + y, y ∈ Fq , extends to a p-group of Fq -
automorphisms of C(m), say G(m), with the exact sequence

0−→ GS(m)−→ G(m)−→ Fq −→ 0.
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2. Let L be an intermediate field of K m
S /K . Assume L = (K m

S )
H , i.e. the extension

L/K is Galois with group: GS(m)/H. For all i ≥ 0, we define L i as the i-
th upper ramification field of L , i.e. the subfield of L fixed by the i-th upper
ramification group of GS(m)/H at∞: Gi

S(m)H/H , where Gi
S(m) denotes the

i-th upper ramification group of GS(m) at∞. Then, for all i ≥ 0,

L i
= L ∩ K i

S.

In particular, when L = K m
S and i ≤ m, L i

= K i
S , i.e. Gi

S(m)= Gal(K m
S /K i

S).

3. Let L be an intermediate field of K m
S /K . Define n :=min{i ∈N, L ⊂ K i

S}. The
genus of the extension L/K is given by the formula

gL = 1+ [L : K ] (−1+ n/2)−
1
2

n−1∑
j=0

[L ∩ K j
S : K ],

where the sum is empty for n = 0. In particular, gL vanishes if and only if
L ⊂ K 0

S ; in all other cases, gL < [L : K ] (−1+ n/2).

4. If m≥ r+2, then |G(m)|/gK m
S
>q/(−1+ 1

2 m). It follows that if q/(−1+ 1
2 m)≥

2 p/(p−1), the pair (C(m),G(m)) is a big action. In this case, the second
lower ramification group G2(m) of G(m) is equal to GS(m). In particular,
with m2 as in Proposition 6.4, if p > 2 and e ≥ 4 or p = 2 and e ≥ 6, the
pair (C(m2),G(m2)) is a big action whose second ramification group GS(m2)

is abelian of exponent p2.

Proof. 1. The set S is globally invariant under the translations X 7→ X+ y, y ∈ Fq .
That is the same for ∞, so the translations by Fq do not change the conditions
imposed on ramification. As a consequence, owing to the maximality and the
unicity of K m

S , they can be extended to Fq -automorphisms of K m
S . This proves the

first assertion.

2. This follows directly from [Auer 1999, II, Theorem 5.8].

3. The genus formula is obtained by combining the preceding results, the Hurwitz
genus formula and the discriminant formula [Auer 1999, I, 3.7]. Now assume that
n = 0. Then L ⊂ K 0

S = Fq(X) and gL = 0. Conversely, assume gL = 0. If n 6= 0,
Remark 6.3.4 implies that n≥ r+2≥ 3. Using the preceding formula and Remark
6.3.4, gL = 0 reads

2+(n−2) [L : K ] =
n−1∑
j=0

[K j
S ∩L : K ] = 2+

n−1∑
j=2

[K j
S ∩L : K ] ≤ 2+(n−2) [L : K ].

It follows that, for all j in {2, . . . , n−1}, K j
S ∩L = L . In particular, L ⊂ K 2

S = K 0
S ,

hence a contradiction. Finally, since n > 0 implies n ≥ 3 and since K = K 0
S = K 1

S ,
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one notices that

gL = [L : K ] (−1+ n/(2))−
1
2

n−1∑
j=2

[L ∩ K j
S : K ]< [L : K ] (−1+ n/(2)).

Assume that m ≥ r +2. We gather from Remark 6.3.4 that n :=min{i ∈N, K m
S ⊂

K i
S} ≥ r + 2≥ 3. It follows from the third point that

gK m
S
< [K m

S : K ] (−1+ n/(2))≤ [K m
S : K ] (−1+m/(2)).

As |G(m)| = q[K m
S : K ], we deduce the expected inequality. In particular, when

q/(−1 + 1
2 m) > 2 p/(p−1), the pair (C(m),G(m)) is a big action. It remains

to show that, in this case, G2(m) is equal to GS(m). Lemma 2.4.2 first proves
that GS(m) ⊃ G2(m). Let L := (K m

S )
G2(m) be the subfield of L fixed by G2(m)

and define n := min{i ∈ N, L ⊂ K i
S}. Assume GS(m) ) G2(m). Then L )

(K m
S )

GS(m)=K . We infer from Remark 6.3.4 that n≥r+2, which proves, using the
previous point, that gL > 0. But, since (C(m),G(m)) is a big action, C/G2(m)'
P1

k , so gL = 0, hence a contradiction. We eventually explain the last statement.
By Proposition 6.5.2, Gm2−1

S (m2) = Gal(K m2
S /K m2−1

S ), which induces the exact
sequence

0−→ Gm2−1
S (m2)−→ GS(m2)−→ GS(m2− 1)−→ 0.

We infer from Proposition 6.4 that GS(m2− 1) has exponent p whereas the expo-
nent of GS(m2) is at least p2. It follows that Gm2−1

S (m2) cannot be trivial. Since
Gm2

S (m2)= {0} (use Proposition 6.5.2), we deduce from the elementary properties
of the ramification groups that Gm2−1

S (m2) is p-elementary abelian. Therefore,
GS(m2) has exponent smaller than p2 and the claim follows. �

Remark 6.6. Let Nm be the number of Fq -rational points on the curve C(m) as
defined in Remark 6.3.3. Then Nm = 1+q |GS(m)| = 1+|G(m)|. This highlights
the equivalence of the two ratios: |G(m)|/gC(m) and Nm/gC(m). In particular, this
equivalence emphasizes the link between the problem of big actions and the search
of algebraic curves with many rational points.

As seen in Remark 6.3.4, K i
S = K for all i in {0, . . . , r + 1}, where r =

√
q

or
√

qp according to whether q is a square or not. The following extensions K m
S ,

for m ≥ r + 2, are partially parametrized, at least for the first ones, in [Auer 1999,
Proposition 8.9]. The table on the next page gives a complete description of the
extensions K m

S for m varying from 0 to m2 = pde/2e+1
+ p+ 1, in the special case

p = 5 and e = 4. This involves q = pe
= 625, s = e/2 = 2, r = ps

= 25 and
m2= 131. The table below should suggest the general method to parametrize such
extensions.
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conductor m [K m
S :K ] new equations

0≤ m ≤ r+1= 26 1
27≤ m ≤ 2r+1= 51 52 W r

0 +W0 = X1+r

m = 2r+2= 52 56 W q
1 −W1 = X2r (Xq

− X)
53≤ m ≤ 3r+1= 76 58 W r

2 +W2 = X2(1+r)

m = 3r+2= 77 512 W q
3 −W3 = X3r (Xq

− X)
m = 3r+3= 78 516 W q

4 −W4 = X3r (X2q
− X2)

79≤ m ≤ 4r+1= 101 518 W r
5 +W5 = X3(1+r)

m = 4r+2= 102 522 W q
6 −W6 = X4r (Xq

− X)
m = 4r+3= 103 526 W q

7 −W7 = X4r (X2q
− X2)

m = 4r+4= 104 530 W q
8 −W8 = X4r (X3q

− X3)

105≤ m ≤ 5r+1= 126 532 W r
9 +W9 = X4(1+r)

m = 5r+2= 127 536 W q
10−W10 = X5r (Xq

− X)
m = 5r+3= 128 540 W q

11−W11 = X5r (X2q
− X2)

m = 5r+4= 129 544 W q
12−W12 = X5r (X3q

− X3)

m = 5r+5= 130 548 W q
13−W13 = X5r (X4q

− X4)

m = m2 = 131 550
[W0,W14]

r
+[W0,W14] = [X1+r , 0]

In this case,
|G(m2)|

gK
m2
S

' 9, 6929 . . . (6–1)

Comments on the construction of the table. For all i in {0, . . . , 14}, put L i :=

K (W0, . . . ,Wi ).

1. We first prove that the splitting set of each extension K (Wi )/K (see Remark
6.2.1) contains S. Indeed, fix y in Fq and call Py the corresponding place
in S : (X − y). We have to distinguish three cases. By [Stichtenoth 1993,
Proposition VI. 4.1], Py completely splits in the extension K (W )/K , where
W r
+W = Xu (1+r), with 1 ≤ u ≤ 4, if the polynomial T r

+ T − yu (1+r) has
a root in K , which is true since yu(1+r)

= (F s
+ I ) (1

2 yu(1+r)). Likewise, Py

completely splits in the extension K (W )/K , where W q
−W = Xu r (Xv q

−Xv),
with 1 ≤ v < u ≤ 5, since yvq

− yv = 0. Finally, Py completely splits in the
extension K (W, W̃ )/K , where [W, W̃ ]r + [W, W̃ ] = [X1+r , 0], since

[y1+r , 0] = (F s
+ I )

[1
2

y1+r ,−
2p
−2

4p
y(1+r)p

]
.

To conclude, we remark that L i = L i−1 K (Wi ) for all i in {1, . . . , 14}. Then
S(L i ) = S(L i−1)∩ S(K (Wi )), by [Auer 1999, Corollary 3.2.b], which allows
us to conclude, by induction on i , that the splitting set of each L i contains S.
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2. We now compute the conductor m(K (Wi )) of each extension K (Wi )/K . As
above, we must distinguish three kinds of extensions. The extension K (W )/K ,
where W r

+W = Xu (1+r), with 1 ≤ u ≤ 4, has conductor ur + u + 1 [Auer
1999, Proposition 8.9a]. The extension K (W )/K , where now W q

− W =
Xu r (Xv q

− Xv), with 1 ≤ v < u ≤ 5, has conductor ur + v + 1 [Auer 1999,
Proposition 8.9b]. Finally, the conductor of the extension K (W, W̃ )/K , where
[W, W̃ ]r+[W, W̃ ]=[X1+r , 0] is given by the formula 1+max{p(1+r),−∞}=
1+ p+ ps+1

=m2 [Garuti 2002, Theorem 1.1]. As a conclusion, since m(L i )=

max{m(L i−1),m(K (Wi ))} [Auer 1999, Corollary 3.2b], an induction on i al-
lows us to obtain the expected conductor for L i .

3. We obtain from 1 and 2 the inclusions K (W0)⊂ K 27
S , K (W0,W1)⊂ K 52

S , . . .

K (W0, . . . ,W14)⊂ K m2
S . Equality is finally obtained by calculating the degree

of each extension K m
S /K via [Lauter 1999, Theorem 1] or [Auer 1999, (13),

pp. 54–55]. �

We deduce from the foregoing an example of big actions with G2 abelian of
exponent p2, with a small p-rank. More precisely, we construct a subextension of
K m2

S with the commutative diagram

0 −→ GS(m2) −→ G(m2) −→ Fq −→ 0
ϕ↓ ↓ ||

0 −→ H −→ G −→ Fq −→ 0
↓ ↓

0 0

such that the pair (C(m2)/Ker(ϕ),G) is a big action where G2'Z/p2Z×(Z/pZ)t

with t = O(logp g), g being the genus of the curve C(m2)/Ker(ϕ). Contrary to
the previous case where the stability under the translations by Fq was ensured by
the maximality of K m2

S , the difficulty now lies in producing a system of equations
defining a subextension of K m2

S which remains globally invariant through the action
of the group of translations X → X + y, y ∈ Fq . Write q = pe. We have to
distinguish the case e even and e odd.

Proposition 6.7. Assume that p > 2. We keep the notation defined above. In
particular, K = Fq(X) with q = pe. Assume that e = 2 s, with s ≥ 1, and put
r := ps . Define

f0(X): = a X1+r with a 6= 0, a ∈ 0 := {γ ∈ Fq , γ
r
+ γ = 0},

fi (X): = X ir/p (Xq
− X)= X i ps−1

(Xq
− X) for all i ∈ {1, . . . , p− 1}.

Let L := K (Wi )0≤i≤p be the extension of K parametrized by the Artin–Schreier–
Witt equations W p

0 −W0 = f0(X), W q
i −Wi = fi (X) for all i ∈ {1, . . . , p − 1},

and [W0,Wp]
p
− [W0,Wp] = [ f0(X), 0].
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For all i in {0, 1, . . . , p − 1}, put L i := K (W0, . . . ,Wi ). Let CL/Fq be the
nonsingular projective curve with function field L.

1. L is an abelian extension of K and every place in S completely splits in L.
Moreover, L0⊂ K r+2

S , L i ⊂ K ps+1
+i+1

S for all i ∈ {1, . . . , p−1}, and L ⊂ K m2
S ,

where m2 = ps+1
+ p+ 1 is the integer defined in Proposition 6.4. (See table

on the next page.)

2. L/K has degree [L : K ] = p2+(p−1)e, and its Galois group GL satisfies

GL ' Z/p2Z× (Z/pZ)t with t = (p− 1) e.

3. The extension L/K is stable under the translations X 7→ X + y, with y ∈ Fq .
Therefore, the translations by Fq extend to form a p-group of Fq -automorphisms
of L , say G, with the exact sequence

0−→ GL −→ G −→ Fq −→ 0.

4. Let gL be the genus of the extension L/K . Then

gL =
1
2

(
p2+2 s (p−1) (ps+1

+ p− 1)− ps (p2
− p+ 1)− p2 s+1

p−2∑
i=0

q i
)
.

In particular, when e grows large, gL ∼
1
2 p(2p−1)e/2+3 and t = O(logp gL).

5. For s ≥ 2, (CL ,G) is a big action with G2 = GL . (Note that, for p = 5 and
e = 4, one gets |G|/gL ' 9, 7049 . . ., which is slightly bigger than the quotient
obtained for the whole extension K m2

S in (6–1).)

Proof. 1. Fix y in Fq and call Py := (X − y), the corresponding place in S.
As fi (y) = 0 for all i in {1, . . . , p − 1}, the place Py completely splits in each
extension K (Wi ) with W q

i −Wi = fi (X). Therefore, to prove that Py completely
splits in L , it is sufficient to show that [ f0(y), 0]∈℘(W2(Fq)). By [Bourbaki 1983,
chapitre IX, exercice 18], this is equivalent to show that Tr([ f0(y), 0])= 0, where
Tr means the trace map from W2(Fq) to W2(Fp). We first notice that, when y is in
Fq , γ := f0(y)= a y1+r lies in 0. It follows that

Tr([γ, 0])=
2s−1∑
i=0

F i
[γ, 0] =

s−1∑
i=0
[γ pi

, 0] +
s−1∑
i=0
[γ r pi

, 0]

=

s−1∑
i=0
[γ pi

, 0] +
s−1∑
i=0
[−γ pi

, 0].

As p > 2, [−γ pi
, 0] = −[γ pi

, 0] and Tr([γ, 0]) = 0. To establish the expected
inclusions, it remains to compute the conductor of each extension L i . First of all,
[Auer 1999, I, exercise 3.3] together with [Stichtenoth 1993, Proposition III.7.10]
shows that the conductor of L0 is r+2. Thus, L0⊂K r+2

S . Moreover, since fi (X)=



Smooth curves having a large automorphism p-group in characteristic p 917

X i+ps+1
− X1+i ps−1

mod ℘(Fq [X ]), we infer from [Auer 1999, I, Exercise 3.3 and
Corollary 3.2] that the conductor of L i is 1+ i + ps+1. So, L i ⊂ K 1+i+ps+1

S . To
complete the proof, it remains to show that L has conductor m2, which follows
from [Garuti 2002] (see comments above).

The equations, conductor and degree of each extension L i are as follows:

ext’n conductor m [L i :K ] new equations

K 0≤m≤r+1= ps
+1 1

L0 r+2≤m≤ ps+1
+1=m2−p p W p

0 −W0= f0(X)
L1 m= ps+1

+2=m2−(p−1) p1+e W q
1−W1= f1(X)

L2 m= ps+1
+3=m2−(p−2) p1+2e W q

2−W2= f2(X)
· · · · · · · · · · · · · · · · · · · ·

L i m= ps+1
+i+1=m2−(p−i) p1+ie W q

i −Wi= fi (X)
· · · · · · · · · · · · · · · · · · · ·

L p−1 m= ps+1
+p=m2−1 p1+(p−1)e W q

p−1−Wp−1= f p−1(X)

L m= ps+1
+p+1=m2 p2+(p−1)e

[W0,Wp]
p
−[W0,Wp]

=[ f0(X), 0]

2. See preceding table.

3. Fix y in Fq . Consider σ in G(m2) (defined as in Proposition 6.5) such that
σ(X)= X + y.

(a) We prove that σ(W0)∈ L0. Indeed, as y ∈ Fq and a ∈0={γ ∈ Fq , γ
r
+γ = 0},

℘(σ(W0)−W0)= σ(℘ (W0))−℘(W0)= f0(X + y)− f0(X)

= a y X r
+ a yr X + f0(y)=−ar yr2

X r
+ a yr X + f0(y)

= ℘(Py(X))+ f0(y),

where Py(X) := (I + F + F2
+ · · ·+ F s−1) (−a yr X). Since f0(y) ∈ ℘(Fq) (see

proof of part 1), it follows that ℘(Py(X))+ f0(y) belongs to ℘(Fq [X ]). Therefore,
σ(W0) ∈ L0 = Fq(X,W0).

(b) We now prove that σ(Wi ) ∈ L i for all i in {1, . . . , p−1}. Indeed,

(Fe
− id) (σ (Wi )−Wi )= σ(W

q
i −Wi )− (W

q
i −Wi )= fi (X + y)− fi (X)

= (X + y)i ps−1
(Xq
− X)− X i ps−1

(Xq
− X)

= (X ps−1
+ y ps−1

)i (Xq
− X)− X i ps−1

(Xq
− X)

=

i−1∑
j=1

( i
j

)
y(i− j)ps−i

f j (X) mod (Fe
− id) (Fq [X ]),
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where the sum is empty for i = 1. It turn, the right-hand side equals

(Fe
− id)

( i−1∑
j=1

( i
j

)
y(i− j)ps−i

W j

)
mod (Fe

− id) (Fq [X ]).

It follows that σ(Wi ) ∈ L i = Fq(X,W0,W1, . . . ,Wi ).

(c) We next show, using Remark 6.3.4, that σ(Wp) ∈ L . To this end, set

1 := ℘(σ [W0,Wp] − [W0,Wp]),

so

1= σ(℘ ([W0,Wp]))−℘([W0,Wp])= [ f0(X + y), 0] − [ f0(X), 0].

We know from the proof of part 1 that [ f0(y), 0] lies in ℘(W2(Fq)). Then

1= [ f0(X + y), 0] − [ f0(X), 0] − [ f0(y), 0] − [Py(X), 0] + [Py(X), 0]p

mod ℘(W2(Fq [X ])),

with y in Fq and Py defined as above. Let W (Fq) be the ring of Witt vectors
with coefficients in Fq . Then, for any y ∈ Fq , we denote by ỹ the Witt vector
ỹ := (y, 0, 0, . . .) ∈ W (k). For any P(X) :=

∑s
i=0 ai X i

∈ Fq [X ], set P̃(X) :=∑s
i=0 ãi X i

∈W (Fq)[X ]. Addition in the ring of Witt vectors yields

1= [0, A] mod ℘(W2(Fq [X ])),

where A is the reduction modulo p W2(Fq)[X ] of

1
p
{ f̃0(X + ỹ)p

− f̃0(X)p
− f̃0(ỹ)p

+ P̃y(X)p
− P̃y(X)p2

− ( f̃0(X + ỹ)− f̃0(X)− f̃0(ỹ)− P̃y(X)+ P̃y(X)p)p
}.

Since f̃0(X + ỹ)− f̃0(X)− f̃0(ỹ)+ P̃y(X)− P̃y(X)p
= 0 mod p W (Fq)[X ], we

get

A= 1
p
{ f̃0(X+ ỹ)p

− f̃0(X)p
− f̃0(ỹ)p

+ P̃y(X)p
− P̃y(X)p2

} mod p W (Fq)[X ].

We observe that, modulo mod p2 W (Fq)[X ],

f̃0(X + ỹ)p
= ã p (X + ỹ)p (X + ỹ)ps+1

= ã p (X + ỹ)p (X ps
+ ỹ ps

)p

= ã p
p∑

i=0

p∑
j=0

( p
i

) ( p
j

)
X j+i ps

ỹ p− j+ps (p−i)
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Since
( p

i

) ( p
j

)
= 0 mod p2 when 0< i < p and 0< j < p, one obtains

f̃0(X + ỹ)p
− f̃0(X)p

− f̃0(ỹ)p
= ã p

∑
(i, j)∈I

( p
i

) ( p
j

)
X j+i ps

ỹ p− j+ps (p−i)

mod p2 W (Fq)[X ],

where I is the set of (i, j) ∈ {0, 1, . . . , p}2 \ {(0, 0) , (p, p)} such that

i j = 0 mod p, (i, j).

Again modulo mod p2 W (Fq)[X ], we have

P̃y(X)p
− P̃y(X)p2

=

( s−1∑
i=0
(−ã ỹr X)pi

)p
−

( s−1∑
i=0
(−ã ỹr X)pi

)p2

=

( s−1∑
i=0
(−ã ỹr X)pi

)p
−

( s−1∑
i=0
(−ã ỹr X)pi+1

)p

=−ã p ỹr p X p
+ ãr p ỹr2 p X pr

+ p T̃y(X),

with T̃y(X) ∈W (Fq)[X ]. Since y ∈ Fq and a ∈ 0, we get

P̃y(X)p
− P̃y(X)p2

=−ã p ỹr p X p
−ã p ỹ p X pr

+ p T̃y(X) mod p2 W (Fq)[X ].

As a consequence,

A = ã p
∑

(i, j)∈I1

1
p

( p
i

) ( p
j

)
X j+i ps

ỹ p− j+ps (p−i)
+ T̃y(X) mod p℘(Fq [X ]),

where I1 = I \ {(0, p), (p, 0)}. Thus

A = a p
∑

(i, j)∈I1

1
p

( p
i

) ( p
j

)
X j+i ps

y p− j+ps (p−i)
+ Ty(X),

with Ty ∈ Fq [X ]. We first consider the sum. Since, for j = 0, j = p and i = 0, one
gets monomials whose degree (possibly after reduction mod ℘(Fq [X ])) is lower
than 1+ ps , one can write

A = a p
p−1∑
j=1

1
p

( p
j

)
X j+ps+1

y p− j
+ Ry(X)+ Ty(X) mod ℘(Fq [X ]),

where Ry(X) is a polynomial of Fq [X ] of degree lower than 1+ ps
= 1+ r . We

now focus on the polynomial Ty(X) ∈ Fq [X ]. It is made of monomials of the
forms X i0+i1 p+···+is−1 ps−1

, with i0 + i1 + · · · + is−1 = p, and X i1 p+···+is ps
, with

i1+ i2+· · ·+ is = p. Since X i1 p+···+is ps
= X i1+···+is ps−1

mod ℘(Fq [X ]), it follows
that Ty does not have any monomial with degree higher than 1+ ps after reduction
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mod ℘(Fq [X ]). Hence

A = a p
p−1∑
j=1

1
p

( p
j

)
X j+ps+1

y p− j
+ R[1]y (X) mod ℘(Fq [X ]),

where R[1]y (X) is a polynomial of Fq [X ] with degree strictly lower than 1 + r .
Since f j (X) = X j+ps+1

− X1+ j ps−1
mod ℘(Fq [X ]) for all j in {1, . . . , p− 1}, we

conclude that

A = a p
p−1∑
j=1

1
p

( p
j

)
y p− j f j (X)+ R[2]y (X) mod ℘(Fq [X ]),

where R[2]y (X) is a polynomial of Fq [X ] of degree lower than 1+ r . Then

A =
p−1∑
j=1

c j (y) f j (X)+ R[2]y (X) mod ℘(Fq [X ]),

with c j (y) := a p 1
p

( p
j

)
y p− j

∈ Fq . It follows that, modulo ℘(Fq [X ]),

A =
p−1∑
j=1

(Fe
− id) (c j (y)W j )+ R[2]y (X) = (F − id)

p−1∑
j=1

Pj (W j )+ R[2]y (X),

where Pj (W j )= (id+F + · · ·+ Fe−1) (c j (y)W j ) ∈ Fq [W j ]. We gather that

℘(σ [W0,Wp] − [W0,Wp])

= ℘
([

0,
p−1∑
j=1

Pj (W j )
])
+ [0, R[2]y (X)] mod ℘(W2(Fq [X ])).

As a consequence, [0, R[2]y (X)] lies in ℘(W2(K
m2
S )), so there exists V ∈ K m2

S such
that V p

− V = R[2]y (X) Accordingly, K (V ) is a K -subextension of K m2
S with

conductor 1+ deg(R[2]y (X)) ≤ 1+ r . In particular, K (V ) ⊂ K r+1
S = K = Fq(X),

which implies that R[2]y (X) ∈ ℘(K ). Therefore,

℘(σ [W0,Wp] − [W0,Wp])= ℘
([

0,
p−1∑
j=1

Pj (W j )
])

mod ℘(W2(K )),

which allows us to conclude that σ (Wp) is in L = K (W0,W1, . . . ,Wp). This
finishes the proof of Proposition 6.7.3.
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4. Since L ⊂ K m2
S and L 6⊂ K m2−1

S , the formula in Proposition 6.5.3 yields

gL = 1 + [L : K ]
(
−1 + m2

2

)
−

1
2

m2−1∑
j=0
[L ∩ K j

S : K ]

= 1+ p2+(p−1)e
(
−1+ ps+1

+ p+1
2

)
−

1
2

(
r + 2+ (m2− p− (r + 2)+ 1)p+

p−1∑
i=1

p1+ie
)

=
1
2 p2+(p−1)e(ps+1

+ p− 1)− 1
2

(
ps
+ ps+2

− ps+1
+

p−1∑
i=1

p1+i2s
)

=
1
2 p2+(p−1)e(ps+1

+p−1)− 1
2 ps(p2

−p+1)− 1
2 p2s+1(1+q+q2

+· · ·+q p−2).

5. See Proposition 6.5.4. �

Remark 6.8. For p = 2, the equations given in Proposition 6.7 become

W p
0 −W0 = f0(X) := X1+r ,

W q
1 −W1 = f1(X) := X ps−1

(Xq
− X),

[W0,W2]
p
− [W0,W2] = [ f0(X), 0].

This last equation is no longer totally split over Fq . One can circumvent this by
replacing it with

[W0,W2]
p
− [W0,W2] = [cr X1+r , 0] − [c X1+r , 0] with cr

+ c = 1.

In this case, we obtain the same results as in Proposition 6.7. The proof is left to
the reader.

Proposition 6.7 can be generalized to construct a big action whose second ram-
ification group G2 is abelian of exponent as large as we want.

Proposition 6.9. We keep the notation of Proposition 6.7. In particular, q = pe,
with p > 2, e = 2 s and s ≥ 1. Let n ≥ 2. Put mn := 1 + pn−1 (1 + ps). If
q/(−1+mn/2) > 2 p/(p−1), the pair (C(mn),G(mn)), as defined in Proposition
6.5, is a big action with a second ramification group GS(mn) abelian of exponent
at least pn .

Proof. Proposition 6.5.4 first ensures that (C(mn),G(mn) is a big action. Con-
sider the pn-cyclic extension K (W1, . . . ,Wn)/K parametrized with Witt vectors
of length n as

[W1, . . . ,Wn]
p
− [W1, . . . ,Wn] = [ f0(X), 0, . . . , 0],
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where f0(X) = a X1+r is defined as in Proposition 6.7, i.e., r = ps , ar
+ a = 0 ,

a 6= 0. The same proof as in Proposition 6.7.1 shows that all places of S completely
split in K (W1, . . . ,Wn). Moreover, by [Garuti 2002] (Theorem 1.1) the conductor
of the extension K (W1, . . . ,Wn) is 1+max{pn−1 (1+ ps), 0}=mn . It follows that
K (W1, . . . ,Wn) is included in K mn

S . Therefore, GS(mn) has a quotient of exponent
pn and the claim follows. �

The next proposition is an analogue of Proposition 6.7 in the case where e is
odd. We do not spell out the proof, which is in the main similar to the proof of
Proposition 6.7. Note that, contrary to the case where e is even, the equations still
work for p = 2.

Proposition 6.10. We keep the notation defined above. In particular, K = Fq(X)
with q = pe. Assume that e = 2 s − 1, with s ≥ 2, and put r :=

√
qp = ps . We

define

fi (X)= X ir/p (Xq
− X)= X i ps−1

(Xq
− X) for all i ∈ {1, . . . , p− 1},

gi (X)= X ir/p2
(Xq
− X)= X i ps−2

(Xq
− X) for all i ∈ {1, . . . , p− 1}.

Let L :=K (Wi , V j )1≤i≤p,1≤ j≤p−1 be the extension of K parametrized by the Artin–
Schreier–Witt equations

W q
i −Wi = fi (X) for all i ∈ {1, . . . , p− 1},

V q
j − V j = g j (X)for all j ∈ {1, . . . , p− 1},

[W1,Wp]
p
− [W1,Wp] = [X1+ps

, 0] − [X1+ps−1
, 0].

Finally, put L i,0 := K (Wk)1≤k≤i and L p−1, j := K (Wi , Vk)1≤i≤p−1,1≤k≤ j , for all i
and j in {1, . . . , p− 1}.

1. L is an abelian extension of K such that every place in S completely splits in
L , satisfying L i,0⊂ K ps

+i+1
S for all i, j ∈ {1, . . . , p−1}, L p−1, j ⊂ K ps+1

+ j+1
S ,

and L ⊂ K m2
S , where m2 = ps+1

+ p+ 1 is the integer defined in Proposition
6.4. (See table below on the next page.)

2. The extension L/K has degree [L : K ] = p2(p−1)e+1. Let GL be its Galois
group. Then

GL ' Z/p2Z× (Z/pZ)t with t = 2 (p− 1) e− 1.

3. The extension L/K is stable under the translations X 7→ X + y, with y ∈ Fq .
Therefore, the translations by Fq extend to form a p-group of Fq -automorphisms
of L , say G, with the exact sequence

0−→ GL −→ G −→ Fq −→ 0.



Smooth curves having a large automorphism p-group in characteristic p 923

4. Let gL be the genus of the extension L/K . Then

gL =
1
2

(
p1+2(p−1)e (ps+1

+ p−1)− p(p−1)e (ps+1
− ps
− p+1)− ps

+ pe
2p−3∑
i=0

q i
)
.

In particular, when e grows large, gL ∼
1
2 p2+4s(p−1)+s and t = O(logp gL).

We gather here the conductors, degrees and equations of each extension:

ext’n conductor m [L i, j :K ] new equations

K 0≤m≤r+1= ps
+1 1

L1,0 m=r+2= ps
+2 pe W q

1−W1= f1(X)
· · · · · · · · · · · · · · · · · · · ·

L i,0 m= ps
+i+1 pie W q

i −Wi= fi (X)
· · · · · · · · · · · · · · · · · · · ·

L p−1,0 ps
+p≤m≤ ps+1

+1 p(p−1)e W q
p−1−Wp−1= f p−1(X)

L p−1,1 m= ps+1
+2=m2−(p−1) p pe V q

1 −V1=g1(X)
· · · · · · · · · · · · · · · · · · · ·

L p−1, j m= ps+1
+ j+1=m2−(p− j) p(p+ j−1)e V q

j −V j=g j (X)
· · · · · · · · · · · · · · · · · · · ·

L p−1,p−1m= ps+1
+p=m2−1 p2(p−1)e V q

p−1−Vp−1=gp−1(X)

L m= ps+1
+p+1=m2 p1+2 (p−1)e

[W1,Wp]
p
−[W1,Wp]=

[X1+ps
, 0]−[X1+ps−1

, 0]

7. A local approach to big actions

Let (C,G) be a big action. We recall that there exists a point ∞ ∈ C such that
G is equal to G1(∞) the wild inertia subgroup of G at ∞, which means that
the cover π : C → C/G is totally ramified at ∞. Moreover, the quotient curve
C/G is isomorphic to the projective line P1

k and π is étale above the affine line
A1

k = P1
k − π(∞) = Spec k[T ]. The inclusion k[T ] ⊂ k((T−1)) induces a Galois

extension k(C)⊗k(T ) k((T−1))=: k((Z)) over k((T−1)), with group equal to G and
ramification groups in lower notation equal to Gi := Gi (∞). Then the genus of C
is given by (2–2) as g = 1

2

∑
i≥2(|Gi | − 1) > 0. It follows that

|G|∑
i≥2(|Gi | − 1)

=
|G|
2 g

>
p

p−1
.

This leads to:

Definition 7.1. A local big action is any pair (k((Z)),G) where G is a finite p-
subgroup of Autk(k((Z)) whose ramification groups in lower notation at∞ satisfy
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the inequalities

g(G) :=
1
2

∑
i≥2

(|Gi | − 1) > 0 and
|G|

g(G)
>

2 p
p−1

.

It follows from the Katz–Gabber Theorem (see [Katz 1986, Theorem 1.4.1] or
[Gille 2000, corollaire 1.9]) that big actions (C,G) and local big actions (k((Z)),G)
are in one-to-one correspondence via the following functor induced by the inclusion
k[T ] ⊂ k((T−1)):{ finite étale Galois covers

of Spec k[T ]
with Galois group a p-group

}
−→

{ finite étale Galois covers
of Spec k((T−1))

with Galois group a p-group

}
Thus we can infer from the global point of view properties related to local ex-

tensions that would be difficult to prove directly. For instance, if (k((Z)),G) is a
local big action, we deduce that G2 is stricly included in G1. Moreover, we obtain

|G|
g(G)2

≤
4 p

(p− 1)2
.
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We define Lie multiplication derivations of an arbitrary non-associative algebra
A over any commutative ring and, following an approach due to K. McCrim-
mon, describe them completely if A is alternative. Using this description, we
propose a new definition of inner derivations for alternative algebras, among
which Schafer’s standard derivations and McCrimmon’s associator derivations
occupy a special place, the latter being particularly useful to resolve difficulties
in characteristic 3. We also show that octonion algebras over any commutative
ring have only associator derivations.

Introduction

There are many important properties satisfied by inner but not in general by all
derivations of Lie, associative or (linear) Jordan algebras. A particularly important
one may be described as follows.

Let f : A→ B be a homomorphism of non-associative algebras and D a deriva-
tion of A. We say a derivation D′ of B is f -related to D if

f (D(a))= D′( f (a))

for all a ∈ A. In general, there will be no such D′. The situation is better for inner
derivations, which satisfy the following

Mapping Principle. Given a homomorphism f : A→ B of algebras (Lie, asso-
ciative or Jordan), every inner derivation D of A admits an inner derivation D′ of
B that is f -related to D.
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Indeed, an inner derivation of A can be naturally expressed in terms of left and
right multiplication operators. This suggests and yields an inner derivation D′ of
B in a natural way which is f -related to D.

Properties of this kind tie up nicely with the fact that, under suitable regularity
conditions, all derivations of A are inner.

This satisfactory state of affairs has led Schafer [19] (see also [20, II, §3, p. 21])
to propose a notion of inner derivations for arbitrary non-associative algebras over
a field F that reduces to the usual one when dealing with Lie or unital associative
(resp. Jordan) algebras [19]. Moreover, inner derivations in his sense always form
an ideal in the full derivation algebra, so it follows also in this generality that
all derivations are inner provided (i) non-zero inner derivations exist and (ii) the
derivation algebra is simple (as a Lie algebra).

While (i) is a harmless condition rarely causing any difficulties, (ii) is a much
more delicate one. Moreover, it points to a strong link between Lie theory and
non-associative algebras in general that has dominated the scene for decades. For
example, the interest in derivations of alternative algebras grew out of the funda-
mental observation, due to various authors, most notably É. Cartan [6], Jacobson
[9; 11], Bannow [2] and Alberca-Elduque-Martı́n-Navarro [1], that the derivations
of an octonion (= Cayley) algebra C over F form a central simple Lie algebra of
type G2 if and only if F has characteristic not 3; in particular, all derivations of
C are inner in this case. Going one step further, the proof of [1, Prop. 1] may be
combined with a base field extension argument to show that an octonion algebra
over any field (possibly of characteristic 3) has only inner derivations.

In spite of these remarkable advances, a particularly annoying deficiency of
Schafer’s approach remains: again in the setting of alternative algebras, inner
derivations in his sense fail to satisfy the Mapping Principle. Already implicit in
Schafer’s own work on the subject (cf. [20, p. 78]), this deficiency comes into full
view through their characteristic-free description in McCrimmon’s unpublished
monograph on alternative algebras [15] that only quite recently has been made
accessible to the mathematical public.

In view of the preceding circumstances, E. Neher has suggested to relinquish
altogether the idea of a universal definition for inner derivations of arbitrary non-
associative algebras. Instead, he argued, they should be defined, as in the old
days, for each relevant class of non-associative algebras individually, always taking
into account the special requirements of the theory at hand. In the present paper,
Neher’s suggestions will be implemented for the class of alternative algebras over
an arbitrary commutative ring k. The basic concepts and results of the paper may
be summarized as follows.

A slight modification of Schafer’s original approach will lead us in Section 1 to
what we call Lie multiplication derivations, which turn out to be the same as inner
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derivations in the sense of Schafer when dealing with unital algebras (Remark to
Prop. 1.4) but not in general (Example 1.5). The Lie multiplication derivations al-
ways form an ideal in the full derivation algebra and specialize to inner derivations
(in the usual sense) of associative and linear Jordan algebras even when these fail to
have a unit. We then proceed to show that the Lie multiplication algebra of a non-
associative k-algebra A commutes with flat base change if A is finitely spanned as a
k-module (Cor. 1.10). The same conclusion holds for the algebra of multiplication
derivations if A is also projective as a k-module and its automorphism group is
smooth as a group scheme (Cor. 1.12).

In Section 2, we follow McCrimmon [15, A5.2] to describe the Lie multiplica-
tion derivations of an alternative k-algebra A (Thm. 2.3). It follows immediately
from this description that they do not in general satisfy the Mapping Principle. For
this reason, we define inner derivations of A by a condition that is more restric-
tive than the one of just being a Lie multiplication derivation and automatically
ensures the validity of the Mapping Principle (2.5). Adapting McCrimmon’s ter-
minology (loc. cit.) to the present set-up, we also introduce a few subclasses
of inner derivations that turn out to be useful later on. Among them, associa-
tor derivations (2.5(a)), having the form

∑
[Lai , Rbi ] where ai , bi ∈ A satisfy∑

[ai , bi ] = 0, and standard derivations (2.5(b)), which are sums of operators
Da,b = [La, Lb] + [La, Rb] + [Ra, Rb] for a, b ∈ A, seem to be of particular im-
portance. Standard derivations made their first appearance in the work of Schafer
[19] and, historically, constitute the oldest class of derivations known for arbitrary
alternative algebras. Associator derivations, on the other hand, which can be trans-
formed quite easily into standard ones if 3A = A (Prop. 2.7(b)), are apparently
best suited for dealing with difficulties in characteristic 3, for which alternative
algebras are notorious. The aforementioned definitions give rise to various ideals
in the full derivation algebra that all commute with flat base change provided the
algebra itself is finitely spanned as a k-module (Prop. 2.9).

Let again f : A→ B be a homomorphism of algebras and D an inner derivation
of A. The derivation D′ of B furnished by the Mapping Principle will in general
not be uniquely determined by D, so we don’t have a natural map from inner
derivations of A to those of B: the inner derivations of A do not depend functorially
on A. In many examples, functoriality can be achieved at the cost of replacing the
inner derivation algebra by a suitable central extension. This problem is addressed
in Section 3. We introduce the notion of derivation functor and show that the ideals
of standard, associator and commutator derivations are all induced by suitable
derivation functors. These derivation functors commute with flat base change, and
the standard derivation functor even with arbitrary base change (Proposition 3.12),
without finiteness assumptions on the underlying algebra.
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In Section 4, we take up the study of octonion algebras over commutative rings.
They will be introduced here in a “rational” manner, i.e., without the need of chang-
ing scalars, along the lines of [17]. We define a splitting of any octonion algebra
C over k as an isomorphism from Z onto C , where Z = Zor(k) stands for the
split octonion algebra of ordinary Zorn vector matrices over k. We then proceed
to show, using the notion of splitting datum (4.7), that the functor assigning to
each unital commutative associative k-algebra R the set of splittings of C ⊗k R
over R is a smooth affine torsor in the étale topology whose structure group is the
automorphism group scheme of Z (Thm. 4.10). As immediate consequences, we
conclude that octonion algebras, just like Azumaya algebras, become split after a
faithfully flat (even étale) extension (Cor. 4.11) and that their automorphism group
schemes are smooth (Cor. 4.12). In particular, our definition of octonion algebras
is equivalent to the one given by Thakur [22] over base rings containing 1

2 .

In the final section of the paper, the preceding results are applied to show that an
octonion algebra C over an arbitrary commutative ring has only associator deriva-
tions (Thm. 5.1). This theorem is new even when the base ring is a field. After a
reduction to the case where C is reduced, the proof consists in a careful analysis
of the Z/3Z-grading given on the derivation algebra (Example 5.4, Prop. 5.5) by
an elementary idempotent of C (cf. 4.4).

Notations. Throughout we fix an arbitrary commutative ring k. Unadorned
tensor products will always be taken over k. We write Spec(k) for prime spectrum
of k, i.e., for the totality of all prime ideals in k, equipped with the Zariski topology.
The category of commutative associative k-algebras with 1 will be denoted by
k-alg. For R ∈ k-alg, a k-module M and x ∈ M , we abbreviate MR = M ⊗ R as
R-modules and xR = x⊗1R ∈MR; we also write fR for the R-linear extension of a
k-linear map f between k-modules. The standard terminology of non-associative
algebras (including notation) will be used as in Schafer [20], except that (linear)
operators will always act on the left so, e.g., the equations Lab=ab= Rba describe
left and right multiplications in a non-associative algebra A, and the associator of
elements a, b, c ∈ A (resp. the commutator of a, b) will be indicated by [a, b, c] =
(ab)c− a(bc) (resp. [a, b] = ab− ba). The symbols N and Z denote the positive
natural numbers and the rational integers, respectively.

1. Lie multiplication derivations

In this section, we fix an arbitrary non-associative algebra A over k. We do not
assume that A has a unit.

1.1. The Lie multiplication algebra. The Lie algebra defined on the k-module
Endk(A) by the usual commutator of linear maps will be denoted by gl(A). The



Inner derivations of alternative algebras over commutative rings 931

subalgebra of gl(A) generated by all left and right multiplication operators of arbi-
trary elements in A is called the Lie multiplication algebra of A, denoted by L(A).
For example, if A is associative, then L(A)= L A+RA. Or, if A is a (linear) Jordan
algebra over a ring containing 1

2 , then L(A)= L A+ [L A, L A].

1.2. Derivations. Recall that a derivation of A is a linear map D : A→ A satis-
fying one (hence all) of the following equivalent relations, for all x, y ∈ A:

D(xy)= (Dx)y+ x(Dy),

[D, L x ] = L Dx , (1-1)

[D, Ry] = RDy . (1-2)

The derivations of A form a Lie algebra (more precisely, a subalgebra of gl(A)),
denoted by Der(A). The elements of Der(A) also act on commutators and associ-
ators in a derivation-like manner, i.e., we have

D([x, y])= [Dx, y] + [x, Dy], (1-3)

D([x, y, z])= [Dx, y, z] + [x, Dy, z] + [x, y, Dz] (1-4)

for all x, y, z ∈ A. By (1-1), (1-2), Der(A) acts on L(A) through the adjoint
representation of gl(A), i.e.,

[Der(A), L(A)] ⊆ L(A). (1-5)

1.3. The ideal of Lie multiplication derivations. We write Â = k1⊕ A for the
algebra obtained by adjoining a unit 1 = 1 Â to A and L̂ , R̂ for the left, right
multiplication, respectively, of Â. The relations L̂α1+a = αId Â + L̂a , R̂α1+a =

αId Â + R̂a (α ∈ k, a ∈ A) show L( Â) = kId Â + L̂(A), where L̂(A) stands for
the subalgebra of gl( Â) generated by L̂ A ∪ R̂A. Observe that there are no natural
maps L(A)→ L( Â) satisfying La 7→ L̂a (resp. Ra 7→ R̂a) unless a A = {0} (resp.
Aa = {0}) implies a = 0. But since A ⊆ Â is an ideal, we obtain the inclusions

L( Â)⊆ g := { f ∈ gl( Â) | f (A)⊆ A},

L̂(A)⊆ g′ := { f ∈ gl( Â) | f ( Â)⊆ A} ⊆ g
(1-6)

as subalgebras of gl( Â), and the restriction homomorphism ρ : g→ gl(A) satisfies
ρ(L̂a)= La , ρ(R̂a)= Ra for all a ∈ A, hence ρ(L̂(A))= L(A).

There is a natural embedding Der(A)→Der( Â), D 7→ D̂ of Lie algebras, where
D̂ stands for the unique linear extension of D ∈ Der(A) to Â given by D̂1= 0. It
follows from (1-5) applied to Â in place of A that

LMDer(A) := {D ∈ Der(A) | D̂ ∈ L( Â)} ⊆ Der(A) (1-7)
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is an ideal. The elements of LMDer(A) are called Lie multiplication derivations
of A. Indeed, as we will now see, they all belong to the Lie multiplication algebra
of A and may thus be expressed as Lie polynomials in left and right multiplication
operators by suitable elements of A.

1.4. Proposition. The inclusion

LMDer(A)⊆ L(A)∩Der(A)

always holds; it may be strengthened to the equality

LMDer(A)= L(A)∩Der(A)

if A has a unit.

Proof. For the first part of the proposition, we must show D ∈ L(A) for all D ∈
LMDer(A). To this end, using 1.3, we decompose D̂ ∈ L( Â) as D̂ = αId Â + D′

with α ∈ k, D′ ∈ L̂(A) and obtain 0 = D̂1 Â = α1 Â + D′1 Â, where the second
summand on the right by (1-6) belongs to A. This implies α = 0, D̂ = D′ ∈ L̂(A),
hence D = ρ(D̂) ∈ ρ(L̂(A))= L(A), as claimed.

For the second part, we assume A has a unit 1A, put e = 1 Â− 1A and conclude
Â = ke ⊕ A as a direct sum of ideals. This implies L( Â) = kIdke ⊕ L(A), the
right-hand side being diagonally embedded into

gl( Â)=
(

k · Idke Homk(A, ke)
Homk(ke, A) gl(A)

)
. (1-8)

On the other hand, given D ∈ Der(A), we obtain D̂e = 0 since D kills 1A, and
this amounts to Der(A)̂ = {D̂ | D ∈ Der(A)} = {0}⊕Der(A), the right-hand side
again being embedded diagonally into (1-8). The assertion follows by comparing
the decompositions for L( Â) and Der(A)̂ . �

Remark. Comparing Prop. 1.4 with [20, p. 21], we conclude that the Lie multi-
plication derivations of A and its inner derivations in the sense of Schafer are the
same if A has a unit. In general, however, this need not be so, as may be seen from
the following example.

1.5. Example. Equality does not always hold in Prop. 1.4. To see this, suppose A
is associative. We first claim

LMDer(A)= InDerass(A)= {La − Ra | a ∈ A},

i.e., that the Lie multiplication derivations of A and its inner derivations (in the
usual sense) are the same. As inner derivations of A obviously belong to
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LMDer(A), we need only worry about the converse, so let D ∈ LMDer(A). Ob-
serving D̂ ∈L( Â)= k1 Â+ L̂ A+ R̂A and D̂(1 Â)= 0, we obtain D̂=α1 Â+ L̂a+ R̂b

for some α ∈ k, a, b ∈ A, hence 0 = α1 Â + (a+ b), which yields α = 0, b = −a,
D = La − Ra , as claimed.

On the other hand, a derivation of A belonging to L(A) = L A + RA need not
be inner. To see this, suppose A is also commutative. Then there are no inner
derivations other than zero, while L z ∈ L A ⊆ L(A) for z ∈ A is easily seen to be a
derivation if and only if Az A = {0}, which in the absence of a unit element does
not imply L z = 0.

Remark. An analogous argument also works for a linear Jordan algebra J over k
(with 1

2 ∈ k) since D ∈ LMDer(J ) implies D̂ ∈ L( Ĵ ) = L̂ Ĵ + [L̂ Ĵ , L̂ Ĵ ] = kId Ĵ +

L̂ J + [L̂ J , L̂ J ], D̂(1 Ĵ )= 0, hence D̂ = αId Ĵ + L̂a +
∑
[L̂ai , L̂bi ] for some α ∈ k,

a, ai , bi ∈ J , and from 0= D̂(1 Ĵ )= α1 Ĵ +a we conclude D=
∑
[Lai , Lbi ]. Thus

the Lie multiplication derivations of J are just the inner ones in the usual sense:

LMDer(J )= InDerJord(J )= [L J , L J ].

Not so, however, in the case of Lie algebras. The idea of defining Lie multiplication
derivations by passing to the algebra Â seems to work well only when dealing with
varieties of algebras that are stable under adjoining a unit.

Our principal objective in the present section will be to show that Lie multipli-
cation derivations are well behaved under suitable scalar extensions. We begin by
treating the analogous question for the Lie multiplication algebra L(A).

1.6. Flat k-algebras. Let R ∈ k-alg be a flat k-algebra, so R is flat as a k-module,
equivalently, the assignment M 7→MR gives an exact functor from k-modules to R-
modules. For a k-module M and a k-submodule N ⊆M with inclusion i : N→M ,
we can and always will identify NR ⊆ MR as an R-submodule via the injection
iR : NR→ MR .

The following easy lemma collects a few properties of flat k-algebras that are
surely well known but seem to lack a convenient reference.

1.7. Lemma. Conventions being as in 1.6, let f : M → M ′ be a k-linear map of
k-modules and let N , P ⊆ M, N ′ ⊆ M ′ be arbitrary k-submodules.

(a) Ker( f )R = Ker( fR), Im( f )R = Im( fR).

(b) f (N )R = fR(NR), f −1(N ′)R = f −1
R (N ′R).

(c) (N ∩ P)R = NR ∩ PR .
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(d) For every family (Nα)α∈I of k-submodules in M we have(∑
α∈I

Nα
)

R
=

∑
α∈I

(Nα)R ⊆ MR.

(e) If N is generated as a k-module by a family (xα)α∈I of elements in M, then
NR ⊆ MR is generated as an R-module by the family (xαR)α∈I of elements in
MR .

Proof. By flatness, the functor−⊗R preserves kernels and co-kernels, which yields
(a). The first (resp. second) part of (b) follows by applying (a) to f

∣∣
N : N → M ′

(resp. to π ◦ f : M→ M ′/N ′, π : M ′→ M ′/N ′ being the canonical projection).
In (c) we apply (b) with N ′ = P to the natural embedding i : N→ M . For (d), we
consider the canonical map

⊕
α∈I Nα→M determined by the inclusions Nα→M

and apply (a). Finally, in (e), we let M0 be a free k-module with basis (eα)α∈I and
apply (a) to the k-linear map M0

→ M , eα 7→ xα, α ∈ I . �

1.8. Proposition. Conventions being as in 1.6, let R ∈ k-alg be a flat k-algebra
and write B for the k-subalgebra of A generated by a family (xα)α∈I of elements
in A. Then BR is the R-subalgebra of AR generated by the family (xαR)α∈I of
elements in AR .

Proof. We denote by (yβ)β∈J the family of non-associative monomials built in
A over the family (xα)α∈I . Then B is generated as a k-module by (yβ)β∈J . By
Lemma 1.7(e), BR ⊆ AR is therefore generated as an R-module by the family
(yβR)β∈J , which consists precisely of the non-associative monomials built in AR

over the family (xαR)α∈I . Thus BR is generated as an R-algebra by (xαR)α∈I . �

1.9. Finitely generated modules: base change of endomorphisms. Let M be a k-
module and S ∈ k-alg a unital commutative associative k-algebra. Then the natural
map

Endk(M)−→ EndS(MS), f 7−→ fS,

extends to a homomorphism Endk(M)S → EndS(MS) of S-algebras, which is in-
jective if S is a flat k-algebra and M is finitely generated [3, I, §2, Prop. 11]; we
will then identify Endk(M)S ⊆ EndS(MS) as an S-subalgebra accordingly. Under
this identification, we even have equality Endk(M)S = EndS(MS) if M is also
projective [4, II, §5, Prop. 7]; in fact, equality then holds for any S ∈ k-alg.

1.10. Corollary. If A is finitely generated as a k-module, its Lie multiplication
algebra is stable under flat base change: For all flat k-algebras S ∈ k-alg, we have
L(A)S = L(AS) after the identifications of 1.9.

Proof. L(A) is generated by L A∪RA as a k-algebra. But (La)S= LaS , (Ra)S= RaS

for all a ∈ A. Hence, by Prop. 1.8, L(A)S and L(AS) are both generated as S-
algebras by L AS ∪ RAS . �
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Remark. In this generality, Cor. 1.10 is due to E. Neher (oral communication), who
also pointed out that exactly the same argument yields exactly the same conclusion
for the ordinary multiplication algebra in place of the Lie multiplication algebra
L(A).

1.11. Affine group schemes. Writing grp for the category of groups, we let G be
an affine group scheme over k [7, II, §1, no 1], so G : k-alg→ grp is a functor
represented by some commutative associative k-algebra with 1. We write Lie(G)
for its Lie algebra [7, II, §4, 4.8] and recall from loc. cit. that, if G is smooth [7, I,
§4, no 4], Lie(G) commutes with base change, so Lie(G)R ∼=Lie(GR) canonically,
for all R ∈ k-alg.

In this paper, we will be interested in the following special case. Assume A is
finitely generated projective as a k-module and consider its automorphism group
scheme by defining

Aut(A) : k-alg−→ grp, R 7−→ Aut(A)(R) := Aut(AR).

Then its Lie algebra is Der(A) [7, II, §4, 2.3], so assuming that Aut(A) is smooth
forces Der(A) to commute with base change: Der(A)R=Der(AR) for all R∈k-alg.

1.12. Corollary. If A is finitely generated and projective as a k-module and Aut(A)
is smooth as an affine group scheme, then LMDer(A) commutes with flat base
change: LMDer(A)R = LMDer(AR) for all flat k-algebras R ∈ k-alg.

Proof. This follows immediately from (1-7), Lemma 1.7, Cor. 1.10 and 1.11. �

1.13. Nucleus and centre. We close this section by reminding the reader of the
nucleus of A, which is defined by

Nuc(A) :=
{

x ∈ A | [x, A, A] = [A, x, A] = [A, A, x] = {0}
}
. (1-9)

It is an associative subalgebra of A and even a unital one if A contains an identity
element. By (1-4), the nucleus is stable under derivations, i.e.,

Der(A)Nuc(A)⊆ Nuc(A).

Recall also that the centre of A, denoted by Cent(A), consists of those elements x
in the nucleus satisfying [A, x] = 0. It is a commutative associative subalgebra of
A but may collapse to zero unless A is unital and not zero.

1.14. Proposition. If A is finitely generated as a k-module, then its nucleus and
its centre both commute with flat base change: Nuc(A)R =Nuc(AR), Cent(A)R =

Cent(AR) for all flat k-algebras R ∈ k-alg.

Proof. Assume that the elements a1, . . . , am span A as a k-module and, for 1 ≤
i, j ≤ m, consider the linear maps L i j ,Mi j , Ri j ,Ci : A→ A defined respectively
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by x 7→ [ai , a j , x], [ai , x, a j ], [x, ai , a j ], [ai , x]. Intersecting the kernels of the
L i j ,Mi j , Ri j gives the nucleus of A, whose intersection with the kernels of the Ci

in turn gives the centre of A. Hence the assertion follows from Lemma 1.7(a),(c).
�

2. Alternative algebras: inner derivations

We now specialize A to a (possibly non-unital) alternative algebra over k.

2.1. Some useful identities. A is alternative if and only if the associator [x, y, z]=
(xy)z− x(yz) is an alternating function of its arguments. Hence an element x ∈ A
belongs to the nucleus if and only if one of the relations defining the nucleus (1-9)
is fulfilled, and we have the left and right alternative laws

x(xy)= x2 y, (2-1)

(yx)x = yx2 (2-2)

as well as flexibility

x(yx)= (xy)x =: xyx, (2-3)

for all x, y ∈ A. We also recall the left, middle and right Moufang identities

x
(
y(xz)

)
= (xyx)z, (xy)(zx)= x(yz)x,

(
(zx)y

)
x = z(xyx) (2-4)

for all x, y, z ∈ A.
We now derive a number of identities that will play an important role in the

explicit description of Lie multiplication derivations. The following relations hold
for all a, b, c, x, y ∈ A:

[La, Lb] = L [a,b]− 2[La, Rb], (2-5)

[Ra, Rb] = − R[a,b]− 2[La, Rb], (2-6)

[[La, Rb], Lc] = L [a,b,c]− [L [a,b], Rc], (2-7)

[[La, Rb], Rc] = R[a,b,c]− [Lc, R[a,b]], (2-8)

La(xy)=
(
(La + Ra)x

)
y− x(La y), (2-9)

Ra(xy)= − (Rax)y+ x
(
(La + Ra)y

)
, (2-10)

(La − Ra)(xy)=
(
(La − Ra)x

)
y + x

(
(La − Ra)y

)
+ [x, 3a, y], (2-11)

[La, Rb]x = [a, b, x] = (ab)x − a(bx)= b(ax)− (ba)x = x(ba)− (xb)a,
(2-12)

[La, Rb](xy)= ([La, Rb]x)y+ x([La, Rb]y)+ [x, [a, b], y]. (2-13)
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Proof. Identities (2-5), (2-6) may be found in Schafer [20, (3.68), (3.67)]. While
his proof is carried out over fields, it works equally well over the commutative ring
k. Ignoring (2-7), (2-8) for the moment, (2-9) (resp. (2-10)) follows immediately
by linearizing (2-1) (resp. (2-2)). Subtracting (2-10) from (2-9) yields (2-11).
To establish (2-12), one simply observes [La, Rb]x = −[a, x, b] = [a, b, x] =
−[b, a, x] = −[x, b, a] by alternativity. (2-13) is slightly more troublesome. By
(2-12), the left-hand side may be written as

[La, Rb](xy)= (ab)(xy)− a
(
b(xy)

)
. (2-14)

Linearizing (2-1), the first term on the right becomes

(ab)(xy)=
(
(ab)x + x(ab)

)
y− x

(
(ab)y

)
. (2-15)

To the second term, we apply the linearized left Moufang identity and obtain

a
(
b(xy)

)
=
(
(ab)x

)
y+

(
(xb)a

)
y− x

(
b(ay)

)
. (2-16)

Subtracting (2-16) from (2-15) and observing (2-14), (2-12) implies

[La, Rb](xy)=
(
x(ab)− (xb)a

)
y− x

(
(ab)y− b(ay)

)
=
(
x(ba)− (xb)a

)
y+ (x[a, b])y+ x

(
b(ay)− (ba)y

)
− x([a, b]y)

= ([La, Rb]x)y+ x([La, Rb]y)+ [x, [a, b], y],

which is (2-13). To prove (2-7), we set x = c in (2-13), view the result as a linear
map in y and observe [c, [a, b], y] = −[[a, b], c, y] = −[L [a,b], Rc]y by (2-12).
Finally, (2-8) follows by reading (2-7) in the opposite algebra of A. �

2.2. Proposition (McCrimmon [15, A5, 2.15]). The Lie multiplication algebra of
A is

L(A)= L A+ RA+ [L A, RA].

Proof. By (2-5)–(2-8) above, it suffices to show [[L A, RA], [L A, RA]] ⊆ L A +

RA + [L A, RA], which follows from the Jacobi identity by applying (2-7) and
(2-8) twice. �

Remark. Prop. 2.2 is due to Schafer [19, Thm. 5] if k is a field of characteristic
not 2.

2.3. Theorem (cf. McCrimmon [15, A5, 2.16]). D is a Lie multiplication deriva-
tion of A if and only if it has the form

D = La − Ra +

m∑
i=1

[Lai , Rbi ] (2-17)
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for some m ∈ N, a, ai , bi ∈ A (1≤ i ≤ m) satisfying

3a+
m∑

i=1

[ai , bi ] ∈ Nuc(A). (2-18)

Proof. If D has the form (2-17), then

D(xy)− (Dx)y− x(Dy)=
[
x, 3a+

m∑
i=1

[ai , bi ], y
]

for all x, y ∈ A by (2-11), (2-13), so (2-18) is equivalent to D being a derivation
of A.

Now suppose D satisfies (2-17), (2-18). Then D ∈ Der(A) and D̂ = L̂a −

R̂a+
∑
[L̂ai , R̂bi ] since the right-hand side kills 1. This implies D̂ ∈ L( Â), hence

D ∈ LMDer(A) by (1-7). Conversely, let D be a Lie multiplication derivation of
A. By Prop. 2.2,

D̂ = L̂ â + R̂b̂+

m∑
i=1

[L̂ âi , R̂b̂i
]

for some m ∈ N, â, âi , b̂i ∈ Â (1 ≤ i ≤ m), where D̂1= 0 implies b̂ =−â, hence
(2-17) with a, ai , bi being the A-components of â, âi , b̂i , respectively. But then
(2-18) drops out automatically since D was assumed to be a derivation. �

When it comes to applications of Thm. 2.3, the following more concise descrip-
tion of Lie multiplication derivations turns out to be useful.

2.4. Derivations and exterior powers. We introduce the notation

W (A) := A⊕
2∧

A.

Our description will be based on two linear maps defined on W (A). The first one
is

s = sA : W (A)−→ A, s
(
a⊕ (b∧ c)

)
:= 3a+ [b, c] (a, b, c ∈ A).

To define the second one, we note that the flexible law (2-3) makes the bilinear
expression [La, Rb] alternating in a, b ∈ A and thus leads to a linear map

1=1A : W (A)−→ gl(A), 1a⊕(b∧c) :=1
(
a⊕ (b∧ c)

)
:= La − Ra + [Lb, Rc]

for a, b, c ∈ A. With these notations, Thm. 2.3 implies

LMDer(A)= {1x | x ∈W (A), s(x) ∈ Nuc(A)}. (2-19)
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Now observe that every g ∈ gl(A) induces a linear map

g†
: W (A)−→W (A), g†(a⊕ (b∧ c)

)
= g(a)⊕

(
g(b)∧ c+ b∧ g(c)

)
(2-20)

for a, b, c∈ A. Clearly, the assignment g 7→ g† determines an embedding gl(A)→
gl
(
W (A)

)
of Lie algebras, and (1-1), (1-2), (2-20) are easily seen to imply

[D, 1x ] =1D†x , [D
†, 1†

x ] =1
†
D†x (2-21)

for D ∈ Der(A), x ∈W (A), while (1-3) and (2-20) imply that the diagram

W (A) D†
//

s
��

W (A)

s
��

A
D

// A

(2-22)

commutes.

Remark. Lie multiplication derivations of alternative algebras as described in
Thm. 2.3 do not in general satisfy the Mapping Principle of the introduction since
a homomorphism A→ B may not map the nucleus of A into the nucleus of B, so
if (2-18) holds for elements a, ai , bi ∈ A, it may no longer do so for their images
in B. For this reason, we will introduce inner derivations of alternative algebras
as a special type of Lie multiplication derivations where such unpleasantness can
be ruled out. McCrimmon [15, A5.2, p. 24] gets around this difficulty in a slightly
different manner, by means of his notion of strictly inner derivations.

2.5. Classes of inner derivations. With the terminology of 2.4, the elements of

InDeralt(A) := {1x | x ∈W (A), s(x)= 0} (2-23)

are called inner derivations of A. Thus the difference to (2-19) is that s(x) is
required to be zero instead of in the nucleus. In more explicit terms, the inner
derivations of A are precisely the linear maps

La − Ra +

m∑
i=1

[Lai , Rbi ], (2-24)

where m ∈ N and a, ai , bi ∈ A (1≤ i ≤ m) satisfy the relation

3a+
m∑

i=1

[ai , bi ] = 0. (2-25)

Inner derivations obviously satisfy the Mapping Principle. Adapting the termi-
nology of McCrimmon [15] to the present set-up, and identifying A and

∧2 A
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canonically with submodules of W (A) = A ⊕
∧2 A throughout the rest of the

paper, we now introduce the following three classes of inner derivations.

(a) Associator derivations. These are the elements of

AssDer(A) := {1u | u ∈
2∧

A, s(u)= 0} ⊆ InDeralt(A). (2-26)

They have the form
∑
[Lai , Rbi ], where ai , bi ∈ A satisfy

∑
[ai , bi ] = 0, so by

(2-12), they act on x ∈ A as x 7→
∑
[ai , bi , x], i.e., as a sum of associators, hence

the name. In particular, AssDer(A) = {0} if A is associative. On the other hand,
as we shall see in Thm. 5.1 below, associator derivations play an important role in
octonion algebras.

(b) Standard derivations. These are the elements of

StanDer(A) := {1s(u)⊕(−3u) | u ∈
2∧

A} ⊆ InDeralt(A). (2-27)

As a k-module, StanDer(A) is spanned by the elements

Da,b = L [a,b]− R[a,b]− 3[La, Rb] = [La, Lb] + [La, Rb] + [Ra, Rb] (2-28)

for a, b∈ A, the last equation being a consequence of (2-5), (2-6). Standard deriva-
tions have the advantage of being parametrized by the full k-module

∧2 A, with no
further constraints on the parameters involved. On the other hand, StanDer(A) =
{0} if A is commutative, since this is well known to imply 3[A, A, A] = {0}, hence
Da,b = 0 for all a, b ∈ A by (2-12) and (2-28); cf. Prop. 2.7 below for a more
precise statement.

(c) Commutator derivations. These are the elements of

ComDer(A) := {1a | a ∈ A, 3a = 0} = {La − Ra | a ∈ A, 3a = 0} ⊆ InDeralt(A).

They appear only in the presence of 3-torsion. Note 1ax = [a, x] for a, x ∈ A,
justifying the chosen terminology.

2.6. Proposition. In the terminology of 2.5,

31x =1s(x)+1s(−u)⊕3u (2-29)

for all x = a⊕ u ∈W (A) satisfying s(x) ∈ Nuc(A). In particular,

3LMDer(A)⊆ {La − Ra | a ∈ Nuc(A)}+StanDer(A)⊆ LMDer(A). (2-30)

Proof. (2-29) is obvious by (2-19) and the definition of s; it immediately implies
(2-30) since the first summand on the right of (2-29) is the nuclear derivation La′−

Ra′ , a′ ∈ Nuc(A), while the second one by (2-27) is a standard derivation.
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Remark. If 3A = A, we obtain

LMDer(A)= {La − Ra | a ∈ Nuc(A)}+StanDer(A),

hence Schafer’s classical description [20, pp. 76–78] of Lie multiplication deriva-
tions of unital alternative algebras over fields of characteristic not 2 or 3, see also
McCrimmon [15, A5, 2.17].

2.7. Proposition. In the terminology of 2.5, the following statements hold.

(a) InDeralt(A), AssDer(A), StanDer(A), ComDer(A) are all ideals in the full
derivation algebra of A.

(b) AssDer(A)A ⊆ [A, A, A, ], 3AssDer(A)⊆ StanDer(A).

(c)
(
StanDer(A)+ComDer(A)

)
A ⊆ [A, A].

(d) If 3[A, A] = [A, A], then

InDeralt(A)= AssDer(A)+StanDer(A)+ComDer(A).

(e) If 3A = A, then

InDeralt(A)= StanDer(A)+ComDer(A).

(f) If 1
3 ∈ k, then

InDeralt(A)= StanDer(A), ComDer(A)= {0}.

(g) If 3A = {0}, then

InDeralt(A)= AssDer(A)+ComDer(A).

Proof. (a) follows immediately from (2-21), (2-22).

(b) The first part has already been observed in 2.5(a), while the second one
follows from (2-29) in the special case a = s(u)= 0.

(c) The relation ComDer(A)A ⊆ [A, A] is obvious. Since (2-28) and (2-12)
imply StanDer(A)A⊆[A, A]+3[A, A, A], it remains to show 3[A, A, A]⊆[A, A]
which is probably known; we include a proof for convenience. Modulo [A, A] we
have by (2-11) that 3[x, a, y] ≡ [x, a]y+x[y, a] ≡ y[x, a]+x[y, a], which is≡ 0,
being the bilinearization of x[x, a] = x(xa)− x(ax) = x(xa)− (xa)x (by (2-3))
= [x, xa] ∈ [A, A].

(d), (e) Suppose x = a ⊕ u ∈ W (A) satisfies s(x) = 0 (cf. (2-23)). Since
s(
∧2 A) = [A, A], the hypothesis in (d) leads to an element w ∈

∧2 A such that
s(u)= 3s(w), so v := u−3w satisfies s(v)= 0. On the other hand, the hypothesis
in (e) leads to an element w ∈

∧2 A such that u = 3w, so again s(u)= 3s(w), but
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this time even v := u− 3w = 0. In any event, setting b = a+ s(w), we conclude
3b = 3a+ 3s(w)= 3a+ s(u)= s(x)= 0. Moreover,

1x =1v +1(−s(w))⊕3w +1b ∈ AssDer(A)+StanDer(A)+ComDer(A).

Hence (d) and (e) hold. Now (f) follows immediately from (e) since ComDer(A)=
{0} in the absence of 3-torsion, and (g) is a consequence of (2-23). �

2.8. Example. Let A be an associative k-algebra. Using (2-24), (2-25), one checks
easily that

InDeralt(A)⊆ InDerass(A).

However, equality does not hold in general. To see this, suppose k contains 1
3 .

Then InDeralt(A) = StanDer(A) by Prop. 2.7, while (2-28) reduces to Da,b =

L [a,b]− R[a,b] for all a, b ∈ A. Hence we obtain

L x − Rx ∈ InDerass(A) \ InDeralt(A) (2-31)

for any x ∈ A that does not belong to Z + [A, A], Z being the centre of A. More
specifically, let k be a field of characteristic p > 0, p 6= 3, and put A =Matp(k),
the algebra of p× p matrices with entries in k. Then [A, A], being the kernel of
the trace, contains Z = k ·1A, so any x ∈ A with non-zero trace will satisfy (2-31).

In the presence of the alternative law, we can improve and expand Cor. 1.12
considerably.

2.9. Proposition. If A is finitely generated as a k-module, then the Lie algebras
LMDer(A), InDeralt(A), AssDer(A), StanDer(A), ComDer(A) all commute with
flat base change: For all flat k-algebras R ∈ k-alg, we have

LMDer(A)R = LMDer(AR), (2-32)

InDeralt(A)R = InDer(AR), (2-33)

AssDer(A)R = AssDer(AR), (2-34)

StanDer(A)R = StanDer(AR), (2-35)

ComDer(A)R = ComDer(AR). (2-36)

Proof. Since taking exterior powers commutes with flat (even arbitrary) base
change [4, III, §7, Prop. 8], so do the linear maps 1A and sA. Furthermore,
(2-19),(2-23) yield

LMDer(A)=1A

(
s−1

A

(
Nuc(A)

))
, InDeralt(A)=1A

(
Ker(sA)

)
.

Hence (2-32),(2-33) follow from Lemma 1.7(a),(b) and Prop. 1.14, while an analo-
gous argument yields (2-36). After the identifications of 1.9, we obtain (Da,b)R =
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DaR,bR for all a, b ∈ A, and (2-35) follows from Lemma 1.7(e). It remains to prove
(2-34). To do so, we put K A := Ker(sA)∩

∧2 A (which commutes with flat base
change since sA does), TA = Ker(1A), note that 1 by (2-26) restricts to a linear
surjection 10 : K A→ AssDer(A), and obtain a commutative diagram

0

��

0

��
0 // TA // K A

10 //

��

AssDer(A) //

��

0

∧2 A
1

//

s
��

Endk(A)

[A, A]

��
0

with exact rows and columns. Tensoring with R, we end up with (2-34). �

3. Making inner derivations functorial

In this section, we address the lack of functoriality of the inner derivation algebra
mentioned in the introduction. Before delving into the general categorical setup, it
may be helpful to consider the following example.

3.1. Associative algebras. Every associative algebra A defines a Lie algebra A−

having underlying k-module A and Lie product [x, y] = xy− yx , and A− depends
functorially on A: every homomorphism f : A→ B induces a Lie algebra homo-
morphism f − = f : A− → B−. The inner derivations of A are the derivations
Dx = L x − Rx and the map sending x ∈ A− to Dx ∈ Der(A) is a Lie algebra
homomorphism α : A−→Der(A), i.e., an action of A− on A by derivations, whose
kernel is central in (indeed, equals the centre of) A−. Moreover, the formula

f (Dx(a))= D f −(x)( f (a)) (3-1)

holds for all x ∈ A−, a ∈ A, so the derivation D f −(x) of B is f -related to the
derivation Dx of A. But note Dx = 0 for central x ∈ A, yet D f −(x) need not be
zero if f −(x) is not central in B, showing why Dx 7→ D f −(x) is in general not a
well defined map from InDerass(A) to InDerass(B).
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3.2. Categories of algebras. Abstracting from the previous example, we replace
associative algebras by an arbitrary category of non-associative algebras. To dis-
cuss questions of base change, it is convenient to consider not only algebras over
a fixed base ring, but over all possible commutative rings, more generally, over
a subcategory R of all commutative rings. Thus let A be a category of algebras
over R in the following sense: objects of A are pairs (k, A) where k ∈ R and A
is a non-associative k-algebra. Morphisms (k, A)→ (l, B) of A are pairs (τ, f )
where τ : k→ l is a morphism of R and f : A→ B is a τ -semilinear map from
the k-module A to the l-module B preserving the algebraic structure. Examples of
this situation abound: associative, alternative or Jordan algebras, unital or not, Lie
algebras, etc.

The projection onto the first component 5 : A→ R is a functor, and we de-
note by Ak the fibre of 5 over k ∈ R, that is, the subcategory of A with objects
algebras over the fixed ring k, and morphisms k-linear maps, thus of the form
(Idk, f ) : (k, A)→ (k, B). It is often inconvenient to indicate explicitly the base
ring k of an object of A. Thus we frequently write simply A ∈Ak or even A ∈A

and k =5(A) instead of (k, A) ∈A, or employ a phrase like “let A be a k-algebra
in A”. Similarly, a morphism of A will often be written as f : A → B, with
5( f ) = τ : 5(A) = k → 5(B) = l the corresponding homomorphism of the
respective base rings.

3.3. The derivation category. Let A be a category of (non-associative) algebras
over R as before and let Lie be the category of Lie algebras over R. We define a
category Der(A) over A as follows.

A derivation action of a Lie algebra g ∈ Liek on an algebra A ∈ Ak is a ho-
momorphism α : g→ Der(A) of k-Lie algebras. We write a derivation action as
a quadruple (k, A, g, α) or simply as (A, α). (Since A is not uniquely determined
by Der(A), the algebra A must be explicitly indicated. On the other hand, g is the
domain of definition of α, so a derivation action is determined by A and α). Now
construct a category Der(A), called the derivation category of A, whose objects
are the derivation actions, and whose morphisms are defined as follows.

Let f : A→ B be a morphism of A and τ =5( f ) : k→ l the corresponding
morphism of R. An f -derivation from A to B is a τ -semilinear map d : A→ B
such that

d(aa′)= d(a) f (a′)+ f (a)d(a′),

for all a, a′ ∈ A. Denote the set of f -derivations from A to B by Der f (A, B). This
is in a natural way an l-module by defining (sd)(a) = sd(a) for a ∈ A and s ∈ l.
Given derivations D ∈ Der(A) and D′ ∈ Der(B), the maps f∗(D) := f ◦ D and
f ∗(D′) := D′ ◦ f both belong to Der f (A, B).
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A morphism from (A, α) to (B, β) is now defined as a pair ( f, ϕ)where f : A→
B and ϕ : g→ h are morphisms of A and Lie, respectively, satisfying 5( f ) =
5(ϕ), and making the following diagram commutative:

g
ϕ //

α

��

h

β

��
Der(A)

f∗
// Der f (A, B) Der(B)

f ∗
oo

Explicitly, this means:

f
(
α(X) · a

)
= β(ϕ(X)) · f (a),

for all X ∈ g and all a ∈ A. There is again a functor Der(A) → R given by
(A, α) 7→ 5(A) and ( f, ϕ) 7→ 5( f ). Moreover, the projections (A, α) 7→ A
and ( f, ϕ) 7→ f define a functor P1 : Der(A) → A. Similarly, the projections
(A, α) 7→ g and ( f, ϕ) 7→ ϕ define a functor P2 : Der(A)→ Lie.

3.4. Derivation functors. Let A be a category of algebras over R as before. A
derivation functor is a functor F : A→ Der(A) commuting with the projections
onto R which is a section of the projection P1 : Der(A)→ A in the sense that
P1 ◦ F = IdA.

In more detail, this means the following: for every A ∈Ak , we have a derivation
action ρA of a k-Lie algebra d(A) on A, and for every homomorphism f : A→ B of
algebras in A we have a morphism d( f ) : d(A)→d(B) of Lie algebras, semilinear
with respect to5( f ), and compatible with the actions in the sense that the diagram

d(A)
d( f ) //

ρA

��

d(B)

ρB

��
Der(A)

f∗
// Der f (A, B) Der(B)

f ∗
oo

(3-2)

is commutative. As before, this means

f
(
ρA(X) · a

)
= ρB

(
d( f )(X)

)
· f (a) (X ∈ d(A), a ∈ A).

In particular, d : A→ Lie is a functor from A to Lie. It is tempting to say that
ρ is a natural transformation from d to the “functor” Der, but Der(A) does not
depend functorially on A. As a substitute, for every morphism f : A → B in
A, commutativity of (3-2) is equivalent to ( f, d( f )) : (A, ρA)→ (B, ρB) being a
morphism of Der(A). By abuse of notation, we will often write F = (d, ρ) for a
derivation functor.
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Suppose F = (d, ρ) and F ′ = (d′, ρ ′) are derivation functors. A morphism
from F to F ′ is a natural transformation of functors. This amounts to Lie algebra
homomorphisms h A : d(A)→d′(A) for all A∈A defining a natural transformation
d→ d′ and making the diagrams

d(A)
h A //

ρA !!

d′(A)

ρ′A}}
Der(A)

commutative.
A derivation functor F is called inner if ρA maps d(A) into the Lie multiplication

algebra of A, and central if the kernel of ρA is central in d(A), for all A ∈A.
In the special case where f = g ∈ Aut(A), the functoriality of F implies that

Aut(A) acts on the Lie algebra d(A) by automorphisms and the map ρA is equi-
variant with respect to this action on the one hand, and with respect to conjugation
of Aut(A) on Der(A) on the other, because (3-2) now says

g ◦ ρA(X) ◦ g−1
= ρA

(
d(g)(X)

)
,

for all g ∈ Aut(A) and X ∈ d(A).
If we assume that F commutes with flat base change (see 3.10), which holds

in all standard examples, then by extending k to the dual numbers k(ε) and spe-
cializing g = Id+ εD for D ∈ Der(A), we obtain an action of Der(A) on d(A)
by derivations and ρA is equivariant with respect to this action and the adjoint
representation of Der(A) on itself. In particular, d(A) is then an ideal in Der(A).

3.5. Remarks and examples. (a) The definition of a derivation functor does not
tie the Lie algebras d(A) very closely to the derivations of A: the kernels of ρA

can be arbitrarily big. For example, let l be a fixed Lie algebra over Z and define
F by d(A)= l⊗Z k and ρA = 0 for all A ∈Ak and k ∈R. The requirement that F
be central cuts down the kernels to some extent; it is satisfied in all the examples
treated below. The same is true of the condition of innerness.

(b) The example of associative algebras treated in 3.1 yields a derivation functor
F with d(A)= A− and ρA(x)= Dx . The commutativity of (3-2) is formula (3-1),
and F is inner and central.

(c) Let A = Lie. Then a natural choice of F is d = IdLie and ρ the adjoint
representation. Again F is inner and central.

We show next that the classes of inner derivations of alternative algebras intro-
duced in 2.5 come from derivation functors as well. The construction rests on the
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following simple lemma which is essentially contained in [13, 2.1]. We include a
proof for the convenience of the reader.

3.6. Lemma. Let g be a k-Lie algebra, M a k-g-module, and let φ : M → g be
a homomorphism of left k-g-modules, where g acts on itself by the adjoint repre-
sentation. Write the action of an element x ∈ g on u ∈ M as xM · u, and define a
non-associative product {u, v} on M by

{u, v} := φ(u)M · v.

(a) The map φ : M→ g is a homomorphism of non-associative algebras:

φ({u, v})=
[
φ(u), φ(v)

]
. (3-3)

(b) g acts by derivations of the product {−,−}. The Jacobi identity holds in the
following form on M:

{u, {v,w}}− {v, {u, w}} = {{u, v}, w}, (3-4)

so M is a left Leibniz algebra [13].

(c) Let Q be the k-linear span of all squares {u, u}, u ∈M, and let Z =Ker(φ)⊆
M. Then Q and Z are stable under the action of g, and

Q ⊆ Z , {Z ,M} = 0, {M, Z} ⊆ Q. (3-5)

(d) The product {−,−} induces a Lie algebra structure on h := M/Q and φ
induces a Lie algebra homomorphism φ̄ : h→ g whose kernel Z/Q is central in h.
The action of g on M induces an action of g on h by derivations.

Proof. (a) Put x=φ(u)∈g. Since φ is a homomorphism of g-modules, φ({u, v})=
φ(φ(u)M · v)= φ(xM · v)= [x, φ(v)] = [φ(u), φ(v)].

(b) Let x ∈ g and v,w ∈ M . Then

xM · {v,w} = xM · (φ(v)M ·w)= [xM , φ(v)M ] ·w+φ(v)M · (xM ·w)

= [x, φ(v)]M ·w+φ(v)M · (xM ·w)= φ(xM · v)M ·w+{v, xM ·w}

= {xM · v,w}+ {v, xM ·w}.

Now (3-4) follows by specializing x = φ(u).

(c) Since φ is a homomorphism of g-modules, it is clear that Z is stable under g,
and (b) implies that Q is stable under g as well. The inclusion Q⊆ Z follows from
(3-3) and the fact that the Lie product in g is alternating. Let u∈ Z and v∈M . Then
φ(u)= 0, hence also {u, v} = φ(u)M ·v = 0 which proves {Z ,M} = 0. Moreover,
{v, u} = {u, v}+ {v, u} = {u+ u, v+ v}− {u, u}− {v, v} ∈ Q, so {M, Z} ⊆ Q.



948 Ottmar Loos, Holger P. Petersson and Michel L. Racine

(d) Since Q⊆ Z , (3-5) implies {Q,M}+{M, Q}⊂Q, so Q is an ideal of {−,−}.
As it contains all squares, the product induced on M/Q is alternating. Now (3-4)
shows that h = M/Q is a Lie algebra, and φ̄ is a Lie algebra homomorphism by
(3-3). Finally, {Z ,M}= 0 implies that Ker(φ̄)= Z/Q is central in h, and it follows
from (b) that g acts on h by derivations. �

3.7. The inner derivation functor of alternative algebras. Let A be an alternative
algebra over k. Recall from 2.4 that W (A) := A⊕

∧2 A is a gl(A)-module under
the action

gl(A)×W (A)−→W (A), (g, x) 7−→ g · x := g†(x).

For a τ -semilinear homomorphism f : A→ B of alternative algebras over k and l,
respectively, the map W ( f ) := f ⊕

∧2 f : W (A)→W (B) is again τ -semilinear,
and one checks easily that the relations

f ◦ s = s ◦W ( f ), W ( f ) ◦1†
x =1

†
W ( f )(x) ◦W ( f ), f ◦1x =1W ( f )(x) ◦ f

(3-6)

hold for all x ∈W (A).
We consider the k-submodule

Win(A) := Ker(s)= {x ∈W (A) | s(x)= 0}.

of the gl(A)-module W (A), which by (2-22) remains stable under Der(A), hence
may be regarded canonically as a Der(A)-module. Define φ : Win(A)→ Der(A)
by φ(x) := 1x for x ∈ Win(A). Then (2-21) shows that φ is a homomorphism of
Der(A)-modules. Applying Lemma 3.6 therefore yields a Leibniz algebra Win(A),
a Lie algebra din(A) = Win(A)/Q and a homomorphism ρin,A = φ : din(A) →
Der(A) whose image, by (2-23), is precisely InDeralt(A).

Returning to the τ -semilinear homomorphism f : A→ B, we conclude from
(3-6) that W ( f ) sends Win(A) to Win(B) and hence induces a τ -semilinear map
Win( f ) : Win(A)→Win(B), which, again by (3-6), is a homomorphism of Leibniz
algebras, inducing canonically a Lie algebra homomorphism din( f ) : din(A) →
din(B). The commutativity of (3-2) is a consequence of (3-6), so we have defined
a derivation functor Fin for alternative algebras, the inner derivation functor.

3.8. The associator and commutator derivation functors. Consider the submod-
ule Wass(A) = Win(A)∩

∧2 A of Win(A), which is in fact a Der(A)-stable subal-
gebra of the Leibniz algebra Win(A), so the construction of 3.7 can be performed
mutatis mutandis on Wass(A) and yields a derivation functor Fass, called the associ-
ator derivation functor of alternative algebras. The inclusions Wass(A)→Win(A)
induce homomorphisms dass(A)→ din(A) of Lie algebras (in general no longer
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injective) which are compatible with the representations ρ and ρass and with mor-
phisms of A. Thus we have a natural transformation Fass → Fin of derivation
functors.

Similarly, let Wcom(A) = Win(A) ∩ A = 3 A, the 3-torsion elements of A. As
before, Wcom(A) is a subalgebra of Win(A) and in fact is already a Lie algebra,
because {a, a} = 1a · a = [a, a] = 0. We obtain a derivation functor Fcom =

(dcom, ρcom), the commutator derivation functor, where dcom(A) = 3 A with Lie
bracket [x, y] = xy − yx , and ρcom : 3 A → Der(A) given by the commutator:
x 7→ (a 7→ [x, a]). Again, there is a natural transformation Fcom→ Fin induced
from the inclusions Wcom(A)→W (A).

3.9. Standard derivation functors. By definition (2.5(b)), the standard derivations
of an alternative algebra A are of the form 1s(u)⊕(−3u), u ∈

∧2 A. Thus they can
be parametrized by all of

∧2 A or by the image in W (A) of
∧2 A under the map

ζ : u 7→ s(u) ⊕ (−3u). This gives rise to two standard derivation functors as
follows.

First let M :=
∧2 A and define φ : M → Der(A) by φ(a ∧ b) = [La, Lb] +

[La, Rb] + [Ra, Rb] as in (2-28). It follows from the formulas in 2.4 that φ is
equivariant with respect to the action of Der(A) on M and on itself by the adjoint
representation. Hence Lemma 3.6 yields a Lie algebra dst(A)=M/Q and a homo-
morphism ρst(A) : dst(A)→ Der(A) with central kernel and image StanDer(A).
Also, for f : A→ B a homomorphism of alternative algebras, we have

f ◦φ(u)= φ
( 2∧

f (u)
)
◦ f.

Hence
∧2 f is a homomorphism of Leibniz algebras, and induces a homomor-

phism dst( f ) : dst(A) → dst(B), compatible with the representations ρst. This
defines a derivation functor Fst = (dst, ρst), the standard derivation functor of
alternative algebras.

Next, imitating the procedure of 3.8, we have a derivation functor induced from

Wst(A)= {ζ(u) | u ∈
2∧

A} ⊆Win(A),

denoted F̄st = (d̄st, ρ̄st). As before, the inclusions Wst(A) → Win(A) induce a
morphism F̄st→ Fin. The map ζ induces a morphism h : Fst→ F̄st with the prop-
erty that h A : dst(A)→ d̄st(A) is always surjective. In general, however, h A is not
injective. For example, if A is commutative then StanDer(A)={0}, dst(A)=

∧2 A
and d̄st(A)=Wst(A)∼= 3

∧2 A (abelian Lie algebras), and h A is multiplication by
−3. Thus F̄st is closer to the standard derivations in the sense that the kernels of
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ρ̄st(A) are smaller. On the other hand, Fst commutes with arbitrary base change,
whereas F̄st does so only for flat base change, see Prop. 3.12 below for details.

3.10. Base change. Let A be a category of algebras over R as in 3.2. We say that
A admits base change if for every A ∈ Ak and every homomorphism τ : k→ R
of R the R-algebra AR = A⊗k R (with the naturally extended algebraic structure)
belongs to AR . (In more precise categorical language, this says that A is a co-
fibred category over R.) This is true for all the examples considered in this paper,
in particular for the category of Lie algebras. If A admits base change then so
does Der(A): Indeed, for a morphism τ : k→ R of R and a derivation action α
of g ∈ Liek on A ∈Ak , it is easily seen that

αR := can ◦ (ρ⊗ IdR) : g⊗k R→ Der(A)⊗k R→ Der(A⊗k R).

is a derivation action of gR = g⊗k R on AR , called the base change of α with
respect to τ : k→ R.

Suppose A admits base change and F : A→ Der(A) is a derivation functor.
We say F commutes with base change if for all morphisms τ : k→ R of R there
are natural isomorphisms

g(τ ) : d(A)R
∼= // d(AR) , (3-7)

making the diagrams

d(A)R
g(τ )

∼=

//

(ρA)R ##

d(AR)

ρAR{{
Der(AR)

(3-8)

commutative. (Naturality means that the g(τ ) behave in the expected way with
respect to composition of morphisms in R and the usual canonical isomorphisms
between repeated tensor products. A more precise formulation would require the
formalism of fibred categories.)

One sees immediately that the usual inner derivation functor of associative al-
gebras, see 3.5(b), commutes with arbitrary base change. We will now show that
the standard derivation functor Fst of alternative algebras commutes with arbitrary
base change, and that the other derivation functors of alternative algebras intro-
duced earlier commute with flat base change. Let us emphasize that this does not
improve Proposition 2.9 since we are not dealing with the algebras ρA(d(A)) of
inner derivations of the respective type themselves, but with the more abstractly
defined Lie algebras d(A). We begin with a lemma.
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3.11. Lemma. Let M, N be k-modules and let q : M → N be a quadratic map.
Let R ∈ k-alg and let qR : MR → NR be the extension of q to a quadratic map
of R-modules, cf. [18, Proposition 2.1]. Let q(M) ⊆ N be the k-linear span of
{q(x) : x ∈ M} and define qR(MR) ⊆ NR analogously. Finally, let ι : q(M)→ N
be the inclusion map. Then the base extension ιR : q(M)⊗ R → NR has image
qR(MR).

Proof. For y =
∑

xi ⊗ ri ∈ MR , we have

qR(y)=
∑

q(xi )⊗ r2
i +

∑
i< j

q(xi , x j )⊗ rir j , (3-9)

where q(−,−) is the polar map of q . On the other hand, let us denote a typical
spanning element of q(M)⊗ R by q(x)⊗̃r , to distinguish the tensor product in
q(M)⊗ R (where q(M) is taken as a k-module in its own right) from the tensor
product in N ⊗ R. Then ιR(q(x)⊗̃r)= q(x)⊗ r = qR(x⊗1R)r . This implies that
indeed ιR(q(M)⊗ R)⊆ qR(MR). Moreover, (3-9) shows that every qR(y) belongs
to the image of ιR , proving the lemma.

3.12. Proposition. (a) The standard derivation functor Fst of alternative algebras
commutes with arbitrary base change.

(b) The derivation functors Fin, Fass, Fcom and F̄st commute with flat base
change.

Proof. (a) Let τ : k→ R be a ring homomorphism, so R is a k-algebra. It is well

known that η :
(∧2 A) ⊗ R

∼=
−→

∧2(AR), sending (a ∧ b)R 7→ aR ∧ bR , is an
isomorphism of R-modules.

Let M :=
∧2 A, considered as a Leibniz algebra over k as in 3.6 and 3.9, and

let M ′ =
∧2(AR) be the analogously defined Leibniz algebra over R for AR . The

multiplication on AR is just the R-linear extension of the multiplication on A.
Hence η : MR→ M ′ is an isomorphism of Leibniz algebras over R.

Let q : M→ M be the quadratic map x 7→ {x, x} and define q ′ : M ′→ M ′ in
the same way. Then by definition of dst(A) in 3.9, we have an exact sequence

0 // q(M) ι // ∧2 A
π // dst(A) // 0 ,

which upon tensoring with R yields the first row of the following commutative
diagram with exact rows:

q(M)⊗ R
ιR //

ϕ

��

M ⊗ R
πR //

η∼=

��

dst(A)⊗ R //

ψ

��

0

0 // q ′(M ′)
ι′

// M ′
π ′

// dst(AR) // 0
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In the second row, q ′(M ′) corresponds under η to the image of the quadratic map
qR as in Lemma 3.11. This yields the homomorphism ϕ and the commutativity of
the left hand square. Exactness of the second row is clear from the definition of
dst(AR). Finally, ψ is the unique map making the right hand square commutative.
We complete this diagram by adding the kernels and co-kernels of the vertical maps
and obtain:

Ker(ϕ)

��

// 0 //

��

Ker(ψ)

��
q(M)⊗ R

ϕ

��

// M ⊗ R

∼= η

��

// dst(A)⊗ R //

ψ

��

0

0 // q ′(M ′)

��

// M ′

��

// dst(AR)

��

// 0

Coker(ϕ) // 0 // Coker(ψ)

Now the Snake Lemma [5, §1, No. 2, Prop. 2] yields an isomorphism Ker(ψ) ∼=
Coker(ϕ). Lemma 3.11 implies that ϕ is surjective, so ψ is injective. But ψ is sur-
jective as well, because η and π ′ are surjective. This establishes the isomorphisms
g(τ )= ψ of (3-7), and (3-8) is easily verified.

(b) Suppose R is a flat k-algebra. We consider first the inner derivation functor
Fin defined in 3.7. Here M =Win(A) is the kernel of the map s : W (A)→ A, and
M ′ =Win(AR) is similarly defined. Since R is flat over k, Lemma 1.7(a) yields an
isomorphism η : M ⊗ R→ M ′ of Leibniz algebras over R. Now the argument in
the proof of (a) can be repeated with din in place of dst and yields an isomorphism
din(A)⊗ R ∼= din(AR). The proof of the other cases follows the same pattern. The
details are left to the reader.

3.13. Remarks. The argumentation in the proof of Proposition 3.12(b) made use
of flatness only to ensure that there is an isomorphism η : M ⊗ R → M ′. This
can be used to prove base change results for arbitrary R, by restricting the cate-
gory A. For example, let A be the category octonion algebras (see 4.1 below for
the definition), with morphisms unital homomorphisms of algebras, and consider
associator derivations. Here M = Wass(A) is the kernel of the commutator map
s :

∧2 A→ A. The linear span of all commutators [a, b] in an octonion algebra
A is precisely the kernel of the trace tA : A→ k, and the trace is surjective. Hence
Ker(tA)= Im(s) is a finitely generated and projective module (of rank 7). It follows
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that the exact sequence

0 // M // ∧2 A
s // [A, A] // 0

splits and therefore remains exact (and split) upon tensoring with an arbitrary R ∈
k-alg. Hence the natural map η : M ⊗ R → M ′ = Ker(sR) is an isomorphism.
It follows that the functor Fass commutes with arbitrary base change for octonion
algebras.

4. Octonion algebras: basic properties

In this section, we prepare the ground for describing derivations of octonion alge-
bras over arbitrary commutative rings.

4.1. The concept of an octonion algebra. Following [17, 1.8], a non-associative
algebra C over k is called an octonion algebra if it is finitely generated projective
of rank 8 as a k-module, contains an identity element and admits a norm, i.e., a
quadratic form nC : C→ k uniquely determined by the following two conditions:

(i) nC is non-singular, so its induced symmetric bilinear form

nC(x, y)= nC(x + y)− nC(x)− nC(y)

defines a linear isomorphism from the k-module C onto its dual C∗ by the
assignment x 7→ nC(x,−).

(ii) nC permits composition, i.e., the relation

nC(xy)= nC(x)nC(y) (4-1)

holds for all x, y ∈ C .
We then call tC = nC(1C ,−) the trace of C . Since the rank of C is everywhere

positive, 1C ∈ C is a unimodular vector [14, 0.3], i.e., k1C is a free k-module of
rank 1 and a direct summand of C (as a k-module).

Octonion algebras are alternative (but not associative) and invariant under base
change. They also descend from faithfully flat base change: If R ∈ k-alg is faith-
fully flat over k and C is a k-algebra such that CR is an octonion algebra over R
then C is an octonion algebra over k. This follows from faithfully flat descent and
the fact that the norm and the unit element of an octonion algebra are uniquely
determined.

By [16], given an octonion algebra C over k, the relations

nC(1C)= 1, tC(1C)= 2, (4-2)

x2
− tC(x)x + nC(x)1C = 0, (4-3)

tC(xy)= tC(x)tC(y)− nC(x, y) (4-4)
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hold for all x, y∈C , and tC is an associative linear form in the sense that it vanishes
on all commutators and associators of the algebra. Moreover, the conjugation of
C , i.e., the linear map ιC : C→C , x 7→ x := tC(x)1C− x , is an algebra involution
satisfying xx = nC(x)1C , x + x = tC(x)1C , and

xyx = nC(x, y)x − nC(x)y (4-5)

for all x, y ∈ C . In particular, x is invertible in C if and only nC(x) is a unit in
k, in which case x−1

= nC(x)−1x . Recall that octonion algebras over fields are
simple [23, Chap. 2, Lemma 3]. As a consequence, octonion algebras over rings
share with Azumaya algebras the property that a unital homomorphism f : C→C ′

of octonion algebras is an isomorphism. Indeed, localizing if necessary, we may
assume that k is a local ring, with residue field K . Then the kernel of the induced
homomorphism fK : CK →C ′K is an ideal 6=CK , hence {0}. Thus fK is injective
and therefore bijective, because both algebras have dimension 8. It follows that f
is an isomorphism by [3, II, §3.2, Cor. of Prop. 6].

Remark. The same argument leads to the same conclusion in the more general
setting of arbitrary unital non-associative k-algebras C,C ′ that are finitely gener-
ated projective of the same rank as k-modules and have CK simple for all fields
K ∈ k-alg.

We now proceed to describe particularly simple and useful examples of octonion
algebras.

4.2. Zorn vector matrices and split octonions. There are various formally differ-
ent but equivalent ways of defining an octonion algebra structure on the k-module

Z := Zor(k) :=
[

k k3

k3 k

]
of Zorn vector matrices over k, i.e., of 2× 2 matrices with diagonal entries in k
and off-diagonal ones in column space k3 over k. The normalization chosen here
is due to Zorn [24] and turns out to be the most convenient for our subsequent
computations. Accordingly, we define[

α1 u
x α2

] [
β1 v

y β2

]
=

[
α1β1− ut y α1v+β2u+ x × y

β1x +α2 y+ u× v −x tv+α2β2

]
(4-6)

for αi , βi ∈ k, (i = 1, 2), u, v, x, y ∈ k3, where utv and u×v stand for the ordinary
scalar and vector product, respectively, of u, v ∈ k3. Then Zor(k) becomes an
octonion algebra under the multiplication (4-6). Its unit element, norm, and trace
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are given by the formulas

1Z =

[
1 0
0 1

]
, nZ (a)= α1α2+ ut x, tZ (a)= α1+α2

for a=
[
α1 u
x α2

]
∈ Z . Note that this definition has the advantage of yielding complete

symmetry in the indices 1, 2 but is not consistent with the usual definition of matrix
multiplication of 2× 2-matrices in the following sense: Let u, x ∈ k3 such that
ut x = 1. Then

[
k k·u

k·x k

]
is a subalgebra of Zor(k) isomorphic to Mat2(k) under the

map
[
α β·u
γ ·x δ

]
7→

(
α β
−γ δ

)
, and nZ

[
α β·u
γ ·x δ

]
= det

(
α β
−γ δ

)
. The square brackets

(instead of the usual round brackets) serve to indicate this fact.
Let ui (i = 1, 2, 3) be the standard basis of k3. It is evident that Z is free of rank

eight as a k-module with basis

bs =
(
E1, X1, X2, X3; E2, Y1, Y2, Y3

)
given by

E1 =

[
1 0
0 0

]
, E2 =

[
0 0
0 1

]
, X i =

[
0 ui

0 0

]
, Yi =

[
0 0
ui 0

]
.

We call bs the standard basis of Z . It satisfies the following relations:

E1 E2 = E2 E1 = 0, E2
1 = E1, E2

2 = E2, (4-7)

E1 X i = X i = X i E2, E2 X i = 0= X i E1, (4-8)

E2Yi = Yi = Yi E1, E1Yi = 0= Yi E2, (4-9)

X i X j = sgn(i, j) Yl, Yi Y j = sgn(i, j) Xl, (4-10)

X i Y j =−δi j E1, Yi X j =−δi j E2, (4-11)

E1+ E2 = 1Z . (4-12)

Here sgn(i, j) is zero for i = j and equals the sign of the permutation (i, j, l)
(sending 1 to i , 2 to j , 3 to l) if i 6= j and l is the missing index.

Our next step consists in introducing twisted versions of Zorn vector matrices.

4.3. Reduced octonion algebras. An octonion algebra over k is said to be reduced
if it is isomorphic to an algebra Zor(M, θ), defined as follows ([17, 3.2, 3.3])1: Let
M be a finitely generated projective module of rank 3 over k. Writing M∗ =
Homk(M, k) for the dual of M and 〈 , 〉 : M∗×M→ k for the natural pairing, we
identify

∧3 M∗ = (
∧3 M)∗ canonically by means of the formula

〈α1 ∧α2 ∧α3, x1 ∧ x2 ∧ x3〉 = det
(
〈αi , x j 〉

)
1We deviate from the terminology in [17], where these algebras are called split.
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for αi ∈ M∗, x j ∈ M , 1 ≤ i, j ≤ 3. Now suppose we are given a volume element
of M , i.e., an isomorphism θ :

∧3 M
∼
→ k of k-modules (which may not exist but

if it does is unique up to an invertible factor in k). Then θ∗ : k = k∗
∼
→
∧3 M∗,

the dual of θ , gives rise to the volume element θ∗−1 of M∗, and we obtain two
associated vector products

×θ : M ×M −→ M∗, ×θ : M∗×M∗ −→ M

by means of the formulas

〈x ×θ y, z〉 = θ(x ∧ y ∧ z), 〈ζ, ξ ×θ η〉 = θ∗−1(ζ ∧ ξ ∧ η) (4-13)

for all x, y, z ∈ M , ξ, η, ζ ∈ M∗. Note that both vector products are alternating
and induce isomorphisms

∧2 M
∼
→ M∗,

∧2 M∗
∼
→ M . To simplify notations, we

write × instead of ×θ whenever the context is clear. Furthermore, to make matters
more symmetric, we identify M ∼= M∗∗ canonically, put M+ := M , M− := M∗

and then have two dualizing bilinear forms 〈 , 〉 : M± × M∓ → k satisfying the
relation 〈x+, x−〉 = 〈x−, x+〉 for all x± ∈ M±. Now the k-module

C := Zor(M, θ)=
[

k M+

M− k

]
becomes an octonion algebra over k under the multiplication[

α1 u
x α2

] [
β1 v

y β2

]
=

[
α1β1−〈u, y〉 α1v+β2u+ x × y

β1x +α2 y+ u× v −〈x, v〉+α2β2

]
(4-14)

for αi , βi ∈ k (i = 1, 2), u, v ∈ M+, x, y ∈ M−, whose unit element, norm, trace
are given by

1C =

[
1 0
0 1

]
, nC(a)= α1α2+〈u, x〉, tC(a)= α1+α2 (4-15)

for a=
[
α1 u
x α2

]
∈C . If M = k3 is free, then C =Zor(k) is the split octonion algebra

of ordinary Zorn vector matrices over k.

4.4. Elementary idempotents. We claim: For an element e in an octonion algebra
C over k to be an idempotent different from 0, 1 in all scalar extensions (so e2

= e
and eR 6= 0, 1CR for all R ∈ k-alg, R 6= {0}) it is necessary and sufficient that
tC(e) = 1 and nC(e) = 0. The condition is clearly sufficient, by (4-2), (4-3).
To prove necessity, we may assume that k is a local ring, hence, in particular,
connected. Then nC(e), being an idempotent in k by (4-1), satisfies nC(e) = 0
or nC(e) = 1. In the latter case, e would be invertible, forcing the contradiction
e = 1C . Hence nC(e) = 0, and (4-3) yields e = e2

= tC(e)e. Taking traces, we
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conclude that tC(e) ∈ k is an idempotent which cannot be zero since e 6= 0. Thus
tC(e)= 1.

Elements of C satisfying the equivalent conditions above are called elementary
idempotents. If e is such and e1 := e, e2 := 1C − e = ē1, then e2 is an elementary
idempotent as well and (e1, e2) is a hyperbolic pair of the quadratic space (C, nC).
Moreover, using (4-5) as well as (4-1) and its bi-linearizations, the Peirce compo-
nents Ci j := Ci j (e) (i, j = 1, 2) of C relative to e [20, III, §2] are easily seen to
satisfy the relations (i, j = 1, 2, i 6= j)

Ci i = kei , nC(Ci j )= nC(ei ,C12+C21)= tC(C12+C21)= {0}. (4-16)

Since ei is a unimodular vector, Ci i ∼= k as k-algebras. Also, (4-16) implies that
the k-modules C12 and C21 are dually paired by nC(−,−), so the decomposition
C=

⊕
i, j∈{1,2} Ci j together with rk C=8 shows that they are both finitely generated

projective of rank 3.

4.5. Schemes. In a slightly more general vein than 1.11, we follow [7] and view
schemes over k as special covariant set-valued functors on k-alg. Then the affine
scheme X defined by a fixed k-algebra A is the functor X(R) = Homk-alg(A, R)
(R ∈ k-alg); i.e., the affine schemes are precisely the representable functors. For
example, if M is a k-module, we denote by Ma the functor defined by Ma(R) :=
M ⊗ R for all R ∈ k-alg. If M is finitely generated and projective then Ma is
an affine k-scheme represented by the symmetric algebra over the dual M∗ of
M . We say that a k-scheme X is faithful if it has non-empty geometric fibres:
X(K ) 6= ∅ for all algebraically closed fields K ∈ k-alg. In case X is affine and
represented by a finitely presented k-algebra A, this is equivalent to the canonical
map Spec(A)→ Spec(k) of the prime spectra being surjective.

Given any k-scheme X, we will make use of the following facts:

(i) ([8, (17.16.2)]) If X is fppf (=flat, faithful and finitely presented), there exists
an fppf extension R of k such that X(R) 6=∅.

(ii) ([8, (17.16.3)]) If X is smooth and faithful, we may choose R as in (i) to be
even étale.

(iii) ([8, (17.1.1), (17.3.1)], [7, I, §4, 4.6]) X is smooth if and only if it is finitely
presented and, for all R ∈ k-alg and all ideals I ⊆ R satisfying I 2

= {0}, the
natural map X(R)→ X(R/I ) is surjective. A smooth scheme is flat.

(iv) ([8, (17.7.3)]) If R ∈ k-alg is faithfully flat, then for X to be smooth over k
it is necessary and sufficient that its base change XR from k to R be smooth
over R.

4.6. Splittings and splitting bases. A splitting of an octonion algebra C over k is
an isomorphism f : Z = Zor(k)→ C . We denote by Isom(Z ,C) the (possibly
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empty) set of splittings of C and define a functor X = Isom(Z ,C) : k-alg→ set
by

X(R)= Isom(Zor(R),CR) (R ∈ k-alg).

Let G = Aut(Z) be the automorphism group scheme of Z . If X(R) 6= ∅ then it
is immediately seen that the group G(R) acts simply transitively on the right on
X(R) by composition.

A splitting basis of C is an octuple b= (e1, x1, x2, x3; e2, y1, y2, y3) ∈ C8 sat-
isfying the relations (4-7)–(4-12), with upper case letters replaced by lower case
ones. Thus by its definition, a splitting basis is not required to be a basis of the
k-module C but in fact is, as will be seen now.

Given a splitting f : Z
∼=
−→ C of C , it is clear that the image f (bs) of the

standard basis of Z is a splitting basis of C . We claim that this establishes a
bijection between Isom(Z ,C) and the set of splitting bases of C . Indeed, since f
is linear and bs is in particular a basis of Z as a k-module, f is uniquely determined
by its values on bs so the map f 7→ f (bs) is injective. To prove surjectivity, let
b be a splitting basis of C . The defining relations (4-7)–(4-12) of a splitting basis
say precisely that the linear map f : Z → C defined by f (bs) = b is a unital
homomorphism of octonion algebras and therefore an isomorphism, as remarked
in 4.1. In particular, b is a basis of C as a k-module.

An essential step in the proof of the main result of this section is to show that X
is a smooth k-scheme. The proof will be facilitated by introducing the following
concept.

4.7. Splitting data. Let C be an octonion algebra over k. A splitting datum for C
is a quadruple d= (e, x1, x2, x3) ∈ C4 satisfying the following conditions:

e is an elementary idempotent, (4-17)

the xi belong to the Peirce space C12(e), (4-18)

x1(x2x3)=−e. (4-19)

Let bs be the standard basis of Z = Zor(k) as in 4.2. It is clear from 4.2 that
ds= (E1, X1, X2, X3) is a splitting datum of the split algebra Z , called the standard
splitting datum.

4.8. Lemma. Let C be an octonion algebra over k. Then the map φ : f 7→ f (ds)

is a bijection between Isom(Z ,C) and the set of splitting data of C.

Proof. If f : Z → C is an isomorphism then it is clear that f (ds) is a split-
ting datum of C , so the map φ is well-defined. To prove φ injective we have to
show that an f ∈ Isom(Z ,C) is uniquely determined by its values on ds . Since
f is a homomorphism of unital algebras, the relations (4-10) and (4-12) show
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that f (Yi ) = f (X j Xl) = f (X j ) f (Xl) (where (i, j, l) is a cyclic permutation of
(1, 2, 3)), and f (E2)= f (1−E1)=1− f (E1). Hence f (ds) determines the values
of f on bs and therefore f , by 4.6.

Again by 4.6, φ surjective means every splitting datum d of C extends to a
splitting basis b. Thus let d = (e, x1, x2, x3) be a splitting datum of C and define
b= (e1, x1, x2, x3; e2, y1, y2, y3) by

e1 := e, e2 := 1C − e1, y1 := x2x3, y2 := x3x1, y3 := x1x2.

We verify the relations (4-7)–(4-12) for b. Here (4-7) and (4-12) are clear, and
(4-8) holds by (4-18). The equations (4-9) just say yi ∈ C21, which follows from
C2

12 ⊆ C21 (by the Peirce rules) and the definition of yi .
Before continuing, we make the following remarks. Since e is an elementary

idempotent by (4-17), we have tC(x) = nC(x) = 0 for x ∈ C12 ∪ C21 by (4-16).
This implies x2

= tC(x)x − nC(x)1 = 0, so the multiplication of C restricted to
C12 and to C21 is alternating. Moreover:

The trilinear expressions x(yz) and (xy)z (where x, y, z ∈ C12) are alternating.
(4-20)

Indeed, their difference is the associator which is alternating, so it suffices to prove
that x(yz) is alternating. But this follows immediately from xy2

=0= x2 y= x(xy)
and the fact that a multilinear map is alternating as soon as it vanishes when two
adjacent arguments are equal.

The equations xi x j = sgn(i, j)yl of (4-10) now hold by definition of the yi and
the alternating character of the product. The latter also allows us to assume, in
proving the second group of equations yi y j = sgn(i, j)xl , that (i, j, l) is a cyclic
permutation. Then the middle Moufang identity (cf. (2-4)), the alternating nature
of the product together with (4-20) and (4-19) imply

yi y j = (−xl x j )(−xi xl)=
(
xl(x j xi )

)
xl =−

(
x1(x2x3)

)
xl = e1xl = xl .

To prove the first group of relations xi y j =−δi j e1 of (4-11), write y j = xl xm where
( j, l,m) is cyclic, so that xi y j= xi (xl xm). If i= j this is x j (xl xm)= x1(x2x3)=−e1

by (4-19) and (4-20). If i 6= j then either i = l or i = m, and hence xi (xl xm)= 0,
again by (4-20).

The remaining equations yi x j = −δi j e2 follow by applying the involution and
observing that tC(x)= 0 implies x̄ =−x for x ∈ C12+C21.

4.9. Torsors. Let X be a k-scheme and G a k-group scheme acting on X on the
right in a simply transitive manner; i.e., for all R ∈ k-alg and all x, y ∈X(R) there
exists exactly one g ∈G(R) such that y = xg. Note that X(R) may well be empty.
Then X is said to be a torsor in the flat topology with structure group G if there
exists a fppf S∈k-alg such that X(S) 6=∅ [7, III, §4]. If S can be chosen in addition
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étale then X is called a torsor in the étale topology. Fixing an element x0 ∈ X(S),
we have an isomorphism GS

∼
→ XS by g 7→ x0g. Consequently, by faithfully flat

descent, properties of X and G correspond to each other. In particular, X is smooth
if and only if G is smooth, cf. 4.5(iv).

4.10. Theorem. Let C be an octonion algebra over k and Z = Zor(k) the algebra
of Zorn vector matrices. Then X = Isom(Z ,C) is an affine smooth torsor in the
étale topology with structure group G= Aut(Z).

Proof. Let Y be the functor assigning to R ∈ k-alg the set of splitting data of
CR . The map φ of Lemma 4.8 is compatible with arbitrary base changes and thus
induces an isomorphism φ : X → Y of functors. The conditions (4-17)–(4-19)
show that Y ⊂ C4

a is defined by finitely many polynomial equations, so Y and
therefore X is an affine finitely presented k-scheme. Hence to prove smoothness
of X, we may use 4.5(iii), and have to show: If R ∈ k-alg and I ⊂ R is an ideal of
square zero then every splitting datum of CR/I over R/I can be lifted to a splitting
datum of CR over R.

We may assume R = k, replacing C by CR if necessary. Write

π : C→ C ′ := C/I C = C ⊗ (k/I )

for the canonical map and let d′= (e′, x ′1, x ′2, x ′3) be a splitting datum of C ′. Denote
norm and trace of C and C ′ by n, t and n′, t ′, respectively. As I C ⊆ C is a nil
ideal, it is a standard fact that e can be lifted to an idempotent e of C . We have
n′(e′) = 0, t ′(e′) = 1 by 4.4, so we conclude from (4-1) that n(e) is a nilpotent
idempotent in k. Hence n(e) = 0 and e = t (e)e by (4-3). Applying t , we obtain
t (e)2 = t (e), and t ′(e′) = 1 shows t (e) ≡ 1 mod I , whence t (e) is an invertible
idempotent in k. Thus t (e)= 1, and we have shown that e is elementary.

Let Ci j and C ′i j denote the Peirce spaces of C and C ′ relative to e and e′, respec-
tively. Since π is a surjective algebra homomorphism mapping e to e′, we have
π(C12) = C ′12. Hence the elements x ′i ∈ C ′12 can be lifted to elements xi ∈ C12

(1≤ i ≤ 3). Now x ′1(x
′

2x ′3)=−e′1 implies x1(x2x3)= (−1+α)e1 for some α ∈ I .
As (1−α)−1

= 1+α (recall that α2
= 0 since I squares to zero), we see that (4-19)

holds for d= (e, x1, x2, (1+α)x3), so d is the desired lift of d′ to a splitting datum
of C .

As noted in 4.6, G acts simply transitively on X. Thus to prove that X is a torsor
in the étale topology, it remains to show that X(S) 6= ∅ for some étale faithfully
flat S ∈ k-alg. It is a standard fact that an octonion algebra over an algebraically
closed field K is split [21, Thm. 1.8.1, 1.10(i)]. Hence X(K ) 6=∅, so X is a faithful
k-scheme. Now the existence of S follows from (ii) of 4.5. �

The following corollaries are now an immediate consequence of the theorem
and 4.5.
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4.11. Corollary. For C to be an octonion algebra over k it is necessary and suffi-
cient that C be a k-algebra and there exist a faithfully flat étale k-algebra R such
that CR ∼= Zor(R) is a split octonion algebra over R.

4.12. Corollary. Let C be an octonion algebra over k. Then Aut(C) is a smooth
group scheme.

5. Octonion algebras: derivations

We are now ready for our main result on derivations of octonion algebras.

5.1. Theorem. Every derivation of an octonion algebra C over k is an associator
derivation: AssDer(C)= Der(C), so every derivation of C has the form

m∑
i=1

[Lai , Rbi ]

where m ∈ N and ai , bi ∈ C (1≤ i ≤ m) satisfy the relation
∑
[ai , bi ] = 0.

If the base ring contains 1
3 , every inner derivation of C is standard (Prop. 2.7(f)),

so Thm. 5.1 yields the following extension of Schafer’s theorem ([19, Thm. 6], [20,
Cor. 3.29] or, more generally, [1, Prop. 1]) to commutative rings.

5.2. Corollary. If 1
3 ∈ k, then every derivation of an octonion algebra over k is

standard, i.e., it is a sum of derivations Du,v, u, v ∈ C. �

Remarks. (a) Without the hypothesis on k, e.g., over fields of characteristic 3,
Cor. 5.2 is false; see [1] for details.

(b) Derivations of Azumaya algebras are always inner [12, III, Thm. 1.4, Thm. 5.1].
Thm. 5.1 may be regarded as an analogue of this result for octonion algebras.

Proof of Thm. 5.1, step 1. Our proof of Thm. 5.1 proceeds in two steps, the first
one combining Cor. 4.11 with the fact that the full derivation algebra of C by 1.11
and Cor. 4.12 (resp. the ideal of associator derivations by Prop. 2.9) commutes
with arbitrary (resp. flat) base change. Hence we may assume that C is split.

In the sequel, we will work under the less restrictive assumption that C be re-
duced, and we do so for two reasons. For one, the proof will sometimes become
more natural in this slightly more general setting. For another, we will be able
to derive a number of intermediate results of independent interest that retain their
validity for reduced rather than just split octonions.

The second step of the proof will be preceded by a digression into graded mod-
ules and algebras.
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5.3. Graded modules. Let 0 be a finite additive abelian group and M=
⊕

γ∈0 Mγ

a 0-graded k-module [4, II, §11, no 2]. Since 0 is finite, Endk(M) becomes a 0-
graded k-algebra whose γ -homogeneous component, Endk(M)γ , γ ∈0, consists of
all graded homomorphisms f : M→ M of degree γ , so f is k-linear and satisfies
f (Mδ)⊆Mγ+δ for all δ ∈0. Clearly, since Endk(M) is a 0-graded k-algebra, so is
gl(M). Moreover, if we are given a non-associative 0-graded k-algebra structure
A on M , one checks easily that Der(A) is a graded subalgebra of gl(A).

5.4. Example. Let C be a unital alternative k-algebra and e ∈ C an idempotent.
Writing e1 := e, e2 := 1C − e, the multiplication rules for the Peirce components
Ci j = Ci j (e) (i, j = 1, 2) [20, III, §2] imply that

C = C0⊕C1⊕C2, C0 := C00⊕C11, C1 := C12, C2 := C21

gives a Z/3Z-grading of C as a k-algebra, called the e-grading of C . We write

g= g0⊕ g1⊕ g2

for the corresponding Z/3Z-grading of the derivation algebra g := Der(C) in the
sense of 5.3 and call this the e-grading of g. Fixing i, j ∈ {1, 2}, i 6= j and ui j ∈

Ci j = Ci , it is straightforward to check, using (2-28), that the derivation

Di (ui j ) := −Dei ,ui j = De j ,ui j ∈ StanDer(C)

satisfies the relations

Di (ui j )xi i = xi i ui j , (5-1)

Di (ui j )x j j =−ui j x j j , (5-2)

Di (ui j )xi j = ui j xi j , (5-3)

Di (ui j )x j i =−[ui j , x j i ] (5-4)

for all xλ,µ ∈ Cλ,µ, λ,µ= 1, 2.

5.5. Proposition. Assumptions and notations being as in 5.4, the e-grading of g=

Der(C) is given by g= g0⊕ g1⊕ g2, where

g0 = {D ∈ g | De = 0}, gi = {Di (ui j ) | ui j ∈ Ci j } ({i, j} = {1, 2}).

Moreover, the maps ui j 7→ Di (ui j ) are k-module isomorphisms Ci j ∼= gi for i 6= j .

Proof. Setting g′0 := {D∈g | De=0} and g′i := {Di (ui j ) | ui j ∈Ci j } ({i, j}={1, 2}),
we first claim

g= g′0+ g′1+ g′2. (5-5)

Given D ∈ g, let D(e)= u11+u12+u21+u22 be the Peirce decomposition of D(e).
Then D(e)= D(e2)= D(e) ·e+e ·D(e), and comparing Peirce components yields
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D(e)= u12+u21. This implies D0 := D−D1(u12)+D2(u21)∈ g′0 by (5-1), (5-2),
which completes the proof of (5-5). But now, consulting (5-1)–(5-4) and the Peirce
rules, we conclude g′i ⊆ gi for i = 0, 1, 2, hence obtain equality by comparing (5-5)
with the e-grading of g. Finally, Di (ui j )= 0 implies Di (ui j ) ·ei = ui j = 0 by (5-1),
proving the last statement. �

The elements of g1, g2 are obviously standard derivations. But one can do better
than that by deriving the following result, which is due to the referee.

5.6. Proposition. Notations and assumptions being as in 5.4, let i, j ∈ {1, 2} be
distinct and u j i , v j i ∈ C j i . Using the formalism of 2.4, the element

u := 2ei ∧ (u j iv j i )− u j i ∧ v j i ∈

2∧
C ⊆W (C)= C ⊕

2∧
C

satisfies s(u)= 0 and

Di (u j iv j i )=1u ∈ AssDer(C). (5-6)

Proof. From 2.4 and the Peirce rules we conclude s(u)=2ei (u j iv j i )−2(u j iv j i )ei−

u j iv j i + v j i u j i = 2u j iv j i − 2u j iv j i = 0. Hence the proposition will follow once
we have shown

Di (u j iv j i )a = Da, D :=1u = 2[Lei , Ru j iv j i ] − [Lu j i , Rv j i ] (5-7)

for a = xlm ∈ Clm , l,m ∈ {i, j}. The Peirce rules combine with (5-1) and the
linearization of left alternativity (2-1) to yield

Dxi i = 2ei [xi i (u j iv j i )] − 2(ei xi i )(u j iv j i )− u j i (xi iv j i )+ (u j i xi i )v j i

= (u j i xi i + xi i u j i )v j i = u j i (xi iv j i )+ xi i (u j iv j i )

= Di (u j iv j i )xi i ;

hence (5-7) holds for a = xi i . Similarly, invoking (2-2) and (5-2), we obtain

Dx j j = 2ei [x j j (u j iv j i )] − 2(ei x j j )(u j iv j i )− u j i (x j jv j i )+ (u j i x j j )v j i

= − u j i (x j jv j i + v j i x j j )=−(u j i x j j )v j i − (u j iv j i )x j j

= Di (u j iv j i )x j j ;

hence (5-7) holds for a = x j j . But the Peirce rules also combine with (5-4) and
the linearization of s j i (s j i t j i ) = s2

j i t j i = 0 = t j i s2
j i = (t j i s j i )s j i for s j i , t j i ∈ C j i

to yield Dx j i = 2ei [x j i (u j iv j i )] − 2(ei x j i )(u j iv j i )− u j i (x j iv j i )+ (u j i x j i )v j i =

x j i (u j iv j i )−(u j iv j i )x j i =−[u j iv j i , x j i ] = Di (u j iv j i )x j i , hence (5-7) for a= x j i
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as well. Finally, for a = xi j , we linearize (2-1), (2-2) and obtain

Dxi j = 2ei [xi j (u j iv j i )] − 2(ei xi j )(u j iv j i )− u j i (xi jv j i )+ (u j i xi j )v j i

= − 2xi j (u j iv j i )− u j i (xi jv j i )+ (u j i xi j )v j i

= − 2(xi j u j i )v j i − 2(u j i xi j )v j i + 2u j i (xi jv j i )− u j i (xi jv j i )+ (u j i xi j )v j i

= u j i (xi jv j i )− (u j i xi j )v j i = u j i (v j i xi j + xi jv j i )− (u j i xi j )v j i = (u j iv j i )xi j

= Di (u j iv j i )xi j

by (5-3), as desired. �

5.7. Corollary. If Ci j = C2
j i , then gi ⊆ AssDer(C). �

5.8. Setting the stage. In order to continue with the proof of Thm. 5.1, we fix
once and for all a reduced octonion algebra C = Zor(M, θ) over k as in 4.3. Our
aim will be to describe in more detail the zero component of the derivation algebra
g=Der(C) relative to its e-grading, where e is one of the two standard idempotents

e = e1 =

[
1 0
0 0

]
, e2 =

[
0 0
0 1

]
∈ C.

To this end, we first note

C0=

[
k 0
0 k

]
= ke1⊕ke2, C1=C12=

[
0 M+

0 0

]
, C2=C21=

[
0 0

M− 0

]
(5-8)

by 5.4. The properties of the vector product assembled in 4.3 ensure the relations

C2
j i = Ci j (i, j ∈ {1, 2} distinct). (5-9)

As usual, we will write SL(M) for the special linear group of M=M+, and SL(M)
for the affine group scheme over k given by

SL(M)(R) := SL(MR) (R ∈ k-alg),

whose Lie algebra is

sl(M) := {g ∈ gl(M) | tr(g)= 0}.

The centralizer in the sense of [7, II, §1, 3.4] of e in G :=Aut(C) will be denoted
by G0. Then G0 acts like the identity on C0 in all extensions since e2 = 1−e1 and
G fixes the unit element. G0 is a subgroup scheme of G whose Lie algebra is the
subalgebra g0 of g described in Prop. 5.5.

For g ∈ End(M) let g∗ ∈ End(M∗) be defined by 〈g∗(ξ), x〉 = 〈ξ, g(x)〉, for all
x ∈ M , ξ ∈ M∗. Then formula (4-13) implies〈
g(x)×g(y), g(z)

〉
= θ

(
g(x)∧g(y)∧g(z)

)
=det(g)·θ(x∧y∧z)=det(g)·

〈
x×y, z

〉
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for all x, y, z ∈ M . Now let g ∈ GL(M) and replace z by g−1(z). Then〈
g(x)× g(y), z

〉
= det(g) ·

〈
x × y, g−1(z)

〉
= det(g) ·

〈
g∗−1(x × y), z

〉
holds for all z, so

g(x)× g(y)= det(g) · g∗−1(x × y) (x, y ∈ M, g ∈ GL(M)). (5-10)

The following theorem generalizes [10, Thm. 4] from fields to commutative rings.
It says that the group scheme G0 defined above is of type A2, i.e., a twisted form
of SL3.

5.9. Theorem. With the notations of 5.8, there is an isomorphism

8 : SL(M) ∼−→G0

of group schemes where 8(g) is given by

8(g) ·
[
α1 u
x α2

]
:=

[
α1 g(u)

g∗−1(x) α2

]
for all g ∈ SL(MR), α1, α2 ∈ R, u ∈ M+R , x ∈ M−R , R ∈ k-alg.

Proof. After a suitable base extension, it suffices to prove this for R = k. Clearly,
8 is a group monomorphism from SL(M) to GL(C). Given g ∈SL(M), a straight-
forward verification shows, using (5-10) and (4-14), that 8(g) as defined above is
an automorphism of C fixing e1. It therefore remains to show that 8 : SL(M)→
G0(k) is surjective, so let ϕ ∈ G0(k) be an automorphism of C fixing e1. Then
ϕ also fixes e2 = 1C − e1 and stabilizes the Ci j . Hence (5-8) yields elements
g ∈ GL(M+), h ∈ GL(M−) such that

ϕ
( [α1 u

x α2

] )
=

[
α1 g(u)

h(x) α2

]
(αi ∈ k, u ∈ M+, x ∈ M−).

Since ϕ leaves the norm of C invariant, (4-15) implies h = g∗−1, so it remains
to prove det(g) = 1. Now

[
0 u
0 0

] [
0 v
0 0

]
=
[

0 0
u×v 0

]
by (4-14), so ϕ multiplicative

implies g∗−1(u×v)= g(u)×g(v). But the linear map
∧2 M+→M− determined

by the vector product is surjective, forcing det(g)= 1 by comparison with (5-10),
as desired. �

Passing to the level of Lie algebras in Thm. 5.9, we obtain

5.10. Corollary. Notations being as in 5.8, the map

sl(M)
∼
−→ g0, f 7−→ D0( f )
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determined by

D0( f )
[
α1 u
x α2

]
=

[
0 f (u)

f ∨(x) 0

]
for f ∈ sl(M), αi ∈ k (i = 1, 2), u ∈ M+, x ∈ M−, where f ∨ := − f ∗, is an
isomorphism of Lie algebras. �

Remark. Combining Cor. 5.10 with Prop. 5.5, we see that Der(C) is a finitely
generated projective module of rank 14, as it should be.

Proof of Thm. 5.1, step 2. We are now in a position to finish the proof of
Thm. 5.1. By Prop. 5.5 and Cor. 5.7 combined with (5-9), it suffices to show
that g0 consists entirely of associator derivations, i.e.,

g0 ⊆ AssDer(C). (5-11)

Inspired by the proof of [1, Prop. 1], we do so by identifying M+ ⊗ M− =
Endk(M+) canonically via

(u⊗ x)(v)= 〈x, v〉u (u, v ∈ M+, x ∈ M−). (5-12)

Observe

tr(u⊗ x)= 〈u, x〉 (u ∈ M+, x ∈ M−), (5-13)

let u, v ∈ M+, x ∈ M− and put

a :=
[

0 u
0 0

]
, b :=

[
0 0
x 0

]
, c :=

[
0 v

0 0

]
∈ C. (5-14)

A direct computation, involving (2-12), (4-14) and (5-12) yields

[a, b] = 〈u, x〉(e2− e1), [La, Rb]e1 = 0, [La, Rb]c =
[

0 h(v)
0 0

]
, (5-15)

where

h = u⊗ x −〈u, x〉IdM+ . (5-16)

By Cor. 5.10, every element of g0 has the form D0( f ) for some f ∈ sl(M+). Write
f =

∑
ui ⊗ xi , ui ∈ M+, xi ∈ M−, and put

ai :=

[
0 ui

0 0

]
, bi :=

[
0 0
xi 0

]
∈ C.

Then (5-13)–(5-16) combine with Cor. 5.10 to show
∑
[ai , bi ] = 0 and D0( f ) =∑

[Lai , Rbi ] ∈ AssDer(C). This completes the proof of (5-11). �
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On Oliver’s p-group conjecture
David J. Green, László Héthelyi and Markus Lilienthal

Let S be a p-group for an odd prime p. B. Oliver conjectures that a certain
characteristic subgroup X(S) always contains the Thompson subgroup J (S). We
obtain a reformulation of the conjecture as a statement about modular represen-
tations of p-groups. Using this we verify Oliver’s conjecture for groups where
S/X(S) has nilpotence class at most two.

1. Introduction

The recently introduced concept of a p-local finite group seeks to provide a treat-
ment of the p-local structure of a finite group G which does not refer directly to the
group G itself and yet retains enough information to construct the p-localisation
of the classifying space BG. Ideally one could then associate a p-local classifying
space to a p-block of G, and to certain exotic fusion systems. See the survey article
by Broto, Levi and Oliver [2004] for an introduction to this area.

A key open question about p-local finite groups is whether or not there is a
unique centric linking system associated to each saturated fusion system. Oliver
showed that this would follow from a conjecture about higher limits (see [Oliver
2004, Conjecture 2.2]) and that for odd primes this higher limits conjecture would
in turn follow from a purely group-theoretic conjecture:

Conjecture [Oliver 2004, Conjecture 3.9]. Let S be a p-group for an odd prime p.
Then

J (S)≤ X(S),

where J (S) is the Thompson subgroup generated by all elementary abelian p-
subgroups whose rank is the p-rank of S, and X(S) is the Oliver subgroup de-
scribed in Section 2.

Our main result on Oliver’s conjecture is:

Theorem 1.1. Let S be a p-group for an odd prime p. If S/X(S) has nilpotency
class at most two, then S satisfies Oliver’s conjecture.

MSC2000: 20D15.
Keywords: p-group, characteristic subgroup, Thompson subgroup, p-local finite group,

Replacement Theorem.
Héthelyi was supported by the Hungarian Scientific Research Fund, OTKA grant T049 841.
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Remark. This subsumes all three cases of Oliver’s Proposition 3.7 in the first case
X(S)≥ J (S).

The proof of Theorem 1.1 depends on a reformulation of Oliver’s conjecture, for
which we need to recall the terms F-module and offender. See for example [Meier-
frankenfeld and Stellmacher 2006] for recent results about offenders.

Definition [Gorenstein et al. 1994, Definition 26.5]. Let G be a finite group and V
a faithful FpG-module. If there exists a nonidentity elementary abelian p-subgroup
E ≤ G which satisfies the inequality |E ||CV (E)| ≥ |V |, then V is called an F-
module for G, and E an offending subgroup.

Remark. F-module is short for “failure of (Thompson) factorization module”.
Another way to phrase the inequality is dim(V )− dim(V E)≤ rank(E).

We will always take G to be a nontrivial p-group. Hence the FpG-module V is
faithful if and only if it is faithful as a module for�1(Z(G)). We shall be interested
in the stronger condition:

(PS) The restriction of V to each central order p subgroup has a nontrivial projec-
tive summand.

Remark. Projective and free are equivalent here. We are grateful to the referee
for suggesting this formulation of the property. Another formulation is that every
central order p element operates with minimal polynomial (X − 1)p: equivalence
follows from the standard properties of the Jordan normal form.

Theorem 1.2. Let G 6= 1 be a finite p-group. Then Oliver’s conjecture holds
for every finite p-group S with S/X(S) ∼= G if and only if G has no F-modules
satisfying (PS).

Conjecture 1.3. Let p be an odd prime and G 6= 1 a finite p-group. Then G has
no F-modules which satisfy (PS).

Corollary 1.4. Conjecture 1.3 is equivalent to Oliver’s Conjecture 3.9.

We prove Theorem 1.1 by verifying Conjecture 1.3 for groups of class at most two.
For this we need this result:

Definition (See [Glauberman 1972]). Let V be a faithful FpG-module. A non-
identity element g ∈ G is called quadratic if (g− 1)2V = 0.

Theorem 1.5. Suppose that p is an odd prime, G is a p-group of nilpotence class
at most two, and V is a faithful FpG-module. If G contains a quadratic element,
then so does �1(Z(G)).
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Structure of the paper. We prove Theorem 1.2 and Corollary 1.4 in Section 2. In
Section 3 we derive a consequence of the Replacement Theorem, Theorem 3.3.
Then in Section 4 we prove Theorems 1.5 and 1.1. Finally in Section 5 we discuss
a class three example which cannot be handled using Theorem 3.3.

2. The reformulation of Oliver’s conjecture

For the convenience of the reader we start by recapping the definition and elemen-
tary properties of X(S), as given in [Oliver 2004, §3].

Definition [Oliver 2004, Definition 3.1]. Let S be a p-group and K C S a normal
subgroup. A Q-series leading up to K consists of a series of subgroups

1= Q0 ≤ Q1 ≤ · · · ≤ Qn = K

such that each Qi is normal in S, and such that

[�1(CS(Qi−1)), Qi ; p− 1] = 1

holds for each 1 ≤ i ≤ n. The unique largest normal subgroup of S which admits
such a Q-series is called X(S), the Oliver subgroup of S.

Lemma 2.1 (Oliver). If 1 = Q0 ≤ Q1 ≤ · · · ≤ Qn = K is such a Q-series and
H C G also admits a Q-series, then there is a Q-series leading up to H K which
starts with Q0, . . . , Qn .

Hence there is indeed a unique largest subgroup admitting a Q-series, and this
subgroup X(S) is characteristic in S. In addition, X(S) is centric in S: recall that
P ≤ S is centric if CS(P)= Z(P).

Proof. See [Oliver 2004, pp. 334–5]. �

Now we can start to derive the reformulation of Oliver’s conjecture.

Lemma 2.2. Let S be a finite p-group with X(S) < S. Then the induced action of
G := S/X(S) on V :=�1

(
Z(X(S))

)
satisfies (PS).

Proof. Pick g ∈ S such that 1 6= gX(S) ∈ �1(Z(G)). Then 〈X(S), g〉 C S and
so [V, g; p− 1] 6= 1, by maximality of X(S). So the minimal polynomial of the
action of g does not divide (X − 1)p−1. But it has to divide (X − 1)p

= X p
− 1.

So (X − 1)p is the minimal polynomial. This is the reformulation of (PS). �

Proof of Theorem 1.2. Suppose first that no F-module for G satisfies (PS), and that
S/X(S)∼= G. Let us prove Oliver’s Conjecture for G. By Lemma 2.2 the induced
action of G on V := �1

(
Z(X(S))

)
satisfies (PS), so by assumption there are no

offending subgroups.
Let E ≤ S be an elementary abelian subgroup not contained in X(S). It suffices

for us to show that X(S) contains an elementary abelian subgroup of greater rank
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than E . We can split E up as E = E1 × E2 × E3, with E1 = E ∩ V ≤ V E and
E1 × E2 = E ∩X(S). By assumption, 1 6= E3 embeds in S/X(S) ∼= G. As there
are no offenders, we have dim(V )− dim(V E3) > rank(E3). But V E3 = V E . So
V × E2 lies in X(S) and has greater rank than E .

Conversely suppose that the FpG-module V is an F-module and satisfies (PS).
Set S to be the semidirect product S= V oG defined by this action. From Lemma
2.3 below we see that V = X(S). As V is an F-module, there is an offender: an
elementary abelian subgroup 1 6= E ≤G with dim(V )−dim(V E)≤ rank(E). This
means that W := V E

× E is an elementary abelian subgroup which does not lie in
V = X(S) but does have rank at least as great as that of X(S). So W ≤ J (S) and
therefore J (S)� X(S). �

Lemma 2.3. Suppose that V is an FpG-module which satisfies (PS). Let S be the
semidirect product S = V oG defined by this action. Then V = X(S).

Proof. First we prove that V is a maximal normal abelian subgroup of S: clearly
it is abelian and normal. If A is a normal abelian subgroup strictly containing V ,
then A= VoH for some nontrivial abelian H CG. As H is nontrivial and normal
it contains an order p element g of Z(G). Since V satisfies (PS), it follows that
g acts on V with minimal polynomial (X − 1)p. But that is a contradiction, as A
is abelian. So V is indeed maximal normal abelian.

We now argue as in the proof of Oliver’s Lemma 3.2. Since V is maximal
normal abelian, it is centric in S: for if not then V <CS(V )C S, and so CS(V )/V
has nontrivial intersection with the centre of S/V . Picking an x ∈ CS(V ) whose
image in CS(V )/V is a nontrivial element of this intersection, we obtain a strictly
larger normal abelian subgroup 〈V, x〉, a contradiction. Hence �1(CS(V ))= V .

Moreover, since V is normal abelian and p> 2, there is a Q-series 1< V . So by
Lemma 2.1 there is a Q-series leading up to X(S) with Q1 = V . If V <X(S) then
there is Q1 < Q2 C S with [V, Q2; p− 1] = 1. But this cannot happen, because
by the argument of the first paragraph of this proof there is a g ∈ Q2 whose action
on V has minimal polynomial (X − 1)p. So V = X(S). �

Proof of Corollary 1.4. Immediate from Theorem 1.2. If X(S) = S then Oliver’s
Conjecture holds automatically. �

3. The Replacement Theorem

We shall need the following lemma, which is a special case of the Replacement
Theorem and its proof in [Huppert and Blackburn 1982, X, 3.3].

Lemma 3.1. Suppose that G 6= 1 is elementary abelian, that V is a faithful FpG-
module, and that G contains no quadratic elements. Let us write

T = {(H,W ) | H ≤ G and W is a subspace of V H
}.
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Suppose that (H,W ) ∈ T with H 6= 1. Then there is (K ,U ) ∈ T with K < H ,
W (U ( V and |H ×W | = |K ×U |.

Proof. Let us set

I = {v ∈ V | (h− 1)v ∈W for every h ∈ H},

J = {v ∈ V | (h− 1)v ∈ I for every h ∈ H}.

If 1 6= h ∈ H then (h − 1)2v 6= 0 for some v ∈ V . Then v 6∈ I , for otherwise
(h − 1)v ∈ W and so (h − 1)2v = 0. So I ( V , and therefore W ( I ( J by the
usual orbit length argument. Pick v0 ∈ J \ I and set U to be the subspace spanned
by W and {(h− 1)v0 | h ∈ H}. Set K = {h ∈ H | (h− 1)v0 ∈ W }. So U ) W by
choice of v0. Also U ⊆ I ( V . If h, h′ ∈ H then

(hh′− 1)v0 = (h− 1)v0+ (h′− 1)v0+ (h− 1)(h′− 1)v0,

and so
(hh′− 1)v0 ≡ (h− 1)v0+ (h′− 1)v0 (mod W ). (3-1)

So K ≤ H , and in fact K < H by choice of v0. By (3-1) it also follows that
|H : K | = pr for r = dim U − dim W . Finally U ⊆ V K , for if k ∈ K and u ∈ U ,
then

u =
∑
h∈H

λh(h− 1)v0+w

for suitable λh ∈ Fp, w ∈W . So

(k− 1)u =
∑
h∈H

λh(h− 1)(k− 1)v0 = 0,

since (k− 1)v0 ∈W ⊆ V H . �

Corollary 3.2. Suppose as in Lemma 3.1 that (H,W ) ∈ T and H 6= 1. Then
|H ×W |< |V |.

Proof. By induction on |H |. By the lemma we may reduce |H | whilst keeping
|H ×W | constant. This process only stops when we arrive at (K ,U ) with K = 1.
But U ( V by the lemma. �

The following result is presumably well known to those familiar with Thompson
factorization.

Theorem 3.3. Suppose that p is an odd prime, G is a finite group, V is a faithful
FpG-module, and E ≤ G is a nonidentity elementary abelian p-subgroup. If E is
an offender, then it must contain a quadratic element.

Proof. Without loss of generality E = G. Apply Corollary 3.2 to the pair

(G, V G) ∈ T . �
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Remark. Pursuing this direction further, it might be worthwhile to investigate po-
tential applications of the P(G, V )-theorem in the theory of p-local finite groups.
The properties of the Thompson subgroup J (S) which Chermak describes in his
comments on the motivation for the P(G, V )-theorem [Chermak 1999, Remark 2]
are the same properties which led to J (S) featuring in Oliver’s conjecture. And
Timmesfeld’s Replacement Theorem plays an important part in the proof of the
P(G, V )-theorem.

4. Nilpotence class at most two

We can now start work on the proof of Theorem 1.1.

Lemma 4.1. Suppose that p is an odd prime, that G 6= 1 is a finite p-group, and
that V is a faithful FpG-module. Suppose that A, B ∈G are such that C := [A, B]
is a nontrivial element of CG(A, B). If C is nonquadratic, then so are A and B.

Proof. By symmetry it suffices to prove that B is nonquadratic. So suppose that
B is quadratic. Denote by α, β, γ the action matrices on V of A− 1, B − 1 and
C − 1 respectively.

By assumption we have γ 2
6= 0 and β2

= 0. As C commutes with A and B,
we have αγ = γα and βγ = γβ. Since [A, B] = C , we have AB = B AC and
therefore

αβ −βα = γ (1+β +α+βα). (4-1)

Evaluating β · (4-1) ·β, we deduce that γβαβ = 0. So when we evaluate β · (4-1)+
(4-1) · β, we find that γ (2β + βα + αβ) = 0. Let us write λ = −1

2 and δ = γβ.
Then we have

δ = λ(δα+αδ).

From this one sees by induction upon r ≥ 1 that

δ = λr
r∑

s=0

(
r
s

)
αsδαr−s .

Since the order of A is a power of p, it follows that (A−1) and its action matrix α
are nilpotent. From this we deduce that δ = 0, that is γβ = 0. Applying this to
γ · (4-1) we see that γ 2(1+ α) = 0. As α is nilpotent it follows that γ 2

= 0, a
contradiction. So β2

6= 0 after all. �

Proof of Theorem 1.5. We suppose that �1(Z(G)) has no quadratic elements, and
show that G has none either. Suppose 1 6= B ∈ Z(G). Then there is an r ≥ 0 with
1 6= B pr

∈�1(Z(G)). So B pr
is not quadratic. Hence (B−1)2pr

= (B pr
−1)2 has

nonzero action. So (B − 1)2 has nonzero action, and Z(G) contains no quadratic
elements.
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If B 6∈ Z(G) then the nilpotency class is two and there is an element A ∈G with
1 6= [A, B] ∈ Z(G). So (B− 1)2 has nonzero action by Lemma 4.1. �

Corollary 4.2. Suppose that p is an odd prime, G 6= 1 a finite p-group and V an
FpG-module which satisfies (PS). If the nilpotence class of G is at most two then
V cannot be an F-module.

Proof. As p is odd, condition (PS) means that there are no quadratic elements in
�1(Z(G)). Then Theorem 1.5 says that there are no quadratic elements in G. So
by Theorem 3.3 there are no offenders. �

Proof of Theorem 1.1. Follows from Corollary 4.2 and Theorem 1.2 if X(S) < S.
If X(S)= S then there is nothing to prove. �

5. A class 3 example

Theorem 1.5 was a key step in the proof of Theorem 1.1. We now give an example
which shows that Theorem 1.5 does not apply to groups of nilpotence class three.

Let G be the semidirect product G = K o L , where the K = F3
3 is elementary

abelian of order 33, L = 〈A〉 is cyclic of order 3, and the action of L on v ∈ K is
given by

AvA−1
=

1 1 0
0 1 1
0 0 1

 · v.
Observe that G is isomorphic to the wreath product C3 o C3, as the action of A
permutes the following basis of K cyclically: (0, 0, 1), (0, 1, 1), (1, 2, 1).

Setting B = (0, 0, 1), C = (0, 1, 0) and D = (1, 0, 0) we obtain the following
presentation of G, where we take [A, B] to mean AB A−1 B−1.

G =
〈

A, B,C, D
∣∣∣∣ A3
= B3

= C3
= D3

= 1, D central,
[B,C] = 1, [A, B] = C , [A,C] = D

〉
,

From this we deduce that matrices α, β, γ, δ ∈ Mn(F3) induce a representation
ρ : G→ GLn(F3) with

ρ(A)= 1+α, ρ(B)= 1+β, ρ(C)= 1+ γ, ρ(D)= 1+ δ,

if and only if the following relations are satisfied, where [α, β] now of course
means αβ −βα:

α3
= β3

= γ 3
= δ3
= 0,

[α, δ] = [β, δ] = [γ, δ] = [β, γ ] = 0,

[α, β] = γ (1+β)(1+α), [α, γ ] = δ(1+ γ )(1+α).

(5-1)
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Now we consider what it means for such a representation to satisfy (PS). Here,

Z(G)= 〈D〉

is cyclic of order 3. So we need both (ρ(D)−1)2 and (ρ(D2)−1)2 to be nonzero.
That is, δ2 and (δ2

+2δ)2 = δ2(1+ δ+ δ2) should both be nonzero. But 1+ δ+ δ2

is invertible, since δ is nilpotent.
We deduce therefore that matrices α, β, γ, δ ∈GLn(F3) induce a representation

of G satisfying (PS) if and only if they satisfy the inequality

δ2
6= 0 (5-2)

in addition to (5-1).
Using GAP [2007] we obtained the following matrices in GL8(F3). The reader

is invited to check1 that they satisfy the relations (5-1) and (5-2).

δ =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, γ =



0 0 1 1 2 2 2 1
0 0 1 0 1 1 0 0
0 0 0 0 0 0 2 2
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

β =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, α =



2 2 0 2 0 1 0 1
1 1 2 2 0 0 0 0
0 0 2 2 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 2 0 0 1 1
0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


.

Observe that β2
=0. So although this module satisfies (PS), the elementary abelian

subgroups 〈B〉 and 〈B,C, D〉 both contain B, a quadratic element. So we must find
another way to show that they are not offenders: Theorem 3.3 does not apply.

Remark. More generally, we are not currently able to decide Conjecture 1.3 either
way for the wreath product group H oC3, where the group H on the bottom is an
elementary abelian 3-group.

1See http://users.minet.uni-jena.de/~green/Documents/matTest.g for a GAP script that per-
forms these checks.
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The number of 2×2 integer matrices
having a prescribed integer eigenvalue

Greg Martin and Erick Wong

What is the probability that an integer matrix chosen at random has a particular
integer as an eigenvalue, or an integer eigenvalue at all? For a random real
matrix, what is the probability of there being a real eigenvalue in a particular
interval? This paper solves these questions for 2× 2 matrices, after specifying
the probability distribution suitably.

1. Introduction

Random matrices arise in many mathematical contexts, and it is natural to ask
about the properties that such matrices satisfy. If we choose a matrix with integer
entries at random, for example, we would like to know the probability that it has a
particular integer as an eigenvalue, or an integer eigenvalue at all. Similarly, if we
choose a matrix with real entries at random, we would like to know the probability
that it has a real eigenvalue in a particular interval. Certainly the answer depends
on the probability distribution from which the matrix entries are drawn.

In this paper, we are primarily concerned with uniform distribution, so for both
integer-valued and real-valued cases we must restrict the entries to a bounded in-
terval. In [Martin and Wong 2008], we showed that random n × n matrices of
integers almost never have integer eigenvalues. An explicit calculation by Hetzel,
Liew and Morrison [Hetzel et al. 2007] shows that a 2 × 2 matrix with entries
independently chosen uniformly from [−1, 1] has real eigenvalues with probability
49
72 . This calculation gives hope that our more precise questions about eigenvalues
of a particular size might be accessible in the 2× 2 setting. The purpose of this
paper is to resolve these questions, once we make them suitably precise.

For an integer k ≥ 1, let M2(k) denote the uniform probability space of 2× 2
matrices of integers with absolute value at most k. Note that

|M2(k)| = (2k+ 1)4 = 16k4
+ O(k3).

MSC2000: primary 15A36, 15A52; secondary 11C20, 15A18, 60C05.
Keywords: random matrix, eigenvalue, integer eigenvalue, integer matrix, distribution of

eigenvalues.
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We will obtain exact asymptotics for the number of matrices in M2(k) having in-
teger eigenvalues and, more precisely, for the number of matrices with a given
integer eigenvalue λ.

For any integer λ, define

Mλ
2(k)= {M ∈M2(k) : λ is an eigenvalue of M},

and let
MZ

2 (k)=
⋃
λ∈Z

Mλ
2(k).

Theorem 1. Define the function V : [−2, 2] → R by V (−δ)= V (δ) and

V (δ)=


4−2δ−δ2

+δ2 log(1+δ)−2(1−δ) log(1−δ) if 0≤ δ < 1,

1+log 2 if δ = 1,

4−2δ−δ2
+δ2 log(δ+1)+2(δ−1) log(δ−1) if 1< δ ≤

√
2,

δ2
−2δ−(δ2

−2δ+2) log(δ−1) if
√

2< δ ≤ 2

(1)

(where log is the natural logarithm). Then for any integer λ between −2k and 2k,

|Mλ
2(k)| =

24V (λ/k)
π2 k2 log k+ O(k2), (2)

where the implied constant is absolute. On the other hand, if |λ| > 2k then Mλ
2(k)

is empty.

We remark that the function V (δ) is continuous and, with the exception of the
points of infinite slope at δ=±1, differentiable everywhere (even at δ=±2, if we
imagine that V (δ) is defined to be 0 when |δ|>2). Notice that (2) is technically not
an asymptotic formula when λ is extremely close to±2k, because then the value of
V (λ/k) can have order of magnitude 1/log k or smaller, making the “main term”
no bigger than the error term. However, (2) is truly an asymptotic formula for
|λ| < 2k −ψ(k)k/(log k)1/3, where ψ(k) is any function tending to infinity (the
exponent 1

3 arises because V (δ) approaches 0 cubically as δ tends to 2 from below).
By summing the formula (2) over all possible values of λ, we obtain an asymp-

totic formula for |MZ
2 (k)|. We defer the details of the proof to Section 3.

Corollary 2. Let

C = 7
√

2+4+3 log(
√

2+1)
3π2 ≈ 0.55873957.

The probability that a randomly chosen matrix in M2(k) has integer eigenvalues is
asymptotically C(log k)/k. More precisely,

|MZ
2 (k)| = 16Ck3 log k+ O(k3).
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If M ∈ M2(k) has eigenvalue λ, then the scaled matrix k−1 M has eigenvalue
λ/k, which is the argument of V that appears on the right-hand side of (2). Thus
one interpretation of Theorem 1 is that for large k, the rational eigenvalues of k−1 M
tend to be distributed like the function V .

Note that the entries of k−1 M are sampled uniformly from a discrete, evenly-
spaced subset of [−1, 1]. As k → ∞ this probability distribution converges in
law to the uniform distribution on the interval [−1, 1]. Let M2([−1, 1]) denote the
probability space of all 2×2 matrices whose entries are independent random vari-
ables drawn from this distribution. One might ask whether the distribution given
by Theorem 1 is just a discrete approximation to the distribution of eigenvalues in
M2([−1, 1]); the answer, perhaps surprisingly, is no. The next theorem provides
this latter distribution.

Theorem 3. Define W (δ) to be the density function for real eigenvalues of matrices
in M2([−1, 1]): if M is a randomly chosen matrix from M2([−1, 1]), then the
expected number of eigenvalues of M in the interval [s, t] is

∫ t
s W (δ) dδ. Then

W (−δ)=W (δ) and

W (δ)=



80+20δ+90δ2
+52δ3

−107δ4

144(1+δ)
−

1
4δ(1−δ

2) log(1+δ)

−
1

12(5− 7δ+ 8δ2)(1−δ) log(1−δ) if 0≤ δ ≤ 1,

δ(20+10δ−12δ2
−3δ3)

16(1+δ)
+

1
4δ(δ

2
−1) log(δ+1)

+
1
4(3δ−1)(δ−1) log(δ−1) if 1≤ δ ≤

√
2,

δ(δ−2)(2−6δ+3δ2)
16(δ−1)

−
1
4(δ−1)3 log(δ−1) if

√
2≤ δ ≤ 2,

0 if δ ≥ 2.

As in the case of V (δ), the function W (δ) is continuous and differentiable ev-
erywhere, with the exception of the points of infinite slope at δ =±1. (The value
W (1) = 15

32 makes the function continuous there, although the value of a density
function at a single point is irrelevant to the probability distribution.) It also shares
the same cubic decay as δ tends to 2 from below. However, there are obvious
qualitative differences between the functions V and W . In Figure 1 we plot V and
W on the same axes, normalized so that the area under each is 2 (these normalized
versions are denoted U Z and U R in our earlier paper [Martin and Wong 2008]). In
the case of M2(k), this normalization corresponds to conditioning on having integer
eigenvalues, that is, scaling by the probability C(log k)/k from Corollary 2. For
M2([−1, 1]) we are conditioning on having real eigenvalues, which occurs with
probability 49

72 (this can be obtained by integrating W (δ), analogously to the proof
of Corollary 2; the computation in [Hetzel et al. 2007] is more direct).
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Figure 1. Graph of U Z (V normalized) versus U R (W normalized).

Note that the distribution W (δ) is bimodal, having its maxima at

δ ≈±0.75030751.

Thus, a random matrix in M2([−1, 1]) is more likely to have an eigenvalue of
magnitude near 3

4 than one of magnitude near 0. We expect this would still hold if
we were to condition on matrices in M2([−1, 1]) having rational eigenvalues, since
any matrix with real eigenvalues is a small perturbation from one with rational
eigenvalues. That this is not true for V (δ) shows that the eigenvalue distribution of
M2(k) is not purely the result of magnitude considerations but also encodes some
of the arithmetic structure of the integers up to k.

We remark that Theorem 1 can also be obtained from a powerful result of
Katznelson [1993]. Let B be a convex body containing the origin in R4, and embed
the set of 2× 2 integer matrices (

a c
b d

)
as lattice points (a, b, c, d) ∈ Z4. Then [Katznelson 1993, Theorem 1] gives an
asymptotic formula for the number of singular integer matrices inside the dilate
k ·B. Taking

B= [−1, 1]4

then yields an asymptotic formula for |M0
2 (k)|, and more generally one can ob-

tain |Mλ
2 (k)| by adding and subtracting appropriate shifts of B. The asymptotic

formula in [Katznelson 1993] is defined in terms of an unusual singular measure
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supported on the Zariski-closed subset of R4 corresponding to singular matrices.
The explicit computation of this measure is roughly analogous to our case-by-
case considerations in Section 4, modulo the significant complications of carrying
error terms. Our techniques are more elementary, but Katznelson’s results apply
in theory to matrices of any size, whereas our methods become unwieldy even for
3× 3 matrices.

In the case of n×n matrices with entries independently chosen from a Gaussian
distribution, a great deal more is known. Edelman [1997] has computed the exact
distributions of the real and complex eigenvalues for any n, as well as the number
of real eigenvalues (for instance, the probability of having all n eigenvalues real is
precisely 2−n(n−1)/4). As n→∞, the real eigenvalues, suitably rescaled by a factor
of 1/
√

n, converge to the uniform distribution on [−1, 1]. Similarly, the complex
eigenvalues converge to the “circular law” predicted by Girko [1984], namely the
uniform distribution on the unit disk centered at the origin. Very recently, Tao
and Vu [2008] have shown that the circular law is universal: one can replace
the Gaussian distribution by an arbitrary distribution with mean 0 and variance 1.
Similar results have been established for random symmetric matrices with entries
independently chosen from a Gaussian distribution (Wigner law) or from other
distributions.

Those who are interested in the connections between analytic number theory
and random matrix theory might wonder whether those connections are related to
the present paper. The matrices in that context, however, are selected from classical
matrix groups, such as the group of n×n Hermitian matrices, randomly according
to the Haar measures on the groups. The relationship to our results is therefore
minimal.

2. Preliminaries about matrices

We begin with some elementary observations about 2× 2 matrices that will sim-
plify our computations. The first lemma explains why the functions V and W are
supported only on [−2, 2].

Lemma 4. Any eigenvalue of a matrix in M2(k) is bounded in absolute value by
2k. Any eigenvalue of a matrix in M2([−1, 1]) is bounded in absolute value by 2.

Proof. We invoke Gershgorin’s circle theorem [1931], a standard result in spectral
theory: let M = (mi j ) be an n×n matrix, and let D(z, r) denote the disk of radius
r around the complex number z. Then Gershgorin’s theorem says that all of the
eigenvalues of M must lie in the union of the disks

D
(

m11,
∑

1≤ j≤n
j 6=1

|m1 j |

)
, D

(
m22,

∑
1≤ j≤n

j 6=2

|m2 j |

)
, . . . , D

(
mnn,

∑
1≤ j≤n

j 6=n

|mnj |

)
.
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In particular, if all of the entries of M are bounded in absolute value by B, then all
the eigenvalues are bounded in absolute value by nB. �

The key to the precise enumeration of Mλ
2(k) is the simple structure of singular

integer matrices:

Lemma 5. For any singular matrix M ∈ M2(k), either at least two entries of M
equal zero, or else there exist nonzero integers a, b, c, d with (a, b)= 1 such that

M =
(

ac bc
ad bd

)
. (3)

This representation of M is unique up to replacing each of a, b, c, d by its negative.

Proof. If one of the entries of M equals zero, then a second one must equal zero
as well for the determinant to vanish. Otherwise, given

M =
(

m11 m12

m21 m22

)
with none of the mi j equal to zero, define c = (m11,m12), and set a = m11/c and
b = m12/c, so that (a, b) = 1. Since M is singular, the second row of m must be
a multiple of the first row, that is, there exists a real number d such that m21 = ad
and m22= bd. And since a and b are relatively prime, d must in fact be an integer.

This argument shows that every such matrix has one such representation. If

M =
(

a′c′ b′c′

a′d ′ b′d ′

)
is another such representation, then (a′, b′) = 1 implies (a′c′, b′c′) = |c′|, which
shows that |c′| = c; the equalities |a′| = |a|, |b′| = |b|, and |d ′| = |d| follow quickly.

�

For a 2× 2 matrix M =
(a

b
c
d

)
, we define

disc M = (tr M)2− 4 det M = (a− d)2+ 4bc.

It is easily seen that this is the discriminant of the characteristic polynomial of M .
We record the following elementary facts, which will be useful in the proofs of
Lemma 7 and Proposition 13.

Lemma 6. Let M be a 2× 2 matrix with real entries

(a) M has repeated eigenvalues if and only if disc M = 0.

(b) M has real eigenvalues if and only if disc M ≥ 0.

(c) det M < 0 if and only if M has two real eigenvalues of opposite sign.

(d) If det M > 0 and disc M ≥ 0, then the eigenvalues of M have the same sign as
tr M.
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Proof. Let λ1, λ2 denote the eigenvalues of M , so

tr M = λ1+ λ2, det M = λ1λ2 and disc M = (λ1− λ2)
2,

each of which is real. Parts (a), (b) and (d) follow immediately from these obser-
vations, and part (c) from the fact that λ2 = λ1 if λ1, λ2 are complex. �

The next lemma gives a bound for the probability of a matrix having repeated
eigenvalues. It is natural to expect this probability to converge to 0 as k increases,
and indeed such a result was obtained in [Hetzel et al. 2007] for matrices of arbi-
trary size. We give a simple proof of a stronger bound for the 2× 2 case, as well
as an analogous qualitative statement for real matrices which will be helpful in the
proof of Theorem 3.

Lemma 7. The number of matrices in M2(k) with a repeated eigenvalue, for every
ε > 0, is �ε k2+ε. The probability that a random matrix in M2([−1, 1]) has a
repeated eigenvalue or is singular is 0.

Proof. By Lemma 6 (a), the 2 × 2 matrix
(a

c
b
d

)
has a double eigenvalue if and

only if 4bc = −(a − d)2. For matrices in M2([−1, 1]) this is easily seen to be a
zero-probability event, as is the event that det M = ad − bc = 0.

For matrices in M2(k), we enumerate how many can satisfy 4bc = −(a − d)2.
If a = d then there are 4k + 1 choices for b, c ∈ {−k, . . . , k}; otherwise there are
at most 2τ((a− d)2/4) choices if a ≡ d (mod 2) and no choices otherwise. (Here
τ(n) is the number-of-divisors function; the factor of 2 comes from the fact that b
and c can be positive or negative, while the “at most” is due to the fact that not all
factorizations of −(a − d)2 result in two factors not exceeding k.) Therefore the
number of matrices in M2(k) with a repeated eigenvalue is at most∑

|a|≤k

(4k+ 1)+ 2
∑
|a|≤k

∑
|d|≤k, d 6=a

a≡d (mod 2)

τ
(
(a−d)2

4

)
�ε k2+ε,

where the inequality follows from (a− d)2/4 ≤ k2 and the well-known fact that
τ(n) �ε nε for any ε > 0 — see for instance [Montgomery and Vaughan 2007,
p. 56]. �

3. Enumeration theorems for integer eigenvalues

Let µ(n) be the Möbius function, characterized by the identity∑
d|n

µ(d)=
{

1 if n = 1,

0 if n > 1.
(4)
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The well-known Dirichlet series identity 1/ζ(s) =
∑
∞

n=1 µ(n)n
−s is valid for

Re s > 1 (see [Montgomery and Vaughan 2007, Corollary 1.10], for example).
In particular, ∑ µ(n)

n2 =
6
π2 ,

and we can estimate the tail of this series (using |µ(n)| ≤ 1) to obtain the quanti-
tative estimate ∑

d≤k

µ(d)
d2 =

6
π2 + O

(1
k

)
. (5)

Lemma 8. For nonzero integers a, b and parameters k, λ, define the function

Nk,λ(a, b)= #
{
(c, d) ∈ Z2, c 6= 0, d 6= 0 : |ac+λ|, |bc|, |ad|, |bd+λ| ≤ k

}
. (6)

Then

|Mλ
2(k)| = 4

∑
d≤k

µ(d)
∑

1≤α<β≤k/d

Nk,λ(dα, dβ)+ O(k2),

where the implied constant is independent of λ and k.

Proof. Fix an integer 0 ≤ λ ≤ 2k, and let M ∈Mλ
2(k), so that M − λI is singular.

By Lemma 5, either at least two entries of M−λI equal zero, or else M−λI has
exactly two representations of the form (3). In the former case, there are 2k + 1
choices for each of the two potentially nonzero entries, hence O(k2) such matrices
in total (even taking into account the several different choices of which two entries
are nonzero). In the latter case, there are exactly two corresponding quadruples
a, b, c, d of integers as in Lemma 5. Taking into account that each entry of M
must be at most k in absolute value, we deduce that

|Mλ
2(k)| =

1
2 #{(a, b, c, d) ∈ Z4

: a, b, c, d 6= 0, (a, b)= 1,
|ac+ λ|, |bc|, |ad|, |bd + λ| ≤ k}+ O(k2)

=
1
2

∑
1≤|a|,|b|≤k
(a,b)=1

Nk,λ(a, b)+ O(k2).

Because of the symmetries Nk,λ(a,b)=Nk,λ(−a,b)=Nk,λ(a,−b)=Nk,λ(−a,−b),
we have

|Mλ
2(k)| = 2

∑
1≤a,b≤k
(a,b)=1

Nk,λ(a, b)+ O(k2).

The only term in the sum where a= b is the term a= b= 1, and for all other terms
we can invoke the additional symmetry Nk,λ(a, b) = Nk,λ(b, a), seen to be valid
by switching the roles of c and d in the definition (6) of Nk,λ(a, b). We obtain
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|Mλ
2(k)| = 4

∑
1≤a<b≤k
(a,b)=1

Nk,λ(a, b)+ 2Nk,λ(1, 1)+ O(k2)

= 4
∑

1≤a<b≤k
(a,b)=1

Nk,λ(a, b)+ O(k2),

where the last step used the fact that Nk,λ(1, 1)≤ #{(c, d)∈Z2
: |c|, |d| ≤ k}� k2.

Using the characteristic property of the Möbius function (4), we can write the
last expression as

|Mλ
2(k)| = 4

∑
1≤a<b≤k

Nk,λ(a, b)
∑

d|(a,b)

µ(d)+ O(k2)

= 4
∑
d≤k

µ(d)
∑

1≤a<b≤k
d|a, d|b

Nk,λ(a, b)+ O(k2)

= 4
∑
d≤k

µ(d)
∑

1≤α<β≤k/d

Nk,λ(dα, dβ)+ O(k2). �

Lemma 9. Let k and λ be integers with 0 ≤ λ ≤ 2k, and let x and y be integers
with 1≤ x ≤ y ≤ k. Then

Nk,λ(x, y)= k2C
(
λ
k
; x, y

)
D
(
λ
k
; x, y

)
+ O

( k
y

)
,

where

C(δ ;x, y)=max
{

0,min
{1−δ

x
+

1
y
,

2
y

}}
, D(δ ;x, y)=min

{1−δ
y
+

1
x
,

2
y

}
. (7)

Proof. We have

Nk,λ(x, y)= #
{
(c, d) ∈ Z2, c 6= 0, d 6= 0 : |xc+ λ|, |yc|, |xd|, |yd + λ| ≤ k

}
= #

{
c ∈ Z, c 6= 0 : −k ≤ xc+ λ≤ k, −k ≤ yc ≤ k

}
× #

{
d ∈ Z, d 6= 0 : −k ≤ xd ≤ k, −k ≤ yd + λ≤ k

}
.

Since x and y are positive, we can rewrite this product as

Nk,λ(x, y)= #
{

c ∈ Z, c 6= 0 : −k−λ
x
≤ c ≤ k−λ

x
, −

k
y
≤ c ≤ k

y

}
× #

{
d ∈ Z, d 6= 0 : − k

x
≤ d ≤ k

x
,
−k−λ

y
≤ d ≤ k−λ

y

}
= #

{
c ∈ Z, c 6= 0 : − k

y
≤ c ≤min

{k−λ
x
,

k
y

}}
× #

{
d ∈ Z, d 6= 0 : max

{
−

k
x
,
−k−λ

y

}
≤ d ≤ k−λ

y

}
, (8)
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where we have used λ≥ 0 and x ≤ y to simplify the inequalities slightly. The first
factor on the right-hand side of (8) is

min
{k−λ

x
,

k
y

}
−

(
−

k
y

)
+ O(1)= k min

{1− λ/k
x
+

1
y
,

2
y

}
+ O(1)

if this expression is positive, and 0 otherwise; it is thus precisely kC(λ/k; x, y)+
O(1). Similarly, the second factor on the right-hand side of (8) is

k−λ
y
−max

{
−

k
x
,
−k−λ

y

}
+ O(1)= k min

{1− λ/k
y
+

1
x
,

2
y

}
+ O(1)

(note that this expression is always positive under the hypotheses of the lemma),
which is simply k D(λ/k; x, y)+ O(1). Multiplying these two factors yields

Nk,λ(x, y)=k2C
(
λ
k
; x, y

)
D
(
λ
k
; x, y

)
+k·O

(
C
(
λ
k
; x, y

)
+D

(
λ
k
; x, y

))
+O(1).

The lemma follows upon noting that both C(λ/k; x, y) and D(λ/k; x, y) are �
1/y by definition, so the second summand becomes simply O(k/y), and the O(1)
term may be subsumed into O(k/y) since y ≤ k. �

We have already used the trivial estimate∑
L≤α<U

1= (U − L)+ O(1),

provided 0< L <U . We will also use, without further comment, the estimates∑
L≤α<U

1
α
= log U

L
+ O

( 1
L

)
,

with its particular case ∑
1≤α<U

1
α
= log U + O(1),

and ∑
L≤α<U

1
α2 =

1
L
−

1
U
+ O

( 1
L2

)
.

These estimates (also valid for 0< L <U ) follow readily from comparison to the
integrals

∫ U
L dx/x and

∫ U
L dx/x2.

Most of the technical work in proving Theorem 1 lies in establishing an estimate
on a sum of the form

∑
1≤α<β C(δ ;α, β)D(δ ;α, β) for a fixed β. The following

proposition provides an asymptotic formula for this sum; we defer the proof until
the next section. Assuming this proposition, though, we can complete the proof of
Theorem 1, as well as Corollary 2.
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Proposition 10. Let β ≥ 1 and 0≤ δ ≤ 2 be real numbers, and let C and D be the
functions defined in (7). Then∑

1≤α<β

C(δ ;α, β)D(δ ;α, β)=
V (δ)
β
+ O

(1+ logβ
β2

)
,

where V (δ) was defined in (1).

Proof of Theorem 1 assuming Proposition 10. The functions C and D defined in (7)
are homogeneous of degree −1 in the variables x and y, so that Lemma 9 implies

Nk,λ(dα, dβ)= k2

d2 C
(
λ
k
;α, β

)
D
(
λ
k
;α, β

)
+ O

( k
dβ

)
.

Inserting this formula into the conclusion of Lemma 8 yields

|Mλ
2(k)| = 4k2

∑
d≤k

µ(d)
d2

∑
1≤α<β≤k/d

C
(
λ
k
;α, β

)
D
(
λ
k
;α, β

)
+ O

(∑
d≤k

∑
1≤α<β≤k/d

k
dβ

)
+ O(k2).

We bound the first error term by summing over 1≤ α < β to obtain∑
d≤k

∑
1≤α<β≤k/d

k
dβ
≤

∑
d≤k

∑
1<β≤k/d

k
d
<
∑
d≤k

k2

d2 � k2,

so that we have the estimate

|Mλ
2(k)| = 4k2

∑
d≤k

µ(d)
d2

∑
1≤α<β≤k/d

C
(
λ
k
;α, β

)
D
(
λ
k
;α, β

)
+ O(k2).

We now apply Proposition 10 to obtain

|Mλ
2(k)| = 4k2

∑
d≤k

µ(d)
d2

∑
1≤β≤k/d

(V (λ/k)
β
+ O

(1+ logβ
β2

))
+ O(k2)

= 4k2
∑
d≤k

µ(d)
d2

(
V
(
λ
k

)(
log k

d
+ O(1)

)
+ O(1)

)
+ O(k2)

= 4k2
(

V
(
λ
k

)
log k

∑
d≤k

µ(d)
d2 + O

(∑
d≤k

log d
d2

))
+ O(k2)

= 4k2
(

V
(
λ
k

)
log k

( 6
π2 + O

(1
k

))
+ O(1)

)
+ O(k2)

=
24
π2 V

(
λ
k

)
k2 log k+ O(k2),

where we have used (5) and the convergence of
∑

1/n2 and
∑
(log n)/n2 (so the

partial sums are uniformly bounded). �
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Proof of Corollary 2 from Theorem 1. Note that for any M ∈M2(k), if one eigen-
value is an integer then both of them are (since the trace of M is an integer). Thus
if we add up the cardinalities of all of the Mλ

2(k), we get twice the cardinality
of MZ

2 (k), except that matrices with repeated eigenvalues only get counted once.
However, the number of such matrices is�ε k2+ε by Lemma 7. Therefore

2|MZ
2 (k)| =

∑
λ∈Z

|Mλ
2(k)| + Oε(k2+ε)

=

∑
−2k≤λ≤2k

(
24
π2 V

(
λ
k

)
k2 log k+ O(k2)

)
+ Oε(k2+ε)

=
24
π2 k3 log k

∑
−2k≤λ≤2k

V (λk )
k
+ O(k3).

The sum is a Riemann sum of a function of bounded variation, so this becomes

2|MZ
2 (k)| =

24
π2 k3 log k

(∫ 2

−2
V (δ) dδ+ O

(1
k

))
+ O(k3).

The corollary then follows from the straightforward computation of the integral∫ 2

−2
V (δ) dδ = 4

9(7
√

2+ 4+ 3 log(
√

2+ 1)),

noting that log(
√

2− 1)=− log(
√

2+ 1). �

4. Proving the key proposition

It remains to prove Proposition 10. Recalling that the functions C and D defined
in (7) are formed by combinations of minima and maxima, we need to separate our
arguments into several cases depending on the range of δ. The following lemma
addresses a sum that occurs in two of these cases (0 < δ < 1 and 1 < δ <

√
2).

Note that because of the presence of terms like log(δ−1) in the formula for V (δ),
we need to exercise some caution near δ = 1.

Lemma 11. Let β ≥ 1 and 0≤ δ ≤
√

2 be real numbers, with δ 6= 1. Then∑′

α

(1−δ
α
+

1
β

) 2
β
=

2
β

( 1
1+δ
− |1− δ| − (1− δ) log |1− δ2

|

)
+ O

(1+logβ
β2

)
,

where
∑
′

α is the sum subject to the condition max{1, |1−δ|β} ≤ α < β/(1+ δ).

Proof. Suppose first that |1− δ|β ≥ 1. Then the sum in question is
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2(1−δ)
β

∑
α≥|1−δ|β
α<β/(1+δ)

1
α
+

2
β2

∑
α≥|1−δ|β
α<β/(1+δ)

1

=
2(1−δ)
β

(
log β

(1+δ)|1−δ|β
+ O

( 1
|1−δ|β

))
+

2
β2

(
β

1+δ
− |1− δ|β + O(1)

)
=

2
β

( 1
1+δ
− |1− δ| − (1− δ) log |1− δ2

|

)
+ O

( 1
β2

)
,

which establishes the lemma in this case. On the other hand, if |1− δ|β < 1 then
the sum in question is

2(1−δ)
β

∑
1≤α<β/(1+δ)

1
α
+

2
β2

∑
1≤α<β/(1+δ)

1

=
2(1−δ)
β

(
log β

1+δ
+ O(1)

)
+

2
β2

(
β

1+δ
+ O(1)

)
=

2
β

( 1
1+δ
− (1− δ) log(1+ δ)

)
+ O

( 1
β2 +

|1−δ| logβ
β

)
.

We subtract 2(|1− δ|+ (1− δ) log |1− δ|)/β from the main term and compensate
in the error term to obtain

2(1−δ)
β

∑
1≤α<β/(1+δ)

1
α
+

2
β2

∑
1≤α<β/(1+δ)

1

=
2
β

( 1
1+δ
− |1− δ| − (1− δ) log |1− δ2

|

)
+ O

( 1
β2 +

|1−δ| logβ
β

+
|1−δ|+|1−δ| log |1−δ|−1

β

)
=

2
β

( 1
1+δ
−|1−δ|−(1−δ) log |1−δ2

|

)
+O

(1+logβ
β2 +

|1−δ| log |1−δ|−1

β

)
,

since we are working with the assumption that |1−δ|< 1/β. Because the function
t log t−1 is increasing on the interval (0, 1/e) and bounded on the interval (0, 1],
we have |1−δ| log |1−δ|−1<(1/β) logβ if β > e and |1−δ| log |1−δ|−1

�1� 1
β

if 1≤ β ≤ e. In either case, the last error term can be simplified to

O
(1+logβ

β2

)
,

which establishes the lemma in second case. �

Proof of Proposition 10. We consider separately the four cases corresponding to
the different parts of the definition (1) of V (δ). To lighten the expressions, we use
the

∑
′

α notation from the statement of Lemma 11 and omit the dependence on δ,
α, and β from the notation for C and D.
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Case 1: 0≤ δ < 1. In this case we have 0< 1− δ < 1
1+δ ≤ 1 and

C =


2
β

if α ≤ (1− δ)β,

1−δ
α
+

1
β
, if (1− δ)β ≤ α,

D =


2
β

if α ≤ β
1+δ

,

1−δ
β
+

1
α
, if β

1+δ
≤ α.

Therefore,∑
1≤α<β

C D

=

∑
1≤α<(1−δ)β

2
β
·

2
β
+

∑′

α

(1−δ
α
+

1
β

) 2
β
+

∑
β/(1+δ)≤α<β

(1−δ
α
+

1
β

)(1−δ
β
+

1
α

)
.

(9)
(The first sum might be empty, but this does not invalidate the argument that fol-
lows.) The first sum is simply

4
β2

∑
1≤α<(1−δ)β

1= 4
β2 ((1− δ)β + O(1))= 4(1−δ)

β
+ O

( 1
β2

)
.

By Lemma 11, the second sum is∑′

α

(1−δ
α
+

1
β

) 2
β
=

2
β

( 1
1+δ
+ δ− 1− (1−δ) log(1−δ2)

)
+ O

(1+ logβ
β2

)
,

while the third sum is∑
β/(1+δ)≤α<β

(1−δ
α
+

1
β

)(1−δ
β
+

1
α

)
= (1− δ)

∑
β/(1+δ)≤α<β

1
α2 +

δ2
−2δ+2
β

∑
β/(1+δ)≤α<β

1
α
+

1−δ
β2

∑
β/(1+δ)≤α<β

1

= (1− δ)
(1+δ
β
−

1
β
+ O

( 1
β2

))
+
δ2
−2δ+2
β

(
log β

(1+δ)−1β
+ O

( 1
β

))
+

1−δ
β2

(
β −

β
1+δ
+ O(1)

)
=

1
β

(
2− δ2

−
2

1+δ
+ (δ2

− 2δ+ 2) log(1+ δ)
)
+ O

( 1
β2

)
.

(10)
This case of the proposition then follows from (9) by noting that

4−4δ+ 2
1+δ
+2δ−2−2(1−δ) log(1−δ2)+2−δ2

−
2

1+δ
+(δ2
−2δ+2) log(1+δ)

= 4− 2δ− δ2
+ δ2 log(1+ δ)− 2(1− δ) log(1− δ).
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Case 2: δ = 1. In this case we have

C = 1
β
, D =


2
β

if α ≤ β
2
,

1
α

if β
2
≤ α.

Therefore,∑
1≤α<β

C D =
∑

1≤α<β/2

1
β
·

2
β
+

∑
β/2≤α<β

1
β
·

1
α

=
2
β2

(
β
2
+ O(1)

)
+

1
β

(
log β

β/2
+ O

( 1
β

))
=

1+log 2
β

+ O
( 1
β2

)
,

as desired.

Case 3: 1< δ ≤
√

2. In this case we have

C =


0 if α ≤ (δ− 1)β,

1−δ
α
+

1
β

if (δ− 1)β ≤ α,
D =


2
β

if α ≤ β
δ+1

,

1−δ
β
+

1
α

if β
δ+1
≤ α.

Therefore,∑
1≤α<β

C D =
∑′

α

(1−δ
α
+

1
β

) 2
β
+

∑
β/(δ+1)≤α<β

(1−δ
α
+

1
β

)(1−δ
β
+

1
α

)
. (11)

(We note that (δ− 1)β ≤ β/(δ+ 1) for δ between 1 and
√

2. For very small β we
might have 1 > β/(δ+ 1), in which case the first sum is empty, but that does not
invalidate the argument that follows.) By Lemma 11, the first sum is∑′

α

(1−δ
α
+

1
β

) 2
β
=

2
β

( 1
1+δ
+ 1− δ− (1− δ) log(δ2

− 1)
)
+ O

(1+logβ
β2

)
,

while the second sum has already been evaluated in (10) above. This case of the
proposition then follows from (11) by noting that

2
1+δ
+ 2− 2δ− 2(1− δ) log(δ2

− 1)+ 2− δ2
−

2
δ+1
+ (δ2

− 2δ+ 2) log(δ+ 1)

= 4− 2δ− δ2
+ δ2 log(δ+ 1)+ 2(δ− 1) log(δ− 1).

Case 4:
√

2< δ ≤ 2. Just as in Case 3, we have

C =

 0 if α ≤ (δ− 1)β,
1−δ
α
+

1
β

if (δ− 1)β ≤ α,
D =


2
β

if α ≤ β
δ+1

,

1−δ
β
+

1
α

if β
δ+1
≤ α.
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However, the inequality (δ − 1)β ≤ α automatically implies that β
δ+1 ≤ α when

δ ≥
√

2. Therefore,∑
1≤α<β

C D =
∑

(δ−1)β≤α<β

(1−δ
α
+

1
β

)(1−δ
β
+

1
α

)
.

(In this case we will not need to use max{1, (δ − 1)β} ≤ α, which is the more
precise lower bound.) This yields∑
1≤α<β

C D

= (1− δ)
∑

(δ−1)β≤α<β

1
α2 +

δ2
−2δ+2
β

∑
(δ−1)β≤α<β

1
α
+

1−δ
β2

∑
(δ−1)β≤α<β

1

= (1− δ)
( 1
(δ−1)β

−
1
β
+ O

( 1
(δ−1)2β2

))
+
δ2
−2δ+2
β

(
log β

(δ−1)β
+ O

( 1
(δ−1)β

))
+

1−δ
β2

(
β − (δ− 1)β + O(1)

)
=

1
β

(
δ2
− 2δ− (δ2

− 2δ+ 2) log(δ− 1)
)
+ O

( 1
β2

)
,

the error terms having been simplified since δ− 1 is bounded away from 0. �

5. Distribution of real eigenvalues

In proving Theorem 3, it will be convenient to define the odd function

G(z)=
∫ z

0
−log |t | dt = z(1− log |z|), (12)

whose relevance is demonstrated by the following lemma.

Lemma 12. If B and C are independent random variables uniformly distributed
on [−1, 1], the product BC is a random variable whose distribution function is

FBC(z)= Pr(BC < z)= 1
2(1+G(z))

for z ∈ [−1, 1].

Of course, for z <−1 we have FBC(z)= 0, and likewise FBC(z)= 1 for z > 1.

Proof. Note that |B| and |C | are uniformly distributed on [0, 1]. For 0≤ z ≤ 1, we
easily check that

Pr(|BC |< z)=
∫ 1

0
min

{
1, z

s

}
ds = G(z).
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Thus |BC | is distributed on [0, 1] with density f|BC |(z) = − log z, and by sym-
metry BC has density fBC(z) = −1

2 log |z| on [−1, 1]. The lemma follows upon
computing

FBC(z)=
∫ z

−1
fBC(s) ds. �

It will also be helpful to define the following functions, which are symmetric in
x and y:

ν1(x, y)= 1
2 +

1
2 G(xy)+G

(
(x−y)2

4

)
, (13)

ν2(x, y)= 1
2 −

1
2 G(xy), (14)

ν(x, y)=



ν1(x, y), if xy < 1 and x + y < 0,

ν2(x, y), if xy < 1 and x + y > 0,

1+G
(
(x−y)2

4

)
, if xy > 1 and x + y < 0,

0, otherwise.

(15)

To prove Theorem 3, we first consider the distribution function

FW (δ)=

∫
t<δ

W (t) dt

associated to the density W (δ). For a random matrix M in M2([−1, 1]) and a real
number δ, we will derive an expression for the expected number of real eigenvalues
of M falling below δ, then differentiate it to obtain W (δ).

It is clear that W (−δ)=W (δ) since the set M2([−1, 1]) is closed under negation,
so it suffices to compute W (δ) for δ ∈ [0, 2]. It turns out that our calculations for
FW will be somewhat simplified by considering FW (−δ) rather than FW (δ).

Proposition 13. We have

FW (−δ)=
1
4

∫ 1+δ

−1+δ

∫ 1+δ

−1+δ
ν(x, y) dx dy

for all 0≤ δ ≤ 2, where ν is defined in (15).

Proof. Denote the entries of M by A, B, C , D, which by assumption are indepen-
dent random variables uniformly distributed in [−1, 1]. Let δ be fixed in the range
[0, 2], and consider the shifted matrix M ′ = M + δ I , which we write as

M ′ =
(

X B
C Y

)
,

where X , Y range independently and uniformly in [−1+ δ, 1+ δ] and B, C are
as before. Clearly the eigenvalues of M less than −δ correspond to the negative
(real) eigenvalues of M ′. By Lemma 7, we are free to exclude the null set where
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M ′ is singular or has repeated eigenvalues. Outside of this null set, M ′ has exactly
one negative eigenvalue if and only if

det M ′ = XY − BC < 0,

by Lemma 6 (c). Likewise by Lemma 6 (d), M ′ has exactly two negative eigen-
values if and only if

XY − BC > 0, X + Y < 0 and disc M ′ = (X − Y )2+ 4BC > 0.

We thus have:

FW (−δ)= Pr(BC > XY )+ 2Pr
(

X + Y < 0 and − (X−Y )2

4
< BC < XY

)
.

We may express this probability as the average value

FW (−δ)=
1
4

∫ 1+δ

−1+δ

∫ 1+δ

−1+δ
ρ(x, y) dx dy,

where for fixed x and y,

ρ(x, y)= Pr(BC > xy)+ 2Pr
(

x + y < 0 and − (x−y)2

4
< BC < xy

)
= Pr(BC > xy)+ 2Pr

(
−
(x−y)2

4
< BC < xy

)
1{x + y < 0} (16)

(here 1{·} denotes the indicator function of the indicated relation). To complete the
proof it suffices to show that ρ equals the function ν defined in (15).

The probabilities appearing in (16) are effectively given by Lemma 12. How-
ever, there is some case-checking involved in applying this lemma, since the value
of, say,

Pr(BC > xy)= 1− FBC(xy)

depends on whether xy < −1, −1 ≤ xy ≤ 1, or xy < −1. We make some obser-
vations to reduce the number of cases we need to examine.

Note that (x − y)2/4 is bounded between 0 and 1 for any x, y ∈ [−1+δ, 1+δ],
so that − (x−y)2

4 always lies in the interval [−1, 1] prescribed by Lemma 12. From
the identity

(x + y)2− (x − y)2 = 4xy

we see also that xy ≥−(x − y)2/4. Thus xy is never lower than −1, and we need
only consider whether xy > 1 (in which case FBC(xy)= 1). We therefore have

Pr(BC > xy)= 1− FBC(xy)= 1
2(1−G(xy))1{xy < 1},

2Pr
(
−
(x−y)2

4
< BC < xy

)
= 2FBC(xy)− 2FBC

(
−
(x−y)2

4

)
= 1{xy > 1}+G(xy)1{xy < 1}+G

(
(x−y)2

4

)
.
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Inserting these two evaluations into the formula (16), we obtain

ρ(x, y)= 1
2(1−G(xy))1{xy < 1}

+

(
1{xy > 1}+G(xy)1{xy < 1}+G

(
(x−y)2

4

))
1{x + y < 0}.

It can be verified that this last expression is indeed equal to the right-hand side of
the definition (15) of ν. �

Since
W (δ)=W (−δ)=−

d
dδ

FW (−δ),

to finish the proof of Theorem 3 it therefore suffices to prove that − d
dδ

FW (−δ)

equals the formula given in Theorem 3.

6. The derivative of the distribution

Proposition 13 expresses FW (δ) as an integral, of a function ν that is independent
of δ, over the square

Sδ = [−1+ δ, 1+ δ]2.

Since the region Sδ varies continuously with δ, we can compute the derivative

−
d
dδ

FW (−δ)

by an appropriate line integral around the boundary of Sδ. Indeed, by the funda-
mental theorem of calculus, we have

−
d

dδ
FW (−δ)=−

1
4

d
dδ

(∫ 1+δ

−1+δ

∫ 1+δ

−1+δ
ν(x, y) dx dy

)
=−

1
4

(∫ 1+δ

−1+δ
ν(1+ δ, y) dy−

∫ 1+δ

−1+δ
ν(−1+ δ, y) dy

+

∫ 1+δ

−1+δ
ν(x, 1+ δ) dx −

∫ 1+δ

−1+δ
ν(x,−1+ δ) dx

)
=

1
2

∫ 1+δ

−1+δ
ν(x,−1+ δ) dx − 1

2

∫ 1+δ

−1+δ
ν(x, 1+ δ) dx, (17)

where we have used the symmetry ν(x, y)= ν(y, x) to reduce the integral to just
the top and bottom edges of Sδ (where y = 1+ δ and y =−1+ δ, respectively).

The evaluation of (17) divides into three cases depending on the behavior of the
indicator functions 1{x + y < 0} and 1{xy < 1} on the boundary of Sδ (Figure 2).

Case 1: 0 ≤ δ ≤ 1. For this range of δ, the line x + y = 0 intersects the bottom
edge of Sδ at x = 1 − δ, while the hyperbola xy = 1 intersects the top edge at



998 Greg Martin and Erick Wong

Ν1

Ν2

0

Ν2

0

Ν2

0

Figure 2. The three cases: 0≤ δ ≤ 1, 1≤ δ ≤
√

2 and
√

2≤ δ ≤ 2.

x = (1+ δ)−1. Thus by the definition of ν, (17) becomes

−
d

dδ
FW (−δ)=

1
2

(∫ 1−δ

−1+δ
ν1(x,−1+ δ) dx

+

∫ 1+δ

1−δ
ν2(x,−1+ δ) dx −

∫ (1+δ)−1

−1+δ
ν2(x, 1+ δ) dx

)
.

The following elementary antiderivatives, which are readily obtained by substi-
tution and integration by parts, follow for any fixed nonzero real number y from
the definitions (12), (13), and (14) of G, ν1, and ν2:∫

ν1(x, y) dx = 1
2 x + 1

8 x2 y(3− 2 log |xy|)+ 1
36(x−y)3

(
5− 6 log

∣∣∣ x−y
2

∣∣∣),∫
ν2(x, y) dx = 1

2 x − 1
8 x2 y(3− 2 log |xy|).

(18)

Therefore in this case,

−
d

dδ
FW (−δ)=

1
2

((
1
2 x + 1

8 x2(−1+ δ)(3− 2 log |x(−1+ δ)|)

+
1
36(x + 1− δ)3

(
5− 6 log

∣∣∣ x+1−δ
2

∣∣∣)) ∣∣∣1−δ
x=−1+δ

+
( 1

2 x − 1
8 x2(−1+ δ)(3− 2 log |x(−1+ δ)|)

) ∣∣∣1+δ
x=1−δ

−
( 1

2 x − 1
8 x2(1+ δ)(3− 2 log |x(1+ δ)|)

) ∣∣∣(1+δ)−1

x=−1+δ

)
=

80+ 20δ+ 90δ2
+ 52δ3

− 107δ4

144(1+ δ)

−
(5− 7δ+ 8δ2)(1− δ)

12
log(1− δ)−

δ(1− δ2)

4
log(1+ δ)
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(after some algebraic simplification), which verifies the first case of Theorem 3.
(Note that the integrands really are continuous, despite terms that look like log 0,
because the function G is continuous at 0; hence evaluating the integrals by an-
tiderivatives is valid.)

Case 2: 1 ≤ δ ≤
√

2. Now, the line x + y = 0 does not intersect Sδ, while the
hyperbola xy = 1 intersects the top edge at x = (1+ δ)−1. Thus by the definition
of ν and the antiderivative (18) of ν2, (17) becomes

−
d

dδ
FW (−δ)=

1
2

(∫ 1+δ

−1+δ
ν2(x,−1+ δ) dx −

∫ (1+δ)−1

−1+δ
ν2(x, 1+ δ) dx

)
=

1
2

(( 1
2 x − 1

8 x2(−1+ δ)(3− 2 log |x(−1+ δ)|)
) ∣∣1+δ

x=−1+δ

−
( 1

2 x − 1
8 x2(1+ δ)(3− 2 log |x(1+ δ)|)

) ∣∣(1+δ)−1

x=−1+δ

)
=
δ(20+ 10δ− 12δ2

− 3δ3)

16(1+ δ)
+
(3δ− 1)(δ− 1)

4
log(δ− 1)

+
δ(δ2
− 1)

4
log(δ+ 1),

which verifies the second case of Theorem 3.

Case 3:
√

2< δ ≤ 2. As before, the line x+ y = 0 does not intersect Sδ, while the
hyperbola xy = 1 now intersects the bottom edge at x = (δ − 1)−1. Thus by the
definition of ν and the antiderivative (18) of ν2, (17) becomes

−
d

dδ
FW (−δ)=

1
2

∫ (−1+δ)−1

−1+δ
ν2(x,−1+ δ) dx

=
1
2

( 1
2 x − 1

8 x2(1+ δ)(3− 2 log |x(1+ δ)|)
) ∣∣(−1+δ)−1

x=−1+δ

=
δ(δ− 2)(2− 6δ+ 3δ2)

16(δ− 1)
−
(δ− 1)3

4
log(δ− 1),

which verifies the third case of Theorem 3.
Since the last case of Theorem 3 is a consequence of Lemma 4, the proof of the

theorem is complete.

Remark. One could also use the same method to extract the individual distri-
butions of the greater and lesser eigenvalues of M : for instance, eliminating the
factor of 2 from (16) would yield an expression for the distribution of just the lesser
eigenvalue of M .
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